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by
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Abstract

This thesis proposes the Lame Duck cache replacement policy, a LRU-based scheme
that accounts for effects of context switching on cache behavior. Context switch-
ing results in multiple working sets residing in cache simultaneously, given sufficient
cache sizes. Traditional LRU may evict cache lines belonging to the working set of a
previously scheduled process in preference to stale cache lines belonging to the cur-
rently running process. Such behavior results in the unnecessary eviction of active
cache lines in each process' working set. In order to reduce this pollution, Lame Duck
constrains the size of the cache footprint of the currently executing process part-way
through its time quantum. For the remainder of the time quantum, the process may
bring new data into the cache; however, a cache line belonging to the process is evicted
to make room for the new data.

Experiments show that Lame Duck and its variants can reduce cache pollution,
thereby mitigating cold start misses incurred after a process regains control of the
processor after a context switch. Lame Duck performance is heavily influenced by
workload characteristics, time quantum length, and cache size/associativity. This
thesis concludes with a general guideline describing scenarios for which Lame Duck
does and does not perform well.

Thesis Supervisor: Larry Rudolph
Title: Research Scientist
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Chapter 1

Introduction

This thesis proposes and evaluates the Lame Duck cache replacement policy, an al-

gorithm aimed at making effective use of caches in multiprogrammed systems. Most

caches today make use of the Least Recently Used (LRU) cache replacement policy.

Although LRU often performs close to optimal, there is still room for improvement.

Lame Duck, a variant of LRU, avoids some of the mistakes made by LRU while also

taking advantage of the algorithm's strong points.

Lame Duck leverages knowledge of how context switches affect cache performance.

Its goal is to curtail cache pollution by preventing processes from unnecessarily evict-

ing cache lines belonging to the working set of another process. Ideally, assuming

there is sufficient space, we would ensure that the working sets of all running pro-

cesses reside concurrently in cache. We make strides towards attaining this goal by

estimating how much cache space the process needs (as opposed to can use) and

limiting the size of each process' memory footprint accordingly. The memory access

pattern of the particular application and its allocated time quantum are primary

influences on these estimations.

After motivating the Lame Duck policy and describing an implementation, this

thesis discusses its use and evaluates its performance. Our investigation revealed that

some workloads perform well under the Lame Duck policy, while others, with specific

cache configurations perform better under LRU. Therefore, a variation of the Lame

Duck policy was developed. The Lame Duck Variation is presented, discussed, and

14



evaluated, especially with respect to the original algorithm.

The rest of this chapter begins with a discussion of current cache architecture

and its defects, as well as a list of assumptions and terminology used throughout the

thesis. We set the stage for our replacement policy by discussing suboptimal cache

allocations granted by LRU, and describing the idea of time-adaptive caching. We

conclude the chapter by providing intuition behind the Lame Duck cache replacement

policy and a summary of the rest of the thesis.

1.1 Caches

Caches are typically small, fast, local memories designed to reduce memory latency

and bandwidth requirements by maintaining copies of data that will likely be accessed

by the processor in the near future. The cache examines every memory request to

determine if it can satisfy that request from data it caches. The greater the number

of memory requests satisfied out of the cache, the greater the reduction in average

memory latency and memory bandwidth demands. Thus it is important to constantly

keep the cache up to date with data that will be accessed in the near future.

The cache can be easily abstracted as a matrix in which the columns are termed

"ways" and the rows are termed "sets". When a piece of data is brought into the

cache, specific bits of its address are used to associate a cache line with a set. (A

cache line is the standard unit of data transfer between main memory and the cache.)

The cache line can be placed in any free column in the set. If the set is full, some

other cache line from the set must be discarded to make room for the new cache

line. The cache replacement policy decides what data to replace. If the replacement

algorithm discards the cache line least recently used, the LRU (least recently used)

replacement policy is being used. LRU assumes that the recent past predicts the

near future. Thus, the cache line used furthest in the past is the chosen candidate

for replacement.

A cache's replacement policy directly affects the degree to which the cache can

decrease the amount of communication between the processor and memory. A perfect
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cache is an oracle; it decides what to cache based on future reference patterns. Since

the cache does not have a priori knowledge of what information the processor will

need, the replacement policy does its best to predict which data in the cache will be

useful. Elements in the cache are weighted according to the replacement policy's esti-

mation of how likely it will be used next. (The random replacement policy essentially

assigns equal weights to all cache lines.) If the replacement policy is a bad predictor,

the processor will not find the data it is looking for in cache. This results in a cache

miss, and requires the processor to request data from another source (a lower level of

cache, or main memory). The cache then incorporates the data fetched in response

to the cache miss. (A "lower cache" is a cache further from the processor core. A

"higher cache" is closer to the processor core. The distance of the cache from the

processor core is referred to as the "cache level." A level one ($Li) cache is, generally

speaking, the first cache the processor sends a memory request to.) If the processor

finds the data it is looking for in cache, the cache access is termed a cache hit.

Modern day caches are designed to account for spatial and temporal locality.

Spatial locality refers to the idea that memory accesses are likely to be clustered

around a set of addresses. Temporal locality refers to the idea that memory access

are likely to request the same piece of data multiple times within a short period of

time. Many applications have fairly regular memory reference patterns that exhibit

"local" behavior. As a result cache designers have selected the LRU replacement

policy as the standard for cache replacement policies.

1.2 Assumptions and Terminology

We use the term "working set" to refer to the set of addresses which a process will

use in the near future. To reduce thrashing, caches should be larger than the working

set of the currently running process.

We use the term "memory footprint" to refer to the amount of cache space used

by a given process. By this definition, the memory footprint of a process cannot be

larger than the size of cache.

16



Process 1 2 ... N 1 2

Quantum Length Qi Q2 ... QN Q1 Q2
Figure 1-1: Round robin scheduling policy.

useful data between context switches. Caching of virtual addresses would necessitate

a cache flush on every context switch in order to avoid address aliasing between process

address spaces. Because our cache is modified to include process identification tags,

virtual addresses can be cached. However, the cache lookup mechanism must be

changed to include a process id check to determine whether or not a piece of data

resides in cache.

