
A Self-healing Dynamically Distributed System

for Hotel Management using JavaSpaces

By

Tzer Hung Low

Submitted to the Department of Electrical Engineering and Computer

Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

July 2001

Copyright 2001 Tzer Hung Low. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author_
Department of Electrical Engineering and Computer Science

July 19, 2001

Certified by

Accepted by_

Chairman,

D &dnr upta
S iS ervisor

At-thur C. Smi th

Department Committee on Graduate Thesis

BARKER
MASSACHUSETTS INSTITUTE

OF TECHWXOLGY

UL 3 1 2002

LIBRARIES

I

A Self-healing Dynamically Distributed System for Hotel Management using JavaSpaces

By

Tzer Hung Low

Submitted to the Department of Electrical Engineering and Computer Science

July 19, 2001

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

Abstract

We present the design and prototype implementation of a low-cost Hotel Management

System. In this system, computing devices are distributed throughout the hotel and

connected via Ethernet. A number of central processes dynamically create or destroy

processes on each computing device as required. Processes communicate either via

JavaSpace or directly through the Jini architecture. Redundancy ensures that the system is

robust, while Jini Leases ensure that the system is self-healing. Several services needed

for Hotel Management are proposed. One major innovation is the use of biometric

authentication tools for identification and access controls. The task of matching a given

fingerprint to a lists of possible templates is divided by templates in JavaSpace. Another

major innovation is the use of mobile Software Agents for scheduling multiple, bundled

events. Our prototype has served well as a "proof-of-concept", and with further work, we

are optimistic that this can become a practical system for Hotel Management.

Thesis Supervisor: Dr. Amar Gupta

Title: Co-Director, PROFIT Program, MIT Sloan School of Management

2

Acknowledgments

First, I would like to thank Dr. Gupta for providing me the opportunity to work on a challenging

and rewarding project. I would also like to thank Annie Lo, Steve Song and Yu Shuo Low for

providing me with direction, motivation and support for this thesis. Finally, I would like to thank

my family for their support in my endeavors.

3

Table of Contents

1 Introduction... 11

1.1 Current trends in hotel industry .. 12

1.2 Sum m arized Vision of our ideal hotel .. 14

1.3 About our project ... 15

1.3.1 Case Study: The SunSprings Project ... 15

1.4 Project Scope ... 17

1.5 Paper Roadm ap ... 18

2 D etailed Vision of ideal hotel ... 19

2.1 Detailed Vision of ideal hotel for hotel guest ... 19

2.1.1 Renting a room ... 19

2.1.2 Checking in ... 20

2.1.3 Entering the room ... 21

2.1.4 Enjoying built-in facilities in guest room ... 21

2.1.5 Enjoying hotel facilities .. 23

2.1.6 Checking out of the hotel.. 25

2.2 Detailed Vision of an ideal hotel for a hotel m anager 25

2.2.1 Obtaining the required com ponents .. 25

2.2.2 Setting up the system .. . 27

2.2.3 M aintaining the system ... 28

2.2.4 U sing the system .. 30

3 Related Efforts 32

4

3.1 Commercially available hotel systems... 32

3.1.1 Room Reservations System .. 33

3.1.2 Access Control System .. 38

3.1.3 Summary of commercially available solutions...................................... 38

3.2 Related Efforts in Biometrics Authentication and Identification 39

3.2.1 Reasons for choosing Biometrics Authentication and Identification 39

3.2.2 A survey of current biometrics literature ... 41

3.3 Related Efforts in Yield Management .. 43

3.4 Related Efforts in Networked Systems .. 44

3.4.1 Traditional Networked Systems... 44

3.4.2 Remote Object Systems .. 46

3.4.3 Service Discovery Protocols.. 47

3.4.4 The Jini Architecture.. 48

3.5 Related Efforts in Distributed Processing... 50

3.5.1 Tuple space based coordination languages ... 50

3.5.2 JavaSpaces ... 51

3.5.3 Reasons for choosing JavaSpaces... 53

3.5.4 Mobile Agents... 56

3.6 Background Information on Tiny InterNet Interface (TINI)......................... 58

4 Design Overview ... 60

4.1 Considerations and Criteria.. 60

4.2 Design of the Hotel Management Software.. 61

4.2.1 Class Hierarchy... 61

5

4.2.2 D rones ... 64

4.2.3 Sum m ary of specific D rones.. 64

4.2.4 A gents ... 65

4.2.5 Summary of Specific Agent Drones and their Agents.......................... 66

4.3 Layout of the H otel M anagem ent H ardw are ... 67

4.3.1 TIN I at every access point .. 67

4.3.2 D esktop Com puters.. 67

4.3.3 Floor Servers... 68

4.3.4 Central Servers.. 69

4.3.5 Rationale for our design... 70

4.3.6 D iscussion on other possible layouts .. 72

5 D etails of softw are im plem entation .. 74

5.1 Drones: Processes that communicate via JavaSpace 74

5.2 D etails on som e specific D rones.. 77

5.2.1 Q ueen .. 78

5.2.2 H atchery .. 79

5.2.3 Registration D rone .. 81

5.2.4 U ser D rone ... 82

5.2.5 Fingerprint D rone.. 83

5.2.6 King ... 84

5.2.7 A uth D rones ... 91

5.2.8 Application D rones ... 92

5.3 Agent Drones: Processes that can communicate directly 93

6

5.4 Details on som e specific Agent Drones .. 96

5.4.1 D atabase Agent Drone ... 96

5.4.2 Adm inistrative Agent Drone.. 97

5.4.3 M essaging Agent Drone .. 99

6 Specific Scenarios... 101

6.1 Check-in.. 102

6.2 Access-Control.. 104

6.3 Logging-in... 107

6.4 Scheduling Activities .. 110

7 Evaluation ... 113

7.1 Fulfillm ent of design goals ... 113

7.1.1 Provide comprehensive services... 113

7.1.2 Provide superior services.. 113

7.1.3 Com putational Efficiency. .. 114

7.1.4 Easytoinstall.. 114

7.1.5 Easy to m aintain.. 115

7.1.6 Easy to upgrade and backup. .. 115

7.1.7 Affordable... 116

7.1.8 Custom izable... 116

7.1.9 Scalable... 117

7.1.10 W eb-enabled. .. 117

8 Conclusion .. 119

8.1 Future W ork .. 119

7

8.1.1 O ther D istributed O bject System s .. 119

8.1.2 Better w ay to scale JavaSpaces... 120

8.1.3 Integration w ith other system s .. 121

8.2 Sum m ary ... 121

9 References... 123

9.1 G eneral:... 123

9.2 Com m ercial H otel M anagem ent System s:.. 123

9.3 A uthentication and Identification ... 124

9.4 Y ield M anagem ent.. 125

9.5 N etw orked System s .. 125

9.6 D istributed System s .. 127

10 A ppendices.. 128

10.1 Package D rone .. 128

10.1.1 Class drone.D rone... 128

10.1.2 Class drone.anywhere.Q ueen.. 143

10.1.3 Class drone.anyw here.King .. 151

10.1.4 Class drone.anywhere.H atchery.. 159

10.1.5 Class drone.anywhere.U serDrone... 162

10.1.6 Class drone.anywhere.A uthDrone .. 167

10.1.7 Class drone.anywhere.ScheduleD rone.. 174

10.1.8 Class drone.anywhere.BillingD rone ... 181

10.1.9 Class drone.anyw here.ReaderD rone... 183

10.1.10 Class drone.anyw here.ChatD rone... 185

8

10.1.11 Class drone.anywhere.agent.AgentDrone... 188

10.1.12 Class drone.anywhere.agent.AdminAgent.. 191

10.1.13 Class drone.anywhere.agent.AdminAgentDrone................................ 193

10.1.14 Class drone.anywhere.agent.MessagingAgent 195

10.1.15 Class drone.anywhere.agent.MessagingAgentDrone 197

10.1.16 Class drone.frontdesk.RegistrationDrone ... 205

10.1.17 Class drone.tini.FingerPrintDrone .. 208

10.1.18 Class drone.droneEntry.DroneEntry ... 211

10.1.19 Class drone.droneEntry.RefreshEntry .. 211

10.1.20 Class drone.droneEntry.DeathEntry ... 211

10.1.21 Class drone.droneEntry.QueenEntry .. 212

10.1.22 Class drone.droneEntry.HatcheryEntry .. 213

10.1.23 Class drone.droneEntry.RegistrationEntry ... 213

10.1.24 Class drone.droneEntry.MessageEntry... 215

10.1.25 Class drone.droneEntry.AuthRequestEntry .. 216

10.1.26 Class drone.droneEntry.AuthResultEntry... 218

10.1.27 Class drone.droneEntry.QueenCreateRequestEntry 218

10.2 P ackage gui ... 2 19

10.2.1 Class gui.RegistrationGU I.. 219

10.2.2 C lass gui.ChatG U I.. 227

10.2.3 Class gui.M essagingG U I .. 230

10.2.4 Class gui.MessagingManagerGUI.. 233

10.2.5 C lass gui.LogO nG U I .. 235

9

10.2.6 Class gui.ScheduleG UI... 237

10.2.7 Class gui.ScheduleChooseTargetGUI... 244

10.2.8 Class gui.BillingGU I... 245

10.2.9 Class gui.U serGU I.. 251

10.3 Package com m on .. 254

10.3.1 Class com m on.Utilities... 254

10.3.2 Class com m on.EventID .. 258

10.3.3 Class com m on.FingerPrintConst .. 259

10.3.4 Class com m on.A gentlnterface.. 260

10.3.5 Class com m on.A dm inAgentInterface... 260

10.3.6 Class com m on.M essagingA gentInterface... 260

10.4 Package guestApplications ... 261

10.4.1 Class guestApplications.Applications... 261

10.5 Corba... 262

10.5.1 Room Booking ... 262

10

1 Introduction

This thesis attempts to build the framework for an innovative Hotel Management System.

The proposed Hotel Management System is a cross-platformed, dynamically distributed

system that is modular, self-healing, plug-and-play enabled, and that allows for adaptive

parallelism. In addition, this thesis attempts to use biometrics identification methods for

access control, as opposed to the traditional method of using physical tokens.

The proposed Hotel Management System is not for all hotels. There are many ways to

increase revenue or decrease costs in existing hotels. A solution that suffices a five-star

hotel in Indonesia where the annual per capita income is only $2,830 [1.1] may not

accommodate a three-star hotel chain in the United States where the annual per capita

income is $31,500 [1.1].

The design we propose is technologically driven. Therefore, it is only appropriate where

the marginal cost of providing a service via technology is less than the marginal cost of

providing an equivalent service via non-technological means. For example, providing a

method of taking room-service food orders via computer may not be viable in Indonesia,

where the cost of leasing a computer is more than the cost of paying a butler to service

every room. On the other end of the spectrum, international five-star hotel chains with

their own Hotel Management Systems with features such as centralized reservations will

probably show little interest in our thesis. This thesis neither details a cost-effective way

to integrate with their legacy systems, nor does it propose a solution that takes advantage

of the same economies of scale as they do.

I I

Thus, the focus is to provide a solution for the middle range of hotels, such as a four-star

hotel chain, for whom currently available technology is affordable and can also provide

valuable services to bring them on par with the five-star hotels. In line with this focus, the

proposed implementation uses inexpensive off-the-shelf components, such as inexpensive

desktops and servers, to keep hardware costs low. The system is a plug-and-play solution

with a modular design to keep installation, maintenance, and upgrading costs low. The

solution is also designed for distributed computing with each computer working in

parallel so that it can compete with the computational power of the large five-star hotels

with more expensive computer equipment. The distributed computing platform is both

dynamic and self-healing so that an isolated failure will not bring the demise of the entire

system, thus providing the robustness demanded by hotels. The solution is cross-

platformed, so that it can use any operating system (preferably the one that offers the

most value). Finally, the solution is web-enabled and scalable to allow for a hotel to grow

into a hotel chain.

1.1 Current trends in hotel industry

With the evolution of the Internet, hotel customers can gain in-depth information about

hotel prices and quality before they step into a hotel. Therefore, current international

hotel chains, such as Hyatt, have experienced erosion in their advantages of international

reservation and quality assurance. [1.2] Hotel customers, now well informed about price

12

and quality through information sharing on the Internet, have more choices of lodging.

They demand more than just a brand name.

Therefore, the current trend in the hotel industry is to gain market share not by competing

on costs, but by services. In some cases, computers can provide service personalization.

For example, computers can help keep track of the guest's needs and complaints, provide

the guest with administrative services, and help to plan the hotel employee workflow.

While there are other methods to obtain service personalization, computers can

potentially allow hotels with a smaller budget to compete with hotels that spend

considerably more on service personalization.

Following recent trends, business travelers now demand larger hotel suites than smaller

hotel rooms. With the faster-paced working environment and the demand for

connectivity, business travelers are spending more time in their room, and using the hotel

room as an office. Aiding this revolution is the array of devices, such as laptops to

Personal Digital Assistants (PDA) to cellular phones, which allow the business traveler

connectivity and efficiency.

Therefore, demand is increasing for amenities such as room service, secretarial service,

laundry service, transportation service, Internet connectivity, video conferencing and

activities management. A competitive hotel will provide all these services.

13

1.2 Summarized Vision of our ideal hotel

Imagine that you are a business traveler that arrives at Perth, Western Australia late at

night. You proceed to the hotel at which you frequently stay. Instead of waiting in line to

be served by the understaffed night shift, you go directly to one of the numerous

computer kiosks in the hotel lobby. A fingerprint reader recognizes your identity, and

brings up your reservation if you have one, or offers to sell you a room (dynamically

priced) if you do not. Since your credit card information has already been previously

stored when you booked the room through the Internet, all that remains is for your to

verify the saved preferences of a non-smoking room with a single king-sized bed facing

the Swan River. After you have agreed to pay all charges incurred in another fingerprint

entry, a computer printout pops out. You head directly to your room.

Upon reaching your room, there are no physical key cards or tokens to lose, or personal

identifying numbers (PIN) to forget. A fingerprint is all you need to access your room.

Upon entry, you find that the fridge is stocked with your favorite beer and other groceries

that you have bought through NetGrocer.com, which is affiliated with the hotel. Your

wake-up call has already been set when Microsoft Hailstorm informed the Hotel Website

of your busy schedule tomorrow. In fact, your "to-do" list is on the sidebar of the

computer/television screen in front of your bed. All that is left for you to do is to check

your email using the wireless keyboard by your bed, to ensure that there have been no

unexpected changes in plan.

14

1.3 About our project

For this project, we are working in close conjunction with SunSprings Hotel and Spa, a

new hotel in Perth, Australia. In this alliance, we are able to focus on the needs of an

actual commercial entity, and better understand the cost structure and profit margins of a

typical four-star hotel. In doing so, we hope that our project will be able to help other

similar hotels around the world upgrade their services for a higher profit margin.

1.3.1 Case Study: The SunSprings Project

Much of the features in our initial prototype cater to the needs of SunSprings, which

fortunately shares many similar features as our target four-star hotel. For example,

SunSprings housekeeping policies are reflective of a typical hotel of the same size.

Depending on the season, there are three full time maids, and anywhere from ten to

fifteen part-time maids. One of their duties is a "full" clean of an apartment room when

the guests checks out, which takes an average of 30 minutes. On the other hand, a

"partial" clean for a guest that stays overnight takes an average of 20 minutes. Our

system improves the logistics and quality of the hotel housekeeping by (1) restricting

access control of maids only to rooms on their scheduled assignments, (2) dynamically

scheduling every maid when he or she shows up for work based on currently available

information of "do-not-disturb" messages and rooms that require "full" cleaning or

"partial" cleaning, (3) logging information about each maid so that statistics such as room

15

access and cleaning speed can be reviewed, and (4) allowing the guest to leave specific

instructions for the cleaning maid via a computer interface.

However, there are some specific differences that must be pointed out.

" Dual Usage Design: SunSprings' designs of the two-bedroom apartment

are different from those of a typical hotel. A hotel guest can choose the

option of renting the entire two-bedroom apartment, or each of the

individual rooms. Therefore, access control requirements become more

complex as two different customers can rent the 2 rooms in the apartment.

In particular, both customers need to have access to the main door, but

each customer needs only to have access to their specific room door.

" Captive Business Needs: SunSprings offers full captive business

facilities. This is a low cost solution for companies that require the

presence of a "virtual office" in Australia. Our solution needs to provide a

convenient method for scheduling access to business facilities, and

provide additional amenities such as video conferencing.

" Health Care Center: SunSprings allocates the full-fledged concept of

medical healing and recuperation in the premises. This "hotel health

concept" allow guests to create a health care model focusing on prevention

and early intervention. In particular, there are many facilities such as

16

Jacuzzi, Pool and Gymnasium that hotel guests have access to, but may

find inconvenient to have a physical key. There are also other non-

complimentary facilities such as acupuncture therapy and massage parlors

where hotel guests should be able to enjoy without carrying around a

wallet.

1.4 Project Scope

This project covers the following aspects of creating a Hotel Management System:

" Visualizing where technology can be an advantage.

" Designing the layout of the hardware components, and the architecture of the

software components.

* Implementing a software prototype that can be distributed across many

computers.

The following is not covered in this paper, since it was not needed for our "proof-of-

concept" system.

" Controlling an electric strike lock from a TINI Chipset.

" Interfacing the system with payment systems of major credit cards.

" Connecting the system to existing access control systems or telephone systems.

" Integrating the proposed solution with legacy hotel management systems

17

1.5 Paper Roadmap

Section 2 provides the detail vision of the ideal hotel, first in the perspective of a hotel

guest who uses the facilities of the system, and then in the perspective of the hotel

manager who, in addition to using the system, also has to purchase, set up, maintain and

upgrade the system. Section 3 discusses previous work in commercially available hotel

systems, biometrics authentication, yield management, networked systems and

distributed systems. It also provides background information on the TINI chipset. Section

4 provides the overview of our system design, both in terms of hardware and software.

Section 5 provides greater insight into the software design of our Hotel Management

System. Finally, section 6 illustrates the proposed Hotel Management System in action

through some scenarios, while section 7 evaluates the performance of the

implementation, and section 8 provides the conclusion.

18

2 Detailed Vision of ideal hotel

2.1 Detailed Vision of ideal hotel for hotel guest

Every hotel operates in a different environment with different wants and needs. This

section serves as a catalog of features, and with software modularity, hotels can

customize their own Hotel Management System by picking and choosing the features that

best meet their requirements.

2.1.1 Renting a room

A potential customer first contacts the hotel room reservation system of a hotel chain

through a telephone call, a travel agency network, or the Internet. Whatever the means of

his communication, our model customer is identified as a previous customer when he

presents his credentials. This brings up his user agent, which is able to guide him for the

rest of the reservations. The user provides the dates and preferred location of his expected

stay, and chooses to let his user agent customize the rest of the preferences: non-smoking

room, one king-sized bed, with adjoining kitchen, preferably with a view. The agent also

knows that the user prefers SunSprings Hotel and Spa in the heart of Perth, rather than

another hotel in the chain a little further from the city. The agent is sent via the Internet to

each hotel that is of possible interest, and then split further to inspect every room that is

available via the interaction with room agents. A list of possible choices is returned to the

user. Finally, by the user's selection of the ideal hotel room, or by the user's explicit

19

complain in that selection, the user agent learns from this experience to better serve the

hotel guest in future visits.

2.1.2 Checking in

The hotel guest finally arrives at the hotel. Being a traveling salesman from a near-by

town, he travels light, but expects many amenities to accommodate his needs. He skips

the queue at the front desk, and decides to check in at the express kiosk where he can

obtain similar service. Upon tapping the "check-in with previous reservation" button at

the terminal, he places his fingerprint on the 500 dpi fingerprint reader with built-in

encrypted communications to the server. If he had chosen the highest level of security

previously, his fingerprint template will only be stored in an encrypted format, and he

would have to enter the password to decrypt the fingerprint template for the rest of his

stay. If he were even more concern with privacy, he would have to check-in at the front

desk to receive a smart card, which will serve as a proxy for his fingerprint. Since he is

not so cautious about security, he did not choose either of the options, and the computer

system can attempt to identify him amongst the anticipated arriving hotel guests. Since

the identification task is performed via an adaptively parallel network of computers, he

receives a confirmation almost instantaneously. The computer system has already

checked that his credit card is still valid, and another fingerprint swipe represents his

approval to pay all charges in relation to his stay at SunSprings. A printout is also

available for his room number in case he forgets. In addition, his personalized business

card is also printed with his contact information so that others can contact him directly

either via telephone, or via the Internet. In fact, he has chosen his personalized business

20

card to contain his picture and his company logo, since he wishes to maintain a business

presence in Perth for his stay but does not have an office.

2.1.3 Entering the room

Upon reaching the room, the hotel guest uses his fingerprint to gain access, using similar

algorithms previously described. If he is traveling with companions, they too can have

similar access. Furthermore, if he rents many rooms in a large party, every member of the

party can have access to all of the rooms, if they so desire.

2.1.4 Enjoying built-in facilities in guest room

When he enters the room, he finds that his user agent has been doing a good job. In fact,

his user agent has been running behind the scenes ensuring that the cleaning maid does

not forget to include a razor kit, which is a non-standard item for the bathroom. (He has

previously informed the agent that he will need one on every trip since he travels light.)

The refrigerator is stocked with only his favorite foods, since he does not intend to eat out

during meal times when he is not entertaining. The digital photo frame by his bed has

been personalized to a picture of his family, and the automated bathtub is filled with

warm water. Furthermore, the fingerprint-controlled safe in his room allows him to

quickly store his valuables without setting a password.

21

He goes to the room computer which duals as a wide-screen television, and he feels that

it is one of the best features of the room. The computer interfaces with the user via a

wireless keyboard with attached fingerprint scanner, and also via voice recognition. He

sees that the user agent has already set his wake-up call on the computer screen, and has

even remembered which song he prefers to be played from a selection of music in MP3

format. From his computer, he can browser the Internet with a Java-enabled Web

Browser, or lease a selection of applications such as Word Processing, File Storage and

Spreadsheet Tools. He can also send a fax, or set up a conference call by entering a series

of telephone numbers or choosing entries from his online address book to be included. He

can view his hotel bill and his current rate, and extend or shorten his stay. If he has any

problems, he can participate in a live-chat with the hotel customer service, or leave a

message if they are unavailable. He can also use the same messaging facilities to

communicate with other hotel visitors wherever they log in from, or even friends who

load a special applet on the web page given in his business card.

He does a little paperwork, but decides that it is really too late to get substantial work

done. He is better off with a good start tomorrow. Deciding for breakfast-in-bed, he uses

the room service menu on the computer to order his breakfast. The user agent has

customized a short list, which he prefers. Although he may override the settings, the user

agent has remembered that he likes his eggs scrambled, and his coffee black. The time for

delivery is automatically set to 15 minutes after his alarm goes off. The hotel guest is not

sure if he likes this. He reconfigures the order to only be placed when he wakes up, just in

case he oversleeps.

22

The last thing our guest would like to do before he goes to sleep is to plan his schedule

for tomorrow. He would like to reserve a table for two (preferably non-smoking, but first

availability is more important) at the restaurant for lunch if he can also get a reservation

at the massage parlor. Otherwise, he would prefer to go somewhere else tomorrow. His

companion for lunch has also updated his schedule on a third party Applications Service

Provider (ASP). The user agent has to visit the restaurant reservations agent, and the

massage parlor reservations agent, and access his companion's schedule to try to make an

appropriate arrangement. It does so in a parallel fashion so that the NP-complete

scheduling problem can be done in polynomial time. For dinner, he does not have a

particular restaurant in mind. He visits the Activities Center on his room computer to find

currently available activities that has been filtered by his agent. In addition to having

access to the facilities within the hotel, he may purchase specially priced tickets to

musicals, amusement parks, bus tours, cinema shows, and other activities that are beyond

the boundaries of the hotel.

Having his entire day planned, our guest decides to go to bed. He turn his lights off, and

an electronic "do-not-disturb" indicator goes on, disallowing any housekeeping maid to

enter the room even if they tried with their fingerprints.

2.1.5 Enjoying hotel facilities

Other than the features in the hotel rooms, our ideal hotel also offers amenities

throughout the hotel. From the front desk, the hotel guest can rent notebook computers

23

that are part of the wireless local area network (LAN) set up within most areas of the

hotel, such as SunSprings' bamboo garden with therapeutic oxygen mists. The hotel guest

may also rent a wireless Blue-tooth enabled phone headset for use within the confines of

the hotel, or a cellular phone if he plans to make and receive calls outside of the hotel.

The cellular phone also duals as a Personal Digital Assistant (PDA), and he can

synchronize any PDA, rented or his own, at the many computer kiosks around the hotel.

From the download points, he can obtain maps of the region, information about hotel

facilities and current activities, and his hotel digital business card. He may also hot sync

his address book information to the hotel's database, so that he can easily make

conference phone calls from his room computer on this and future trips.

In fact, there is little distinction between the room computers, the computer kiosks around

the hotel, and the computers anywhere else within the hotel. His fingerprint offers instant

identification, which allows him to have access to the same computing facilities

anywhere. For example, our hotel guest may have prepared a presentation slides from his

hotel room last night, and he may easily retrieve and show the same presentation in the

computers in the meeting rooms at the business center. He may be in the hotel lobby

ordering room service so that food will be available when he returns. He may also be

surfing the web on the rented wireless notebook, and querying if his wife has finished her

session of aromatherapy.

Furthermore, all services in the hotel can be accessed and paid for using the guest's

fingerprint. This is convenient in exercise facilities where the guest does not have to

bring a physical key when he goes jogging or swimming. If he decides to purchase a

24

drink at the bar, he does not have to remember his wallet. The guest merely has to scan

his fingerprint, and his account will be billed directly.

2.1.6 Checking out of the hotel

The guest can choose to check out at the front desk or from any computer in the hotel.

This is possible because there is no key to return, and his fingerprint can be accepted

anywhere to prove his acceptance to pay for the charges. During checkout he will receive

a detailed window explaining his charges, and he will also receive reminders, such as for

items left in his room safe. He also has the option of obtaining transportation services

such as hiring a taxi to the airport. Finally, before he leaves, he has the option of erasing

all biometric information stored, or he may choose to protect the biometric templates by a

password.

2.2 Detailed Vision of an ideal hotel for a hotel manager

Our ideal Hotel Management System is useless if it provides all the benefits to the hotel

guest, but does not ultimately provide the required returns on investment to the hotel

manager or hotel owner. This section will detail the vision on how the typical hotel

manager can (1) obtain the components required, (2) set up the system for the first time,

(3) maintain the system, (4) use the system, and (5) upgrade and administer the system.

2.2.1 Obtaining the required components

The required components are:

25

* 1 Tiny InterNet Interface (TINI) for every access control point where a fingerprint

reader is located. These are expected to go as low as $15 in time to come, but are

currently about $50. More information on TINI is available in the next section on

Background Information.

9 1 Fingerprint Scanner at every access control point, and at every computer

terminal. These are expected to go as low as $10-$20 from our conversations with

ETrue [1.3]. However, they are currently priced at about $60-$80.

0 Computer Desktops in every room, and several running at public locations around

the hotel. Each computer should come installed with a standard Ethernet Card.

These computers cost as low as $400 especially if they run the free operating

system, Linux.

0 Computer Servers, preferably 1 on every floor and at least 1 at the hotel front

desk. These computers need not be extremely powerful. A Pentium III with 512

Mbytes of SD-RAM, hard drive, CD-R and Ethernet from TigerDirect [1.4] costs

less than $1000. These Computer Servers may need to run the Windows 2000

Operating System to be compatible with some Fingerprint Authentication SDKs.

0 Notebook computers, Personal Digital Assistants, Cellular Phones and other

optional equipment will have to be purchased separately.

Since the proposed solution only uses off-the-shelf components, the cost is notably low.

The biometrics industry is ripening for the mass-market, and the cost of biometrics

hardware is expected to go down as industry leaders such as Compaq make them standard

in notebook computers. Next, the solution uses TINI [1.8] extensively. TINI offers a

26

commercially appealing price tag of $15, and yet a Java Virtual Machine and a web

server through its Ethernet Interface. Furthermore, the ideal solution uses cheap desktop

computers and servers rather than expensive ones. Ideally, adaptively parallel algorithms

in a dynamic distributed environment will make up for the slower processing power.

We also note that the cost of computing materials will go down over time, especially with

items in the lower end of the computing power spectrum.

2.2.2 Setting up the system

Our ideal Hotel Management System is easy to set up. All computers and devices are

preloaded with the same small Java client software, of which one function is as a

networked software launcher. The software is built on the Jini architecture, thereby

offering spontaneous networking (without any configurations) and dynamically loaded

services. In addition, the severs on each floor and at the hotel front desk will have

additional specialized software, such as the biometrics authentication SDKs, JavaSpaces,

Transactions Service, and Lookup Services.

Upon wiring together the computing devices via Ethernet and powering up, each

computing device will differentiate itself through a generation of a unique ID, which it

will save for the life of the device. From the unique ID, the central server can identify

whether the device is a TINI board, or a computer kiosk, or a floor server, and will

dynamically load the correct software to run on the respective computing devices. It

remains to associate each fingerprint reader with the correct room numbers, assuming

27

that no labeling is done during the installation of the system components. The hotel

manager walks the hotel once, scanning his fingerprint in sequential order. This is the

only task that requires a human intervention, for the setup of the system.

The next section will provide an adequate background on the Jini architecture, and the

TINI platform.

2.2.3 Maintaining the system

Our ideal Hotel Management System is easy to maintain, because it is (1) self-healing

and robust, offers a (2) central and modular code-base that allows for easy upgrades,

offers a compelling (3) dynamic load-balancing scheme that promotes scalability.

2.2.3.1 Self-healing

A self-healing network is one that allows the individual devices to attach to and detach

from the network without disturbing the main application. Our ideal Hotel Management

System is self-healing because users of services do not rely on specific servers but

whatever is currently available.

This makes it particularly easy for a hotel manager to maintain the system. For example,

if all the floor servers go down, the TINI boards that host the fingerprint readers can still

find an Authentication Service at the Hotel Front Desk. If the floor servers go up again,

or if new servers are added, they will announce their presence so that their services will

28

be used again. As another example, if a hotel manager wants to disconnect a server for

reasons such as backup or upgrading, he or she can do so without affecting the

performance of the entire system.

Furthermore, every transaction is only valid for a fixed amount of time, the lease period.

This prevents the accumulation of redundant data or the permanent blocking of services,

since such resources will be freed when the lease expires. Thus, the manager does not

have to monitor the accumulation of objects or services in the computing space.

2.2.3.2 Central and Modular Code-base

Each piece of software in the Hotel Management System is divided into objects by the

service they perform, and is stored on central servers. All the other computing devices do

not contain any specific software except the dynamic software loader. Therefore, the

hotel manager need only install any new versions of software with the central servers.

There is no need to walk around the hotel trying to install specific applications on the

various computers. Once the software in the central servers is updated, all other

computing devices can be called upon to destroy threads of old process and run the new

version.

2.2.3.3 Dynamic Load Balancing

29

The central servers in our ideal system perform dynamic load balancing, which uses the

current system state to optimize performance. This is done by assigning tasks to nodes

better suited for certain tasks due to specific advantages in hardware, or by assigning

tasks to nodes that just have less work that other nodes. With dynamic load balancing, the

hotel manager can scale up the computing power of the system as required, by adding

more computers to the network, or adding computers with different computational power.

2.2.4 Using the system

The ideal system allows for the tracking of employees and the signing of their timecards.

The fingerprint readers everywhere can serve as a check-in point for employees. The

manager can receive logs on when an employee first arrives at the hotel, or the length of

time a housekeeping maid has spent in each room, and the exact rooms that each

employee has access to.

The hotel system also manages the scheduling logistics. Through the dynamic interaction

of the employee-scheduling agents, room-scheduling agents and the hotel guest agents,

each employee can receive a detailed printout of the rooms that he or she has to clean, the

type of cleaning that is required, and any special instructions that is left by the hotel

guest. The system always has up to date information on whether the hotel guest has

turned off the "do-not-disturb" signal, left the room, or checked out of the room, allowing

for more efficient usage of cleaning resources.

30

Employee access control is another natural extension to our system. Unlike traditional

hotels, housekeeping maids need not have a master key or a key to a specific floor. They

have access only to their scheduled rooms, and only if the electronic "do-not-disturb"

signal has been turned off.

Lastly, our ideal system will implement yield management algorithms to maximize

revenues through dynamic pricing. Our hotel offers many services, and already has user

agents remembering the preferences of each user. By understanding the customer's

desires, yield management can be used to predict consumer behavior at the micromarket

level and optimize product availability and price to maximize revenue growth. An

example of an application of yield management is dynamically pricing a bundle of

services that a potential guest may enjoy at a price that will be attractive for him.

Yield Management can be used to predict the supply and demand constraints in a hotel so

that a pricing scheme is optimized. Some non-linearity in pricing exists. For example, it

is much more expensive to do a full clean upon a guest checkout, than a partial clean

upon an extension of a guest stay. Our Yield Management algorithms need to understand

both the revenue and cost sides of the equation.

31

3 Related Efforts

This section provides information of previous work in related fields, as well as,

background information needed to understand the technologies used in our hotel system.

Unlike many other papers, this section covers a broader range of material, primarily

because our project tends to be a broad one that requires the understanding of many

fields. Section 3.1 explores current commercially available hotel solutions. Section 3.2

will then explore advantages of biometrics authentication and identification, and discuss

recent literature in that field. Section 3.3 gives a short introduction to the field of yield

management, while section 3.4 discusses the various models of computer networks.

Finally, section 3.5 covers related efforts in parallel distributed computing models and

section 3.6 provide a brief introduction to the TINI platform.

3.1 Commercially available hotel systems

Hotel management is not a new concept. Large hotel chains have proprietary hotel

management systems, some of which are very comprehensive and modem. However, the

cost of modem technology has dropped to a point that a good hotel management system

can be easily available to smaller hotels and hotel chains. However, it is surprising to find

few comprehensive and yet affordable Hotel Management Systems. Instead, there are

fragmented solutions such as Reservation Systems, and Access Control solutions.

32

3.1.1 Room Reservations System

InnSystems [2.1] offers a simple reservation system with a good graphical user interface.

It even offers a simple web site where hotel guests can book rooms over the Internet.

Other than these simple features, it is generally unappealing compared to other room

reservation systems in its class. For example, the system is not compatible with industry

standards such as the Structured Query Language (SQL), making it incompatible with

other applications.

GuestLine [2.2] offers a competing product to InnSystems. It has a more open

architecture, which allows data to be extracted and entered through SQL. It also

implements a two-tiered pricing model, where the price increases once a threshold

occupancy rate is reached. While it is appealing in some aspects, it falters in other

aspects. For example, it does not allow Internet reservations.

Digital Rez Software Corp. [2.3] offers a more competitive solution with ROS2000.

ROS2000 is an integrated reservation management software system that can link various

motel chains via the Internet. Various database synchronization methods ensure data

integrity, and with adequate bandwidth, real-time synchronization can be maintained.

Their product also allows for online Internet based bookings from wholesalers, travel

agent bookings, and individual travelers. Finally, the integrated report engine provides

report generation capability for efficient management.

33

InnFone [2.6] deserves a special mention because of its unique solution. InnFone uses the

telephone network for networking, via connecting all the telephones to a central station

that provides telephone control and voicemail. Front desk personnel can query for empty

rooms with specific search criteria using special codes on their phone system. A separate

computer interface then allows for the actual guest to be registered. The computer

interface can also set up calling permissions and rates on each room, and provide a

detailed log and billing on each guest's room rates and call usage. The phone system is

also used by house keeping who enter special codes as they begin and finish cleaning the

room. This allows the computer system to know when the room is available for

Other than these examples, there are countless other room reservations systems such as

Reservations Plus, Inc. [2.4] and Inn Scheduler [2.5]. Most allow for a graphical user

interface to view the general vacancy of the hotel, such as in figure 4.1.

34

Figure 4.1. An overview of the hotel vacancy

In addition, the systems allow for entry of guest information, such as name and credit

card number. A typical system is shown in Figure 4.2.

35

Figure 4.2. A typical interface for guest information entry and retrieval

Finally, a typical system will allow for room rates to be set, and an invoice to be printed

when the guest checks out. Figure 4.3 shows a typical screen for a guest checkout.

36

Figure 4.3. A typical screen for a guest checkout

We find most of these commercially available solutions to be targeting the low-end hotel

chains, rather than the middle range of hotels that we are targeting. They are generally

lacking in many features. For example, they do not allow for yield management where

prices change dynamically according to factors such as demand and availability. They do

not harness the true power of the Internet to customize preferences, such as wake-up call

schedules or breakfast-in-bed orders, either with ad hoc methods or through support for

technologies such as the Microsoft Hailstorm initiative.

37

3.1.2 Access Control System

Hotel Access Control Systems are often packaged as a separate product. An example of

one company that provides access control solutions to Hotels is TesaLocks [2.7]. An

image of their solution can be seen in Figure 4.4 below.

Figure 4.4. TesaLocks Solution for Hotel Access Control

Whenever a new hotel guest checks in, a person in the front desk will have to obtain a

new key card, and manually code the card using a special device. The key card then

unlocks the correct hotel door but only for the length of the hotel guest's stay.

TesaLocks' system also logs the entry and exit of individuals in a hotel room, through the

different key card used.

3.1.3 Summary of commercially available solutions

Specific criticisms about currently available solutions have already been discussed. In

general, the biggest problem with currently available solutions is that they are

38

fragmented. For example, they provide for room reservations and sometimes billing

solutions, but they are separate from access control systems, or the wake-up call system,

or the room service system. In order for the hotel to function, it is then necessary for a

human counterpart to perform the necessary tasks of interfacing between these systems.

