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Chapter 1

Introduction

Typical distributed systems can be surprisingly difficult to reason about. Our intu-

itive notion of program correctness can be shattered at the blink of an eye even years

after a system has been written and used in practice, sometimes with disastrous con-

sequences. Even elementary distributed algorithms may contain concurrency issues

subtle enough to fool the most experienced of designers.

System failures often stem from our inadequate notions of correctness. At an

informal level, sloppy correctness arguments serve to "justify" imprecise system spec-

ifications. However, experience has demonstrated that many of the problems arising

in concurrent systems are direct consequences of this sloppiness in design. As a result,

researchers spend considerable effort in developing formal yet practical environments

for specifying concurrent systems.

In the framework of a formal system description together with a precise semantics,

it often happens that our intuitive understanding of correctness is highly ambiguous.

Most of us perceive the task of translating a high-level statement into a specific

formalism as daunting, unenlightening and perhaps even unnecessary. Yet, in the

context of concurrent systems, this approach of formalizing the systems as well as

the properties we are interested in verifying pays off for several reasons. In addition

to the obvious benefit of resolving ambiguities in our understanding of correctness,

a good formalism imposes structural restrictions which force the designer to produce

well-written, modular specifications.
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Perhaps the greatest benefit of formal specification is its connection to a variety of

manual and automatic validation techniques, such as simulation, invariant generation,

automated theorem proving and model checking. These techniques can be used both

to improve our understanding of the system and its properties and to verify that the

system satisfies the desired properties.

1.1 The input/output automaton model

The input/output automaton (I/O automaton) model is a state machine-based for-

malism for describing distributed systems. In addition to the states and transitions

of ordinary state machines, I/O automata introduce the notion of external behavior

which captures the observable portion of a state machine execution.

Owing to its relatively simple mathematical structure, the theory of I/O automata

can be used to describe a wide variety of asynchronous distributed systems. The

inherent nondeterminism of I/O automata allows such systems to be described in

their most general forms.

Despite its simplicity, the theory is expressive enough to capture important classes

of properties which are commonly used in the development and verification of dis-

tributed systems. In particular, the theory supports the formulation of automaton

invariants and simulations between automata.

Finally, the I/O automaton model is based on set-theoretic mathematics rather

than a particular logic or programming language. This provides enough flexibility for

this model to interact with a wide range of analysis tools.

1.2 The IGA language and toolkit

IOA is a formal language for specifying, validating and implementing distributed

systems based on the I/O automaton formalism. It derives its form from guarded

command-style syntax similar to pseudocode descriptions of distributed algorithms,

such as the pseudocode segments from [14]. Since the I/O automaton model is re-

16



active rather than sequential, IOA is distinguished from most typical functional pro-

gramming languages by its constructs for explicit and implicit nondeterminism and

concurrency.

The language is designed to support expressing designs at different levels of ab-

straction, starting with a high-level, global specification of the system behavior and

ending with a low-level version which is translatable into real code. IOA also supports

descriptions of systems composed from several interacting components, building upon

the notion of composition in the theory of I/O automata.

IOA is meant to interface with a variety of tools, including code generators pro-

ducing output in executable languages such as C++ or Java, a simulator which can

be used to study sample behaviors of distributed systems, automatic invariant dis-

covery packages, model checkers and interactive theorem provers. Each of these tools

imposes a stringent set of constraints on the nature of the language. Code generators

interface best with deterministic programs written in imperative style. On the other

hand, nondeterminism is a useful abstraction in formal verification, and most verifi-

cation tools support only declarative style specifications. As an intermediary between

these tools, IOA must provide enough flexibility to allow natural interaction with all

of them.

IOA is based on pseudocode used in previous work on I/O automata. Automaton

components such as states, actions and transitions are explicitly represented in IOA.

States are represented by collections of strongly typed variables. Transitions are

specified through transition definitions which can be parameterized. Each transition

definition contains a precondition and an effect. The precondition is a predicate

specifying whether the transition is enabled in the current (initial) state. The effect

specifies the final state in terms of the initial state, the transition parameters and

possibly additional nondeterministically chosen parameters. The code may be written

either as an imperative style sequence of instructions or as a predicate relating the

state variables, transition parameters and nondeterministic parameters.

17



1.3 Techniques for verifying automaton properties

As a practical tool for distributed system analysis, IOA provides a mechanism for

computer-based formal verification of I/O automaton properties. In particular, it al-

lows the use of mathematical techniques for proving assertions about abstract I/O au-

tomata such as invariants and simulations to ensure correctness of real world systems

implemented in the IOA language. Owing to the abstract nature of the underlying

mathematical model, IOA has the potential to interface with a variety of verification

tools.

Most of the interesting results in computer-based formal verification have been

obtained with the help of model checkers and interactive theorem provers. The veri-

fication features provided by these two types of tools are, in many respects, comple-

mentary. An interesting area of research is the discovery of techniques that would

allow the combination of their respective strengths.

Model checkers have the advantage of requiring considerably less attention from

the user and are suitable for verifying properties of relatively complex automata

as long as the state space is not prohibitively large. If verification of the desired

property fails, these tools provide the user with a counterexample which can be useful

for remedying the perceived defect. Model checkers have been used for checking

a variety of temporal properties, including safety properties (invariants, simulation

relations) and liveness properties (livelock, deadlock). Unfortunately, despite frequent

improvements and optimizations in the architecture of model checkers, the size of the

models to which these techniques can be applied is too small to be useful for many

common software systems.

Model checkers have been used to study a number of challenge problems and

practical algorithms. The basic ideas are illustrated in a variety of typical exam-

ples including two-process mutual exclusion [6] and the alternating bit protocol [13].

Clarke et al. [5] demonstrate the application of model checking techniques to a cache

coherence protocol for high-performance computers.

Theorem provers provide environments for conducting formal proofs of statements
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in a prespecified logical system. They support a combination of automatic and manual

procedures which mirror the common proof techniques from mathematics, such as

deductive and inductive reasoning, proofs by cases and proofs by contradiction. The

computational complexity of the theorem prover procedures is closely related to the

length and intricacy of the informal proof of the conjectured property.

To verify properties of automata, the automaton specification and the properties

of interest are translated to the logical language supported by the theorem prover.

The properties are then verified through an interactive session, in which the user

feeds the theorem prover with hints on how to establish the desired conclusion. Since

mathematical proofs usually rely on reasoning about abstract models rather than

detailed low level descriptions of systems, theorem proving techniques are highly

scalable. In particular, they do not suffer from the state explosion problem exhibited

by model checkers and may be even used to verify system specifications with infinite

state spaces.

Unlike model checkers, theorem provers require an extensive amount of user un-

derstanding and interaction. Before venturing into a formal proof, one needs to have

a good idea of the underlying mathematical argument. Even with the mathematics

in mind, it takes a considerable amount of skill and patience to transform this into a

fully formalized proof which can be handled by the tool. Yet, this formalization pro-

cess is not merely a waste of time, as problems with the model tend to surface in the

intricate details of the formal proof. A simple (though somewhat tedious) method of

translating informal arguments into formal proofs which can be useful in this context

is explained in [12].

Theorem provers have been used to verify a variety of distributed algorithms. A

toy example which illustrates theorem proving techniques for distributed algorithms

is the lossy queue [20]. Miller [17] provides formal correctness proofs for a distributed

alarm example and the alternating bit protocol in Isabelle/HOL. Garland and Lynch

used the Larch Prover to analyze a complicated distributed banking example [9].
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1.4 IOA and theorem proving

IOA descriptions of automata have precise and relatively simple interpretations in

the I/O automaton model. The theory of I/O automata is elementary enough that

automatic reasoning tools, such as theorem provers, can provide considerable help

in the reasoning process. To establish this connection between IOA and a theorem

proving environment, we must address two important issues: (1) the choice of an

appropriate logic and a theorem prover and (2) the interpretation of IOA specifications

in the context of this logic.

1.4.1 Choosing a logic

The choice of an appropriate logic presents a tradeoff between expressiveness and

complexity. If the logic is too constrained, we cannot express interesting properties.

If it is too rich, formal reasoning in it may become cumbersome and computationally

expensive. It is instructive to consider the types of properties which we may want to

verify and choose the logic accordingly.

Interesting properties of distributed systems are divided in two classes: liveness

properties, which specify that some "good" event eventually happens in an execution,

and safety properties, which specify that a particular "bad" event never happens.

Precise definitions of these classes of properties can be found in [1].

Liveness properties are somewhat awkward to express in first-order logic. Most

formal frameworks for reasoning about these properties are based in more elaborate

temporal logics [18]. Some specialized theorem provers such as STeP [2] provide built-

in support for reasoning in temporal logic. General purpose theorem provers do not

support temporal logic, so temporal operators are usually defined using constructs

from higher order logic. This approach has been used to obtain frameworks for

verification of I/O automaton properties in PVS [7] and Isabelle/HOL [17]. The

resulting frameworks are very general, but the reasoning is complicated because the

rules of temporal logic are less intuitive than the rules of first-order logic.

Safety properties can be expressed naturally in multisorted first-order logic. The
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Larch proof assistant [8] is specialized for reasoning in this type of logic. It provides

a rich syntax for expressing properties in familiar notation, admits intuitive speci-

fications of theories in the Larch Shared Language (LSL) and supports a variety of

proof techniques similar to the ones used in less formal mathematical arguments.

Distributed algorithms of varying levels of complexity have been sucessfully verified

in Larch [20, 9]. These experiences suggest that Larch is a useful tool for checking

safety properties of automata.

The framework described in this thesis allows the verification of safety properties

stated in Larch-style multisorted first-order logic. By restricting our attention to this

specific class of properties, we hope to increase the automation level of our tool and

reduce (or at least facilitate) the human interaction with the theorem prover. This,

in turn, will allow us to formally verify highly complex distributed algorithms.

1.4.2 Interpreting IOA specifications

The choice of Larch as a verification environment for I/O automata provides an extra

benefit. As the IOA type system is specified in LSL, the declarations and properties

of datatypes are readily available for theorem proving. In addition, IOA and LSL

formulas (terms) are syntactically equivalent.

The first task in interpreting IOA specifications is to find a suitable formalization

of I/O automata theory in multisorted first-order logic. Garland et al. [9] devised

a Larch theory based on the primitive notions of states and actions. The theory is

powerful enough to make claims of invariants, forward simulations and backward sim-

ulations. It provides the starting point for the framework presented here. We adopt a

number of modifications to this theory in the hope of automating part of the theorem

proving process by extracting additional information from the IOA specification.

With the theory of I/O automata formalized, we can tackle the issue of interpreting

a particular IOA specification in the context of this theory. The interpretation must

be concise and readable to the user of the theorem proving tool. On the other hand,

it should interact well with the automation features provided by the theorem prover.

Since the interpretation is specified in first-order logic, all this must be performed
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with relatively simple mathematical machinery.

1.5 Thesis overview

The principal contribution of this thesis is the design and implementation of a transla-

tion process which converts automaton declarations in the IOA language to equivalent

specifications in the Larch Shared Language. This tool allows the application of inter-

active theorem proving techniques to verify a wide range of practical safety properties

of I/O automata.

A number of distributed data management algorithms serve to illustrate the prac-

tical benefits of this tool. These algorithms were developed as challenge problems

for software synthesis and analysis in the IOA language and toolkit. Ranging from

simple to highly complex, they capture many of the difficulties encountered in formal

modeling and verification. In many cases, the frustrations and successes experienced

in the formal verification of these examples were the driving force behind important

design decisions about the tool.

Chapter 2 sets up the formal framework in which the translation process is con-

ducted. It defines the elements of the I/O automaton model relevant to the properties

of interest and describes their formalization in Larch style multisorted first-order logic.

A number of new definitions relevant to our formalization of explicit nondeterminism

are provided in this chapter.

The ideas and architecture of the translation process are discussed in Chapter 3.

The bulk of the chapter is dedicated to translating imperative-style IOA code into

the declarative syntax supported by Larch.

The representation of explicit nondeterminism in Larch is the topic of Chapter

4. IOA allows nondeterminism to appear at various parts of the specification. Some

forms of nondeterminism may be constrained by a predicate. We look closely at the

interpretation of these various kinds of nondeterminism and provide a faithful scheme

for its resolution.

The next three chapters illustrate the application of the theorem proving method-
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ology discussed so far to a series of distributed data management models. Chapter 5

discusses a strong caching system. The correctness proofs are transparent, but provide

a good illustration of the basic technique. In Chapter 6 we verify the more compli-

cated majority voting model. Some of the issues in this model are subtle enough to

require more reflection.

In Chapter 7 we present a simulation proof of Lamport's replicated state ma-

chine model [11], a highly complex data management algorithm for asynchronous

distributed systems. To our knowledge, this is the first proof of the algorithm written

in successive refinement style. Parts of this proof were carried out using Larch. The

rest of the proof requires a suitable extension of the Larch theory of I/O automata,

which is left as an open problem.

Chapter 8 is the conclusion of our exposition. It suggests a number of possible

improvements to the translation process and underlying machinery as part of future

work.
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Chapter 2

Reasoning about I/O automata

When we attempt to gain an intuitive understanding of an automaton, we use in-

formal arguments to single out essential ideas and interesting properties. Intuitive

reasoning is helpful because it allows us to gain better understanding of our system,

but is often flawed because it may depend on unstated or incorrect assumptions. In

practice, these mistakes in reasoning may be extraordinarily subtle yet critical to the

proper functioning of the system. To establish correctness beyond reasonable doubt,

reasoning strategies about automata need to be conducted at a level more formal than

typical arguments used in ordinary mathematics. Unfortunately, formal arguments

tend to be long, tedious, dull, and time consuming.

A useful reasoning methodology combines the flexibility of intuitive reasoning with

the persuasive power of formal arguments. Our attempt at resolving this tradeoff de-

rives from two ingredients: the theory of I/O automata and computer assisted formal

proofs. The former provides a precise model and introduces formal proof techniques

which approximate popular intuitive arguments. The latter facilitates the tedious

task of conducting the formal proof by automating the cumbersome computational

details in the proofs.

I/O automata are based on set-theoretic mathematics; theorem provers work with

specifications in a particular logic. In this chapter we set up the framework that

establishes the connection between the two. First, we introduce the I/O automaton

model and its relevant properties. We then describe a multisorted first order theory,
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generated by a simple set of axioms, which will be used to study the model.

2.1 The mathematical framework

In this section, we provide formal definitions of the elements of I/O automata theory

and their properties. These notions were introduced by Lynch and Tuttle in [15].

They are used as the foundation for the formalism in Distributed Algorithms [14].

Some of the definitions are stated in modified forms which are more suitable for the

discussion presented in this thesis. A number of new abstractions are introduced in

order to facilitate the discussion in the following chapters.

We omit the components of the model pertaining to liveness properties, for they

do not play a role in the methodology and tools described in this thesis.

2.1.1 The I/O automaton model

We assume a universal set of actions, used to describe the transitions between states.

Definition A signature S is a collection of three disjoint sets of actions: The input

actions in(S), the output actions out(S) and the internal actions int(S).

The actions in in(S) U out(S) are called external actions. This set is denoted by

ext(S). The set int(S) U ext(S) is denoted by acts(S).

Definition A relabeling from signature S to signature S' is a map - from the set

ext(S) to the set ext(S') for which c-(in(S)) C in(S') and u(out(S)) C out(S').

Definition An I/O automaton A consists of

1. A set of states (denoted by states(A)),

2. A signature (denoted by sig(A)),

3. A relation steps(A) C states(A) x acts(sig(A)) x states(A) called a labeling.

The entry (s, 7r, s') E steps(A), also written as s - + s', is called a transition of A.
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We say that action 7r is enabled in state s of automaton A if there exists a state s'

such that s -2+ s' is a transition of A. Automaton A is input-enabled if every input

action of A is enabled in every state of A.

The original definition of I/O automata [15] requires input-enabledness by default.

This property is important for theorems on liveness and composition. For safety prop-

erties, input-enabledness bears no particular relevance. Relaxing this requirement will

simplify our reasoning.

Finally, we want to single out a particular form of automaton in which the action

labels are unique at each state. This definition, which is not included in standard I/O

automaton theory, will be useful for formal descriptions of automata in multisorted

first-order logic.

Definition The I/O automaton A is pseudodeterministic if for every state s and

every action label 7r of A, there exists at most one s' so that s - s' is a transition

of A.

2.1.2 Describing behaviors of automata

In this section we introduce the ideas of execution and external behavior of an I/O

automaton. In addition to the standard notions from Distributed Algorithms, we

define explicit operators which will be useful for comparing the executions of two

automata.

Definition An execution fragment of an I/O automaton A is a (finite or infinite)

sequence so, 1r, si, ... , rk, sk, .... , (si) of alternating states and actions of A such that

sk s+ Sk+1 is a transition of A. If s0 is a start state of A, then the execution fragment

is an execution.

Note that if A is pseudodeterministic, then the states sk for k > 1 in the execution

fragment are implicitly determined by so and the 7rks.

Definition A state of A is reachable if it is the final state of some execution of A.

Definition The trace of an execution fragment a, denoted by trace(a), is the sub-

sequence of a consisting of all external actions of a.
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An extension of this definition will be helpful for comparing traces:

Definition The trace of an execution fragment a under relabeling -, denoted by

trace,(a), is the sequence obtained by applying -to every action of trace(a).

By extension of notation, we write s -c s' for an execution fragment with initial

state s and final state s'.

2.1.3 Invariants and simulation relations

It is useful to single out two types of safety properties which are used time and

again in formal arguments about I/O automata invariants and simulation relations.

Invariants are used to establish constraints on the operation of a single automaton.

Simulation relations are used to relate the observable behavior of two automata, often

an abstract model and its lower level implementation.

Definition An inductive invariant of automaton A is a predicate I of states(A) so

that

1. If s is a start state of A then I(s) holds.

2. If I(s) holds and s -- + s', then I(s') holds.

An inductive invariant is a special type of invariant - a predicate which holds

in all reachable states of the automaton. The definition provides a useful method

for verifying invariants. However, not every invariant is inductive; it is sometimes

necessary to begin with a stronger predicate, prove that it is an inductive invariant

and derive the original invariant by logical deduction.

Definition A forward simulation from automaton A to automaton B is a relation

f on states(A) x states(B) with the following properties:

1. For every start state a of A, there exists a start state b of B so that f(a, b)

holds.

2. If a is a reachable state of A, b is a reachable state of B, f(a, b) holds and

a -- + a', then there exists a state b' of B and an execution fragment 3 of B so

that b -- + b', f(a', b') holds and trace(7r) = trace(#3).
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The importance of forward simulations is captured in the next theorem, which

provides a practical method for establishing properties of global behaviors by rea-

soning about individual actions. Its correctness is easily established by reasoning

inductively on the length of executions.

Theorem 2.1 If there is a forward simulation relation from A to B, then every trace

of A is a trace of B.

The converse to this theorem does not hold. Lynch and Vandraager [16] and

others show examples of automata which are related by trace inclusion even though

no relation between their states is a forward simulation. Despite their incompleteness

with respect to trace inclusion, a wide range of distributed systems used in practice

can be related by forward simulation relations. In all case studies presented here,

trace inclusion is established by exhibiting a forward simulation.

Several additional kinds of mappings and relations which can be used to establish

trace inclusion are studied in [16]. Apart from forward simulations, notions used to

describe correspondences between automata include backward simulations, history

variables and prophecy variables. It is likely that the tool for formal reasoning about

I/O automata presented here can be extended to handle these notions.

2.1.4 Describing the step correspondence

Theorem 2.1 provides a method for verifying that automaton A implements automa-

ton B, in the sense that every external behavior of A is allowed by B. To use the

theorem, we first look for a candidate simulation relation; once a candidate has been

found, we must verify that f satisfies properties 1 and 2 of the definition.

Properties 1 and 2 are typically verified using constructive arguments. To ver-

ify property 2, for each transition a -- "+ a' of A we must produce a corresponding

execution fragment b - 0 b' of B. The execution fragment itself is described as an

alternating sequence of states and actions. All this introduces a plethora of interme-

diate variables which need to be explicitly instantiated.
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If the automata A and B are pseudodeterministic, the notation is greatly sim-

plified. The states a', b' and the intermediate states of # become implicit in the

description. This is especially helpful if the verification is to be performed by an

interactive theorem prover. We now show how to transform a generic automaton to

a pseudodeterministic one.

Theorem 2.2 For every automaton A, there exists an automaton A' and a relabeling

or : sig(A') -+ sig(A) so that:

1. states(A') = states(A).

2. A' is a pseudodeterministic automaton.

3. traces,(A') = traces(A).

The translation process from IOA to LSL automatically converts every automaton

into a pseudodeterministic automaton. The proof does not describe the exact pro-

cedure used in the translation process, but it reveals the basic idea of parametrizing

the action labels to make them locally unique.

Proof Given the automaton A, we construct A' and -.

1. Let states(A') = states(A).

2. Let acts(sig(A')) = acts(sig(A)) x states(A). Action (7r, s') is an input (output,

internal) action of S' if and only if ir is an input (output, internal) action of S.

3. s .) s' is a transition of A' if and only if s - s' is a transition of A.

Properties 1, 2 and 3 of the theorem are easy to verify.

It is possible that automaton A' fails to be input-enabled even if A were input-

enabled. This is why it was necessary to adopt a relaxed definition of I/O automaton.
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2.2 The Larch theory of I/O automata

We are now in a position to investigate possible axiomatizations of the theory of

I/O automata. The theory must be powerful enough to express the safety properties

introduced in the previous sections-invariants and simulation relations.

The theory is formulated in the Larch Shared Language, a formal language for

describing finitely axiomatizable theories in multisorted first order logic. The theory

is based on a prototype developed by Garland [20].

Theorem 2.2 shows that every automaton can be transformed to a pseudodeter-

ministic automaton, if we introduce an appropriate relabeling. Consequently it is

sufficient to limit the theory to pseudodeterministic automata. The transformation

that converts IOA specifications to pseudodeterministic automata is very natural.