Although our results are only representative of data caches, our cache simulator

allows us to easily extend the same set of experiments to instruction caches. We leave

this as future work.

We assume that processes exhibit self-similar memory access patterns. This as-

sumption is discussed and substantiated in Section 4.1 of Chapter 4.

1.3 Design Criteria for Early Caches

Early caches were fast and transparent to software; caches were designed to im-

prove performance without software involvement. Comparable processor and mem-

ory speeds required the cache to respond quickly to have a real benefit. In addition,

compilers and software were not sufficiently sophisticated to explicitly manage fast

storages that were distinct from memory. Because of the need for speed and trans-

parency, cache replacement protocols were implemented in simple hardware and were

uniform across the entire address space.

Constraints on chip space required cache sizes to be small. Small caches restricted

the cache to contain the working set of a single application at a given time. In a time-

shared system, this meant that every time quantum began as a cold start regardless

of what cache replacement strategy was used. Exploiting locality within a program

was the primary consideration in choosing a cache replacement algorithm.

18



We use the term "time quantum" to refer to a small unit of time for which a

process is allowed to execute before the next process gets control of the CPU on a

time-sharing system.

We discuss time quantum length in terms of the number of memory references

that occur during that time-slice.

We use the term "cache miss penalty" to refer to the number of cycles needed to

obtain a piece of data from main memory in response to a cache miss.

We use the term "self-similar" to refer to a process exhibiting memory access pat-

terns over small amounts of time (t) which reference k distinct cache lines belonging

to set j during the first half of the time slice, and k distinct cache lines belonging

to set J during the second half of the time slice, for every set j. K is some number

less than (t/2). If the set access pattern of a process is symmetric about the halfway

point through the time slice, then the process is self-similar.

We recognize that context switches can be categorized into two types, voluntary

and involuntary. Voluntary context switches result from a page fault or a system call.

Involuntary context switches occur when the scheduler switches the current process

out so a new process can execute. In our discussions, we refer almost exclusively to

involuntary context switches. However, our algorithm can also be used to mitigate

the effects of voluntary context switches on cache performance.

We assume no particular operating system; our results should be applicable to any

system that schedules processes in the same way Unix systems do and that does not

make any attempt to take cache behavior into account when deciding which process to

run next. A scheduler that tried to schedule processes to avoid context-switch-related

cache misses might not yield the same results.

Unless specifically stated otherwise, we assume the concurrent execution (through

timesharing) of multiple processes using a round-robin policy. Each process has a

fixed time quantum, as show in Figure 1-1. We also assume a cache capacity too

small to hold the working sets of all running processes, but large enough to hold at

least the working set of one process and part of the working set of a second process.

We assume the caching of physical addresses, enabling the cache to maintain
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Structured applications exhibit "local" behavior, thereby lending itself to perform

well in caches. For these applications, past memory references are a very good indica-

tor of future memory references and LRU approximations are near optimal. Locality

of reference within a particular process coupled with the fact that caches and miss

penalties were small made a uniform policy such as the LRU replacement policy good

enough.

1.4 Technological Setting of Today's Caches

As a result of changing technologies and novel applications, assumptions made on sys-

tem characteristics are no longer valid. Miss penalties are no longer small. Current

processors can take on the order of 100 cycles to access main memory [8, 14] while

an on-chip Li cache can be accessed in 1 cycle. The gap between processor cycle

times and memory access times is expected to continue widening. Current trends

indicate that processor speeds double every 18 months [2]. Meanwhile, memory la-

tency remains virtually unchanged by comparison, decreasing by only 7% per year

[12, p. 429]. Processor clock rates are now six or seven times that of the bus clock

rate. AMD Athlon processors operate at speeds up to 1.5GHz; the upper limit for

front-side bus speeds are currently 266MHz [2]. Memory is the bottleneck in today's

systems, making cache replacement policies more important than ever.

Compilers and users have become significantly more sophisticated than when

caches were first designed. Though users and compilers cannot always give com-

plete information about the memory usage of a program, a significant amount of

information can now be made available at compile-time as well as run-time. This

makes interaction between software and cache practical.

Caches and applications themselves have changed such that LRU is not always

good enough. Cache sizes are larger, yet application working set size has not grown

at the same rate. Modern caches no longer contain only a fraction of one working set;

they are large enough to contain working sets of multiple applications simultaneously.

The standard LRU replacement policy does not take advantage of this fact. Instead,
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it blindly assumes locality of reference, even if two temporally close memory accesses

belong to different processes. Under LRU, the cache throws away data that has not

been accessed recently (such as live data of a swapped out application) over data that

has been accessed recently (such as the current application's recently accessed but

dead data).

Applications can no longer be generalized as being coded in traditional paradigms.

Certain computing paradigms, such as object-oriented codes, access memory less

regularly than applications developed in years past. In addition, applications do not

use memory for the same uses as they once did due to a number of factors including

increased communication between different devices and new streaming applications

such as decompression, video and graphics, and so on. With these less regular memory

references, standard LRU algorithms perform suboptimally.

One approach to dealing with this is to increase cache sizes. By storing more data

in the cache, a safety net is created, giving the replacement policy more leeway to make

a mistake in determining which cache lines are needed most. While some programs

could make use of a large amount of cache space, many applications could perform

better if they simply made better use of the cache, which is often underutilized [6].