Therefore, to check into a hotel, a person has to be running the front desk. While the

check-in process for a previously reserved room may be automated, the hotel staff has to

enter the access control codes on another system, physically code a key card, and present

it to the hotel guest. It is hard to implement an express check-in kiosk where a frequent

customer can check-in without the assistance of a hotel staff.

In conclusion, currently available hotel management software for the middle to low-end

hotels leaves much to be desired. While the use of the Internet and databases has become

more widespread, they have not been implemented or have not been implemented

effectively in the existing hotel management systems. Furthermore, the hotel

management software packages concentrate on room reservations and leaves room

pricing to be accomplished with simple or tedious schemes. The software packages are

also independent from the access control system. Although some communication can take

place between the two systems, the lack of unity discourages the implementation of

express check-in kiosks and causes more work for the hotel desk personnel.

3.2 Related Efforts in Biometrics Authentication and Identification

3.2.1 Reasons for choosing Biometrics Authentication and Identification

39

There are basically three methods of authentication, each posing a different challenge.

" What you have. In this case, a user can gain access to a resource if he or she has

the required token. In the case of a hotel, this is typically a key card, such as in the

commercially available access controls systems discussed in the previous section.

" What you know. In this case, the user can gain access by providing a password.

Examples of this are the keypad entry systems, where a person has to enter a

sequence of numbers before being let in.

" Who you are. In this case, a user gains access via presenting a set of biometric

features that is unique to the user. For example, the user may provide a voice

sample or a fingerprint image to be authenticated.

To choose an access control system, we had the following criteria:

" The system should be convenient to use.

* The system should be simple enough to be used by all types of users.

* The system should integrate seamlessly with the rest of our hotel management

system.

" The system should have an unparallel level of security.

* The system should not just offer authentication but also identification, so that it

can dual other features such as billing in services obtained within the hotel.

From the following criteria, the best possible implementation of access control was

through biometrics. A physical token system such as the use of keys, key cards, iButtons,

Smart Cards and USB tokens did not meet our criteria because the hotel guest is

40

inconvenienced by having to carry the card whether he or she goes. Furthermore, a

physical token can be stolen and hence pose as a security hazard. Moreover, it was hard

to use off-the-shelf components to vend physical tokens, as necessary for an automated

express check-in kiosk.

On the other hand, a password access system did not meet our criteria either. The system

is not simple enough to be used by all users, especially the elderly or the young who have

problems remembering passwords. This leads to passwords being written down, and

hence a security hazard.

In both physical tokens and password schemes, true identification is not provided. What

has been identified is really only that a particular person is carrying the valid physical

token, or that he or she knows of the password for some reason. [3.1] This makes it more

difficult to be used for identification, especially for purchasing services around the hotel.

For example, if someone disputes a charge for a restaurant meal, he or she may claim that

his or her keycard or password was compromised, and it may be hard for the hotel to

prove otherwise. On the other hand, if a valid biometric data was submitting, the hotel

may have a stronger claim on that transaction, especially with error rates such as 0.001%

[3.1, 3.2, 3.3].

3.2.2 A survey of current biometrics literature

According to the BioAPI Consortium [3.4], the process of using Biometric technology for

authentication can be divided into two sub-tasks. The first task is Enrollment, where the

41

physiological or behavioral characteristics of the individual is recorded and calibrated

into a template. The second task is Verification or Identification, where the individual is

verified with a single template or matched with a multitude of templates.

Jain, Hong, Pankanti and Bolle [3.5, 3.8] describe in detail how enrollment and

identification can be implemented in a fingerprint identification system. Ridges are first

detected using a local maxima algorithm on a grayscale fingerprint image. Minutiae

detection follows by using the ridge map as a starting point and smoothing for breaks

between ridges. This information can be stored in a template for future identification. The

identification procedure will align the observed fingerprint against this template

(considering rotations), and obtain a fitness score.

Ratha, Connell, and Bolle [3.6] point out possible attacks on biometric identification

systems. One possible attack is the capture and replay of previously sent biometric data.

This brings up the need for the biometric device to encrypt and time-stamp all

information leaving the reader. Another possible attack is a brute force approach, where

different fingerprint combinations are attempted. Increasing the image resolution can

prevent this.

Finally, privacy concerns about capture of biometrics information can be alleviated

through Cancelable Biometrics [3.7], where the biometric information such as a

fingerprint can be warped using a randomly generated seed and a one-way

42

transformational mapping, before being stored to a template. Destroying the seed

effectively renders the template useless, therefore canceling the identification ability.

3.3 Related Efforts in Yield Management

Robert G. Cross defined Yield Management or Revenue Management as "the application

of disciplined tactics that predict consumer behavior at the micromarket level and

optimize product availability and price to maximize revenue growth". Yield Management

was applied successfully to the airline industry in 1980s when deregulation was the catch

phrase. Since then, it has been applied to other service industries (that tend to have a large

latitude in pricing) such as in rental car companies and hotels.

Ryzin and McGill [4.1] provide a good overview of how to forecast demand functions,

control overbooking to maximize profits in the airline industry. While still useful, much

of the yield management literature is more focused the airline industry, which has a

different operating environment than a hotel. For example, the network structure is

different, since airline passengers go from an origin to a destination via journey legs,

while hotel guests stay within the same room in consecutive nights stays. As another

example, hotel patrons often change their length of stay at a moments notice, but airline

passengers less frequently change the journey legs on their flight. However, Baker [4.2]

specifically focused on the hotel industry and developed heuristics to model and optimize

for consecutive nights and varying length stays.

43

3.4 Related Efforts in Networked Systems

This section provides background information on Networked Systems. It begins with the

traditional models of networking where data is transferred from client to server. It then

discusses Remote Object Systems where code and data is transferred. Thereafter, section

3.4.3 discusses the evolution of static computing networks to dynamic spontaneous

networks through Service Discovery Protocols. Finally, section 3.4.4 describes the Jini

Architecture as a specific example of a Service Discovery Protocol.

3.4.1 Traditional Networked Systems

Since computers were first built with applications that were stand-only units, the obvious

solution merely move data to the computation on computers that can handle such data.

By spreading computation over a set of computers, computational power is increased.

Furthermore, some computers are specialized for particular applications, or conversely,

some applications are written for certain operating environments. Since some pieces of

code cannot run on all computers, moving data to computers that can run the required

chuck of code is required.

However, different machines represent the same data in different formats. The byte order,

floating point format or word length may vary from computer to computer. For example,

the Ethernet standard suggests that bytes be encoded in "little-endian" style [5.1], i.e. the

least significant bit first. Other devices suggest that bytes should be encoded in "big-

44

endian" style, i.e. the most significant bit first. For data to be moved from one computer

to the next, they must share the same understanding of the way data is formatted.

Various standards for the description and encoding of data are created. For example,

External Data Representation (XDR) [5.2] was a Sun Microsystems protocol from the

mid 1980s. XDR has been used to communicate data between such diverse machines as

the SUN WORKSTATION, VAX, IBM-PC, and Cray. Another standard is the X.409,

ISO Abstract Syntax Notation, which is similar to XDR except for the fact that XDR uses

implicit typing, while X.409 uses explicit typing.

Using one of these standards, data can be transported from one computer to another

without any misunderstandings. Once the data is in the remote computer, the programmer

needs to specify what operations are applied to the data.

One way of specifying this is through a Remote Procedure Call (RPC). Birrell and

Nelson [5.3] provided an excellent background for the remote procedure call concept. In

a basic implementation, the caller process initially sends a call message to the server

process and waits for a reply message from the server. The call message includes the

procedure's parameters, and the reply message includes the procedure's results. Once the

reply message is received, the results of the procedure are extracted, and caller's

execution is resumed. Therefore, a RPC makes a remote call look to a programmer like a

local function call. Sun Microsystems RPC protocol [5.4] is one implementation that

allows for concurrency so that many clients can call the server at one time, and

45

asynchronous behavior so that each client will not block but rather may do useful work

while waiting for a reply.

3.4.2 Remote Object Systems

Yet another way to handle data in a remote computer is through a Remote Object System.

The motivation for a Remote Object System is that RPC models can ship complicated

data structures across a network, but they do not provide explicit support for objects in

Object Oriented Programming (OOP). OOP has many advantages, particularly code-

reuse and modularity, and more information can be found in [5.5, 5.6]. Such objects carry

code as well as data in a "black-box".

An example of a Remote Object System is Common Object Request Broker (CORBA).

CORBA is language-independent, using an Interface Definition Language (IDL) for

specification of interfaces of a distributed object system. [5.9]. In Distributed Object

Computing With CORBA [5.7], Steve Vinoski provides a good understanding of CORBA

and how to apply CORBA in C++ applications to allow C++ objects to run on remote

servers. Another example of a Remote Object System is DCOM. A detailed comparison

and discussion of CORBA and DCOM can be found in [5.8].

Java Remote Method Invocation (RMI) is Java's version of a Remote Object Model, and

it allows an object on one Java Virtual Machine (JVM) to run methods of another object

running in another JVM while hiding the low-level data representation and network

communication.

46

All of these systems from traditional models such as RPC or more recent Remote Object

Models such as CORBA share one similarity. They attempt to make the network

transparent, so that remote objects can be treat as they are local objects. [5.10] There is a

good rationale for this. By making the network transparent, programmers do not need to

relearn a new language, and much of the programs written for local software can be

reused as networked software.

3.4.3 Service Discovery Protocols

While Remote Object Systems allows objects on one machine to run on another machine,

the client has to seek the server before it can call upon the objects of the server.

Traditionally, in a fixed computing environment, this is performed by a lookup service

such as DNS, LDAP, and CORBA Naming Service. [5.12] These protocols do not allow

for spontaneous discovery and configuration of network services, since they were

primarily designed for a statically computing environment.

With the rising number of Internet Services, automatic service discovery become an

important feature. [5.13, 5.14] Services need to be able to make themselves available to

other devices or users without having any configurations. This means that users of such

services do not have to search for the IP addresses of installed devices or install device

drivers. They should instantly be able to locate and access the services that are available

in the network.

47

There are many Service Discovery Protocols such as Jini, Universal Plug-and-Play

(UPnP) [5.17], Salutation, Service Location Protocol (SLP) and Intentional Naming

System (INS) [5.15]. All of these protocols allow for services to announce their presence

and capabilities in a network as they become available, so that others can discover such

services with minimal administration and human intervention. A good comparison

between these protocols can be found in [5.14].

3.4.4 The Jini Architecture

For this thesis, the Hotel System is built on the Jini architecture. It is therefore important

for to give a brief background on Jini.

Jini is built on top of RMI, which provides for the low-level data representation and

network communication between services. Through Jini, services can be federated easily

into a single dynamically distributed system. [5.10, 5.11] The dynamic nature of a Jini

federation enables services to be added or withdrawn at any time, without adversely

affecting the performance of the federation. Thus, services can offer true "Network Plug

and Play" functionality --- they can locate other services in the network, advertise their

services, and obtain any required device drivers to communicate with other services.

This is performed by three basic protocols: Discover, Join and Lookup. Services in a Jini

network register themselves with the Discover and Join protocols. Discovery occurs

when a device or application finds a lookup service, either by a Multicast request

protocol if the location of a lookup server is unknown or otherwise by a Unicast request

48

protocol, while Join occurs when the device or application registers with the found

lookup service. Lookup occurs when a client or user needs to locate and invoke a service.

A finer-grain selection of services can be accomplished through the use of Entries that

contain descriptive information of each service [5.11].

There are 4 features of Jini that are particularly important for an implementation of a

commercial Hotel Management System.

The first feature is the security model, with notions of a principal and access control list.

This provides an additional layer of security in ensuring that housing keeping maids do

not have access to customer information for example.

The next feature is the concept of a lease. A lease is a term of commitment that is

negotiated between a service provider and a service user. This allows for the self-healing

properties of a Jini federation. A particular service cannot be tied up forever upon a

device or network failure, but in the worst case, will become available upon the expiring

of its leases.

The third feature is the concept of a transaction. Using the two-phase commit protocol

[5.16], a user can ensure that a series of operations either occurs together or not at all, but

in no case will one operation occur without the rest of the operations occurring. This is

particularly useful in ensuring that one account is debited only if another account is

credited.

49

The last feature is that of distributed events. An object may allow other objects to register

interest in events in the object and receive a notification of the occurrence of such an

event. This enables distributed event-based programs to be written with a variety of

reliability and scalability guarantees.

3.5 Related Efforts in Distributed Processing

This section explores recent work on Distributed Processing that can be performed on the

Networked Systems discussed in the previous section 3.4. Section 3.5.1 begins by

describing the Tuple-space model where processes share a distributed virtual memory

space. Section 3.5.2 then details JavaSpaces, which is used in the hotel software

implementation. Section 3.5.3 explains the rationale for choosing JavaSpaces. Finally,

section 3.5.4 describes mobile agents as another means of parallel computation, also used

in the hotel software implementation.

3.5.1 Tuple space based coordination languages

Linda [6.1] was the beginning of tuple space based coordination languages. A tuple is an

order set of fields, each field being defined by a type and a value. Tuples can be shared

between nodes through shared associated memory called tuple space. Tuples can be

searched and retrieved using templates. Templates are tuples that may have unspecified

values to match any value in tuple space.

50

Processes do not communicate directly, but rather by reading and writing variables into

tuple space. This concept results in interesting properties such as anonymous

asynchronous communication, networked variable sharing and expressive parallelism.

These properties are particularly useful for coordinating processes. Anonymous

asynchronous communication allows a central server, without blocking, to communicate

to many other process that many not even be running yet or may be temporarily

disconnected from the network. (This can be contrasted to parallel processing that

involves message passing or RPC calls between known servers to known clients.)

Networked variable sharing allows for processes to perform atomic transactions. Finally,

tuple space exhibits expressive parallelism because any task can be easily expressed into

many tasks, and left in tuple space to be evaluated as and when processes become

available.

There are many variants of Linda systems, such as the Piranha system [6.6], which offers

"adaptive parallelism" by allowing a set of processors to withdraw from computation as it

proceeds. There are also many tuple space based coordination languages other than

Linda. Examples include JavaSpaces, GLOBE [6.2] and IBM's T-Spaces [6.3]. We have

chosen to build our Hotel Management System using JavaSpaces, which we will detail in

the next sub-subsection.

3.5.2 JavaSpaces

Like Linda, a JavaSpace holds entries, which are typed groups of objects, in an

associative shared memory. Entries can be written to a JavaSpace and searched for using

51

templates. Similar to Linda, templates are entries with unspecified or null values for some

objects to denote wildcards.

The two lookup operations on JavaSpace are read and take. Read returns any entry that

matches the template, while write does the same except that that entry is also removed

from JavaSpace. In both cases, if there is no matching entry, a null value is returned.

A powerful extension to Linda is the Distributed Event Model. Processes do not have to

keep querying a JavaSpace for template matches. Instead, they can request to be notified

of such an event. Another improvement is the concept of Leasing, which is similar to that

of Jini. This frees the JavaSpace of garbage that may collect otherwise over time.

Like Linda, all operations that modify JavaSpaces are transactionally secure. For

example, this will provide assurances that no two processes will receive the same entry in

two take operations. In addition, multiple operations in several JavaSpaces of several

threads can be clustered together as one atomic piece through the use of Jini Transaction

objects. This will ensure that all of the operations or none of the operations will occur.

This is an improvement to Linda, which does not support multiple tuple spaces.

JavaSpaces also make it easy to perform parallel algorithms through a compute server.

[6.5] A compute server is a computing device that accepts tasks, computes them, and

returns results. A master process can generate tasks and write them as objects in

JavaSpace. Worker process will then read such objects and call specific methods of the

52

object that may run computationally intensive code, before writing the results back into

JavaSpace. The worker process is thus calling a similar function as eval() in Linda-type

systems.

By adding Jini Transactions into the takeO, eval() and write() operations of the worker

processes, JavaSpace can implement an adaptive parallel system similar to Piranha [6.6],

where a process can withdraw at anytime without adverse effects. While all of the

computation that has been done thus far is lost, the simplicity of the design is appealing.

This strategy is thus used in the Hotel Management System. As a specific example,

processes that identify a given fingerprint with a list of templates may withdraw or fail

without adversely affecting the result, since the Jini Transaction aborts and return the

unaccomplished task back into JavaSpace.

A more detailed description of JavaSpaces can be found in [6.4].

3.5.3 Reasons for choosing JavaSpaces

A critique of JavaSpaces for scientific computation can be found in [6.7]. The biggest

complaints about JavaSpaces are in space and time considerations. It was found that null

objects written in JavaSpace take up much more space than comparable systems. The

number of writes and reads per second is also lower than other technologies such as T-

spaces. The report also found that JavaSpaces was slower than sequential C++ in

applications such as Image Processing, Prime Number Generation, and Sequential

Iterators. In Image Processing, the file size was large, and consequently, the

53

communication to computation ratio was too large to rationally allow a parallel

processing environment. In Prime Number Generation, each prime was an entry in the

JavaSpace. Since there are 216K primes in the benchmark test, and since JavaSpace is

considerably slower than typical Linda systems for reads and writes, the combination of

these two factors quickly became the bottleneck. Lastly, in Sequential Iterators,

communication occurred between known senders to known receivers to share boundary

information. As a result, the advantages of JavaSpace were not reaped. Conversely, the

disadvantage of communicating through a central process became apparent.

We agree with most of what is said in [6.7]. JavaSpace, and even Java in general, is

currently slower that most other platforms. However, in some cases, the problems do not

apply to our proposed hotel system. In other cases, the advantages for the use of

JavaSpace far outweigh the disadvantages.

At face value, the example of Image Processing seems similar to our attempt to parallel

fingerprint recognition. However, after more in-depth research, we find that the example

of Imaging Processing does not apply to us. The largest entries that we are dealing with

are small fingerprint images or templates of images, both of which are less than 50

Kbytes. Moreover, these fingerprints are captured by TINI, which is a very weak client

unable to process the required authentication algorithms. Next, we are processing each

fingerprint image as a whole. The division of labor comes when we are trying to match a

given fingerprint with many templates given a One-To-One matching algorithm. If each

match takes 1 second and is sequentially executed, it would require 50 seconds to identify

54

a user against 50 possible templates. However, if 50 computers work on this problem in

parallel, the task is completed in 1 second plus an insignificant overhead in reading and

writing from JavaSpace. The total is still a fraction of 50 seconds and a more acceptable

figure.

The next example of Prime Number Generation shows how quickly a JavaSpace can

become a bottleneck if it has too many entries. For this reason, we choose to put only

current entries on the JavaSpace. Information that is not required for day-to-day

operation, such as information of departed hotel guests is stored in a SQL database for

future retrieval. This ensures that the number of entries is far lower than the 216K entries

of their example.

The last example where JavaSpace fails to provide acceptable performance is with

Sequential Iterators. Where specific messages have to be passed from a known process to

another, direct communication is preferred to indirect communication. For this reason,

the hotel software implementation uses another means of parallel computation. The next

section on Mobile Network Agents explains how they can be beneficial compared to

JavaSpace.

For the tasks that are ideal for a tuple-system, however, there are some strong reasons to

stick with Java and JavaSpace. They are listed here.

55

i. Java is platform neutral, which is important for our Hotel System. This means that

code written once, can literally run anywhere, whether it is on a $15 TINI

processor board running a JVM, or a $400 desktop running Linux, or a $1000

server running Windows 2000.

ii. In Java, process startup latency is incurred only once, allowing the cost of this

latency to be amortized over the running period of the process. This is not true for

other shared memory solutions such as PMI and PVM.

iii. We inherit all the advantages of the Jini platform, such as "Network Plug and

Play". A hotel manager does not need to configure the system for every node. In

fact, he or she never even has to install or update each node with new software.

Each remote node only needs to have a software launcher class, and will

download new versions of code from the server when it is commanded by the

server to do so.

iv. JavaSpace is persistent. During the failure of a JavaSpace, much of the data that

has been saved before the crash can be retrieved again.

3.5.4 Mobile Agents

This section discusses previous work on Mobile Network Agents, and attempts to

discover when they can be an alternative means of parallel computing to JavaSpaces.

Mobile network agents are programs that represent a user in a network. They can migrate

autonomously from node to node to perform computations on the behalf of its creator

56

[6.8]. At any node, they can obtain access to local services, data, or even other agents, if

they have the required credentials. Unlike remote procedure calls where a process

invokes procedures of a remote host, mobile network agents are executable code that

travel and interact with the remote system. Therefore, a natural platform for networked

agents is therefore Remote Object Models such as CORBA and RMI. Indeed, there are

many mobile agents built on top of these platforms, such as [6.9].

It is not difficult to implement a framework for Mobile Agents in our Hotel Management

System given the reliance on the Jini Architecture and JavaSpaces. The more important

question is when JavaSpaces proves to be a more natural and efficient solution for

processing a task than Mobile Agents, and when the converse occurs.

The last section 3.5.3 reveals that JavaSpaces is the ideal platform to match a specific

fingerprint to a set of possible templates, since the task is naturally divisible and can be

done anonymously. In general, when communication can occur between anonymous

senders to anonymous receivers, JavaSpaces is preferable to Mobile Agents and is used in

our software implementation.

On the other hand, agents are sent to specific services to perform a task. Where

communication occurs between known senders to known receivers, Mobile Agents have

the upper hand, since JavaSpace will prove to be an extra hop and a bottleneck. For

example, mobile agents handle the task of scheduling better than JavaSpace. Using

mobile agents to solve a scheduling problem is not new. In [6.10], the Ajanta project

57

proposes that each user should have a "calendar" agent. In arranging a meeting, a

scheduling agent visits each one in turn to find a possible time-slot.

This project attempts to bring the scheduling capabilities proposed by Ajanta to the next

level. Instead of having a fixed goal of scheduling a meeting, vacationers often have a list

of activities that they will like to complete, but they do not have a preference on the order

the list of activities is completed. In the worst case, finding a solution is a NP-complete

problem, since each combination has to be attempted. An agent is a natural method of

solving this problem. In addition to being able to visit each "calendar" agent to perform

more complex queries without costing network bandwidth and latency, the agent can

spawn into multiple copies for different decisions that he or she might have to make.

Thus, while the number of agents become quickly exponential, if the network traffic or

"calendar" agents are not a bottleneck, it is possible to find a solution in polynomial time.

In comparison, solving the scheduling problem with JavaSpace is less efficient. The

JavaSpace will fill up quickly with agents or messages between agents, thus falling for

the same pitfalls as the Prime Number Generation or Iterative Solver Applications

described earlier in Section 3.5.3.

3.6 Background Information on Tiny InterNet Interface (TINI)

The proposed implementation uses the Tiny InterNet Interface (TINI) platform [1.8],

developed by Dallas Semiconductor, extensively. TINI combines a small but powerful

chipset, using the DS80C390 microcontroller, and a Java-programmable runtime

58

environment that maintains code in Flash memory in the absence of power. The

DS80C390 microcontroller supports several distinct forms of 1/0 such as serial, 1-Wire

and Controller Area Network (CAN) bus. It also provides several general-purpose port

pins that can be used to perform simple control tasks such as driving relays and status

LEDs. Lastly, TINI also features 10/10OBase-T Ethernet interface. A summary of the

features of TINI can be seen in figure 4.5.

Using the TINI chipset, a fingerprint scanner can be connected to an Ethernet Network

using Jini Applications running on the JVM. The general-purpose port pins on the TINI

chipset can also trigger the relay of an electric strike lock of a door.

59

I

I

Figure 4.5. A summary of the features of TINI

I I

4 Design Overview

4.1 Considerations and Criteria

Much of the consideration and criteria for a good hotel system is vocalized in our detail

vision of the ideal hotel. In the interest of brevity, this section summarizes the properties

an ideal Hotel Management System. The ten criteria are:

i. Provide comprehensive services. The solution needs to provide a broad range of

services for Hotel Management, rather than a fragmented solution that has to

work in conjunction with other solutions.

ii. Provide superior services. Services provided need to be judged by quality.

iii. Computational Efficiency. The system should be computationally efficient.

iv. Easy to install. The system should be plug-and-play enabled.

v. Easy to maintain. The system should be robust and self-healing. Failures should

be isolated.

vi. Easy to upgrade and backup. It should be easy to upgrade the system software.

During the upgrading or backup process, critical operations in the hotel should not

be disrupted.

vii. Affordable. In order to be valuable to hotel managers, the system needs to be

relatively inexpensive.

60

viii. Customizable. The system should be modular, so that features can be customized

for different hotels.

ix. Scalable. The solution should be scalable to meet the needs of different sized

hotels.

x. Web-enabled. The solution should have no boundaries. By being web-enabled,

the system should be able to serve potential customers worldwide, and also

interface with other hotels to potentially work in a hotel chain.

4.2 Design of the Hotel Management Software

In this section, we will provide an overview of the design of our Hotel Management

Software. More details on specific drones can be found in the discussion in section 5, or

in the scenarios in section 6.

4.2.1 Class Hierarchy

The classes in our Hotel software are all related through the class hierarchy shown in

figure 5.1 on the next page. All of the classes shown are either a subclass of Drone, or in

short, Drones, or they are an implementation of Agent Interface, or in short, Agents.

Specific types of Drones include the Hatchery, King, Queen, Application, User,

Fingerprint, Auth, Registration and Agent Drones. Each of these Drones has specific

functions that are necessary for the smooth running of the Hotel Management System.

Agent Drones are special because they contain Agents. Examples of Agent Drones are

61

Database Agent Drone, Admin Agent Drone and Messaging Agent Drone. Each of these

Agent Drones houses their respective Agents.

62

Drone

chery Queen King

Fingerprint Auth Agent Drone

t

Application

Registration

Database Agent Drone

Database Agent

Database Agent
Interface

Admin Agent Drone

Admin Agent

Admin Agent
Interface

Messaging Agent Drone

Messaging Agent

Messaging Agent
Interface

Agent Interface

Figure 5.1. Class Hierarchy of the Hotel Management Software

63

Hat User

Key:

. Is-a (line with triangle)
. Has a (arrow with solid line)
. Instantiates (arrow with dashed line)

4.2.2 Drones

What is a Drone? In our JavaSpace model, a Drone is merely a program that reads and

writes entries to and from JavaSpaces. These entries are Java Objects and can encapsulate

both data and code. A Drone can read entries from a JavaSpace to obtain new tasks that

need to be completed. A Drone can also return completed tasks back into a JavaSpace.

4.2.3 Summary of specific Drones

In this list, we summarize the function of some Drones. A more detailed discussion can

be found in Section 5.

i. Hatchery. A Hatchery watches the JavaSpaces for a Hatchery Entry, which

encapsulates code for another Drone. The Hatchery, thus, retrieves the Hatchery

Entry and causes a new Drone to run on a separate thread on the same server.

ii. Queen. The Queen monitors the performance of Drones on all the servers, and

can destroy Drones, or create them at Hatcheries. This allows for workload

balancing between several tasks.

iii. King. The King obtains a large task and divides it into many smaller tasks. For

example, the King can retrieve a One-To-Many Fingerprint Authentication

Request, and write corresponding One-To-One Fingerprint Authentication

Request back into JavaSpace.

64

iv. User Drone. The User Drone allows a hotel employee or guest to log into the

system via a fingerprint scan, and provides a graphical user interface where the

hotel employee can launch Application Drones.

v. Application Drones. Application Drones are then the super class of Drones that

provide specific services for hotel guests. Application Drones allows for Word

Processing or Room Service Ordering.

vi. Fingerprint Drones. Fingerprint Drones wait for a fingerprint to be scanned at a

reader. When this occurs, they send out Auth Request Entries into JavaSpace. If

they receive an "Accepted" reply, they contain code to trigger relays that may

unlock mechanisms such as an electric strike lock.

vii. Auth Drone. The Auth Drone is a drone that accesses the Biometrics

Authentication SDK provided by a third party vendor. They usually obtain One-

To-One Authentication Requests from JavaSpace, process the result, and return it.

viii. Registration Drone. The Registration Drone provides a graphical user interface

for a receptionist to check a hotel guest into the hotel, or for a hotel guest to check

himself in at the Express Check-in Kiosk.

4.2.4 Agents

While Drones provide a good model for an adaptively parallel dynamically distributed

system, our discussion has shown that performance can be disappointing for

communication between known senders to known receivers. Agents solve this problem.

Agents are Jini Services that can communicate and negotiate with one another directly

using Java's RMI technology. Therefore, they do not need to use a JavaSpace as an

65

intermediary. Agent Drones facilitate the creation, housing, monitoring, and transport of

Agents, and are thus the link between the Agents and Drones.

4.2.5 Summary of Specific Agent Drones and their Agents

In this list, we summarize the function of some Agent Drones. A more detailed discussion

can be found in Section 5.

i. Database Agent Drone. The Database Agent Drone saves important information

from JavaSpace to the Database. The Database Agent can also be contacted

directly to retrieve or save information from or to the Database.

ii. Admin Agent Drone. The Admin Agent Drone serves as a general administrator

for a hotel guest, employee, or facility. Scheduling can be done through the

meeting of 2 or more Admin Agents. Messages can be left for the intended party

through his or her Agent. The Admin Agent also remembers personal settings and

preferences. Therefore, it can be called upon to provide its master's contact list, or

to filter from a menu of choices items that its master would be interested in.

iii. Messaging Agent Drone. The Messaging Agent Drone can also be classified as

one of the Application Drones that provide the hotel guest or employee with

application software. The Messaging Agent Drone provides for a graphical user

interface from which the user can select to chat live with other users through their

Messaging Agent, or to leave messages with offline users through their User

Agent. In future implementations, the Messaging Agent will also be able to send a

receive electronic mail (E-mail); Every user will be provided an E-mail account,

66

or he or she may choose to customize the settings so that his or her mail can be

received.

4.3 Layout of the Hotel Management Hardware

This section describes the preferred layout of the Hotel Management Hardware.

4.3.1 TINI at every access point

TINI, being the cheapest component that is yet fully network-enabled, will proliferate in

our hotel. At every access point, such as guest room and conference room doors,

restaurant table, and parking lot gate, a TINI chipset would be embedded. One port of

TINI would be connected to a fingerprint reader. Another port may be connected to a

relay to run the electric strike lock or other access control mechanism, depending on the

location. Using conventional Ethernet, the TINI device is connected to the rest of the

network. The input from the fingerprint reader is streamed via Ethernet to another

computer with higher computing power.

Typical Drones that are expected to run on the TINI device is the Hatchery,

FingerPrintReaderDrone and the AdminAgentDrone (for the room).

4.3.2 Desktop Computers

67

The next cheapest computing device is the desktop computer. These include the

computers in each hotel guest room, the computers in the business center, the computers

at the hotel front desk, and the computers at the express check-in kiosks. These

computers will include a keyboard, mouse, and fingerprint reader. Some of the

computers, such as the computers in the guest rooms, will have all 3 devices embedded in

an integrated wireless keyboard. On other computers, such as the Express Check-in

Kiosks, the computers will also have a credit card scanner and a printer.

Unlike TINI, these computers will meet the minimum processing speed required to

process information from the fingerprint readers, and such information may be streamed

from TINI via Ethernet. Some manufacturers of fingerprint devices that abide by the

BioAPI standard only provide black box software for reading a fingerprint image directly

from a serial or parallel port. A crude method of solving this problem is to connect one

parallel port of the desktop to another parallel port via a null-modem cable. Using the

javax.comm package, the Ethernet stream can be written out of one parallel port, to be

read in via the other parallel port by the appropriate black box software.

The desktop computer will probably run Drones such as Hatchery, UserDrone,

AuthDrone, RegistrationDrone, AdminAgentDrone (for the hotel guest), Application

Drones, and MessagingAgentDrone.

4.3.3 Floor Servers

68

Near the elevator shaft or near the fire exits of each floor, there will be a floor server. Due

to fire regulations on the distance between each guest room door and the nearest exit, we

do not anticipate the need for bridges to carry the Ethernet signal across the floor.

The floor server is a more powerful and expensive computer than the desktop computers.

In addition to providing the same services as the desktop computers, such as

authentication, the floor server would also be running its own JavaSpace. By this design,

the division of traffic into multiple JavaSpaces is segregated naturally by floor. On guest

room floors, there is no reason to anticipate more traffic on one floor compared to another

floor. The JavaSpaces will be named according to the floor number, thus allowing Jini

devices on that floor to select the corresponding JavaSpace to be their preferred

JavaSpace.

However, the robustness of the system will be compromised if the devices can only have

access to one JavaSpace, which might fail. This is not so, since the devices on each floor

are connected to the same network on other floors through cabling down the elevator

shaft.

The floor servers will usually run the Hatchery, King Drone, Auth Drone,

AdminAgentDrone (for hotel employees), and the Database Drone.

4.3.4 Central Servers

69

The most powerful computers are the central servers. A few of these are expected to be

running at the Manager's Office or Front Desk where they can be physically secure. The

Database is expected to be running on these computers or in close proximity. This makes

these computers extremely appropriate to run Drones that may access the Database.

These include the King Drone, when hotel guests need to be match with specific entry

points, and the Database Drone, when an entry is retrieved or written to the Database.

In addition, these are the only computers that need to be updated in later versions of the

software. Recall that all the other computers run the Hatchery Drone. The Central Server

contains the codebase for the Jini Federation, and can cause new version of Drones to be

created (and old versions to be destroyed) on any other computer through the Queen

Drone that is running.

In addition, the central servers can also run the Hatchery, Auth Drone, and

AdminAgentDrone (for hotel employees).

4.3.5 Rationale for our design

Our rationale for the current design has been motivated by the following factors:

i. Several inexpensive computers are better than one expensive one. Much

literature like [6.11] suggest that for operations that can be parallelized, several

inexpensive computers perform better than a single computer of the same total

cost. Without going into details of Amdahl's law, we note that the presence of

numerous distinct hotel guests results in a high degree of parallelism. In light of

70

this, we are motivated to purchase the number of components inversely

proportional to their individual costs. Therefore, we intend to have the highest

number of TINI chipsets, followed by desktop computers, then by floor servers,

and finally central servers.

ii. Hotel floors are a natural method of segregating floor servers and

JavaSpaces. While every drone has access to all JavaSpaces, we find that many

tasks occur at the same place. For example, a hotel guest will frequently attempt

entry at the same hotel room on the same floor. He or she will frequently log in to

the computer system from his or her room, rather than from another room. It

makes sense for such Drones to access a nearby preferred JavaSpace, for example

that on a floor server. This allows for the accumulation of shared variables in one

JavaSpace and thus reduces the searching or duplication costs. Furthermore, the

proximity of the floor server also reduces network latency.

iii. Important Servers in a central location desirable. To reduce the cost of

maintenance and security, we find it desirable to have the key servers at a central

location. Unlike floor servers, the key servers may contain the actual database for

long term storage, or RAID hard drives or other devices for backup purposes. The

key servers may also be the firewall between the computers in the Hotel and the

rest of the Internet. They also contain the codebase, which may need to be

upgraded from time to time, unlike the rest of the computers in the hotel. By

placing them in one location, security and maintenance is centralized.

iv. A higher computing power in the first few levels is desirable. It is naturally

that a disproportionate amount of the computing power required is concentrated in

71

the first few levels of the hotel, where there are numerous computer kiosks for

guests accessing hotel services, and where there may be many guests checking in

or out at the front desk. Furthermore, authentication requests at room doors can

appreciate the few number of templates required to verify the valid room

occupants and the ample opportunity of caching. Identification requests at the

computer kiosks on the ground floors do not have the same privilege. The number

of different users at those computer terminals may quickly overfill the local

caches. If the users are not required to provide further information such as last

name, a fingerprint identification request will have to match the given fingerprint

to all currently checked-in hotel guests and all valid employees. Rather than

treating the first few public levels of the hotels like any other floor, higher

computing power than that provided by floor servers is required.

4.3.6 Discussion on other possible layouts

Due to our thoughtfulness in "Plug and Play" software design, there are many other

layouts that can also lead to a functional Hotel Management System. For example, we are

also working in close conjunction with a 20-room motel in Johor, Malaysia. The costs

concern has lead to the elimination of all room computers or floor severs. The entire set

up consists of only 20 TINI chipsets for each room door, 2 desktop computers for

Express Check-in and 1 central server. The central server can run all of the Drones, as

well as the Database, JavaSpace, and other Jini Services. While we are out of specific

examples, we can still suggest other designs, such as having more than one "floor server"

on each floor, or having one "floor server" serve more than one floor, or having no

72

central servers but using the floor servers as their replacement, or having one JavaSpace

per central server, rather than per floor server.

It is useful to note that other feasible hardware layouts are perfectly viable where our

assumptions in section 5.3.5 do not hold. For the case of the Malaysian motel, there are

not enough rooms on each floor to justify a computer on each floor. For the other hotels

that do not wish to provide hotel guests with software applications, far less computing

power is required; There is no need to identify each hotel guest and then launch the

required application. Finally, for hotels, with non-standard floor or room sizes, some

floors may then demand more computing power, while other floors less. As much as the

Queen still performs some load balancing across computers, the segregation by floors

become an unnatural division, and the segregation by the number of expected users to a

server is more appropriate.

73

5 Details of software implementation

In this section, we go into greater depth on the design of our software implementation.

5.1 Drones: Processes that communicate via JavaSpace

Most running processes in our implementation are instances of the abstract class Drone.

The set of Drones form the core of the hotel system, and they work together as a

Federation in their specialized forms to provide the various services for the hotel.

A Drone implements the Jini Lookup and Discovery Protocols, and therefore has the

ability to search for Jini Services such as JavaSpaces, Lookup Registers, Transaction

Managers, and Agents. In order to avoid the bottleneck and the central point of failure of

a single Lookup Service, we use multiple Lookup Services in our Hotel Management

System, and Drones use a Multicast Discovery Protocol to find all the Lookup Services.

