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ABSTRACT

The choice of the recommended interval between consecutive mammographic screenings for different

groups of women in the population is an important problem that significantly affects the breast

cancer survival rate. This thesis addresses the problem of optimizing the interval between consecutive

mammographic screenings in order to detect cancerous breast tumors before metastasis. It presents

a number of increasingly complicated and realistic models that demonstrate the quantitative trade-

off between the benefit, defined as the reduction in the number of patients with metastasis per year

in the population of a fixed size, and cost, defined as the number of mammographic examination

per year in the population of the same size. The results of this thesis are applicable to any screened

type of cancer and can be used by public health policymakers in arriving at the recommendation for

the interscreening interval for different groups of patients in the population.
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I Introduction

The choice of the recommended interval between consecutive mammographic screenings for dif-

ferent groups of women in the population is an important problem that significantly affects the

breast cancer survival rate. There is ample evidence that breast cancer death rate can be reduced

by finding the tumors at smaller sizes, and mammographic screening has been shown to be capable

of finding breast cancers at smaller sizes [1, 2]. Currently, the recommended interval varies signifi-

cantly across countries and across different age groups, and there has been no comprehensive study

that these recommendations are based upon.

There exist extensive data giving insight into the laws of tumor occurrence, growth, and prob-

abilities of metastasis at different stages of tumor development [2, 3, 4]. From these data we can

conclude that tumors occur unpredictably. However, the data suggest that the likelihood of can-

cerous breast tumor occurence increases with age and hereditary predisposition, and differs across

different ethnic groups. Once tumors arise, they grow at a predictable rate, and the likelihood of

metastasis monotonically increases with the tumor size. Local or global metastasis is possible. Cur-

ing globally metastasized cancer by surgery or successfully treating it by other methods is almost

always impossible, and therefore such cancer is fatal. Locally metastasized tumors can sometimes be

removed by surgery, but the likelihood that not all the cancerous cells will be successfully removed

is significantly higher than it is in the case of nonmetastasized tumors. The remaining cancerous

cells are likely to give rise to new cancerous tumors, which can later result in global metastasis.

The data suggest that the likelihood of tumor detection by mammography monotonically in-

creases with the tumor size. Intuitively it is clear that more frequent screening makes tumor metas-

tasis before detection less likely. However, even infinitely frequent screening would not completely

eliminate metastasis before detection. We are facing the need to quantify all this knowledge using

both the empirical data and stochastic modeling. The goal of this research is to quantify and demon-

strate the trade-off between the benefit and the cost corresponding to each choice of the interval

between consecutive mammographic screenings. Benefit is defined as the reduction in the number

of patients with global metastasis per year. Cost is defined as the number of mammographic exams

per year. The quantitative findings of this research can be used by the public health policymakers

in arriving at the recommendation for the interexamination interval for different groups of women

in the population.

We are not aware of any methods that have been developed in this area, and are doing all the

derivations from scratch, relying on the theory presented in Gallager's book [7, Ch. 2] and on the

unpublished data provided by Jim Michaelson, M.D. [1, 2, 3, 4, 5, 6]. These data originate from

the database maintained at the Massachusetts General Hospital and have been collected for over 20

years.
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We approach this research by making a series of increasingly complicated and realistic models.

We start by developing a basic, overly coarse model that builds upon the principal ideas of the tumor

occurence law, the tumor growth law, the probability of metastasis, the probability of detection by

screening, and other relevant facts. In this basic model we make several simplifying assumptions

that allow us to gain mathematical intuition, at the cost of making the model unrealistic in several

aspects. We proceed by adding more realistic detail to the model in several steps, attempting to

keep all of the previous intuition. We use each of the models to predit the relation between benefit

(the reduction in the number of patients with global metastasis per year) and the cost (the number

of examinations across the population in a year) for each value of the interscreening interval ranging

from 1 to 6000 days. For each model we calculate the probability of no metastasis before detection,

the benefit, the cost, the ratio of benefit to cost, and the marginal benefit per unit cost as functions

of the interscreening interval.

Section 2 describes the structure of the model in detail, Section 3 outlines the basic assumptions

behind the simplest model MO, Section 4 lists possible ways of making the model more realistic in

the order of their perceived relevance, Section 5 analyzes the model MO, and the subsequent sections

describe and analyze each of the increasingly complex and realistic models. Section 13 lists the

notation used throughout the thesis.

II Structure of the Model

Each model is described by the following laws and quantities: tumor incidence law, tumor growth

law, probability of metastasis, probability of detection by mammography, probability of detection

by self-examination, the screening interval, the delay between the tumor detection and the tumor

removal, and the probability of an incomplete removal.

a) Tumor incidence. In each model we assume that tumors arise as a Poisson process in each

woman in the population independently. In a realistic model A is sufficiently small that the

probability of more than 1 new tumor arising in an interexamination period is negligible.

We do not count tumors that arise from metastasis in this thesis. That is, in the model A

represents the rate of arrival of tumors emerging from normal cells only, and does not include

the arrivals of new tumors caused by metastasis of other tumors already present in the body.

In all the models described in this thesis metastasis means global metastasis. Since global

metastasis is nearly always fatal while local metastasis is likely to be curable, we approximate

death by global metastasis and ignore the possibility of local metastasis. Later in this research

we might attempt to quantify local metastasis and assign a nonzero probability to the curability

of global metastasis.
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In the models throughout this thesis A is a constant, that is the rate of tumor arrivals is

constant in time in each woman. We also take A to be equal across all women in the population.

Later in the research, we plan to create more realistic models that will require a distribution

of A's across population to account for different groups in the population having a different

risk of cancerous tumor incidence. Whichever the distribution of A across population, the

net increase in the number of tumors in the population over time will remain Poisson, since

the sum of independent Poisson processes is Poisson. More realistic models will also require

that we include the increase of tumor incidence with age in each woman independently (A -+

A(t)). We expect that this modification will leave most of our reasoning unchanged, since an

inhomogenous Poisson process retains many of the simple properties of a homogenuous Poisson

process.

b) Tumor growth law. We measure tumors by the number of cells, n(t), and define a tumor as

coming into existence when it attains a minimal size nm. All the physically meaningful results

must be independent of the particular value of nm, provided it is chosen sufficiently small that

the likelihood of metastasis and of detection are both zero or negligible for tumors of size less

than nm. Throughout this thesis, we take the tumor growth law in the form of a differential

equation
dn

dt

where n(t) is modeled as continuous.

We take f (n) = rn, and therefore the differential equation takes the form

dn
=n - rn (2)

dt

with solution

n (t) = nn e' (3)

where the tumor has attained the minimal size nm, i.e., "came into existence" at t=O.

Later in the research we may consider more complex growth laws, e.g. the logistic equation.

c) Probability of metastasis. The literature shows that the probability that a tumor has

metastasized is an increasing function of its present size. To make the algebra less awkward,

we work in terms of probability of no metastasis to date for a tumor of n cells, which we define

as

h(n) = Pr {a tumor of n cells has not yet metastasized} (4)

d) Probability of detection by mammography. We model the probability of detection of a
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tumor by a screening procedure as a function of the size of the tumor.

Pd,mamm(n) = Pr {a tumor of n cells is detected at a single exam} (5)

e) Probability of detection by self-examination. We model the probability of detection of

a tumor by self-examination as a function of the size of the tumor.

Pdself (n) = Pr {a tumor of n cells is detected by self - examination} (6)

Throughout this thesis, we assume that self-examination is continuous, i.e. occurs at every

instant. Later we expect to create more realistic models which will represent self-examination

as happening at discrete time intervals, significantly smaller than the screening interval.

If nd,mamm is the minimal size of the tumor detectable by mammography, and nd,,elf is the

minimal size of the tumor detectable by self-examination, we always assume nd,mamm < ndself -

f) Screening interval. The interval between screening examinations T is the key component in

the model. We begin the analysis of each model by finding

P(T) = Pr {no metastasis before detection for screening interval T} (7)

We proceed by finding the reduction in the number of patients with global metastasis per year

B(T), the reduction in the number of patients with metastasis per individual exam B(T) , and

the expected increase in the reduction of the number of patients with metastasis per additional

examination M, as functions of T.

Throuout this thesis we take T to be constant across time and population. Later we plan to

create more realistic models that assume T to be a random variable representing the distri-

bution of screening intervals both in time and in population, with known expected value and

variance.

g) Delay between tumor detection and tumor removal. Under realistic conditions, there

always exists a delay between the time when a tumor is detected and the time when it is

removed.

Throught this thesis we assume that this delay d is zero, that is, the tumor is taken out the

moment it is detected, whether by mammography or by self-examination. Later in the research

we will relax this assumption and take d to be a positive constant or a distribution with known

expectation and variance.

h) Probability of an incomplete removal. Under realistic conditions, it is possible that not

all the tumor cells get removed in surgery. If the surgeon misses part of the tumor, the tumor

7



will continue to grow from the remaining size after the surgery.