In light of the suboptimal behavior of LRU, and the new technological advances

that allow for knowledgeable cache replacement policies, we explore software manage-

ment of caches. Specifically, we focus on the interaction between cache replacement

policy and the existence of multiple working sets residing in cache concurrently. Hav-

ing multiple working sets in cache simultaneously complicates how data in the cache

should be treated. LRU treats all cache lines the same, and is therefore unable to ac-

count for relative timing differences between addresses from different processes; cache

lines accessed by the current process at the end of a time quantum are treated the

same as cache lines accessed by the next scheduled process a cycle of time quanta ago,

(assuming round robin scheduling). In the next section we will discuss the effects of

context switching on cache performance.
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1.5 Effect of Context Switching on Cache Perfor-

mance

The job of a cache replacement policy becomes ever more difficult in a multi-programmed

system. Multiple processes are logically run concurrently, and multiple partial work-

ing sets are stored in the cache simultaneously, assuming a large enough cache. Once

a process' time quantum has elapsed, a context switch takes place. State of the old

process is saved away, and state of the new process must be loaded, including a new

address space. The new process has dedicated processor time for the length of its

time quantum, during which time it brings cache lines into the cache. If the cache is

not large enough to hold the working sets of all running processes, processes compete

sequentially for cache space.

For the sake of simplicity, we discuss a two-process workload, each process running

with time quantum length Q under the LRU replacement strategy, and scheduled to

execute in a round-robin fashion. Let A and B denotes the two processes. We assume

the capacity of the cache is large enough to contain the entire working set of B, in

addition to some cache lines belonging to A. During process B's active time quantum,

(process A's dormant phase), process B encroaches on process A's cache allocation.

When process B incurs a cache miss, LRU throws out the oldest element available.

Since process B does not evict cache lines used during it's time quantum (unless the

time quantum is long enough to have written the entire cache), it usually discards

cache lines belonging to process A. Conversely, each miss during the execution of

process A evicts a cache line belonging to process B whenever possible. We see that

under LRU, the memory footprint of a process grows on each cache miss. As one

footprint grows, the footprint of another process diminishes in cache. As a result,

process B pollutes the memory footprint of process A, and vice verse.

Each time process A decrements the number of cache lines allocated to process B,

the hit rate of process B may be reduced. Process B needs to reload the cache lines

evicted by process A when it resumes control. This number of reloads is dependent on

cache size, workload, and time quantum. For very small caches (that barely holds the
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working set of a single process), this number is very high. Cache capacity issues would

force cache lines to be reloaded frequently regardless of the replacement algorithm.

After a context switch, each process brings as much of its working set into cache as

possible.

The probability of reloading a cache line remains high for moderate sized caches

if the workload consists of a large number of processes, all of which make use of the

cache. Here we use "moderate-sized" cache to describe a cache that can hold the

working sets of a few processes, but not of a large number of processes. Consider an

example of a workload of twenty-six processes interleaved via a round-robin scheduling

policy. Let letters A through Z denote processes one through twenty-six respectively.

Although the working set of process A may reside in cache after process B finishes

executing for its time quantum, the probability that a cache line belonging to process

A resides in cache greatly decreases with the execution of every process. Once process

Z is scheduled to execute, most (if not all) of process A's cache lines have been evicted

from cache.

We describe a new scenario in which processes A and B have small working sets,

but access large amounts of data (have large footprints). Even if the cache can hold

the working sets of both processes, long time quantums increase the probability that

process A evicts cache lines belonging to the working set of process B. The more

dedicated processor time a process is given, the more chances it has to evict cache

lines belonging to other processes.

We have seen how context switches can degrade the individual and aggregate

performance of processes. As such, multiprogrammed systems call upon us to redefine

our yardsticks for cache performance. We must now consider whether we are trying to

optimize the performance of a particular "important" process, or whether we want to

optimize the cache to enhance overall performance. Optimizing overall performance

may not mean trying to obtain the highest possible hit rate for the currently running

application. It may make sense for the currently running process to give up a few

of its own cache lines if the space could be much better used for another process.

LRU does not know how to handle these new complications, and as a result does not
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always choose the optimal cache line to replace.

If we are trying to optimize cache performance over the entire workload, LRU is

clearly not the optimal replacement strategy for streaming applications. Streaming

applications contain large chunks of data accessed (sequentially or in stride) only

once. Keeping such data in cache leads to the eviction of valuable data that will be

accessed in the near future. Even though the streaming application may suffer a few

cache misses as a result of limiting the number of cache lines allocated to streaming

data, the cost would be amortized over the number of cache hits gained by allocating

those lines to another process who could store useful data there.

1.6 Time-Adaptive Caching

Another approach for optimizing overall performance entails minimizing the amount

of cache allocated to each process during a time quantum such that each process

gets only as many cache lines as it needs to obtain close to optimal hit rates during

that time quantum. Unlike LRU, this caching scheme takes into account the affect of

context switching on cache performance. It recognizes that multiple processes can be

logically run concurrently and that multiple working sets can be stored in the cache

simultaneously. The goal is to decrease the number of cold start misses processes

suffer after a context switch. Under the LRU replacement policy, the number of these

misses can be very large; the entire footprint of a process can be evicted from cache

before the process regains control of the processor.

Time-adaptive caching does not assume locality among memory references be-

tween processes. Instead it observes the age of the current process (time since it was

last swapped in), the time quantum allocated to the process, the process owner of

cache lines, and the age of stored data to decide which cache line to replace. Part-way

through the time quantum of the current process, it may no longer be beneficial to

augment the footprint of the current process. New data is still brought into the cache;

however, a cache line belonging to the current process is evicted to make room for

the data. By preventing addresses of the next process form being overwritten, some
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cache misses incurred as a result of the context switch are circumvented. We refer

to the maintainance of a fixed cache allocation, in conjunction with updating data in

the cache allocation as "recycling."

The caching scheme builds off of the strong points of the LRU replacement policy

by managing the cache under LRU for a large part of the time quantum. Software

is used to dynamically decide at what point during the time quantum LRU begins

to perform suboptimally and a context-aware replacement strategy should be put

in place. For certain workloads and cache configurations, a time-adaptive cache re-

placement policy may not be useful. Again we refer to the two-process workload of

processes A and B. If a cache is small compared to the working set of process B,

the gain in allocating an additional cache line to process B outweighs the cost of the

miss that will be incurred when process A context switches back into the processor.

We want to fill the cache with as much of the current working set as possible. Since

LRU continually adds to the cache allocation of process B, LRU replacement is the

algorithm of choice. If the size of cache is large enough to hold the entire working

set of process B, in addition to some cache lines belonging to process A, the idea of

recycling becomes feasible and offers potential performance increases.