This is demonstrated in the case studies from Chapters 5 and 6. We modify some

notions from [20] and introduce two additional ones (signatures and relabelings) as

part of the formal machinery for this transformation.

2.2.1 Automaton basics

We build the theory of automata from a number of primitives. For each automaton

A, we assume:

" A sort States[A] representing the states of A.

" A sort Actions[A] representing the actions of A.

In addition, we assume a universal sort Actions, which will be used to compare

the actions of two automata. We begin by defining signatures:

Signature(S): trait

introduces
ext: S -+ Bool
internal: S -+ Bool

input: S - Bool

output: S -+ Bool

asserts with 7r: S
internal(-r) -- -,ext(7r);

31



ext (7r) * input r) V output (7r);

- (input (r) A output (7r)) ;

Automata are defined as follows:

Automaton(A): trait

includes Signature (Actions [A])

introduces
start: States[A] -* Bool
enabled: States[A], Actions[A] -+ Bool
effect: States[A], Actions[A] -+ States[A]
isStep: States[A], Actions[A], States[A] -+ Bool

asserts with s, s': States[A], 7r: Actions[A]
isStep(s, 7r, s') * enabled(s, 7r) A effect(s, 7) = S';

2.2.2 Executions and traces

To define executions and traces, we must first introduce relabelings and execution

fragments.

Relabeling(or, S, T) : trait

includes Signature(S), Signature(T)

introduces a: S -+ T

asserts with -r: S
ext (7r) => (input(7r) A input(uo(r)) V (output(7r) A output (Or)));

We now axiomatize the sort ActionSeq[A], representing sequences of actions. The

predicate execFrag decides whether a pair consisting of a state and a sequence of

actions forms a valid execution fragment.

Finally, we need to define traces. In Larch, execution fragments are sequences of

actions qualified by the execFrag predicate. We define traces inductively on arbitrary

action sequences, but always qualify their application by this predicate.

Traces(A, a): trait

includes Automaton(A), Signature(Actions [A]), Signature(Actions)
assumes Relabeling(r, Actions[A], Actions)

introduces
first, last: States[A], ActionSeq[A] -+ States[A]
execFrag: States [A], ActionSeq[A] -+ Bool
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0: -+ ActionSeq[A]

0: - Traces

__ * __: Actions[A], ActionSeq[A] -+ ActionSeq[A]

_ * __: Actions, Traces -+ Traces

trace: ActionSeq[A] -+ Traces
trace: Actions[A] -+ Traces

asserts with s: States [A] , 7r: Actions [A] , a: ActionSeq[A]

sort ActionSeq[A] generated by 0, *;

execFrag(s, 0);
execFrag(s, 7r * a) < enabled(s, r) A execFrag(effect(s, 7r), a);
first (s, a) =s;

last (s, 0) = s;

last(s, 7r * a) = last(effect(s, 7r), a);
trace (0) = 0;
trace (r * a) = (if ext(7) then o(7r) * trace(a) else trace(a));

trace(a) = trace(a * 0);

2.2.3 Safety properties

The theory of inductive invariants is obtained directly from the definition:

Invariant(A, I): trait

includes Automaton(A)

introduces I: States[A] -+ Bool

asserts with s, s' : States [A] , 7r: Actions [A]
start(s) => I(s);
I(s) A isStep(s, 7r, s') = I(s');

The situation is somewhat more complicated for simulation relations. The def-

inition makes reference to the reachable states of the implementation automaton.

However, the theory Traces does not include a definition of reachable state. It is

possible to define reachability from primitive terms and use that definition in this

context.

In practice, the main properties of interest concerning reachable states are invari-

ants. For this reason, the definition of forward simulation makes no explicit reference

to reachability, but contains a provision for assuming an invariant of the implementa-

tion automaton. If the automaton has several invariants, an equivalent single invariant

can be obtained by conjunction.
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The same approach can be used to assume invariants of the specification automa-

ton. For simplicity, we omit this feature from the theory, as it is not needed for the

case studies presented here.

Forward(A, a, I, B, T, f): trait

includes Traces(A, a), Traces(B, r)
assumes Invariant(A, I)

introduces f: States[A], States[B] -+ Bool

asserts
with a, a': States[A], b: States[B], 7r: Actions[A], /3: ActionSeq[B]

start (a) * 3 b (start (b) A f (a, b));

f (a, b) A I(a) A isStep(a, 7r, a') =

3 8 (execFrag(b, /) A f(a', last(b, /)) A trace(#) = trace(7r));

The existential quantifiers in the axioms of theory Forward can be Skolemized.

This is useful when we know how to represent the start state and execution fragments

of the specification automaton as a function of the appropriate notions of the imple-

mentation automaton. We provide a variant of the theory with Skolemized quantifiers

below.

ForwardSk(A, or, I, B, r, f, S, T): trait

includes Traces(A, a), Traces(B, r)
assumes Invariant(A, I)

introduces
f: States[A], States[B] -+ Bool
S: States[A] -+ States[B]
T: States[A], Actions[A], States [B] -+ ActionSeq[B]

asserts
with a, a': States[A], b: States[B], 7r: Actions[A], /3: ActionSeq[B]

start(a) =:' start(S(a)) A f(a, S(a));
f(a, b) A I(a) A isStep(a, 7r, a') A T(a, 7r, b) = 0 =

execFrag(b, 3) A f(a', last(b, /)) A trace(#) = trace(7r);
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Chapter 3

The translation process

The Larch theory of I/O automata provides a framework for carrying out formal

reasoning about automaton properties. We are interested in applying this theory to

particular specifications written in the IOA language. The first step is to translate

the IOA specification to the language of I/O automata from Chapter 2.

IOA programs describe I/O automata in a precise and direct manner. The IOA

Reference Manual [10] explains the intended interpretations of IOA syntactic con-

structs in the I/O automaton model. This close relationship between IOA and the

underlying model is a good starting point for the translation process. Many IOA

constructs-states, signatures, invariants, simulation relations-have simple inter-

pretations in the I/O automaton model; these can be readily translated to the Larch

theory of I/O automata. Others, such as imperative-style programs and choose

clauses, have more complicated semantics. For example, an imperative-style program

may be interpreted either as a sequence of successive state changes, one for each

statement, or as a single transition from an initial to a final state, without explicit

notation for the intermediate states. The challenge is to select the interpretation

which is most convenient for interactive theorem proving.

Theorem provers serve to verify the correctness of arguments carried out in infor-

mal mathematics. The reasoning strategies they support closely reflect the rules of

deductive calculus. Theorem provers are useful because they allow us to mirror our

informal arguments at a formal level. The starting point of the argument-the prim-
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itive notions and assumptions of the theory-must be intuitive to our understanding.

If the specifications are cumbersome and unreadable, the interaction with the tool

can become extremely difficult.

In many cases, our intuition about programs does not correspond well with the

complexity of the underlying semantics. Facts like "transition T does not change

the value of x" or "the value of y does not depend on the value of x" are often so

obvious to us that we do not even bother to state them explicitly in informal proofs.

Establishing these facts may require nontrivial reasoning at a formal level. A good

translation scheme must keep this reasoning out of sight and preserve the illusion

that what appears obvious to the user is also obvious to the theorem proving tool.

It is important to keep in mind that many of the design decisions presented in this

chapter are driven by the need to preserve this transparency between informal and

formal reasoning.

To achieve this transparency between the original program and its translated ver-

sion, translated specifications should interact well with the automatic features of the

theorem proving tool. These automatic features are most productive on specifications

with widely applicable rewrite rules (statements of equality or boolean equivalence)

and lack of existential quantifiers. To obtain such specifications, we adopt the follow-

ing two general guidelines:

1. Representations by functions are preferred to representations by relations (i.e.,

predicates). Functional specifications usually give rise to more useful rewrite

rules in theorem proving.

2. Nondeterministic choices are represented by global parameters rather than by

existentially quantified variables.

The first guideline principally concerns the translation of effects clauses of tran-

sition definitions. Transitions are specified by Larch functions that "compute" the

post-state from the pre-state. The second guideline is exhibited in our treatment of

nondeterminism. We postpone this issue until Chapter 4. In this chapter we restrict
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uses Sequence(T)

automaton channel
signature

input send(t: T)
output receive(t: T)

states
queue: Seq[T] := 0

transitions
input send(t)

eff queue := t -i queue
output receive(t)

pre queue $ 0 A last (queue) = t
eff queue := init (queue)

Figure 3-1: IOA specification of automaton channel

our attention to the class of IOA programs which do not exhibit explicit nondeter-

minism (i.e., that do not contain the keyword choose).

3.1 An illustrative example

We begin by showing the translation of a simple IOA program to the LSL language.

The example serves to illustrate the high-level structure of translated programs. The

IOA program channel (Figure 3-1) models a FIFO channel. Its LSL translation is

shown in Figure 3-2.

The LSL specification consists of six segments. It begins with a declaration bear-

ing the name of the automaton and a reference to the Automaton trait from Chapter

2. The second segment includes references to external traits (in this example, the trait

Sequence(T)) and locally defined datatypes, if there are any. The next two segments

define the sorts States[channel] and Actions[channel], respectively. The fifth seg-

ment specifies the start predicate, which describes the start states of channel. The

final segment provides the action signature and the transition definitions.

In this example, it is easy to establish an informal correspondence between the

IOA programming syntax and constructs used in the LSL specifications. For more
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channel: trait

includes Automaton(channel)

includes Sequence (T)

States[channel] tuple of queue: Seq[T]

introduces
send: T -+ Actions[channel]

receive: T -+ Actions[channel]

asserts sort Actions [channel] generated freely by send, receive

with s: States[channel]
start(s) # s.queue = 0;

with s, s': States [channel], t: T
output (receive (t));
enabled(s, receive(t)) e queue 5 0 A last(s.queue) = t;
effect(s, receive(t)).queue = init(s.queue);

with s, s': States [channel], t: T
input (send(t));

enabled(s, send(t));

effect(s, send(t)).queue = t - s.queue;

Figure 3-2: LSL specification of channel
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complicated programs, this correspondence may become less transparent as the trans-

lation process involves nontrivial transformations of the IOA code.

3.2 Referenced traits, datatypes and formals

The LSL specification for automaton A includes the following external traits:

* The trait Automaton(A).

" All traits referenced in uses and assumes clauses in the IOA specifiation which

contains the declaration of A.

All datatypes defined locally as tuples, enumerations and unions are repre-

sented by the equivalent form in LSL.

The formal parameters of the automaton are declared as LSL constants of the

appropriate type. A constraint on a formal parameter specified by an assumes clause

is translated into a constraint on the constant corresponding to this parameter.

3.3 Automaton states

The states of automaton A are represented by LSL variables of the sort States[A].

This sort is defined as a tuple of state variables. For readability, a single LSL variable

references the "current" state of A throughout the specification; we call this variable

the state name.1 Post-states of transitions are represented by a primed instance of

the state name.

Variables in the IOA program are always interpreted with respect to a particu-

lar state. This implicit dependence in the IOA code must be made explicit in the

translation. In most cases (start state declarations, where clauses and transition

preconditions) the implicit state corresponds to the state name. In imperative style

'In the implementation, the state name consists of a single letter like s or u. Long state names are
unwieldy because they make the specification less readable. Distinct automata within a specification
are assigned distinct state names to avoid confusion.
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transition definitions, the state undergoes changes after each instruction, while the

state name refers to the state before the transition. The representation of these

intermediate states is described in Section 3.5.

IOA provides the option of specifying an initial value for each of the state variables.

If an initial value is specified, the assignment appears as a conjunct in the start

predicate, with the assignment symbol replaced by equality. If the start state is

constrained by a so that predicate, the constraint is conjoined to the start predicate.

The following example shows a simple IOA specification for the start states of an

automaton (with state name s):

states
x: Int 4
y: Int
z: Int
so that (x * x) + (y * y) + (z * z) = 17

The resulting LSL predicate for the start states is:

start(s) #> s.x = 4 A (s.x * s.x) + (s.y * s.y) + (s.z * s.z) = 17

3.4 Action declarations

In IOA, a single action declaration may correspond to multiple transition defini-

tions. Different transition definitions with the same action label may yield different

post-states, thereby violating the pseudodeterminism condition. In such a case it is

necessary to relabel the actions so that each transition definition corresponds to a

unique action label. Technically, we distinguish multiple transition definitions corre-

sponding to the same action by appending a unique integer label to the transition

name.

The actions of automaton A are declared as functions of their parameters into the

sort Actions[A]. This sort is introduced as a free sort generated by all actions in the

signature. We can formally verify properties that hold for all actions by reasoning

inductively over the sort Actions[A].
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IOA specification of automaton move:

uses Integer

automaton move
signature

output jump
output back

states x: Int 0
transitions

output jump
eff x := x + 2

output jump
eff x := x + 3

output back
eff x := x - 5

LSL translation of the action declarations:

move: trait
introduces

jump_1: -* Actions[move]
jump2: -+ Actions[move]
back: -+ Actions[move]

asserts sort Actions [move] generated freely by jump_1, jump-2, back

asserts with s: States[move]
effect (s, jump_1) .x = s.x + 2;

effect(s, jump_2).x = s.x + 3;

effect(s, back).x = s.x - 5;

Figure 3-3: Translation of action declarations
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Figure 3-3 shows the translation for the action declarations of automaton move.

In the IOA specification of move, the action jump corresponds to two transition defini-

tions. In the translation, these are represented by constants of the sort Actions[move]

named jump_1 and jump_2. Action back corresponds to a single transition definition.

It is represented by the constant back in Actions[move].

For each family of parameterized actions, an axiom specifying their type (input,

output or internal) is included in the LSL specification.

The original signature is important for checking properties like simulation rela-

tions. For this purpose we introduce a relabeling which maps the modified action

signature to the original one. Whenever a property which depends on the signature

is to be verified, it needs to be checked with respect to this relabeling.

Notation. We use the notation 0* for the name of the Larch function representing

the transition definition q. For example, if # is the second transition definition in

automaton move, then 0* = jump_2.

3.5 Transition definitions

For each transition definition 7r in the IOA specification of automaton A, we need to

specify two LSL forms: the predicate enabled(s,7r) and the function effect(s, 7r).

In the absence of explicit nondeterminism, the eff clause of a transition definition

is a well-defined function on states(A). Therefore, it is possible to decouple the

translation process in a natural manner so that

" Predicate enabled(s, 7r) depends only on the pre clause of 7r, the where clause

of 7r and the where clause of the action declaration for 7r.

" Function effect (s, 7r) depends only on the eff clause of 7r.

Notation. In what follows, we use the notation t[s/x] for the term obtained by

substituting all instances of variable x in term t by term s (assuming that x and s

have the same sort). If s = (si, . .. , s,) is a collection of terms and x = (xi, . . . , Xn)
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is a collection of distinct variables so that xi and si are of the same sort, we write

t[s/x] for the term t[si/x1 ] ... [s./xn].

3.5.1 The enabled clause

A transition definition with action signature

q(yi,... ,yn) where si

transition declaration

#( 1 ,... ,xn) where S2

and precondition t is represented with the following enabled predicate:

enabled(s, q*(x1,... ,Xn)) M s1* A s2 A t

where

s1* =s1[X1, . .,Xn/yl, . . ,yn].

Here s denotes the implicit state of the automaton (before the transition). As

explained in Section 3.3, the state variables in all expressions are implicitly evaluated

at state s.

3.5.2 Variable maps

The semantics of the effect clause for transition 7r is more complicated. In the IOA

program, the effect of 7r is represented by a sequence of statements. Each statement

represents a transformation on the state of the automaton. This transformation can

be described by a function which maps the state before the transition to the state

after the transition. The function may also depend on the actual parameters of the

transition. By composing the functions corresponding to each statement in order of

their appearance in the program, we obtain a function which describes the post-state

of 7r in terms of the pre-state and the transition actuals.

For this translation scheme to work, two important issues need to be addressed:

1. Each type of IOA statement must be expressed as a Larch function describing

the post-state of the statement as a function of the pre-state and the transition

parameters.
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2. The functions corresponding to each statement must be composed.

There are two possible approaches to the problem. The first approach is to index

the functions corresponding to program statements, and to define composition induc-

tively over the index. This approach has the benefit of providing shorthand notation

for the intermediate states (the states between instructions) within a program. For

example, to reference the state after the third instruction we simply evaluate the

function representing the loop at index 3. Unfortunately, this scheme is not particu-

larly suitable for theorem proving because even the simplest property of the program

would require a proof by induction. The verification of inductive properties needs

to be initiated by the user. This violates the requirement that intuitively obvious

properties of programs should also be obvious to the theorem prover.

Our approach attacks these problems by using implicit representations to describe

the effects of a particular statement. Composition is then interpreted as an operation

which combines two consecutive effects into a single one. This eliminates the need

for explicit iterators to represent the sequencing of instructions. The post-state is

represented directly as a function of a pre-state. In a theorem prover, this representa-

tion is turned into a rewrite rule which can be used to automatically deduce intuitive

properties of programs.

We illustrate this idea with a simple example. The following transition is part of

automaton A with state variables x and y:

internal foo
eff x x + 1;

y x * X;
y y + 1

The effect of this transition is represented by two simple LSL expressions:

effect(s, foo).x = s.x + 1;
effect(s, foo).y = (s.x + 1) * (s.x + 1) + 1;

In a theorem prover, these two expressions are turned into rules that rewrite the

post-state variables of f oo in terms of the pre-state variables. This is typically useful

for verifying invariants and forward simulations, where the hypotheses are predicates

of the pre-state.
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The main drawback of this approach is the lack of shorthand notation for inter-

mediate states. For instance, to refer to the value of y after the second assignment

in the above example we must type the whole expression (s.x + 1) * (s.x + 1).

Such references need to be evaluated when translating conditionals, loops and non-

deterministic assignments. When the transition definitions are long and complicated,

these expressions may become cumbersome for the user of the theorem proving tool.

In our case studies, the transition definitions are short and simple, so we did not

encounter this problem.

The principal structure that we use to represent functions on states is a variable

map. Variable map V assigns a unique term V(x) to each variable x appearing in the

state declaration of the automaton. The identity variable map (denoted by id) is the

map which assigns the term x to variable x, for all state variables x. We call variable

v a parameter to variable map V if v appears as a free variable in some term V(x).

The most useful operation on variable maps is substitution:

Definition Let V be a variable map, y an n-tuple of variables and t an n-tuple of

terms with matching sorts. The substitution of t for y in V is the variable map ob-

tained by substituting t for y in every term V(x), where x ranges over state variables.

It is denoted by V[t/y].

Note that a variable map itself denotes a family of potential substitutions; the

term associated to each state variable can be thought of as a substitute for that

variable. This observation leads to a very natural interpretation of composition of

variable maps:

Definition Let V and W be variable maps over the same collection of state variables

X1,... , xn. The composition V; W is the variable map

W[V(Xi), . . . , V(Xn)/X1,. ... ,Xn].

Informally, the variable map V; W is obtained by computing W, with its "initial

state" replaced by the "final state" of V.

Let V be the variable map which corresponds to the eff clause of transition 7r.
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The effect predicate for 7r is specified by a family of axioms, one for every state

variable x:

effect(s, ir).x = V(x)

We now return to the issue of interpreting program statements as variable maps.

IOA support three different types of statements: assignments, conditionals and loops.

We discuss each of these separately.

3.5.3 Assignments

Assignments are statements of syntactic form lvalue : := term, where

lvalue ::= variable I lvalue 'P term ']' I lvalue '.' IDENTIFIER

The three forms for lvalue correspond to a state variable, an array element and

a tuple field, respectively.

Let us first consider an assignment of the form y := s, where y is a state variable

and s is a term. The corresponding variable map is given by the formula V = id[s/y],

or

V(x)= s if X = y
x otherwise.

We now consider assignments to array elements. Let v be an lvalue of type

Array[T], t a term of type T and s a term of type Array[T]. The assignment v[t] := s

can be converted to the equivalent assignment

v := assign(v, t, s)

A similar transformation exists for assignments to tuple fields. For every field

f : F of tuple sort T, we define a Larch operator

setf : T, F -+ T

which sets field f to a new value and leaves the other fields unchanged. We use this

operator to convert assignments of the form v.f := s, where v is an lvalue, f is a

field and s is a term of the appropriate type to

v := set- f(V, s).
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After performing a finite number of substitutions, the original assignment will be

reduced to an assignment of the form y := s, where y is a state variable.

We can optimize the computation of variable maps using the following observation:

Assignments leave all but one state variable unchanged. Say we are interested in

composing the variable map V with the map corresponding to the assignment y := s.

For this purpose, it is unnecessary to generate the latter map; the result is equal to

the substitution V[s/y].

3.5.4 Conditionals

Conditionals have the following form in IOA:

if p, then P
elseif P2 then P2

elseif p, then P,,
else P+,
fi

where pi,...,pn are predicates and P1,..., P+ 1 are programs with variable maps

V1,... , V+1 , respectively. There can be any number of elseifs, and the else clause

is optional. Without loss of generality, we can assume that the else clause is always

present; a conditional without an else clause is equivalent to a conditional with a

trivial else clause (i.e. a clause whose variable map is the identity map.)

We build the variable map V corresponding to this conditional using the condi-

tional (if__ then__ else-_) form in LSL. For every state variable x, we define V(x)

as

if pi then V1(x)
else if p2 then V2(x)

else if p, then V(x)
else Vn+1(x).

This expression may be quite complicated. If a variable x is not affected by the

conditional, all Vi(x) are equal to x. In practice, conditionals leave many of the state

variables unaffected; it is useful to take advantage of this in the translation. We

observe that the form
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if p then s else s

is equivalent to s. We apply this reduction to the formula for V(x). As a result, the

formula simplifies to V(x) = x if state variable x is not affected by the conditional.