Pincomplete = Pr { part of the tumor is missed at the surgery } (8)

Throughout this thesis we take Pincomplete = 0. Later in the research we take 0 < Pincomplete <<

1.

i) Roles of radiation and chemotherapy. We ignore the roles of both radiation and chemother-

apy and do not attempt to quantify them in our models.

j) Changes in population size. The population of women of a given age at risk decreases

with age due to deaths from all causes. In this thesis we ignore this fact and simply consider

a population of fixed size over time.

k) Definition of cost. In all models we define cost as the number of exams per year. Cost is

proportionate to the number of women in the population w, and inversely proportionate to

the interscreening interval T. We denote cost by C(T).

w
C(T) = - (9)T

1) Definition of benefit. In all models we define benefit as the difference between the expected

number of patients with one or more metastasized tumors per year in the absence of screenings,

and the expected number of patients with one or more metastasized tumors per year in the

presence of screenings. In other words, benefit signifies the reduction in the number of patients

with metastasis per year in population of size w. We denote benefit by B(T).

number of women number of women

B(T) = E with > 1 metastasis in 1 year E with > 1 metastasis in 1 year

with no screening with screening
(10)

III Description of the simplest model MO

Each of the models that we create consists of the twelve parts described in the previous section.

We start by completely defining the simplest model in terms of the quantities and laws above and

try to derive and analyze all the relevant quantities and laws based on our definitions. We call

our simplest model MO. This model is overly coarse, and its results cannot be viewed as realistic.

This model, however, builds upon two very important facts about tumors : Poisson occurence and

exponential growth. Subsequently we will add more realistic detail to the model in several steps.
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a) Tumor incidence is modeled as a homogenous Poisson process with rate A, constant in time

and across the population.

b) Tumor growth law is modeled by n(t) = nmer. In this model we only use the growth law

to find the time intervals td,mamm, td,,eIf, and tmet: the time it takes the tumor to grow to

the size detectable by mammography, the size detectable by self-examination, and the size at

which at metastasizes, respectively.

c) Probability of no metastasis to date, is modeled as a step function of n, where nmet is the

metastasis threshold:

h(n) =

1

0

0, n > nmet

1, n < nmet

h(n)

nmet n

(11)

From the tumor growth law

nm to size nmet.

we can derive tmet, the time it takes a tumor to grow from size

d) Probability of detection by mammography is modeled as a step function of n, where nd,mamm

is the detection threshold:

Pd,mamm(n) =

1

0

1, n > nd,mamm

0, n < nd,mamm

d, mamm (n)

nd, mamm n

9
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Again, from the tumor growth law we can derive td,mamm, the time it takes a tumor to grow

from size nm to size nd,mamm.

e) Probability of detection by self-examination is modeled as a step function of n, where nd,,elf

is the threshold for detection by self-examination:

Pd,self(n) 1, n fdself (13)
0, < nd,self

d, self (n)

1

0 nd, self

Again, from the tumor growth law, we can derive td,self, the time it takes a tumor to grow

from size nm to size nd,self . We assume that self-examination is performed continuously, i.e.

it occurs at every instant.

f) We take the screening interval to be constant in time and across population. We denote the

screening interval as T.

g) We assume that there is no delay between tumor detection and surgery, that is d = 0.

h) We assign zero probability to an event that the surgeon misses part of the tumor during the

surgery, that is Pincomplete = 0.

i) We ignore the roles of radiation and chemotherapy.

j) We ignore the changes in the population size.

k) We define cost as

C(T) =- (14)
T

1) We define benefit as

number of women number of women

B(T ) = E with > 1 metastasis in 1 year - E with > 1 metastasis in 1 year

with no screening with screening
(15)
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In this model we make an assumption that td,mamm < tmet, since if it were not the case, any

examinations would be pointless because they would have no chance to detect a tumor before

metastasis, and therefore reduce the number of patients with metastasis in the population.

There are two possible cases describing the relation between td,self and tmet. In the first case

td,self < tmet, and therefore, each tumor is detected and removed before metastasis, since self-

examination is continuous and there is no delay between detection and surgery. In this case

mammography is useless, since self-examination saves all the lives by itself. In the second case

td,self tmet, and therefore no tumor is detected by self-examination before metastasis. In this case

self-examination is useless, since it will detect no tumor before metastasis, and will save no lives.

Since we are interested in finding out the relation between the interscreening interval T and the

probability of no metastasis before detection, in this model we will focus only on the second case.

In summary, we assume in model MO that td,mamm < tmet < tdself .

IV Making the model more realistic

The model described above is imperfect and unrealistic in several ways. In this section we describe

useful alterations to the model, and later modify the model one step at a time while keeping all the

previous modifications without loss of intuition. Of these proposed alterations, only the first three

are described and analyzed in this thesis. We hope to make the remaining five alterations, as well

as any other that might come up, further in this research.

1) Represent the probability of no metastasis to date as a continuous function of tumor size.

2) Represent the probability of detection by mammography as a continuous function of tumor

size.

3) Represent the probability of detection by self-examination as a continuous function of tumor

size

4) Represent the interexamination time as a distribution, rather than a constant, both across

time and across population.

5) Introduce a delay between tumor detection and surgery. In the simpler version of the model

the delay can be represented as a constant, while in the more realistic version it should be

represented as a distribution.

6) Relax the assumption that self-examination is performed continuously. In the simpler version

of the modified model we can assume that it is performed at frequent constant intervals. In

the more realistic version, we should represent the intervals between self-examinations as a

distribution.
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7) Relax the assumption that surgery renders a tumor completely harmless. Introduce a non-zero

probability that a part of the tumor is missed at the surgery and the tumor continues to grow

from the size it is left at, risking metastasis in the future.

8) Relax the assumption that the population size remains constant.

V Analysis of MO

We now perform a detailed analysis of the model MO described in Section II, and calculate the

probability of no metastasis before detection, the benefit, the benefit per unit cost, and the marginal

benefit per unit cost corresponding to this model. We start with calculating several useful quantities

that do not directly enter the calculation of P(T), B(T), B(T) or 2, but provide a helpful insightC(T) O u rvieahlfu nih

and can be useful later in the research.

a) First, we calculate the probability PA that a woman has, right before a particular exam, one

or more previously undetected tumors, all of size > nm. Let t1 be the time of the exam in

question. If the woman has one or more previously undetected tumors of size nm or bigger,

it means that they "came into existence" (i.e. existed and had size nm) in the time interval

(ti - (td,mamm + T), t,). This result follows from the fact that those tumors would have

to "have come into existence" before the time of the exam in question ti, but would have

to come into existence at a time that was too late to have them detectable at the previous

examination. Therefore, at the previous examination at time t1 - T, all the tumors would have

to be "younger" than td,mamm, and therefore they all would have to "come into existence" no

earlier than ti - (td,mamm + T).

For a Poisson process the probability of no tumor arising in that time interval is

eA(T+tdamm ) [A(T + td,mamm)]
0

0!

and therefore it follows that the probability of one or more tumors arising in that time interval

is

1 - eA(T+td,m.m) [A(T + td,mamm)]
0 1 _

0!

Since in reality a tumor is relatively unlikely, and therefore A << 1 (and, equivalently, A(T +

td,mamm) << 1), we can approximate the above quantity by A(T + td,mamm).

Pb 1 - eA(T+tdam) A(T + td,mamm) (16)
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b) Now we calculate the probability pa that a woman has, right after a particular exam, one or

more tumors. This expression should be smaller than the one above, since in this model we

assume that a tumor is removed at the very moment it is detected, and therefore pa should be

affected by the probability that a tumor is removed at a particular exam. Therefore, we are

looking at the probability that one or more tumors "came into existence" in the time interval

(tl - td,mamm, t 1], i.e. that there was one or more tumors not detectable at the exam at the

time t 1 . Similarly to PA, we can derive that pa = 1 - e-td,ma mm, and since a tumor is relatively

unlikely, and Atd,mamm << 1, we can approximate pa by Atd,mamm.

Pa 1 - dman ,)xtdmamm (17)

c) Next we define Pd, to be the conditional probability that one or more tumors are detected on

an exam, given that one or more previously undetected tumors are present.

Pd= 1 or more tumors 1 or more previously

detected undetected tumors present

- Pfe = Pr no tumor one or more previously (18)
detected undetected tumors present

If A and B are disjoint, Pr {C JA U B } = Pr{cnA+Pr{cnB}. From this law it follows that

1=1 Pr { no tumor found and k tumors present }1 - Pde = E0 Pr {m tumors present }

_ 0 1 Pr {no tumor found I k tumors present } -Pr { k tumors present } (19)
k Pr { m tumors present }

The event that m previously undetected tumors are present at a particular exam is equivalent

to m tumors having originated in the time period (ti - (td,mamm + T), ti], as discussed in part

a of this section. Therefore, from the properties of Poisson processes, this probability is equal

13



to

-,A(T+td, a ) [A(T + td,mamn)]m

ml

Also, from the properties of Poisson processes we know that if k previously undetected tumors

are present, the the times their sizes pass through nm (and therefore those tumors "come to

existence") are uniformly distributed in (ti - (T+td,mamm), t1 ] and conditionally independent.