All Drones can communicate with each other by writing entries to JavaSpaces. This is the

method that most Drones communicate, with the exception of Agent Drones where

communication with embedded Agents can occur directly.

74

It has been recognized that a single tuple space will very quickly be a bottleneck as well

as a single point of failure in the system [6.2]. In recognition of this, our hotel

implementation supports any number of JavaSpaces. Therefore, the failure of any

computer or JavaSpace will not be fatal, and it will be less likely that any one JavaSpace

will become the bottleneck.

Drones have built in features that recognize the multiple JavaSpaces, and the potential for

failure. In particular, Drones exhibit the following behavior:

i. They attempt to find new JavaSpaces from scratch every hour. This is an end-to-

end solution to obtaining an accurate list of JavaSpaces, especially if a JavaSpace

has gone down but has somehow avoided removal, or if a JavaSpace has been

added but has somehow avoided detection.

ii. In addition, they attempt to find new JavaSpaces when they do not know of any

valid JavaSpaces. This prevents the Drone to become inoperatable for the rest of

the hour.

iii. Drones have an efficient algorithm to remove duplicate JavaSpaces. They first

sort the array of known JavaSpaces, before proceeding to remove the duplicates

by a one-time scan. Thus, the algorithm has running time O(n log n) in the

number of JavaSpaces detected.

iv. Drones are aware that JavaSpaces are not foolproof. Upon encountering an error

with a JavaSpace, they fail gracefully and remove that JavaSpace from the array

of known JavaSpaces. Because they find new JavaSpaces every hour, this

behavior is not fatal for any JavaSpace-Drone relationship.

75

v. Drones select their preferred JavaSpace or one of their preferred JavaSpaces when

they need to perform a write operation. When they need to perform a lookup

operation, they scan through all JavaSpaces, starting from their preferred

JavaSpace or preferred group of JavaSpaces. By default, their preferred JavaSpace

is a randomly selected known JavaSpace so that the workload to be distributed

evenly across JavaSpaces in the average case. However, the Queen can set the

preferred JavaSpace or group of JavaSpaces. This allows for much flexibility

towards the goal of load balancing. One choice that we have discussed is setting

the preferred JavaSpace to that on the same floor as the device on the floor server.

vi. A Jini Lease governs the writing of any Entry to JavaSpace naturally. Therefore,

upon the failure of the Drone and hence inability to renew the lease, "garbage"

entries are removed eventually, and the system is self-healing.

vii. Every drone avoids querying the JavaSpaces continuously. Instead, they make use

of Java's Remote Event Model, and ask each JavaSpace to notify them of a

matching entry. Every hour during the lookup process, the leases to the old

notifications are destroyed, and a new set of notifications to the newly found

JavaSpaces is created. This is another end-to-end solution. If the Drone has

somehow not renewed its notification lease and is it not aware of its failure, we

are guaranteed that it will receive notifications again within an hour.

We have gone into great depth about how Drones access multiple JavaSpaces, since

every Drone will use JavaSpaces in some form or another. Our programming style,

however, has made it particularly easy to search for other Services besides JavaSpaces.

76

Much of the code in finding Services, and removing duplicate or bad Services is reused.

For Drones do require other Services that there may be multiple copies. Examples include

Transaction Managers or Agents such as Administrative Agents. In such cases, the exact

same safeguards apply to these Services as they do apply to JavaSpaces.

Finally, perhaps the most important property of the Drone is that it can be created,

monitored and destroyed by a remote Queen. Every computing device will run a

Hatchery, which allows new Drones to be created on that device. This allows the entire

code base to be on the central servers, where they can be monitored and upgraded easily,

promoting the paradigm "write once, install once, run everywhere". Monitoring and

killing Drones are accomplished via two different entries: the Refresh Entry and the

Death Entry. Every drone signs up notification of such entries by default. When they are

notified of a Refresh Entry, they will attempt to remove any of their old Queen Entries

and write a new Queen Entry to a JavaSpace. The Queen Entry includes information on

the server and process that the Drone is running on, the type of Drone that is running, and

also additional details such as the performance of the Drone. Every Drone is also notified

of Death Entries that match their exact identification, i.e. both their Server and Process

Identification Numbers. Upon such notification, they will promptly remove all personal

entries from the JavaSpaces, and cancel their existing leases, and finally kill themselves

permanently.

5.2 Details on some specific Drones

77

After the detailed discussion on the Drone architecture, it is time to detail specific Drones

of interest.

5.2.1 Queen

Recall that each Drone writes a Queen Entry to a JavaSpace, and upon the command of a

Refresh Entry, all Drones will refresh their Queen Entries. "Queen" entries are important

because they provide information to Queen Drones about all running processes in the

hotel. They provide information on the performance, unique identifier and type of each

Drone.

One of the Queen's tasks is to observe the different Queen Entries and then to perform

load balancing between computers, as well as, strive an optimal balance between the

types of Drones. For example, the Queen can kill Drones that have poor performance on

a certain server, and hatch similar Drones on other servers with a better computing speed

and resources. As another example, if one type of Drone is required more than other

types, the Queen can kill Drones of one type, and replace them with Drones of another

type. There can be any number of Queen Drones, and each Queen Drone can monitor

other Queen Drones as well. In order to force all Drones to update information on their

process, the Queen uses the Refresh Entry. To kill a Drone, the Queen sends a Death

Entry for that particular Drone. Finally, to create a Drone, the Queen sends a Hatchery

Entry with the actual Drone embedded within to a particular Hatchery.

78

The Queen is also running on the server with the code base. Therefore, there will be

occasions when other Drones require a new Drone to be hatched. For example, the hotel

guest may be trying to launch an Instant Messaging service. For this purpose, the Queen

signs up to be notified about Queen Create Request Entries. Upon notification of such

requests, the various Queens running rush to fulfill all pending requests on the

JavaSpaces by removing a Queen Create Request Entry from the JavaSpace, while

fulfilling the request by writing the appropriate Hatchery Entry.

5.2.2 Hatchery

The Hatchery has already been described in detail. It waits to be notified of a Hatchery

Entry. Upon such notification, it takes the required Hatchery Entry from JavaSpace, and

hence the new Drone. It then runs the new Drone on a separate thread. As somewhat of a

security measure, the Hatchery will code in a discriminatory fashion, unlike the eval

function in Linda-type [6.1] systems.

It is desired that all computing devices need only to run the Hatchery, and upon the

running of the Queen, the Hotel Management System will dynamically configure itself,

run the appropriate Drones at the proper locations. With this as the goal, our method of

sending targeted Hatchery Entries via JavaSpace from the Queen to the Hatchery is not

an obvious optimal choice.

An alternative we considered was to have the Queen post all the different possible

Hatchery Entries to the JavaSpace. This is appealing if the number of Drones were small,

79

since this will mean that the Queen will not have to repeatedly upload the same Drone to

JavaSpace. However, this is not so. The number of Drones is actually much larger than

the type of Drones. This is because we may choose to personalize each Drone before

sending it to the Hatchery. For example, we want the Administrative Agent Drone to

have its master's preferences and settings. As another example, we want a particular

Drones to set a certain JavaSpace as its preferred JavaSpace either because it is

underutilized or that it contains much of the information that the Drone will need. As yet

another example, we want the Auth Drones on the third floor to have all the fingerprint

templates of customers on the third floor pre-cached. The Queen, by design, is in close

proximity to the Database. It therefore makes more sense to construct a pre-configured

Drone at the Queen, rather than sending generic Drones that require future configuration.

With that being said, it then seems that the communication is from a Queen to a known

Drone. Doesn't this stimulate a design of direct communication between the Queen to the

Hatchery, rather than going through JavaSpace? There are two reasons why we have not

chosen this path. The first reason is that a Hatchery may demand many new Drones at

one time. As one example, the User Drone is an extension of a Hatchery, and the user

may be trying to launch many programs concurrently. Many Queens in parallel may serve

such requests. We do not want communication with the Hatchery to be the bottleneck,

and thus block the Queen from serving other Hatcheries or performing other duties. The

second reason is that it is not true that the communication is always from a Queen to a

known Hatchery. We anticipate future versions of the software, where the ontology of the

Hatchery Entry becomes more descriptive, and specifies information such as the floor the

80

Hatchery is running on. The Queen can then send a Hatchery Entry directed to the entire

floor, perhaps containing a User Drone with its preferred JavaSpace preconfigured to that

of the floor's.

5.2.3 Registration Drone

The Registration Drone offers a Graphical User Interface (GUI) to assist the operator in

registering or checking-in hotel guests. Previous reservations can be brought up via

conventional text searches, or via a fingerprint entry. The Registration Drone can also be

used to checkout existing hotel patrons, or to search for the room number of an existing

hotel guest (if they have permitted such a search).

The Registration Drone is meant to run on the Express Check-in Kiosk, as well as, the

front desk computer terminals. When a hotel guest has checked into the hotel, the

Registration Drone obtains the required guest information and writes a Registration Entry

into a JavaSpace. Any drone that needs to update or retrieve information for this

customer can then easily access this Registration Entry. Conversely, upon checkout, the

Registration Drone writes a Check Out Entry into a JavaSpace, thereby notifying all

Drones that may require such information.

In addition to checking in hotel guests, the Registration Drone is also used to sign in hotel

employees. This is used for convenience. A hotel employee can report to work by merely

pressing his or her fingerprint at the nearest available kiosk.

81

Just as the sign in process is analogous to checking in, the sign out process is analogous

to checking out. When an employee signs in, he or she will obtain appropriate access to

certain facilities. When he or she signs out, such privileges are removed.

We have thus blurred the distinction between the Hotel guest and the Hotel employee. In

a sense, both groups are users of the same Hotel Management Software. They need to

schedule events, be informed of messages, and declare when they arrive and when they

leave the hotel. By forcing them to go through the same check-in process, we increase the

simplicity of our system through code reuse, not just in the Registration Drone, but also

in other Drones that are informed of the check-in and checkout.

5.2.4 User Drone

Another Drone with a GUI is the User Drone. The User Drone can be found on the

computers in the guest rooms, and on any computer that can be accessed by a hotel guest.

For example, the User Drone will run on wireless notebooks that are leased by the hotel,

or computer terminals around the hotel such as in the Business Center, or even computers

in the Express Check-in Kiosks.

A hotel guest will use such computers by first signing on. He or she can be identified via

means of a fingerprint scan. In receiving his or her fingerprint, the User Drone will write

One-To-Many Auth Request Entries to the JavaSpace. The request is One-To-Many,

since there is one fingerprint, but many possible users that fingerprint might possibly

match. Optionally, the hotel guest can enter specific information, such as his or her last

82

name, to aid the time taken for this identification process. However, since many

distributed processes will handle this request, we anticipate that this is not necessary.

Upon receiving an approved message in an Auth Reply Entry, the User Drone will

display the software launcher menu. That menu will display possible applications.

Applications will include Word Processing, Web Browsing, Spreadsheet, Instant

Messaging, Room Service Ordering, Account and Billing Information, and Scheduling

and Activities Management. When the hotel guest makes his or her choice, a Queen

Create Request Entry is written to the JavaSpace. In return, a Queen processing the

request will reply with a Hatchery Entry containing the Application Drone desired.

In addition, the User Drone also retrieves targeted advertising from the Advertising

Drone and special messages from the hotel guest's Administrative Agent. The targeted

advertising displayed can promote deals on room service meals, or electronic coupons for

some hotel activity. The special messages, on the other hand, can inform the hotel guest

that he has pending Instant messages or E-mail, or may display an announcement from

the Hotel Manager.

5.2.5 Fingerprint Drone

Fingerprint Drones usually run on TINI with an attached fingerprint reader, or in close

proximity to one. They can be found in areas of the hotel that require access control, such

as the guest room doors or the fitness center door. In such cases, the Fingerprint Drone

authenticates a given user to give authorized users access to facilities. In other cases, this

set of hardware and software can be found at payment points such as in the hotel's

83

restaurant. In such cases, the Fingerprint Drone serves to identify a given user, so that the

correct account can be billed.

Wherever the Fingerprint Drones are, they basically wait for a fingerprint to be scanned

at the fingerprint reader. When this occurs, they send out One-To-Many Auth Request

Entries into JavaSpace. Like the User Drone, they actually send two One-To-Many Auth

Request Entries. The first entry is sent when a finger is first detected, and contains no

fingerprint image. The second entry is sent when a fingerprint is captured, and this entry

contains an actual fingerprint image. Both entries contain a uniquely generated Case

Identification Number or CaseID, which can be used to identify this request while

different Drones process the request.

If the Fingerprint Drone receives an "Accepted" reply in an AuthResultEntry to these

Auth Request Entries, they can trigger relays such as those on the TINI chipset, which

may then unlock mechanisms such as an electric strike lock. They can also bill the correct

account for the amount charged.

5.2.6 King

5.2.6.1 Details of implementation

It is the King's duty to coordinate and breakdown tasks meant for parallelism on the

JavaSpaces. One such problem is user authentication. Given the problems with hashing a

fingerprint images, most commercially available technology can only match a given

84

fingerprint image with a single template. It is not difficult to note that if there are 600

hotel guests, and if each authentication step takes only 0.1 seconds, a hotel guest would

have to wait for a full minute to be authenticated at a computer kiosk. By using multiple

Authentication Drones (or Auth Drones, for short) to work on the task, identification of

the same fingerprint can take as little as 1 second. This is done without imposing burden

on the user to declare fact such as last name.

Recall that the User Drone or the Fingerprint Drone submits 2 One-To-Many Auth

Request Entries, one with a fingerprint image and one without, for each authentication

request. Each authentication request is assigned a Case Identification Number (or CaselID

for short). All the entries that relate to this request, whether written by a User Drone,

Fingerprint Drone, Auth Drone or King will be identifiable by this one CaseID.

The King only takes One-To-Many Auth Request Entries without fingerprint images

from any JavaSpace on its list. When a King takes such an Entry from a JavaSpace, it

reads the Entry Point variable that reveals the location of the device in which a user is

trying to gain access to. If a User Drone writes the Auth Request Entry, for example, the

Entry Point variable could point to a computer kiosk at the hotel lobby, or a desktop

computer in a specific guest room. If the Auth Request Entry is a written by Fingerprint

Drone, the Entry Point could be a specific guest room door, a specific payment device in

the hotel restaurant, or business center room door. Therefore, Auth Request Entries are

written when there is a need to authenticate a particular user before he or she is allowed

access to a resource, or when there is a need to identify a particular user so that user

85

specific operations can be performed. Whichever the case, the King determines the set of

users that need to be matched with a given fingerprint image by checking with the

Database Drone. For a guest room door, this will include all the guests living in that room

and the assigned cleaning maid (if the room is not in "Do not disturb" mode). For a

business center room door or a computer kiosk, the list is the set of all currently checked-

in hotel guests.

For each user in this list, the King writes a One-To-One Auth Request Entry a JavaSpace.

Preferably, the King will choose the JavaSpace, which is running on the same floor as the

Entry Point, so that the network latency is reduced, and the cache hits is increased. Each

Auth Request Entry will identify the same CaseID and the identifier for the user for

which the fingerprint is to be matched to. The AuthRequestEntries are small, since they

do not include the fingerprint image or the fingerprint template of the targeted user.

These One-To-One Auth Request Entries are now processed by Auth Drones. The King

waits for results of such operations in Auth Result Entries. If a certain Auth Request

Entry has a delayed reply, the King can resend the request in case it is somehow lost in

transit or through a faulty Auth Drone. When the King is notified of the Auth Result

Entries, the King processes each Entry. If a "Rejected" match is seen, the King will

remove that user from the list of possible users. When the list is empty, all authorized

users have been rejected. The King will then send an Auth Result Entry back to the

originator of the request, whether a Fingerprint Drone or a UserDrone, with a "Rejected"

message. If an "Accepted" match is seen, the King will not bother to wait for the rest of

86

the pending replies, but rather, will immediately send an Auth Result Entry back to the

originator with an "Accepted" message. The case is marked closed, and other Auth

Result Entries for this request is ignored.

5.2.6.2 Rationale for design

There are many issues weighing on our minds before we decided on the current

implementation for the King Drone. In particular, we are interested in:

i. Reducing the time taken for an authentication or identification request.

ii. Reducing the burden on the network.

iii. Optimizing for the average case rather than the worst case.

iv. Anticipating and reacting to unexpected failure.

We have discussed the advantages of using a tuple-type dynamically distributed system

in adaptive parallelism, especially if the computation to communication ratio is high. The

key disadvantage in this application is the need to send the fingerprint images and

fingerprint templates to the Auth Drone. To this end, we attempted to optimize for the

average case by the following features:

i. Two Auth Request Entries. While there is additional burden on the User Drone

or Fingerprint Drone in sending two Auth Request Entries for each case (one with

and the other without a fingerprint), there are many advantages. The fingerprint

87

image recorded by the User Drone or Fingerprint Drone only transits at one node

(the JavaSpace), which is the minimum required for a tuple-type system. The User

Drone or Fingerprint Drone sends the fingerprint image in an Auth Request Entry

to the JavaSpace, and this Auth Request Entry is retrieved directly by Auth

Drones that require the fingerprint image.

The King saves time by only retrieving Auth Request Entries without images,

which are considerably smaller in size. The King also saves some time since the

Auth Request Entry without a fingerprint image can be placed on JavaSpace

slightly before that with a fingerprint image. The King can therefore handle more

One-To-Many Auth Request Entries in a given time.

In addition, this procedure reduces network traffic by decreasing the amount of

data that is transferred between the JavaSpace and the King. On the other hand,

the Fingerprint or User Drones are also relieved of the burden of sending the

fingerprint image to each Auth Drone. Auth Drones can anonymously read the

fingerprint image from the JavaSpace, which may have a hardware and software

advantage in handling this task.

ii. First Accept Accepted. With Type I and Type II errors occurring with less than

0.1% possibility in typical fingerprint authentication systems, we assume that the

first accepting response from a Auth Drone will be the only accepting response.

By doing this, we can return an accepting result in an expected half the time taken

than if we were to wait for all the One-To-One Auth Requests Entries to be

88

replied to. We also save the computing power in Auth Drones by calling the case

closed, and terminating pending Auth Request Entries. On the other hand, we are

betting that the chances that two users matching a fingerprint image is

insignificant. For cases such as a guest room entering a door, we are not interested

which fingerprint templates match a given fingerprint, but only that some

fingerprint template matches the given fingerprint. This trade-off seems to be a

fair one to make.

iii. Auth Drone caches information. In our implementation, the Auth Drone has to

retrieve 3 entries to perform a One-To-One Authentication Request. It has to

obtain the order from the King that details which fingerprint image has to match

with which fingerprint template. It has to obtain the actual fingerprint image that

was submitted by the user. It has to obtain the fingerprint template of the user.

One reason we provided for the King not sending its orders with the original

fingerprint image was that we didn't want the King to waste time downloading

the fingerprint image in the first place. There seems to be little reason for the King

not to send its orders with the fingerprint template to be matched. The King works

in close conjunction with the Database Drone. It may even be running on the

same machine as the Database. Given that the King has already looked up the

users who templates need to be matched with the fingerprint, it is simple for the

King to attach the template to the Auth Request Entries that it sends to Auth

Drones.

89

In our opinion, however, this is actually less efficient. Attaching fingerprint

template will slow the King down, and prevent the King from writing all the Auth

Request Entries rapidly so that many Auth Drones can work on those Entries. The

JavaSpace will also contain more redundant data, since it may contain multiple

copies of the same template in Auth Request Entries with a different CaseID. The

Auth Drones will also be forced to download the fingerprint template, although

this is not a disadvantage if it does not have a cached copy of the template.

Our solution calls for a clear separation between the task of deciding which image

is matched with which template, the image, and the template. This allows the

Auth Drone the choice of not obtaining either the fingerprint image or fingerprint

template if it already has it cached. Furthermore, the chances of a cache hit are

increased, since the King chooses the JavaSpace closes to the Entry Point to write

Auth Request Entries. Auth Drones that prefer that JavaSpace will have an

advantage in processing those requests, and thus are more likely to see the same

fingerprint templates used. Although in the worse case, the Auth Drone will have

to obtain the 3 Entries in separate transactions, which is slightly slower than

obtaining a single large Entry, the potential for cache hits and the removal of the

other disadvantages listed make our implementation our ideal choice.

iv. King does not wait passively for a reply. While there are safeguards built into

JavaSpaces, Jini, and the Auth Drone, we decided that an end-to-end solution was

needed to ensure that every case is resolved within a reasonable time. If for some

reason, a Auth Request Entry was not worked on or somehow disappeared from a

90

failing JavaSpace, there is a possibility that the King will not receive all the Auth

Result Entries that it anticipates. Rather than leaving this case open and

unresolved indefinitely, the King notices that the case is unresolved within a

reasonable time, and resends the Auth Request Entries that it did not obtain

replies to.

We provided one specific example where the King is used to divide the task of

authenticating or identifying a user with a list of authorized or possible people. The King

can have many more responsibilities. For example, there may be a need to perform

computations in Yield Management to set optimal room rates based on demand and

supply predictions. As another example, there may also be a need to compute optimal

advertising and offers that are provided for each hotel guests. Such computations can be

done at night, where there is more computing power. The Queen can create new Drones

for such computations and remove other redundant Drones, just for the nighttime. The

King can the coordinate and divide these tasks as well.

5.2.7 Auth Drones

AuthDrones are notified of One-To-One Auth Request Entries from a JavaSpace. Upon

notification, they retrieve Auth Request Entries starting from their preferred JavaSpace,

rather than the JavaSpace that they obtained the notification from.

When the Auth Drone take a One-To-One Auth Request Entry from JavaSpace, it obtains

corresponding the fingerprint template from the Registration Entry in JavaSpace, if it

91

does not have it cached. It also obtains the corresponding fingerprint image, if it does not

have it cached. It then calls upon 3rd party software to match the fingerprint image with

that of the template. The Auth Drone then returns the result in an Auth Result Entry. For

this entire process, the Auth Drone uses a Transaction Manager to ensure that the Auth

Request Entry is only removed from JavaSpace, when the Auth Result Entry is

successfully written to JavaSpace. Furthermore, if a result is somehow unavailable within

a reasonable time, the entire transaction aborts, and the Auth Request Entry will be

available to another (possibly faster) Auth Drone.

After returning the result in an Auth Result Entry, the Auth Drone caches the fingerprint

template. If it is out of the allocated memory space, it replaces the fingerprint template

that has not been used for the longest period of time. Next, the Auth Drone attempts to

take another Auth Request Entry from the JavaSpace with the same CaseID as the last

request. This enables it to avoid downloading the same fingerprint image again, since it is

cached as long as there are other One-To-One Auth Request Entries with the same

CaselD. When there are no more One-To-One Auth Request Entries with the same

CaselD, the Auth Drone then proceeds with other One-To-One Auth Request Entries on

that JavaSpace, and then those on other JavaSpaces.

5.2.8 Application Drones

There are several Application Drones that can be created by the User Drone. These

applications provide services to the hotel guests and employees. One such example is a

Messaging Agent Drone, where a hotel guest or employee can communicate with another

92

user in the hotel. Another example will include a Room Service Drone where the hotel

guest can place an order. Yet another example will be a Browser Drone, which the user

can use to surf the web. A good way to implement the Browser Drone will be the license

Hot Java JavaBeans component [1.7] from Sun Microsystems. Another useful

Application Drone is the Scheduling Drone. This Drone provides a graphical user

interface for hotel employees and guests to schedule activities through the negotiations of

their Administrative User Agent and that of others. The Scheduling Drone allows room-

cleaning maids of a hotel to schedule cleaning sessions with rooms that need cleaning, or

allows a hotel guest to schedule a restaurant appointment. This list is not all-inclusive.

There can be many other Application Drones for purposes, such as Drones for Word

Processing, Wake-up Call, or Spreadsheets.

5.3 Agent Drones: Processes that can communicate directly

Drones, by themselves, are not actual Jini Services. They communicate with each other

through JavaSpaces, thus taking full advantage of the perks of a tuple space dynamically

distributed system. For example, many Auth Drones can work in an adaptive parallel

anonymous fashion to match a fingerprint to many templates. Auth Drones can be created

or destroyed by a King at any time without affecting the user. As another example, the

hotel management can send advertising information to all User Drones, but does not have

to manually find and connect to each User Drone. Using JavaSpaces as a repository of

93

share variables also allow for atomic operations, which come in handy for account related

operations such as billing.

However, as mentioned in the section 3.5 that covers related work on distributed

processing, JavaSpaces tend to be inefficient for communication between known senders

to know receivers, since information must transit at a JavaSpace. For such applications,

we have suggested the use of mobile software agents that can communicate directly

without JavaSpaces. Furthermore, we have found that the Jini architecture was well

suited for the development of such agents, since the underlying problem of agent

discovery and transport was already solved in the Jini framework.

Our Agent class is thus created to meet this need. Agents are Jini Services that can

communicate and negotiate with one another directly using Java's RMI technology.

Therefore, they do not need to use a JavaSpace as an intermediary.

On the other hand, it is still useful to retain the Drone concept. For our Hotel System

have "Plug-and-Play" convenience, it is desirable that all computing devices only need to

run the Hatchery Drone, except the central server which will contain the rest of the code

base. There may also be exceptional cases where an Agent may need access to a

JavaSpace.

To marry the two solutions, we have written an abstract class AgentDrone that extends

Drone. Therefore, it has all the functionality that a Drone would have. Namely, (1) it can

94

find multiple JavaSpaces through Multicast messages to multiple Jini Lookup Services;

(2) it can maintain that list of multiple JavaSpaces by removing duplicate and bad

JavaSpaces and by adding new JavaSpaces as they become available; (3) it can be

transported, usually from a Queen, to any Hatchery, and run as a new process on the

remote host; (4) it can be killed either locally or remotely, usually by the user or a Queen;

(5) it can write Drone Entries to JavaSpaces, or be notified about new Drone Entries

appearing in any JavaSpace; (6) it can manage its leases with all JavaSpaces on Drone

Entries that it has written or on notification on Events that it has subscribed to.

Moreover, Agent Drone has additional functionality that exposes an embedded Agent

(that implements Agent Interface) to the rest of the world. That is, each Agent Drone

serves to house, announce and transport an Agent or its services.

For each Jini Lookup Service found, Agent Drone will spawn a new thread to register its

internal Agent Service to the lookup server, with appropriate Service Attributes so that

others can easily find their desired Agent. This is done in the standard fashion dictated by

the Jini architecture, as show in Figure 5.1.

Agent Drone

Lookup Service (Service Provider)

Registration
Agent Service

Object
Registrar

95

Figure 5.1. Pictorial showing Object passing

when an Agent Drone registers at a Lookup Service

The Agent Service Object is the proxy for the Agent at remote hosts. It can either be fat,

with all the code in the proxy, so that all computation is effectively occurring at the

remote client, or thin, using RMI for active communication, so that all computation

occurs at the Agent Drone. It can distribute computation between the client and the

server. This choice is left open, and specific Agents should choose the architecture that is

best suited for the application.

5.4 Details on some specific Agent Drones

Now that we have gone through the properties of a general Agent Drone, it is time to

explain the differences between each specialized Agent Drone.

5.4.1 Database Agent Drone

Although not yet implemented, we anticipate that a Database Drone to work closely with

the Registration Drone to either retrieve information of former hotel guests in the hotel

chain, or to save current information of the same for long term storage. The Database

Drone also works closely with the Queen Drone in providing information on how to

personalize particular Drones that may be requested by a certain hotel user.

96

5.4.2 Administrative Agent Drone

Administrative Agent Drones, or Admin Agent Drones for short, house Admin Agents.

Admin Agents, as the name suggests, serves as a scheduling and note-taking assistant to a

user. The users are every facility, employee, or guest.

When a hotel guest first checks in through the Registration Drone, the Queen is informed

of the new guest, and spawns a new Administrative Agent Drone for that user (at an

appropriate Hatchery). The Queen also monitors the presence of that Drone, and creates a

new one in an event of a failure. During the checkout process, the Queen then kills the

Administrative Agent Drone for that user.

We have mentioned that the Registration Drone treats a hotel guest checking in much like

an employee signing in to work. Here, we extend the analogy. Every hotel employee has

his or her own Administrative Agent, which is created in a similar fashion as a hotel

guest.

Furthermore, every room door and every hotel facility will have an Administrative Agent

Drone. Much of these Drones are automatically created during the initialization process,

but the hotel manager can also manually create them. For example, the hotel manager

may wish for hotel guests to schedule for activities outside the hotel such as Golf.

97

One function of the Administrative Agent is to schedule meetings between two entities.

This always involves at least 2 Administrative Agents. In order to attempt different

scheduling possibilities, the Administrative Agent can spawn multiple copies of itself,

and send each copy to visit other Administrative Agents. In order to schedule a series of

events, the Administrative Agent visits the different Administrative Agents in series.

Thus, the Boolean "or" can be accomplished via the creation of daemon Administrative

Agents, while the Boolean "and" can be accomplished via increasing the number of

foreign Administrative Agent visits. Upon reaching an impossible situation, the daemon

Administrative Agent can return to its immediate master to report failure. A better

understanding of the scheduling algorithm can be obtained through the scenario in section

6.4.

This simple scheme allows for a multitude of applications. For example, a business

traveler's agent may visit each conference room's agent and each restaurant's agent to

attempt to schedule a lunch appointment and a conference room reservation. As another

example, a cleaning maid's agent may attempt to schedule with the room's agent to clean

the room. As a last example, a vacationer's agent can try to schedule a restaurant meal, a

golf game and an acupuncture session all on the same day, but without any ordering

preference.

Another function of the Administrative Agent is to remember the preferences and settings

of the user. For example, a hotel guest or employee can set a contact list that will appear

on the Messaging Manager by default. As another example, a hotel guest can set his or

98

her wake-up call preferences. In future implementations, the hotel guest will also be able

to choose the picture to appear on the digital photo frame. The agent will also use the

hotel guest's past preferences and purchases to personalize offerings such as room service

and promotions.

The third function of the Administrative Agent is to take messages for the user. As one

example, another person can leave a message for the hotel guest through the messaging

system, even though the hotel guest is not online. As another example, the hotel guest can

leave requests with the room's agent (to be passed on to the cleaning maid's agent when a

cleaning session is scheduled).

5.4.3 Messaging Agent Drone

The Messaging Agent Drone is yet another Agent Drone. It provides a graphical user

interface for one user to send "Instant Messages" to another user.

In our first implementation of an Instant Messager, messages were passed from one party

to another party via Javaspaces. We noted high network latencies on a typical system.

This was not surprising since a Javaspace may prove to be a bottleneck, and the message

has to travel across an intermediate node.

Our discussion in section 3.5 has shown the use of agents more appropriate for message

passing between known senders to known receivers. In light of this, we re-implemented

the Instant Messager service to be a sub-class of Agent Drone.

99

In fact, the Messaging Agent Drone does work very closely with other Messaging Agent

Drones and Administrative Agent Drones. In particular, a Messaging Agent Drone will

first seek the user's corresponding Administrative Agent to obtain his or her "Contact

List". The graphical user interface will then display the list of friends and hotel staff, and

will note if they are online or offline. In double-clicking a name, a new window will

appear for a chat session between the user and the chosen target.

If the target is online, the Messaging Agent Drone will attempt to find the target's

Messaging Agent, and the target's Messaging Agent Drone vice versa. Both Agents can

then receive messages from each other in a life chat. With a direct connection between

Messaging Agent Drones, the network latency is much better, and the JavaSpaces are not

bogged down with additional requests and entries. Therefore, we have implemented two

chat modes. In the Messaging Mode, the user can type and edit his or her sentences

before clicking send. In the Chat Mode, the Messaging Agent Drone will periodically

send the text in the textbox if there are any changes from the last send.

Unlike commercially available chat programs, such as ICQ [1.5] and AOL Instant

Messager [1.6], our implementation offers some advantages:

i. No central Server

ii. Dynamic Switch Between Messaging and Chat Modes

iii. One sided-chats possible.

100

6 Specific Scenarios

Section 4 described the software and hardware architecture of the Hotel Management

System and Section 5 entered into greater depth on the workings on each specific Drone.

However, the division of the Hotel System via the different Drone processes may not

give a complete understanding of how different Drones work together to provide services

for hotel guests and employees. This section makes up for this shortfall by going through

different scenarios that may arise in a typical hotel, thereby dividing the Hotel System via

high-level services rather than low-level processes.

The legion for the rest of the figures in this section is provided in Figure 7.0.

0-0 Network Connection

Communication

Drone Creation

Figure 7.0. Legion

101

Drone

Agent

6.1 Check-in

A detailed pictorial explaining the check-in process can be seen in Figure 7.1. The steps

of the process occur in the sequence of the numbered circles. The steps are:

i. The Registration Drone communicates with the Database Agent to retrieve

information on previous bookings, room availability, or customer profiles. It also

saves new information to the Database. Here, the hotel guest checks in and is

assigned a room.

ii. The Registration Drone writes a Registration Entry to JavaSpace, so that other

Drones are aware that the hotel guest is currently living in the hotel.

iii. A Queen is notified of the Registration Entry of the new guest.

iv. The Queen retrieves stored settings and preferences of the guest, if any. Using the

saved settings, the Queen creates a new Admin Agent Drone, which will provide

administrative services to the guest while he or she is living in the hotel.

v. The Drone is packaged in a Hatchery Entry, and written to JavaSpace.

vi. An appropriate Hatchery had been selected based on its proximity to the guest

room and its current workload. This Hatchery retrieves the Hatchery Entry.

vii. The Hatchery spawns a new thread that runs the personalized Admin Agent

Drone. From this point on, any process can contact the guest's Admin Agent to

schedule activities, leave messages, or otherwise interact with the hotel guest.

102

Other Drones

Centra Server

Re

64 W

Floor Server 1
4 RuningHatcre

bas
en

Central Server
Running Hatchery & Database

Conference Room

Ground Lobby

Enters a
Registration

Figure 7.1. Check-in Scenario

103

Fr Server 3 2nd Floor

Runnin HatoGuest's Room

Admin
Agent

6.2 Access-Control

A detailed pictorial explaining the access control process can be seen in Figure 7.2. The

steps of the process occur in the sequence of the numbered circles. The steps are:

i. Upon detecting a fingerprint, a Fingerprint Drone sends a One-To-Many Auth

Request Entry without a fingerprint image to a JavaSpace. The Auth Request

Entry identifies the Fingerprint Drone with information such as its location,

process ID and server ID.

ii. The Fingerprint Drone then writes a One-To-Many Auth Request Entry with a

fingerprint image when it is read correctly.

iii. A King takes the One-To-Many Auth Request Entry without an image, since it is

smaller and available first.

iv. The King then communicates directly with a Database Agent to discover the list

of users that might have access to the resource.

v. For each user in the list, the King writes a One-To-One Auth Request Entry to a

preferred JavaSpace based on the location of the Fingerprint Drone. In this case, it

is the "JavaSpace 2 "d Floor".

vi. Auth Drones throughout the hotel take the One-To-One Auth Request Entry in a

Transaction. The Auth Drones on the 2nd Floor prefer "JavaSpace 2nd Floor", and

are most likely to take such Entries before those on other floors.

vii. Each Auth Drone also has to retrieve the fingerprint image, if it does not have it

cached.

104

viii. Each Auth Drone also has to retrieve the fingerprint template, if it does not have it

cached. Again, since these Auth Drones work on similar cases on their preferred

JavaSpace, the chances of a cache hit is high.

ix. The Auth Drones write their results back to a JavaSpace, and commit the

transaction. If the process has taken too long, the transaction will be aborted

freeing the Auth Request Entry for another Auth Drone.

x. The King reads the results, and waits for either every Auth Reply Entry to reject

the fingerprint or the first Auth Reply Entry to accept the fingerprint. If the King

waits too long, it will resend the Auth Request Entries that have not been replied

to.

xi. The King sends the result to the Fingerprint Drone. The result in this case is

"Accepted".

xii. The Fingerprint Drone activates the TINI relay, and unlocks the guest room door.

105

2nd Floor

TINI
Running Hatchery

Ingerp
Drone

Fingerprint NIL O M 9
Reader ne

Ist Floor

7or Server I
?unning Hatchery

oor Server Ground
Running Hatchery

Ground Lobby
atabae
Agent

Figure 7.2. Access Control Scenario

106

Guests In ormation
is Cached on his Floor

Floor Ser
Running Ha

ver 2
tchety Auth

Drone

cGuest's Rocm

S

massmammananamannom

I

6.3 Logging-in

A detailed pictorial explaining the logging-in process can be seen in Figure 7.3. The steps

of the process occur in the sequence of the numbered circles. The steps are:

i. The King writes an "Accepted" Auth Reply Entry to a JavaSpace, in response to a

User Drone's identification request.

ii. The User Drone takes the Auth Reply Entry, which contains information of the

user that has been identified. It then displays a selection of software that the user

might use. In this case, the user chooses "Instant Messaging".

iii. The User Drone writes a Queen Request Entry for a Messaging Agent Drone.

iv. The Queen replies with a Hatchery Entry with a customized Messaging Agent

Drone for the User Drone. The User Drone is a subclass of Hatchery.

v. The User Drone creates a new Messaging Agent Drone.

vi. The Messaging Agent Drone contacts the corresponding Admin Agent for the

user. (Recall this has been created during the check-in process.) The Admin Agent

reveals the user's contact list.

vii. The Messaging Agent Drone displays the user's contact list on a menu. Upon

double-clicking a friend's name, the message windows appears on both of the

corresponding computers, as the two Messaging Agents communicate text

messages to one another. There is a choice of Message Mode and Chat Mode.