3.5.5 Loops

IOA admits the following two types of loops over bound variable x of sort X:

1. x takes values from a finite set S of sort Set [X]. Every value in S is consumed

exactly once. Sort Set[X] specifies finite sets, so the loop must be finite.

2. x ranges over all values which satisfy a term P where x appears as a free

variable. P may also depend on state variables, transition parameters and

other loop variables. The set of choices for x must be finite.

In both cases, the IOA semantics requires that the effect of the loop is independent

of the order in which the values of x are chosen.

Loops over sets are easier to reason about. The Larch theory of finite sets is

based on a few simple axioms which allow us to carry out inductive reasoning over

sets, which is closely related to the idea of iteration in a loop. We now show how to

convert a loop over a term into a loop over a set of values.

A term P with free variable x is described by the set {x P(x)}. First order

logic does not allow constructing sets in this manner. However, we can extend set

theory with appropriate constructors, one for each such term. The extension will not

introduce any inconsistencies. We illustrate this with a simple example.

for n: Nat so that n < c do
x := x + n

od

Here, c is a transition parameter and x is a state variable. We represent the predicate

n < c by the set S, specified with the LSL declaration

introduces S: Nat -+ Set [Nat]
asserts with n, c: Nat, S: Set [Nat]

n E S(c) * n < c
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To ensure consistency, we must verify that such a set exists in the theory Set [Nat].

In this case, the set exists because there are only finitely many n so that n < c. In

general, the semantics of IOA requires that the so that clause ranges over a finite

set, so the extension will be consistent.

Loops over sets have the general form

for t:T in S do P od

Let V denote the variable map corresponding to program P. We can describe the

effect of P with a Larch function P. In general, the function P depends on

1. The loop index variable t : T,

2. State variables x1 : T1, ..., xn : Tn,

3. Additional parameters xn+1 : Tn+,... , xm : Tm of V.

To obtain an LSL specification for P, we compute the term corresponding to the

effect of program P for each state variable:

introduces P: T, T 1 ,... , Tm -+ States[A]
asserts with t:T, x 1 :T 1,... , xm:Tm

P(t, X1,... , Xm)-Xi = V(xi)

P(t, X1,.. , M). = V(Xn)

Using P, we can define a function 1P which describes the effect of iterating P over

a set of values for t. The first parameter of 1P is the set over which the loop is

iterated. The other parameters are the state variables X1 , ... , Xn and the parameters

Xn+1,... , Xm of V. The function 1P is defined inductively over sets:

1. An iteration over the empty set leaves all state variables unchanged.

2. To iterate over the set insert(X, t), we compute the effect of iterating over X

and apply the function P to loop index t and the state variables obtained from

the iteration over X.

The semantics of IOA guarantees that 1P does not depend on the order of insertions.
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uses Natural, Set(Nat)

automaton loop
signature internal add(S: Set [Nat])
states sum: Nat
transitions

internal add(S)
eff sum := 0;

for n: Nat in S do sum := sum + n od

Figure 3-4: IOA specification of automaton loop

introduces lP: Set[T], T 1 ,... , Tm -+ States[A]
asserts with t:T, X: Set[T], x 1 :T 1 ,... , xm:Tm

lP(0, Xi,... , Xm).Xi = X1
lP(insert(X, t), x1 ,... ,xm).Xi =

if t E X then lP(X, X1,... , Xm).Xi
else P(t, lP(X, x1 ,... , Xm).Xi,...

lP(X, Xi, ... , XM) -Xn, Xn+1,.. - XM) z1

1P(0, X1,... , Xm) .Xn = Xn

1P(insert(X, t), x1,... ,xm).Xn =
if t E X then lP(X, xi,..., Xm).Xn

else P(t, 1P(X, x1,... , Xm) -Xi,..

1P(MX, -,... , Xm).- X, Xn+1,.. , m) - n

The variable map LV corresponding to the loop program is defined by the collec-

tion of formulas

LV(xi) = 1V(S, x 1 , ... , xm)-Xi

where 1 < i < n. This formula can be reduced for state variables which remain

unaffected by the loop. If V(xi) = xi, we use the equivalent but simpler definition

LV(xi) = V(xi).

We illustrate these ideas with an example. The IOA specification for automaton

loop is shown in Figure 3-4. It contains a single transition add that sums the elements

of a set using a loop. Figure 3-5 shows the part of the LSL declaration for loop that

describes the effect of transition add.
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introduces
add : Set[Nat] -+ Actions [loop]
P: Nat, Nat -+ States[loop]
1P: Set [Nat] , Nat -+ States [loop]

asserts with s, s': States[loop], S, X:Set[Nat], n, sum: Nat
P (n, sum) . sum sum + n;
lP (0, sum) . sum = sum;
1P(insert(n, X), sum).sum =

if n E X then 1P(X, sum) .sum else P(n, 1P(X, sum) .sum) .sum;
effect(s, add(S)).sum = 1P(S, 0).sum;

Figure 3-5: LSL specification of transition add

3.6 Invariants

Invariants in IOA are constructs of the form

invariant I of automaton A: p

where p is a predicate. The free variables in p are either state variables of A or

automaton parameters. Semantically, p can be any statement true of all reachable

states of A. We restrict our attention to inductive invariants. We discuss how the

method can be extended to cover a more general class of invariants in Chapter 8.

Automaton A may be associated with several IOA invariants with names I I,...,I

described by predicates pi, ... , p,. Each of these entails a separate proof obligation.

The conjunction pi A ... A p,, is an invariant of A that implies all of pi, . . . , p,. This

invariant may be useful in simulation proofs where A appears as the implementation

automaton.

The LSL specification for the invariants of automaton A follows a simple template.

It is shown in Figure 3-6.

3.7 Forward simulation relations

IOA characterizes a forward simulation from automaton A to automaton B by a pred-

icate f. The free variables of f may be either state variables or variable parameters
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AInv: trait
includes Automaton(A)

introduces I1,... ,I,, AInv: States[A] -* Bool

asserts with s: States[A]

Ii(s) pi;

I(s) P"';
AInv(s) , Ii(s) A ... A I,(s);

implies Invariant(A, I1),... , Invariant(A, I,);

Figure 3-6: Template for the invariants of automaton A

of the two automata. f is meant to represent the simulation relation from A to B.

The relation f is represented by a Larch predicate

f: States [A] , States[B] -- Bool

To use the Larch theory of forward simulations from Chapter 2, we must define

three constructs:

1. The sort Actions representing the common actions of A and B.

2. A relabeling a: Actions[A] - Actions.

3. A relabeling T : Actions[A] - Actions.

The semantics of forward simulations requires that the IOA signatures of A and

B be compatible with respect to external actions. For each IOA signature entry

declaring an external action with name # and parameters x1 : X1,..., x, : X, we

introduce a Larch function

<5: X 1 ,... ,X, -+ Actions

The sort Actions is then defined as the sort generated by all such #.

Recall that the sort Actions [A] introduced in Section 3.4 was obtained by modify-

ing the signature of A to introduce a unique action name for each transition definition.

The relabeling o- maps the modified signature back to the original one. In general,

a label 4 * (x1 : X 1,. . . , x, : X,) in Actions[A] will be derived from an action label

O(xi : X1 , .. ., x, : Xv). In the Larch specification, we define
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asserts with x1: X 1 ,... , Xn: Xn
0-(#*(XI,... , X)) = 0(Xi,... , X)

The relabeling T is defined in the same manner.

For example, the relabeling a for automaton move (Figure 3-3) is specified as

follows:

asserts
c(jump1) = jump;
o-(jump_2) = jump;

u(back) = back;

If automaton A has any stated invariants, then the invariant AInv is included in

the simulation specification. Otherwise, the invariant AInv is defined as:

asserts with s: States [A]
AInv(s) #> true;

Using these declarations, the proof obligation for the forward simulation is:

implies Forward(A, a, AInv, B, T, f);
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Chapter 4

Nondeterminism

In Chapter 3 we devised a scheme for translating IOA programs into equivalent Larch

specifications. The translation process was limited to the class of programs that do

not exhibit explicit nondeterminism. In this chapter we extend the basic translation

process from Chapter 3 to a much more general class of programs.

Not every IOA program describes a pseudodeterministic automaton. One ap-

proach towards obtaining a pseudodeterministic description is to follow the construc-

tion from the proof of Theorem 2.2. From a practical point of view, such an approach

would be difficult to justify because it will introduce unnecessary transformations

to transitions which are locally unambiguous. Moreover, it parameterizes transition

labels by all components of the post-state, while the dependence is more naturally

described by a small number of choose parameters. Fortunately, these problems can

be avoided if we take a closer look at the relation between IOA and the underlying

model.

It is worthwhile to consider which parts of the IOA description may be responsible

for a lack of pseudodeterminism. We refer to these as points of ambiguity:

1. Two transition definitions may bear the same action label, be enabled at the

same pre-state, but produce different post-states.

2. A transition definition may include explicit choices in the form of choose

clauses.
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The first issue was examined in Section 3.4. We addressed the problem by modi-

fying the automaton signature to ensure a unique label for each transition definition.

We apply the same approach to the second issue. A choose clause explicitly parame-

terizes the nondeterminism within a transition. We will extend the action label of the

transition to accommodate this parameter. This removes the ambiguity inherent in

the transition definition at the expense of introducing an additional action parameter.

In forward simulation specifications (Section 3.7), we must define a relabeling

which maps this modified signature to the original automaton signature. The re-

labeling preserves the actual action parameters but ignores those parameters that

represent nondeterministic choices.

Within transition definitions, choose parameters may appear either as global tran-

sition parameters or as parameters of a particular assignment. The latter type may

be restricted by a where clause or a so that clause. These forms are discussed in

Sections 4.1-4.3. Section 4.4 discusses choose clauses appearing within conditionals.

We do not address the issue of nondeterminism within loops; this case raises some

interesting semantic issues that require further analysis. We defer the discussion of

these issues to Chapter 8.

4.1 Choose parameters of transitions

A transition definition #(x1 : X1,.. ., x,, : X,) with choose parameters yi : Y, ... , ym

Ym is characterized by the Larch function

#*: X1,... ,X., Yi,... ,m -+ Actions[A]

The relabeling a from Section 3.7 needs to be modified to account for the change

in signature. We let

asserts with xj: X1 ,... , Xn: Xn, yi: Y, ym: Ym
O-(#*(Xi ,. .., Xn, Y1,. . . , Ym)) = (i ,. .., )

Figure 4-1 shows the LSL translation for transition incr with choose parameter

t. Here x is a state variable of sort Int.
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IOA specification of transition incr

internal incr
choose t: Int
pre t > 5
eff x := x + (t * t)

LSL translation of incr:

introduces incr: Int -+ States[A]

asserts with s: States[A], t: Int

enabled(s, incr(t)) t > 5;

effect(s, incr(t)).x = s.x + (t *t);

Relabeling for incr:

asserts with t: Int
o-(incr(t)) = incr;

Figure 4-1: Translation of a choose transition parameter

4.2 Assignments of the form choose..where

These assignments have the general form

v := choose y where t

where v is the lvalue of an assignment, y is a variable of the same sort as v and t is a

predicate which may depend on y, any of the state variables and any of the automaton

parameters. We assume that the statement does not appear within a conditional or

a loop.

The goal is to parameterize the transition by variable y and replace this assignment

with

V := y

We need to filter out the choices for y which do not satisfy the predicate t. Since

y is a parameter of #*, the restriction on y can be specified in the enabled predicate

for q. We can think of this as a refinement of the enabled predicate from Section

3.5.1.

Semantically, the predicate t is evaluated at the program point exactly before the

choose assignment. Let V be the variable map corresponding to this point. As usual,
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IOA specification of transition modif y:

internal modify
eff x := x + 1;

y : choose t: Int where t > 2 * x

LSL translation of modif y:

asserts with s: States[A], t: Int
enabled(s, modify(t)) @ t > 2 * (s.x + 1);
effect(s, modify(t)).x = s.x + 1;
effect(s, modify(t)).y =t;

Figure 4-2: Translation of a choose..where clause

X1,... ,xn denote state variables. We obtain the Larch form of the constraint for y

as follows:

1. Evaluate the predicate t at the "current" program point.

Let t' = t[V(xi), .. . , V(xn)/x 1, .. . , Xn].

2. Conjoin the enabled predicate for #* with the clause t'.

Figure 4-2 demonstrates these ideas for a sample IOA transition. Here x and y

are state variables of sort Int.

4.3 Assignments of the form choose..so that

The statement

v := choose

is equivalent to the statement

v := choose y where true

where y is a variable of the same sort as v which does not appear anywhere in

the transition definition. This transformation allows us to apply the ideas from the

previous section to statements of the form choose..so that.

This type of assignment together with the so that transition predicate allows

us to specify direct relationships between the pre-state and the post-state of the
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IOA specification of transition sixf ive:

internal sixfive
eff x := choose;

y :=x;
x x + 1

so that x' + y= 11

LSL translation of sixf ive:

asserts with s: States[A], ti: Int

enabled(s, sixfive(tl)) <-> (ti + 1) + ti = 11;
effect(s, sixfive(tl)).x = ti + 1;
effect(s, sixfive(tl)).y = ti;

Figure 4-3: Translation of a choose..so that clause

transitions. A so that predicate t may depend both on pre-state variables x1, ... ,X

and on post-state variables x', ... , x'. Let V be the variable map corresponding to

the effect of transition definition q. We translate the so that clause s of 0 as follows:

1. Evaluate the predicate s at the post-state of /.

Let s' = t[V(x1), .. . , V(xn)/x', . .. , x'1.

2. Conjoin the enabled predicate for q* with the clause s'.

Figure 4-3 shows the translation of transition sixf ive, containing a choose..so

that clause. Here x and y are state variables of type Int. Variable ti represents the

choice for x in the first statement.

4.4 Nondeterminism within conditionals

Choose assignments within conditionals are parameterized in the manner described

in Section 4.2. The choose parameters from all branches of the conditional in the

transition definition q are interpreted as parameters to the Larch function #*.

The where clauses within a conditional require some additional care. The predi-

cates that trigger a branch of the conditional may be assumed when making a choice

within that branch. We show how to construct the correct Larch predicate. We use

the same notation for conditionals as in Section 3.5.4:

59



IQA specification of transition compute:

internal compute
eff if x > y then x := choose ti where y + ti = x

else y := choose t2 where x + t2 = y

LSL translation of compute

asserts with s: States[A], t1: Nat, t2: Nat
enabled(s, compute(tl, t2)) >

if s.x > s.y then s.y + ti = s.x else s.x + t2 = s.y;
effect(s, compute(ti, t2)).x = if s.x > s.y then ti else s.x;
effect(s, compute(tl, t2)).y = if s.x > s.y then s.y else t2;

Figure 4-4: Translation of nondeterminism within a conditional

if p, then P
elseif P2 then P 2

elseif p, then P
else Pn+1
fi

Let V be the variable map corresponding to the program point exactly before the

conditional. We let x1, . . . , x,, be the state variables of the automaton.

1. Evaluate each of the predicates pi, . .. , p, at V.

For 1 < i < n, let qi = pi[V(x 1), .. . , V(xn)/xl, ... , Xnj.

2. Let ti be the conjunction of all predicates constraining nondeterministic choices

in program P. The Larch predicate constraining the nondeterministic choices

over the whole conditional is

if qi then t,
else if q2 then t 2

else if qn then tn
else tn+1 .

Figure 4-4 shows the translation of a conditional in transition compute in automa-

ton A with state variables x and y of sort Nat.
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Chapter 5

A caching algorithm

This chapter and the following two demonstrate the application of theorem proving

techniques to a collection of IOA programs describing distributed data management

algorithms. These examples were developed as test studies for tools that interface

with IOA (simulators, code generators, invariant discovery packages, model checkers

and theorem provers).

The examples describe three commonly used data management algorithms: A

strong caching algorithm, a majority voting algorithm and Lamport's replicated state

machine algorithm [11]. We are interested in verifying that each of these algorithms

implements an atomic variable. In other words, we want to show that every trace

allowed by these algorithms corresponds to a trace of an atomic variable model. The

natural tools for studying such relationships between traces are simulation relations.

The proofs in Chapters 5 and 6, as well as parts of the proof in Chapter 7, were

verified formally using the Larch prover. Our exposition of these proofs attempts to

emphasize interesting aspects from the perspective of interacting with the theorem

prover. The mathematical insights of the proof are not of primary concern (especially

in this chapter); they merely serve to bring up ideas that are important in the formal

proofs. As a result, the proofs may seem duller and more technical than usual. It

is important to keep in mind that this level of detail is often necessary in formal

theorem proving.

We begin this chapter with a collection of datatype declarations and global conven-
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tions used by all the examples. We then introduce the atomic variable model, which

will serve as a reference for establishing the correctness of the algorithms. The bulk

of the chapter is dedicated to the strong caching algorithm and its properties. Using

invariants and forward simulations, we show that this algorithm exhibits the same

external behavior as the atomic variable. The exposition includes some interesting

examples of theorem proving code.

Parts of Chapters 5, 6 and 7 were published in [3] and [4]. The complete scripts

for the proofs carried out in Larch are provided in Appendix A.

5.1 Shared data types of the memory models

We describe the data types used in the specification of the memory models and the

external transitions shared between the models. Data type specifications are provided

at an abstract level, through a set of axioms that each type satisfies. The formal

description of the data type specifications is written in the Larch Shared Language

(LSL).

The following sorts are used to describe the data components of the memory

models:

Node. Nodes represent the distributed entities of the system. Nodes receive requests

from the environment in the form of actions and send notifications of completed

requests in the form of responses. The set of nodes allnodes is finite. The

integer constant numnodes denotes size(allnodes).

Value. A value is the type of entity stored by the variable. The constant value vO is

the default value to which the variable is initialized.

Action and Response. Actions model requests that the environment submits at a

given node. They may be either read actions or write actions. Responses

are reports that nodes submit to the environment as a result of processing

invocations. We define the following operators on these types:
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isRead, isWrite : Action -+ Bool: Predicates specifying whether an action is

a read action or a write action.

perform : Action, Value -+ Value: The effect of performing an action on the

variable's value. If the action is a read action, the value remains the same.

result : Action, Value -+ Response: The response computed as a result of

performing an action on the variable's value.

Null[T]. This sort contains all elements of the sort T and the special constant nil.

The operator embed embeds elements of T into Null[T]. The operator _val is

the partial inverse of embed.

Array[S, T] and Matrix[S, T]. The sort Array[S, T] represents an array of elements of

sort T indexed by elements of sort S. This sort has two constructors: constant,

which sets the array to a constant value and assign, which modifies the value

of a single array element. The operator _ ] looks up an array element. Sort

Matrix[S, T] represents two-dimensional arrays.

The models interact with the environment through the following two external

actions:

invoke (a: Action, n: Node). The invoke transition is used to specify an action re-

quest at a node.

respond (r: Response, n:Node). The respond transition produces a response as a

result of an action invoked at a node.

To simplify bookkeeping of current actions and responses at each node, we make

the following environment assumption: Concurrent requests cannot be submitted at

a single node. In other words, the environment must wait for a response to its current

request at any given node before it can submit a new one.

Such environment assumptions are usually formalized by composing the automa-

ton of interest with a suitable environment automaton, which describes the desired

automaton behavior. Unfortunately, our translation tool does not support reasoning
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about compositions of automata yet. We get around this constraint by manually

composing the memory models with an environment which guarantees that action

invoke cannot be triggered at node n when n has an active request. Action invoke

is an output action of the composition automaton. Its precondition specifies the

environment assumption.

Notation. We denote a state of an automaton by the first letter of the automaton

name. Thus, m denotes a state of mem. In proofs and statements about an automaton

with state name s, we use so for a start state of the automaton. When discussing

automaton transitions, we use s and s' to denote the state before and after the

transition, respectively. If there is no ambiguity about the automaton and state in

consideration, we may omit explicit references to the state. For example, we may write

rsp[n] instead of s.rsp[n]. In simulation proofs, f denotes the simulation relation and

T denotes the step correspondence.

Variables and parameters that appear in IOA specifications and LSL declarations

of datatypes are typeset in courier. Mathematical variables introduced in statements

about automata or in the course of a proof are typeset in italics.

For long formulas, we use the notation introduced in [12].

5.2 The central memory model

The mem automaton models an atomic variable. Its specification in the IOA language

is shown in Figure 5-1. The trait t-mem defines references to all the datatypes used

by the specification.

The internal update transitions perform the read/write computation which is

requested by an invocation at a node. The act and rsp variables are used to keep

track of the current action requested and response computed at each node respectively.

These variables take the value nil when the current action or response have not been

instantiated yet.
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uses tmem
automaton mem

signature
output invoke(a: Action, n: Node), respond(r: Response, n: Node)
internal update(n: Node)

states
mem: Value := vO,
act: Array[Node, Null[Action]] := constant(nil),
rsp: Array[Node, Null[Response]] := constant(nil)

transitions
output invoke(a, n)

pre act [n] = nil

eff act[n] := embed(a)

internal update(n)
choose a: Action
pre rsp[n] = nil A act[n] = embed(a)

eff rsp[n] := embed(result(a, mem))
mem := perform(a, mem);

output respond(r, n)
pre rsp[n] = embed(r)
eff rsp[n] := nil;

act [n] := nil

Figure 5-1: IOA specification of the atomic variable model
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5.3 The strong caching algorithm

Automaton cache models a strong caching algorithm. This system consists of a

memory, which acts as a shared variable, and a set of caches which contain replicated

copies of the variable. Each node is associated to exactly one cache.

When a new value is written, the value is stored in the memory and the caches

are invalidated. The value can be read from the caches only. Invalidated caches may

be updated from the memory. In addition, caches may be invalidated at any point.