Given that they all pass through size nm in this interval,

no tumor k tumors
Pr

found present

all k tumors

Pr initiated within

(ti - td,mamm, ti]

- ~ k_td,mnamm k

(td,mamm +T )

k tumors

initiated within

(t1 - (T + td,mamm) , ti]

(20)

Bringing all the expressions together yields

I - Pde

e d,mamm_

eF(Ttx si) - 1

From this expression, we establish that

Atdjmamm - 1
Pde- eA(T+td,mamm) - I

CA(T+td,mamm) - eAtd,mamrnm

CeA(T+td,mamm) - 1
T

T + td,mamm

where the latter approximation holds, if PA << 1.

d) We now turn to deriving the long term average number of tumors detected per year, i.e.

lim E{number of tumors detected in [0, t]}
tax t

where t is measured in years.

Intuitively we can arrive at the value of the above limit as follows. Each woman produces

tumors at the rate A, and there are w women in the population. Each tumor is detected at

14
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(22)

00 (td,mamm -kCA(T+td,mamm,) [A(T+td,mamm )]k
k=1 td,mammn+T k1

00 e-,\(T+td,,mamm ) Am (T+td,mamm )m
m=1 M!



most T + td,mamm years after it "comes into existence," whether or not it has metastasized

by then. Since we ignore the changes in the size of population due to deaths from tumor

metastasis, we can state that the expected number of tumors detected per year is Aw.

e) Now let's look at the long term average number of exams per year that detect one or more

tumors. Intuitively, this number should be just slightly smaller than A w, the number above,

since the probability of two or more tumors developing in the same woman simultaneously is

small, and most exams will detect at most one tumor. Denote the number of exams per year

that detect one or more tumors by Nde. It is quite obvious that E{Nde} = N -Pde -Pb, where

N is the total number of exams per year. From this statement we infer that

w
EJ~dJ WPde PbE{Nde} = - -Ta -T

T e (T+t, . . Adma AT,mamm)

T (TA(T~mdmm)m_)

- W eAtd,mamm~ (AT C-) A(Ttd,mamm) e 1(~d~am

T eA(T+t,mamm) 1

(1 e-AT) A w
T

As previously noted, this number is just slightly smaller than A w, the number of tumors

detected per year. If AT << 1, which makes it extremely unlikely that a woman would develop

two independent tumors in a single interexamination interval, these numbers are approximately

equal.

(23)

f) Now we derive P(T ) = Pr a single tumor is detected before it

metastasizes for screening interval T

sent the interexamination interval in days,

. If we let T repre-

detection occurs

before

metastasis

detection occurs

before

metastasis

tumor size

passed detection

threshold k days

before screening

tumor size passed

threshold k days

bef ore screening

1~Pr

tumor size

passed threshold

k days before

screening

1

Equation (11) is a simple model for the probability a tumor has not yet metastasized as a

function of n, the tumor size. Letting t represent the tumor age,

15

P(T)

T- 1

k=0

T- 1

k=0

Pr

1~
(24)



h(n(t)) =
0, t > tmet

I1, t < tMet

t d,mamm met t

T -1 dete
P(T) = Pr

k=0 bef o

dete

(Pr
k=0

m

T -1 dete

EPr
k=0

m

S tj ,w7 +T

{T

ction occurs

re metastasis

ction occurs

before

etastasis

ction occurs

before

etastasis

tb = te - td,mamm -

tumor age

at te = td,mamm

h(t) dt

T < tmet - td,mamm

T > tmet - td,mamm

g) We now turn to the benefit calculation. As described in Section II, we will measure benefit as

the difference between the expected number of patients with one or more metastasized tumors

per year in the absence of screenings, and the expected number of patients with one or more

metastasized tumors per year in the presence of screenings.

There are two separate cases to be considered in determining the expectation of the number

of usefully detected tumors at any given examination.

i) tmet > td,mamm+T. In this case, it is certain that no tumors metastasize before detection,
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h(n(t))

1

0

tumor size passed

detection threshold k days

before screening

T

k

+ k

1

TK

(26)

(25)



1

0

P(T)

T=6000 days

t met - t d, mamm T

and therefore the expected number of tumors detected in a metastasis free patient at a

given examination is just the expected number of tumors detected at a given examination,

A T.

ii) tmet <; tdmamm + T. In this case, some tumors will be missed at an examination at time

t, and will have already metastasized at the examination at time t 2 = t, + T. Intuitively,

the expected number of tumors found in a metastasis free patient at a given examination

is smaller in this case than it is if tmet > td,mamm + T.

number of women

with > 1 metastasis
=E -- E

in 1 year

with no screening

> 1 tumor would

w Pr metastasize in 1 year

in 1 woman

with no screening

number of women

with > 1 metastasis

in 1 year

with screening

> 1 tumor would

IPr metastasize in 1 year

in 1 woman

with screening

= w [1 - e-A] - w [i - eA(1-P(T))]

= w -e-A(1-P(T)) _ eA - e -A .e) P(T) _ i

w - [1 - e-A] , T ; tmet - tdmamm

w [e (Tm +tdm am ) T > tmet - td,mamm
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w e-" [e-' - 1] , T <tet - td,mamm

(27)
A (tmet -td,mamm) T > tmet tdmammw e- e T me amm

B (T)

A w

T=600Q days

o t met t d, mamm T

h) As described in Section II,

C(T) = - (28)
T

C(T)

T=300 days

o T

i) We now derive the expression for the ratio of benefit to cost, B(T) which represents the

reduction in the number of patients with global metastasis in population w per individual

exam as a function of the screening interval.

B(T) T - -1--P(T)) _ e-\] = T eA - [e( -P(T)) _ i]
C(T) I

18



T - [1 - e-A] , T ; te, - td,mamm

T > tmet - td,mamm

T e-A - [eA - 1], T < tmet - td,mamm

A [ [eA(tmet -tdmamm 
)

Te-A e T 1, T > tmet - td,mamm

't X (t met - t d, mamm )

T = 6000 days

j) Lastly, we derive the expression for marginal benefit per unit cost, , as a function of the

screening interval. Marinal benefit per unit cost represents the expected increase in the reduc-

tion of the number of patients with global metastasis in population w per additional examina-

tion per year.

_8T
0C
OT

0f
-ld~ amr)e-A-(Tt~ t,. IT]

T < tmet - td,mamm

T > tmet - td,mamm

0, T < tmet - td,mamm

A . (tmet - td,mamm) el~A\ -(T-tme+tdmamm) /T], T > tmet - td,mamm

Both = and B (T) rise as T drops until T reaches the value of tmet - td,mamm and then fall as

T is diminished beyond that. There is a value of T = tmet - td,mamm that uniquely maximizes both

19
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C(T)

(29)

1 t met - t d, mamm T [days]

B
(9C

- (T - t et + td, a m m ) A



d B
d C (t met t dmamd ( met -t d.mamm) +1)

T=6000 days

0 t me- t d, mamm T

B and 2 (T) and that nonuniquely maximizes B, i.e. the largest value of T that is guaranteed

to catch every tumor before metastasis. This feature is unique to MO, and does not hold in all more

complex models.

Now we use the above derivations to produce graphs based on the data provided by Jim Michael-

son [1, 2, 4, 6]. In this model we let nd,mamm be the number of cells in a 7 mm diameter tumor,

which is the size corresponding to the probability of detection by mammography of 50% [6, p.6]. We

let nrmet be the number of cells in a 35 mm diameter tumor, which is the size corresponding to the

probability of metastasis of 50% [4, p.13]. We assume that cell density is equal to 108 cells/cm3 [4,

p.2]. We take the doubling time of tumors to be 130 days [5], and use the exponential growth law.

We take A = - years-1 = 1 days- 1 . We assume that w = 1000. Based on these assumptions

and on the fact that we take nm be the number of cells in a tumor that is 1 mm in diameter, we

have:

n(t) = n'er' (30)

r = 0.00533 days- 1  (31)

n -= 108 cells - .-7r. (0.05 cm) 3 -52, 333 cells (32)

nd,mamm =108 cl .4 .7. (0.35 cm) = 17, 950, 333 cells (33)

nmet= 108 cells - .- 7r. (1.75 cm) 3 = 2, 243, 791, 700 cells (34)

17, 950, 333 = 52, 333 e 00
5 3 3 .tdmamm

td,mamm = 1095 days (35)

2, 243, 791, 700 = 52, 333 e 0.O533 -tmet

tmet = 2001 days (36)
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P(T)

1

906

1, T < 906

P(T)= {
906 T > 906

P(T) is the probability that a single tumor is detected before metastasis.
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[the reduction in the number of patients with metastasis in population w per year]

w= 4

W = 1000 women in population

= 1/250 tumors per woman per year

906

I

1
5000

1000 - [I - e- ~ 0 A w] 4, 

1 - -(T-906) 
[1 0 96

1000 - [e T - - 2C = 10000 e250 - 250 T 1,

T [days]

T < 906

T > 906

(38)

For an interexamination interval T < 906 days, every tumor is detected prior to metastasis in this

model. B(T) is the reduction in the number of patients with metastasis in population w per year.