107

viii. If the foreign Message Agent cannot be contacted, a message is left in the

corresponding Admin Agent Drone.

108

n~)pri: j

2nd Floor
Guest's Room

Admin
Agent Age
Drone Dro

__6

at ~User
nt'fAgent

Ist Floor
Conference Roon

Ground Lobby

Ain Msge
AntAgn
rneDrn

Central Server
Running Hatchery & Databe

Figure 7.3. Logging-in Scenario

109

Other Drones

64ueen Kn
Drore Drn

'C'II

6.4 Scheduling Activities

A detailed pictorial explaining the scheduling process can be seen in Figure 7.4. The

steps of the process occur in the sequence of the numbered circles. The steps are:

i. A hotel guest or employee logs in at the User Agent as described in section 6.3.

For this scenario, we will assume that the user is a hotel guest who is free from

12:00pm to 1:00pm. He or she plans to spend half-an-hour in a conference, and

the other half-an-hour at lunch, but does not have a preference for the ordering.

He or she chooses to leave unspecified the type of conference room or the name

of restaurant. Thus, the hotel guest launches the Schedule Drone.

ii. The hotel guest makes his or her intentions clear to the Schedule Drone. The

Schedule Drone then contacts the guest's Admin Agent with the orders.

iii. Since there are three conference rooms, the guest's Admin Agent makes 3 copies

of itself, and sends them to the Admin Agent of each conference room. We shall

call these copies, "Level-One Agents", and the original Admin Agent, "Master

Agent".

iv. A Level-One Agent has failed to negotiate a possible schedule with a conference

room's Admin Agent. The conference room is not available at any time from

12:00pm to 1:00pm. This Level-One Agent returns to the Master Agent reporting

failure. Since there are two more Level-One Agents that have not reported, the

Master Agent does not report a failure.

110

v. Each Level-One Agent remaining realizes that the user wishes to schedule a

conference AND lunch. They therefore have to visit another Admin Agent, this

time that of a restaurant. However, there are 2 restaurants in the hotel. Since either

one will do, they have to make two copies of themselves, or Level-Two Agents,

and send the Level-Two Agents to each restaurant's Admin Agent.

One of the Level-One Agents has tentatively scheduled a conference room for

12:00pm. It therefore sends Level-Two Agents that are aware of this. None of the

restaurants are available at 12:30pm. Thus, both Level-Two Agents return to this

Level-One Agent reporting failure.

vi. Since all the Level-Two Agents reported failure, this Level-One Agent reports

failure to the Master Agent. However, the Master Agent still has 1 Level-One

Agent that has not reported failure. Therefore, it does not report a failure to the

user.

vii. The last Level-One Agent has tentatively scheduled a conference room for

12:30pm. It therefore sends Level-Two Agents that are aware of this. Both of the

restaurants are available at 12:00pm. Thus, both Level-Two Agents tentatively

mark 12:00pm on their schedules for the corresponding restaurants.

viii. Both Level-Two Agents realize that their task is done, since there are no more

events that have to be scheduled. They return directly to the Master Agent. The

Master Agent shows the two available options to the hotel guest. The guest must

take the third conference room at 12:30pm, but can choose either restaurant at

12:00pm.

111

3ua.~priny.~ dlii
2nd Floor

Guest's Room

LJ~19 f User
Drone 9 Agent '-I

Other Drones

King

it rn Drone

Central Server
Running Hatchery & Databe

Figure 7.4. Scheduling Activities Scenario

112

Ad--

*Agent
n rnnA

1st Floor
ce Roomsonferen

SAdmin Agen s :0
for different

conference rooms

LL
~oundLbRestaurants

Admin Agents
visits for diffe nt

lunch tim s
12:00 12:00

12:30

7 Evaluation

7.1 Fulfillment of design goals

We had listed ten design goals before the implementation of the hotel system in section

4.1. Here, we will discuss how well we fulfilled our goals.

7.1.1 Provide comprehensive services.

Our implementation focuses on a small set of services for the proof of concept. Namely,

we implemented Registration, Access Control, Instant Messaging, Scheduling and

Billing. This is fairly good for the first proof-of-concept, but we hope that there will be

many more services to come in the future. This includes an interactive Web Page that

accepts reservations, a yield management algorithm that predicts and reacts to demand

and supply conditions, employee tracking and payroll software, automated wake-up call

software, and an algorithm to display advertisements to guests in an intelligent fashion.

7.1.2 Provide superior services.

We believe that some of the services implemented can provide high utility to hotel guest

and employees. For example, the Biometrics Access Control System and the Instant

Messaging System perform very well, and are preferable to their traditional counterparts.

We do admit that more work needs to be done in other areas. For example, the current

113

Scheduling Drone can only schedule events in half-an-hour intervals. As another

example, the Billing Drone needs to categorize items on a billing in a clearer fashion.

7.1.3 Computational Efficiency.

We feel that our system is computationally efficient, since much of our time is spent

optimizing the system. We have used two methods for parallel processing, and can

therefore choose appropriate methods for different scenarios. We have used caching

extensively, and thus perform certain tricks to increase cache hits. We have avoided

bottlenecks through redundancy and planning.

However, some work needs to be done with the Scheduling Algorithm to limit the

number of possibilities. With many unspecified variables, the number of Admin Agent

clones can explode exponentially. Initially, we had wanted to explore all possible options.

However, we now realize that it is only practical to employ heuristics to minimize the

number of possibilities to only those that the user might be interested in. Furthermore, it

may not be worthwhile to pursue unlikely situations, such as a step that decreases the

most degrees of freedom.

7.1.4 Easy to install

The system is plug-and-play enabled by inheritance from the Jini architecture. However,

one overhanging problem is to efficiently identify each device with the actual physical

114

location in the hotel. This may be more of a problem with the actual hotel, rather than a

computer science problem.

7.1.5 Easy to maintain

The system has been tested extensively, with the forced failures of certain Drones,

Agents or Jini Services. As long as there are redundant processes, the system does not

fail. Exceptions are noted, and alternatives are sought.

The system is also left running for an extended period of time. Due to the transient nature

of lease-based Entries and Event Notifications, garbage does not accumulate at any

resource over time.

Therefore, our system is very easy to maintain, again from inheritance of the Jini

Architecture.

7.1.6 Easy to upgrade and backup.

We envisioned it to be easy to upgrade and backup the system, since the codebase can be

running on one computer. While this is true, we have encountered failures in certain

Drones when the codebase in changed while they are running. Queens, for example, may

be unable to create Drones that are modified in new codebase. While it is much simpler

to upgrade the system than a comparable Hotel Management Systems, we still had to

remain vigilant during the replacement of the codebase for failures that may occur in

115

Drones that assume that the codebase is not modified from start time. New versions of

those Drones are created immediately to replace the old versions to prevent the stoppage

of service.

7.1.7 Affordable.

We have spent a few hundred dollars on this project, but we have not bought all of the

required parts. There is a long waiting list for the TINI chipset, which sells as much as

$50 if available. This is a few times greater than the predicted price of $15 in time to

come. We experienced a similar situation with some fingerprint readers and their SDK.

We purchased a PreciseBiometrics Fingerprint SDK for $400, which is far higher than

the $50 we expected to pay. However, we hope that these prices will drop with the bulk

orders required in an actual hotel, and with time.

A big cost in our hotel implementation is the need for a desktop computer in every room.

With a hundred rooms, the cost of this can be considerable. There is little we can do

about this, except to possibly remove the numerous desktop computers at the expense of

the service. Perhaps a limited number of wireless notebooks that are rented out for a fee

can replace these desktop computers.

7.1.8 Customizable.

In the design of the hotel system, tasks are broken down into small components and

performed by Drones. These Drones mostly communicate via a common JavaSpace.

116

Therefore, it is not difficult to customize our system for many purposes. For example,

hotels that require biometrics access control but not Instant Messaging can choose to run

the Auth Drones, but not the Messaging Agent Drone.

7.1.9 Scalable.

Scalability has been built into our system design. There is a distributed federation of Jini

Services and Drones that provides no boundaries in size. In the potential confusion of this

mass of processes, we have also implemented a partial structure by allowing Drones to

prefer certain Services, such as the JavaSpace running on the same floor. This ensures

lower network latency and higher cache hits, and yet retains the redundancy of the Jini

Federation.

One improvement we will like to make is for the Queen to perform a more in depth

analysis of the performance of each server or Drone, thus allowing for better load

balancing between servers. This will, in turn, increase scalability with the higher

assurance that bottlenecks are absent.

7.1.10 Web-enabled.

By being Jini-enabled, our solution is web-enabled. We have tested our system with

many other Jini Networks that we manage to find on the World Wide Web. Therefore, we

have utilized JavaSpaces that are miles away from our actual location. This is promising

since it breaks down the boundaries of a hotel. Two different physical locations can

117

function effectively as one Hotel or one Hotel Chain, and share the same database,

marketing tools, payment gateways, or even computational resources.

This are, however, some factors that prevents the system from being fully Web-enabled.

As mentioned before, we have yet to implement an interactive Web Page for hotel

customers to reserve a room. In addition, we have not looked into how our systems can

interface with non-Jini systems, such as Microsoft Hailstorm or XML technologies.

118

8 Conclusion

There are many areas where the proposed Hotel Management System can be improved

upon. We will outline a few ways of extending the capabilities in this section.

8.1 Future Work

8.1.1 Other Distributed Object Systems

Jini is but one method of federating services together in a boundaryless environment.

There are some other tools that have been developed to network web services, and it is

worth considering a combination of these tools so that the Hotel Management System can

be compatible with other third party services and devices.

8.1.1.1 Corba

One upcoming standard is Corba. It is language-independent, using an Interface

Definition Language (IDL) for specification of interfaces for a distributed object system.

An example of an interface for room booking written in IDL is given in the appendix in

Section 10.5.1.

119

Corba has bindings to a number of languages, the most recent of which is Java. Further

work needs to be done so that the Hotel Management System can interact with other third

party services that support Corba.

8.1.1.2 XML, Microsoft.NET & Hailstorm

Yet another upcoming standard that clusters together distributed web services is that of

Hailstorm. Hailstorm is a component of the .NET initiative by Microsoft, and promises to

be an open web services architecture based upon the de facto standard dynamic duo of

XML and SOAP.

The motivation of Hailstorm is the numerous web services that require users to provide

disparate bits of information. Microsoft's central Passport service integrates the cluster of

personal information, and allows the user to use a single key to access a multitude of

services. An interesting development for future work will therefore be for the Hotel

Management System to interface seamlessly with Microsoft Hailstorm to retrieve the

customer's information such as address, credit card number, schedule and contact list.

8.1.2 Better way to scale JavaSpaces

Another interesting project for future work will be to design a better way to scale

JavaSpaces. Currently, we used a simple scheme of rotating between JavaSpaces starting

from the preferred one. There can be better implementations to support multiple

Javaspaces more naturally. For example, there could be a registry that points directly to

120

the JavaSpace that contains the Entry a program is looking for. Another area of

improvement will be to decrease the space and time requirements for writing entries to a

JavaSpace. IBM has already done good work in this field in their implementation of T-

Spaces [6.3].

8.1.3 Integration with other systems

To be commercially viable, the Hotel System we propose must be integrated with other

systems such as credit card processing, employee payroll and accounting systems.

8.2 Summary

We have presented the design and prototype implementation of a low-cost Hotel

Management System. In this system, computing devices, such as servers, desktops and

TINI chipsets, are distributed throughout the hotel and connected via Ethernet. Queens

are processes on central servers dynamically create or destroy Drone processes on each

computing device as required. Our system uses the Jini architecture and JavaSpace

extensively, and is therefore dynamically distributed. Redundancy ensures that the system

is robust. There are multiple copies of Drones, Agents and JavaSpace running at any one

time. Furthermore, Jini Leases ensure that the system is self-healing. If a process dies

unexpectedly, its leases with JavaSpaces, Lookup Services and other Jini Services will

expire in due time.

121

Drones communicate via JavaSpace, which is a naturally method of breaking down some

tasks for parallel processing. For example, fingerprint identification can be performed

quickly by letting Auth Drones match the fingerprint to different templates. This is done

in an adaptively parallel fashion, since Auth Drones can withdraw at anytime without

affecting the outcome of the identification process. Transactions ensure that an Auth

Drone will never lock a request forever.

Agents, on the other hand, communicate directly through the Jini architecture. This is

appropriate when communication occurs with a specific target. A good place this is used

is in Scheduling. Admin Agents can negotiate schedules with each other without the

burden of going through JavaSpace. Furthermore, an Agent can actually transport itself to

run on the foreign host, so that bandwidth is conserved for more complex scheduling

requests. An Agent can also make multiple copies of itself, when attempting to schedule

multiple events for multiple parties. This allows many possibilities to be attempted at the

same time.

Our prototype has served well as a "proof-of-concept". Obviously, more works need to

be done. However, we are optimistic that this can become a practical system for Hotel

Management.

122

9 References

9.1 General:

[1.1]: Data source: 1999 CIA World Factbook

[1.2]: SunSprings Hotel and Spa. Business Plan. 2001.

[1.3]: ETrue, Inc. http://www.etrue.com

[1.4]: TigerDirect. http://www.tigerdirect.com

[1.5]: ICQ. http://www.icq.com

[1.6]: AOL Instant Messager. http://aim.aol.com/aimnew/oldreg/home.html

[1.7]: Hot Java Component. http://www.sun.com/software/htmlcomponent/index.html

[1.8]: TINI Chipset. http://www.ibutton.com

9.2 Commercial Hotel Management Systems:

[2.1]: InnSystems. http://www.innsystems.net/products/products interfaces.html

[2.2]: GuestLine. http://www.guestline.com/contsol.html

[2.3]: Digital Rez Software Corp. http://www.digitalrez.com/MOHO/MotelMulti 1.asp

[2.4]: Reservations Plus, Inc. http://www.aps-rplus.com/demo.htm

[2.5]: Inn Scheduler. http://www.innscheduler.coml

[2.6]: InnFone. http://www.keysystemus.com/InnFone.html

123

[2.7]: TesaLocks http://www.tesalocks.com/

9.3 Authentication and Identification

[3.1] E. Newham, The Biometric Report, SJB Services, New York, 1995.

[3.2] R. Clarke, Human Identification in Information Systems: Management Challenges

and Public Policy Issues, Information Technology & People, Vol. 7, No. 4, pp. 6-37,

1994.

[3.3] S. G. Davies, Touching Big Brother: How Biometric Technology Will Fuse Flesh

and Machine, Information Technology & People, Vol. 7, No. 4, pp. 60-69, 1994.

[3.4] The BioAPI Consortium. BioAPI Specification 1.1. The BioAPI Consortium,

March 2001.

[3.5] A. Jain, L. Hong, S. Pankanti, R. Bolle. An Identity Authentication System Using

Fingerprints. Proceedings of the IEEE, Vol. 85, No. 9, pp. 1365-1388, 1997.

[3.6] N. Ratha, J. Connell, R. Bolle. A biometrics-based secure authentication system.

Proc. 1999 IEEE Workshop on Automatic Identification Advanced Technologies

(WAIAT-99), Morristown NJ, October 1999.

[3.7] N. Ratha, J. Connell, R. Bolle. Cancelable Biometrics. 2000 Biometrics Consortium

Workshop, September 2000.

[3.8] Anil Jain and Sharath Pankanti. Automated Fingerprint Identification and Imaging

Systems. IBM TJW Research Center.

124

9.4 Yield Management

[4.1] Garrett J. Van Ryzin, Jeffrey I. McGill. Revenue Management: Research Overview

and Prospects. Transportation Science 0041-1655 Vol. 33, No. 2, May 1999

[4.2] Timothy Kevin Baker. New Approaches to Yield Management: Comprehensive

Overbooking/Allocation Heuristics for the Hotel Industry. PhD thesis, The Ohio State

University, 1994.

9.5 Networked Systems

[5.1] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer, October

1981.

[5.2] Sun Microsystems, "XDR: External Data Representation Standard", RFC-1014,

June 1987.

[5.3] Birrell, A. D. & Nelson, B. J., "Implementing Remote Procedure Calls", XEROX

CSL-83-7, October 1983.

[5.4] Sun Microsystems, " RPC: Remote Procedure Call", RFC-1050, June 1988.

[5.5] Polyhedra, Inc., Some Background Concepts: Object-Oriented Systems.

[5.6] Letha H. Etzkorn and Carl G. Davis. An Approach to Object-oriented Program

Understanding. Technical Report TR-UAH-CS-1995-01, Univ. Alabama, 1995.

[5.7] Steve Vinoski, Distributed Object Computing With CORBA, C++ Report

magazine, August 1993

125

[5.8] Chung, Huang, Yajnik, Liang, Shih, Wang, Wang. DCOM and CORBA Side by

Side, Step by Step, and Layer by Layer.

[5.9] Object Management Group (OMG). CORBA Scripting Language Specification.

Version 1.0, June 2001

[5.10] W. Keith Edwards. Core Jini, 2nd Edition. Prentice Hall, 2001.

[5.11] Sun Microsystems. JiniTM Architecture Specification. Version 1.1. October 2000.

[5.12] Robert E. McGrath. Discovery and Its Discontents: Discovery Protocols for

Ubiquitous Computing. Presentation at Center for Excellence in Space Data and

Information Science. NASA Goddard Space Flight Center. April 5, 2000

[5.13] ChoonHwa Lee, Sumi Helal. Protocolsfor Service Discovery in Dynamic and

Mobile Networks. Computer and Information Science and Engineering Dept.

University of Florida, Nov 2000.

[5.14] Christian Bettstetter, Christoph Renner. A COMPARISON OF SERVICE

DISCOVERY PROTOCOLS AND IMPLEMENTATION OF THE SERVICE LOCATION

PROTOCOL. Technische Universit-at M"unchen (TUM), Institute of Communication

Networks, D {80290 Munich, Germany. 2000.

[5.15] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, Jeremy Lilley The

design and implementation of an intentional naming system. Proc. 17th SOSP, Kiawah

Island, SC.

[5.16] Moss, Elliot, Nested Transactions : An Approach to Reliable Distributed

Computing, The MIT Press, Cambridge, Massachusetts, 1985, pp.3 1 -3 8 .

[5.17] Universal Plug and Play. http://upnp.org/

126

9.6 Distributed Systems

[6.1] D. Gelernter. Generative communication in Linda. ACM Transactions on

Programming Languages and Systems, 7(1):80-112, 1985.

[6.2] Larsen, Spring. Global Object Exchange: A dynamically fault-tolerant and

dynamically-scalable distributed tuplespace for heterogeneous, loosely coupled

networks. Thesis, University of Copenhagen, October 1, 1999.

[6.3] Wyckoff, McLaughry, Lehman, Ford. T Spaces. IBM Systems Journal, August 1998

[6.4] Sun Microsystems. JavaSpaces Specification. Revision 1.0 Beta, July 17 1998

[6.5] Eric Freeman Build a compute server with JavaSpaces.

http://www.javaworld.com/javaworld/jw-01-2000/jw-01-jiniology.html

[6.6] Carriero, Gelernter, Kaminsky, Westbrook. Adaptive Parallelism with Piranha.

Technical Report 954, Yale University Department of Computer Science, Feb. 1993.

[6.7] Noble, Zlateva. Distributed Scientific Computation With JavaSpaces? Technical

Report, MET College Department of Computer Science, Boston University, 2001.

[6.8] Tripathi, Ahmed, Karnik. Experiences and Future Challenges in Mobile Agent

Programming. Microsystems, October 2000.

[6.9] Ronald Ashri and Michael Luck. Paradigma: Agent Implementation through Jini.

Department of Electronics and Computer Science. University of Southhampton. 2000

[6.10] Singh. Development of Distributed Systems using Mobile Agents in Ajanta. Thesis

Defence, University of Minnesota, 1999.

[6.11] Steven Schmelzling. Distributed Processing: A Synopsis. CS-384 Design of

Operating Systems Research Paper, January 2000.

127

10 Appendices

10.1 Package Drone

10.1.1 Class drone.Drone
package drone;

import net.jini.core.event.RemoteEventListener;
import net . j ii . core . event . RemoteEvent;
import java. rmi . Remote;
import java. rmi .MarshalledObj ect;
import net. j ii .core. event .UnknownEventException;
import net.jini .core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.*;
import java.rmi .RMISecurityManager;
import java. rmi . RemoteException;
import net.jini.discovery.LookupDiscovery;
import net . j ii .discovery. DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini .core.discovery.LookupLocator;

import net.jini .core.lookup.ServiceRegistrar;
import net . j ni .core. lookup. ServiceTemplate;
import net.jini.core.entry.Entry;

import net.jini.core.lease.Lease;
import net.jini.lease.LeaseListener;
import net . j ii . lease . LeaseRenewalEvent;

import net.jini.space.JavaSpace;
import net . j ii . lease . LeaseRenewalManager;
import java.io.*;
import java.util.Vector;
import java.util.Enumeration;

import common. Event ID;
import drone . droneEntry. *;

* Drone.java

//Like a stem cell"l

public abstract class Drone extends EventID implements Serializable,
Runnable, DiscoveryListener {

128

public Integer server=null;

protected boolean stopped=true;
protected Integer process=null;
protected boolean signin=false;
protected boolean setnotify=false;
protected DroneEventListener listener = null;
protected DroneLeaseListener leaselistener = null;

protected int numSpaces=O;
protected QueenEntry queenentry=null;

protected Vector notifyEntries;
protected Vector notifyMarshalledObjects;
protected transient java.util.Random r;

public transient volatile Thread thread=null;

protected final Vector leases;

protected transient LeaseRenewalManager leasemanager;

protected transient JavaSpace javaSpace=null;
protected transient ServiceID javaSpaceID=null;
protected transient ServiceItem[] spaceServices;

protected Vector events=new Vector();
protected Object lock = new int[l];

public Drone(Integer s) {
super();

//Initialize some variables and set JavaSpace Notification elements.
//Note: You cannot initialize any transient variables here!
// Use RunFirstTime() for this purpose.

server=s;
process=new Integer((new java.util.Random()).nextInt());

notifyEntries=new Vector();
notifyMarshalledObjects=new Vector();
leases=new Vector);

notifyEntries.addElement (new RefreshEntry());
notifyMarshalledObjects.addElement(REFRESHENTRY);

notifyEntries.addElement(new DeathEntry(server,process));
notifyMarshalledObjects.addElement(DEATH-ENTRY);

queenentry=new QueenEntry(server, process, returnDroneTypeID());

public void discovered(DiscoveryEvent evt) {
ServiceRegistrar[] registrars = evt.getRegistrars();
for (int n = 0; n < registrars.length; n++) {
ServiceRegistrar registrar = registrars[n];

129

System.out.println("Found a service locator");

//Do other stuff with the registrar
findDroneSpecificServices(registrar);

//Find JavaSpaces
findJavaSpaces(registrar);

}
}

public void discovered(ServiceRegistrar registrar) {
System.out.println("Found a service locator");

//Do other stuff with the registrar
findDroneSpecificServices(registrar);

//Find JavaSpaces
findJavaSpaces(registrar);

}

public int abs(int i) {
if (i>0) return i;
else return -i;

}

public int min(int i, int j) {
if (i>j) return j;
else return i;

}

protected void findDroneSpecificServices(ServiceRegistrar reg) {

}

protected synchronized void findJavaSpaces(ServiceRegistrar reg) {
System.out.println(Thread.currentThread();
Class[] types={JavaSpace.class};
ServiceTemplate tmpl=new ServiceTemplate(null, types, null);

try {

ServiceItem[] s=new ServiceItem[50];
int ns=0;

ServiceMatches matches = reg.lookup(tmpl,50);
s matches.items;
ns = matches.totalMatches;
System.out.println("Found "+ns+" more JavaSpaces.");
for (int i=numSpaces; i<min(50,ns+numSpaces); i++) {
spaceServices[i] = s[i-numSpaces];

}
numSpaces=min(ns+numSpaces,50);
numSpaces=compact(spaceServices, numSpaces);
sort(spaceServices,0, numSpaces-1);
removeDuplicates(spaceServices,numSpaces);
numSpaces=compact(spaceServices,numSpaces);

130

System.out.println("Removing duplicates and bad spaces...");
} catch (RemoteException e) {
System.out.println("Error in looking up a JavaSpace: "+e);
return;

}

System.out.println("Found "+numSpaces+" JavaSpaces total.");

SetNotifyEvents();
}

public synchronized int compact(ServiceItem[] spaceServices, int
numSpaces) {

for (int i=O;i<numSpaces;i++) {
if (spaceServices[i]!=null)
if (spaceServices[i].service!=null) {
//This one is okay
//System.out.println(spaceServices[i].servicelD);

} else {
spaceServices[i]=spaceServices[numSpaces-1];
numSpaces--;

i--;

//System.out.println("Removed 1 bad service...");

} else {
spaceServices[i]=spaceServices[numSpaces-1];
numSpaces--;

i--;

//System.out.println("Removed 1 bad service...");
}

}
//System.out.println("End Compact.");
return numSpaces;

}

public synchronized void sort(ServiceItem[] spaceServices,int start,
int end) {

if (end-start==l)
if

(spaceServices[start].serviceID.hashCode()>spaceServices[end].serviceID
.hashCode() {

ServiceItem tmp=spaceServices[start];
spaceServices[start]=spaceServices[end];
spaceServices[end]=tmp;

}
} else {
if (end-start>l) {
sort(spaceServices, start, ((start+end)/2));
sort(spaceServices, ((start+end)/2)+1, end);

ServiceItem[] si=new ServiceItem[end-start+l];
int pointerl=start;
int pointer2=((start+end)/2)+l;

int count=O;

while (pointerl<=end) {
//System.out.println(count+","+pointerl+","+pointer2);

if (pointer2>end) (

si[count]=spaceServices[pointerl];
pointerl++;

131

count++;
if (pointerl==((start+end)/2)+1) {
pointerl=pointer2;
}
continue;

}
if

(spaceServices[pointeri].serviceID.hashCode()>spaceServices[pointer2].s
ervicelD.hashCode())

si[count]=spaceServices[pointer2];
pointer2++;

} else {
si[count]=spaceServices[pointeri];
pointerl++;

}
if (pointerl==((start+end)/2)+1) {
pointerl=pointer2;

}
if (pointerl>pointer2) pointer2=pointerl;

count++;
}

for (int i=O;i<count;i++) {
spaceServices[start+i]=si[i];

}
}

}
}

public synchronized void randomize(ServiceItem[] spaceServices,int
start, int end) {

if (end-start==l) {
if (r.nextInt()%2==O) { //Randomly shuffle
ServiceItem tmp=spaceServices[start];
spaceServices[start]=spaceServices[end];
spaceServices[end]=tmp;

}
} else {
if (end-start>l)
sort(spaceServices, start, ((start+end)/2));
sort(spaceServices, ((start+end)/2)+1, end);
ServiceItem[] si=new ServiceItem[end-start+l];
int pointerl=start;
int pointer2=((start+end)/2)+1;
int count=O;
while (pointerl<=end) {
//System.out.println(count+","+pointerl+", "+pointer2);
if (pointer2>end) {
si[count]=spaceServices[pointerl];
pointerl++;
count++;
if (pointer1==((start+end)/2)+1)
pointerl=pointer2;
i

continue;
}

132

if
(spaceServices[pointerli.serviceID.hashCode()>spaceServices[pointer2].s
erviceID.hashCode() (

si [count] =spaceServices [pointer2];
pointer2++;
} else {
si[count] =spaceServices[pointeri];
pointerl++;

}
if (pointer1==((start+end)/2)+1) {
pointerl=pointer2;

}
if (pointerl>pointer2) pointer2=pointerl;

count++;

}

for (int i=O;i<count;i++) {
spaceServices[start+i]=si[i];

}
}

}
}

public synchronized void removeDuplicates(ServiceItem[] spaceServices,
int numSpaces) {

for (int i=O;i<numSpaces-l;i++)
if (spaceServices[i].serviceID.equals(spaceServices[i+l].servicelD))

{
spaceServices[i]=null;
//System.out.println("Removed duplicate JavaSpace at position "+i);

}

}

public synchronized int removeService(ServiceItem[] spaceServices, int
numSpaces, ServiceID badService) (

System. out.println ("Removing bad service "+badService);
System.out.println("You had "+numSpaces+" services.");
if (badService==null) return numSpaces;

for (int i=O;i<numSpaces;i++) {
try {

if (spaceServices[i].servicelD.equals(badService)) {
spaceServices[i]=null;

}
} catch (Exception e) {
spaceServices[i]=null;

}
}
return compact(spaceServices,numSpaces);

i

public void discarded(DiscoveryEvent evt) {

133

/* Note: once a lookup service is discovered, there is no on-going
* communication between LookupDiscovery and a discovered
* lookup service. This means that if a lookup service goes
* away, there will be no automatic notification that such
* an event has occurred.
*

* Thus, if a client or service attempts to use a lookup
* service but receives a RemoteException as a result of
* that attempt, it is the responsibility of the client or
* service to invoke the discard method of the
* LookupDiscovery object instantiated by the client or
* service. Doing so will flush the lookup service from the
* LookupDiscovery object's cache; causing this method
* to be invoked.
*/

System.out.println("LookupDiscoveryListener: discarded ... ") ;

/* Retrieve the discarded lookup service(s) from the event */
ServiceRegistrar[] regs = evt.getRegistrars();
for(int i=O; i<regs.length;i++){
System.out.println(" Discarded Lookup: "+regs[i]);

}
}

public void runFirstTime() {
spaceServices=new ServiceItem[50];
leasemanager=new LeaseRenewalManager();
leaselistener=new DroneLeaseListener();

System.setSecurityManager(new java.rmi.RMISecurityManager());
doLookup();
try {
listener = new DroneEventListener(this);

} catch (RemoteException e) {
System.out.println("RemoteException in creating DroneEventListener:

"+e);

}

stopped=false;
thread=new Thread(this);
thread.start(;

public synchronized void doLookup() {
LookupLocator lookup = null;
ServiceRegistrar registrar = null;
try {
lookup = new LookupLocator("jini://18.251.6.76");

} catch(java.net.MalformedURLException e) {
System.err.println("Lookup failed: " + e.toString());

}
try {
registrar = lookup.getRegistrar(;

} catch (Exception e) {

134

System.err.println("Cannot find registrar: " + e.toString());

}
discovered(registrar);

LookupDiscovery discover = null;
try {
discover = new LookupDiscovery(LookupDiscovery.ALLGROUPS);

} catch(Exception e) {
System.out.println("Fatal error in doing LookupDiscovery.");
System.err.println(e.toString));

e.printStackTrace();
System.exit(l);

}
discover.addDiscoveryListener(this);

}

public void run() {
int iii=0;
long waitSince=System.currentTimeMillis();
r=new java.util.Random(;

while (!stopped&&thread!=null) {
//System.out.println(Thread.currentThread());
System.out.println(returnType());
if (numSpaces>O) {
getRandomJavaSpace();

if (javaSpace==null) {
//Remove bad JavaSpace
numSpaces=compact(spaceServices, numSpaces);
sort(spaceServices,O, numSpaces-1);
removeDuplicates(spaceServices,numSpaces);
numSpaces=compact(spaceServices,numSpaces);

}

} else {
if (System.currentTimeMillis()-waitSince>1000*60) { //Expect to

find javaSpace in 1 minute
System.out.println("Doing Lookup process again...");
waitSince=System.currentTimeMillis();
doLookup();

}

if (System.currentTimeMillis()-waitSince>1000*60*45) {
//Every 45 minutes,
//I) Do lookup process for JavaSpaces and other services
//2) Sign in with Queen Entry (and remove previous entries)
//3) Asked to be notified by JavaSpaces (and remove previous

leases)

System.out.println("Doing Lookup process again...');
waitSince=System.currentTimeMillis();
doLookup();
signin=false;

135

setnotify=false;

}

//First, code to write QueenEntry to sign in a new drone
if (!signin&&javaSpace!=null) {
SetQueenEntry(;

}

//Second, code to request to be notified
if (javaSpace!=null&&!setnotify) {
SetNotifyEvents();

}

//Third, work on event notifications
RemoteEvent re=null;
boolean working=true;

while (working) {
synchronized (lock) { //Access to Vector events is synchronized
if (events.size(>O) {
System.out.println("There are "+events.size()+" pending

events.");
re=(RemoteEvent) events.elementAt(0);
events.removeElementAt(0);

} else {
working=false;

}
}
if (re!=null) defaultNotifyDrone(re);
else working=false;

if (stopped) break;
}
if (stopped) break;

//Do not run DroneSpecificCode until QueenEntry and Notification has
been set.

if (javaSpace==nullll!signin||!setnotify)
//Sleep for 3 seconds to give the Discovery process some slack
try {
Thread.currentThread().sleep(3000);

} catch (InterruptedException e) {
System.out.println("Sleep is interrupted.");

}
continue;

}

DroneSpecificCode();
}
System.out.println("Good bye!"+returnType());
i

public synchronized void SetQueenEntry() {

136

try {

//Remove old entry

QueenEntry qe=new QueenEntry(server, process,returnDroneTypeID());
//Snapshot over it
Entry snapshot= javaSpace.snapshot(qe);
boolean done=false;
int i=0;
while (!done) {
Entry result=javaSpace.takeIfExists(snapshot, null,

JavaSpace.NOWAIT);
done = (result==null);

}
writeEntryToOneJavaSpace(queenentry);
signin=true;
System.out.println("*Signed in*"+queenentry);

} catch (Exception e) {
System.out.println("*"+returnType()+"* Exception in writing

QueenEntry: "+e);

//Perhaps javaSpace is bad?
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
javaSpace=null;

}
}

public synchronized void SetNotifyEvents() {
try {

//Remove but not cancel previous leases
//(Let them expire by themselves)
removeAllLeases();
for (int i=0; i<numSpaces; i++) {
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID=spaceServices[i].serviceID;
if (javaSpace==null) {
System.out.println("Strange...one of them is null!");
numSpaces=compact(spaceServices,numSpaces);
continue;

}
Enumeration enum=notifyEntries.elements();
Enumeration enum2=notifyMarshalledObjects.elements();
while (enum.hasMoreElements()) {
Entry e=(Entry) enum.nextElement(;

MarshalledObject o=(MarshalledObject) enum2.nextElement();
//l Hour Lease

EventRegistration er=javaSpace.notify(e, null, listener, 60*1000,
o); //l minute

//Renew lease until leasemanager shuts down:
leasemanager.renewFor(er.getLease(, 60*60*1000, leaselistener);

//l hour

leases.addElement(er.getLease());

}
setnotify=true;

System.out.println("JavaSpace Notification set.");

}

137

catch (Exception e) {

System.out.println("Exception in setNotifyEvents(): "+e);

//Perhaps javaSpace is bad?
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

javaSpace=null;
setnotify=false;

}
afterSetNotifyEvents();

}

public void afterSetNotifyEvents() {

}

public synchronized void writeEntryToOneJavaSpace(Entry entry) throws

Exception {
Lease lease;
lease = javaSpace.write(entry, null, 60*60*1000);
leasemanager.renewUntil(lease, lease.ANY, leaselistener);
leases.addElement(lease);

}

public synchronized void persistentWriteEntryToOneJavaSpace(Entry

entry) {
try {
writeEntryToOneJavaSpace(entry);

} catch (Exception e) {
System.out.println("*"+returnType()+"* Exception in

sendLogOnAttempt(: "+e);
//Perhaps javaSpace is bad?
//Removing bad javaSpace
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
//Try again if we have extra JavaSpaces...
if (numSpaces>0) {
getRandomJavaSpace();
persistentWriteEntryToOneJavaSpace(entry);

}
}

}

public synchronized void transientWriteEntryToOneJavaSpace(Entry
entry) {

try {
javaSpace.write(entry, null, 1000*60);

} catch (Exception e) {
System.out.println("*"+returnType()+"* Exception in

sendLogOnAttempt(: "+e);

//Perhaps javaSpace is bad?
//Removing bad javaSpace
numSpaces=removeService(spaceServices, numSpaces, javaSpacelD);

//Try again if we have extra JavaSpaces...
if (numSpaces>0) {
getRandomJavaSpace();
persistentWriteEntryToOneJavaSpace(entry);

}
}

138

}

public synchronized void getRandomJavaSpace() {
int chosenOne=abs(r.nextInt()) % numSpaces;
javaSpace=(JavaSpace) spaceServices[chosenOne].service;
javaSpaceID=spaceServices[chosenOne].servicelD;

I

public synchronized QueenEntry getAnyDrone(int type) {
randomize(spaceServices,0, numSpaces-l); //Shuffle the JavaSpaces so

we don't keep hitting the same one.

for (int i=0;i<2;i++) {//try 2 times to be sure.

for (int chosenOne=0; chosenOne<numSpaces; chosenOne++) {
JavaSpace js=(JavaSpace) spaceServices[chosenOne].service;

try {
//Look for all QueenEntry of a Hatchery
QueenEntry qe=new QueenEntry(null,null,new Integer(type));
QueenEntry request= (QueenEntry) js.readIfExists (qe, null,

JavaSpace.NO-WAIT);
if (request!=null) return request;

} catch (Exception e) {
System. out.println ("Error in getAnyDrone: ");

System.out.println(e);
//Removing bad javaSpace
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
if (numSpaces>0) return getAnyDrone(type);
doLookup();
return null;

}
}

}

return null;

}

public synchronized DroneEntry getAnyEntry(DroneEntry template) {
randomize(spaceServices,0, numSpaces-1); //Shuffle the JavaSpaces so

we don't keep hitting the same one.

for (int i=O;i<2;i++) {//try 2 times to be sure.

for (int chosenOne=0; chosenOne<numSpaces; chosenOne++) {
JavaSpace js=(JavaSpace) spaceServices[chosenOne].service;

try {
DroneEntry request=(DroneEntry) js.readIfExists(template, null,

JavaSpace.NOWAIT);
if (request!=null) return request;

139

} catch (Exception e) {
System.out.println("Error in getAnyEntry: ");

System.out.println(e);
//Removing bad javaSpace
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

if (numSpaces>O) return getAnyEntry(template);
doLookup();
return null;

}
}

}
return null;

}

public synchronized DroneEntry takeAnyEntry(DroneEntry template) {

randomize(spaceServices,O, numSpaces-1); //Shuffle the JavaSpaces so

we don't keep hitting the same one.

for (int i=O;i<2;i++) {//try 2 times to be sure.

for (int chosenOne=O; chosenOne<numSpaces; chosenOne++) {
JavaSpace js=(JavaSpace) spaceServices[chosenOne].service;

try {
DroneEntry request=(DroneEntry) js.takeIfExists(template, null,

JavaSpace.NOWAIT);
if (request!=null) return request;

} catch (Exception e) {
System.out.println("Error in getAnyEntry: ");

System.out.println(e);
//Removing bad javaSpace
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
if (numSpaces>O) return getAnyEntry(template);
doLookup();
return null;

}
}

}
return null;

}

public void stopDrone() {

QueenEntry qe=new QueenEntry(server, process,returnDroneTypeID());
DeathEntry de=new DeathEntry(server,process);

System.out.println("Removing DeathEntries and QueenEntries...");

for (int i=O; i<numSpaces; i++) {
try (
javaSpace=(JavaSpace) spaceServices[i].service;

140

Entry snapshot=javaSpace.snapshot(qe);
Entry snapshot2=javaSpace.snapshot(de);
if (javaSpace!=null) {
boolean done=false;
while (!done) {
Entry result=javaSpace.takeIfExists(snapshot, null,

JavaSpace.NOWAIT);
Entry result2=javaSpace.takeIfExists(snapshot2, null,

JavaSpace.NOWAIT);
done=(result==null&&result2==null);

}
}

} catch (Exception e) {
System.out.println("Error in removing DeathEntries and

QueenEntries... "+e);

}
}

stopped=true;

System.out.println("Interrupting thread...");

if (thread!=null) thread.interrupt();

//Cancel all leases immediately
cancelAllLeases();

if (leasemanager!=null)
leasemanager.clear();

leasemanager=null;
listener=null;
leaselistener=null;

System.gc();
System.runFinalization();

System.out.println("Interrupting thread again...");
if (thread!=null) thread.interrupt(;

thread=null;

System.out.println("Stopped "+returnType());
}

public void cancelAllLeases() {
System.out.println("Cancelling previous leases...");

Enumeration enum=leases.elements();
while (enum.hasMoreElements() {
try {

leasemanager.cancel((Lease)enum.nextElement());
} catch (Exception e) {
System.out.println("Exception in cancelling leases... "+e);

}

leases .removeAllElements();

141

public void removeAllLeases() {
System.out.println("Removing previous leases...");
Enumeration enum=leases.elements();
while (enum.hasMoreElements()) {
try (

leasemanager.remove((Lease)enum.nextElement));
} catch (Exception e) {
System.out.println("Exception in cancelling leases... "+e);

}
}
leases.removeAllElements();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:
if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

}

}

public synchronized void defaultNotifyDrone(RemoteEvent ev) {
int id=r.nextInt();

System.out.println("Working on event."+id);

if (ev.getRegistrationObject().equals(REFRESHENTRY)) {
System.out.println("Notified of Refresh: "+returnType();
signin=false;
//Do it right now because it may take some time for the next loop in

run();

SetQueenEntry();
} else if (ev.getRegistrationObject().equals(DEATH_ENTRY)) {
System.out.println("Notified of Death: "+returnType());
takeAnyEntry(new DeathEntry(server,process));
stopDrone();

} else {
notifyDrone(ev);

}
System.out.println("End working on event."+id);

}

public synchronized void defaultNotifyDrone(MarshalledObject ev) {
int id=r.nextInt();

System.out.println("Working on event."+id);

if (ev.equals(REFRESHENTRY)) {

System.out.println("Notified of Refresh: "+returnType());
signin=false;
//Do it right now because it may take some time for the next loop in

run();

SetQueenEntry();
} else if (ev.equals(DEATHENTRY)) {

142

}

System.out.println("Notified of Death: "+returnType());

takeAnyEntry(new DeathEntry(server,process));
stopDrone();

} else {
notifyDrone(ev);

}
System.out.println("End working on event. "+id);

}

public synchronized void notifyDrone(RemoteEvent evt) {
System.out.println("notifyDrone() called.");

}

public synchronized void notifyDrone(MarshalledObject evt) {
System.out.println("notifyDrone() called.");

I

public String returnType() {
return "Drone running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return null;

}

public class DroneLeaseListener implements LeaseListener {

public DroneLeaseListener () {
}

public void notify(LeaseRenewalEvent ev) {
System.out.println("Unable to renew lease: "+ev);

}

} //DroneLeaseListener

} // Drone

10.1.2 Class drone.anywhere.Queen
package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.Remote;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;

143

import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.*;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Hashtable;
import java.util.Vector;
import java.util.Enumeration;

import common.*;
import drone.droneEntry.*;
import drone.frontdesk.*;
import drone.*;
import drone.anywhere.agent.*;

* Queen.java
*/

//The Queen is the most connected drone running on a powerful computer
which is either the database
//or has a fast connection to the database.