We argue that for large enough cache sizes, part-way through the time quantum of

process B, the marginal reduction in misses obtained by increasing the cache allocation

of process B is equal to the marginal increase in misses obtained by decreasing the

cache allocation of process A. The intuition relies heavily on the effect of diminishing

returns. There is a point at which allocating more cache to a process only marginally

increases hit rate. The desire is to determine what amount of cache is allocated

to a process when the miss rate of the process asymptotically begins to approach a

constant (be it zero, or a plateau). At this point, we want to restrict the size of the

footprint of the currently running process in order to keep items belonging to the

other process in cache. The replacement policy should no longer be standard LRU;

it should replace the least recently used line of process B from this point onwards,

thereby disallowing process B to increase its cache allocation and retaining cache lines

of process A in cache.
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The above argument is the basis for the Lame Duck Policy. We are not the first

to make such an observation. Stone, Turek, Wolf [19] argue that such a tradeoff point

exists; however, they approximate the threshold time in a different manner and seem

to have never fully explored all the issues.

We do not argue that the dormant process can always make better use of cache

lines than the currently running processes. Limiting the cache allocation of the run-

ning process to only as many cache lines as it needs makes more efficient use of cache

lines and leave cache lines belonging to other process in cache. The hope is that those

saved lines contain data that will be useful to the process the next time it is switched

in. This argument can be trivially extended to an n-process workload. Forcing the

currently running process to use less space mitigates the cold start of the dormant

processes resulting from cache pollution.

We return to the two process workload of A and B introduced in the previous

section. Processes A and B are running with time quantum length Q under the LRU

replacement strategy, and scheduled to execute in a round-robin fashion. Two desires

seem intuitive: First, immediately before process A gets switched in, cache elements

belonging to process A should not be ejected from cache. Secondly, immediately

before process A gets switched out, cache elements belonging to process A should not

replace cache elements belonging to process B.

Consider the behavior of LRU in this scenario. At the end of process A's time

quantum, the furthest used cache line most probably belongs to process B. Even

though process B is about to obtain control of the processor, data values it needs

are evicted from the cache. A similar situation occurs at the end of process B's time

quantum; cache lines owned by process A have not been accessed since the last time

quantum, making it likely that one of A's cache lines is evicted from the cache. This

goes against our intuition. If the two processes are perfectly interleaved, LRU does

the right thing. However, because every Q memory accesses made by each process are

grouped together, LRU makes the wrong decision. Assume that we do not evict one

of B's cache lines on the last memory reference of A's time quantum. Process A's hit

rate does not decrease as a result of using one less cache line during it's time quantum.
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LRU can yield suboptimal cache allocations

QA QB QA

AA...AAAABB...BBBBAA...AAAAB
t t

At the end of Process A's time At the end of Process B's time

quantum, LRU evicts a cache quantum, LRU evicts a cache
line belonging to Process B to line belonging to Process A to
make room for an A-cache-line. make room for a B-cache-line.

Figure 1-2: Traditional LRU considers only the global age of a cache line when de-
termining which line to evict. This can result in counter-intuitive cache allocations.
At the end of a time quantum, LRU does not prepare the cache for the onset of a
new process' execution. Instead it continues to augment the footprint of the ending
process, thereby decreasing the footprint sizes of other processes. In the two-process
case, it is clear that increasing the cache allocation to process A at the end of its
time quantum diminishes the footprint of the next scheduled process. If LRU pre-
vented Process A from obtaining another cache line on the last cache miss in the time
quantum, Process B might have one less cache miss when it regains control of the
processor.

It does provide the process B with one more resident cache line once it regains control

of the processor. It is this behavior that Lame Duck strives to exploit. Figure 1-2

examines a sirpple case in which LRU can yield suboptimal cache allocations.

The question remains, how do we approximate the time at which to fix the cache

allocation of the currently running process? When has the process acquired the min-

imum number of cache lines it needs to obtain the same hit rate during the rest of

the time quantum as if we let the footprint of the process grow for the entire time

quantum? One method proposed by Stone, Turek, Wolf approximates the incre-

mental value of a cache line to each process given the current cache allocation and

number of remaining references in the time quantum (This method is discussed in

detail in Chapter 2.) The method we propose relies on self-similar memory access pat-

terns exhibited by individual processes and the number of references remaining in the

time quantum. In the next section, we introduce a particular time-adaptive caching

scheme, our Lame Duck cache replacement policy that depends on this method.
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1.6.1 Lame Duck Cache Replacement Policy

We explore the idea of time-adaptive caching by choosing a metric to estimate a

threshold time past which the cache allocation of the executing process should not

be augmented. The Lame Duck cache replacement policy restricts footprint growth

once the time quantum midpoint is reached. Lame Duck is the topic of the rest of

this thesis.

Restricting growth at halfway through the time quantum does not mean that every

process gets the same memory allocation. By allowing the footprint of the process to

grow under standard LRU for the first half of the time quantum, each footprint grows

at the rate of its associated process. Assume process A has a large working set, and

process B has a small working set. Given the same time quantum, and restricting

growth at one half the time quantum, process A will own a larger percentage of

the cache than process B. Under both the Lame Duck replacement policy and LRU,

cache allocations are reflective of cache usage of individual processes. In addition,

Lame Duck works to make cache allocations reflective of the cache needs of individual

processes.

Our ability to estimate when to restrict the footprint growth of a process relies

heavily on the assumption that the memory access patterns of a process are self-

similar. Memory references made during the first half of the time quantum access

sets in the same way during the second half of the time quantum. This assumption

has two direct implications. First, the number of distinct virtual addresses accessed

during the first half of the time quantum is roughly equal to the number of distinct

virtual addresses accessed during the second half of the time quantum. Second, set

access patterns made during both halves of the quantum are similar. From this

we conclude that the number of cache lines needed during the second half of the

time quantum is equal to the number of lines needed during the first half of the

time quantum. If this is true, the amount of cache space allocated to the process

at halfway though the time quantum should be enough to hold all virtual addresses

accessed during the second half of the time quantum.
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Although there is no formal proof that memory access patterns during a time

quantum tend to look this way, in practice we have seen this to be true for a number

of different workloads and time quantums. A complete discussion is presented in the

Validation section of Chapter 4.