22
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[the reduction in the number of patients with metastasis in population w per individual exam ]

X = 0.0099

X = 1/250 tumors per woman per year

T [days]

B(T)
C(T)

906

T. [1 -e

B(T)
C(T)

T < 906

T > 906

(39)

B is the reduction in the number of patients with metastasis in population w per individual

exam.
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[additional tumors per additional exam]

906X = 0.0099

I I

X = 1/250 tumors per woman per year

906 T [days]

aB 
0,

906 . e[-(T- 906 ) /250.T]
91250

T < 906

(40)

, T > 906

(T) is the marginal benefit per unit cost at a particular interexamination interval T. It

represents the expected increase in the reduction of the number of patients with metastasis in

population w per additional examination per year.
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VI Description of model M1

As mentioned in Section III, we hope to be able to modify the model one step at a time. Therefore,

model M1 differs from model MO only in the representation of the probability of no metastasis to

date as a function of tumor size.

Probability of no metastasis to date, h(n), is modeled as an arbitrary continuous monotonically

non-increasing function of n. From the tumor growth law, we can derive the probability of no

metastasis to date as a function of time, h(n(t)).

As with MO, we assume that td,mamm < td,self, since if it were not the case, all the tumors,

whether already metastasized or not, would be detected by self-examination before being detected

by a screening, and the screening would be irrelevant.

There are two distinct cases describing the relation between td,mamm and td,self. In the first

case, td,mamm + T < td,self. In this case, all the tumors, whether already metastasized or not, get

detected by a screening before being detected by a self-examination. Therefore, self-examination in

this case is irrelevant. In the second case, td,mamm + T > td,self. Such relation allows a nonzero

probability that a tumor is detected by self-examination before being detected by a screening. We

will consider both cases in our analysis.

VII Analysis of M1

a) We first look at the behavior of a single tumor, assuming absence of any other tumors. In this

model self-examination first comes into play. In the case when td,mamm + T > tdself, there

exists a non-zero probability that a tumor is detected by self-examination before it is detected

by mammography. In the case when td,mamm + T < td,self, the probability that a tumor is

detected by self-examination before it is detected by mammography is zero, and we can ignore

a single tumor is detected

self-examination. We want to derive P(T) = Pr before it metastasizes

given screening interval T

There are two separate cases to be considered.

i) td,mamm + T < td,self. In this case we ignore self-examination, and the derivation is the

same as in the case of MO. We conclude that

1fd,mammkrn+

P(T ) =- ltd h(n(t)) dt (41)
td,mamm-

ii) td,mamm + T ;> td,self. In this case self-examination is relevant. Given that a tu-

mor is detected, the probability that it is detected by mammography is tdslf tdmam
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and the probability that
T+tdmamm--td,seIf

T'

it gets detected by self-examination is 1 - "

tumor has not

metastasized

be fore detection

tumor detected

by mammographyI
tumor detected by

self - examination

1 tdsIf

tdself - tdmamm E h(n(t))
k=tde -mm

tdself - td,mamm td,samm
h(n(t)) dt

(42)

= h(n(td,self )) (43)

Therefore,

T td,self - td,mamm [ftdmU h(n(t)) dt +

+ td,mamm + T - tdself - h(n(tdself)) =T

ftd, " h(n(t)) dt (td,mamm + T - tdself) h(n(tse$lf)

T T

In summary,

P(T) =

T '" h(n(t)) dt tdmamm + T < td,seIf

f td,mem f± (td,mamm T-td,self).h (n(tdelf))
T T

td,mamm + T > td,self

b) As described in Section V, we measure benefit as the difference between the expected number

of patients with one or more metastasized tumors per year in the absence of screenings, and the

expected number of patients with one or more metastasized tumors per year in the presence

of screenings. Similar to the analysis in Section IV for the model MO,

B(T) = w - e(P(7')) - e- = w e-A [eA P(T) _1] : w A P(T) (46)
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tumor has not

Pr metastasized

before detection

P(T)

(44)
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Plugging in the value of P(T) into this expression, we get the following expression:

A. 1- "I" f "d h(n(t)) dtW . e td,mramn __ A- td,mamm + T < td,self

Al T h(a>)dt
fid,mamm _

W. e

(td,m a rm +T--td~s Ief).h(-(tdseIf))

td,mamm + J

tdnamm + T td,self

-e-A 

7 > td,self

ft - h(n(t)) dt + (T + td,mamm - td,seI)- h(n(td,seIf))

td,mamm + T > td,self

c) As described in Section V,

C(T) -
T

T=300 days

T

27

(48)

B(T) =

C(T)

0

w tdmamm +T
ft dmamm h(n(t)) dt,



d) We now proceed to derive the expression for the ratio of benefit to cost, B(~ A T P(T).

B(T)
C(T)

td,mamm + T td,self

I- A T-h ( (t)) d t 

w. e

td ,mamm + T > td,self

" 4m m h(n(t)) dt

ft, lf h(n(t)) dt
- _d,mamm (td,

T

- eCA l td,mamm ± T < td,self

mamm+T-t ).h(-(tdself)

-e-A 

td,m amm + T > t
d,self

(49)
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fA- td,mamm+IT h(n(t)) dt __w. e td,mamm _--
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e) We now derive the expression for the marginal benefit per unit cost, .

td,mamm + T < td,self

- w d,self h(n(t)) d +
td,mamm A W h(n(td, elf)) \ w(td,m.mm+T-

T2 T

td,self h(n(t)) dtX-1-td,mamm
T

(td,mamm+T-td,self).h(n(tdelfT

td,,Mamm +T d,self

(-A T h(n(td,mamm + T)) A ftd, a' "T h(n(t)) dt -
\td,mamm

. d,mamm 7 td,mamm + T < td,self

A (td,mamm + T -d,slf

[ e

h(n(td,selfY + A f"d lf h(n(t))dt ATh(f(td,,elf))
d,Mamm

td,self h(n(t)) dt
- - td,mamm (td,mamm+T-tdef)-h(n(tdself))

T T

td,mamm - T>td,self
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-A ~ ~ ~ fdm~ T h+Tdmm ) 1f""'' h(n(t)) dt-h(n(td ±,, T)) + A ftd m+T d
1 td,mamm+T h(n(t)) dt

[-~ T ftdn+ , td,mamm + T t td,self

A(td,mamm - td,self) - h(n(td,self)) + A t dm m-

td,,elf h(n(t)) dt
- - -td, m amm (td,mamm +T-'d,3ef)- h(n ('dsegl )

T T

td,mnamm + T > td,self

Now we use the above derivations to produce graphs based on the data provided by Jim Michael-

son [1, 2, 4, 6]. Similar to MO, in this model we let nld,mamm be the number of cells in a 7 mm

diameter tumor, which is the size corresponding to the probability of detection by mammography

of 50% [6, p.6]. We let nd,self be the number of cells in a 20 mm diameter tumor, which is the size

corresponding to the probability of detection by self-examination of 50% [1]. We assume that cell

density is equal to lOCells/cm3 . We take the doubling time of tumors to be 130 days [5], and use

the exponential growth law. We take A = - years-1 = 91. days-'. We assume that w = 1000.250 _E50

Based on these assumptions and on the fact that we take nm be the number of cells in a tumor that

is 1 mm in diameter, we have:

n(t) = nme"' (54)

r = 0.00533 days- 1  (55)

nm 108 c - - 7r- (0.05cm) 3  52, 333 cells (56)

n1 ,mamm 108 cells 7r (0.35cm) 3  17, 950, 333 cells (57)
1 1 ~ef 108 cells 4 7(1cm)3 -67cel

n,self = c -m - = 418,666,670 cells (58)

17, 950, 333 = 52, 333 eOO.O3 3 -td,mamm

td,mamrn =1095 days (59)

418, 666, 670 = 52, 333 eOO.O33-td,self

td,self= 1686 days (60)

We use the data and the curve fit provided by Jim Michaelson for the probability of distant

30



metastatic disease [4, p.4, p.15] to derive h(n(t)). The curve fit suggests

F(D) = .O0061 D1.
32 76  (61)

where F is the fraction of patients surviving breast cancer and D is the tumor diameter in millimeters.