//If it is at night, the queen can kill some fingerprint checkers and
create more schedulers in
//the hatchery, since less people want to enter doors and much
scheduling has to be done by the next
//day.

//If it is at noon, the queen can kill some schedulers and create some
fingerprint checkers in the
//hatchery, since more people will want to enter doors.

//BTW, the computer the queen is running on is not wasted. It itself,
can be running other drones.

//Future work: Should the queen use a transcations manager?

public class Queen extends Drone implements FingerPrintConst {

boolean doOnce=false;
boolean doOnce2=false;
boolean doOnce3=false;
Hashtable uidToPreferredJavaSpace;
Hashtable pendingAuthCases;
Hashtable pendingAuthCasesReplies;

144

Vector uids;

public Queen(Integer s) {
super(s);
uidToPreferredJavaSpace=new Hashtable();

pendingAuthCases=new Hashtable();

pendingAuthCasesReplies=new Hashtable();
uids=new Vector();
uids.addElement("O");
uids.addElement("1");
uids.addElement("2");

//Be notified of any QueenCreateRequestEntry

notifyEntries.addElement(new QueenCreateRequestEntry());
notifyMarshalledObjects.addElement(QUEENCREATEREQUESTENTRY);

notifyEntries.addElement(new RegistrationEntry());
notifyMarshalledObjects.addElement(REGISTRATIONENTRY);

}

public static void main(String argv[]) {
Queen q=new Queen(new Integer((new java.util.Random()).nextInt());
if (argv.length==l) {
q.doOnce=true;
q.doOnce2=false;
q.doOnce3=false;
System.out.println("l");

I
if (argv.length==2) {
q.doOnce=false;
q.doOnce2=true;
q.doOnce3=false;
System.out.println("2");

}
if (argv.length==3) {
q.doOnce=false;
q.doOnce2=false;
q.doOnce3=true;
System.out.println("3");

}

q.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

145

}

System.out.println("*Start*"+returnType());

//********BELOW IS REFRESH CODES

try {

if (doOnce) {
for (int i=0; i<numSpaces; i++) {
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID=spaceServices[i].serviceID;
if (javaSpace==null) {
System.out.println("Strange...one of them is null!");
numSpaces=compact(spaceServices,numSpaces);
continue;

}
QueenEntry qe=new QueenEntry();
//Snapshot over it
Entry snapshot= javaSpace.snapshot(qe);
boolean done=false;
while (!done) {
Entry result=null;
try {

result=javaSpace.takeIfExists(snapshot, null,
JavaSpace.NOWAIT);

} catch (Exception eee){
System.out.println("Exception in taking Entry at

Queen/RefreshCodes: "+eee);

}
done = (result==null);

}

}

for (int i=0; i<numSpaces; i++) {
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID=spaceServices[i].serviceID;
if (javaSpace==null) {
System.out.println("Strange...one of them is null!");
numSpaces=compact(spaceServices,numSpaces);
continue;

}

System.out.println("Sending Refresh Command...");
RefreshEntry re=new RefreshEntry();

Lease lease;
lease = javaSpace.write(re, null, 30*1000); //30 seconds

}

doOnce=false;

}

} catch (Exception e) {
System.out.println("Exception in refresh/QueenSpecificCode: "+e
//Perhaps javaSpace is bad?
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
return;

146

}
//END REFRESH CODES***************/

//********BELOW IS CREATOR CODES

if (doOnce2) {

System.out.println("Creating new Drone soon...");

QueenEntry hatch=getAnyDrone(Hatchery);

if (hatch==null)
return;

else

System.out.println(I"At Hatchery "+hatch);

HatcheryEntry he=new HatcheryEntry(hatch.server, hatch.process, new
RegistrationDrone(hatch.server));

persistentWriteEntryToOneJavaSpace(he);
doOnce2=false;

}
//END CREATOR CODES***************/

//********BELOW IS KILLER CODES

try {

QueenEntry qe=new QueenEntry(;

//Snapshot over it
boolean done=false;
int i=0;
while (doOnce3) {
QueenEntry result=(QueenEntry) takeAnyEntry(qe);
if (result!=null)
if

(!(result.server.equals(server)&&result.process.equals(process))) {
killDrone(result);
//doOnce3=false;

} else {
System.out.println("Skipped killing self...");

}
}
doOnce3=(result!=null);

}

} catch (Exception e) {
System.out.println("Exception in kill/QueenSpecificCode: "+e);
//Perhaps javaSpace is bad?
numSpaces=removeService (spaceServices, numSpaces, j avaSpaceID);
return;

}
//END KILLER CODES***************/

System.out.println(" *Done*"+returnType();

try {

Thread.currentThread() .sleep(10000);
} catch (InterruptedException e) {

System.out.println("Exception: "+e);

147

}

public void killDrone(QueenEntry q) {
System.out.println("Killing Drone..."+q.server+" "+q.process);
try {
Lease lease;
DeathEntry entry=new DeathEntry(q.server, q.process);
lease = javaSpace.write(entry, null, 60*60*1000);
leasemanager.renewUntil(lease, lease.FOREVER, null);

} catch (Exception e) {
System.out.println("*"+returnType()+"* Exception in writing

DeathEntry: "+e);

}
}

public void afterSetNotifyEvents() {
//Everytime JavaSpace notification is set, we may be missing some

events.
//Therefore, we look for them.

ProcessQueenCreateRequestEntry();
ProcessRegistrationEntry();
System.out.println("End afterSetNotifyEvents()");

}

public void notifyDrone(RemoteEvent ev) {

if (ev.getRegistrationObject().equals(QUEENCREATEREQUESTENTRY)) {
ProcessQueenCreateRequestEntry();

}

if (ev.getRegistrationObject().equals(REGISTRATIONENTRY)) {
ProcessRegistrationEntry();

}

public void ProcessRegistrationEntry() {
System.out.println("Queen notified of new Registration Entry: ");
try {
for (int i=0; i<numSpaces; i++) { //Find request on all known

JavaSpaces
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID= spaceServices[i].serviceID;

if (javaSpace==null) (
//Remove bad javaSpace and restart the search
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
i=-1;
continue;

int oldNumSpaces=numSpaces;

findAndProcessRegistrationRequests();

148

//If the number of JavaSpaces has changed, restart the search
if (oldNumSpaces!=numSpaces) i=-l;

}
} catch (Exception e) {
System.out.println("Exception in Queen/ProcessAuthRequestEntryEvent:

"+e);

}

}

public void ProcessQueenCreateRequestEntry() {
System.out.println("Queen notified of Create Request: ");
try {
for (int i=O; i<numSpaces; i++) { //Find request on all known

JavaSpaces
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID= spaceServices[i].servicelD;

if (javaSpace==null) {
//Remove bad javaSpace and restart the search
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

i=-l;
continue;

}
int oldNumSpaces=numSpaces;

findAndProcessCreateRequests();
//If the number of JavaSpaces has changed, restart the search
if (oldNumSpaces!=numSpaces) i=-l;

}
} catch (Exception e) {
System.out.println("Exception in Queen/ProcessAuthRequestEntryEvent:

"+e);
}

public void findAndProcessCreateRequests() {
try {
//Look for all QueenCreateRequestEntry

QueenCreateRequestEntry qcre=new QueenCreateRequestEntry();

if (javaSpace==null)
System.out.println("javaSpace is null!");

//TODO: Consider using a transcation manager here in case the queen
crashes after taking from JavaSpace.

//However, the result of this unlikely event is not fatal.

QueenCreateRequestEntry request=(QueenCreateRequestEntry)
javaSpace.takelfExists(qcre, null, JavaSpace.NOWAIT);

while (request!=null) {
System.out.println("Found a request! "+request);

149

try {
if (request.requestedDroneTypelD.intValue()==Messaging) {

//Send a new MessagingManager
System.out.println("Sending a new MessageAgentDrone to

"+request.process);
HatcheryEntry he=new HatcheryEntry(request.server,

request.process,
new

MessagingAgentDrone(request.server,request.registrationEntry));
persistentWriteEntryToOneJavaSpace(he);

}
if (request.requestedDroneTypeID.intValue()==Billing) {
System.out.println("Sending a new BillingDrone to

"+request.process);
HatcheryEntry he=new HatcheryEntry(request.server,

request.process,
new BillingDrone(request.server,request.registrationEntry));

persistentWriteEntryToOneJavaSpace(he);

}
if (request.requestedDroneTypeID.intValue()==Schedule) {
System.out.println("Sending a new ScheduleDrone to

"+request.process);
HatcheryEntry he=new HatcheryEntry(request.server,

request.process,
new ScheduleDrone(request.server,request.registrationEntry));

persistentWriteEntryToOneJavaSpace(he);

}

} catch (Exception e) {
System.out.println("Error: Badly formated QueenCreateRequestEntry

or Error in writing to JavaSpace");
System.out.println(e);

}
request=(QueenCreateRequestEntry) javaSpace.takeIfExists(qcre,

null, JavaSpace.NOWAIT);

}
} catch (Exception e) {
System.out.println("Exception in Queen/findAndProcessCreateRequests:

"1+e);

public void findAndProcessRegistrationRequests() {
try {

QueenEntry hatch=getAnyDrone(Hatchery);
System.out.println("Found a Hatchery! "+hatch);

RegistrationEntry qre=new RegistrationEntry(;
qre.agentRunning=new Boolean(false);

if (javaSpace==null)
System.out.println("javaSpace is null!");

//TODO: Consider using a transcation manager here in case the queen

150

crashes after taking from JavaSpace.

//TODO: Also consider switching hatcheries each time.

RegistrationEntry request=(RegistrationEntry)
javaSpace.takeIfExists(qre, null, JavaSpace.NOWAIT);

while (request!=null) {
System.out.println("Found a RegistrationEntry without an agent!

\n"+request);
try {

request.agentRunning=new Boolean(true);
HatcheryEntry he=new HatcheryEntry(hatch.server, hatch.process,
new AdminAgentDrone(hatch.server,request));

persistentWriteEntryToOneJavaSpace(he);
persistentWriteEntryToOneJavaSpace(request);

} catch (Exception e) {
System.out.println("Error in

findAndProcessRegistrationRequests(): ");
System.out.println(e+"\n");

}
request=(RegistrationEntry) javaSpace.takeIfExists(qre, null,

JavaSpace.NOWAIT);

}
} catch (Exception e) {
System.out.println("Exception in Queen/findAndProcessCreateRequests:

"1+e);

}
}

public String returnType() {
return "Queen running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(Queen);

}

I //Queen

10.1.3 Class drone.anywhere.King

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;

151

import net. j ini . core. event. RemoteEvent;
import java.rmi.Remote;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.*;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Hashtable;
import java.util.Vector;
import java.util.Enumeration;

import common.*;
import drone.droneEntry.*;
import drone.frontdesk.*;
import drone.*;

* King.java
*/

//The King is the most connected drone running on a powerful computer
which is either the database
//or has a fast connection to the database.

//The King is in charge of delegating work.
//For example, with a OneToMany authentication request, the King checks
the database for all
//current UIDs and sends OneToOne requests. The King can also make sure
that all current RegistrationEntries are
//found in the space.

//An alternative is to embed the RegistrationEntry instead of the UID in
the AuthRequestEntry.

//Here is the reason why I chose not to do this. The rationale for
embedding is so that there can be LESS

//connections required to reach the goal.

//However, with just the UID, the bandwidth is conserved and the King can
serve more requests.
//Furthermore, with caching, the number of connections (latency?) is
decreased.

//How effective is cacheing? Very. We may choose to partition the hotel

152

into floors in the future, and
//have specific javaSpaces for each floor. If we limit discovery of
AuthDrones FIRST by their preferred floor JavaSpace
//they will have many similar requests over and over again, and they can
do caching.

//Another facet is that the King sends the fingerprintImage itself. The
King could download it and then upload it again

//with each request. This is too slow. What we do is that the requestor
sends two requests: One with the fingerprint image
//and another without. The King reads only the one without the image, and
everyone else reads the image from the space.

//Another advantage is that the fingerprint reader can raise a false
alarm FIRST, before actually reading the entire image.

//BTW, the computer the King is running on is not wasted. It itself, can
be running other drones.

public class King extends Drone implements FingerPrintConst {

boolean doOnce=true;
boolean doOnce2=true;
boolean doOnce3=true;
Hashtable uidToPreferredJavaSpace;
Hashtable pendingAuthCases;
Hashtable pendingAuthCasesReplies;
Vector uids;

public King(Integer s) {
super(s);
uidToPreferredJavaSpace=new Hashtable();
pendingAuthCases=new Hashtable();
pendingAuthCasesReplies=new Hashtable();
uids=new Vector();
uids.addElement("O");
uids.addElement("1");
uids.addElement("2");
//Only be notified for ManyToOne authentication requests.
//With no fingerPrintImages

notifyEntries.addElement(new AuthRequestEntry(null,null,null,null,new
Boolean(true), new Boolean(true)));

notifyMarshalledObjects.addElement(AUTHREQUESTENTRY);

//Only be notified for authentication replies directed this King

notifyEntries.addElement(new
AuthResultEntry(server,process,null,null));

notifyMarshalledObjects.addElement(AUTHRESULTENTRY);

}

public static void main(String argv[1) {

153

King q=new King(new Integer((new java.util.Random().nextInt()));

q.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

}

System.out.println("*Start*"+returnType());

/*
Enumeration enum=pendingAuthCases.keys();
while (enum.hasMoreElements()) {
Enumeration

enum2=((Vector)pendingAuthCases.get(enum.nextElement()).elements();
while (enum2.hasMoreElements() {
AuthRequestEntry oldrequest=(AuthRequestEntry) enum2.nextElement(;

System.out.println("Resending auth request: "+oldrequest);
persistentWriteEntryToOneJavaSpace(oldrequest);

}
}
*/

ProcessAuthRequestEntryEvent();

ProcessAuthResultEntryEvent();

System.out.println("*Done*"+returnType());

try {

Thread.currentThread().sleep(1000*2);
} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public void afterSetNotifyEvents() {
//Everytime JavaSpace notification is set, we may be missing some

events.
//Therefore, we look for them.

ProcessAuthRequestEntryEvent();

ProcessAuthResultEntryEvent();

System.out.println("End afterSetNotifyEvents()");

}

public void notifyDrone(RemoteEvent ev) {
if (ev.getRegistrationObject().equals(AUTHREQUEST_ENTRY)) {

ProcessAuthRequestEntryEvent();

}

154

if (ev.getRegistrationObject().equals(AUTHRESULTENTRY)) {
ProcessAuthResultEntryEvent();

}
System.out.println("End notifyDrone()");

}

public void ProcessAuthRequestEntryEvent() {
System.out.println("Finding Auth Request. ");

try {
for (int i=O; i<numSpaces; i++) { //Find request on all known

JavaSpaces
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID= spaceServices[i].servicelD;

if (javaSpace==null) (
//Remove bad javaSpace and restart the search
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

i=-1;

continue;

}
int oldNumSpaces=numSpaces;

findAndProcessAuthRequests();
//If the number of JavaSpaces has changed, restart the search
if (oldNumSpaces!=numSpaces) i=-l;

}
} catch (Exception e) {
System.out.println("Exception in King/ProcessAuthRequestEntryEvent:

"+e);

}
}

public void ProcessAuthResultEntryEvent() {
System.out.println("Finding Auth Result. ");

try {
for (int i=O; i<numSpaces; i++) { //Find request on all known

JavaSpaces
javaSpace=(JavaSpace) spaceServices[i].service;
if (javaSpace==null) {
//Remove bad javaSpace and restart the search
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

i=-1;

continue;

}
int oldNumSpaces=numSpaces;
findAndProcessAuthResult();
//If the number of JavaSpaces has changed, restart the search
if (oldNumSpaces!=numSpaces) i=-l;

}
} catch (Exception e) {
System.out.println("Exception in King/ProcessAuthResultEntryEvent:

"+e);

}
}

155

public void findAndProcessAuthRequests() {
try {

//Only look for OneToMany authentication requests.

AuthRequestEntry are=new AuthRequestEntry(null,null,null,null,new
Boolean(true),new Boolean(true));

if (javaSpace==null)
System.out.println("javaSpace is null!");

AuthRequestEntry request=(AuthRequestEntry)

javaSpace.takeIfExists(are, null, JavaSpace.NOWAIT);
while (request!=null) {

Vector waitingReplies=new Vector();
Long caseID=request.requestID;
System.out.println("Handing CaseID: "+caseID);

if (caseID!=null) {
//Look up registered users of the entryPoint
Enumeration enum=lookupUIDsForEntryPoint(request.entryPoint);
while (enum.hasMoreElements()) {
//Iterate through all registered users
String uid=(String)enum.nextElement(;

System.out.println("Preparing auth request for UID: "+uid);

//Get preferred JavaSpace to optimize cache hits in AuthDrones

ServiceItem si=(ServiceItem)uidToPreferredJavaSpace.get(uid);
if (si==null) {
getRandomJavaSpace();

} else {
javaSpace=(JavaSpace)si.service;
javaSpaceID=si.serviceID;

}

AuthRequestEntry newrequest=new AuthRequestEntry(server,process,
request.entryPoint, null, new Boolean(false), new Boolean(true),caselD);

newrequest.registrationEntry=new RegistrationEntry();
newrequest.registrationEntry.uid=uid;
waitingReplies.addElement(newrequest);
System.out.println("Sending auth request for UID: "+uid);
transientWriteEntryToOneJavaSpace(newrequest);

}
//Remember the pending replies for this case

pendingAuthCases.put(caseID,waitingReplies);
pendingAuthCasesReplies.put(caseID, new

AuthResultEntry(request.server,request.process,null,caseID));

}
request=(AuthRequestEntry) javaSpace.takeIfExists(are, null,

JavaSpace.NOWAIT);

}//close while loop

156

} catch (Exception e) {
System.out.println("Exception in King/findAndProcessAuthRequests:

"+e);

//Perhaps javaSpace is bad?

//Remove bad javaSpace...
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

}

}

public void findAndProcessAuthResult() {
try {
//Only look for replies for this process

AuthResultEntry are=new AuthResultEntry(server,process,null,null);

boolean done=false;

while (!done) {
AuthResultEntry result=(AuthResultEntry) javaSpace.takeIfExists(are,

null, JavaSpace.NOWAIT);

System.out.println("Found result: "+result);

if (result!=null) {
if (result.requestID!=null)
if (result.result.intValue()==Approved) {
AuthResultEntry

reply=(AuthResultEntry)pendingAuthCasesReplies.get(result.requestID);
if (reply!=null) (
System.out.println("Case ID "+result.requestID+" has been

approved!");
reply.result=new Integer(Approved);
reply.registrationEntry=result.registrationEntry;
System.out.println("Writing reply: "+reply);

//May consider writing to more than 1 space in the future...
persistentWriteEntryToOneJavaSpace(reply);

} else {
System.out.println("Fatal Error: King cannot find who to reply

ACCEPT to.");

}
// Case Closed!
pendingAuthCases.remove(result.requestID);
pendingAuthCasesReplies.remove(result.requestID);
while (takeAnyEntry(new

AuthRequestEntry(null,null,null,null,null,null,result.requestID)) !=null);
continue;

}

//get pending replies
Vector waitingReplies=(Vector)

pendingAuthCases.get(result.requestID);
if (waitingReplies!=null&&result.registrationEntry!=null) {

157

String uid=result.registrationEntry.uid;
if (uid!=null) (

for (int i=O;i<waitingReplies.size();i++) {
AuthRequestEntry

tmp=(AuthRequestEntry)waitingReplies.elementAt(i);
if (tmp.registrationEntry.uid.equals(uid)) {
waitingReplies.removeElementAt(i);
break;

}
}

if (waitingReplies.size()==O) {
// if no more pending replies
System.out.println("Case ID "+result.requestID+" has been

rejected!");

AuthResultEntry

reply=(AuthResultEntry)pendingAuthCasesReplies.get(result.requestID);
if (reply!=null) {
reply.result=new Integer(Reject);
//May consider writing to more than 1 space in the future...
System.out.println("Writing reply: "+reply);
persistentWriteEntryToOneJavaSpace(reply);

} else {
System.out.println("Fatal Error: King cannot find who to

reply REJECT to.");

}
// Case Closed!
pendingAuthCases.remove(result.requestID);
pendingAuthCasesReplies.remove(result.requestID);
while (takeAnyEntry(new

AuthRequestEntry(null,null,null,null,null,null,result.requestID))!=null);
continue;

} else {
// else if there are pending replies
System.out.println("# Pending Replies

:"+waitingReplies.size();
//System.out.println("Pending Replies :"+waitingReplies);

}

//Remap Hashtable
pendingAuthCases.put(result.requestID,waitingReplies);

}// close if
}/I close if

}/I close if
} //close if (result!=null)

done = (result==null);

}

} catch (Exception e) {

System.out.println("Exception in King/findAndProcessAuthResult: "+e);
//Perhaps javaSpace is bad?

158

//Remove bad javaSpace...
numSpaces=removeService(spaceServices, numSpaces, javaSpacelD);

}
}

public Enumeration lookupUIDsForEntryPoint(Integer entryPoint) {
//For now, we check through all UIDs for all entryPoints;
return uids.elements(;

}

public String returnType() {
return "King running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(King);

//King

10.1.4 Class drone.anywhere.Hatchery

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Vector;

import common.*;
import drone.droneEntry.*;
import drone.*;

159

* Hatchery.java
* Know bug: The Hatched Drone must have the server ID set at the Queen

because it is used in the constructor

*/

public class Hatchery extends Drone {

private boolean setHatchNotify=false;
protected transient Vector drones;

public Hatchery(Integer s) {
super(s);

//Be notified about HatcheryEntries meant for this Hatchery.
notifyEntries.addElement(new HatcheryEntry(server,process,null));
notifyMarshalledObjects.addElement(HATCHERY_ENTRY);

}

public static void main(String argv[]) {
Hatchery h=new Hatchery(new Integer((new

java.util.Random().nextInt()));

h.runFirstTime();

}

public void runFirstTime() {
//Initialize Transient Variables
drones=new Vector();
super.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

}

System.out .println("I*Start*"+returnType())l;
System.out.println("*Done*"+returnType());

try {
Thread.currentThread().sleep(60*60*1000);

} catch (InterruptedException e) {
System.out.println("Sleep has been interrupted.");

}

}

public void afterSetNotifyEvents() {

160

ProcessHatcheryEntry();

I

public void notifyDrone(RemoteEvent ev) {
if (ev.getRegistrationObject().equals(HATCHERYENTRY)) {

ProcessHatcheryEntry();

}
}

public void ProcessHatcheryEntry() {
System.out.println("Notified of Hatch Request: "+returnType());
try {
for (int i=O; i<numSpaces; i++) {
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID= spaceServices[i].serviceID;
if (javaSpace==null) {
continue;

}
Hatch();

}
} catch (Exception e) {
System.out.println("Exception in Hatchery/DroneSpecificCode: "+e);

}
System.out.println("End of Hatch Request: "+returnType());

}

public void Hatch() {
try {

//Snapshot the search parameter:
//A HatcheryEntry that matches the server and process IDs for this

Hatchery

Entry snapshot= javaSpace.snapshot(new
HatcheryEntry(server,process,null));

boolean done=false;
int i=O;
while (!done) {
HatcheryEntry result=(HatcheryEntry)

javaSpace.takeIfExists(snapshot, null, JavaSpace.NOWAIT);
if (result!=null) {
System.out.println("Got new drone request!");
Drone d=result.getDrone();
if (d!=null) {
System.out.println("Got actual drone!");
d.server=this.server;
d.runFirstTime();
drones.addElement(d);

}
}
done = (result==null);

}
} catch (Exception e) {
System.out.println("Exception in Hatch(): "+e);

}

161

10.1.5 Class drone.anywhere.UserDrone

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Enumeration;
import java.util.Vector;

import common.*;
import drone.droneEntry.*;
import drone.*;
import gui.LogOnGUI;
import gui.UserGUI;

* UserDrone.java
*/

162

public String returnType() {
return "Hatchery running on Server "+server+" on thread "+process;

public Integer returnDroneTypeID() {
return new Integer(Hatchery);

//Hatchery

public class UserDrone extends Hatchery implements FingerPrintConst {

public boolean processingfingerprint=false;
public boolean logged-on=false;
public RegistrationEntry re=null;
protected transient LogOnGUI frame=null;
protected transient UserGUI frame2=null;

public UserDrone(Integer s) {
super(s);

//Additional Entries to be notified about:
notifyEntries.addElement(new

AuthResultEntry (server, process, null, null))
notifyMarshalledObjects.addElement(AUTHRESULTENTRY);

}

public static void main(String argv[]) {
UserDrone h=new UserDrone(new Integer((new

java.util.Random().nextInt());

h.runFirstTime(;

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType());
return;

}

System.out.println (" *Start*"+returnType());

if (!logged-on) {
LogOn();

if (processingfingerprint) processAuthResultEntry(;
System.out.println (" *Done*"+returnType();

try {

Thread.currentThread() .sleep(1000);
I catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
} else {
try {

Thread.currentThread().sleep(1000*60);
} catch (InterruptedException e) {
System.out.println("Exception: "+e);

i
}

}

public void LogOn() {

163

if (frame==null) {
frame = new LogOnGUI(this, "Log-in Window");

frame.pack(;
frame.setVisible(true);

}
}

public void LogOut() {
//Kill drones for this user
Enumeration e=drones.elements(;
while (e.hasMoreElements()) {
Drone d=(Drone) e.nextElement(;

if (d!=null)
d.stopDrone();

}

processingfingerprint=false;
frame.dispose();
frame2.dispose();
frame = new LogOnGUI(this, "Log-in Window");
frame.pack(;
frame.setVisible(true);

re=null;

}

public void stopDrone() {
//Kill drones for this user
if (drones!=null) f
Enumeration e=drones.elements);
while (e.hasMoreElements()) {
Drone d=(Drone) e.nextElement(;
if (d!=null)
d.stopDrone();

}
}
if (frame!=null)
frame.dispose(;)

if (frame2!=null)
frame2.dispose();

super.stopDrone();
}

public void sendLogOnAttempt(byte[] fingerPrintImage) {
//Create caseID
Long caseTD=new Long(r.nextLong());

AuthRequestEntry are=new
AuthRequestEntry(server,process,null,fingerPrintImage,new
Boolean(true), new Boolean(false),caselD);

AuthRequestEntry are_noimage=new
AuthRequestEntry(server,process,null,null, new Boolean(true), new

Boolean(true),caseID);

164

transientWriteEntryToOneJavaSpace(are);
transientWriteEntryToOneJavaSpace(are-noimage);
System.out.println(I"Send log-on attempt.. .caseID="+caselD);
System.out.println(are);
System.out.println(are noimage);
processingfingerprint=true;

}

public void notifyDrone(RemoteEvent ev) {
if (ev.getRegistrationObject().equals(AUTHRESULTENTRY)) {
processAuthResultEntry();

}
super.notifyDrone(ev);
}

public void processAuthResultEntry() {
System.out.print("Finding Authentication Results.");
try {
for (int i=O; i<numSpaces; i++) { //Find Request on all known

JavaSpaces
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID= spaceServices[i].serviceID;
if (javaSpace==null) {
continue;

}
AuthResultEntry are=new AuthResultEntry(server,process,null,null);
AuthResultEntry result=(AuthResultEntry)

javaSpace.takelfExists(are,null, JavaSpace.NOWAIT);
if (result!=null) {
workOnResult(result);
return;

}
}

} catch (Exception e) {
System.out.println("Exception in UserDrone/notifyDrone: "+e);

}

public void workOnResult(AuthResultEntry are) {

switch (are.result.intValue() {
case Approved:
loggedon=true;

System.out.println("User is logged on!");
//Find fully specified RegistrationEntry
re=null;
for (int i=0; i<numSpaces; i++) { //Find Request on all known

JavaSpaces
//Do not use global variable javaSpace in loop because it is

already used in outer loop!
JavaSpace js=(JavaSpace) spaceServices[i].service;
if (js==null) f
continue;

165

}
try {

re=(RegistrationEntry) js.readIfExists(are.registrationEntry,
null, JavaSpace.NO-WAIT);

} catch (Exception e) {

continue;

}
//Quit once an entry is found
if (re!=null) i=numSpaces;

}

System.out.println(re);

//Set new Queen Entry to reflect the current user.

queenentry.registrationEntry=are.registrationEntry;

//Sign in with QueenEntry again

signin=false;

//Set to be notified again
setnotify=false;

//Hide log-on menu
frame.setVisible(false);

//Destroy old user menu
if (frame2!=null) frame2.dispose();
//Create new user menu

frame2 = new UserGUI(this, re);
frame2.pack();
frame2.setVisible(true);

break;
case Reject:
System.out.println("Rejected...No such user in the hotel.");
frame.error.setText("Rejected...No such user in the hotel.");
break;

case TooDark:
System.out.println("Fingerprint Image is too Dark");
frame.error.setText("Rejected...No such user in the hotel.");
break;

case TooBright:
System.out.println("Fingerprint Image is too Bright");
frame.error.setText("Rejected...No such user in the hotel.");
break;

}

}

public void sendApplicationRequest(Integer t) {
if (loggedon&&re!=null) {
//Send request to Queen
System.out.println("Sending request to a Queen for Application

Drone.");
persistentWriteEntryToOneJavaSpace(new

QueenCreateRequestEntry(server,process,returnDroneTypeID(),t,re));

166

10.1.6 Class drone.anywhere.AuthDrone

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.*;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.core.transaction.*;
import net.jini.core.transaction.server.TransactionManager;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.util.Hashtable;
import java.io.*;

import common.*;
import drone.droneEntry.*;
import drone.*;

* AuthDrone.java

167

} else {
System.out.println("Cannot fulfil request because user is not logged

in!");

}
}

public String returnType() {
return "UserDrone running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(User);

}

} //UserDrone

*/

public class AuthDrone extends Drone implements FingerPrintConst {

protected transient ServiceItem[] transactionServices;
int numTrans=0;

protected Class[] txnTypes = {TransactionManager.class};
protected ServiceTemplate txnTmpl=new ServiceTemplate(null, txnTypes,

null);
protected Hashtable cachedRegistrationEntries;

public AuthDrone(Integer s) {
super(s);
transactionServices=new ServiceItem[501;
cachedRegistrationEntries=new Hashtable();

//Additional Entries to be notified about:
//Only be notified for OneToOne authentication requests.
notifyEntries.addElement(new AuthRequestEntry(null,null,null,null,new

Boolean(false),null));
notifyMarshalledObjects.addElement(AUTHREQUESTENTRY);

}

public static void main(String argv[]) {
AuthDrone h=new AuthDrone(new Integer((new

java.util.Random().nextInt()));

h.runFirstTime();

}

protected void findDroneSpecificServices(ServiceRegistrar reg) {
try f

ServiceItem[] s=new ServiceItem[50];
int ns=0;
ServiceMatches matches = reg.lookup(txnTmpl,50);
s matches.items;
ns = matches.totalMatches;
System.out.println("Found "+ns+" more Transaction Services.");
for (int i=numTrans; i<min(50,ns+numTrans); i++) {
transactionServices[i] = s[i-numTrans];

}
numTrans=min(ns+numTrans,50);
numTrans=compact(transactionServices,numTrans);
sort(transactionServices,0, numTrans-1);
removeDuplicates(transactionServices,numTrans);
numTrans=compact(transactionServices,numTrans);
System.out.println("Removing duplicates and bad Transaction

Services...");
} catch (RemoteException e) {
System.out.println("Error in looking up a Transaction Service: "+e);
return;

}

System.out.println("Found "+numTrans+" Transaction Services total.");
}

168

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType());
return;

}

System.out.println(" *Start*"+returnType());
ProcessAuthRequestEntryEvent();
System.out.println(" *Done* "+returnType());

try {
Thread.currentThread().sleep(1000*2);//Let's try doing it every 2

seconds
} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public void afterSetNotifyEvents() {
//Everytime JavaSpace notification is set, we may be missing some

events.
//Therefore, we look for them.