Not all applications exhibit self-similar memory access patterns. As a result, cache

allocations obtained by a process at the time quantum half may not be sufficient

for Lame Duck to maintain cache performance while constraining cache footprints.

We address the problem by proposing a Variation to the Lame Duck policy (LDV),

in which we allow the cache allocation to grow past the halfway point of the time

quantum if it owns less than half of the cache lines in the relevant set. Allowing

the process to continue growing after the time quantum midpoint avoids worst case

scenarios in which sets heavily accessed during the second half of the time quantum

were not accessed during the first half of the time quantum.

We explore the potential benefits (and pitfalls) of Lame Duck using a hypothetical

cache replacement policy, Intelligent Lame Duck. Intelligent Lame Duck constrains

cache footprint size in the same manner as original Lame Duck. In addition, it

leverages information about the needs of the currently executing process to make

intelligent decisions about what data to evict from cache. By combining the use of

local knowledge with dynamic partitioning, Intelligent Lame Duck can determine if

a choice of workload, cache configuration and time quantum is ever able to benefit

from constraining footprint size at the time quantum midpoint. Intelligent Lame

Duck approximates best-case performance of original Lame Duck.

1.7 Thesis Overview

Having presented the motivation for and the intuition behind the Lame Duck cache

replacement strategy, we use the next chapter to present the work that lay the foun-

dation for this thesis. Specifically, we discuss past work regarding the effect of context

switching on cache performance and the partitioning of memory between competing

processes. We discuss an algorithm put forth by Stone, Turek and Wolf that is similar
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to the one presented in this thesis, pointing out the differences, while also explaining

how this thesis further explores the problem space they delineated.

In Chapter 3, we develop the Lame Duck algorithm, two variations of the algorithm

(LDV, Intelligent Lame Duck), and talk about implementation issues. Although very

little additional hardware is needed to implement the Lame Duck replacement policy,

we opted to measure performance using a software simulation environment. The

chapter concludes with a description of the simulation tools we used.

In Chapter 4, we evaluate the original Lame Duck replacement policy, LDV and

Intelligent Lame Duck. We provide performance numbers in terms of hit rates and

cost of memory operations.

In Chapter 5, we conclude the thesis with an assessment of the algorithms pre-

sented, as well as some parting thoughts and observations. We also give future work

and directions that should be explored.
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Chapter 2

Related Work

Cache performance under multiprogrammed workloads has been studied extensively

over the last two decades. Thiebaut and Stone [20] created a model for cache-reload

transients, the set of misses incurred as a result of having to reload program data after

an interruption in execution. Based on estimates of instruction execution time, they

interleaved traces of single processes to simulate a multiprogrammed environment.

Agarwal et al. [4, 5] generated accurate multiprogramming traces and compared

the average behavior of uniprocess caches and multiprocess caches with either cache

flushing on context switch or the use of process identifiers on cache lines. Agarwal

proposed a few small hardware additions to reduce the number of caches misses re-

sulting from multitasking. In addition, he built upon the work of Thiebaut and Stone

by creating a more detailed analytical model of the cache. Mogul and Borg [17] es-

timated the cache performance reduction caused by a context switch, differentiating

between involuntary and voluntary context switches. They suggested that for time-

sharing applications, the cache-performance cost of a context-switch dominates the

cost of performing a context switch.

Context switching can cause a decrease in cache performance by violating locality

of reference. When an operating system switches contexts, the instructions and data

of the newly-scheduled process may no longer be in the cache(s). One possible solution

to this problem is cache partitioning. Cache partitioning consists of various techniques

used to increase the probability that a process will have cache lines in the cache when it
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regains control of the processor. The technique may try to maximize performance for

a process specifically designated as important, or may try to maximize the aggregate

performance of all processes.

One approach to cache partitioning is to dedicate physical cache space to a pro-

cess/address range. Kirk [15] analyzed the partitioning of an instruction cache into a

static partition and a LRU partition. Sun Microsystems Corporation holds a patent

[18] on a technique that partitions cache between processes at a cache column granu-

larity. Chiou [7] proposes to include as a part of a process state, a specified bit mask

hat indicates which columns can be replaced by that process. While this technique

isolates processes from each other within the cache, Chiou's mechanism, named col-

umn caching, allows for dynamic cache partitioning between different address ranges.

Regions of memory that compete for the same cache lines are mapped to different re-

gions of the cache (e.g. different cache columns), and non-conflicting memory regions

are mapped to the same regions of cache.

Liedtke et al. [16] developed an OS-controlled application-transparent cache-

partitioning technique that relies on main memory management. Main memory is

divided into a set of classes, called colors, whose members are physical pages that are

associated with a cache bank. In order to avoid conflicts by multiple tasks, virtual

addresses are translated such that one or more colors are assigned exclusively to one

cache bank. This scheme provides tasks/address regions with exclusive use of their

partition. Although there is the potential for significant waste of main memory, they

attempt to avoid this by using memory coloring techniques.

The work we have discussed up to this point dedicates physical cache space to

a process/memory region. An alternative approach is to limit the amount of cache

space a process is allocated. Stone, Turek, and Wolf [19] pursued this idea and

introduced an algorithm that dynamically determines a threshold time past which

the currently running process is not allocated additional cache space. This threshold

time is dependent both upon the remaining time quantum and the marginal reduction

in miss rate due to an increase in cache allocation.

Because of the large similarities between the algorithm presented in this thesis
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and the one put forth by Stone et al., we will now spend some time developing and

discussing what shall hereafter be referred to as the STW cache replacement algo-

rithm. One observation worth noting is that previous work on cache partitioning does

not explicitly take into account the effects of context-switching on cache performance.