The graphs below demonstrate the relation between the fraction of patients surviving breast cancer

and the tumor diameter in millimeters, between the fraction of patients surviving breast cancer and

the number of cells in the tumor at the time of detection. We take these fractions F to be the

probability of tumor metastasis corresponding to each tumor size measured in terms of the tumor

diameter assuming spherical geometry, or in terms on the number of cells.

Probability of Distant Metastatic Disease

0.5

Tumor diameter [mm]

o 20 50 100

Probability of Distant Metastatic Disease

1

0.5

Number of cells in the tumor x 10 10

0 1 2.5 5

We use the exponential growth law to derive h(n(t)): the probability of no metastasis to date

as a function of tumor age. The graph below demonstrates the relation between tumor age and the

tumor diameter assuming exponential growth law and spherical geometry.
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Time to grow to this diameter
from initial diameter of 1 mm [days]

2000

t - In ()
r 0. 1 CM

1000

Tumor diameter [mm] D

0 20 50 100

F =- (62)

1.0061. ,0 where N is the number of cells in the tumor (63)

e
00 0 6 1 

(20. i

t _____ 108.. (0.05)3) , where t is the age of the tumor (64)

1
h(n(t)) -137

h0. 0 0 6 1
. 20. 108. [

1e 3 27

e0. 0061 (20. V(0.05)3.e0.00533 
t1 327

1

0.0061. ( f~eO 33 t)1.
32 7 1 

(65)

h (n (t))
1

0.5

Tumor age [days]

0 1000 2000 3000
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h(n(t))

0.722
d,self 1 686

Tumor age [days]

I I I
1000 2000 3000 6000

We now turn to the plots of P(T), B(T), B and . Below is the plot of P(T) in the absence

of self-examination, corresponding to equation (41).

in the absence of self-examination

0.92

1
1000

I

3000

I

5000 T [days]

Following are the plots in the presence of self-examination.
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in the presence of self-examination

0.92

I I I
I

3000 5000 T [days]

T td amm+T h(n(t)) dt, T < tdself - td,mamm = 591 days

* d,mamm +(tdmamm+T-td elf)-h(n(tdseif))

T +T

T > td,self - td,mamm = 591 days

P(T) is the probability that a single tumor is detected before metastasis. In the presence of

self-examination, limTm+, P(T) -+ h(td,self) ~ 0.722.
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B (T) in the presence of self-examination

W = 1000 women in population

= 1/250 tumors per woman per y

Ii

ear

I
5000 T [days]

T < tdself - td,mamm = 591 days

f t d,se' f h (.(t)) d t

. d_ , a~mmm (67)
(tdm.amm+T-t J, Cj)-h(.(td. If)>

T > td,self - td,mamm = 591 days

B(T) is the reduction in the number of patients with metastasis in population w per year.
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A

B(T) =<
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B(T) [the reduction in the number of patients with metastasis per individual exam]

C(T) ....0.05

T =6000

0 T [days]

- 1 tdma m+T h(n(t)) dt 1
T* -e amn -- -AJ A ftd'am" h(n(t)) dt

T 5 td,self - td,mamm = 591 days

TT eA dfself h(n(t)) dt (t amm+T-tdself).h(ntde )) (68)C(T ) _ am d *,. . + - e ) (a i ).

T~ -T e-

A self h(n(t)) dt + A(td,mamm - tdself + T) - h(n(td,self))ftd,m m

T > td,self - tdmamm = 591 days

is the reduction in the number of patients with metastasis in population w per individual

exam. For values of T > 591 days, the slope of the curve is roughly consistent with A - h(n(tdelf)),

as in the expression above.
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[additional reduction per additional exam]

- 0.0007698

X = 1/250 tumors per woman per year

I

591

(-A T h(n(td,mamm + T)) + A ft 'amm h(n(t)) dt) [eA (i - h(n(t)) dt)

T td,self - td,mamm = 591 days

(td,mamm - td,self) - h(n(td,self)) + A f dself h(n(t))dt)

( ftd'"h jm t tdmmm
-- T- ' h(n(t)) dt " " + - (n(tdseif))

T> td,self - td,mamm = 591
(69)

O (T) is the marginal benefit per unit cost at a particular interexamination interval T. It

represents the expected increase in the reduction of the number of patients with metastasis in

population w per additional examination per year.
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VIII Description of model M2

We continue to modify the model one step at a time. In model M2 we change the representation

of the probability of detection by mammography.

Probability of detection by mammography is modeled as an arbitrary continuous monotonically

non-decreasing function of n, denoted by Pd,mamm. We can use the tumor growth law to express

the probability of detection by mammography as a function of tumor age.

Unlike M1, in M2 self-examination is relevant for all values of T, since for any value of T there

is a non-zero probability that a tumor is not detected at any of the mammographic examination

preceeding the time when the tumor reaches nd,,ef cells in size. Therefore, we do not split the

analysis into two parts like we did for both MO and M1.

IX Analysis of M2

Again, we look at the behavior of a single tumor in the absence of other tumors. In this model

we do not have a threshold for detectability by mammographic examination, and we represent

Pd,mamm(n(t)), the probability of detection by mammography on a single exam, as a continuous

non-decreasing function of t. We assume that Pd,mamm(n(t)) = 0 for t < tmin, where tmin is some

value of tumor age. The graph below demonstrates this assumption, and Jim Michaelson's data

supports this assumption.

d, mamm (n(t))

0 t . t

From Section VI we have that h(n(t)) is a continuous non-increasing function of t, as shown

below.

We need to find the probability of no metastasis before detection for a single tumor. Since in M2
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h(n(t))
1

0.5

Tumor age [days]

0 1000 2000 3000 6000

the probability of detection by self-examination is modeled as a step function (see Section VII), the

tumor can be found either by mammography at ages between tmin and td,self, or by self-examination

at the age of td,self. We denote the probability of detection by mammography or by self-examination

by d(n(t)), and base our derivation of P(T) on d(n(t)) and h(n(t)). The probability of detection by

mammography or by self-examination, d(n(t)), is plotted below.

d (n (t))
1

0 t td,self t

In order to derive P(T), we look at the probability that one random variable, the time of

detection, is less than another random variable, the time of metastasis. Such probability represents

the event that detection occurs before metastasis, which is what we are interested in. In this case

we need to deal with two cumulative distribution functions. One of these is F(t) = 1 - h(n(t)).

Another is G(t) = Pr {detection at some r < t}. The derivation of G(t) is based on d(n(t))
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and takes into account the fact that, unlike metastasis, detection can only happen at discreet time

intervals for t < td,self. For each tumor, the probability of detection at some r < t depends on the

interscreening interval T and on the age of the tumor at the first exam in its lifetime, denoted by

x. We denote the probability of detection at some T < t given the interscreening interval T and the

age at the first exam x by GxT(t). Below is the generic plot of GxT(t). In this plot below, GxT1

corresponds to the probability that the tumor is detected on the first exam in the life of the tumor,

given the interscreening interval T, and the age at the first exam x. Similarly, GxT2 corresponds

the probability that the tumor is detected by the second exam in the life of the tumor, given the

interscreening interval T, and the age at the first exam x, and so on. We denote the probability

that detection occurs before metastasis given the tumor age at the first exam x by P (T), and the

probability that the tumor is detected on the first exam given that its age at the first exam is x by

Gx1 . Similarly, we denote the probability that the tumor is detected by the second exam given that

its age at the first exam is x by Gx 2 , and the probability that the tumor is detected by the kth exam

given that its age at the first exam is x by Gxk.

GxT(t) 0 corresponds to the moment of tumor birth

GT3

T2

,GxTl

Td, self

0 x: Exam 1 x+T: Exam 2 x+2T: Exam 3
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We can derive the probability of no metastasis before detection for a given age at the first

exam x as follows. We know that F'(t) is the metastasis density, and GxT(t) is the detection by

mammography or self-examination density given the interexamination interval T and age at the first

exam x. We can find the probability that detection happens earlier than metastasis by integrating

the joint density of F'(t) and GxT(t) over the region where d (corresponding to detection) is smaller

than m (corresponding to metastasis), for each value of the age at the first mamographic examination

x. The joint density for d and m factors into a product of F(t) and GxT(t), because we assume

conditional independence of metastasis and detection give the tumor size n. We break up the

region of integration into several smaller regions, intergrate over each of them, as illustrated in the

graph below, and add the results to obtain Px(T), the probability that metastasis occurs later than

detection for a given age at the first exam x, as a function of T.

d

Integrate over
this region to obtain
probability that
metastasis occurs
later than detection
and metastasis occurs
between m, and 2

m, m2  m

In our derivation, we break up the region of integration into smaller regions corresponding to

time intervals between two consecutive mammographic examinations. It follows that

metastasis occurs tumor is x days
P (T) = Pr later than old at its first

detection examination

£17 F'(m) G',T(d) dd
0 0

= F'(t) Gx,T(t) dt

= G1 [F(t2 ) - F(ti)] + Gx2 * [F(t3) - F(t2 )] + ... +

+ Gxk [F(td,self ) - F(tk)] + 1 - F(td,self )

where t 1 , t2 , ... tk are the times of first, second, etc. mammographic exams

in the lifetime of the tumor (70)
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Now we turn to the data provided by Jim Michaelson to derive the values of GxTl, GxT2, etc.

for different values of T and x [1, 2, 4, 6]. First, we turn to his data for the probability of detection

by mammography as a function of tumor size and do a curve fit for this data to derive a realistic

continuous function for Pd,mamm(n(t)). Based on the data [2], we produce the following curve fit:

1-e D> 1mm
H (D) = ~ 8D D>1m where D is the diameter of the tumor in millimeters

0, D < 1 mm

(71)

1-20.