ProcessAuthRequestEntryEvent();

System.out.println(1"End afterSetNotifyEvents()");

I

public void notifyDrone(RemoteEvent ev) {
if (ev.getRegistrationObject().equals(AUTHREQUEST_ENTRY)) {
ProcessAuthRequestEntryEvent();

ProcessAuthRequestEntryEvent();

}
System.out.println("End of notifyDrone reached.");

}

public synchronized void ProcessAuthRequestEntryEvent() {
System.out.println("Notified of Auth Request.");
try {
for (int i=O; i<numSpaces; i++) { //Find Request on all known

JavaSpaces
javaSpace=(JavaSpace) spaceServices[i].service;

javaSpaceID= spaceServices[i).serviceID;

if (javaSpace==null) {
//Remove bad javaSpace and restart the search
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);

i=-1;
continue;

int oldNumSpaces=numSpaces;

169

findAndProcessAuthRequests();
//If the number of JavaSpaces has changed, restart the process
if (oldNumSpaces!=numSpaces) i=-1;

}
} catch (Exception e) {
System.out.println("Exception in AuthDrone/notifyDrone: "+e);

}
}

public synchronized void findAndProcessAuthRequests() {
try {
//Only look for OneToOne authentication requests WITHOUT a

fingerprint.

AuthRequestEntry are=new AuthRequestEntry(null,null,null,null,new
Boolean(false),null);

//Snapshot over it

Entry snapshot= javaSpace.snapshot(are);

boolean done=false;
while (!done) {
TransactionManager tm=null;
if (numTrans>0)

tm=(TransactionManager) transactionServices[abs(r.nextInt()) %
numTrans].service;

if (tm==null) {
System.out.println("Error! No Transcation Manager found!");
return;

}

Transaction.Created c = TransactionFactory.create(tm, 10*1000);
//Fingerprint Auth should be done in 10 seconds or abort!

System.out.println("Auth Drone trying to find a One-To-One Auth
Request.");

AuthRequestEntry request=(AuthRequestEntry)

javaSpace.takelfExists(snapshot, c.transaction, JavaSpace.NOWAIT);

if (request==null) {
//No more requests on this javaSpace.
done=true;
continue;

}

AuthResultEntry result=null;

System.out.println("Received "+request);

if (request!=null&&request.registrationEntry!=null) {
if (request.NoImage!=null) {
if (request.NoImage.equals(new Boolean(true)))
//Have to find image
if (request.requestID==null)
System.out.println("Can't continue because there is no UID.");

170

//Cannot find missing image without requestID.. .abort!
continue;

}

System.out.println("Looking for fingerprint image that is
submitted for authentication.");

AuthRequestEntry request-image= (AuthRequestEntry)
getAnyEntry(new AuthRequestEntry(null,null,null,null,null,
new Boolean(false), request.requestID));

if (requestjimage==null) {
System.out.println("Fatal Error: Cannot find AuthRequestEntry

with a fingerprint image!");
} else {
request.fingerPrintImage=requestjimage.fingerPrintImage;

}

}
}

if (request.fingerPrintImage==null) {
//Cannot find missing image...abort!
System.out.println("Fatal Error: RegistrationEntry does not have

a fingerprint image!");
continue;

}

System.out.println("Found fingerprint image that is submitted for
authentication.");

System.out.println("Looking for fingerprint template of the user
to be matched.");

//Finding template
RegistrationEntry re=null;

if (request.registrationEntry.fingerPrintImage!=null) {
//if fingerprint is found then just use RegistrationEntry as

given.
re=request.registrationEntry;
System.out.println("->Good, it is given in the

registrationEntry.");
} else {
System.out.println("->Nope, not given in the

registrationEntry.");

}

if (re==null&&request.registrationEntry.fullySpecifiedUID()
//if UID is provided, check if previously cached
re=(RegistrationEntry)

cachedRegistrationEntries.get(request.registrationEntry.uid);
if (re==null) (

System.out.println("->Nope, we do not have it cached.");
} else {
System.out.println("->Good, we have a cached copy.");
System.out.println(re);

171

}
}

if (re==null&&(request.registrationEntry.fullySpecifiedName()
request.registrationEntry.fullySpecifiedUID()I
request.registrationEntry.fullySpecifiedCreditCard()) {

//if RegistrationEntry is specified sufficiently,

//attempt to read from javaSpace

System.out.println("Reading RegistrationEntry from

javaSpace...");
System.out.println("For the FingerPrint Template of User UID:

"+request.registrationEntry.uid);

for (int i=O; i<numSpaces; i++) { //Find Request on all known

JavaSpaces
//Do not use global variable javaSpace in loop because it is

already used in outer loop!
JavaSpace js=(JavaSpace) spaceServices[i].service;
if (js==null) {
continue;

}
try {
re=(RegistrationEntry)

js.readIfExists(request.registrationEntry, null, JavaSpace.NOWAIT);
} catch (Exception e) {
continue;

}

//Quit once an entry is found
if (re!=null) i=numSpaces;

}
//Cached RegistrationEntry for future use.
if (re!=null) {
//We need to clone so that we can strip off the image later on.

cachedRegistrationEntries.put(re.uid,re);

}
}

if (re==null) {
//Either the provided RegistrationEntry was underspecified or

did not match
//any entry
System.out.println("Cannot find RegistrationEntry of the give

UID!");
continue;

}

result=new AuthResultEntry(request.server, request.process,
verify(request,re),request.requestID);

//Don't send bulky image back
RegistrationEntry re2=new RegistrationEntry();
//Every RegistrationEntry with a fingerprint template will ALWAYS

172

have a non-null UID.

re2.uid=re.uid;
result.registrationEntry=re2;

if (result.result==null) f
//Abort if no results!

c.transaction.abort();
} else {
try {
javaSpace.write(result, c.transaction, 60*1000); //Reply should

be accepted in 1 minute
//No lease required.
c.transaction.commit();
System.out.println("Commited reply to server "+request.server+"

on process "+request.process);
} catch (Exception e) {

System.out.println("Unable to commit reply to server
"+request.server+" on process "+request.process);

}
}

}
}

} catch (Exception e) {
System.out.println("Exception in findAndProcessAuthRequests(): "+e);

}
}

public Integer verify(AuthRequestEntry are, RegistrationEntry re) {
//The code here needs to be replaced with the code to interface with

the Biometrics API
//Most of the code here does not make sense, but it is meant to

simulate the delay needed for
//the authentication process.

boolean accept=true;
for (int i=0;i<1024*50;i++) {
//return true if the images are EXACTLY the same for now.
if (are.fingerPrintImage[i]!=re.fingerPrintImage[i])
accept=false;

}

if (accept)
return new Integer(Approved);

//Think of a random error:
switch (r.nextInt()%3) {

case 0: return new Integer(Reject);
case 1: return new Integer(TooDark);
case 2: return new Integer(TooBright);

I

return new Integer(Reject);

}

public Integer returnDroneTypelD() {
return new Integer(Auth);

173

}

public String returnType() {
return "AuthDrone running on Server "+server+" on thread "+process;

}

//AuthDrone

10.1.7 Class drone.anywhere.ScheduleDrone

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;

import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceEvent;
import net.jini.core.lookup.ServiceMatches;

import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

import javax.swing.table.*;
import javax.swing.ListModel;
import javax.swing.AbstractListModel;

import common.*;
import gui.*;
import drone.droneEntry.*;
import drone.*;

174

* ScheduleDrone.java
*/

public class ScheduleDrone extends Drone {

int uid=0;
private transient ScheduleGUI frame;
private transient ScheduleChooseTargetGUI frame2;
public RegistrationEntry registrationEntry;
protected transient AdminAgentInterface myAgent;
protected transient ServiceItem[] adminAgents;

protected Entry[] myAgentAttrs;
protected Vector friends;
public Object[] [] schedule={{"",""}};
private String[] timeStrings =

{
"09:00AM", "09:30AM",
"10:00AM", "10:30AM",
"11:00AM", "11:30AM",
"12:00PM", "12:30PM",
"01:00PM", "01:30PM",
"02:00PM", "02:30PM",
"03:00PM", "03:30PM",
"04:00PM", "04:30PM",
"05:00PM", "05:30PM",
"06:OOPM", "06:30PM",
"07:00PM", "07:30PM",
"08:00PM", "08:30PM",
"09:00PM", "09:30PM",
"10:00PM", "10:30PM"

protected Hashtable ServiceIDToUID = new Hashtable();
int numMA=0;

public ScheduleDrone(Integer s, RegistrationEntry r) {
super(s);
registrationEntry=r;
schedule=new String[29][4];
for (int i=0;i<29;i++)
for (int j=0;j<4;j++)
schedule[i] [j]="";

//Place RegistrationEntry of represented User as a search Query for
my AdminAgent

myAgentAttrs=new Entry[] {new
RegistrationEntry(registrationEntry.uid)};

friends=new Vector();

}

175

public static void main(String argv[]) {
// The following code realizes the top level application window:
ScheduleDrone h=new ScheduleDrone(new Integer((new

java.util.Random()) .nextInt(), new RegistrationEntry());

h.runFirstTime();

public void runFirstTime() {

System.out.println("ScheduleDrone running for the first time: Setting
up GUI.");

TableModel tm=new AbstractTableModel() {
public int getColumnCount() {
return 3;

}
public int getRowCount() {

return 28;

}
public Object getValueAt(int row, int col) {
return schedule[row][coll;

}
public String getColumnName(int columnIndex) {
switch (columnIndex) {
case 0: return "Time";
case 1: return "Activity";
case 2: return "Entity";

}
return

}
};
frame = new ScheduleGUI(this, tm);

System.out.println("ScheduleDrone running for the first time: Packing
frame.");

frame.pack(;
frame.setVisible(true);

adminAgents=new ServiceItem[50];

super.runFirstTime();

}

protected void findDroneSpecificServices(ServiceRegistrar reg) {
super.findDroneSpecificServices(reg);

try f

Class[] uaTypes = {AdminAgentInterface.class};

System.out.println(myAgentAttrs);
ServiceTemplate uaTmpl=new ServiceTemplate(null, uaTypes,

myAgentAttrs);

ServiceItem[i s=new ServiceItem[50];
int ns=0;

ServiceMatches matches = reg.lookup(uaTmpl, 50);
s = matches.items;

176

ns = matches.totalMatches;

System.out.println("Found "+ns+" more copies of MY Agent.");

if (ns>0) f
System.out.println("Selecting the first copy.");
myAgent=(AdminAgentInterface)s[Ol.service;
friends=myAgent.getFriends();
schedule=myAgent.getSchedule();
TableModel tm=new AbstractTableModel() {
public int getColumnCount() {
return 3;

}
public int getRowCount() {
return 28;

}
public Object getValueAt(int row, int col) {
return schedule[row][col];

}
public String getColumnName(int columnIndex) {
switch (columnIndex) {
case 0: return "Time";

case 1: return "Activity";
case 2: return "Entity";

}
return "";

}

frame.table.setModel(tm);

}
} catch (RemoteException e) {
System.out.println("RemoteException in looking up a MyAgents: "+e);
return;

} catch (Exception e) {
System.out.println("Error in looking up a MyAgents: "+e);
return;

}

//Now, we look for AdminAgents of our friends.

Enumeration enum=friends.elements();
while (enum.hasMoreElements()) {
RegistrationEntry friend=(RegistrationEntry)enum.nextElement();
Entry[] serviceAttrs = new Entry[] {friend};

try {

Class[] uaTypes = {AdminAgentInterface.class};
ServiceTemplate uaTmpl=new ServiceTemplate(null, uaTypes,

serviceAttrs);

ServiceItem[] s=new ServiceItem[50];
int ns=0;

ServiceMatches matches = reg.lookup(uaTmpl,50);
s = matches.items;
ns = matches.totalMatches;

177

System.out.println("ScheduleDrone found "+ns+" more AdminAgents.");

for (int i=numMA; i<min(50,ns+numMA); i++) {
adminAgents[i] = s[i-numMA];

if (s[i-numMA]==null) {
System.out.println("Error: Received Null Service.");

}
if (ServiceIDToUID==null)
System.out.println("Error: ServiceIDToUID Null.");

}

if (s[i-numMA.serviceID!=null) {
ServiceIDToUID.put(s[i-numMA].servicelD, friend.uid);

}

}

System.out.println("Removing duplicates and bad 'Friend'
MessagingAgents...");

numMA=min(ns+numMA, 50);

numMA=compact (adminAgents,numMA);

sort(adminAgents,0, numMA-1);
removeDuplicates(adminAgents,numMA);
numMA=compact (adminAgents,numMA);

} catch (RemoteException e) {
System.out.println("Error in looking up a 'Friend' adminAgents:

"1+e);

return;

}
}

System.out.println("Found "+numMA+" 'Friend' adminAgents total.");

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

}

System.out.println("*Start*"+returnType());

for (int i=0;i<friends.size();i++) {
RegistrationEntry e=(RegistrationEntry)friends.elementAt(i);
if (e.firstname==null) {
specifyFriends();
break;

}

System.out.println("*Done*"+returnType());

178

try {
Thread.currentThread().sleep(1000*10);

} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public void specifyFriends() {
//Get fully specified friends
//TODO: There has to be a way to save memory...don't forget that all

the registration entries
// have large fingerprint templates!

Vector f=new Vector();
for (int i=O;i<friends.size();i++) {
RegistrationEntry e=(RegistrationEntry)
getAnyEntry((RegistrationEntry)friends.elementAt(i));

if (e!=null) {
e.fingerPrintImage=null;
f.addElement(e);
System.out.println("Got fully specified friend.");

} else {
System.out.println("Unable to get fully specified friend.");
f.addElement(friends.elementAt(i));

}

}
friends=f;

}

public void stopDrone() {
System.out.println("Disposing frames...");
frame.timer.stop(;)
frame.dispose();
System.out.println("End disposing frames...");
super.stopDrone();

}

public void openScheduleSession(int time) {
ListModel onlineFriends = new AbstractListModel() {
public int getSize() { return friends.size(); }
public Object getElementAt(int index) {
RegistrationEntry

registrationEntry=(RegistrationEntry)friends.elementAt(index);
return registrationEntry.firstname+" "+registrationEntry.lastname;

}
};

System.out.println("Creating new GUI:");

frame2 = new ScheduleChooseTargetGUI(this, "Schedule a
"+timeStrings[time]+" appointment",onlineFriends,time);

frame2.pack(;

179

frame2.setVisible(true);
frame2.show();

}

public void setSchedule(int time,int person) {
//TO DO: Try not to send entire Registration Entry in interest of

space!
try {
frame2.setVisible(false);
frame2.dispose();

} catch (Exception e) {
System.out.println("Error destroying ScheduleChooseTargetGUI: "+e);

}

RegistrationEntry re=(RegistrationEntry)friends.elementAt(person);

//set other schedule
boolean sent=false;
for (int i=O; i<min(50,numMA); i++) {
String ss=(String)ServiceIDToUID.get(adminAgents[i].servicelD);
if (re.uid.equals(ss)) {
try {
((AdminAgentInterface)adminAgents[i].service).setSchedule(time,

"Appointment",registrationEntry);
System.out.println("Schedule received by foreign AdminAgent...");
sent=true;
break;

} catch (Exception e) {
System.out.println("Error sending schedule: "+e);
numMA=removeService (adminAgents, numMA,

adminAgents[i].serviceID);

}

}

}

if (!sent) {
System.out.println("Error: Cannot send schedule. Doing Lookup

Again.");
doLookup();

} else {
//set own schedule
try {
myAgent.setSchedule(time, "Appointment", re);
schedule=myAgent.getSchedule();
TableModel tm=new AbstractTableModel()
public int getColumnCount()
return 3;

}
public int getRowCount() {
return 28;

}
public Object getValueAt(int row, int col) {
return schedule[row][col];

180

10.1.8 Class drone.anywhere.BillingDrone

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;

181

}
public String getColumnName(int columnIndex) {
switch (columnIndex) {
case 0: return "Time";
case 1: return "Activity";
case 2: return "Entity";

}
return

}
};
frame.table.setModel(tm);

} catch (Exception e) {
System.out.println("Error sending schedule to own agent: "+e);
doLookup();

}
}

}

public String returnType() {
return "ScheduleDrone running on Server "+server+" on thread

"+process;

}

public Integer returnDroneTypeID() {
return new Integer(Schedule);

}

}I/ScheduleDrone

import

import

import

import

import
import

import

net.jini.space.JavaSpace;
net. j ini. lease. LeaseRenewalManager;
java.io.*;

common.*;
gui.*;
drone.droneEntry.*;
drone.*;

* BillingDrone.java
*/

public class BillingDrone extends Drone {

int uid=O;
boolean registerFakeUsers=true;
private transient BillingGUI frame;
public RegistrationEntry registrationEntry;

public BillingDrone(Integer s, RegistrationEntry r) {
super(s);
registrationEntry=r;

I

public static void main(String argv[]) {
// The following code realizes the top level application window:
BillingDrone h=new BillingDrone(new Integer((new

java.util.Random()) .nextInt()), new RegistrationEntry();
h.runFirstTime();

}

public void runFirstTime() {
System.out.println("BillingDrone

up GUI.");
frame = new BillingGUI(this);
System.out.println("BillingDrone

frame.");
frame.pack();
frame.setVisible(true);
super.runFirstTime();

}

running for the first time:

running for the first time:

Setting

Packing

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType());
return;

}

System.out.println(*Start*"+returnType();

System.out.println(*Done*"+returnType ());

182

10.1.9 Class drone.anywhere.ReaderDrone

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;

183

try {

Thread.currentThread().sleep(1000*60*60);
} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public void stopDrone() {
System.out.println("Disposing frames...");
frame.timer.stop();
frame.dispose();
System.out.println("End disposing frames...");
super.stopDrone();

}

public String returnType() {
return "BillingDrone running on Server "+server+" on thread

"+process;

}

public Integer returnDroneTypeID() {
return new Integer(Billing);

i

} //BillingDrone

import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;

import common.*;
import drone.droneEntry.*;
import drone.*;

* ReaderDrone.java
*/

public class ReaderDrone extends Drone {

public ReaderDrone(Integer s) {
super(s);

}

public static void main(String argv[]) {
ReaderDrone h=new ReaderDrone(new Integer((new

java.util.Random().nextInt());

h.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType());
return;

}

System.out.println("*Start*"+returnType());

try {

for (int i=O; i<numSpaces; i++) {
javaSpace=(JavaSpace) spaceServices[i].service;
javaSpaceID=spaceServices[i].serviceID;
if (javaSpace==null) {
System.out.println("Strange...one of them is null!");
numSpaces=compact(spaceServices,numSpaces);
continue;

}
DroneEntry he=new DroneEntry();
//Snapshot over it
Entry snapshot= javaSpace.snapshot(he);
boolean done=false;
while (!done) {
Entry result=null;
try {
result=javaSpace.takeIfExists(snapshot, null,

JavaSpace.NOWAIT);
} catch (Exception eee){
System.out.println("Exception in taking Entry at

ReaderDrone/DroneSpecificCode: "+eee);

184

10.1.10 Class drone.anywhere.ChatDrone

package drone.anywhere;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;

185

}
if (result!=null) {
System.out.println(result);

}
done = (result==null);

}
}

I catch (Exception e) {
System.out.println("Exception in ReaderDrone/DroneSpecificCode:

"+e);

System.out.println("*Done*"+returnType());

try {
Thread.currentThread().sleep(5000);

} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public String returnType() {
return "ReaderDrone running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(Reader);

}

} //Reader

import net.jini.core.entry.Entry;

import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;

import common.*;
import drone.*;
import drone.droneEntry.*;
import gui.ChatGUI;

* ChatDrone.java
*/

public class ChatDrone extends Drone {

protected transient ChatGUI frame;
protected transient int sequence=O;
protected transient int highestSequenceReceived=O;
protected Integer toserver, to-process;

public ChatDrone(Integer s, Integer tos, Integer top) {
super(s);

toserver=to-s;
toprocess=top;

System.out.println(server+" "+process);
//Additional Entries to be notified about:
notifyEntries.addElement(new MessageEntry(to-server, toprocess,

server,process,null));
notifyMarshalledObjects.addElement(MESSAGEENTRY);

}

public static void main(String argv[]) {
ChatDrone h=new ChatDrone(new Integer((new

java.util.Random()).nextInt()), null,null);
h.runFirstTime();

}

public void runFirstTime() {
System.out.println("ChatDrone running for the first time: Setting up

GUI.");

frame = new ChatGUI(this, "Chat Window");
frame.pack(;
frame.setVisible(true);
super.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

186

if (javaSpace==null) (
System.out.println("*JavaSpace still null*"+returnType());
return;

}

System.out.println(" *Start*"+returnType();
System.out.println (" *Done* "+returnType();

try {
Thread.currentThread() .sleep(60*60*1000);

} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public void notifyDrone(RemoteEvent ev) {
if (ev.getRegistrationObject().equals(MESSAGEENTRY)) {
System.out.println("Notified of new message: "+returnType());
try {
for (int i=O; i<numSpaces; i++)
javaSpace=(JavaSpace) spaceServices[ii.service;
javaSpaceID= spaceServices[i].serviceID;

if (javaSpace==null) J
continue;

}
MessageEntry me=new MessageEntry(to-server, toprocess,

server,process, null);
//Snapshot over it
Entry snapshot= javaSpace.snapshot(me);
boolean done=false;
while (!done) {
MessageEntry result=(MessageEntry)

javaSpace.takeIfExists(snapshot, null, JavaSpace.NOWAIT);
if (result!=null) {
if (result.sequence.intValue()>highestSequenceReceived) {
highestSequenceReceived=result.sequence.intValue();
frame.inmessage=result.message;

}
}
done = (result==null);

}
}

} catch (Exception e) {
System.out.println("Exception in ChatDrone/notifyDrone: "+e);

}
}

public void sendReply(String s) {
System.out.println("Sending reply: "+s);
try {
writeEntryToOneJavaSpace(new

MessageEntry(server,process,toserver,toprocess,s,new
Integer(sequence++)));

} catch (Exception e) {

187

10.1.11 Class drone.anywhere.agent.AgentDrone

package drone.anywhere.agent;

import net.jini.core.event.RemoteEventListener;
import net. j ini. core. event. RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net. jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;

import net. jini.core. lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net. j ini. core. lookup. ServicelD;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lookup.ServiceEvent;

import net. j ini. lookup. entry. ServiceInfo;
import java.rmi.Remote;

188

System.out.println("*"+returnType()+"* Exception in sendReply: "+e);
//Perhaps javaSpace is bad?
//Removing bad javaSpace
numSpaces=removeService(spaceServices, numSpaces, javaSpaceID);
//Try again if we have extra JavaSpaces...
if (numSpaces>O) {
int chosenOne=abs(r.nextInt() % numSpaces;
javaSpace=(JavaSpace) spaceServices[chosenOne].service;
javaSpaceID=spaceServices [chosenOne] .serviceID;
sendReply(s);

}
}

}

public String returnType() {
return "ChatDrone running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(Chat);

}

}//ChatDrone

import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Vector;

import common.*;
import drone.droneEntry.*;
import drone.*;

* AgentDrone.java
*/

public abstract class AgentDrone extends Drone {

protected transient AgentInterface impl;
protected int count=O;
protected Entry[] serviceAttrs;
protected ServiceID myServiceID=null;

public AgentDrone(Integer s) {

super(s);
serviceAttrs = new Entry[] {};

}

protected void findDroneSpecificServices(ServiceRegistrar reg) {

//Register this Agent's Impl.

Thread registerThread = new RegisterThread(reg);
registerThread.start();

}

public void stopDrone() {
impl=null;
super.stopDrone();

}

/* Thread in which the service is registered with lookup.
*

* A new instance of this thread is created each time a new lookup
* belonging to a group-of-interest is discovered.
*

* Rather than performing the service registration in the
* DiscoveryListener's discovered() method, that registration is
* performed in this thread. It is very important that the
* discovered() method do whatever it needs to do and return
* as quickly. This is why a potentially time-consuming task such
* registering a service with lookup (a remote invocation) is
* performed in this separate thread.
*

189

* Upon completion of the registration process, this thread will exit.
*/
protected class RegisterThread extends Thread {

private transient volatile ServiceRegistrar reg;

public RegisterThread(ServiceRegistrar reg) {
super("RegisterThread");
setDaemon(true);
this.reg = reg;

}

public void run() {
//For now, we join all groups!
registerItem(impl,reg);

}

private void registerItem(Object service,
ServiceRegistrar lookupSrvc) {

/* Create a ServiceItem from the service instance */
ServiceItem srvcItem = new

ServiceItem(myServiceID,service,serviceAttrs

/* Register the Service with the Lookup Service */
ServiceRegistration srvcRegistration = null;

try {
srvcRegistration = lookupSrvc.register(srvcItem,1000*60); //1

minute
System.out.println("Registered ServiceID:
+(myServiceID=srvcRegistration.getServiceID().toString());

System.out.println("Okay....Registered Service:
"+lookupSrvc.getLocator().getHost());

} catch (RemoteException e) {
System.out.println("RemoteException while registering the
+"Service: "+service+"\n"+e.toString());
//lookupDiscovery.discard(lookupSrvc);

}

leasemanager.renewFor(srvcRegistration.getLease(, 1000*60*60,
leaselistener);//Renew for 1 hour

leases.addElement(srvcRegistration.getLease());

}

} I/AgentDrone

190

10.1.12 Class drone.anywhere.agent.AdminAgent

package drone.anywhere.agent;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lookup.ServiceEvent;

import net.jini.lookup.entry.ServiceInfo;
import java.rmi.Remote;

import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import java.util.Vector;

import common.*;
import drone.droneEntry.*;
import drone.*;

public class AdminAgent extends UnicastRemoteObject implements
AdminAgentInterface, Remote { //, Serializable, Remote {
private Integer MessagingServer;
private Integer MessagingProcess;
private AdminAgentDrone drone;

private String[] timeStrings

{
"09:00AM", "09:30AM",
"10:00AM", "10:30AM",
"11:00AM", "11:30AM",
"12:00PM", "12:30PM",
"01:OOPM", "01:30PM",
"02:OOPM", "02:30PM",
"03:OOPM", "03:30PM",
"04:OOPM", "04:30PM",

191

"05:O0PM", "05:30PM",
"06:OOPM","06:30PM",
"07: OOPM", "07 :3OPM" ,
"08:OOPM", "08:3OPM" ,
"09:O0PM", "09:30PM",
"10:00PM", "10:30PM"

private String[] scheduleAct;
private RegistrationEntry[] scheduleEntity;

public AdminAgent() throws java.rmi.RemoteException {
scheduleAct=new String[28];
scheduleEntity=new RegistrationEntry[28];

for (int i=0;i<28;i++)

scheduleAct[i]="";
scheduleEntity[i]=new RegistrationEntry();
}

}

public AdminAgent(AdminAgentDrone drone) throws
java.rmi.RemoteException

this.drone=drone;

scheduleAct=new String[28];
scheduleEntity=new RegistrationEntry[28];

for (int i=0;i<28;i++) {
scheduleAct[i]="";
scheduleEntity[i]=new RegistrationEntry();

}

}

public String sayHello() throws java.rmi.RemoteException {
drone.count++;

return "This is "+drone.registrationEntry.firstname+"
"+drone.registrationEntry.lastname+" User Agent.";

}

public Vector getFriends() throws java.rmi.RemoteException {
System.out.println("Getting Friends...");
Vector v=new Vector();
v.addElement(new RegistrationEntry("O"));
v.addElement(new RegistrationEntry("1"));
v.addElement(new RegistrationEntry("2"));
return v;

}

public Integer[] getMessagingManager() throws java.rmi.RemoteException

{
return new Integer [] {MessagingServer,MessagingProcess};

}

192

10.1.13 Class drone.anywhere.agent.AdminAgentDrone

package drone.anywhere.agent;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net. j ini. discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lookup.ServiceEvent;

import net.jini.lookup.entry.ServiceInfo;
import java.rmi.Remote;

193

public Object[][] getSchedule() {
String[][] s=new String[28][3];
for (int i=O;i<28;i++) {
s[i][O]=timeStrings[i];
s[i] [1]=scheduleAct[i];
si] [2]=scheduleEntity [i] .firstname+" "+scheduleEntity[i] .lastname;

I
return s;

public void setSchedule(int time, String Act, RegistrationEntry
Entity) {

scheduleAct[time]=Act;
scheduleEntity[time]=Entity;

}

public void setMessagingManager(Integer s, Integer p) throws
java.rmi.RemoteException {

MessagingServer=s;
MessagingProcess=p;

}

}

import
import
import
import
import
import

import
import
import

net.jini.core.entry.Entry;
net.jini.core.lease.Lease;
net.jini.space.JavaSpace;
net.jini.lease.LeaseRenewalManager;
java.io.*;
java.util.Vector;

common.*;
drone.droneEntry.*;
drone.*;

* AdminAgentDrone.java
*/

public class AdminAgentDrone extends AgentDrone {

protected RegistrationEntry registrationEntry;
protected int count=O;

public AdminAgentDrone(Integer s, RegistrationEntry re) {
super(s);

registrationEntry=re;
serviceAttrs = new Entry[] {re};

}

public static void main(String argv[]) {
AdminAgentDrone h=new AdminAgentDrone(new Integer((new

java.util.Random().nextInt()), new RegistrationEntry("l"));

h.runFirstTime(;

}

public void runFirstTime() {

//Cannot construct AdminAgent
transient.

try {
impl=new AdminAgent(this);

} catch (Exception e) {
System.out.println("Error in

}

in constructor because impl is

creating AdminAgent: "+e);

super.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

194

10.1.14 Class drone.anywhere.agent.MessagingAgent

package drone.anywhere.agent;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;

import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import java.rmi.Remote;

import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;

195

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType());
return;
}

System.out.println("*Start*"+returnType();

System.out.println("Hits: " +count);
System.out.println("Leases: " +leases.size());
System.out.println("*Done*"+returnType());

try {

Thread.currentThread().sleep(1000*60);
} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public void notifyDrone(RemoteEvent ev) {
System.out.println("User has logged on...');

}

public String returnType() {
return registrationEntry.firstname+"'s AdminAgentDrone running on

Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(AdminAgent);

I

} / /AdminAgentDrone

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceEvent;
import net.jini.core.lookup.ServiceMatches;

import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import javax.swing.*;

import common.*;
import drone.*;
import drone.anywhere.*;
import drone.droneEntry.*;

import gui.MessagingManagerGUI;
import gui.MessagingGUI;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

public class MessagingAgent extends UnicastRemoteObject implements
MessagingAgentInterface, Remote { //, Serializable, Remote {
private int i;
private Integer MessagingServer;
private Integer MessagingProcess;
private MessagingAgentDrone drone;

public MessagingAgent() throws java.rmi.RemoteException {

I

public MessagingAgent(MessagingAgentDrone drone) throws
java.rmi.RemoteException {

this.drone=drone;

I

public String sayHello() throws java.rmi.RemoteException {
drone.count++;
return "This is "+drone.registrationEntry.firstname+"

"+drone.registrationEntry.lastname+" MessagingManagerAgent.";

}

public synchronized void receiveMessage(String message,
RegistrationEntry re) throws java.rmi.RemoteException {

System.out.println("Received a message");
Object[] obj=new Object[2];
obj[01=message;
obj[l]=re;
//Should we worry about asychronous behavior here?
drone.pendingMessages.addElement(obj);
drone.thread.interrupt();

}

196

}

10.1.15 Class drone.anywhere.agent.MessagingAgentDrone

package drone.anywhere.agent;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;

import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import java.rmi.Remote;

import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceEvent;
import net.jini.core.lookup.ServiceMatches;

import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;
import javax.swing.ListModel;
import javax.swing.AbstractListModel;

import common.*;
import drone.*;
import drone.anywhere.*;
import drone.droneEntry.*;

import gui.MessagingManagerGUI;
import gui.MessagingGUI;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

* MessagingAgentDrone.java
*/

197

public class MessagingAgentDrone extends AgentDrone {

protected
protected
protected

transient MessagingManagerGUI frame;
Vector friends;
Vector pendingMessages;

protected transient ServiceItem[] messagingAgents;

protected RegistrationEntry registrationEntry;

protected Entry[] myAgentAttrs;

protected transient AdminAgentInterface myAgent;

protected
protected
protected

Hashtable ServiceIDToUID = new Hashtable(;
Hashtable UIDToMessages = new Hashtable(;
Hashtable UIDToMessagingGUI = new Hashtable);

int numMA=O;

public MessagingAgentDrone(Integer s, RegistrationEntry r) {
super(s);
registrationEntry=r;
friends=new Vector();
pendingMessages=new Vector();

//Place RegistrationEntry of represented User in queenentry;
queenentry.registrationEntry=registrationEntry;

//Place RegistrationEntry of represented User as a search Query for my AdminAgent
myAgentAttrs=new Entry[] {new RegistrationEntry(registrationEntry.uid)};

//Place r in ServiceAttrs to that this Agent is a searchable Agent.
serviceAttrs = new Entry[] {registrationEntry};

//Be notified about Online Users meant for this Hatchery.
notifyEntries.addElement(new QueenEntry(null,null,new Integer(Messaging)));
notifyMarshalledObjects.addElement(QUEENENTRY);

i

public static void main(String argv[]) {

RegistrationEntry registrationEntry=new RegistrationEntry);
//Assume User 1 for now:
registrationEntry.uid="1";

MessagingAgentDrone h=new MessagingAgentDrone(new Integer((new
java.util.Random().nextInt()), registrationEntry);

h.runFirstTime();

198

}

public void runFirstTime() {

System.out.println("MessagingAgentDrone running for the first time: Setting up GUI.

System.out.println("For User: "+registrationEntry);

//Cannot construct MessagingAgent in constructor because impl is transient.
try {
impl=new MessagingAgent(this);

} catch (Exception e) {
System.out.println("Error in creating MessagingAgent: "+e);

}

//Cannot construct messagingAgents in constructor because messagingAgents is trans

messagingAgents=new ServiceItem[50];

ListModel onlineFriends = new AbstractListModel() {
public int getSize() { return friends.size(); }
public Object getElementAt(int index) {
RegistrationEntry registrationEntry=(RegistrationEntry)friends.elementAt(index);
return registrationEntry.firstname+" "+registrationEntry.lastname;

}

System.out.println("Creating new GUI:");

frame = new MessagingManagerGUI (this, registrationEntry.firstname+"
"+registrationEntry.lastname+"'s online friends",onlineFriends);

frame.pack();
frame.setVisible(true);
frame.show();
super.runFirstTime();

}

protected void findDroneSpecificServices(ServiceRegistrar reg) {
super.findDroneSpecificServices(reg);

try {
Class[] uaTypes = {AdminAgentInterface.class};

System.out.println(myAgentAttrs);

ServiceTemplate uaTmpl=new ServiceTemplate(null, uaTypes, myAgentAttrs);

ServiceItem[] s=new ServiceItem[50];
int ns=0;

ServiceMatches matches = reg.lookup(uaTmpl,50);
s = matches.items;
ns = matches.totalMatches;

System.out.println("Found "+ns+" more copies of MY Agent.");

199

if (ns>0) {
System.out.println("Selecting the first copy.");
myAgent=(AdminAgentInterface)s[l].service;
//System.out.println(myAgent.sayHello());
friends=myAgent.getFriends();
//System.out.println(myAgent.sayHello());
myAgent.setMessagingManager(server,process);
//System.out.println(myAgent.sayHello());

}
} catch (RemoteException e) {
System.out.println("RemoteException in looking up a MyAgents: "+e);
return;

} catch (Exception e) {
System.out.println("Error in looking up a MyAgents: "+e);

return;
}

//Now, we look for MessagingAgents of our friends.

Enumeration enum=friends.elements(;
while (enum.hasMoreElements() {
RegistrationEntry friend=(RegistrationEntry)enum.nextElement();
Entry[] serviceAttrs = new Entry[] {friend};
try {
Class[] uaTypes = {MessagingAgentInterface.class};
ServiceTemplate uaTmpl=new ServiceTemplate(null, uaTypes, serviceAttrs);

ServiceItem[] s=new ServiceItem[50];
int ns=O;

ServiceMatches matches = reg.lookup(uaTmpl,50);
s = matches.items;
ns = matches.totalMatches;
System.out.println("MessagingAgentDrone found "+ns+" more MessagingAgents.");

for (int i=numMA; i<min(50,ns+numMA); i++) {
messagingAgents[i] = s[i-numMA];

if (s[i-numMA]==null) {
System.out.println("Error: Received Null Service.");

}
if (ServicelDToUID==null) {
System.out.println("Error: ServiceIDToUID Null.");

}

if (s[i-numMA].serviceID!=null)
ServiceIDToUID.put(s[i-numMA.serviceID, friend.uid);

}

System.out.println("Removing duplicates and bad 'Friend' MessagingAgents...");

numMA=min(ns+numMA, 50);
numMA=compact(messagingAgents,numMA);
sort(messagingAgents,0, numMA-1);

200

removeDuplicates(messagingAgents,numMA);
numMA=compact (messagingAgents,numMA);

} catch (RemoteException e) {
System.out.println("Error in looking up a 'Friend' MessagingAgents: "+e);
return;

}
}

System.out.println("Found "+numMA+" 'Friend' MessagingAgents total.");

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

}

System.out.println("*Start*"+returnType());

Vector f=new Vector();
for (int i=O;i<friends.size();i++) {
RegistrationEntry e=(RegistrationEntry)friends.elementAt(i);
if (e.firstname==null) {
specifyFriends();
break;

}
}

Object[] oneMessage;
while (pendingMessages.size(>O) {
oneMessage=(Object[1) pendingMessages.elementAt(0);
pendingMessages.removeElementAt(0);
processMessage(oneMessage);

}

System.out.println("*Done*"+returnType());

try {
Thread.currentThread().sleep(1000*10);

} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}

public void specifyFriends() {
//Get fully specified friends
//TODO: There has to be a way to save memory...don't forget that all the registrat

201

entries
// have large fingerprint templates!