Both the STW and Lame Duck replacement strategies do make such considerations.

The goal of Stone et al. is to distribute cache lines to each process so as to make

equivalent the incremental value gained by giving each of the processes a single cache

line in addition to its allocation. Their model defines the optimal fixed allocation of

cache as the allocation for which the miss-rate derivative with respect to the cache

size is equal for all processes. Formally stated, when processes A and B share a cache

of size C, partitioning the cache by allocating CA lines to process A, and CB lines to

process B (CA + CB = C) maximizes the hit ratio when the miss-rate derivative of

process A, as a function of cache size CA equals the miss-rate derivative of process B

in a cache of size CB-

In later work, Thiebaut, Stone, Wolf [21] define miss-rate derivative as the incre-

mental performance gain to a process of an additional cache line in addition to its

current allocation. For a two process workload, A and B, the frequency-weighted miss-

rate derivative of process A can be approximated by the equation: MA(CO)-MA(Ci+l) _
RefA±B

(# Amisses in Ci -# Amisses in Ci+ 1 ) The numerator of this fraction is the number of missesTotal # of A and B ref s

in a cache of size Ci that becomes hits in a cache of size Ci+±. This method of par-

titioning has the convenience of automatically weighing the derivatives by frequency

of reference.

The product of the miss-rate derivative of a process with respect to the curent

cache allocation, PdM(x), times the number of reference remaining in the time quantum,cachealloctiondx

q, is the number of misses they expect to save by increasing the cache allocation to

the currently running process. They account for p additional misses resulting from

processes having to reload the cache line displaced by the currently running process.

Thus the net reduction on misses is equal to qdMcur-process(W -p. When allocating a newdx

cache line to the currently running process yields equivalent performance gain and

performance degradation (between the current process and one of the other processes)
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it is time to stop allocating cache lines to the currently running process. The threshold

time q(x) can be obtained by setting the previous equation to zero, and solving for q.

If the remaining time quantum is less than q(x) for a cache allocation of x, then the

replacement policy should not increase the cache allocation to the currently running

process. The replacement policy should replace the least recently used eligible line of

the currently running process, thereby retaining the lines of other processes in cache.

If the remaining time exceeds q(x), then the replacement policy should replace the

least recently used line in the cache (which is unlikely to belong to the currently

running process), and thereby increase the cache allocation of the currently running

process.

It is clear that there are many similarities between the STW and Lame Duck

replacement policies. Both policies build upon LRU, and select a point during the

time quantum at which to constrain the cache allocation of the currently running

process. However, different metrics are used to determine when to begin recycling over

cache lines. STW starts recycling when the marginal reduction in misses obtained

by increasing cache allocation equals the number of cold start misses created by

reducing the cache allocation of other processes. Lame Duck relies on self-similar

memory access patterns of individual processes and begins recycling once the process

has acquired enough cache space to perform well during the rest of the time quantum.

The Lame Duck Variation also relies on the percentage of cache lines in the set that

are owned by the current process.

Although Stone et al. discuss the algorithm behind their multiprogramming cache

replacement strategy, they have not evaluated the performance of the STW policy.

The effect of time quantum lengths, cache configurations and workload have not been

looked at with respect to STW. In addition, issues of implementation details and

hardware cost have never been addressed. In a number of ways, the research presented

in this thesis builds upon the work of Stone, Turek, and Wolf. We present a slightly

different cache replacement algorithm, and perform a much more detailed evaluation

of its performance. Using LRU as our standard for comparison, we explore the source

of performance gain and performance degradation resulting from invocation of the
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Lame Duck policy. Finally, we not only search for the answers to our own questions,

but we look to answer questions proposed, but left unanswered, by Stone, et al.

Thiebaut, Stone, and Wolf present a extension of the model developed by Stone,

Turek, and Wolf. They describe an adaptive online algorithm for managing disk

caches shared by several identifiable processes. Again, they define the optimal fixed

allocation of cache as the allocation for which the miss-rate derivative with respect

to the cache size is equal for all processes. Initially, disk cache is partitioned among

the processes in such a manner as to obtain equivalent miss-rate derivatives with

respect to cache size among all processes. Cache partitions are updated using the

"Robin Hood" philosophy: take from the rich and give to the poor. On a cache miss,

the LRUth cache line of the process having the lowest frequency-weighted miss-rate

derivative is evicted. This differs from the STW algorithm, in which miss-rate deriva-

tives are used to calculate threshold times, after which LRU information determines

which cache line of the currently running process should be evicted. Simulation re-

sults exhibit a relative improvement in the overall and read hit-ratios in the range of

1% to 2% over results generated by a LRU replacement algorithm. Thiebaut et al.

maintain that their algorithm can be applied to any buffering system managed by

an LRU algorithm that has sufficient processing capability to perform the required

operation in real time. Because current microprocessor cache architectures can not

support the necessary processing capability, this thesis will not address similarities

between Lame Duck and the cache replacement policy presented by Thiebaut et al.
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Chapter 3

Lame Duck Cache Replacement

Policy

In this thesis we propose a new cache replacement policy called the Lame Duck Policy.

This policy takes into account the affect of context switching on cache performance,

while normal LRU makes no such considerations. The goal is to decrease the number

of cold start misses processes suffer from after a context switch. Under the LRU

replacement policy, the number of these misses can be very large; the entire footprint

of an inactive process can be evicted from cache before the process regains control of

the processor.

3.1 The Algorithm

The Lame Duck Policy works as follows. During the first half of the time quantum,

the normal LRU replacement policy is used to determine which cache line to evict on

a cache miss. Under this policy, the footprint of the currently running process grows

in cache on every cache miss. Each time a process brings a line into the cache, a tag

associated with that line is set to the process id of the process making the memory

reference. Once half of the time quantum has elapsed, LRU is performed over the

cache lines tagged with the process id of the currently running process. (If no lines in

the set belong to the process, the process is given the LRUth line. But it will not be
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granted any additional lines in the same set until its next time quantum.) In essence,

the process recycles lines it accessed during the first half, throwing out old data to

bring in the new. The contention is that number of the cache lines obtained during

the first half is sufficient to hold the memory values needed for the second half.