H(N) = 1-e 8 , where N is the number of cells in the tumor (72)

1-20. (0.05)3,0.00-3t

H(t) 1 - e 8 , where t is the age of the tumor in days

1- V/,0.00533t 73
= 1 -e 8 (73)

Below are the graphs corresponding to equations (78) and (80), respectively.

Probability of detection by mammography

1

Tumor diameter [mm]

0 i 35

Accounting for self-examination, we modify the data plotted above for values of tumor age

greater than 1686 days to arrive at d(n(t)), the probability of detection by mammography or by

self-examination as a function of tumor age, plotted below.
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1095 1686

Using the data plotted in this last graph, we derive the values for G-T1, GT2, etc. for all relevant

values of x and T. For each T and x, we proceed as follows:

= Pr {detection occurs at first exam}{ detection occurs on second exam
= Pr

and does not occur at first exam

= (1 - H(ti)) -H(t 2 ) = (1 - GxTi) - H(txT2)

= GT1 + (1 - GxT1) H(txT2))

= GxT2 + (1 - GxT2) H(t3 )

= GT(n-1) + (1 - GxT(n-1)) - H(tn)
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Using the values for GxT1, GxT2, etc. for each x and T derived as above, it does not appear

feasible to bring the expression for Px (T) in equation (70) to a closed form, so we have to rely on a

numerical algorithm to compute the value of Px(T) for different values of T. Further, we compute

the value of P(T) from the set of values for Px (T) corresponding to different values of x using the

fact that tumor age at the first exam is uniformly distributed in time given the interexamination

interval T. We use Matlab to implement this numerical algorithm (see Appendix 1.1 for the Matlab

code). In this algorithm, we simultaneously loop through all possible values of T and all possible

values of x, and find the corresponding values of GT1, GMT2, ... , GxTJ for all relevant values of T

and possible values of x given the value of T. Then for each T we average the values of GxT1 for all

values of x < T to obtain the probability that the tumor is detected at the first examination for a

given value of T. Similarly, for each T we average the values of GxT2 to obtain the probability that

the tumor is detected by the second examination for a given value of T, etc. This way we obtain

P(T) = T fT Px(T) dx. We test the correctness on this algorithm by running it on the data with

the assumptions of model M1. The algorithm produces results that coincide with the results for MI

obtained analytically, giving some confidence that the algorithm is correct and reliable.

To find the values of B(T), B(T, and ! we rely on the expressions of these functions as a

function of P(T), as below.

B(T) w e-(1-P(T)) - e w [ P(T) - w A P(T) (79)

C(T) = (80)
T

B(T) T e-A [eP(T) 1 T A P(T) (81)
C(T)

OB _ -- - eA - e\ P(T) . P'(T) -w -A - P'(T) = A P'(T) (82)

These functions are plotted on the subsequent pages.

Alternatively, we can approach the problem of deriving P(T) for all values of T by looking at

each mammographic examination individually using h(n(t)) and d(n(t)). We can first derive the

probability that a single tumor is detected at the first mammographic examination in its life and

that it has not metastasized before this detection. Next we can derive the probability that a single

mammographic tumor is detected at the second mammographic examination in its life and that it has

not metastasized before this detection, given that it has not been detected at the first examination.
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We can proceed this way to account for all the examinations in the life of the tumor, and for the

probability of detection by self-examination, and sum all these probabilities to arrive at P(T). Since

d(n(t)) = 1 for t > Tabs, we will have a finite number of terms in the summation.

P(T ) = Pr tumor is first detected tumor has not metastasized

P(T) P at mt examination by mt examination{ tumor is detected tumor has not metastasized

by self - examination by the time of detection

T tumor is detected tumor has not metastasized

T Pr at kth day by kth day +

2=T tumor is tumor has not tumor not

+ E Pr detected metastasized by Pr detected at t +
k=T+1 at h da h day examination

3T P tumor is tumor has not tumor not

+ E Pr detected - metastasized by -Pr detected at 2 d +

k=2T+1L at kth day kth day examination

n T+T tumor is tumor has not P tumor not

+ T Pr detected - metastasized by - r detected at nth
k TIL at k t h day 1 t day b Pr examination -k= nT+1 LI dtece at

}LI tumor has not tumor not detected

tumor is detected by metastasized by Pr before detection by
P sel f - examinationI}

time of detection self - examination

where n is the smallest integer such that n T + T > td,self (83)

T 2T

P(T) = - [ d(n(k)) - h(n(k)) + E d(n(k)) - h(n(k)) . [1 - d(n(k - T))] +
k=1 k=T+1

3T

+ >3 d(n(k)) -h(n(k)) - [1 - d(n(k - T))] + -
k=2T+1

+ E nT + Td(n(k)) -h(n(k)) . [1 - d(n(k - T))]] +
k=nT+1

tumor is detected tumor has not metastasized

* by self - examination by the time of detection
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I T 2T

- [ Z d(n(k)) - h(n(k)) + E d(n(k)) - h(n(k)) - [1 - d(n(k - T))] +
k=1 k=T+1

3T

+ E d(n(k)) - h(n(k)) - [1 - d(n(k - T))] + -
k=2T+1

+ nT + Td(n(k)) -h(n(k)) - [1 - d(n(k - T))]1 + (84)
k nT+1

T

+ [ - d(n(td,,eIf - k))] - h(n(td,,elf)) (85)

These two approaches differ only in the way the region of intergration is broken up. In the

first approach, we are summing the probabilities of disjoint events that metastasis occurs between

two consecutive mammographic examinations (t1 and t2 ; t2 and t, etc), and that detection occurs

before metastasis. In the second approach, we are summing the probabilities of disjoint events that

detection occurs at a particular mammographic examination (t1 , t 2 , etc.) and that metastasis occurs

at any time after this detection. The two approaches are compared in the graphs below.

In both these approaches, we are assuming that the outcomes of all mammographic examinations

are independent from each other. This assumption becomes unrealistic when mammographic exami-

nations are close to each other, since if the probability that a present tumor of size ni is not detected

at a mammographic examination is c > 0 and the probability of detection by mammography is a

non-decreasing function of tumor size, then the probability that this tumor is detected after n mam-

mographic examinations is upper bounded by 1 - n", which approaches 1 for large r. Therefore, in

this model P(T) comes out disproportionately large for smaller values of T, since smaller values of

T correspond to more frequent mammographic examinations.
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Integrate over
this region to obtain
probability that
metastasis occurs
later than detection
and metastasis occurs
between m1 and m2

m

First Approach

d Integrate over
this region to obtain
probability that
metastasis occurs
later than detection
and detection occurs
between d 1 and d

2 x

d 2

m

Second Approach
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in the absence of self-examination

0.9926
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P(T) is the probability that a single tumor is detected before metastasis.
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P(T) in the presence of self-examination

1

0.9926

0.7222

I I I
0 1000 3000 5000 T [days]

P(T) is the probability that a single tumor is detected before metastasis.
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W = 1000 women in population

X= 1/250 tumors per woman per year

4

2.8
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I T
5000 T [days]

B(T) is the reduction in the number of patients with metastasis in population w per year.
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B(T) [the reduction in the number of patients with metastasis per individual exam]

0(T) -- 0.05

T = 6000

0 T [days]

B(T) is the reduction in the number of patients with metastasis in population w per individual
C(T)

exam.
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[additional tumors per additional exam]d B
d C

1686 T [days]

(T) is the marginal benefit per unit cost at a particular interexamination interval T. It

represents the expected increase in the reduction of the number of patients with metastasis in

population w per additional examination per year.
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X Description of model M3

Again, we continue to modify the model one step at a time. In model M3 we change the

representation of probability of detection by self-examination.

Probability of detection by self-examination, Pd,,eIf (n(t)), is modeled as an arbitrary continuous

monotonically non-decreasing function of n. We denote this probability function by s(n). We can

use the tumor growth law to express the probability of detection by mammography as a function of

tumor age.