The IOA specification of cache is shown in Figure 5-2. The act and rsp data

structures are used for bookkeeping current requests and computed responses, as in

the mem automaton. The internal computations of the strong caching algorithm are

modeled by the following transitions:

read. This transition reads the value of the current read invocation at a given node

from the cache corresponding to that node, if the cache is valid.

write. This transition writes the value of the current write invocation at a given

node to memory and invalidates all caches.

copy. This transition copies the value of the memory to a cache.

drop. This transition invalidates a cache.

5.4 The equivalence of cache and mem

We prove the equivalence of cache and mem by exhibiting simulation relations in both

directions. The result then follows from Theorem 2.1.

Intuitively, cache implements mem because the memory contents of the two au-

tomata match. The correct behavior of cache upon read invocations depends on the

consistency between its memory and its caches. We state and prove this property as

Invariant 5.1 below.
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uses tcache
automaton cache

signature
output invoke(a: Action, n: Node), respond(r: Response, n: Node)

internal read(n: Node), write(n: Node), copy(n: Node), drop(n: Node)

states
mem: Value := vO,
act: Array[Node, Null[Action]] := constant(nil),

rsp: Array[Node, Null[Response]] := constant(nil),

cache: Array[Node, Null[Value]] := constant(nil)

transitions
output invoke(a, n)

pre act [n] = nil
eff act[n] := embed(a)

internal read(n)
choose a: Action
pre embed(a) = act[n] A isRead(a) A rsp[n] = nil A cache[n] $ nil

eff rsp[n] := embed(result(a, cache[n].val))

internal write(n)
choose a: Action
pre embed(a) = act[n] A isWrite(a) A rsp[n] = nil

eff rsp[n] := embed(result(a, mem));

mem := perform(a, mem);

cache := constant(nil)

internal copy(n)
eff cache[n] := embed(mem)

internal drop(n)
eff cache [n] := nil

output respond(r, n)

pre rsp[n] = embed(r)
eff rsp[n] := nil;

act [n] := nil

Figure 5-2: IOA specification of the strong caching algorithm
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set proof-methods normalization, a

prove start(s) =* I(s)

prove I(s) A isStep(s, 7r, s') =* I(s') by induction on 7r
resume by case n = ni % copy(nl) transition
resume by case n = ni % drop(nl) transition

Figure 5-3: Larch proof of the invariant of cache

5.4.1 Key invariant of cache

Invariant 5.1 (Cache consistency) V n : Node cache[n] = mem V cache[n] = nil.

Proof In the start state, both sides of the equation evaluate to nil. Transitions

invoke, respond and read leave both mem and cache unchanged. Transition write

sets cache[n] to nil for all nodes n. Finally, transitions copy and drop set cache[n]

to mem and nil respectively and leave all other elements of cache unchanged. 0

Figure 5-3 shows a proof script for this invariant in the language of the Larch

prover. The set proof-methods command instructs the theorem prover to carry

out normalizations and implication proofs automatically. The prove statements are

the proof obligations for invariant I. These are generated by the theorem proving

tool. The first obligation is discharged automatically. The second obligation handles

the transitions invoke, respond, read and write automatically, but asks for user

assistance for copy and drop. As in the informal proof, we need to tell the theorem

prover to handle the "current" node ni and the other nodes as separate cases.

5.4.2 The simulation from cache to mem

Theorem 5.1 The relation c: States[cache] -+ m : States[mem] defined by

A m.mem = c.mem

A m.inv = c.inv

A m.rsp = c.rsp
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is a forward simulation relation from cache to mem.

Proof Both automata have unique start states; these states are related by f. To

verify that the simulation relation is preserved by the transitions, we introduce a step

correspondence. The bracketed variables denote choose parameters of the transition:

T(c, invoke (a, n)) = invoke(a, n)

T(c, respond(r, n)) = respond(r, n)

T(c, read(n)[a]) = update(n) [a]

T(c, write(n)[a]) = update(n)[a]

T(c, copy(n)) = 0

T(c, drop(n)) = 0

The proofs for transitions invoke, respond, write, copy and drop are straight-

forward. We consider the read transition. State variable act is unaffected by this

transition. For mem and rsp, we reason as follows:

1. Since a is a read action, the Invocation trait axioms imply that

m'.mem = m.mem

This, together with c'.mem = c.mem, implies

c'.mem = m'.mem.

2. From the invariant it follows that

c.cache[n].val = c.mem = m.mem

therefore, c'.rsp[n] = m'.rsp[n].

The Larch script for the proof is shown on Figure 5-4. The proof requires an

explicit instantiation for the start state of mem and for the step correspondence. In
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set proof-methods normalization, =a

prove start(a) = 3 b (start(b) A F(a, b))
resume by specializing b to [ac. rsp, ac .mem, ac .act]

prove
F(a, b) A I(a) A isStep(a, ir, a') ->

3 6 (execFrag(b, 0)

by induction on pi

resume by specializing /3
resume by specializing /3

instantiate a by a3c, v
critical-pairs *Hyp with

resume by specializing /3
resume by specializing /3
resume by specializing /3
resume by specializing /3

A F(a', last(b, 3)) A trace(#) = trace(7r))

to invoke(a3, nc) * 0

to update(nc, a3c) * 0

by bc.mem in Invocation

*Hyp % use of invariant
to update(nc, a3c) * 0
to 0

to 0

to respond(rc, nc) * 0

Figure 5-4: Larch proof of the simulation from cache to mem

addition to this, the part pertaining to the read transition requires user hints for items

1 and 2 in the informal proof. The instantiate command applies the Invocation

axioms to the current node and value. The critical-pairs command combines the

invariant with the precondition assumption ac.cache[nc] =L nil to obtain the conclu-

sion ac.cache[nc].val = ac.mem.

5.4.3 The simulation from mem to cache

In this section we show that automaton cache does not restrict the set of external

behaviors allowed by mem. To prove that mem implements cache, we can show that the

inverse of the relation from Theorem 5.1 is a simulation relation from mem to cache.

However, the proof becomes considerably simpler if we choose a more natural relation

on the states.
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Theorem 5.2 The relation m : States[mem] -4 c : States[cache] defined by

A c.mem = m.mem

A c.inv = m.inv

A c.rsp = m.rsp

A c.cache = constant(nil)

is a forward simulation relation from mem to cache.

Proof The simulation relation holds trivially between the start states of mem and

cache. For the transitions, we use the following step correspondence:

T(m, invoke(a, n)) = invoke(a, n)

T(m, respond(r, n)) = respond(r, n)

T (m, update(n) [a]) =write(n)[a] if isWrite(a),
copy(n) * read(n)[a] * drop(n) otherwise.

The invoke and respond transitions carry over naturally from mem to cache. For

the update transition, we proceed by cases. If isWrite(a), then the precondition of

write(n)[a] follows from the precondition of update(n)[a]. The variable c.cache is

not modified by this transition. Otherwise, isRead(a) must hold and there are three

properties to show:

1. c'.mem = c.mem This follows from the Invocation axioms.

2. c.cache satisfies the precondition of read(n)[a]. This follows from the effect of

copy(n).

3. c'.cache = constant(nil). Since the same cache value that was copied from

memory was invalidated by drop(n), the caches remain unmodified. 0

From the formal verification perspective, the interesting component of this proof is

the complex step correspondence. Once this correspondence is established, the proof
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set proof-methods normalization, =>

prove start(a) =* 3 b (start(b) A F(a, b))
resume by specializing b to [ac.mem, ac.act, ac.rsp, constant(nil)]

prove
F(a, b) A I(a) A isStep(a, 7r, a') =

3 3 (execFrag(b, /) A F(a', last(b, 8)) A trace() = trace(7r))
by induction on pi

resume by specializing # to invoke(a3, nc) * 0
resume by specializing

# to if isWrite(a3c)
then write(nc, a3c) * 0
else copy(nc) * (read(nc, a3c) * (drop(nc)

resume by case isWrite(a3c)
instantiate a by a3c in Invocation
instantiate a by a3c, v by ac.mem in Invocation
instantiate a by constant(nil), i by nc in Array

resume by specializing / to respond(rc, nc) * 0

% invoke

% update

* 0))

% respond

Figure 5-5: Larch proof of the simulation from mem to cache

breaks naturally into cases depending on the type of action. Again, the Larch proof

script (Figure 5-5) closely follows the above argument.
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Chapter 6

Majority voting

In this chapter we verify the correctness of the majority voting algorithm for dis-

tributed data management [14]. We begin by presenting a model of this algorithm

written in the IOA language. The IOA specification takes advantage of some inter-

esting features of the language, such as explicit nondeterminism and loops. We take

this opportunity to discuss reasoning strategies about effects of loops in the Larch

prover.

Finally, we demonstrate the equivalence of the majority voting algorithm with the

atomic variable model from Chapter 5. The equivalence is established by exhibiting

simulation relations in both directions. The proof was verified formally using the

Larch Prover. The complete proof script is provided in Appendix A.

6.1 The majority voting algorithm

The voting automaton (Figure 6-1) models the majority voting algorithm described

on page 573 in [14]. The data in this system is kept in a collection of storage locations,

one per node, with no centralized memory. Each node also contains a nonnegative

integer variable tag. Initially, all storage is instantiated to the default value vO and

all tags are set to the value 0.

To perform a read request at a given node, the algorithm reads the stored value

at a majority of the nodes. It chooses the node in the majority with the largest tag
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uses tvoting
automaton voting

signature
output invoke(a: Action, n: Node), respond(r: Response, n: Node)
internal select, read(n: Node), write(n: Node)

states
mem: Array[Node, Value] := constant(vO),
act: Array[Node, Null[Action]] := constant(nil),
rsp: Array[Node, Null[Response]] := constant(nil),
tag: Array[Node, Int] := constant(O),
majority: Set [Node] := allnodes

transitions
output invoke(a, n)

pre act [n] = nil
eff act[n] := embed(a)

internal select
eff majority := choose nodes where (2 * size(nodes)) > numnodes

internal read(n)
choose a: Action, max: Node

pre embed(a) = act[n] A isRead(a) A rsp[n] = nil A
maximum(max, tag, majority)

eff rsp[n] := embed(result(a, mem[max]))

internal write (n)
choose a: Action, max: Node, t: Int, v: Value
pre embed(a) = act[n] A isWrite(a) A rsp[n] = nil A

maximum(max, tag, majority) A t = tag[max] A v = mem[max]
eff for m: Node in majority do

tag[m] := t + 1;
mem[m] := perform(a, v) od;

rsp[n] := embed(result(a, v))

output respond(r, n)
pre rsp[n] = embed(r)
eff rsp[n] := nil;

act [n] := nil

Figure 6-1: IOA specification of the majority voting algorithm
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and returns the associated value.

For a write request, the algorithm also selects a majority M of the nodes in the

system. It queries all nodes in M to find the largest tag t. It then writes the new

value to all nodes in M and replaces every tag of M with t + 1.1

The voting automaton performs internal node selection, read and write compu-

tations using the following transitions:

select. This transition selects a majority from the set of nodes. The majority is

used when read and write operations are performed.

read. This transition reads the value of the current read invocation at a node by

querying a majority of the nodes and selecting the value corresponding to the

highest tag.

write. This transition writes the value of the current write invocation to a majority

of the nodes and updates the tags of these nodes.

The act and rsp data structures keep track of active requests and computed

responses. Arrays mem and tag keep the stored value and tag at every node. Finally,

the set majority always keeps a majority of the nodes. This set is used by the internal

transitions of the automaton.

The predicate maximum appearing in the preconditions of read and write is used

to select the node with the maximum tag from a set of nodes. It is defined as follows:

introduces maximum: Node, Array [Node, Int], Set [Node] -+ Bool
asserts with max: Node, tag: Int, nodes: Set[Node]
maximum(max, tag, nodes) *

max E nodes A V n: Node (n E nodes = tag[n] ; tag[max])

'The algorithm in [14] allows using a different majority of nodes for finding the maximum tag
and writing the updated (value, tag) pairs. Our model is slightly more restrictive. The restriction
was adopted for clarity of presentation.
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set proof-methods normalization, -o, if

prove
1P(X, tag, mem, a, max, t, v).tag[m] = (if m c X then t + 1 else tag[m])
by induction on X using SetBasics.1

resume by case nc E Xc
resume by case nc E Xc

prove
effect(s, write(n, a, max, t, v)).tag[m] =

if m E s.majority then t + 1 else s.tag[m]

Figure 6-2: Simplifying the effect of a loop in Larch

6.2 Analyzing the effect of write

The code for transition write contains a loop over all nodes in the set majority. The

desired effect of the loop is to update the tag and mem variables at all node locations.

The semantics of this loop are very simple: if node n is in the set majority, then the

values of tag[n] and mem[n] are set to t +1 and perf orm(a, v) respectively. Otherwise,

the values remain unmodified.

This intended effect of the loop appears much less obvious to the theorem prover.

The translation tool interprets loops using a complicated scheme (see Section 3.5.5).

We need to derive the intended meaning of the loop from the translation through for-

mal reasoning. Since loops are defined inductively over sets, a natural proof strategy

is structural induction. The formal proof is quite simple; most of it is carried out

automatically, and the interaction part does not require much thought. Figure 6-2

shows the Larch proof for the effect of write on array tag. The reasoning for mem is

identical.

It may appear that the translation procedure for loops is unnecessarily difficult.

Even though the general semantics of loops is quite complicated, most of the loops

used in practice are relatively simple to understand. It would be interesting to see

if such optimizations could be carried out automatically as part of the translation

process. However, our experience suggests that such optimizations require extreme
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caution. We provide a compelling example. Initially, our code for the write transition

of voting was written as follows:

eff for m: Node in majority do
tag[m] := tag[max] + 1;
mem[m] := perform(a, mem[max]) od;

rsp[n] := embed(result(a, mem[max]))

The two segments of code look strikingly similar; we have simply substituted

tag[max] for t and mem[max] for v. The problem occurs when m takes the value max.

In this iteration, tag[max] and mem[max] are modified. and every subsequent iteration

of the loop makes use of these modified values instead of the original ones!2

6.3 The equivalence of voting and mem

We prove the equivalence of voting and mem by showing that each of the two automata

implements the other. The result then follows from Theorem 2.1.

6.3.1 Key invariant of voting

The following observation about the voting automaton is essential for proving that

voting implements mem: A node with the highest tag must appear in a majority. We

formalize and prove a somewhat stronger version of this statement. We begin with a

standard fact about sets:

Lemma 6.1 Let U, S and T be sets such that IUI = n, 2 - |SI > n, 2. IT| > n,

S, T C U and n > 0. Then IS n TI is nonempty.

Proof Note that IS U TI < n; Now apply inclusion-exclusion to conclude that

ISfnTI> 0.3

Let maxnodes denote the set of nodes with maximum tag:

maxnodes = { : Node I V n' : tag[n] > tag[n']}.

2This observation actually shows that the program is semantically incorrect because its effect
depends on the order in which the loop is executed.

3The formal verification of this argument from basic set axioms is considerably longer. A proof
by structural induction on sets is necessary to derive the inclusion-exclusion principle.
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Invariant 6.1 2 - size(maxnodes) > numnodes A 2. size(majority) > numnodes.

Proof In the start state, both sets maxnodes and majority are equal to the set

allnodes of size numnodes, so the inequalities are satisfied.

The invoke, respond and read transitions do not modify either of the sets. The

select transition modifies set majority, but its effects clause ensures that the in-

variant is preserved.

We now look at the write transition. The key result to prove here is that max E

maxnodes. Assuming this for the moment we reason as follows: From the effects

clause of the transition, we have

V ni E majority : v'.tag[ni] = v.tag[max] + 1.

On the other hand, the effect of write implies that:

V n 2 : v.tag[max] + 1 > v'.tag[n2].

Combining the last two results, we obtain

v.majority C v'.maxnodes. (6.1)

The invariant follows from this equation and the inductive assumption.

We prove that max E maxnodes by contradiction. Suppose that max 1 maxnodes.

Then

V ni E maxnodes : tag[ni] > tag[max].

From the transition precondition it also follows that

V n 2 E majority : tag[max] > tag[n2].
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Combining these two results, we obtain

V ni E maxnodes, n 2 E majority : tag[ni] > tag[n 2]. (6.2)

From Lemma 6.1 it follows that the set maxnodes nmajority is nonempty. Therefore,

we can pick an element n, in this set. Instantiating both ni and n 2 by n, in (6.2), we

obtain

Contradiction.

We can now derive the original observation about voting:

Invariant 6.2 V n : maximum(n, tag, majority) -> maximum(n, tag, allnodes).

Proof Pick a node n, E maj ority n maxnodes. Assume maximum(n, tag, maj ority).

Since n is maximal among the nodes in majority,

tag[n] ;> t ag[nc].

Since nc E maxnodes,

t ag~nc] > tag[n']

for all nodes n'. It follows that tag[n] > tag[n'].

6.3.2 The simulation from voting to mem

Theorem 6.1 The relation v : States[voting] -+ m : States[mem] defined by

A m.act = v.act

A m.rsp = v.rsp

A V n E maxnodes : m.mem = v.mem[n]

is a forward simulation relation from voting to mem.
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Proof We focus on the relation between v.mem and m.mem. The correspondences

between the other state components are verified as in the proof of Theorem 5.1.

In the start states, the mem components of both automata are initialized to vO

everywhere and v.maxnodes = v.allnodes. To analyze the transitions, we introduce

the following step correspondence:

T(v, invoke(a, n)) = invoke (a, n)

T(v, respond(r, n)) = respond(r, n)

T(v, select[nodes]) = 0

T(v, re ad(n) [a, max]) = updat e (n) [a]

T(v, write(n) [a, max, t, v]) = update(n) [a]

The invoke, respond and select transitions do not use or affect v.mem, m.mem

or v.maxnodes, so the proof is trivial. For the read transition, we need to argue that

the same value is read from voting and mem. This follows directly from Invariant 6.2.

For the write transition, we need to verify that

V n E v'.maxnodes : v'.mem[n] = m'.mem.

We begin by showing that v'.maxnodes C v.majority, the other direction of equation

(6.1). Suppose n v.majority. From Lemma 6.1 and Invariant 6.1 it follows that

the set v.maxnodes n v.majority is nonempty. Therefore, we can pick a node n, in

this set. By definition of v.maxnodes, it follows that

v.tag[nc] = v.tag[max],

from which we may conclude

v.t aglnc] ;> v.t ag[n].
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Since n, E v.majority, but n V v.majority, it further follows that

v'.tag[n] = v.tag[n]

V'.taglnc] > v.tag[nc].

Combining the last three equations, we obtain v'.tag[nc] > v'.tag[n], from which we

may conclude that n V v'.maxnodes. This proves the containment claim.

To finish the proof, we note that the effects clause of the write transition implies

V n E s.majority v'.mem[n] = val.

for some value val. This, together with the containment claim, yields

V n E v'.maxnodes v'.mem[n] = val.

From the effects clause of mem. update, it follows that m'.mem = val. 0

6.3.3 The simulation from mem to voting

Theorem 6.2 The relation m: States[mem] -+ v : States[voting] defined by

1.A v.act = m.act

2.A v.rsp = m.rsp

3.A V n: v.mem[n] = m.mem

4.A 3 t: V n: v.tag[n] = t

5.A v.majority = allnodes

is a forward simulation relation from mem to voting.

Proof The start state correspondence is easy to check. The step correspondence is

T(m, invoke (a, n)) = invoke(a, n)

T(m, respond(r, n)) = respond(r, n)
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T (m, updat e (n) [a]) write(n)[a, n, tag[n], mem[n]] if isWrite(a),
read(n) [a, n] otherwise.

For invoke and respond, the proofs are trivial. The compute transition requires

a proof by cases. We focus on conjuncts 3 and 4; the others are easily established.

If a is a read action, we need to show that the read transition of voting is enabled;

this requires that the predicate maximum(n, tag, majority) be satisfied. Since all tags

are identical, the predicate is satisfied by every node n'.

If a is a write action, we show that the precondition of write is satisfied by the

same reasoning. It remains to see that the simulation relation holds among the post-

states. Since v.majority = v.allnodes, v.mem[n'] gets the same value over all nodes

n', so the conjunct 3 holds in the post-states. Also, for all nodes n', v.tag[n'] is

assigned the same value, so the conjunct 4 holds as well.
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Chapter 7

The replicated state machine

The previous two chapters discussed the application of formal reasoning strategies for

I/O automata to two distributed data management algorithms. The strong caching

algorithm from Chapter 5 had a very simple and intuitive correctness proof. In

Chapter 6, the correctness of the majority voting algorithm was not immediately

obvious; still, the proof contained only a handful of interesting ideas and was mostly

an exercise in formalism.

This chapter discusses yet another distributed data management algorithm-

Lamport's replicated state machine [11]. This is a complex algorithm used for man-

aging data in asynchronous distributed systems. Unlike strong caching and majority

voting, the correctness of this algorithm is far from obvious. The proof of this algo-

rithm presented in [14] relies on reasoning about whole executions rather than about

individual states and actions. Unfortunately, our formal reasoning machinery from

Chapter 2 does not support this type of reasoning.

We construct a new correctness proof for the replicated state machine (RSM)

using only the notions introduces in Chapter 2-invariants and forward simulation

relations. Our goal is to show that there exists a forward simulation relation from the

RSM algorithm to the central memory model. This simulation relation is difficult to

establish directly; instead, we take advantage of the principle of successive refinement.

We introduce an intermediate automaton which models the data management issues

of RSM but abstracts away the timing issues. The proof then breaks into two parts:

83



1. Show that the intermediate model implements the central memory model.

2. Show that the RSM algorithm implements the intermediate model.

We prove both of these statement by exhibiting forward simulation relations. Even

in this simplified setting, the proofs are intricate; they make use of subtle properties of

the implementation automata. These properties are singled out as formal invariants.

The first part of the proof was verified formally using the Larch prover. Formal

verification for the second part has not been carried out yet. Part of the challenge

is to find good axiomatizations of the datatypes which will make the properties of

interest transparent to the theorem prover. There is also a technical problem related

to the expressiveness of the Larch theory of automata from Chapter 2; we postpone

the discussion of this issue until Chapter 8.