By recycling lines belonging to the currently running process, we increase the

probability that cache lines belonging to other processes will still be in the cache the

next time the process is switched in. Experimental results show that this hypothesis

does not always hold true, as will be discussed in detail in the Validation section

ofChapter 4. However, we will present the problem here in order to introduce a

variation on the Lame Duck Policy.

Persistent data between context switches is likely to exist if all processes have

short time quantums or the workload consists of a small number of processes. Short

time quantums allow the number of partial footprints existing simultaneously in cache

to increase, since each process only has a short amount of time during which to evict

cache lines belonging to other processes. A small number of processes allows for

increased size of partial footprints existing simultaneously. Fewer processes means

less competition for space in cache. If a large number of processes run large time

quantums in a round robin fashion, by the time any individual process gets to run

again, its entire footprint is evicted from cache, thereby forcing the process to cold

start.

The Lame Duck Policy aims to increase the number of distinct time quantum

lengths and workloads for which persistent data exists between time quantums. By

limiting the time the footprint of a process can grow in cache to the first half, we

keep processes from eviciting lines belonging to other processes during the second

half. This effectively halves time quantums in terms of the effect it has on footprints

sizes in cache.

Although the process may access approximately the same number of cache lines

during the second half of the time quantum as during the first, the distribution of

those lines throughout the cache may not be the same. If a process does not access a

set during the first half of its time quantum that it needs in the second half, then it
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would only be allocated one line in the set. If the process heavily uses multiple cache

lines in that set during the second half, the Lame Duck Policy does the wrong thing.

The footprint of the process should grow to own more of the set. In this case, LRU

does the right thing. Under the Lame Duck policy, the number of lines a process

owns in any given set once it starts recycling is

MAX(X, MIN(#lines process needs, 1))

X = (#lines owned at half way though the time quantum)

This scenario of where Lame Duck fails can be generalized to sets in which less

lines are accessed in the first half of the time quantum than are needed in the second

half of the time quantum. This disparity is made worse if many lines of a previously

unaccessed set are heavily accessed during the second half. We address this problem

with the Variation of the Lame Duck Policy.

3.1.1 Variation of the Lame Duck Policy

Algorithmically, the Lame Duck Variation (LDV) differs from the original Lame Duck

Policy only by placing an additional constraint on when to begin recycling lines

belonging to the currently running process. The normal LRU replacement policy is

used until half of the time quantum has elapsed. Once half the time quantum has

elapsed, LDVonly allows recycling to be done if the current process owns greater than

or equal to half of the sets of $Ln. ($Ln is the cache level in which the Lame Duck

Policy is being used.) If the current process owns less than half the sets of $Ln, then a

cache line is evicted under the LRU replacement policy, thereby allowing the current

process to own an additonal line in the set. Once the process owns half the lines in

the set, then recycling may begin.

This policy averts the extreme case in which the current process only owns one

line in a set that is heavily accessed during the second half of a time quantum. It

allows for a much larger degree of disparity between cache line distribution of the first
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and second halves of a time quantum. The number of lines a process owns in any

given set when it starts recycling is

MAX(X, MIN(#lines process needs, 0.5 * associativity of $Ln))

X = (#lines owned at halfway though the time quantum)

Although this policy ensures that the currently running process owns at least half

the lines of its ideal allocation, this may not be good enough. Every line within a

set may be accessed repeatedly by a process for short periods of time, e.g. as seen in

the SPEC95 Swim benchmark [3]. If there is significant pressure on particular sets,

neither version of the Lame Duck Policy does the right thing. The policy should allow

the process to own the entire cache line, regardless of how many lines in the set were

owned at halfway through the time quantum. (If the process owns all the lines of the

set at the halfway point, then it will own all the lines of the set after halfway point).

A more extreme case, as seen in Swim, is that the sets accessed during the first half of

the time quantum are not accessed at all during the second half of the the quantum

(Swim: Q=1000, Q=10000). So even though Swim owns entire cache lines (most of

certain cache lines) at Q/2, they are the wrong cache lines. As a result, the footprint

of Swim grows during the second half and only uses the newly acquired space. The

cache lines it acquired during the first half is of no use to it.

We address this problem using set hashing. This greatly reduces set contention

in workloads that maintain pressure on a small group of sets. This makes owning

entire sets unnecessary, thereby increasing the probability that the process will get

the space it needs during the second half of the time quantum under LDV.

In general, this policy would not be used with fully associative caches. Since

a fully associative cache consists of one set, LDV would require that the currently

running process own half of the cache before recycling would begin.
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3.1.2 The Intelligent Lame Duck Policy

Practically speaking, we can not assume that a replacement policy has global knowl-

edge of access patterns of each process. However emerging compiler technology in

conjunction with profiling can provide the cache with information about individual

processes, enabling the cache to decide what data is useful to the currently running

process. Local knowledge can be leveraged to make intelligent decisions about which

cache lines should reside in cache. Taking the idea one step further we propose Intel-

ligent Lame Duck, a hypothetical cache replacement policy that combines the use of

local knowledge with dynamic partitioning.

For the first half of the time quantum, Intelligent Lame Duck uses an LRU re-

placement policy. It constrains footprint size at the time quantum midpoint, and uses

information about future accesses to decide which cache line belonging to the current

process to evict on a cache miss. We do not assume the cache has knowledge of how

the memory access patterns of all scheduled processes interact, so the cache is only

allowed to consider ideal information of the currently executing process.

Using information about future memory accesses allows Intelligent Lame Duck

to approximate the best-case performance for Lame Duck. If LRU information is a

good predictor for a particular single process, Lame Duck and Intelligent Lame Duck

will virtually mirror each other's performance for that process; (Lame Duck can not

perform any better than Intelligent Lame Duck). However, if the metric used by

LRU is not good enough to keep shared variables in cache between quantum halves,

Intelligent Lame Duck will outperform Lame Duck. As a result, studies of Intelligent

Lame Duck answers the question, "Does it ever make sense, for this workload, cache

configuration and time quantum, to constrain the footprint of a process at the time

quantum midpoint?"