XI Analysis of M3

The analysis in this section is very similar to that for Model M2, except for the handling of

self-examination. We look at the probability that one random variable, the time of detection by

mammography, is smaller than another random variable, the time of metastasis, or that one random

variable, the time of detection by self-examination, is smaller than another random variable, the

time of metastasis. Denote the time of metastasis by M, the time of detection by mammography by

DM, and the time of detection by self-examination by Ds. Then

P(T) = 1 - Pr {M < Dm n M < Ds} = 1 - Pr {M < min[DM, Ds]} (86)

Similar to M2, we will deal with cumulative distribution functions. The first is F(t) = 1-h(n(t)),

same as in M2. Another is G(t), similar to the one in M2, but not accounting for self-examination.

In other words, the derivation of the new G(t) is based on Pd,mamm(in(t)) as described in M2, not

on d(n(t)), as described in M2. Similar to M2, the new G(t) takes into account that detection by

mammography can only happen at discrete time intervals, and depends on the interscreening interval

T and the tumor age at the first exam x. Below is the generic plot for Gx(t), the probability of

detection at some 7- < t given the interscreening interval T and the tumor age at the first exam x.
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GxT(t) 0 corresponds to the moment of tumor birth

GT3

GxT2

GxT1

x T TT

x: Exam 1 x+T: Exam 2 x+2T: Exam 3x+3T: Exam 4

The third cumulative distribution function in this model is S(t), corresponding to the probability

of self-examination. We get this distribution function by fitting a curve into the data provided by

Jim Michaelson [1].

S(D) = 1- 1 , where D is the diameter of the tumor in millimeters (87)
eO

0 0 22-D
2 '1

3

=1- 1= e11 22.( eOOO53 t)2.13 where t is the tumor age in days (88)

S(t) =t1-13 (89)
e 0 .0022.( YeO-0533 )
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1
S (t)

0.51

0

P(T)

Let Z

{Z > zO}

(1 - Fz(Zo))

1680

= 1-Pr {M <min[DM,Ds]}

= min[DM,Ds].

= {DM > Zo} n {Ds > Zo}

= (I - FDm (ZO)) . (I - FDs (ZO ))

= 1 - (1 - FD (Zo)) -

= 1-[1-FDm(Zo)-.

= FDm (ZO) + FDs (ZO)

(1 - FDs (Z))

FDs (Zo) + FDm(Z) -FDs (Zo)]

- FDM (Z) .FDs (Zo)

From this derivation we conclude that Fz(t) = G(t) + S(t) - G(t) - S(t). We compute the

probability that metastasis happens before detection by mammography or self-examination similarly

to the way we did it for M2:

Pr metastasis occurs F'(t) Fz(t) dt = F'(t) . [G(t) + S(t) - G(t) S(t)] dt
later than detection 0 fo

- F'(t) G(t) dt + j F'(t) S(t) dt - j F'(t) G(t) S(t) dt

(91)
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The first integral in the above expression corresponds to the expression for the probability of no

metastasis before detection in the absence of self-examination as in M2. It also corresponds to the

probability of no metastasis before detection in the absence of self-examination as in M3, since M3

differs from M2 only in the representation of the probability of detection by self-examination. The

Matlab code for the numerical algorithm for computing the value of the first integral as a function of

T is included in appendix 1.2. This algorithm is similar to the algorithm used to compute probability

of no metastasis before detection in the presence of self-examination.

The second integral in the above expression corresponds to the probability of detection by self-

examination when this probability is represented as in M3. We numerically compute this value. It

turns out that f0g F'(t) S(t) dt = 0.7896.

To evaluate the third integral we derive a new algorithm, similar to the algorithm for M2, and

numerically compute the value of the intergral for each value of T. The Matlab code is included in

appendix 11.2. Then we add the three together to arrive at the values of P(T) for each value of T

for M3.

As in M2, we test the correctness of the algorithms by running them on the data with the

assumptions of models MO, MI and M2. The algorithms produce results that coincide with the

results for MO and M1 obtained analytically, and for the results for M2 obtained using the previous

algorithm, giving some confidence that the algorithms are correct and reliable.

Similar to M2, we use P(T) to compute B(T), '2T, and '-.

The graphs below illustrate the probability of no metastasis before detection in as a function of

T, as well as B(T), B(T) and M derived according to equations (83), (85) and (86), respectively.
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in the absence of self-examination

0.9926
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P(T) is the probability that a single tumor is detected before metastasis. In the absence of

self-examination, this probability is the same as it is in the model M2 in the absence of

self-examination.
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P(T) in the presence of self-examination

1

0.9926

0.7896

SI .............
0 1000 3000 5000 T [days]

P(T) is the probability that a single tumor is detected before metastasis.
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B (T)

W = 1000 women in population

=1/250 tumors per woman per y
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B(T) is the reduction in the number of patients with metastasis in population w per year.
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B(T) [the reduction in the number of patients with metastasis per individual exam ]

0(T) -0.055

T = 6000

0 T [days]

B(T) is the reduction in the number of patients with metastasis in population w per individual

exam.
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d B
d C

0.000824

[additional tumors per additional exam]

0.0011

= 1/250 tumorsi

T [days]

(T) is the marginal benefit per unit cost at a particular interexamination interval T. It

represents the expected increase in the reduction of the number of patients with metastasis in

population w per additional examination per year.
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XII Conclusions

As we progress from model MO to models M1, M2 and M3, our assumptions become more

realistic and results start approximating reality significantly better. However, there is still many

aspects in tumor occurence, tumor growth, the probability of detection, the probability of metastasis

etc. that remain to be accurately modelled before the results become reliable enough to be helpful

for policymakers in arriving at the recommendations for interscreening interval and frequency of

self-examination for women in different groups within the population.

In this section we compare the results from models MO through M3, and analyse the differences

between these results and the influence that more accurate modelling has on the results. We look at

the plots of P(T) for two, three or four models simultaneously and discuss and analyze how these

results compare.

P(T) in the absence of self-examination

1_-- MO
-- M1

M2andM3

T=6000 days

0 906 T

The graph above compares the results for P(T) in the absence of self-examination for models

MO through M3. The results for M2 and M3 in the absence of self-examination are the same, since

M2 and M3 only differ from each other in the representation of self-examination. The graph above

shows that P(T) for MO is greater than P(T) for M1, M2 and M3 for small values of T, but is

smaller than P(T) for M2 and M3 for high values of T. The fact that P(T)Mo > P(T)M1,M2,M3 for

small values of T is due to the representation of the probability of metastasis and the probability
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of detection by mammography in MO as step functions of the interscreening interval. Since the

probability of metastasis in MO is equal to zero for T < tmet and the probability of detection is equal

to one for T > td,mamm, the probability of no metastasis before detection in this model is equal to

1 for small values of T < tmet - td,mamm corresponding to frequent examinations. In the absence of

self-examination, the probability of no metastasis before detection starts falling very rapidly in MO

for values of T > 906, falls to approximately the level of P(T) for M1, M2 and M3 and continues

falling at the same rate for large values of T. This is due to the fact that for large values of T the

probability of metastasis is 1 for all the models, and the probability of detection by mammography

is 1 or asymptotically approaches 1 for all models. The fact that P(T)MO < P(T)M2,M3 for large

values of T is possibly due to the specific choice of threshold nmet chosen for h(n) in MO.

P(T) in the presence of self-examination

1
-- _ M1

-- M2
- -M3

I .I8-
1000 3000 5000 T [days]

The graph above compares the results for P(T) in the presence of self-examination. It is clear

from the graph that self-examination has a significant effect on the probability of no metastasis

before detection for models M1, M2 and M3. The graph shows that P(T)Ml P(T)M2 5 P(T)M3

for all values of the interscreening interval T. Since in all these three models the probability of

metastasis is modelled as a continuous realistic function of tumor age, this relation holds due to the

differences in representation of the probability detection by mammography and by self-examination
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between the three models.

It appears reasonable that P(T)Ml < P(T)M2 for all values of T, since with the nonzero mono-

tonically increasing with T probability of detection by mammography it becomes possible for the

tumor to be detected at smaller sizes. The probability of detection at smaller sizes particularly

matters for small values of T, which is reflected in the fact that the difference between P(T)Ml and

P(T)M2 is greater for smaller values of T.

It is also reasonable that P(T)M2 P(T)M3 for small values of T, and P(T)M2 < P(T)M3 -

In M3 the probability of self-examination is represented as a continuous non-decreasing function of

tumor size, and therefore the probability of detection by self-examination is greater in M3 than in

M2. This, however, is much more significant for large values of T, since for small values of T most

tumors get detected by mammography, not self-examination.

All B(T), B{(T)and M are functions of P(T), and therefore their comparison is a direct conse-

quence of the comparison of P(T) between different models, and can be deduced from the compar-

ative analysis of P(T).