Section 7.1 introduces the data types used by the automaton specifications. In

Section 7.2 we provide the formal specification of the RSM model (automaton rsm)

and the intermediate model (automaton synch). Section 7.3 describes the properties

of synch and the simulation relation from synch to mem. In Section 7.4, we state the

important invariants of rsm and verify the simulation relation from rsm to synch.

7.1 Data type specifications

In this section we describe the datatypes used in the IOA specifications of automata

rsm and synch. Some of these are extensions to the data types from Section 5.1.

Others model structures that are particular to the RSM algorithm (time, clocks,

queues and channels).

Node. We impose a total ordering < on the set of nodes and define nO to be the

smallest node.

Time. A time is a pair [t : T, node : Node] where T is a totally ordered sort with respect

to < bounded below by 0. We define a total order < on times by

[t, node] < [t', node'] * t < t' V (t = t' A node < node').
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We denote the smallest time [0, nO] by the constant 0.

Clocks. For each pair of nodes [n, n'], a variable of type Clocks keeps track of n's

known time of n'. This data type provides the following operators:

reset: Constant of type Clocks in which all times are 0.

c[n, n']: n's view of the time of n', according to c.

c[n]: Abbreviation for c[n, n].

advance (C, n): A value of Clocks in which advance(c, n)[n] > c[n] and all the

other times are copied from c.

synch(c, n, nI', t): A value of Clocks in which n's view of the time of n' equals

t, n's time is bigger than both c[n] and t and all the other times are copied

from c.

Invocation and TimedInv. Invocations are pairs [act : Action, node : Node], where

node is meant to represent the node at which act was submitted. Timed invo-

cations are triples [act : Action, node : Node, time : Time]; here time represents

the logical time at which act is submitted.

IQueue. An indexed queue represents a FIFO queue whose contents can be shared

among multiple nodes. It can be thought of as a collection of multiple queues,

one per node, that share the same data. Each node's "position" in the queue is

indexed by a natural number. IQueue provides the following operators:

0: The empty queue.

q F- e: The queue obtained by appending entry e to q.

q[i]: The ith entry of q.

q.last: The last entry of q.

q.len: The length of q.

advance (q, i): i + 1 if i < q.len, i otherwise.
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7.2 Automaton specifications

7.2.1 The replicated state machine automaton

Automaton rsm (Figure 7-1) specifies Lamport's replicated state machine algorithm.

It consists of a collection of nodes, described by the state variables mem, act, rsp,

ciks and ticked and a collection of FIFO channels modeled by state variable chan.

The variables front and rcv describe the interaction of the nodes with the channels.

As usual, mem, act and rsp represent the storage locations, the active invocation

and the computed response at each node. Variable ciks captures the logical times in

the system. The indicator variable ticked ensures that every computation at node

n is followed by a clock tick. After each event at node n, ticked[n] is set to false.

This forces the automaton to take a tick(n) transition that advances the clock of n

and resets ticked[n] to true.

The variable chan[n] is an indexed queue of all the messages that were ever sent

by node n. The receiving end of the channel from node n' to node n is indexed by

rcv[n, n']. The index front In, n'] points to the earliest invocation in the channel from

n' to n that has not yet been performed by node n.

Transition invoke accepts an action request from the environment and informs all

nodes in the system of this request, together with the location and time of its occur-

rence. As usual, transition respond reports the response to the active request. The

receive transition models the reception of a message from a channel. It synchronizes

the clock of the receiving node with the time stamp of the message.

Transition perf orm is the heart of the algorithm; it performs invocation inv at

node n if (1) the time of inv is no larger than the smallest of n's known times and

(2) inv is the earliest invocation pending at n with this property. If this invocation

was initiated at node n, a response to it is computed as well.

Finally, transition tick models the passage of logical time.
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uses trsm
automaton rsm

states
mem: Array[Node, Value] := constant(vO),

act: Array[Node, Null[Action]] := constant(nil),

rsp: Array[Node, Null[Response]] := constant(nil),

clks: Clocks[Node] := reset,
ticked: Array[Node, Bool] := true,

chan: Array[Node, IQueue[TimedInv]] := constant(0),

front: Matrix[Node, Nat] := constant(O),

rcv: Matrix[Node, Nat] := constant(O)

transitions
output invoke(a, n)

pre act [n] = nil A ticked[n]

eff act[n] := embed(a);
chan[n] := chan[n] - [a, n, clks[n]];

ticked[n] := false

internal receive(n, n')

pre ticked[n] A rcv[n, n'] < chan[n'].len

eff clks := synch(clks, n, n', chan[n'][rcv[n, n']] .time);

rcv[n, n'] := advance(chan[n'], rcv[n, n']);

ticked[n] := false

internal update (n)
choose inv: TimedInv, n': Node

pre ticked[n] A front[n, n'] < rcv[n, n'] A

inv = chan [n'] [f ront [n, n' ]] A

V m: Node (inv. time < clks [n, m] A inv < chan[m] [f ront [n, m]])

eff if inv.node = n then rsp[n] := embed(result(inv.act, mem[n])) fi;

mem[n] := perform(inv.act, mem[n]);

front [n, n'] := advance(front [n, n'] , chan[n']);
ticked[n] := false

output respond(r, n)
pre ticked[n] A rsp[n] = embed(r)
eff rsp[n] := nil; act[n] := nil; ticked[n] := false

internal tick(n)
eff clks := advance(clks, n);

ticked[n] := true

Figure 7-1: IOA specification of the replicated state machine algorithm
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7.2.2 The synchronized replicated memory

Automaton synch (Figure 7-2) models a simplified version of the replicated state

machine algorithm where the channels are instantaneous. In the absence of channel

delays, all components have an identical view of the system as a whole. Consequently,

this model eliminates the need for logical time as a tool for synchronization. Yet, in

terms of distributing the data between nodes, this system captures most of the com-

plexities present in the rsm algorithm. For this purpose, the synch model represents

a good abstraction for analyzing the features of the distributed data management

scheme without having to worry about the timing features of rsm.

Since communications in the system are synchronous, the invocation history (the

sequence of all invocations that happened so far) can be represented by a shared queue

pend. Actions arriving from the environment are not immediately appended to the

queue. Instead, a node may delay informing the other nodes that it owns an active

action. The inf flag indicates that there is an active execution at a node which has

not made its way to pend yet. When the inform transition is triggered, the current

action is added to pend and the inf flag is reset.

Each node may be at a different processing stage with respect to the shared invo-

cation list. The index variable points to the first invocation waiting to be processed

at a given node. When a node has processed all invocations on the list, index takes

the value pend. len. The update transition performs the computation required by

the indexed invocation and generates a response if the invocation belongs to the host

node.

7.3 The simulation from synch to mem

The relation between synch and mem is difficult to analyze without some preparatory

work. In particular, it will be helpful to gain some understanding (both intuitive and

formal) of the properties of synch before we construct and prove a forward simulation

relation from synch to mem.
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uses t-synch
automaton synch

signature
output invoke(a: Action, n: Node), respond(r: Response, n: Node)

internal inform(n: Node), update(n: Node)

states
mem: Array[Node, Value] constant(vO),

pend: IQueue[Invocation] 0,

index: Array[Node, Nat] := constant(Q),

inf: Array[Node, Bool] := constant(false),

act: Array[Node, Null[Action]] := constant(nil),

rsp: Array[Node, Null[Response]] := constant(nil)

transitions
output invoke(a, n)

pre act [n] = nil
eff act[n] := embed(a);

inf[n] := true

internal inf orm(n)
pre act [n] :A nil A inf [n]

eff pend := pend I- [act [n] . val, n];

inf [n] := false

internal update (n)
choose ind: Nat, inv: Invocation
pre ind = index [n] A ind < pend.len A inv = pend[ind]

eff if inv.node = n then rsp[n] := embed(result(inv.act, mem[n])) fi;

mem[n] := perform(inv.act, mem[n]);

index [n] := advance(ind, pend)

output respond(r, n)
pre rsp[n] = embed(r)
eff rsp[n] := nil;

act [n] := nil

Figure 7-2: IOA specification of the synchronized replicated memory
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7.3.1 Definitions

We begin with some definitions which describe the key properties of automaton synch.

These definitions will be used to formulate invariants of synch and the simulation

relation from synch to mem.

The first two definitions describe the possible states of the bookkeeping variables

(act, rsp, and inf).

Definition Node n is in bookkeeping mode if the following predicate (denoted by

bookkeep(n)) holds:

V act[n] = nil A -inf[n] A rsp[n] = nil

V act[n] 74 nil A inf[n] A rsp[n] = nil

V act[n] 0 nil A -inf[n] A rsp[n] $ nil

We refer to the three disjuncts as bookkeeping modes 1, 2 and 3, respectively. Node

n is in good-to-go mode if the following predicate (denoted by goodtogo(n)) holds:

act[n] =A nil A -,inf[n] A rsp[n] = nil

Intuitively, a node is in bookkeeping mode while it is preparing to process its

invocation. It switches to good-to-go mode as soon as it becomes ready to process

this invocation.

Several interesting properties are related to the number of invocations waiting to

be processed at each node.

Definition Invocation i is pending at node n (denoted by pending(n, i)) if

index[n] < i A i < pend.len A n = pend[i].node.

The following quantified versions of this definition will turn out to be particularly
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useful:

Epend(n) 4 ] i : pending(n, i)

onepend(n) 3! i : pending(n, i)

active(n) @ V i : pending(n, i) = act[n] = pend[i].act

To study the evolution of mem as nodes process their invocation, we need a notion

that will allow us to reconstruct the state of mem at any time in the "past".

Definition The memory history at index i is given by the recursive formula

hist(i) ={vO if i = 0,
perform(pend[i].act,hist(i - 1)) otherwise.

For the simulation from synch to mem, it will be useful to single out the node(s)

whose index is maximal. We let

maxindex = max{index[n]I n : Node}

and

ismax(n : Node) < index[n] = maxindex.

We define two more properties that play a role in the simulation proof. These are

used to reference invocations that have not been processed by their host node, but

have been processed by the node that is farthest ahead in the invocation queue:

between(n : Node, i : Nat) 4* pending(n, i) A i < maxindex

Ebetween(n) * 3 i : between(n, i).

7.3.2 Invariants of synch

The first invariant describes a basic "sanity" property of the index variables. Even

though its correctness is obvious from observation, its formal statement is necessary
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as it is used time and again in the proofs of other properties. In favor of clarity of

presentation, we will omit explicit references to applications of this invariant.

Invariant 7.1 (Index bound condition) For all nodes n, index[n] < pend.len.

Proof In the initial state, index[n] = 0 and pend.len = 0. index and pend are not

modified by the invoke and respond transitions. In inf orm, the length of pend grows

by one, while index is unmodified. The inequality is preserved. In update, consider

the precondition clause ptr < pend.len (with ptr = index[n]). Since index[n] is

incremented by at most one, the inequality holds after the transition. N

The following invariant captures the relation between the modes of operation and

the state of pend. It claims that (1) There may be at most one invocation at node n

waiting to be processed by n and (2) If n is waiting to process its invocation, then it

is in good-to-go mode.

Invariant 7.2 (Key invariant) For all nodes n,

V bookkeep(n) A -Epend(n)

V goodtogo(n) A onepend(n)

Proof In the initial state, all nodes are in bookkeeping mode 1. There can be no

pending invocations as pend is empty.

At the outset of the invoke transition, the environment assumption guarantees

that node n is in bookkeeping mode 1. Therefore, bookkeep(n) A -,Epend(n) holds in

state s. After the transition, synch is in bookkeeping mode 2 while pend and index[n]

are not modified. As a result, the same condition holds in state s'.

When the respond transition is triggered, rsp[n] = nil and n must be in book-

keeping mode 3. Again, the invariant assumption yields bookkeep(n) A -,Epend(n) in

state s. In the post-state s', the mode will be bookkeeping 1, while pend and index[n]

are preserved. The condition will be preserved.

For the inform transition, the precondition ensures that the in state s, node n is

in bookkeeping mode 2. Therefore, we conclude from the invariant assumption that
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bookkeep(n) A -,Epend(n) holds in the pre-state. In state s', it is easy to see that the

mode of node n has switched to good-to-go, so we need to show that s'.onepend(n)

holds as well. Indeed, the invocation that was appended to s.pend belongs to n. This

is the unique pending invocation because -s.Epend(n) guarantees that there can be

no others. The added invocation does not affect the other nodes, as it does not belong

to them. In other words, for n' 0 n, we can conclude that

s'.Epend(n') @ s.Epend(n'), and

s'.onepend(n') 4 s.onepend(n').

Finally, consider the update transition. We distinguish two cases:

Processing own invocation: s.pend[index[n]].node = n. In this case, s.Epend(n)

must hold because s.pending(n, index[n]) is true. From the invariant assump-

tion, we conclude that s.goodtogo(n) A s.onepend(n) holds. Since a response

is generated (owing to the case hypothesis), we deduce that s'.bookkeep(n). It

remains to see that -s'.Epend(n) also holds. This follows from the observation

that the single invocation which belongs to n in state s is at index s.index[n].

In the post-state, index[n] increases by one, so there can be no invocation be-

longing to n past s'.index[n]. At nodes n' = n, nothing interesting happens so

the invariant is preserved as well.

Processing invocation of other node: s.pend[index[n]].node :A n. In this case,

a response is not generated by the transition, so the mode of operation is pre-

served. It remains to see that the state of pend is also preserved. If -Epend(n)

holds in state s, it will hold in state s' because index[n] may only be increasing.

If onepend(n) holds in s, it will hold in s' because the only invocation that

index[n] moved past did not belong to n. Again, nothing interesting happens

at nodes n' $ n.

This invariant yields a useful corollary:

Invariant 7.3 (Modes of operation) For all nodes n, bookkeep(n)Vgoodtogo(n).
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Invariant 7.4 (Active actions) For all nodes n, active(n).

Proof Note that whenever -,Epend(n) holds, active(n) is vacuously true. This

observation, combined with Invariant 7.2, yields

bookkeep(n) - active(n).

Consequently, the invariant will hold in the initial state, as well as the post-states

of the invoke and respond transitions. In the post-state of inform, the invariant

assumption covers all indices i < s.pend.len (at all nodes). For i = s.pend.len, both

s'.pending(n, i) is true and s'.act[n] = s'.pend[i].act. At nodes n' :A n, the predicate

s'.pending(n', i) is false so s'.active(n') holds. For the update transition, we observe

that the index variables may only increase while pend does not change. It is easy to

see that s.active(n) implies s'.active(n) for a generic node n. N

The last invariant states the intuitive property that the memory contents of a

node can be obtained by consecutively applying all past invocations to the initial

value vO.

Invariant 7.5 (Memory consistency) For all nodes n, hist(index[n]) = mem[n].

Proof In the initial state, index[n] = 0 so both sides evaluate to vO. The invoke

and respond transitions do not affect index, pend and mem, so they preserve the

invariant. The inf orm transition affects pend[i] only if i > s.pend.len. This has no

effect on hist(index[n]), so the invariant is preserved.1 For the update transition,

we note that both

s'.mem[n] = update (s.pend[s. index[n]].act, s.mem[n])

and

s'.hist[s'.index[n]] = perf orm(s.pend[s.index[n]].act, s.hist[s.index[n]]).

1 This fact was not at all obvious to the theorem prover. It required a proof by induction over
the possible values of index[n] (natural numbers).
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Therefore, the invariant assumption implies the invariant in state s'.

7.3.3 The simulation relation

In this section we prove the existence of a simulation relation from synch to mem.

Even though the basic idea of the simulation is simple, the details of the proof are

quite intricate.

Informally, we simulate the state of mem with the state of the node of synch that is

farthest ahead in the pend queue. This ensures that the contents of m.mem and s.mem

will be consistent, but it may create discrepancies between m.rsp[n] and s.rsp[n] for

some nodes n. The discrepancy will occur exactly when the invocation submitted at

n has been processed by the node that is farthest ahead, but not by node n.

Theorem 7.1 The relation s : States[synch] -+ m : States[mem] defined by

L.A m.act = s.act

2.A V n: s.ismax(n) - m.mem = s.mem[n]

3.A a.V V n: 3 i: [s.between(n, i) A m.rsp[n] = result (m.act[n], s.hist(i))]

b.V V n: -s.Ebetween(n) A m.rsp[n] = s.rsp[n]

is a simulation relation from synch to mem.

Proof In the start states, the act, rsp and mem contents are consistent over all nodes

and -iso.Ebetween(n) holds. This implies the simulation relation.

To verify that the simulation relation is preserved by the transitions, we introduce

the following step correspondence:

T(s, invoke(a, n)) = invoke(a, n)

T(s, respond(r, n)) = respond(r, n)

T(s, inf orm(n)) = 0
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T(s, update(n)[ptr, i]) { update(i.node, i.act) if s.ismax(n),
0 otherwise.

For the invoke transition, the first two conjuncts carry over from the pre-state

to the post-state. For the third conjunct, we claim that the predicate -IEbetween(n)

holds in both the pre-state and the post-state. Since synch is in bookkeeping mode

in both of these states, -iEpend(n) must be true. This predicate is stronger than

-iEbetween(n), so the latter must hold as well. Since m.rsp[n] and s.rsp[n] remain

unmodified, the relation holds for state n. For states n' $ n the argument is trivial.

The respond transition requires similar (though somewhat simpler) reasoning.

Again, the interesting issue is how to match up the responses. In the poststate,

synch is in bookkeeping mode, so we can deduce that -s'.Ebetween(n) holds true.

As both s'.rsp[n] = nil and m'.rsp[n] = nil, the second disjunct holds and the

simulation relation is preserved.

The inf orm transition requires somewhat more careful resoning at the formal

level, but the ideas are similar. The first two conjuncts are preserved trivially for

node n; we focus on the last one. In the pre-state, -,s.Ebetween(n) must hold for

same reasons as in the above two transitions. In the post-state, we have added a

new transition at the tail of pend. We claim that this this new transition does not

satisfy the between predicate for node n. The index of the newly added transition is

s.pend.len, but Invariant 7.1 guarantees that s.maxindex < s.pend.len. Therefore,

s'.between(n, s.pend.len) does not hold. It follows that s'.Ebetween(n) must be false

as well, so disjunct (b) holds in the post-state. For nodes n' = n, no interesting

changes occur.

The proof for the update transition contains the bulk of the work. To begin with,

we note that the first conjunct is trivially preserved. For the rest, we naturally split

the analysis in two cases:

Case s.ismax(n): First, we need to verify that transition update(inv.node, inv.act)

is enabled in mem. We show that s.Ebetween(inv.node) is false. Node inv.node
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has an invocation pending at index s.index[n]. By Invariant 7.2, this must

be the only invocation pending at that node, so it has no invocations pending

in the range [s.index[n], s.index[inv.node]). This implies m.rsp[inv.node] =

s.rsp[inv.node]. Also, inv.node must be in good-to-go mode owing to Invariant

7.2, so s.rsp[inv.node] = nil. It follows that m.rsp[inv.node] = nil as well,

so the update transition is enabled at inv.node.

We now verify the post-state correspondence. The first thing to note is that

n is the unique node for which the condition s'.ismax(n) holds. Invariant 7.4

guarantees that the same perf orm operation is applied to both m.mem and

s.mem[n]. Therefore, the memory consistency condition (conjunct 2) will hold in

the post-state.

The last conjunct is somewhat more challenging. It is clear that in both the

initial and final states of synch, -Ebetween(n) must hold, for index[n] =

maxindex. Therefore, for node n, disjunct (b) will be satisfied. For nodes

n' $ n, let no = s.pend[s.index[n]].node. We distinguish two sub-cases:

Subcase no = n (n is processing its own invocation.) We claim that

s'.between(n', inv) <=> s.between(n', inv).

This is true because the only value of inv which can potentially make

a difference is s.index[n]. However, we know that the invocation at this

index does not belong to node n'. Since no response is generated by either

automaton in this case for node n', the rsp variables are preserved in the

post-state. We conclude that the invariant holds.

Subcase no $ n. Node no has a pending invocation at index s.index[n]; In-

variant 7.2 shows that this is the only pending invocation. Consequently,

no has no pending invocations in the range [s.index[no], s.index[n]). It

follows that -s.between(no) must hold, and the responses match in the

pre-state by the invariant hypothesis. In the post-state, the first disjunct
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holds for no with inv instantiated by s.index[no]. For nodes n' : n, no,

the invariant is preserved for reasons analogous to the previous sub-case.

Case -s.ismax(n): In this case, it is possible that ismax(n) holds in the post-state,

even though it fails in the pre-state. Suppose s'.ismax(n) holds. We pick a node

no for which s.ismax(no) is true. We obtain the following two inequalities:

s'.index[n] - 1 < s.index[no]

s'.index[n] > s.index[no]

It follows that s'.index[n] = s.index[no]. Therefore, owing to Invariant 7.5, we

conclude that s'.mem[n] = s.mem[no]. The last quantity is, by assumption, equal

to m.mem. This proves conjunct 2.

For the last conjunct, we perform a sub-case analysis conditioned by the predi-

cate inv.node = n. The analysis is similar to the one shown above, so we skip

the detailed presentation.

7.3.4 Notes on the formal proof

Invariants 7.1-7.5 and Theorem 7.1 were verified formally using the Larch Prover. The

high-level steps of the formal proof closely resemble the arguments presented here.

However, some of the details that rely on intuitively obvious properties of datatypes

such as orderings, integers and indexed queues also required some user interaction

with the theorem prover.

We can single out a number of features of the theorem-proving environment which

are helpful for verifying difficult properties of I/O automaton specifications. The in-

teresting properties of the synch model were stated using high-level, abstract notions.