Vector f=new Vector(;
for (int i=O;i<friends.size();i++) {
RegistrationEntry e=(RegistrationEntry)
getAnyEntry((RegistrationEntry)friends.elementAt(i));

if (e!=null) {
e.fingerPrintImage=null;
f.addElement(e);
System.out.println("Got fully specified friend.");

} else {
System.out.println("Unable to get fully specified friend.");
f.addElement(friends.elementAt(i));

}

}
friends=f;

ListModel onlineFriends = new AbstractListModel() {
public int getSize() { return friends.size(); }
public Object getElementAt(int index) {
RegistrationEntry registrationEntry=(RegistrationEntry)friends.elementAt(index);
return registrationEntry.firstname+" "+registrationEntry.lastname;

}
};

frame.jlist.setModel(onlineFriends);
}

public void openMessageSession(int i) {
RegistrationEntry re=(RegistrationEntry)friends.elementAt(i);
openMessageSession(re);

}

public MessagingGUI openMessageSession(RegistrationEntry re) {
if (re==null) {
System.out.println("Fatal Error in openMessageSession: RegistrationEntry null");
return null;

}
MessagingGUI frame=(MessagingGUI)UIDToMessagingGUI.get(re.uid);
if (frame!=null) {
frame.pack();
frame.setVisible(true);
frame.show();
return frame;

}

frame = new MessagingGUI(this, re.uid, "Message Session with "+re.firstname+"
"+re.lastname);

frame.pack();
frame.setVisible(true);
frame.show();

UIDToMessagingGUI.put(re.uid,frame);

202

return frame;

public void closeWindow(String uid) {
MessagingGUI frame=(MessagingGUI)UIDToMessagingGUI.remove(uid);
frame.dispose(;

}

public void stopDrone() {
System.out.println("Disposing frames...");

Enumeration e=UIDToMessagingGUI.elements();
while (e.hasMoreElements() {
MessagingGUI f=(MessagingGUI)e.nextElement();
f.timer.stop();
f.dispose();

}
frame.dispose();
System.out.println("End disposing frames...");
super.stopDrone();

}

public void processMessage(Object[] obj) {
//Uses variables UIDToMessages, UIDToMessagingGUI
String message=(String)obj[0];
RegistrationEntry re=(RegistrationEntry)obj[l];

System.out.println("Received Message: "+message+"\nFrom "+re);

if (re.uid==null) {
System.out.println("Fatal Error receiving message: RegistrationEntry null");

}

Vector v=(Vector)UIDToMessages.get(re.uid);
if (v==null) v=new Vector();
v.addElement(message);

UIDToMessages.put(re.uid,v);
MessagingGUI mg=(MessagingGUI) UIDToMessagingGUI.get(re.uid);

if (mg==null) {
//create new GUI for re
mg=openMessageSession(re);

}
if (mg==null) {
System.out.println("Fatal Error: Cannot find Messaging GUI");

//Display Latest Message
mg.in-message=message;
mg.setVisible(true);

}

203

public void sendReply(String s, String uid) {
System.out.println("Sending reply "+s+" to UID: "+uid);
boolean sent=false;

//Send to all MessagingAgents of User uid

for (int i=O; i<min(50,numMA); i++) {
String ss=(String)ServiceIDToUID.get(messagingAgents[i].serviceID);
if (uid.equals(ss)) {
try {

((MessagingAgentInterface)messagingAgents[i].service).receiveMessage(s,registrationE
System.out.println("Message received by foreign MessageAgent...');

sent=true;
} catch (Exception e) {
System.out.println("Error sending reply: "+e);

numMA=removeService(messagingAgents, numMA, messagingAgents[i].serviceID);
if (numMA>O) {
sendReply(s,uid);

}
}

}

}

if (!sent) {
System.out.println("Error: Cannot send reply. Doing Lookup Again.");

doLookup();
}

}

public void notifyDrone(RemoteEvent ev) {
System.out.println("MessagingAgentDrone called: "+ev);

}

public String returnType() {
return "MessagingAgentDrone running on Server "+server+" on thread "+process;

}

public Integer returnDroneTypeID() {
return new Integer(Messaging);

}

} //MessagingAgentDrone

204

10.1.16 Class drone.frontdesk.RegistrationDrone

package drone.frontdesk;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net. j ini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;

import common.*;
import gui.*;
import drone.droneEntry.*;
import drone.*;

* RegistrationDrone.java
*/

public class RegistrationDrone extends Drone {

int uid=O;
boolean registerFakeUsers=true;
private transient RegistrationGUI frame;

public RegistrationDrone(Integer s) {
super(s);

}

public static void main(String argv[]) {
// The following code realizes the top level application window:
RegistrationDrone h=new RegistrationDrone(new Integer((new

java.util.Random().nextInt()));
h.runFirstTime();

i

public void runFirstTime() {

205

System.out.println("RegistrationDrone running for the first time:
Setting up GUI.");

frame = new RegistrationGUI(this);
frame.pack(;
frame.setVisible(true);
super.runFirstTime();

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType));
return;

}

System.out.println("*Start*"+returnType());

if (registerFakeUsers) {
RegistrationEntry re=new RegistrationEntry("Low","Jordan",

"12345678", "Passport 321412", "500 Memorial Drive", null);
putFakeFingerPrint(re);
registerUser(re);

re=new RegistrationEntry("Low","Tzer Hung", "12345678", "Passport
321412", "500 Memorial Drive", null);

putFakeFingerPrint(re);
registerUser(re);

re=new RegistrationEntry("Low","Ted", "12345678", "Passport
321412", "500 Memorial Drive", null);

putFakeFingerPrint(re);
registerUser(re);

re=new RegistrationEntry("Lo","Annie", "12345678", "Passport
321412", "500 Memorial Drive", null);

putFakeFingerPrint(re);
registerUser(re);

re=new RegistrationEntry("Song","Steve", "12345678", "Passport
321412", "500 Memorial Drive", null);

putFakeFingerPrint(re);
registerUser(re);

re=new RegistrationEntry("Hitchcock","Alfred", "12345678",
"Passport 321412", "500 Memorial Drive", null);

putFakeFingerPrint(re);
registerUser(re);

registerFakeUsers=false;

}

System.out.println("*Done*"+returnType());

try (

Thread.currentThread().sleep(1000*60*60);

206

} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}

public void registerUser(RegistrationEntry re) {
System.out.println("Registering User...UID="+uid);
re.uid=uid+"";
re.agentRunning=new Boolean(false);

System.out.println(re);
uid++;
persistentWriteEntryToOneJavaSpace(re);

}

public void putFakeFingerPrint(RegistrationEntry re) {
//Make fake fingerprint image for now

byte[] b=new byte[1024*50];
for (int i=0;i<1024*50;i++) {
if (i%2==0)
b[i]=0;

else
b[i]=1;

if (i<re.firstname.length() {
b[i]=(byte)re.firstname.charAt(i);

}

}
re.fingerPrintImage=b;

}

public void stopDrone() {
System.out.println("Disposing frames...");
frame.timer.stop(;)
frame.dispose();
System.out.println("End disposing frames...");
super.stopDrone(;

I

public String returnType() {
return "RegistrationDrone running on Server "+server+" on thread

"+process;

}

public Integer returnDroneTypeID() {
return new Integer(Registration);

I

} //RegistrationDrone

207

10.1.17 Class drone.tini.FingerPrintDrone

package drone.tini;

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import java.rmi.MarshalledObject;
import net.jini.core.event.UnknownEventException;
import net.jini.core.event.EventRegistration;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceEvent;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.MarshalledObject;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseRenewalManager;
import java.io.*;

import common.*;
import drone.droneEntry.*;
import drone.*;

* FingerPrintDrone.java
*/

public class FingerPrintDrone extends Drone implements FingerPrintConst

{

boolean setFingerPrintNotify=false;
java.util.Random r=new java.util.Random(;

public FingerPrintDrone(Integer s) {
super(s);

//Additional Entries to be notified about:
notifyEntries.addElement(new

AuthResultEntry(server,process,null,null));
notifyMarshalledObjects.addElement(AUTHRESULTENTRY);
}

public static void main(String argv[]) {
FingerPrintDrone h=new FingerPrintDrone(new Integer((new

java.util.Random)).nextInt)));
h.runFirstTime();

208

}

public void DroneSpecificCode() {

//Next, Drone Specific Code:

if (javaSpace==null) {
System.out.println("*JavaSpace still null*"+returnType();
return;

}

System.out.println("*Start*"+returnType());

//********BELOW IS FINGERPRINT CODES

System.out.println("A fingerprint entry has been placed!");
try {

//Read fingerprint

byte[] b=readFingerPrint();

//Create caseID
Long caseID=new Long(r.nextLong));

AuthRequestEntry are=new AuthRequestEntry(server,process,new
Integer(r.nextInt(%3),b, new Boolean(true), new
Boolean(false),caseID);

AuthRequestEntry are noimage=new AuthRequestEntry(server,process,new
Integer(r.nextInt)%3),null, new Boolean(true), new

Boolean(true),caseID);
persistentWriteEntryToOneJavaSpace(are);
persistentWriteEntryToOneJavaSpace(arenoimage);

} catch (Exception e) {
System.out.println("Exception in FINGERPRINT/DroneSpecificCode:

"+e);

}
//END FINGERPRINT CODES***************/

System.out.println("*Done*"+returnType());

try {
Thread.currentThread().sleep(1000*15);

} catch (InterruptedException e) {
System.out.println("Exception: "+e);

}
}

public byte[] readFingerPrint() {
byte[] b=new byte[1024*50];
for (int i=0;i<1024*50;i++) {
if (i%2==O)
b[i]=0;

else
b[i]=1;

return b;

209

public void notifyDrone(RemoteEvent ev) {
if (ev.getRegistrationObject().equals(AUTHRESULTENTRY)) {

System.out.print("Reply to AUTH: ");
try {

for (int i=O; i<numSpaces; i++) { //Find Request on all known
JavaSpaces

javaSpace= (JavaSpace) spaceServices [i] . service;
javaSpaceID= spaceServices[i].serviceID;

if (javaSpace==null) {
continue;

}
AuthResultEntry are=new AuthResultEntry);
AuthResultEntry result= (AuthResultEntry)

javaSpace.takeIfExists (are,null, JavaSpace.NOWAIT);
if (result!=null) {
workOnResult(result);

return;

}

} catch (Exception e) {
System.out.println("Exception in FingerPrintDrone/notifyDrone:

"1+e);

}
}

}

public void workOnResult(AuthResultEntry are) {
//System.out.println(are.result);
switch (are.result.intValue() {
case Approved:
System.out.println("Approved");
break;

case Reject:
System.out.println("Reject");
break;

case TooDark:
System.out.println("Too Dark");
break;

case TooBright:
System.out.println("Too Bright");

break;
}

public String returnType() {
return "FingerPrintDrone running on Server "+server+" on thread

"+process;

I

public Integer returnDroneTypeID() {
return new Integer(FingerPrint);

210

}

I

10.1.18 Class drone.droneEntry.DroneEntry

package drone.droneEntry;

import java.util.Vector;

import net .j i .core . entry. Entry;

public class DroneEntry implements Entry {
public DroneEntry() {

}

public String toString() {
return "Drone Entry:

}

}

10.1.19 Class drone.droneEntry.RefreshEntry
package drone.droneEntry;

import java.util.Vector;

import net. jini.core.entry.Entry;

public class RefreshEntry extends DroneEntry {

public RefreshEntry() {
}

public String toString() {
return "Refresh Entry";

I

}

10.1.20 Class drone.droneEntry.DeathEntry

package drone.droneEntry;

import java.util.Vector;

import net.jini.core.entry.Entry;

211

} //FingerPrintDrone

10.1.21 Class drone.droneEntry.QueenEntry
package drone.droneEntry;

import net.jini.core.entry.Entry;

public class QueenEntry extends DroneEntry {

public Integer server=null;
public Integer process=null;
public Integer droneTypeID=null;
public RegistrationEntry registrationEntry=null;

public QueenEntry() {
}

public QueenEntry(Integer s, Integer p, Integer d) {
server=s;
process=p;
droneTypeID=d;

}

public String toString() {
return "Queen Entry: "+server+"/"+process+"/"+droneTypelD;

}

}

212

public class DeathEntry extends DroneEntry {

public Integer server=null;
public Integer process=null;

public DeathEntry() {
}

public DeathEntry(Integer s, Integer p) {
server=s;
process=p;

}

public String toString() {
return "Death Entry: "+server+"/"+process;

}

}

10.1.22 Class drone.droneEntry.HatcheryEntry

package drone.droneEntry;

import net.jini.core.entry.Entry;
import drone.*;

public class HatcheryEntry extends DroneEntry {

public Integer server=null;
public Integer process=null;
public Drone drone=null;

public HatcheryEntry() {

}

public HatcheryEntry(Drone d) {
//This is to hatch a new drone on the first Hatchery that accepts
//the anonymous request

drone=d;

}

public HatcheryEntry(Integer s, Integer p, Drone d) {
server=s;
process=p;
drone=d;

I

public Drone getDrone() {
return drone;

public String toString() {
return "Queen Entry: "+server+"/"+process+"/"+drone+"\n";

}

}

10.1.23 Class drone.droneEntry.RegistrationEntry

package drone.droneEntry;

import net. j ii .core. entry. Entry;

public class RegistrationEntry extends DroneEntry {

public String lastname;
public String firstname;
public String creditcard;
public String id;

213

public String address;
public String uid;

public byte[] fingerPrintImage=null;
public Boolean agentRunning;
public Integer agentServer;
public Integer agentProcess;

public RegistrationEntry() {

}

public RegistrationEntry(String 1, String f, String c, String i,
String a, byte[] ba) {

lastname=l;
firstname=f;
creditcard=c;
id=i;
address=a;
fingerPrintImage=ba;

}

public RegistrationEntry(String uid) {
this.uid=uid;

public boolean match(RegistrationEntry re) {
if (fullySpecifiedName()&&re.fullySpecifiedName())
return

(lastname.equals(re.lastname)&&firstname.equals(re.firstname));
}
if (fullySpecifiedCreditCard()&&re.fullySpecifiedCreditCard() {
return (creditcard.equals(re.creditcard));

}

if (fullySpecifiedUID(&&re.fullySpecifiedUID()
return (uid.equals(re.uid));

}

return false;

}

public boolean fullySpecifiedName() {
if (lastname!=null&&firstname!=null)
if (lastname.length(>0&&firstname.length()>0)
return true;

return false;
}

public boolean fullySpecifiedCreditCard() {
if (creditcard!=null)
if (creditcard.length()>0)
return true;

return false;

i

public boolean fullySpecifiedUID() {

214

if (uid!=null)
if (uid.length(>O)
return true;

return false;

}

public String toString() {
return "Registration Entry: \n"+

"Last Name: "+lastname+"*\n"+
"First Name: "+firstname+"*\n"+

"Credit Card: "+creditcard+"*\n"I+
"Identification: "+id+"*\n"+
"Address: "+address+"*\n"+
"FingerPrintImage: "+fingerPrintImage+"\n"+

"agentRunning: "+agentRunning+"\n"+
"UID: "+uid+"*\n";

}

}

10.1.24 Class drone.droneEntry.MessageEntry

package drone.droneEntry;

import java.util.Vector;

import net.jini.core.entry.Entry;

public class MessageEntry extends DroneEntry {

public Integer fromserver=null;
public Integer fromprocess=null;
public Integer toserver=null;
public Integer toprocess=null;
public String message=null;
public Integer sequence=null;

public MessageEntry () {
}

public MessageEntry (Integer ts,Integer tp) {
toserver=ts;

toprocess=tp;
}

public MessageEntry (Integer fs,Integer fp,Integer ts,Integer
tp,String m) (

fromserver=fs;
fromprocess=fp;
toserver=ts;
toprocess=tp;
message=m;
}

public MessageEntry (Integer fs,Integer fp,Integer ts,Integer
tp,String m, Integer sq) {

215

fromserver=fs;
fromprocess=fp;
toserver=ts;
toprocess=tp;
message=m;
sequence=sq;

}

public String toString() {
return "Message Entry";

}

10.1.25 Class drone.droneEntry.AuthRequestEntry

package drone.droneEntry;

import java.io.ObjectOutputStream
import net.jini.core.entry.Entry;

public class AuthRequestEntry extends DroneEntry {

//There are 2 classes of AuthRequestEntry:

//The first case is a OneToOne authentication request, where the user
is known.

//In this case, the OneToMany variable should be set to
Boolean(false).
//The registrationEntry should have identify the user in some way.
//The registrationEntry may not need to have full user information. A

hotel
//guest may be checking in from an Express Kiosk, and his credit card

number
//is sufficient to do a database lookup for his fingerprint template.
//AuthDrones handle such OneToOne authentication requests.

//The second case is a OneToMany authentication request. It may also
be
//classified as an identification request. In this case, no

information about
//the user is known. The OneToManySearch variable should be set to

Boolean(true).
//The RegistrationEntry can be null.

//Given only a fingerprint and a commercially available OneToOne
biometrics
//authentication SDK, it is necessary to check a series of fingerprint
//templates for a match. For this, the parallel architecture of our
//implementation comes in handy, and the Queen (a specialized Drone)
//comes into mind. The Queen will basically distribute the work load

over

216

//AuthDrones through JavaSpace. This case is meant for currently
registered
//hotel guests and employees only; As one reason, searching a

potentially
//centralized (for a hotel chain) database of possible fingerprint

templates
//can prove to be time-consuming and wasteful.

//If the entryPoint is null, the AuthReplyEntry will give the
//registrationEntry of the correct user, if any.

//If the entryPoint is not null, then it refers to a particular door
or
//access point where a user is attempting entry. In that case,
//AuthReplyEntry will give an appropriate reply to that request, such
//as Approved.

public Integer server=null;
public Integer process=null;
public Integer entryPoint=null;
public byte[] fingerPrintImage=null;
public RegistrationEntry registrationEntry=null;
public Boolean OneToManySearch=null;
public Boolean NoImage=null;

public Long requestID=null;

public AuthRequestEntry() {
}

public AuthRequestEntry(Integer s, Integer p, Integer e, byte[] ba,
Boolean o, Boolean ni) {

server=s;
process=p;
entryPoint=e;
fingerPrintImage=ba;
OneToManySearch=o;
NoImage=ni;

}

public AuthRequestEntry(Integer s, Integer p, Integer e, byte[] ba,
Boolean o, Boolean ni, Long rid) {

server=s;
process=p;
entryPoint=e;

fingerPrintImage=ba;
OneToManySearch=o;
NoImage=ni;
requestID=rid;

}

public String toString() {
return "AuthRequestEntry: \n"+

"Server :"+server +"\n"+
"Process :"+process+"\n"+
"requestID :"+requestID +"\n"+

"RegistrationEntry :"+registrationEntry+"\n"+

"fingerPrintImage :"+fingerPrintImage+"\n";

217

I

10.1.26 Class drone.droneEntry.AuthResultEntry

package drone.droneEntry;

import java.util.Vector;
import net. j ii . core. entry. Entry;

public class AuthResultEntry extends DroneEntry {

public Integer server=null;

public Integer process=null;
public Integer result=null;
public RegistrationEntry registrationEntry=null;
public Long requestID=null;

public AuthResultEntry() {

public AuthResultEntry(Integer s, Integer p, Integer r, Long rid) {
server=s;
process=p;
result=r;
requestID=rid;

}

public String toString() {
return "AuthResultEntry: \n"+

"Server :"+server+"\n "+

"Process :"+process+"\n"+
"Result :"+result +"\n"+
"requestID :"+requestID +"\n"+

registrationEntry +"\n";

}

10.1.27 Class drone.droneEntry.QueenCreateRequestEntry

package drone.droneEntry;

import net . j ii . core . entry. Entry;

218

public class QueenCreateRequestEntry extends DroneEntry {

public Integer server=null;
public Integer process=null;
public Integer droneTypeID=null;
public Integer requestedDroneTypeID=null;
public RegistrationEntry registrationEntry=null;

public QueenCreateRequestEntry() {

}

public QueenCreateRequestEntry(Integer s, Integer p, Integer d,
Integer r, RegistrationEntry re) {

server=s;
process=p;
droneTypeID=d;
requestedDroneTypeID=r;
registrationEntry=re;

}

public String toString() {
return "QueenCreateRequestEntry

"+server+" / "+process+" / "+droneTypeID+ " \n" +
"requestedDroneTypeID" +requestedDroneTypeID;

10.2 Package gui

10.2.1 Class gui.RegistrationGUI
package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import common.*;

public class RegistrationGUI extends JFrame {

protected JLabel statusBar;
protected JProgressBar progressBar;

219

private JPopupMenu Popup;
private JTextPane textPane;
private TimerEventListener eventListener;
private String[] agencyStrings = ("Choose a travel

agency","Priceline", "ABC Travel", "Low & Lo Travel"};
private String[] corporateStrings = ("Choose a corporate

type","Government", "Standard Corporate", "Morgan Stanley"};
private String[] ccStrings = {"Choose a credit card","VISA",

"Mastercard", "Amex"};

JButton jb11;
JButton jbl2;
JButton jbl3;

JButton jbl4;
JButton jbl5;

JButton jb7l;

JButton jb72;

JButton jb73;

JButton jb74;
JButton jb75;

protected JTextField lastname;
protected JTextField firstname;
protected JTextField creditcard;
protected JTextField ccexp;
protected JTextField id;
protected JTextPane address;
private String inlastname;
private String infirstname;
private String increditcard;
private String in_id;
private String inaddress;

public javax.swing.Timer timer;
private final int clockPeriod = 1000; // ms

JPanel contentPane;

Box vert;

public RegistrationGUI(final RegistrationDrone rd) {

// effects: Initializes the application window

// Title bar

super("Hotel Management System");

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
rd.stopDrone();

}
});

220

//Create main vertical box
vert = Box.createVerticalBox(;

//Create the menubar
JMenuBar menuBar = new JMenuBar();
addMenus(menuBar,rd);
setJMenuBar(menuBar);

// Create a horizontal panel 1
Box horiz = Box.createHorizontalBox(;
horiz.add(Box.createRigidArea(new Dimension(15,15)));
jb11 = new JButton();
jbll.setText("New Guest");
horiz.add(jbll);
horiz.add(Box.createRigidArea(new Dimension(15,15)));

jbl2 = new JButton(;
jbl2.setText("Previous Guest");
horiz.add(jbl2);
horiz.add(Box.createRigidArea(new

jb13 = new JButton();
jbl3.setText("New Reservation");
horiz.add(jb13);
horiz.add(Box.createRigidArea(new

Dimension(15,15)));

Dimension(15,15)));

jb14 = new JButton(;
jbl4.setText("Previous Reservation");
horiz.add(jbl4);
horiz.add(Box.createRigidArea(new Dimension(250,15)));

// Create a horizontal panel 2
Box horiz2 = Box.createHorizontalBox(;
JLabel labell = new JLabel("Last Name:");
lastname = new JTextField(20);
JLabel label2 = new JLabel("First Name:");
firstname = new JTextField(20);

.add(Box.createRigidArea(new

.add(Box.createGlue());

.add(labell);

.add(Box.createGlue());

.add(Box.createRigidArea(new

.add(Box.createGlue();

.add(lastname);

.add(Box.createGlue();

.add(Box.createRigidArea(new

.add(Box.createGlue());

.add(label2);

.add(Box.createGlue());

.add(Box.createRigidArea(new

.add(Box.createGlue));

.add(firstname);

.add(Box.createGlue());

.add(Box.createRigidArea(new

.add(Box.createGlue());

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2

221

// Create a horizontal panel 3
Box horiz3 = Box.createHorizontalBox(;
JLabel label3 = new JLabel("Credit Card:");
final JComboBox ccList = new JComboBox(ccStrings);
JLabel label3b = new JLabel("Exp:");
ccexp = new JTextField(8);
JLabel label3c = new JLabel("#:");
creditcard = new JTextField(20);

horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(label3);
horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(ccList);
horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(label3c);
horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(creditcard);
horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(label3b);
horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(ccexp);
horiz3.add(Box.createRigidArea(new Dimension(15,15)));

// Create a horizontal panel 3b
Box horiz3b = Box.createHorizontalBox(;
JLabel label4 = new JLabel("Identification Number:");
id = new JTextField(20);
horiz3b.add(Box.createRigidArea(new Dimension(15,15)));
horiz3b.add(label4);
horiz3b.add(Box.createRigidArea(new Dimension(15,15)));
horiz3b.add(id);
horiz3b.add(Box.createRigidArea(new Dimension(15,15)));

// Create a horizontal panel 4
Box horiz4 = Box.createHorizontalBox();
JLabel label5 = new JLabel("Address:");
horiz4.add(Box.createRigidArea(new Dimension(15,15)));
horiz4.add(label5);
horiz4.add(Box.createGlue());
horiz4.add(Box.createRigidArea(new Dimension(300,1)));
horiz4.add(Box.createGlue));

// Create a horizontal panel 5
Box horiz5 = Box.createHorizontalBox();
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsd = new DefaultStyledDocument();
//Create the text pane and configure it
address = new JTextPane(lsd);
// Place in JScrollPane
JScrollPane sp = new JScrollPane(address);
horiz5.add(Box.createRigidArea(new Dimension(15,200)));
horiz5.add(sp);
horiz5.add(Box.createRigidArea(new Dimension(15,200)));

222

// Create a horizontal panel 6
Box horiz6 = Box.createHorizontalBox(;

horiz6.add(Box.createRigidArea(new Dimension(15,15)));
horiz6.add(new JLabel("Travel agency: "));
horiz6.add(Box.createRigidArea(new Dimension(15,15)));

final JComboBox agencyList = new JComboBox(agencyStrings);
agencyList.setSelectedIndex(0);
horiz6.add(agencyList);
horiz6.add(Box.createRigidArea(new Dimension(15,15)));

// Create a horizontal panel 6b
Box horiz6b = Box.createHorizontalBox(;

horiz6b.add(Box.createRigidArea(new Dimension(15,15)));
horiz6b.add(new JLabel("Corporate class: "));
horiz6b.add(Box.createRigidArea(new Dimension(15,15)));
final JComboBox corporateList = new JComboBox(corporateStrings);
corporateList .setSelectedIndex(0);
horiz6b.add(corporateList);
horiz6b.add(Box.createRigidArea(new Dimension(15,15)));

// Create a horizontal panel 7
Box horiz7 = Box.createHorizontalBox(;
horiz7.add(Box.createGlue());
horiz7.add(Box.createRigidArea(new Dimension
jb7l = new JButton(;
jb7l.setText("Submit");
horiz7.add(jb7l);
horiz7.add(Box.createGlue());
horiz7. add (Box. createRigidArea (new Dimension

// Create a vertical panel
vert.add(horiz);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz2);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz3);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz3b);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();
vert.add(horiz4);
vert.add(Box.createGlue());

(15,15)));

(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

223

vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz5);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();
vert.add(horiz6);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz6b);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();
vert.add(horiz7);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(800, 600));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Create Timer
eventListener = new TimerEventListener(;
timer = new javax.swing.Timer(clockPeriod,
timer.start();

eventListener);

//Set ActionListeners
jb7l.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
inid=id.getText();
increditcard=creditcard.getText();
infirstname=firstname.getText(;
inlastname=lastname.getText(;
inaddress=address.getText();
rd.registerUser(new RegistrationEntry(in_lastname, infirstname,

increditcard, in_id, in-address, readFingerPrint()));

}
});

protected void addMenus(JMenuBar menuBar, final RegistrationDrone rd) {
// modifies: menuBar
// effects: adds the File menu to menuBar and creates Defaults popup

menu for gizmo palette

224

JMenu menu = new JMenu("File");
menu.setMnemonic(KeyEvent.VKF);
final JMenuItem menuItemR = new JMenuItem("Run", KeyEvent.VKR);
menuItemR.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKR,

ActionEvent.CTRLMASK));

final JMenuItem menuItemS = new JMenuItem("Stop", KeyEvent.VKT);
menuItemS.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKT,

ActionEvent.CTRLMASK));

final JMenuItem menuItemSv = new JMenuItem("Save", KeyEvent.VKS);
menuItemSv.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKS,

ActionEvent.CTRLMASK));

final JMenuItem menuItemL = new JMenuItem("Load", KeyEvent.VKL);
menuItemL.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKO,

ActionEvent.CTRLMASK));

final JMenuItem menuItemC = new JMenuItem("Init", KeyEvent.VK C);
menuItemC.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKC,

ActionEvent.CTRLMASK));

final JMenultem menuItemX = new JMenuItem("Exit", KeyEvent.VKX);
menuItemX.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKQ,

ActionEvent.CTRLMASK));

// listener for Run
menuItemR.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
menuItemR.setEnabled(false);
menuItemS.setEnabled(true);
menuItemSv.setEnabled(false);
menuItemL.setEnabled(false);
menuItemC.setEnabled(false);
timer.start(;)

}
});
menu.add(menuItemR);

// listener for Stop
menuItemS.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
menuItemR.setEnabled(true);
menuItemS.setEnabled(false);
menuItemSv.setEnabled(true);
menuItemL.setEnabled(true);
menuItemC.setEnabled(true);
timer.stop();

}

menuItemS.setEnabled(false);
menu.add(menuItemS);

// listener for Save
menuItemSv.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

}

menu. add (menultemSv);

225

// listener for Load
menuItemL.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
}

});
menu.add(menuItemL);
menu.add(menuItemC);
menu.addSeparator();

// listener for Exit
menuItemX.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
rd.stopDrone(;

}

menu.add(menuItemX);

JMenu menu2 = new JMenu("Commands");
menu2.setMnemonic(KeyEvent.VKC);

final JMenuItem menuItemRE = new JMenuItem("Reminders",
KeyEvent.VKE);

menuItemRE.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKE,
ActionEvent.CTRLMASK));

menu2.add(menuItemRE);

final JMenuItem menuItemB = new JMenuItem("Balance", KeyEvent.VKB);
menuItemB.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKB,

ActionEvent.CTRLMASK));

menu2.add(menuItemRE);

menuBar.add(menu);

menuBar.add(menu2);

}

public byte[] readFingerPrint() {
//Make fake fingerprint image for now
byte[] b=new byte[1024*50];
for (int i=O;i<1024*50;i++) {
if (i%2==O)
b[i]=0;

else
b[i]=1;

if (i<infirstname.length()
b[i]=(byte)in-firstname.charAt(i);

}

}
return b;

class TimerEventListener implements KeyListener, ActionListener {
// overview: TimerEventListener is an inner class that responds to all

sorts of
// external events.

int count=O;

226

10.2.2 Class gui.ChatGUI
package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import drone.anywhere.*;
import common.*;

public class ChatGUI extends JFrame {

public JTextPane reply;
public String inreply="";

public JTextPane message;
public String in-message="";
public JPanel contentPane;
public Box vert;
private javax.swing.Timer timer;
private final int clockPeriod = 5000; // ms
private TimerEventListener eventListener;

public ChatGUI(final ChatDrone md, String title) {

// effects: Initializes the application window
// Title bar

super(title);

227

public void keyPressed(KeyEvent e) {
int keynum = e.getKeyCode(;

}
public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) { }

public void actionPerformed(ActionEvent e) {

}
}

}

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
md.stopDrone);

}
});

//Create main vertical box
vert = Box.createVerticalBox();

// Create a horizontal panel 1
Box horizl = Box.createHorizontalBox(;
JLabel labell = new JLabel("Incoming Message:");
horizl.add(labell);
horizl.add(Box.createGlue());
horizl.add(Box.createRigidArea(new Dimension(100,1)));
horizl.add(Box.createGlue();

// Create a horizontal panel 2
Box horiz2 = Box.createHorizontalBox(;
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsdl = new DefaultStyledDocument();
//Create the text pane and configure it
message = new JTextPane(lsdl);
// Place in JScrollPane
JScrollPane spl = new JScrollPane(message);
horiz2.add(Box.createRigidArea(new Dimension(15,100)));
horiz2.add(spl);
horiz2.add(Box.createRigidArea(new Dimension(15,100)));

// Create a horizontal panel 3
Box horiz3 = Box.createHorizontalBox();
JLabel label3 = new JLabel("Reply: ");
horiz3.add(label3);
horiz3.add(Box.createGlue());
horiz3.add(Box.createRigidArea(new Dimension(100,1)));
horiz3.add(Box.createGlue());

// Create a horizontal panel 4
Box horiz4 = Box.createHorizontalBox(;
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsd2 = new DefaultStyledDocument();
//Create the text pane and configure it
reply = new JTextPane(lsd2);
// Place in JScrollPane
JScrollPane sp2 = new JScrollPane(reply);
horiz4.add(Box.createRigidArea(new Dimension(15,100)));
horiz4.add(sp2);
horiz4.add(Box.createRigidArea(new Dimension(15,100)));

// Create a vertical panel
vert.add(horizl);
vert.add(Box.createGlueofl;
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());

228

vert.add(horiz2);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue();
vert.add(horiz3);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue));
vert.add(horiz4);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(400, 400));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Create Timer
eventListener = new TimerEventListener(md);
timer = new javax.swing.Timer(clockPeriod, eventListener);
timer.start();

}

class TimerEventListener implements KeyListener, ActionListener {
// overview: TimerEventListener is an inner class that responds to all

sorts of
// external events.
int count=0;
String lastmessage="";

public final ChatDrone md;

public TimerEventListener(ChatDrone c) {
super();
md=c;

}

public void keyPressed(KeyEvent e) {
int keynum = e.getKeyCode(;

}
public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) { }

public void actionPerformed(ActionEvent e) {
if (!lastmessage.equals(inreply)) {
md.sendReply(inreply);
lastmessage=in-reply;

message.setText(inmessage);
inreply=reply.getText();

}
}

229

}

10.2.3 Class gui.MessagingGUI
package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import drone.anywhere.agent.*;
import common.*;

public class MessagingGUI extends JFrame {

public JButton jbll;
public JButton jb12;
public JTextPane reply;
public String in-reply;
public JTextPane message;
public String in-message="';
public JPanel contentPane;
public Box vert;
public javax.swing.Timer timer;
private final int clockPeriod = 1000; // ms
private TimerEventListener eventListener;
private String uid;
public boolean chatMode=false;
final MessagingAgentDrone md;

public MessagingGUI(final MessagingAgentDrone md, final String uid,
String title) {

// effects: Initializes the application window
// Title bar

super(title);

this.md=md;
this.uid=uid;

230

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
md.closeWindow(uid);

}
});

//Create main vertical box
vert = Box.createVerticalBox(;

// Create a horizontal panel 1
Box horizl = Box.createHorizontalBox(;
JLabel labell = new JLabel("Incoming Message:");
horizl.add(labell);
horizl.add(Box.createGlue());

horizl.add(Box.createRigidArea(new Dimension(100,1)));
horizl.add(Box.createGlue());

// Create a horizontal panel 2
Box horiz2 = Box.createHorizontalBox(;
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsdl = new DefaultStyledDocument(;
//Create the text pane and configure it
message = new JTextPane(lsdl);
// Place in JScrollPane
JScrollPane spl = new JScrollPane(message);
horiz2.add(Box.createRigidArea(new Dimension(15,100)));
horiz2.add(spl);
horiz2.add(Box.createRigidArea(new Dimension(15,100)));

// Create a horizontal panel 3
Box horiz3 = Box.createHorizontalBox(;
JLabel label3 = new JLabel("Enter Message: ");
horiz3.add(label3);
horiz3.add(Box.createGlue();
horiz3.add(Box.createRigidArea(new Dimension(100,1)));
horiz3.add(Box.createGlue());

// Create a horizontal panel 4
Box horiz4 = Box.createHorizontalBox(;
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsd2 = new DefaultStyledDocument();
//Create the text pane and configure it
reply = new JTextPane(lsd2);
// Place in JScrollPane
JScrollPane sp2 = new JScrollPane(reply);
horiz4.add(Box.createRigidArea(new Dimension(15,100)));
horiz4.add(sp2);
horiz4.add(Box.createRigidArea(new Dimension(15,100)));

// Create a horizontal panel 5
Box horiz5 = Box.createHorizontalBox(;
jb11 = new JButton(;
jbll.setText("Send");
jbl2 = new JButton(;

231

jbl2.setText("Enable chat mode");
horiz5.add(jbll);
horiz5.add(Box.createGlue());
horiz5.add(jbl2);
horiz5.add(Box.createGlue();
horiz5.add(Box.createRigidArea(new Dimension(100,1)));

// Create a vertical panel
vert.add(horizl);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz2);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz3);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz4);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz5);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());

contentPane.setPreferredSize(new Dimension(400, 400));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Create Timer
eventListener = new TimerEventListenero;
timer = new javax.swing.Timer(clockPeriod, eventListener);
timer.start();

//Set ActionListeners
jbll.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent e)
inreply=reply.getText();
md.sendReply(inreply,uid);
if (!chatMode) {
reply.setText("");

}
}

});

jbl2.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent e)
chatMode=!chatMode;

{
{

{
{

232

if (chatMode) {
jbl2.setText ("Disable chat mode");
jb11.setText("");
} else {
jbl2.setText("Enable chat mode");
jbll.setText("Send Message");

}
}

}

class TimerEventListener implements KeyListener, ActionListener {
// overview: TimerEventListener is an inner class that responds to all

sorts of
// external events.

int count=O;
String out-message;

public void keyPressed(KeyEvent e) {
int keynum = e.getKeyCode(;
i

public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) { }

}

}

public void actionPerformed(ActionEvent e) {
message.setText(inmessage);
if (chatMode&&!reply.getText().equals(outjmessage))
md.sendReply(reply.getText(),uid);

}
outmessage=reply.getText(;

I

10.2.4 Class gui.MessagingManagerGUI

233

package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;

import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import drone.anywhere.agent.*;
import common.*;

public class MessagingManagerGUI extends JFrame {

public final JList jlist;
public JPanel contentPane;
public Box vert;

public MessagingManagerGUI(final MessagingAgentDrone md, String title,
ListModel lm) {

// effects: Initializes the application window
// Title bar

super(title);

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
md.stopDrone(;

}

//Create main vertical box
vert = Box.createVerticalBox);

// Create a horizontal panel 1
Box horizl = Box.createHorizontalBox(;
jlist=new JList(lm);
horizl.add(Box.createRigidArea(new Dimension(15,100)));
horizl.add(jlist);
horizl.add(Box.createRigidArea(new Dimension(15,100)));

// Create a vertical panel
vert.add(Box.createGlue));
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());
vert.add(horizl);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(400, 400));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Set ActionListeners
MouseListener mouseListener = new MouseAdapter() {

234

public void mouseClicked(MouseEvent e) {
if (e.getClickCount() == 2) {

int index = jlist.locationToIndex(e.getPoint());
System.out.println("Double clicked on Item + index);
md.openMessageSession(index);

}
}

};
jlist.addMouseListener(mouseListener);

}

10.2.5 Class gui.LogOnGUI

package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import drone.anywhere.*;
import common.*;

public class LogOnGUI extends JFrame {

public JButton jbll;
protected JTextField firstname;
public JPanel contentPane;
public Box vert;
public JLabel error;

public LogOnGUI(final UserDrone md, String title) {

// effects: Initializes the application window
// Title bar

super(title);

// respond to the window system asking us to quit
addWindowListener (new WindowAdapter() {
public void windowClosing(WindowEvent e) {

235

md.stopDrone();

}

//Create main vertical box
vert = Box.createVerticalBox();

// Create a horizontal panel 1
Box horizl = Box.createHorizontalBox(;
JLabel labell = new JLabel("Please enter your fingerprint

for now...):");
horizl.add(Box.createRigidArea(new Dimension(15,1)));
horizl.add(labell);
horizl.add(Box.createRigidArea(new Dimension(100,1)));

// Create a horizontal panel 2
firstname = new JTextField(20);
Box horiz2 = Box.createHorizontalBox(;
horiz2.add(Box.createRigidArea(new Dimension(15,1)));
horiz2.add(firstname);
horiz2.add(Box.createRigidArea(new Dimension(100,1)));

// Create a horizontal panel 5
Box horiz5 = Box.createHorizontalBox(;
jb11 = new JButton(;
jbll.setText("Send");
horiz5.add(jbll);
horiz5.add(Box.createRigidArea(new Dimension

(First Name

(100,1)));

// Create a horizontal panel 6
Box horiz6 = Box.createHorizontalBox);
error = new JLabel("");
horiz6.add(Box.createRigidArea(new Dimension(15,1)));

horiz6.add(error);
horiz6.add(Box.createRigidArea(new Dimension(100,1)));

// Create a vertical panel
vert.add(horizl);

vert.add(Box.createGlue());
vert.add(Box.createRigidArea
vert.add(Box.createGlue));
vert.add(horiz2);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea
vert.add(Box.createGlue();
vert.add(horiz5);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea
vert.add(Box.createGlue());
vert.add(horiz6);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea
vert.add(Box.createGlue());

(new Dimension(15,15)));

(new Dimension(15,15)));

(new Dimension(15,15)));

(new Dimension(15,15)));

//Lay out the content pane.