As mentioned before, in the course of this research we started with building a very simple, overly

coarse model MO to gain intuition behind the basic aspects in tumor occurence, growth, metastasis

and detection. Later we modified the model adding realistic detail one step at a time. This approach

has proved to be well suited for the problem, since starting with the basic model has allowed us to

understand the basics well, and led us to modifying our definitions to their current form described

in this thesis. Particularly, we had to change our definition of benefit twice in the course of this

research, since the two previous definitions produced an undesireable anomaly in the results or made

the analysis unnecessarily more complicated. It is likely that the anomaly in the results would have

been obscured by other aspects of the model if we had not started with a set of very simple overly

coarse assumptions. It is also likely that we would not have arrived at a simpler and better definition

of benefit if our thinking remained obscured by the subtle aspects of the model.

While analysing the results of all the models, we have consistently relied on the analysis of the

assymptotic behavior of the functions, looking at very small and large values of T. Such thinking

has led us to doubt our initial assumptions of independence of exam outcomes, since for small

values of T independence of exam outcomes implies a very high probability of detection after a

large number of mammographic examinations, which can correspond to only a year or less of very

frequent examinations. It is possible that later in the research such thinking will lead us to doubt

other assumptions that have been previously made.

The necessity to give up previous definitions and assumptions has slowed down the pace of this

research from the one originally expected. This slowdown, however, has been a very low cost for

64



the clarity of thinking attained, and for the approach to research that I have learnt in the course of

working on the problem. Hopefully the later research in this field will be equally as stimulating and

educationally valuable as it has been so far.
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XIII Notation

B(T): Benefit associated with the interscreening interval T, i.e. the expected number of tumors

found in metastasis free patients per year.

Bmamm(T): Benefit from mammographic screenings associated with the interscreening interval

T, i.e. the number of tumors found by means of mammography in metastasis free patients per year.

Bseif (T): Benefit from self-examination associated with the interscreening interval T, i.e. the

number of tumors found by means of self-examination in metastasis free patients per year.

C(T): Cost associated with the interscreening interval T.

d: The interval between the time the tumor is detected and the time it is removed.

D: The tumor diameter.

DM: The time of detection by mammography.

Ds: The time of detection by self-examination.

d(n): Probability that a tumor of n cells is detected at a mammographic examination or by

self-examination.

F(D): The fraction of patients surviving breast cancer as a function of tumor diameter D, a

curve fit.

F(t): Probability that metastasis has occured by time t.

G(t): Probability that detection by mammography has occured by time t.

G21, G. 2 , etc.: Probability that detection by mammography occurs at the first mammographic

exam in the tumor's lifetime, by the second mammographic exam in the tumor's lifetime, etc., given

the tumor age at the first exam x.

GxT(t): Probability that detection by mammography has occured by time t, given the interex-

amination interval T and the tumor age at the first exam x.

GT1, GxT2, etc.: Probability that detection by mammography occurs at the first mammographic

exam in the tumor's lifetime, by the second mammographic exam in the tumor's lifetime, etc., given

the interexamination interval T and the tumor age at the first exam x.

H(D): Probability of detection by mammography as a function of tumor diameter, a curve fit.

H(N): Probability of detection by mammography as a function of the number of cells in the

tumor, a curve fit.

H(t): Probability of detection by mammography as a function of the tumor age, a curve fit.

h(n): Probability that a tumor of n cells has not yet metastasized.

M: The time of metastasis.

nm: The minimal size of the tumor when it is considered "having come into existence."

nd,mamm: The minimal size of the tumor detectable by a mammographic screening.

nd,self: The minimal size of the tumor detectable by a self-examination.
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nmet: The size at which the tumor metastasizes.

N: The event that none of the tumors present in the patient have metastasized.

Nde: Number of exams per year that detect one or more tumors.

pa: Probability that a woman has, right after a particular exam, one or more previously unde-

tected tumors, all of size nm or larger.

Pb: Probability that a woman has, right before a particular exam, one or more previously unde-

tected tumors, all of size nm or larger.

P(T): Probability of no metastasis before detection for screening interval T.

P,,(T): Probability of no metastasis before detection for screening interval T, given the tumor

age at the first exam x.

Pabsent : Probability that at the time of examination there are no present metastasized tumors

not detected at this examination.

Pde: Conditional probability that one or more tumors are detected at an exam, given that one

or more previously undetected tumors are present.

Pd,mamm(n): Probability that a tumor of n cells is detected at a single mammographic exam.

Pd,self (n): Probability that a tumor of n cells is detected by self-examination.

Pincomplete: Probability that part of the tumor is missed at the surgery.

Pself: Probability that a single tumor is detected by self-examination during a given interexam-

ination period, has not metastasized by the time of detection, and that none of the other present

undetected tumors have metastasized.

Ps: Probability that a life is saved at any given examination.

r: Tumor growth constant.

S(D): Probability of detection by self-examination as a function of tumor diameter, a curve fit.

S(t): Probability that detection by self-examination has occured by time t.

tI, t 2 etc.: The times of examination.

tb: Birth time of the tumor, i.e. n(tb) = nm.

tmin: The largest tumor age at which detection by mammography does not occur, with proba-

bility 1, if an exam is performed at the time the tumor is that age.

tx: The time of tumor metastasis.

tdetection: The time when a tumor is detected by self-examination.

T: The screening interval.

td,mamm: The time it takes the tumor to grow from the minimal size rm to the size detectable

by mammography nd,mamm.

td,self: The time it takes the tumor to grow from the minimal size nm to the size detectable by

self-examination nd,self.
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tmet: The time it takes the tumor to grow from the minimal size nm to the size when it metas-

tasizes nmet-

A: Tumor occurrence rate.

w: Number of women in the population, taken to be 1000 in calculations.

x: Tumor age at the first mammographic examination in its lifetime.

Z: The time of detection by mammography or self-examination, whichever comes earlier.
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I Matlab Code

1.1 Model M2

function [p] = m2 (d, h)

% d is the probability of detection, as function of tumor age

% h is the probability of metastasis, as function of tumor age

% d and h have to have the same length, 6000

% the function returns the probability of no metastasis before detection

% as a function of T for values of T from 1 to 6000

% loop through all possible values of T

for t=1:6000

p(t) = 0;

% loop through all possible values of tumor age at the first exam

for i = 1:t

% use s(i) to accumulate the value of p(t) for each possible age at the

% first exam; initialize s(i) to 0.

s(i) = 0;

time = i;

prev = 0;

if time < 1686

while time + t < 1686,

s(i) = s(i) + (d(time)*(1-prev) + prev)*(h(time + t) - h(time));

time time+t;

prev = d(time)*(1-prev) + prev;

end

s(i) = s(i) + (d(time)*(1-prev) + prev)*(h(1686) - h(time));

end

s(i) s(i)+ 1 - h(1686);

p(t) = p(t) + s(i);

end

end

p(t) = p(t)/t;

end
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1.2 Model M3

function [p] = m3 (d, h)

% d is the probability of detection, as function of tumor age

% h is the probability of metastasis, as function of tumor age

% d and h have to have the same length, 6000

% the function returns the probability of no metastasis before detection

% as a function of T for values of T from 1 to 6000

% loop through all possible values of T

for t=1:6000

p(t) = 0;

% loop through all possible values of tumor age at the first exam

for i = 1:t

% use s(i) to accumulate the value of p(t) for each possible age at the

% first exam; initialize s(i) to 0.

s(i) = 0;

time = i;

prev = 0;

if time < 6000

while time + t < 6000,

s(i) = s(i) + (d(time)*(1-prev) + prev)*(h(time + t) - h(time));

time = time+t;

prev = d(time)*(1-prev) + prev;

end

s(i) = s(i) + (d(time)*(1-prev)+prev)*(1 - h(time));

end

p(t) = p(t) + s(i);

end

end

p(t) = p(t)/t;

end
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function [p] = m3self (d, h)

% d is the probability of detection, as function of tumor age

% h is the integral of the product of the density of metastasis and the cumulative distribution

% of the detection by self-examination, as function of tumor age

% d and h have to have the same length, 6000

% the function returns the probability of no metastasis before detection

% as a function of T for values of T from 1 to 6000

% loop through all possible values of T

for t=1:6000

p(t) = 0;

% loop through all possible values of tumor age at the first exam

for i = 1:t

% use s(i) to accumulate the value of p(t) for each possible age at the

% first exam; initialize s(i) to 0.

s(i) = 0;

time = i;

prev = 0;

if time < 6000

while time + t < 6000,

s(i) = s(i) + (d(time)*(1-prev) + prev)*(h(time + t) - h(time));

time = time+t;

prev = d(time)*(1-prev) + prev;

end

s(i) = s(i) + (d(time)*(1-prev) + prev)*(h(6000) - h(time));

end

p(t) = p(t) + s(i);

end

end

p(t) = p(t)/t;

end
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