To handle the level of complexity inherent in systems such as the synch model, it

is necessary that reasoning is carried out at this high level of abstraction as much

as possible. The Larch Shared Language support for specifying abstract properties

through sort and operator definitions was essential for this purpose. In addition, the
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Larch Prover support for passivizing axioms (definitions) to keep terms in a simple,

readable form turned out to be especially valuable in coping with the level of detail

which is necessary to push through each step of the proof.

Having said that, we must also note that this high level of abstraction can be main-

tained throughout the proof only with the help of explicit user control. It is necessary

for the user to have a good understanding of the state of the proof, and to distinguish

properties which can be delegated to the theorem-prover for automatic discharge from

properties which require explicit user attention. In particular, existence and unique-

ness statements (which were particularly important in this application) need detailed

user interaction to perform the required instantiations and specializations.

The formal verification of the synch algorithm in Larch resulted in the discovery of

a number of inadequacies in our initial proof sketches. Most of these inadequacies were

related to weak assumptions (as in the case of Invariant 7.2) and underspecification

(as in the simulation relation). In some cases, additional invariants were required (e.g.

Invariants 7.1 and 7.5) to complete the proofs of other properties. Unfortunately, the

user interface of Larch is not very adaptable in this respect and a great deal of user

intervention was required to update parts of the proof which carry over easily in the

informal arguments.

The Larch proof script of Invariants 7.1-7.5 is approximately 800 lines long and

executes in less than three minutes. It is provided in Appendix A.

7.4 The simulation from rsm to synch

The heart of the simulation from rsm to synch is the relationship between the intricate

timing features of rsm and the simple invocation delay mechanism of synch. The

inf orm transition of synch does not have a counterpart in rsm; the challenge is to

figure out the exact conditions under which a transition of rsm triggers the inf orm

transition in synch.

The invocations in rsm are always performed in increasing order of logical time.

This is the order in which they will also be performed in synch. It follows that the
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list of invocations in synch will contain all invocations from rsm whose time stamp is

smaller than the value of some parameter tsynch. As tsynch grows, more invocations

will queue up in synch. The value of tsynch is constrained by the following two

requirements:

1. If an invocation can be performed in rsm, then it can be performed in synch.

This imposes a lower bound on tsynch: The time stamps of invocations that

can be performed must not exceed tsynch.

2. Incoming invocations in rsm must go on top of the invocation list in synch.

This is an upper bound constraint: The time stamps of incoming invocations

must be bigger than tsynch.

We define tsynch = min{clks[n]}; the appropriateness of this choice is demon-

strated in Invariants 7.9 and 7.11 below. We single out two properties involving

tsynch which will be important for the simulation proof. These describe the possible

synchronization states of messages in the channels.

Definition Modes insynch and presynch are defined by the formulas

insynch(n : Node) @ chan[n].last.time < tsynch

presynch(n : Node) 4@ A V i : i < chan[n].len - 1 =- chan[n][i.time < tsynch

A chan[n].last.time > tsynch

Finally, we define an operator

merge: Array[Node, IQueue[TimedInv]], Time -+ IQueue [Invocation]

The application merge(chan, t) filters all the entries chan[n][i] with the property

chan[n] [i].t ime < t and produces an IQueue consisting of these entries sorted by their

time components. (The time components are then stripped to obtain Invocations

from TimedInvs.)
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7.4.1 Invariants of rsm

The first three invariants describe some elementary consistency properties of automa-

ton rsm. Invariant 7.6 shows that all messages coming out of node n are tagged by

node n.

Invariant 7.6 (Node consistency) For all nodes n and indices i < chan[n].len,

chan[n][i].node = n.

Proof We only need to check the start state and the invoke transition. Both cases

are trivial. 0

The following invariant shows that an active invocation is always the last invoca-

tion in a channel.

Invariant 7.7 (Active invocations) For all nodes n,

act[n] = nil V act[n] = chan[n].last.act.

Proof In the start state, the first disjunct holds for all nodes n. Transitions receive,

update and tick do not affect either of act and chan. Transition invoke satisfies

the second disjunct at node n in the post-state. Transition respond ensures that

act[n] = nil in the post-state. 0

Invariant 7.8 states that the front, the receiving end and the sending end of a

channel are ordered correctly.

Invariant 7.8 (Ordering of channel pointers) For all nodes n, n',

front [n, n'] < rcv[n, n'] < chan[n'].len.

Proof In the start state, all three values are zero. Transition invoke increments

chan[n].len by one and leaves everything else unmodified. Transition receive re-

quires that rcv[n, n'] < chan[n'].len and it increments rcv[n, n'] by one. Transition
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update requires that front[n, n'] < rcv[n, n'] and increments front[n, n'] by one. In

all cases, the inequalities hold in the post-state. Transitions respond and tick leave

all of front, rcv and chan unmodified.

The following two invariants show that the logical times of events in the system

conform to the expected order.

Invariant 7.9 (Ordering of events) For all nodes n,

L.A V -ticked[n] A clks[n] > chan[n].last.time

V ticked[n] A clks[n] > chan[n].last.time

2.A V ij : i < j < chan[n].len = chan[n][i].time < chan[n][j].time

Proof Transitions invoke, respond, receive and update satisfy ticked[n] in the

pre-state and -ticked[n] in the post-state. Moreover, the only node of interest is

node n. For these transitions, conjunct 1 is implied by the formula

r'.clks[n] > r'.chan[n].last.time (7.1)

assuming that

r.clks[n] > r.chan[n].last.time. (7.2)

Transition invoke sets r'.chan[n].last.time to r.clks[n] and does not modify the

latter. Condition (7.1) follows. For conjunct 2, we must show that the invariant is

not violated for j = chan[n].len. Condition (7.2) implies that

r'.chan[n].last.time > r.chan[n].last.time.

Reformulating this in terms of indices yields

r'.chan[n][chan[n].len]time > r'.chan[n][chan[n].len - 1].time.
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This, together with the inductive hypothesis, implies conjunct 2.

Transitions respond and update do not modify any relevant variables. Transitions

receive and tick may only increase clks[n]. In all cases, the invariant holds in the

post-state.

Invariant 7.10 (Clock consistency) For all nodes n, n' with n # n',

clks[n] > clks[n, n'] A clks[n'] > clks[In, n'].

Proof Transitions invoke, respond and update do not modify ciks. The effects

clause of transition receive implies the following two statements (with n # n'):

1. r'.clks[n, n'] = r.chan[n'][rcv[n, n']].time

2. r'.clks[n] > max{r.clks[n], r'.clks[n, n']}

Conjunct 1 follows directly from the second statement. We derive conjunct 2 as

follows:

r'.clks[n'] = r.clks[n']

> r.chan[n'].last.time by Invariant 7.9

> r.chan[n'][rcv[n,n']].time by Invariants 7.8 and 7.9

= r'.clks[n, n'].

Transition tick increases clks[n], so the inequalities are preserved.

We now verify that all enabled invocations have been synchronized.

Invariant 7.11 (Synchronization property)

enabled(update(n, inv,n')) = inv.time < tsynch.
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Proof Let m be the node for which clks[m]= tsynch. If m = n,

inv.time < clks[n, m] by precondition of update

< clks[m] by Invariant 7.10

- tsynch.

Otherwise,

inv.time = chan[n][front[n, n]].time

< chan[n].last.time by Invariants 7.8 and 7.9

< clks[n] by Invariant 7.9

= tsynch. U

The following property is the analogue of Invariant 7.2 of synch. It relates the

synchronization states of the channels to the bookkeeping variables of the automaton.

Invariant 7.12 (Modes of operation) For all nodes n,

a.V insynch(n) A front [n, n] = chan[n].len A act[n] = nil A rsp[n] = nil

b.V presynch(n) A front In, n] = chan[n].len - 1 A act[n] # nil A rsp[n] = nil

c.V insynch(n) A front[n, n] = chan[n].len - 1 A act[n] :A nil A rsp[n] = nil

d.V insynch(n) A front [n, n] = chan[n].len A act [n] = nil A rsp[n] = nil

Proof This proof is similar to the proof of Invariant 7.2. In the initial state, disjunct

(a) is satisfied by all nodes n.

Transition invoke requires act[n] = nil, so disjunct (a) must be satisfied for node

n in the pre-state. We argue that disjunct (b) will be satisfied in the post-state; we

need to show that r'.presynch(n) is true. From the effects clause of invoke we obtain

r'.chan[n].last.time = r'.clks[n].
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Now r'.clks[n] < r'.tsynch, so presynch(n) holds. The other three conjuncts are

easy to verify.

Transition respond requires that r.rsp[n] 7 nil, so disjunct (d) holds in the

pre-state. It is trivial to check that disjunct (a) will hold in the post-state.

For transition update, there are two cases:

Case n' = n. (Performing own invocation.) From the precondition and Invariant 7.8,

it follows that front[n, n] < chan[n].len. This eliminates disjuncts (a) and (d)

for the pre-state and implies that

f ront[n, n] = chan[n].len - 1.

Therefore chan[n].last.time = inv.time. By Invariant 7.11, this is smaller

than tsynch. This shows that presynch(n) is violated and rules out disjunct

(b). Therefore disjunct (c) holds in the pre-state. It is easy to check that

disjunct (d) will hold in the post-state.

Case n' : n. In this case none of the variables of interest are affected.

Finally, we consider transitions receive and tick. These transitions do not affect

variables front, chan, act or rsp. However, they may affect the synchronization. If

insynch(n) holds in the pre-state for some node n, then it will hold in the post-state

as well. Otherwise, presynch(n) (disjunct (b)) holds in the pre-state. If presynch(n)

also holds in the post-state, disjunct (b) is preserved; otherwise, insynch(n) must

hold in the post-state. This implies disjunct (c). M

We conclude with two technical properties which will be useful in the simulation

proof.

Invariant 7.13 (Past actions are synchronized) For all nodes n and indices i,

i < front[n, n'] -=> chan[n'][f].time < tsynch.
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Proof In the start state, the invariant is vacuously true. Transitions invoke and

respond do not modify tsynch or any of the entries chan[n][i] for i < front[n]. In

transition update, variable front[n,n'] advances by one. From Invariant 7.11, we

obtain

chan[n'][front[n, n']].time < tsynch.

Transitions receive and tick do not affect front or chan and may only increase

tsynch. E

The following property asserts that invocations are always updated in order of

increasing time stamps. The proof is notationally intensive even though the property

should be intuitively clear:

Invariant 7.14 (Ordering of invocations) For all nodes n, n1 , n 2 and indices i,

i < front[n, n 2] =:> chan[n 1][front[n, ni]].time > chan[n 2][i].time.

Proof The invariant holds vacuously in the initial state. Transitions invoke,

respond, receive and tick do not modify state variable front. Transition update

increments front [n, n'] by one; we need to show that

i < r'.f ront In, n2] =* r.chan[n'] [r'.f ront[n, n']].t ime > r.chan[n2] [i].time.

and

r.chan[n 1 ][r.f ront [n, ni]].time > r.chan[n'][r.front[n, n'].t ime].

Claim 1 is verified as follows:

r.chan[n'] [r'.front[n, n']] .time > r.chan[n'] [r.f ront[n, n']].time by Invariant 7.9

> r.chan[n 2 ][r.front [n, n2 ]].time by choice of n'

> r.chan[n2][i].time by Invariant 7.9.

The proof of claim 2 is similar, so we omit the details.

106



7.4.2 The simulation relation

Theorem 7.2 The relation r : Stateslrsm] -* s : States[synch] defined by

L.A s.mem = r.mem

2.A s.act = r.act

3.A s.rsp = r.rsp

4.A s.pend = merge (r.chan, r.tsynch)

5.A V n : s.index[n] = E, r.front[n, n']

6.A V n: s.inf[n] = (r.act[n] = nil A r.tsynch < r.chan[n].last.time)

is a simulation relation from rsm to synch.

The main idea of the simulation relation is captured in conjuncts 4, 5 and 6.

Conjunct 4 constructs the pend queue of synch from all invocations in r.chan that

have been synchronized. Conjunct 5 says that when the entry r.front [n, n'] is incre-

mented, s.index[n] must be incremented as well. Conjunct 6 states that the inform

transition of synch has occurred at exactly those nodes that contain an active action

and have been synchronized.

Proof It is easy to see that the relation holds between the start states. For the

transitions, we introduce the following step correspondence:

T(r, invoke (a, n)) = invoke(a, n)

T(r, respond(r, n)) = respond(r, n)

T(r,receive(n,n')) =# /

T(r, update(n)[inv, n']) = update(n)[s.index[n], inv]

T(r, tick(n)) = #

Where

1. / = inf orm(ni) * ... * inf orm(nk),

2. {n,,... , nk} = {n: s.inf [n] A -is'.inf [n]},
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3. rchan[mn1.last.time < ... < r.chanInk].last.time.

For transition invoke, we need to show that conjuncts 4 and 6 hold in the post-

state. Both of these are implied by the claim

r'.tsynch < r'.chan[n].last.time.

The left hand side is equal to r.tsynch. The right hand side is equal to r.clks[n].

The claim follows.

For transition respond, there is nothing interesting to show.

We now consider transition update. We must first establish that this transition

is enabled. The key property to verify is

s.index[n] < s.pend.len.

We count the entries in s.pend. By Invariant 7.13, s.pend must contain the the

entries r.chan[n'][i] for all nodes n' and indices i < r.front[n, n']. (These are all

distinct because they have distinct time stamps.) This is a total of E, r.front[n, n']

entries, one short of what we need. By Invariant 7.11, the entry r.chan[n'][front[n, n']]

is also in s.pend. Therefore

s.pend.len ;> r.f ront[n, n'] + 1 > s.index[n].
n/

For the effect of update, the principal claim is

s.pend[s.index[n]] = r.inv

First we note that by Invariant 7.11, r.inv.time < r.tsynch, so r.inv must be present

in s.pend. Let k denote the index for which

s.pend[k] = r.inv.
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We show that k = s.index[n] as follows:

1. k > s.index[n]. From Invariant 7.14,

r.inv.time > r.chan[n 2][i].t ime

for all nodes n2 and indices i < r.front[n,n 2]. All these entries must be in

s.pend because their time stamps are smaller than r.tsynch. Moreover, their

indices in s.pend are all smaller than k. There are exactly Zn2 s.front[n, n 2] =

s.index[n] such entries. The claim follows.

2. k < s.index[n]. We proceed by contradiction. If this property is violated, there

must exist an index i < k and node n2 with i > r.front[n, n2] and

s.pend[i] = r.chan[n 2][f ront [n, n 2]].

(All pairs (n2 , i) which violate this condition were accounted for in the previous

part.) Then

r. inv.t ime = chan[n'] [front [n, n']].time

< r.chan[nI2 ][front[n, n2]].time by choice of n'

< r.chan[n 2][i].time by Invariant 7.9

This implies that k < i. Contradiction. This verifies the principal claim.

The post-state correspondence is now easy to verify. For conjunct 5, we note

that both sides of the equation are incremented by one. The other conjuncts follow

directly.

Finally we consider transitions receive and tick. Of all the variables of rsm that

appear in the simulation relation, only tsynch may be modified by the transitions.

First, we show that each of the inform transitions from the step correspondence is

enabled. Property 2 of 3 ensures that s.inf[ni] is satisfied for all ni (1 < i < k), and

this implies s.act[ni] # nil as well.
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For the step correspondence, we need to verify two properties:

1. s'.pend = merge(r.chan, r'.tsynch). By Invariant 7.12, the additions to s.pend

are entries for which r.presynch(n) and r'.insynch(n). These are the entries

of the form r.chan[n].last which satisfy

r.act[n] : nil A r.tsynch < r.chan[n].last.time < r'.tsynch.

The set of nodes that satisfy this condition is exactly {ni,... , nik}. It remains

to show that the entries added to s.pend are the "correct" ones, i.e.

r.chan[ni].last.act = s.act[ni].val

for all the ni. This is guaranteed by Invariant 7.7. Condition 3 for 0 ensures

that the entries are added in the correct order.

2. V n : s'.inf[n] = (r'.act[n] # nil A r'.tsynch < r'.chan[n].last.time). This

follows by choice of the nodes ni (condition 2 for #).
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Chapter 8

Discussion and future work

The translation process from IOA to Larch developed in this thesis is meant to serve

as a practical tool for verifying the correctness of distributed algorithms specified in

the IOA language. The design of the tool was driven by the need to make the output

suitable for interactive theorem proving. The relationship between the translated

specification and the original IOA program is transparent; had this not been the case,

the user of the theorem proving tool would not be able to find his or her way through

the interactive proof. On the other hand, the translation is structured in a manner

which takes advantage of the automatic features of the theorem prover. Generally,

these features are most helpful in specifications with widely applicable rewrite rules

(statements of equality or boolean equivalence), well thought out inductive definitions

and a lack of existentially quantified statements.

The Larch theory of I/O automata, as formalized in Chapter 2, is a simple but

powerful apparatus for formal reasoning about automata. It provides two basic con-

structs for specifying correctness properties: Invariants and forward simulation rela-

tions. The logic of these notions is simple and their proof strategies are schematic;

as formal reasoning tools, they are both intuitive and convenient for automatic veri-

fication strategies.

Usability and automation are at the heart of the translation tool described in

Chapter 3. The top level anatomy of a translated specification closely reflects the

original IOA program. Formal arguments about automata are centered on careful
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reasoning about transitions. The translation process facilitates this reasoning by

computing the transition post-state as an explicit function of the pre-state. In theo-

rem proving, these relationships are turned into rewrite rules; a great many obvious

and technical proof obligations are discharged automatically in this manner, keeping

the user focused on the important parts of the proof.

IOA allows explicit nondeterminism by providing choose parameters. The trans-

lation tool handles this nondeterminism explicitly by extending transition signatures

with choose parameters. This technique eliminates the need for existential quantifi-

cation of choose assignments suggested in the IOA Reference Manual [10].

The correctness proofs for the strong caching algorithm (Chapter 5) and the ma-

jority voting algorithm (Chapter 6) illustrate a practical application of the formal

reasoning techniques for IOA programs. Chapter 7 demonstrates the full power of

the elementary notions in the theory of I/O automata: The correctness of a complex

distributed data management algorithm-the replicated state machine-is demon-

strated using only invariants and forward simulations.

Despite these initial successes, the translation process from IOA to LSL is by no

means perfect. In Sections 8.1-8.4, we single out four directions in which the current

tool may be extended to better serve its purpose. We believe that the ideas in this

thesis provide a solid foundation upon which these (and possibly other) extensions

may be built.

8.1 Semantic checks

The current version of the translation tool assumes that the IOA programs it operates

on are semantically correct. If this is not the case, the Larch specification generated

by the tool may be inconsistent. Not all semantic properties of IOA programs can be

verified by a typical static checker. Some properties are intricate enough to require

the full power of a theorem prover; some may even be undecidable.

The translation scheme developed in this thesis can be leveraged to formulate

proof obligations for those semantic properties that cannot be discharged statically.
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It is best to illustrate this with a simple example. Suppose P is a predicate of two

Int variables satisfying the following axiom:

asserts with x: Int, s: Int
x fz 0 =* (3 s P(x, s));

Now consider the following transition definition of automaton A with state vari-

ables x and y of type Int:

internal foo(t: Int) where t > 0
eff x := x + t;

y := choose s where P(x, s)

The semantics of IOA requires the existence of a choice for s; we must check that

the value of x in the second assignment is different from zero. However, x is a state

variable, so it is impossible to check if this is the case without additional information

about the possible values of x. The correctness of this program is best described as

an invariant of A:

introduces correct: States[A] -+ Bool
asserts with s: States [A], t: Int

correct(s) ' * V t ((enabled(s, foo(t)) =: s.x + t : 0))
implies Invariant(A, correct)

Both the I/O automaton notions from Chapter 2 and the IOA program analysis

ideas from Chapter 3 apply in this context. Other semantic correctness properties

are represented by similar proof obligations.

8.2 Improving the translation of loops

The translation mechanism for loops described in Chapter 3 is not entirely satis-

factory. We discuss two issues in loop translation which could benefit from further

analysis: Nondeterminism within loops and improved semantic analysis of loop ef-

fects.
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8.2.1 Nondeterminism within loops

A choose parameter within a loop can be interpreted as a collection of nondetermin-

istic choices, one for each iteration of the loop. In the spirit of Chapter 4, we attempt

to represent this nondeterminism by a transition parameter under a suitable con-

straint. If a choose variable of type T is found within a loop over a variable of type

S, we try to represent the nondeterministic choice by a variable of type Array[S, T].

Here is an example (x and y are state variables of type Int):

internal foo
eff for i: Nat so that i < 3 do

x choose t so that t > 5;
y y + x od

The transition can be represented by a function

foo: Array[Nat, Int] -+ Actions[A]

with f oo(at : Set[Int]) representing an execution of the loop with choose parameter

t taking value at[i] at the ith iteration of the loop.

Unfortunately, this approach is not general enough, because the value of the

choose parameter may depend on the order of iteration. For example, consider

the transition:

internal foo
eff for i: Nat so that i < 3 do

x := choose t so that t > x;
y := y + x od

Here, the choice of t depends on the value of state variable x. Since x is modified in

each iteration, the permissible values for at depend on the order of iteration. Thus the

choice [at[0], at[1], at[2]] = [x + 1, x + 2, x + 3] is allowed if the order of evaluation is

i = 0, i = 1, i = 2, but fails if it is i = 2, i = 1, i = 0. The proposed representation

does not capture the subtle semantics of nondeterminism within IOA loops.

In general, the dependence between the choose parameter and the order of eval-

uation of the loop needs to be explicit in the translation. It remains to see how this

should be done so that the translation is both faithful to the original IOA program

and intuitive to the user of the theorem proving tool.
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8.2.2 Semantic analysis of loops

Our translation of loops is cumbersome, even when the effects of loops are intuitively

clear. We encountered this issue in Section 6.2 when analyzing the effect of the

write transition of automaton voting. Many of the loops in IOA are simple and do

not require the full power of the loop analysis techniques from Chapter 3. In such

cases, it would be useful to optimize the translation to obtain better, more intuitive

representations.