236

contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(350, 200));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Set ActionListeners
jbll.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
md.sendLogOnAttempt(readFingerPrint());

}

public byte[] readFingerPrint() {
//Make fake fingerprint image for now
String infirstname=firstname.getText();
System.out.println("First Name: "+in firstname+"*");

byte[] b=new byte[1024*50];
for (int i=0;i<1024*50;i++) {
if (i%2==0)
b[i]=0;

else
b[i]=1;

if (i<infirstname.length()
b[i]=(byte)infirstname.charAt(i);

}

}
return b;

I

10.2.6 Class gui.ScheduleGUI
package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import javax.swing.table.*;

import drone.anywhere.*;

237

import drone.droneEntry.*;
import common.*;

public class ScheduleGUI extends JFrame {

protected JLabel statusBar;
protected JProgressBar progressBar;
private JPopupMenu Popup;

private JTextPane textPane;
private TimerEventListener eventListener;

JButton jbll;
JButton jbl2;
JButton jbl3;

JButton jbl4;

JButton jb15;

JButton jb7l;

JButton jb72;

JButton jb73;

JButton jb74;
JButton jb75;

protected JTextField lastname;
protected JTextField firstname;
protected JTextField creditcard;
protected JTextField ccexp;
protected JTextField id;
protected JTextPane address;
private String inlastname;
private String infirstname;
private String increditcard;
private String in_id;
private String inaddress;

public final JTable table;
public javax.swing.Timer timer;
private final int clockPeriod = 1000; // ms

JPanel contentPane;

Box vert;

public ScheduleGUI(final ScheduleDrone rd, final TableModel tm) {

// effects: Initializes the application window
// Title bar

super("Scheduling Information");

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
rd.stopDrone();
}

238

});

//Create main vertical box
vert = Box.createVerticalBox();

//Create the menubar
JMenuBar menuBar = new JMenuBar();
addMenus(menuBar,rd);
setJMenuBar(menuBar);

// Create a horizontal panel 1
Box horiz = Box.createHorizontalBox(;
horiz.add(Box.createRigidArea(new Dimension(15,15)));
jb11 = new JButton();
jbll.setText("Summary View");
horiz.add(jbll);
horiz.add(Box.createRigidArea(new Dimension(15,15)));

jbl2 = new JButton();
jbl2.setText ("Daily Calendar");
horiz.add(jbl2);
horiz.add(Box.createRigidArea(new

jb13 = new JButton();
jbl3.setText("Monthly Calendar");
horiz.add(jbl3);
horiz.add(Box.createRigidArea(new

Dimension(15,15)));

Dimension(15,15)));

// Create a horizontal panel 2
Box horiz2 = Box.createHorizontalBoxo;
JLabel labell = new JLabel("Last Name:");
lastname = new JTextField(20);
lastname.setText(rd.registrationEntry.lastname+"");
JLabel label2 = new JLabel("First Name:");
firstname = new JTextField(20);
firstname.setText(rd.registrationEntry.firstname+"");

horiz2.add(Box.createRigidArea
horiz2.add(Box.createGlue();
horiz2.add(labell);
horiz2.add(Box.createGlue();
horiz2.add(Box.createRigidArea
horiz2.add(Box.createGlue();
horiz2.add(lastname);
horiz2.add(Box.createGlue();
horiz2.add(Box.createRigidArea
horiz2.add(Box.createGlue());
horiz2.add(label2);
horiz2.add(Box.createGlue());
horiz2.add(Box.createRigidArea
horiz2.add(Box.createGlue());
horiz2.add(firstname);
horiz2.add(Box.createGlue());
horiz2.add(Box.createRigidArea
horiz2.add(Box.createGlue());

(new Dimension(15,15)));

(new Dimension(15,15)));

(new Dimension(15,15)));

(new Dimension(15,15)));

(new Dimension(15,15)));

// Create a horizontal panel 3

239

Box horiz3 = Box.createHorizontalBox();

JLabel label5 = new JLabel("Address:");
horiz3.add(Box.createRigidArea(new Dimension
horiz3.add(label5);
horiz3.add(Box.createGlue());
horiz3.add(Box.createRigidArea(new Dimension
horiz3.add(Box.createGlue();

(15,15)));

(300,1)));

// Create a horizontal panel 4

Box horiz4 = Box.createHorizontalBox();
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsd = new DefaultStyledDocument();
//Create the text pane and configure it
address = new JTextPane(lsd);
address.setText (rd.registrationEntry.address+"");
// Place in JScrollPane
JScrollPane sp = new JScrollPane(address);
horiz4.add(Box.createRigidArea(new Dimension(15,200)));
horiz4.add(sp);
horiz4.add(Box.createRigidArea(new Dimension(15,200)));

// Create a horizontal panel 5
Box horiz5 = Box.createHorizontalBox(;

table = new JTable(tm);
table.setPreferredScrollableViewportSize(new Dimension
//Create the scroll pane and add the table to it.
JScrollPane scrollPane = new JScrollPane(table);
horiz5.add(Box.createRigidArea(new Dimension(15,15)));
horiz5.add(scrollPane);
horiz5.add(Box.createRigidArea(new Dimension(15,15)));

// Create a vertical panel
vert.add(horiz);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());

vert.add(horiz2);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz3);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz4);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();
vert.add(horiz5);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();

(500, 170));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

240

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(800, 600));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Create Timer
eventListener = new TimerEventListener);
timer = new javax.swing.Timer(clockPeriod, eventListener);
timer.start();

//Set ActionListeners
MouseListener mouseListener = new MouseAdapter() {
public void mouseClicked(MouseEvent e) {
if (e.getClickCount() == 2) {

int index = table.getSelectedRow(;
System.out.println("Double clicked on Row " + index);
rd.openScheduleSession(index);

}
}

};
table.addMouseListener(mouseListener);

}

protected void addMenus(JMenuBar menuBar, final ScheduleDrone rd) {
// modifies: menuBar
// effects: adds the File menu to menuBar and creates Defaults popup

menu for gizmo palette

JMenu menu = new JMenu("File");
menu.setMnemonic(KeyEvent.VKF);
final JMenuItem menuItemR = new JMenuItem("Run", KeyEvent.VKR);
menuItemR.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKR,

ActionEvent.CTRLMASK));
final JMenuItem menuItemS = new JMenuItem("Stop", KeyEvent.VKT);
menuItemS.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKT,

ActionEvent.CTRLMASK));
final JMenuItem menuItemSv = new JMenuItem("Save", KeyEvent.VK_S);
menuItemSv.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKS,

ActionEvent.CTRLMASK));
final JMenuItem menuItemL = new JMenuItem("Load", KeyEvent.VKL);
menuItemL.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKO,

ActionEvent.CTRLMASK));
final JMenuItem menuItemC = new JMenuItem("Init", KeyEvent.VKC);
menuItemC.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKC,

ActionEvent.CTRLMASK));
final JMenuItem menuItemX = new JMenultem("Exit", KeyEvent.VKX);
menuItemX.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKQ,

ActionEvent.CTRLMASK));

241

// listener for Run
menuItemR.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
menuItemR.setEnabled(false);
menuItemS.setEnabled(true);
menuItemSv.setEnabled(false);
menuItemL.setEnabled(false);
menuItemC.setEnabled(false);
timer.start(;

});
menu.add(menuItemR);

// listener for Stop
menuItemS.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
menuItemR.setEnabled(true);
menuItemS.setEnabled(false);
menuItemSv.setEnabled(true);

menuItemL.setEnabled(true);

menuItemC.setEnabled(true);
timer.stop(;

}
});
menuItemS.setEnabled(false);
menu.add(menuItemS);

// listener for Save
menuItemSv.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

}
I);
menu.add(menuItemSv);

// listener for Load
menuItemL.addActionListener(new ActionListener().{
public void actionPerformed(ActionEvent e) {
}

});
menu.add(menuItemL);
menu.add(menultemC);
menu.addSeparator();

// listener for Exit
menuItemX.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
rd.stopDrone(;

}
});
menu.add(menuItemX);

JMenu menu2 = new JMenu("Commands");
menu2.setMnemonic(KeyEvent.VKC);

242

final JMenuItem menuItemRE = new JMenuItem("Reminders",

KeyEvent.VKE);

menuItemRE.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKE,
ActionEvent.CTRLMASK));

menu2.add(menuItemRE);
final JMenuItem menuItemB = new JMenuItem("Balance", KeyEvent.VKB);
menuItemB.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKB,

ActionEvent.CTRLMASK));

menu2.add(menuItemRE);

menuBar.add(menu);

menuBar.add(menu2);

}

public byte[] readFingerPrint() {
//Make fake fingerprint image for now
byte[] b=new byte[1024*50];
for (int i=0;i<l024*50;i++) {
if (i%2==0)
b[i]=0;

else
b[i]=1;

if (i<infirstname.length() {
b[i]=(byte)in-firstname.charAt(i);

}

}
return b;

}

class TimerEventListener implements KeyListener, ActionListener {
// overview: TimerEventListener is an inner class that responds to all

sorts of
// external events.
int count=0;

public void keyPressed(KeyEvent e) {
int keynum = e.getKeyCode();

i

public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) { }

public void actionPerformed(ActionEvent e) {

}
}

}

243

10.2.7 Class gui.ScheduleChooseTargetGUI

package gui;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import drone.anywhere.agent.*;
import drone.anywhere.*;
import common.*;

public class ScheduleChooseTargetGUI extends JFrame {

public final JList jlist;
public JPanel contentPane;
public Box vert;

public ScheduleChooseTargetGUI(final ScheduleDrone md, String title,
ListModel lm, final int time) {

// effects: Initializes the application window
// Title bar

super(title);

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
}

});

//Create main vertical box
vert = Box.createVerticalBox);

// Create a horizontal panel 1
Box horizl = Box.createHorizontalBox();
jlist=new JList(lm);
horizl.add(Box.createRigidArea(new Dimension(15,100)));
horizl.add(jlist);
horizl.add(Box.createRigidArea(new Dimension(15,100)));

// Create a vertical panel
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());
vert.add(horizl);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());

244

10.2.8 Class gui.BillingGUI
package gui;

import java.util.*;
import java.awt.*;

import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.anywhere.*;
import drone.droneEntry.*;
import common.*;

public class BillingGUI extends JFrame {

protected JLabel statusBar;
protected JProgressBar progressBar;
private JPopupMenu Popup;
private JTextPane textPane;
private TimerEventListener eventListener;
private String[] agencyStrings = {"Choose a travel

agency","Priceline", "ABC Travel", "Low & Lo Travel"};

245

//Lay out the content pane.
contentPane = new JPanel();
contentPane. setLayout (new BorderLayout());

contentPane.setPreferredSize(new Dimension(400, 400));
contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Set ActionListeners
MouseListener mouseListener = new MouseAdapter() {
public void mouseClicked(MouseEvent e) {
if (e.getClickCount() == 2) {

int index = jlist.locationToIndex(e.getPoint());
System.out.println("Double clicked on Item " + index);
md.setSchedule(time,index);

}

}
};
j list .addMouseListener (mouseListener);

}

}

private String[] corporateStrings = {"Choose a corporate
type","Government", "Standard Corporate", "Morgan Stanley"};

private String[] ccStrings {"Choose a credit card","VISA",
"Mastercard", "Amex"};

JButton jb11;
JButton jb12;
JButton jb13;
JButton jbl4;
JButton jb15;

JButton jb7l;

JButton jb72;
JButton jb73;
JButton jb74;
JButton jb75;

protected JTextField lastname;
protected JTextField firstname;
protected JTextField creditcard;
protected JTextField ccexp;
protected JTextField id;
protected JTextPane address;
private String inlastname;
private String infirstname;
private String increditcard;
private String in_id;
private String inaddress;

public javax.swing.Timer timer;
private final int clockPeriod = 1000; // ms

JPanel contentPane;

Box vert;

public BillingGUI(final BillingDrone rd) {

// effects: Initializes the application window
// Title bar

super("Billing Information");

// respond to the window system asking us to quit
addWindowListener (new WindowAdapter() {
public void windowClosing(WindowEvent e) {
rd.stopDrone();

}

//Create main vertical box
vert = Box.createVerticalBox(;

//Create the menubar
JMenuBar menuBar = new JMenuBar();

246

addMenus(menuBar,rd);
setJMenuBar(menuBar);

// Create a horizontal panel 1

Box horiz = Box.createHorizontalBox();
horiz.add(Box.createRigidArea(new Dimension(15,15)));
jb11 = new JButton();
jbll.setText("Summary View");
horiz.add(jbll);
horiz.add(Box.createRigidArea(new Dimension(15,15)));

jbl2 = new JButton(;
jbl2.setText("Room Charges");
horiz.add(jbl2);
horiz.add(Box.createRigidArea(new Dimension(15,15)));

jb13 = new JButton(;
jbl3.setText("Restaurant Charges");
horiz.add(jbl3);
horiz.add(Box.createRigidArea(new Dimension(15,15)));

jb14 = new JButton(;
jbl4.setText("Other Charges");
horiz.add(jbl4);
horiz.add(Box.createRigidArea(new Dimension(250,15)));

// Create a horizontal panel 2
Box horiz2 = Box.createHorizontalBox);
JLabel labell = new JLabel("Last Name:");
lastname = new JTextField(20);
lastname.setText (rd.registrationEntry.lastname+"");
JLabel label2 = new JLabel("First Name:");
firstname = new JTextField(20);
firstname.setText (rd.registrationEntry. firstname+"");

.add(Box.createRigidArea(new

.add(Box.createGlue());

.add(labell);

.add(Box.createGlue));

.add(Box.createRigidArea(new

.add(Box.createGlue());

.add(lastname);

.add(Box.createGlue());

.add(Box.createRigidArea(new

.add(Box.createGlue());

.add(label2);

.add(Box.createGlue());

.add(Box.createRigidArea(new

.add(Box.createGlue();

.add(firstname);

.add(Box.createGlue());

.add(Box.createRigidArea(new

.add(Box.createGlue());

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

// Create a horizontal panel 3
Box horiz3 = Box.createHorizontalBox();

247

horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2
horiz2

JLabel label5 = new JLabel("Address:");
horiz3.add(Box.createRigidArea(new Dimension(15,15)));
horiz3.add(label5);
horiz3.add(Box.createGlue();
horiz3.add(Box.createRigidArea(new Dimension(300,1)));

horiz3.add(Box.createGlue());

// Create a horizontal panel 4
Box horiz4 = Box.createHorizontalBox(;
// Set up JScrollPane
//Create the document for the text area
DefaultStyledDocument lsd = new DefaultStyledDocument(;
//Create the text pane and configure it
address = new JTextPane(lsd);
address.setText (rd.registrationEntry.address+"");
// Place in JScrollPane
JScrollPane sp = new JScrollPane(address);
horiz4.add(Box.createRigidArea(new Dimension(15,200)));
horiz4.add(sp);
horiz4.add(Box.createRigidArea(new Dimension(15,200)));

// Create a horizontal panel 5
Box horiz5 = Box.createHorizontalBox);
Object[][] data = {

{"06/06/01", "9:00AM", "Room charge", new Double(100.00), ""},
{"06/06/01", "12:30PM", "Restaurant Buffet", new Double(15.00),

"Coupon promotion"},
{"06/07/01", "9:00AM", "Room charge", new Double(100.00), ""},

{"06/07/01", "12:30PM", "Restaurant Buffet", new Double(15.00),

"Coupon promotion"},
{"06/07/01", "5:30PM", "Telephone charge", new Double(4.15), "516-

442-5353"1 };
String[] columnNames = {"Date", "Time", "Transcation", "Charge",

"Comments"};
final JTable table = new JTable(data, columnNames);
table.setPreferredScrollableViewportSize(new Dimension(500, 70));

//Create the scroll pane and add the table to it.

JScrollPane scrollPane = new JScrollPane(table);
horiz5.add(Box.createRigidArea(new Dimension(15,15)));
horiz5.add(scrollPane);
horiz5.add(Box.createRigidArea (new Dimension(15,15)));

// Create a vertical panel
vert.add(horiz);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());
vert.add(horiz2);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue));
vert.add(horiz3);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());

248

vert.add(horiz4);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());
vert.add(horiz5);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea(new Dimension(15,15)));
vert.add(Box.createGlue());

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(800, 600));

contentPane.add(vert,BorderLayout.NORTH);
setContentPane(contentPane);

//Create Timer
eventListener = new TimerEventListenero;
timer = new javax.swing.Timer(clockPeriod, eventListener);
timer.start();

}

protected void addMenus(JMenuBar menuBar, final BillingDrone rd) {
// modifies: menuBar
// effects: adds the File menu to menuBar and creates Defaults popup

menu for gizmo palette

JMenu menu = new JMenu("File");
menu.setMnemonic(KeyEvent.VKF);
final JMenuItem menuItemR = new JMenuItem("Run", KeyEvent.VKR);
menuItemR.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKR,

ActionEvent.CTRLMASK));
final JMenuItem menuItemS = new JMenuItem("Stop", KeyEvent.VKT);
menuItemS.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKT,

ActionEvent.CTRLMASK));
final JMenuItem menuItemSv = new JMenuItem("Save", KeyEvent.VKS);

menuItemSv.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKS,
ActionEvent.CTRLMASK));
final JMenuItem menuItemL = new JMenuItem("Load", KeyEvent.VKL);
menuItemL.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKO,

ActionEvent.CTRLMASK));
final JMenuItem menuItemC = new JMenuItem("Init", KeyEvent.VKC);
menuItemC.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKC,

ActionEvent.CTRLMASK));
final JMenuItem menuItemX = new JMenuItem("Exit", KeyEvent.VKX);

menuItemX.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKQ,
ActionEvent.CTRLMASK));

// listener for Run
menuItemR.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent e) {

249

menuItemR.setEnabled(false);
menuItemS.setEnabled(true);
menuItemSv.setEnabled(false);
menuItemL.setEnabled(false);
menuItemC.setEnabled(false);
timer.start();

}
I);
menu.add(menuItemR);

// listener for Stop
menuItemS.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
menuItemR.setEnabled(true);
menuItemS.setEnabled(false);
menuItemSv.setEnabled(true);
menuItemL.setEnabled(true);

menuItemC.setEnabled(true);
timer.stop();

}
});
menuItemS.setEnabled(false);
menu.add(menuItemS);

// listener for Save
menuItemSv.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

}
});
menu.add(menuItemSv);

// listener for Load
menuItemL.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
}

});
menu.add(menuItemL);
menu.add(menultemC);
menu.addSeparator();

// listener for Exit
menuItemX.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
rd.stopDrone();

}
I);
menu.add(menuItemX);

JMenu menu2 = new JMenu("Commands");
menu2.setMnemonic(KeyEvent.VKC);

final JMenuItem menuItemRE = new JMenuItem("Reminders",
KeyEvent.VKE);

menuItemRE.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKE,

ActionEvent.CTRLMASK));

250

menu2.add(menuItemRE);

final JMenuItem menuItemB = new JMenuItem("Balance", KeyEvent.VKB);
menuItemB.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VKB,

ActionEvent.CTRLMASK));

menu2.add(menuItemRE);

menuBar.add(menu);

menuBar.add(menu2);

}

public byte[] readFingerPrint() {
//Make fake fingerprint image for now
byte[] b=new byte[1024*50];
for (int i=0;i<1024*50;i++) {
if (i%2==0)
b[i]=0;

else
b[i]=1;

if (i<infirstname.length())
b[i]=(byte)in-firstname.charAt(i);

}

}
return b;

}

class TimerEventListener implements KeyListener, ActionListener {
// overview: TimerEventListener is an inner class that responds to all

sorts of
// external events.
int count=0;

public void keyPressed(KeyEvent e) {
int keynum = e.getKeyCode(;

i

public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) { }

public void actionPerformed(ActionEvent e) {

}
}

10.2.9 Class gui.UserGUI
package gui;

import java.util.*;
import java.awt.*;

251

import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.undo.*;
import drone.frontdesk.*;
import drone.droneEntry.*;
import drone.anywhere.*;
import common.*;

public class UserGUI extends JFrame {

public JButton jb11;
public JButton jbl2;
public JButton jbl3;
public JButton jb2l;
protected JTextField lastname;
public JPanel contentPane;
public Box vert;

public UserGUI(final UserDrone md, RegistrationEntry rd) {

// effects: Initializes the application window
// Title bar

super(rd.firstname+" "+rd.lastname);

// respond to the window system asking us to quit
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
md.LogOut(;
}

//Create main vertical box
vert = Box.createVerticalBox(;

// Create a horizontal panel 1
Box horizl = Box.createHorizontalBox();

JLabel labell = new JLabel("Welcome "+rd.firstname+"
"+rd. lastname+".");

horizl.add(Box.createRigidArea(new Dimension(15, 1)));
horizl.add(labell);
horizl.add(Box.createRigidArea(new Dimension(100,1)));

Box horiz2 = Box.createHorizontalBox();
JLabel label2 = new JLabel("Please choose your application or close

window to log out.");
horiz2.add(Box.createRigidArea(new Dimension(15,1)));
horiz2.add(label2);
horiz2.add(Box.createRigidArea(new Dimension(100,1)));

// Create a horizontal panel 3

252

Box horiz3 = Box.createHorizontalBox();
jb11 = new JButton();
jbll.setText("Instant Messaging");
horiz3.add(jbll);
horiz3.add(Box.createRigidArea(new Dimension(100,1)));

// Create a horizontal panel 3b
Box horiz3b = Box.createHorizontalBox(;
jb12 = new JButton();
jbl2.setText("Billing Information");
horiz3b.add(jbl2);
horiz3b.add(Box.createRigidArea(new Dimension(100,1)));

// Create a horizontal panel 3c
Box horiz3c = Box.createHorizontalBox(;
jb13 = new JButton();
jbl3.setText("Schedule Activities");
horiz3c.add(jbl3);
horiz3c.add(Box.createRigidArea(new Dimension(100,1)));

// Create a horizontal panel 4
Box horiz4 = Box.createHorizontalBox();
jb2l = new JButton(;
jb2l.setText("Log Out");
horiz4.add(jb2l);
horiz4.add(Box.createRigidArea(new Dimension(100,1)));

// Create a vertical panel
vert.add(horizl);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();
vert.add(horiz2);
vert.add(Box.createGlue();
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue();
vert.add(horiz3);
vert.add(Box.createGlue));
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz3b);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());
vert.add(horiz3c);
vert.add(Box.createGlue));
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue));
vert.add(horiz4);
vert.add(Box.createGlue());
vert.add(Box.createRigidArea(new
vert.add(Box.createGlue());

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

Dimension(15,15)));

253

//Lay out the content pane.
contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(350, 300));
contentPane.add(vert,BorderLayout.NORTH);

setContentPane(contentPane);

//Set ActionListeners
jbll.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
md.sendApplicationRequest (new Integer(7));

}
}) ;
jbl2.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent e)
md.sendApplicationRequest (new Integer(13)

}

{
{

jbl3 . addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) {
md.sendApplicationRequest (new Integer(5));

}
}) ;

jb21.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent e)
md.LogOut);

}) ;

{
{

}

}

10.3 Package common

10.3.1 Class common.Utilities
package common;

import java.io.*;
import java.util.*;
import java. text . SimpleDateFormat;

public class Utilities {

static String todaydate;

254

/ /******************** *UTILITIES ** * *** ** ** * *** ** ** ** ** ** ** ** *

/ /* ** * ** * ** *** * ** *** ***UTILTTIES** * ** *** * * **** ** * *** ** ** ** ** *

/ /** ** ** ** ** ** ** * *** * **UTILITTES** ** ** ** ** ** ** ** ** ** ** ** ** ** *

/ / ** * *** ** ** ** ** ** ** ***UTILITIES* *** ** ** ** ** ** ** ** ** ** ** ** ** *

/ /******************** *UTILITIE******** **********************

public static boolean isAnInt(char c) {
return

(c=='O' Ic=='1' I c=='2'lIc=='3' lc=='4'I|c=='5' Ic=='6'IIc=='7'IIc=='8'I
IC=='9');

1
public static String setdate() {

Calendar rightNow = Calendar.getInstance(;
int day=rightNow.get(Calendar.DAYOFMONTH);
int mth=rightNow.get(Calendar.MONTH)+l; //Somehow it is off by 1
int year=rightNow.get(Calendar.YEAR)-2000;
//System.out.println("The year is "+rightNow.get(Calendar.YEAR));
//System.out.println("The month is "+rightNow.get(Calendar.MONTH));
String ms=""+mth;
String ds=""+day;
String ys=""+year;
if (year<10) ys="O"+ys;
if (mth<10) ms="0"+ms;
if (day<10) ds="0"+ds;
todaydate=ys+ms+ds;
String line = (new

SimpleDateFormat("HH:mm")).format(rightNow.getTime());
return line;

}

public static int Power(int x, int n) {
if (n==0) {
return 1;

}
if (n==l) {
return x;

I
if (n%2==0) {
return Power(x*x, (int) n/2);

I
if (n%2==l) {
return x*Power(x*x, (int) (n-l)/2);

}
return 0;

public static double abs(double a) {
if (a<0) return -a; else return a;

}

public static int abs(int a) {
if (a<0) return -a; else return a;

}

public static String readln() {
InputStream ips=System.in;

255

char c=0;
String s="";
String s2="";

while (c!='\r'&&c!='\n'&&(s2=returnWord("input.txt",l)).equals(" ")) {
try {
if (ips.available()>O)
c=(char)ips.read();
if (c!='\r' && c!='\n') s=s+c;

}
}
catch (IOException e) {
}

}

try {
while (ips.available(>O) {
c=(char)ips.read();

}

catch (IOException e) {
}

if (!s2.equals(" ")) {
writeprintln(" ", "input.txt"); //Clear input file
println(s2)
return s2;

}

return s;

}

public static void pause() {
long tme=System.currentTimeMillis();
while (System.currentTimeMillis()-tme<5000) {
}

}

public static void pause(int s) {
long tme=System.currentTimeMillis(;
while (System.currentTimeMillis()-tme<s*1000) {
}

}

public static void pausems(int s) {
long tme=System.currentTimeMillis();
while (System.currentTimeMillis()-tme<s) {
}

public static String returnWord(String fn, int i){
String currentLine="";
try {

BufferedReader in = new BufferedReader(new FileReader("Logs/"+fn));
currentLine = in.readLine();
if (currentLine==null)

pause(l);

256

currentLine = in.readLine();

}
if (currentLine==null) {
pause(3);
currentLine = in.readLine(;
}

int count=1;
while(currentLine != null&&count<i)
currentLine = in.readLine(;
count++;

}
in.close();
I catch (Exception e) {
println("Exception in returnWord:"+e,"error.txt");

}

return currentLine;

}
public static void appendString(String s, String fn){
try {
OutputStreamWriter o = new FileWriter("Logs/"+fn, true);
o.write(s,O,s.length();
o.close(;

} catch (Exception e) {

}

public static void writeString(String s, String fn){
try {
OutputStreamWriter o = new FileWriter("Logs/"+fn, false);
o.write(s,O,s.length());
o.close(;

} catch (Exception e) {

}
}

public static void println(String s, String fn) {
appendString(s+"\r\n",fn);
appendString(s+"\r\n", "screenoutput.txt");
System.out.println(s);

}

public static void writeprintln(String s, String fn) {
appendString(s+" \r\n", "screenoutput.txt");
writeString(s+"\r\n",fn);
System.out.println(s);

}

public static void print(String s, String fn) {
appendString(s,fn);
appendString (s, "screenoutput. txt");
System.out.print(s);

257

public static void println(String s) {
appendString(s+"\r\n","screenoutput.txt");
System.out.println(s);

}

public static int max(int a, int b) {
if (a>b) return a;
return b;

}

public static int min(int a, int b) {
if (a>b) return b;
return a;

public static String getFirstChars(String s, int i) {
return s.substring(O,min(i,s.length()));

}

public static int numberOfMatchingChars(String a, String b) {
for (int i=O;i<min(a.length(,b.length();i++)
if (a.charAt(i)!=b.charAt(i)) return i;

}
return min(a.length(),b.length();

}

10.3.2 Class common.EventID
package common;

import java.rmi.MarshalledObject;

import java.io.*;

public abstract class EventID {

MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject
MarshalledObject

REFRESHENTRY;

DEATHENTRY;

QUEENENTRY;

HATCHERYENTRY;

AUTHREQUESTENTRY;

AUTHRESULTENTRY;

SCHEDULEENTRY;

USERENTRY;

DATABASEENTRY;

MESSAGEENTRY;

REGISTRATIONENTRY;

QUEENCREATEREQUESTENTRY;

final int Queen=O;
final int Hatchery=1;
final int Reader=2;
final int FingerPrint=3;

public
public
public
public
public
public
public
public
public
public
public
public

public
public
public
public

258

public final int Auth=4;
public final int Schedule=5;
public final int Registration=6;
public final int Messaging=7;

public final int Chat=8;
public final int User=9;
public final int King=10;

public final int MessagingManager=ll;
public final int AdminAgent=12;
public final int Billing=13;

public EventID() {
try {
REFRESHENTRY=new MarshalledObject(new Integer(1));
DEATHENTRY=new MarshalledObject(new Integer(2));
QUEENENTRY=new MarshalledObject(new Integer(3));
HATCHERYENTRY=new MarshalledObject (new Integer (4));
AUTHREQUESTENTRY=new MarshalledObject(new Integer(5));
AUTHRESULTENTRY=new MarshalledObject(new Integer(6));
SCHEDULEENTRY=new MarshalledObject (new Integer (7));
USERENTRY=new MarshalledObject(new Integer(8));
DATABASEENTRY=new MarshalledObject (new Integer (9));
MESSAGEENTRY=new MarshalledObject(new Integer(10));

QUEENCREATE_REQUESTENTRY=new MarshalledObject (new Integer (11));
REGISTRATIONENTRY=new MarshalledObject(new Integer(11));

} catch (Exception e) {
System.out.println("Exception in common.EventID: "+e);

}
}

}

10.3.3 Class common.FingerPrintConst
package common;

public interface FingerPrintConst {
public final int Approved = 0;

public final int Reject = 1;
public final int TooDark = 2;
public final int TooBright = 3;

}

259

10.3.4 Class common.AgentInterface

package common;

import java . rmi . Remote;
import java.util.Vector;
import net.jini.core.entry.Entry;

* AgentInterface.java
*/

public interface AgentInterface extends Remote {

public String sayHello() throws java.rmi.RemoteException;

} // AgentInterface

10.3.5 Class common.AdminAgentInterface

package common;

import java.rmi.Remote;
import java.util.Vector;
import net. j ii . core. entry. Entry;
import drone . droneEntry. *;

* AdminAgentInterface. java

public interface AdminAgentInterface extends AgentInterface {

public Vector getFriends() throws java.rmi.RemoteException;
public Integer[] getMessagingManager() throws

java.rmi.RemoteException;
public void setMessagingManager(Integer s, Integer p) throws

java.rmi.RemoteException;
public Object[][] getSchedule() throws java.rmi.RemoteException;
public void setSchedule(int time, String Act, RegistrationEntry

Entity) throws java.rmi.RemoteException;

) // AdminAgentInterface

10.3.6 Class common.MessagingAgentInterface

package common;

import java . rmi .Remote;
import java.util.Vector;
import net. j ii . core. entry. Entry;

260

import drone.droneEntry.*;

* MessagingAgentInterface.java
*/

public interface MessagingAgentInterface extends AgentInterface {

public void receiveMessage(String message, RegistrationEntry re)
throws java.rmi.RemoteException;

} // MessagingAgentInterface

10.4 Package guestApplications

10.4.1 Class guestApplications.Applications
package guestApplications;

public class Applications {

//This class will hold applications for hotel guests.

//An example of such applications is a Web Browser. Currently, our
preferred implementation is
//HotJava, developed by Sun Microsystems. HotJava is a lightweight,
highly customizable
//Web Browser that include customizability, extensibility, flexible
security model, SSL
//(Secure Sockets Layer) capability, and internationalization support.
Currently, Sun
//Microsystems is considering licensing HotJava either in a source code
form, or in a JavaBeans
//components form, and we are waiting for their decision. Some runnable
implementations of
//HotJava is currently as large as 3 Mbytes.

//Other examples of applications will be a word processing applications
and spreadsheet
//applications.

//Note that such applications will form a package seperate from the
Drone package. The
//distinction is in their size. Drones are meant to be a small (but

possibly computationally
//intensive) tasks that can be instantly created by a Queen at the
Hatchery, or be instantly
//destroyed by a Queen. For example, the largest (and perhaps) most
computationally intensive
//Drone is the AuthDrone, which performance fingerprint authentication.
Even so, the size of a
//typical size of the Java component of the SDK is usually small. For

261

the PreciseBiometrics SDK,

//the size is about 100 Kbytes, which is a reasonable size to pass
around the network infrequently.
//(There are some Windows Dynamic Linked Libraries (DLLs) that are not
included in this figure
// since they are not passed around the network.)

//There are, however, Drone applications meant for the use of hotel
guests. Examples include the
//AuthDrone, *****TO DO: ADD MORE EXAMPLES HERE

}

10.5 Corba

10.5.1 RoomBooking
Module corba {
module RoomBooking {

interface Meeting {

// A meeting has two read-only attributes which describes
// the purpose and the participants of that meeting.

readonly attribute string purpose;
readonly attribute string participants;

oneway void destroy();

interface MeetingFactory {

// A meeting factory creates meeting objects.

Meeting CreateMeeting(in string purpose, in string
participants);

// Meetings can be held between the usual business hours.
// For the sake of simplity there are 8 slots at which meetings
// can take place.

enum Slot { am9, aml0, amll, pml2, pml, pm2, pm3, pm4 };

// since IDL does not provide means to determine the cardinality
// of an enum, a corresponding constant MaxSlots is defined.

const short MaxSlots = 8;

exception NoMeetingInThisSlot {};

exception SlotAlreadyTaken {};

interface Room {

262

263

// A Room provides operations to view, make and cancel

bookings.
// Making a booking means associating a meeting with a time-

slot
// (for this particular room).

// Meetings associates all meetings (of a day) with time slots
// for a room.

typedef Meeting Meetings[MaxSlots];

// The attribute name names a room.

readonly attribute string name;

// View returns the bookings of a room.
// For simplicity, the implementation handles only bookings
// for one day.

Meetings View(;

void Book(in Slot a-slot, in Meeting a-meeting
raises(SlotAlreadyTaken);

void Cancel(in Slot aslot
raises(NoMeetingInThisSlot);

};
};