The desired effect of the loop in Section 6.2 was derived formally by inductive

reasoning over the loop iterator. It would be useful to consider if this type of reasoning

can be generalized and the procedure of deducing loop effects automated. If the results

are promising, loop simplification can be implemented as a fully automatic feature of

the translation tool. If user interaction is required, the simplification can be guided

by the user at the theorem proving stage.

8.3 Organizing proofs

Informal proofs of invariants may exhibit interesting dependencies. For example, to

verify invariant I, we could begin with two simple inductive invariants I, and '2,

introduce a new inductive invariant 13 whose proof makes use of I, and 12 and derive

I from 13 by logical deduction. Proof strategies of this sort were used extensively in

Chapter 7.

IOA does contain syntax to represent these dependences between invariants in for-

mal proofs. The translation tool interprets every invariant as an inductive invariant,

independent of all other invariants in the specification. We cannot describe a proof

strategy which correspond to the reasoning in the above example. The best we can

do is prove that the conjunction I1 A I2 A 13 is an invariant and derive invariant I

from I, A I2 A 13 "on the side". However, this approach relies on an interpretation

of the IOA construct invariant which deviates from its intended meaning. From

a practical perspective, the approach is cumersome as concurrent proofs of a large

number of invariants are difficult to follow.
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A similar problem occurs in proofs of simulation relations. In the current imple-

mentation of the tool simulation relations assume the strongest known invariant of

the implementation automaton. In practice, however, most of the conjuncts which

form the strongest invariant are never used in the simulation proof. The notation

could be simplified if the dependence between the simulation relation and the rele-

vant invariants was made explicit.

8.4 The step correspondence language

In Chapter 2 we introduced a variant of the theory of forward simulations in the case

when the start state correspondence and the step correspondence between the imple-

mentation and specification automata is known in advance. This theory eliminates the

need for existential instantiation of these two notions within a proof. Unfortunately,

we could not take advantage of this feature in the translation process from Chapters

3 and 4 because the correspondences cannot be specified in the IOA language.

Ramirez [19] developed an extension to IOA that allows the user to specify the

start state and step correspondences for the purpose of paired simulation. Corre-

spondences in this language are described in imperative style. Transitions in the

specification automaton are triggered by a special fire command.

The extension language is very flexible. In particular, it may be used to describe

step correspondences which cannot be represented in the Larch theory of I/O au-

tomata from Chapter 2. If we were to use this language to describe forward simulation

proofs, the theory of I/O automata would need to be suitably extended. However,

the translation of this language should not be too difficult, for its features are similar

to the features of imperative style IOA programs discussed in Chapter 3.

As a motivating example, we consider the simulation proof from rsm to synch

from Section 7.4. Transitions receive and tick of rsm correspond to a step sequence

of synch which consists of a variable number of transitions, depending on the state of

the automaton. Constructors for such step sequences do not exist in the theory of I/O

automata. In the extension language, the correspondence is specified very naturally:
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proof
states

sorted Array[Nat, Node],
i Nat

for internal tick(n) do
i := 0;
sorted := sort(chan); % sort the nodes by last.time
for n in allnodes do

if chan[sorted[i]] .last.time > tsynch

fire inform using sorted[i] for n fi;
i := i + 1 od
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Appendix A

Formal proofs

The Larch proof scripts for the invariants and forward simulation relations in Chap-

ters 5, 6, and 7 are provided below. They can be obtained electronically from

http://theory.lcs.mit.edu/~adib/thesis.

To run these scripts through the Larch Prover, type

make [cache I voting I synch]

where the parameter indicates the algorithm to be verified. If no parameter is speci-

fied, all three algorithms are verified.

cacheInv. 1p: Invariants of cache

set name InvariantTheorem

set proof-methods normalization, =>

% Invariant I(s): \A n (s.cache[n] = nil \/ s.cache[n] = embed(s.mem))
prove start (s: States [cache]) => I (s: States [cache])

prove

I(s:States[cache]) /\ isStep(s:States[cache], pi, s') => I(s')

by induction on pi

resume by case n = n1

resume by case n = n1
% copy(nl) transition
X drop(nl) transition

cache2mem. 1p: Forward simulation from cache to mem

set name ForwardTheorem
set proof-methods normalization, =>
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prove start(a:States[cache]) => \E b (start(b) /\ F(a:States[cache], b))
resume by specializing b to [ac.rsp, ac.mem, ac.act]

prove

((F(a:States[cache], b) /\ I(a:States[cache]) /\ isStep(a:States[cache],
pi:Actions[cache], a')) => \E beta (execFrag(b, beta) /\ F(a', last(b,
beta)) /\ trace(beta) = trace(pi:Actions[cache])))

by induction on pi:Actions[cache]

resume by specializing beta to invoke(a3, nc) * {} % invoke
resume by specializing beta to respond(rc, nc) * {} % respond
resume by specializing beta to update(nc, a3c) * {} % read

instantiate a by a3c, v by bc.mem in Invocation.12
critical-pairs *Hyp with *Hyp % use of invariant

resume by specializing beta to update(nc, a3c) * {} % write
resume by specializing beta to {} % copy
resume by specializing beta to {} % drop

mem2cache .p: Forward simulation from mem to cache

set name ForwardTheorem
set proof-methods normalization, =>

prove (start(a:States[mem]) => \E b (start(b) /\ F(a:States[mem], b)))
resume by specializing b to [ac.mem, ac.act, ac.rsp, constant(nil)]

prove

((F(a:States[memJ, b) /\ True(a:States[mem]) /\ isStep(a:States[mem],
pi:Actions[mem], a')) => \E beta (execFrag(b, beta) /\ F(a', last(b,
beta)) I\ trace(beta) = trace(pi:Actions[mem])))

by induction on pi:Actions[mem]

resume by specializing beta to invoke(a3, nc) * {}
resume by specializing beta to respond(rc, nc) * {}
resume by specializing

beta to if isWrite(a3c)
then compute-write(nc, a3c) * {}
else copy(nc) * (compute.read(nc, a3c) * (drop(nc) * {}))

resume by case isWrite(a3c)

instantiate a by a3c in Invocation.11
instantiate a by a3c, v by ac.mem in Invocation.12
instantiate

a:Array[Node, Null[Value]] by constant(nil), i by nc in Array.14

votingInv. 1p: Invariants of voting

set name InvariantTheorem
set proof-methods normalization, =>
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% Invariant Il(s): (2 * size(maxnodes(s.tag))) > numnodes /\
% (2 * size(s.majority)) > numnodes
prove start(s:States[voting]) => I1(s:States[voting])

instantiate si by maxnodes(sc.tag), s2 by allnodes in SetBasics
instantiate x by numnodes in votingProp

prove

(I1(s:States[voting]) /\ isStep(s:States[voting], pi, s')) => Il(s')
by induction on pi

/ transition write (n1c == max(majority))
prove \A n' (sc.tag[n'] <= sc.tag[nlc])

resume by contradiction

prove sc.tag[nic] -= sc.tag[n'c] by contradiction
prove n' \in maxnodes(sc.tag) => succ(sc.tag[nlc]) <= sc.tag[n']

instantiate

x by succ(sc.tag[nic]), y by sc.tag[n'c], z by sc.tag[n'c1] in IsTO.2

instantiate x by sc.tag[nlc], y by sc.tag[n'c] in StrictTotalOrder
declare variables n1, n2: Node
prove

n1 \in maxnodes(sc.tag) /\ n2 \in sc.majority =>
succ(sc.tag[n2]) <= sc.tag[nl]

instantiate n' by nici in *Theorem
instantiate n' by n2c in *ImpliesHyp.1.9
instantiate

x by succ(sc.tag[n2c]), y by succ(sc.tag[nlc]), z by sc.tag[nlcl]
in IsTO.2

instantiate s by sc.majority, t by maxnodes(sc.tag) in votingProp.3
declare operator ncsk: -> Node % skolemization constant
fix n as ncsk in votingProp.3.1
instantiate ni by ncsk, n2 by ncsk in *Theorem

declare operator s'c: -> States[voting] X shorthand for post-state
assert s'c = effect(sc, write(nc, al1c, nic, sc.tag[nlc], sc.mem[nlc]))
prove n1 \in sc.majority => s'c.tag[nl] = succ(sc.tag[nlc])

instantiate

s by sc, a by al1c, max by n1c, t by sc.tag[nlc], v by sc.mem[nlc],
m by nici in voting.80

make active DecimalLiterals
prove s'c.tag[n2] <= succ(sc.tag[nlc])

instantiate

s by sc, a by al1c, max by nic, t by sc.tag[nlc], v by sc.mem[nlc],
m by n2 in voting.80

resume by case n2 \in sc.majority
instantiate n2 by n2c in voting.80
make active DecimalLiterals %[case 1]
instantiate n2 by n2c in voting.80
instantiate

x by sc.tag[n2c], y by sc.tag[nlc], z by succ(sc.tag[nlc])
in IsTO.2
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.. %[case 2]
prove n1 \in sc.majority => n1 \in maxnodes(s'c.tag)

instantiate ni by n1ci in *Theorem

instantiate s by sc.majority, t by maxnodes(s'c.tag) in votingProp.4

critical-pairs votingProp with votingProp

instantiate

x by succ(numnodes), y by 2 * size(sc.majority),

z by 2 * size(maxnodes(s'c.tag)) in IsTO.2

% Invariant 12(s): \A n (maximum(n, s.tag, s.majority) =>
% maximum(n, s.tag, allnodes))

prove Il(s) => 12(s)

instantiate s by sc.majority, t by maxnodes(sc.tag) in votingProp.3

declare operator ncsk: -> Node % skolemization constant
fix n as ncsk in votingProp.3.1

instantiate x by sc.tag[n'], y by sc.tag[ncsk], z by sc.tag[nc] in IsTO.2
instantiate n' by ncsk in *ImpliesHyp

voting2mem. 1p: Forward simulation from voting to mem

set name ForwardTheorem
set proof-methods normalization, =>

prove (start(a:States[voting]) => \E b (start(b) /\ F(a:States[voting], b)))
resume by specializing b to [constant(nil), vO, constant(nil)]

prove

((F(a:States[voting], b) /\ votingInv(a:States[voting]) /\
isStep(a:States[voting], pi:Actions[voting], a')) => \E beta (execFrag(b,
beta) /\ F(a', last(b, beta)) /\ trace(beta) = trace(pi:Actions[voting])))

by induction on pi:Actions[voting]

resume by specializing beta to invoke(a3, nc) * {} % invoke

resume by specializing beta to respond(rc, nc) * {} % respond
resume by specializing beta to {} % select
resume by specializing beta to update(nc, a3c) * {} % read

instantiate n by n1c in *ImpliesHyp.1.12

instantiate n by nic in *ImpliesHyp.1.13

instantiate a by a3c, v by ac.mem[nlc] in Invocation

instantiate n by n2c in *ImpliesHyp.1.13

resume by specializing beta to update(nc, a3c) * {}
declare operator a'c: -> States[voting] X shorthand for post-state
assert a'c = effect(ac, write(nc, a3c, nic, ac.tag[nic], ac.mem[nlc]))
prove ~(n \in ac.majority) => ~(n \in maxnodes(a'c.tag))

instantiate s by ac.majority, t by maxnodes(ac.tag) in votingProp.3

declare operator ncsk: -> Node

fix n as ncsk in votingProp.3.1

instantiate x by ac.tag[ncsk], y by ac.tag[nlc] in IsTO.3
instantiate n' by ncsk in *ImpliesHyp.1.11
instantiate

s by ac, a by a3c, max by n1c, t by ac.tag[nlc],
v by ac.mem[nlc], m by ncl in voting.159
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instantiate

s by ac, a by a3c, max by nic, t by ac.tag[nlc],

v by ac.mem[nlc], m by ncsk in voting.159

make active DecimalLiterals

resume by contradiction

instantiate

x by succ(ac.tag[nc1]), y by a'c.tag[ncsk],
z by ac.tag[ncl] in IsTO.2

instantiate n by nic in *ImpliesHyp.1.12

instantiate n by nic in *ImpliesHyp.1.13

resume by if

instantiate n by n2c in *Theorem

mem2vot ing. 1p: Forward simulation from mem to voting

set name ForwardTheorem
set proof-methods normalization, =>

prove (start(a:States[mem]) => \E b (start(b) /\ F(a:States[mem], b)))
resume by specializing

b to [constant(vO), constant(nil), constant(nil), constant(O), allnodes]

prove
((F(a:States[mem], b) /\ True(a:States[mem]) /\ isStep(a:States[mem],
pi:Actions[mem], a')) => \E beta (execFrag(b, beta) I\ F(a', last(b,
beta)) /\ trace(beta) = trace(pi:Actions[mem])))

by induction on pi:Actions[mem]

resume by specializing beta to invoke(a3, nc) * {}
resume by specializing beta to respond(rc, nc) * {}
resume by specializing

beta to (if isRead(a3c) then read(nc, a3c, nc) * {}
else write(nc, a3c, nc, bc.tag[nc], bc.mem[nc]) * {})

resume by case isRead(a3c)

instantiate a by a3c, v by ac.mem in Invocation

declare operator tsk: -> Int
fix t as tsk in *ImpliesHyp.1.6 %[case isRead]
set immunity on
prove ~isRead(a3c)

declare operator tsk: -> Int
fix t as tsk in *ImpliesHyp.1.6 %[case isWrite]

synchInv. 1p: Invariants of synch

set name InvariantTheorem
make active synchInv.7 % initially all synchInv axioms are passive

% Invariant Il(s): \A n (s.index[n] <= (s.pend).len)
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prove start(s) => Il(s)
resume by =>

prove

((Il(s) /\ isStep(s, a:Actions[synch], s')) => I1(s'))
by induction on a:Actions[synch]

resume by => X invoke
resume by => % respond
resume by => % inform

instantiate

x by sc.index[n],

y by sc.pend.len,
z by succ(sc.pend.len) in IsTO.2

resume by => % update
resume by case n1c -= n

instantiate x by succ(sc.index[nc]), y by sc.pend.len in NaturalOrder.3
make passive synchInv.7
make active synchInv.8

% Invariant I(s): \A n
% (bookkeep(s, n) \/ goodtogo(s, n)) I\
% ((bookkeep(s, n) /\ ~expend(s, n)) \I
% (goodtogo(s, n) I\ one.pend(s, n))) I\
% active(s, n));
prove start(s) => I(s)

resume by =>
make active synchInv

resume by /\
resume by contradiction

instantiate x by 0, y by ic in IsTO.3 %[]
resume by contradiction

instantiate x by 0, y by ic in IsTO.3 %J]

prove

((I(s) /\ Il(s) /\ isStep(s, a:Actions[synch], s')) > I(s'))
by induction on a:Actions[synch]

resume by => % invoke
set name Shorthand % shorthand for post-state
declare operator s'c: -> States[synch
assert s'c = effect(sc, invoke(al3c, n1c))
set name InvariantTheorem
resume by case n = n1c

prove bookkeep(sc, nic)

make active synchInv.2

instantiate n by n1c in *ImpliesHyp.1.9.2 [] -> *Theorem.6
prove bookkeep(s'c, n1c)

make active synchInv.1 [] -> *Theorem.7
instantiate n by nic in *ImpliesHyp.1.9.1
prove ~goodtogo(sc, nic)

make active synchInv.1, synchInv.2 X[]
prove ~ex-pend(s'c, n1c)
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make active synchInv.3, synchInv.4 X[]
prove active(s'c, nic)

make active synchInv.3, synchInv.4, synchInv.6 X[]

% case n -= n1c

make active synchInv

resume by =>
instantiate i by ic in *ImpliesHyp.1.9.3 X[]

resume by => % respond
set name Shorthand X shorthand for post-state

declare operator s'c: -> States[synch]
assert s'c = effect(sc, respond(rc, nic))

set name InvariantTheorem

resume by case n = nic
prove bookkeep(sc, nic)

make active synchInv.2

instantiate n by nic in *ImpliesHyp.1.9.2 X.] -> *Theorem.6

prove bookkeep(s'c, nic)

make active synchInv.1 X[] -> *Theorem.7

instantiate n by nic in *ImpliesHyp.1.9.1

prove ~goodtogo(sc, nic)

make active synchInv.1, synchInv.2 %[]
prove ex-pend(s'c, nic)

make active synchInv.3, synchInv.4 X[]
prove active(s'c, n1c)

make active synchInv.3, synchInv.4, synchInv.6 %[]
% case n -= nic

make active synchInv

resume by =>
instantiate i by ic in *ImpliesHyp.1.9.3 %[]

resume by => % inform
set name Shorthand % shorthand for post-state

declare operator s'c: -> States[synch]

assert s'c = effect(sc, inform(nlc))
set name InvariantTheorem

prove active(s'c, n)

make active synchInv.3, synchInv.6

resume by =>
resume by case ic < sc.pend.len

instantiate
n by ic, q by sc.pend, e by [(sc.act[nlc]).val, nic] in IQueue.4

instantiate i by ic in *ImpliesHyp.1.10.3 %[]
resume by case n = nic

instantiate s by sc, n by nic in synchInv.2

prove bookkeep(sc, nic)

instantiate n by nic in *ImpliesHyp.1.10.2 %[]
instantiate n by nic in *ImpliesHyp.1.10.1 % -> ex.pend(sc, nic)

prove goodtogo(s'c, nic)

instantiate s by sc, n by nic in synchInv.1

make active synchInv.2 X[]
instantiate s by sc, n by n1c in synchInv.4 % -> ~pending(sc, nic, i)

instantiate s by s'c, n by nic in synchInv.5

prove onepend(s'c, nic)

resume by specializing i to sc.pend.len
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make active synchInv.3, synchInv.7
resume by =>
resume by case i'c < sc.pend.len
instantiate

n by i'c,
q by sc.pend,
e by [(sc.act[nlc]).val, n1c] in IQueue.4

instantiate i by i'c in synchInv.4.1 X[]
X case n -= nic

resume by /\
resume by case bookkeep(sc, nc)
prove bookkeep(s'c, nc)
make active synchInv.1 %[]

prove goodtogo(sc, nc)
resume by contradiction

make active synchInv %[]
instantiate n by nc in *ImpliesHyp.1.10.1 % -> *ImpliesHyp.1.10.1.1
prove ex-pend(s'c, nc)
make active synchInv
resume by case i < sc.pend.len
instantiate

n by ic,

q by sc.pend,
e by [(sc.act[nlc]).val, nic] in IQueue.4

instantiate i by ic in *ImpliesHyp.1.10.1.1 X[]
resume by contradiction %[]

X case goodtogo
prove goodtogo(s'c, nc)
make active synchInv
instantiate n by nc in *ImpliesHyp.1.10.2 X[]

prove one-pend(sc, nc)
make active synchInv
instantiate n by nc in *ImpliesHyp.1.10.1 X[]

prove one-pend(s'c, nc)
make active synchInv.5

declare operator ic: ->Nat X skolemization constant
fix i as ic in *Theorem.7 % -> *Theorem.9.1 / 2
resume by specializing i to ic
resume by /\

make active synchInv.3
instantiate

n by ic,
q by sc.pend,

e by [(sc.act[nlc]).val, nic] in IQueue.4
.X[]

make active synchInv.3
resume by case i' < sc.pend.len

instantiate

n by i'c,

q by sc.pend,
e by [(sc.act[nlc]).val, nic] in IQueue.4
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instantiate i' by i'c in *Theorem.9 U[]

resume by => []
resume by case bookkeep(sc, nc)

prove bookkeep(s'c, nc)
make active synchInv.1 U[]

prove goodtogo(s'c, nc)
make active synchInv.2 %[]
instantiate n by nc in *ImpliesHyp.1.10.2 U[]

resume by => % update
set name Shorthand X shorthand for post-state

declare operator s'c: -> States[synch]

assert s'c = effect(sc, update(nlc, ic, invc))
set name InvariantTheorem

prove active(s'c, n)

make active synchInv.3, synchInv.6

resume by =>
prove sc.index[(sc.pend[ic]).node] <= ic

resume by case nic = (sc.pend[ic]).node

instantiate

x by sc.index[(sc.pend[ic]).node],

y by succ(sc.index[(sc.pend[ic]).node]),

z by ic

in IsTO.2

.. X[]
instantiate i by ic in *ImpliesHyp.1.9.3 UE] -> *Theorem.5

resume by case n = nic

resume by case (sc.pend[sc.index[nlc]]).node = nic
prove expend(sc, nic)

make active synchInv.3, synchInv.4

resume by specializing i to sc.index[nlc]
make active synchInv.7 %[] -> *Theorem.6

instantiate n by nic in *ImpliesHyp.1.9.1 % -> *Hyp 1.9.1.1.1 / 2

prove bookkeep(s'c, nic)

make active synchInv.1, synchInv.2 %[] -> Theorem.7

prove ex-pend(s'c, nic)

make active synchInv.3, synchInv.4, synchInv.5

resume by contradiction

declare operator icsk: -> Nat % skolemization constant
fix i as icsk in *Hyp.1.9.1.1.2

instantiate i' by sc.index[nlc] in *Theorem.9.5

instantiate s by sc, n by (sc.pend[icsk]).node in synchInv.7

% -> Theorem.9.5.1

instantiate i' by ic in *Theorem.9.5

instantiate x by icsk, y by succ(icsk), z by ic in IsTO.2

instantiate x by icsk, y by succ(icsk) in IsTO.3 %[]
% case (sc.pend[sc.index[n1c]]).node -= nic

resume by case bookkeep(sc, nic)

prove bookkeep(s'c, n1c)

make active synchInv.1 7[]

instantiate n by nic in *ImpliesHyp.1.9.1

prove ~goodtogo(sc, n1c)

make active synchInv.1, synchInv.2

resume by contradiction []
prove ex.pend(s'c, n1c)
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make active synchInv.3, synchInv.4
resume by contradiction

instantiate i by ic in *ImpliesHyp.1.9.1.1
instantiate

x by sc.index[(sc.pend[ic]).node],
y by succ(sc.index[(sc.pend[ic]).node]),
z by ic

in IsTO.2

% case goodtogo(sc, nic)

instantiate n by n1c in *ImpliesHyp.1.9.2 % -> *ImpliesHyp.1.9.2.1
instantiate n by n1c in *ImpliesHyp.1.9.1 % -> *ImpliesHyp.1.9.1.1
prove goodtogo(s'c, n1c)

make active synchInv.2 %[]
prove one-pend(s'c, nic)
make active synchInv.3, synchInv.5
declare operator ic :-> Nat
fix i as ic in *ImpliesHyp.1.9.1.1
resume by specializing i to ic

resume by /\
prove sc.index[(sc.pend[ic]).node] ic

resume by contradiction X[] -> *Theorem.9
instantiate

x by succ(sc.index[(sc.pend[ic]).node]),

y by ic
in NaturalOrder.3

.. X1]
resume by =>

instantiate i' by i'c in *Theorem.8.5 X -> *Theorem.8.5.1
instantiate

x by sc.index[(sc.pend[i'c]).node],

y by succ(sc.index[(sc.pend[i'c]).node]),

z by i'c
in IsTO.2

% case n ~= nic
make active synchInv
prove s'c.rsp[nc] = sc.rsp[nc]

resume by case (sc.pend[sc.index[nlc]]).node = nic %E]
make passive synchInv.8

make active synchInv.9, synchInv.11

% Invariant 12(s): \A n (memhist(s.pend, s.index[n]) = s.mem[n])
prove start(s) => 12(s)

resume by => %[]
make passive synchInv.9

make active synchInv.10

prove

((12(s) /\ Il(s) /\ isStep(s, a:Actions[synch], s')) => 12(s'))
by induction on a:Actions[synch]

resume by => % invoke X[]
resume by => X respond X[]
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resume by => % inform
prove i <= q.len => memhist(q I- e, i) = memhist(q, i)

resume by induction on i: Nat

make active synchInv.9 %[]
resume by =>
instantiate x by ic, y by succ(ic), z by qc.len in IsTO.2
instantiate q by qc in *InductHyp.1

instantiate q by qc, n by ic in IQueue.4
prove ic ~= qc.len

resume by contradiction

instantiate x by ic, y by succ(ic) in IsTO.3 %[] -> *Thm.7

instantiate

q by sc.pend,

e by [(sc.act[n1c]).val, nic],
i by sc.index[n] in *Theorem.7

make active synchInv.7 %[]
resume by => % update

resume by case nic = n %[]

synch2mem. 1p: Forward simulation from synch to mem

set name ForwardTheorem
% Initially synchInv, synch2mem are passive

prove

((\E i:Nat between(s:States[synch], n:Node, i:Nat) /\ I1(s:States[synch]))
=> expend(s:States [synch], n:Node))

make active synch2mem.9, synchInv.3, synchInv.4, synchInv.7

resume by =>
declare operator ic: -> Nat % skolemization constant

fix i as ic in *TheoremImpliesHyp.1.1

resume by specializing i to ic %[] -> *Theorem.1
make active synch2mem.11

prove (start(a:States[synch]) => \E b (start(b) /\ F(a:States[synch], b)))
resume by =>
resume by specializing b to [constant(nil), vO, constant(nil)]
make active synch2mem.9, synchInv.3

resume by contradiction

instantiate x by 0, y by ic in IsTO.3

make passive synch2mem.11

make active synch2mem.10

make active synch2mem.12, synch2mem.13, synch2mem.14, synch2mem.15

prove

((F(a:States[synch], b) /\ synchInv(a:States[synch]) /\
isStep(a:States[synch], pi:Actions[synch], a')) => \E beta (execFrag(b,

beta) /\ F(a', last(b, beta)) /\ trace(beta) = trace(pi:Actions[synch])))
by induction on pi:Actions[synch]

resume by => % invoke
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resume by specializing beta to invoke(a3c, nic) * {}
set name Shorthand % shorthand for post-state
declare operator a'c: -> States[synch]
assert a'c = effect(ac, invoke(al3c, nic))

set name ForwardTheorem

make active synch2mem.2, synch2mem.3
resume by /\
resume by =>

prove ismax(ac, nc)

make active synch2mem.6 %[]
instantiate n by nc in *ImpliesHyp.1.11.1 X[]

resume by case n1c = n

instantiate

s by ac, s' by a'c, a:Actions[synch] by invoke(a3c, nic)
in synchInv.13, synchInv.15

make active synchInv.8

make active synchInv.2

instantiate n by nic in synchInv.15.1.1, *ImpliesHyp.1.3.1
instantiate s by ac, n by nic in *Theorem.1
instantiate s by a'c, n by n1c in *Theorem.1

instantiate n by nc in *ImpliesHyp.1.11.3 X[]
prove between(ac, nc, i) <=> between(a'c, nc, i)

make active synch2mem.9, synchInv.3, synch2mem.6, synch2mem.7
prove max-index(ac) = max-index(a'c)

declare operator ncsk : -> Node % skolemization constant
instantiate s by ac in synch2mem.8

fix n as ncsk in synch2mem.8.1
instantiate s by a'c, n by ncsk in synch2mem.7 X[]

instantiate n by nc in *ImpliesHyp.1.11.3 X]
resume by => X respond
resume by specializing beta to respond(rc, nic) * {}

set name Shorthand X shorthand for post-state
declare operator a'c: -> States[synch]
assert a'c = effect(ac, respond(rc, n1c))
set name ForwardTheorem
make active synch2mem.4, synch2mem.5

make active synchInv.8, synchInv.2
instantiate n by nic in *ImpliesHyp.1.3.1
instantiate s by ac, n by nic in *Theorem.1

instantiate n by n1c in *ImpliesHyp.1.11.3
resume by /\

resume by =>
prove ismax(ac, nc)
make active synch2mem.6 X[]

instantiate n by nc in *ImpliesHyp.1.11.1 %]
resume by case n1c = n

instantiate

s by ac, s' by a'c, a:Actions[synch] by respond(rc, nic)
in synchInv.13, synchInv.15

instantiate n by nic in synchInv.15.1.1
instantiate s by a'c, n by n1c in *Theorem.1 X[]
prove between(ac, nc, i) <=> between(a'c, nc, i)
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make active synch2mem.9, synchInv.3, synch2mem.6, synch2mem.7

prove max-index(ac) = maxindex(a'c)

declare operator ncsk : -> Node % skolemization constant

instantiate s by ac in synch2mem.8

fix n as ncsk in synch2mem.8.1

instantiate s by a'c, n by ncsk in synch2mem.7 %[]
instantiate n by nc in *ImpliesHyp.1.11.3 %[]

resume by => % case inform
resume by specializing beta to update(nlc, ic, invc) * {}

set name Shorthand % shorthand for post-state

declare operator a'c: -> States[synch]

assert a'c = effect(ac, update(n1c, ic, invc))

set name ForwardTheorem

resume by /\

make active synch2mem.6 X[]

prove maxindex(a'c) = max-index(ac)

declare operator ncsk :-> Node % skolemization constant
instantiate s by ac in synch2mem.8

fix n as ncsk in synch2mem.8.1

make active synch2mem.6, synch2mem.7

instantiate s by a'c, n by ncsk in synch2mem.6, synch2mem.7

resume by case \E i between(ac, n, i)

% case \E i between(ac, n, i)

instantiate n by nc in *ImpliesHyp.1.12.3 % -> *Hyp.1.12.3.1

declare operator ic: -> Nat % skolemization constant
fix i as ic in *ImpliesHyp.1.12.3.1 % -> *Theorem.6.*

resume by specializing i to ic

prove between(a'c, nc, ic)

make active synch2mem.9, synchInv.3

instantiate

q by ac.pend, n by ic, e by [(ac.act[nlc]).val, nic]

in IQueue.4

.. %[] -> *Theorem.6

prove i <= q.len => memhist(q I- e, i) = memhist(q, i)

resume by induction on i: Nat
make active synchInv.9 %[]
resume by =>

instantiate x by ici, y by succ(icl), z by qc.len in IsTO.2

instantiate q by qc in *InductHyp.1

instantiate q by qc, n by ici in IQueue.4

prove ici -= qc.len

resume by contradiction

instantiate x by ici, y by succ(icl) in IsTO.3 X[]
make active synchInv.10 %[] -> *Theorem.7

prove ic <= ac.pend.len
make active synch2mem.9, synchInv.3 X[]

instantiate

i by ic, q by ac.pend, e by [(ac.act[nlc]).val, n1c]

in *Theorem.7

.. %[]
7 case ~(\E i between(ac, n, i))

instantiate n by nc in *ImpliesHyp.1.12.3

prove ~between(a'c, nc, i)

make active synch2mem.9, synchInv.3
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resume by contradiction
instantiate i by ic in *CaseHyp.1.2 % -> *CaseHyp.1.2.1
prove ic -= ac.pend.len

declare operator ncsk: -> Node % skolemization constant
instantiate s by ac in synch2mem.8
fix n as ncsk in synch2mem.8.1 % -> *Theorem.7
instantiate s by ac, n by ncsk in synch2mem.7
make active synchInv.7
instantiate

x by succ(ic), y by ac.index[ncsk], z by ac.pend.len in IsTO.2

instantiate x by succ(ic), y by ac.index[ncsk] in NaturalOrder.4
resume by contradiction

instantiate x by ac.pend.len, y by succ(ac.pend.len) in IsTO.3
%[1

instantiate

q by ac.pend, e by [(ac.act[nlc]).val, nic], n by ic
in IQueue.4

.. X[]
resume by => % case update

set name Shorthand % shorthand for post-state
declare operator a'c: -> States[synch]
assert a'c = effect(ac, update(nlc, ic, invc))
set name ForwardTheorem
resume by case is-max(ac, n1c)
% case is-max(ac, nic)

resume by specializing beta to update(invc.node, invc.act) * {}
X verify that mem.update is enabled
prove ex-pend(ac, (ac.pend[ac.index[n1c]]).node)

make active synchInv.4
resume by specializing i to ac.index[nlc]
make active synchInv.3
instantiate s by ac, n by nic in synch2mem.6
instantiate x by ac.index[nlc], y by ac.pend.len in IsTO.4 %[]

prove ac.rsp[(ac.pend[ac.index[n1c]]).node] = nil
instantiate s by ac in synchInv.8
instantiate n by (ac.pend[ac.index[n1c]]).node in synchInv.8.1.1
make active synchInv.2 %[] -> *Theorem.5

prove ~between(ac, (ac.pend[ac.index[n1c]]).node, i)
instantiate s by ac in synchInv.8
instantiate n by (ac.pend[ac.index[n1c]]).node in synchInv.8.1.1
make active synchInv.5, synchInv.3, synchInv.7
declare operator ic:-> Nat X skolemization constant
fix i as ic in synchInv.8.1.1.1.2 % -> *Theorem.7.*
instantiate s by ac, n by nic in synch2mem.6
instantiate i' by ac.index[nlc] in *Theorem.7.5 % *Theorem.7.5.1
make active synch2mem.9
resume by contradiction

instantiate i' by ici in *Theorem.7.5
instantiate s by ac, n by nic in synch2mem.7 X[] -> *Theorem.6

resume by /\
prove

enabled(mc, update((ac.pend[ac.index[nic]]).node,

(ac.pend [ac. index [n1c]]) .act))
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instantiate n by (ac.pend[ac.index[nlc]]).node in *ImpliesHyp.1.11.3

make active synchInv.3

instantiate

s by ac, n by (ac.pend[ac.index[nlc]]).node in

synchInv.6, synchInv.8

instantiate i by ac.index[nlc] in synchInv.6.1

instantiate s by ac, n by n1c in synch2mem.6

instantiate s by ac, n by nic in synchInv.7

instantiate

n5 by (ac.act[(ac.pend[ac.index[nlc]]).node]),

n6 by embed((ac.pend[ac.index[nlc]]).act)

in Null.2

.. %[] -> *Theorem.7

resume by /\
prove ismax(a'c, n) => n = nic

resume by =>
make active synch2mem.6

resume by contradiction

instantiate n' by nic in *ImpliesHyp.2 % -> *ImpliesHyp.2.1

instantiate

x by succ(ac.index[nc]),

y by succ(ac.index[nic)),

z by ac.index[nc]

in IsTO.2

instantiate x by succ(ac.index[nc]), y by ac.index[nc] in IsTO.3

critical-pairs IsTO with IsTO

critical-pairs *ImpliesHyp.2.1 with IsTO

critical-pairs *Theorem with NaturalOrder %[] -> *Theorem.7

resume by case n = nic
instantiate n by nic in *ImpliesHyp.1.11.1 %[]
instantiate n by nc in *Theorem.7 /[]

X rsp consistency
prove ismax(a'c, nic)

make active synch2mem.6

resume by case n1c = n' 7[]
instantiate

x by ac.index[n'c], y by ac.index[nlc],

z by succ(ac.index[n1c]) in IsTO.2

.. %[] -> Theorem.7

resume by case ac.pend[ac.index[nlc]].node = nic
% case ac.pend[ac.index[nlc]].node = nic

instantiate n by n1c in *ImpliesHyp.1.11.3 % -> *Hyp.1.11.3.1

resume by case n = nic

% case n = nic

prove ex-pend(a'c, nic)

instantiate

s by ac, s' by a'c, a by perform(n1c, ac.index[n1c],

ac.pend[ac.index[n1c]]) in synchInv.15

.. X -> synchInv.15.1

instantiate s by a'c in synchInv.8

instantiate n by n1c in synchInv.8.1.1
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make active synchInv.2
instantiate n by nic in synchInv.8.1.1 %[] -> *Theorem.8

instantiate

s by ac, s' by a'c, a by perform(nlc, ac.index[nlc],
ac.pend[ac.index[n1c]]) in synchInv.13

.. % -> synchInv.13.1
instantiate s by a'c, n by nic in *Theorem.1 X -> *Theorem.1.1
instantiate n by nic in *ImpliesHyp.1.11.1 X[]
case n -= nic

prove between(ac, nc, i) <=> between(a'c, nc, i)
resume by <=>

make active synch2mem.9, synchInv.3
instantiate n by n1c, s by a'c in synch2mem.7
instantiate n by n1c, s by ac in synch2mem.7 %[]

make active synch2mem.9, synchInv.3
instantiate n by n1c, s by a'c in synch2mem.7
instantiate n by n1c, s by ac in synch2mem.7
prove ic -= ac.index[nlc]

resume by contradiction X[] -> *Theorem.9
instantiate x by ic, y by ac.index[nlc] in NaturalOrder.4

instantiate n by nc in *ImpliesHyp.1.11.3 %[]
case ac.pend[ac.index[n1c]].node = nic
resume by case n = (ac.pend[ac.index[n1c]]).node
% case n = (ac.pend[ac.index[n1c]]).node

instantiate n by nc in *ImpliesHyp.1.11.3
resume by specializing i to ac.index[nlc]
make active synch2mem.9, synchInv.3
instantiate s by a'c, n by n1c in synch2mem.7
instantiate s by ac, n by nic in synch2mem.6
instantiate s by ac in synchInv.7, synchInv.11
instantiate n by nic in *ImpliesHyp.1.11.1
instantiate s by ac in synchInv.8, synchInv.6
instantiate i by ac.index[nlc] in synchInv.8.1.3 X[]
case n -= (ac.pend[ac.index[n1c]]).node

prove between(ac, nc, i) <=> between(a'c, nc, i)
resume by <=>

make active synch2mem.9, synchInv.3
instantiate n by nic, s by a'c in synch2mem.7
instantiate n by nic, s by ac in synch2mem.7
resume by case nic = (ac.pend[ic]).node

instantiate x by ic, y by ac.index[nlcl in IsTO.3 XE]
make active synch2mem.9, synchInv.3
instantiate n by nic, s by a'c in synch2mem.7
instantiate n by nic, s by ac in synch2mem.7
resume by case nIc = (ac.pend[ic]).node

instantiate x by ic, y by a'c.index[nlc] in IsTO.3 %[]
prove ic -= ac.index[nlc]

resume by contradiction X[] -> *Theorem.9
instantiate x by ic, y by ac.index[nlc] in NaturalOrder.4
%[] -> *Theorem.8

instantiate n by nc in *ImpliesHyp.1.11.3 X%][woohoo!]
X case ~ismax(ac, n1c)
resume by specializing beta to {}
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declare operator maxnode:->Node % skolemization constant
instantiate s by ac in synch2mem.8
fix n as maxnode in synch2mem.8.1 % -> *Theorem.4
resume by /\

resume by => % mem match

resume by case nc = n1c

% case nc = nic

instantiate n by max-node in *ImpliesHyp.1.11.1 % *Hyp.1.11.1.1
prove ac. index [max-node] = succ(ac. index [nic])

instantiate s by ac, n by maxnode in synch2mem.6 X *.6.1
instantiate s by a'c, n by n1c in synch2mem.6 % *.6.2
instantiate n' by maxnode in synch2mem.6.2
prove nic -= max-node

resume by contradiction %[]
prove ac.index[max-nodej -= ac.index[nic]

resume by contradiction

instantiate s by ac, n by nic in synch2mem.6 X[]
instantiate n' by max-node in synch2mem.6.2 X *.6.2.2
instantiate

x by succ(ac.index[nlc]),

y by ac.index[max-node] in NaturalOrder.4

instantiate

x by succ(ac.index[nlc]), y by ac.index[max-node]
in IsTO.3

.. X[0
instantiate s by ac in synchInv.11 % synchInv.11.1
instantiate q by ac.pend, i by ac.index[nic] in synchInv.10
X -> synchInv.10.1

instantiate n by max-node in synchInv.11.1 %[]
case nc -= nic

prove is-max(ac, nc)

instantiate s by a'c, n by nc in synch2mem.6
make active synch2mem.6

resume by case n' = nic
instantiate n' by nic in synch2mem.6.1
instantiate

x by ac.index[nlc], y by succ(ac.index[nc]),
z by ac.index[nc] in IsTO.2

.. X[]
instantiate n' by n'c in synch2mem.6.1 X[]-> *Theorem.?

instantiate n by nc in *ImpliesHyp.1.11.1 X[]
X rsp match

prove max-index(a'c) = max-index(ac)
instantiate s by ac, n by max-node in synch2mem.7 X -> synch2mem.7.1
prove \A n':Node (a'c.index[n':Node] <= a'c.index[max-node])
prove nic -= max-node

resume by contradiction X[]
resume by case nic = n'
prove ac.index[n'c] ~= ac.index[max-node]

resume by contradiction

instantiate s by ac, n by n'c in synch2mem.6
instantiate s by ac, n by max-node in synch2mem.6 X]

instantiate s by ac, n by maxnode in synch2mem.6
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instantiate

x by succ(ac.index[n'c]), y by ac.index[max-node]

in NaturalOrder.4

instantiate s by ac, n by max-node in synch2mem.6

%[] -> *Theorem.?

instantiate s by a'c, n by max-node in synch2mem.6

instantiate s by a'c, n by maxnode in synch2mem.7

resume by case n1c = maxnode %[] -> *Theorem.5

resume by case (ac.pend[ac.index[n1c]]).node = nic
% case nic = (ac.pend[ac.index[n1c]]).node

resume by case n1c = n
% case n1c = nc

prove between(ac, nic, ac.index[nlc])

make active synch2mem.9, synchInv.3

instantiate s by ac in synchInv.7

instantiate s by ac, n by max-node in synch2mem.7

instantiate s by ac, n by max-node in synch2mem.6

resume by contradiction

instantiate s by ac, n by nic in synch2mem.6 %[] *Theorem.6
instantiate n by nc, i by ac.index[nlc] in *ImpliesHyp.1.11.3

declare operator ic: -> Nat % skolemization constant

fix i as ic in *ImpliesHyp.1.11.3.1 ' -> *Theorem.7

prove ic = ac.index[nlc]
instantiate s by ac, n by n1c in *Theorem.1

instantiate i by ic in *Theorem.1.1

instantiate s by ac in synchInv.8

instantiate n by n1c in synchInv.8.1.1

make active synch2mem.9, synchInv.5

declare operator ici: -> Nat ' skolemization constant

fix i as ici in synchInv.8.1.1.1.2

instantiate i' by ic in *Theorem.9.2

instantiate i' by ac.index[nlc] in *Theorem.9.2 '[]
prove ~between(a'c, nc, i)

prove ~goodtogo(a'c, nc)

make active synchInv.2 X[]
instantiate
s by ac, a by perform(nlc, ac.index[nlc],

ac.pend[ac.index[nlc]]), s' by a'c in synchInv.15

instantiate s by a'c in synchInv.8

instantiate n by nc in synchInv.8.1.1

instantiate
s by ac, a by perform(nlc, ac.index[nlc],

ac.pend[ac.index[n1c]]), s' by a'c in synchInv.13

instantiate s by a'c, n by nc in *Theorem.1 %[]
instantiate s by ac in synchInv.11

instantiate s by ac in synchInv.8

make active synchInv.6, synchInv.3

instantiate i by ac.index[nc] in synchInv.8.1.3

make active synchInv.7 '[]
% case nic ~= nc
prove between(ac, nc, i) <=> between(a'c, nc, i)
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make active synch2mem.9, synchInv.3 %[]
instantiate n by nc in *ImpliesHyp.1.11.3 X[]

case nic -= (ac.pend[ac.index[nlc]]).node
prove between(ac, n, i) <=> between(a'c, n, i)

make active synch2mem.9, synchInv.3

resume by case n1c = n

resume by <=>
prove ac.index[nc] -= ic

resume by contradiction X[]
instantiate x by succ(ac.index[nc]), y by ic in NaturalOrder.4
instantiate

x by ac.index[nc], y by succ(ac.index[nc]), z by ic

in IsTO.2

.. /X[]
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