Sometimes the answer may be "no." There are instances in which LDV and/or

LRU outperform Intelligent Lame Duck. This is true for workloads whose performance

is severely limited by cache capacity.

Often, the answer is "yes." Basic examples include the cases in which the LDV
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just barely outperforms LRU and cases in which LRU just barely outperforms LDV.

Intelligent Lame Duck embodies our outlook for the future; as applications and system

characteristics change and become more complex so must caching algorithms. In

Section 4.3 of the next chapter we compare Intelligent Lame Duck performance to the

original Lame Duck, LDV and to Ideal, thereby allowing us to see how well Intelligent

Lame Duck bridges the gap between LRU performance and optimal performance.

3.2 Hardware Support

In order to incorporate the Lame Duck replacement policy into caches, a process

identification tag must be associated with each cache line. Initially all process tags

are set to an invalid process ID (pid), e.g. -1. When a cache line is brought into the

cache, the process tag is set to reflect the identity of the process that requested the

cache line. When checking for a cache hit, the pid and tag comparison of an address

can be done simultaneously. Combinational logic used to compute the least recently

used element is modified to allow computation of the least recently used element

among cache lines having the pid of the currently running process.

We recognize that a 16-bit process id associated with each cache line is not cheap.

An ownership bit approximates cache line/process associations. A single bit is added

to each cache line to indicate that the currently running process owns the cache line.

Ownership bits are cleared before the beginning of each time quantum. When a

cache line is first accessed, the ownership bit is set, indicating that it belongs to the

currently running process. Instead of performing process ID comparisons, additional

combinational logic need only compute the least recently used element among cache

lines having its ownership bit set.

The problem with ownership bits is that all cache lines belonging to the currently

running process residing in cache cannot be detected. Ownership bits only highlight

cache lines belonging to the process accessed during the current time quantum. Cache

lines belonging to the current process accessed during a previous time quantum are

"lost children." Since recycling relies on ownership bits to know which cache lines
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it can evict, once recycling begins, these lost children cannot be evicted during this

quantum. As a result, the least recently used cache lines belonging to the current

process may not be evicted via recycling. Instead cache lines accessed in the first half

of the time quantum will be thrown out before persistent cache lines from a previous

time quantum. This can keep persistent cache lines around for longer than necessary.

Process identification tags avoid this problem. PIDs enable the processor to de-

tect cache lines belonging to the currently running process even after multiple time

quantums have elapsed. The cache can then recycle over the process' entire footprint

in cache as opposed to the part of the footprint accessed during the first half of the

time quantum.

3.3 Simulation Environment

While minimal modifications to current cache architectures are required to support

Lame Duck, simulation tools were used to evaluate the performance of Lame Duck. A

trace-driven approach was selected to allow for easy modification of cache character-

istics, thereby providing the ability to quickly rerun experiments over a whole range

of parameters. Additional benefits include ideal cache simulation, portable traces

that can run on machines other than the ones the traces were generated on, and to

facilitate multithreaded/multitasking experimentation.

The Lame Duck policy is evaluated against applications from two benchmarks

suites, DIS (Data-Intensive Systems Benchmark Suite) [1] and the SPEC CPU (1995,

2000) Benchmark Suites [3]. Instruction and data references for these applications

are generated by Simplescalar, a high-performance instruction-level simulator. Sim-

plescalar was augmented to produce traces in PDATS format [13] , a trace-knowledgeable

compressed format. The traces are further compressed with the Gnu compression

utility gzip [9] and stored in a gzip'ed format.

The traces are processed by our cache simulator hiercache. Hiercache has sup-

port to model a number cache replacement algorithms: LRU, psedo-ideal, Lame Duck,

Lame Duck Variation, and Intelligent Lame Duck. LRU is approximated by ordering
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data within the cache structure. Every time a cache line is accessed, it is moved into

the first column of the appropriate set. The Nth column contains the least recently

used cache lines for all sets in the cache. Iideal (pseudo) is done by looking forward

withing the traces and choosing the cache line that will be accessed furthest within

the future for replacement [7]. The number of references to look forward can be set as

a parameter. Despite its name, it is not truly ideal since it does not consider the cost

of pushing out modified data, which can be significantly more costly than pushing

out clean data.

The Ideal replacement algorithm gathers information from the instruction/data

stream before the cache is simulated, and adds lookahead information to the LRU

simulation. Ideal chooses the cache line that will be accessed furthest in the future for

replacement. The "next-access-time" is maintained for each cache line to make this

process easy. The process is started from column 0. When a cache line containing

data that will be accessed further in the future than the data looking for a cache line,

they are swapped. The process is iteratively performed until the cache line that the

original address was located on is reached, where the current comparison data will be

inserted. The algorithm produces optimal replacement statistics for a range of cache

configurations, just like the LRU simulator.
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Chapter 4

Experimental Results

Workload, time quantum, cache size/associativity, and replacement policy are the

key factors in determining cache performance. In this chapter, we evaluate how these

factors affect the performance of Lame Duck (and its Variant) with respect to two

metrics, hit rate and memory operation cost (approximated in cycles). We compare

Lame Duck performance to LRU and Ideal. While improvement over the standard

is important, it is also important to measure how well Lame Duck mirrors optimal

cache performance. Cache performance is optimal when the overall miss-rate of the

cache is minimized.

Before proceeding to the performance analysis, we present experimental support

for the premises upon which Lame Duck is framed.

4.1 Validation of Assumptions

Lame Duck relies largely on the premise that processes exhibit self-similar footprints;

each process accesses cache lines in a fairly regular way. Self-similarity over a time

quantum implies that the number of distinct cache lines accessed during the first half

of a time quantum is nearly equivalent to the number of cache lines accessed during the

second half of the time quantum. Moreover, the number of cache lines accessed within

a set during the first half of a time quantum is nearly always equal to the number

of cache lines accessed in that set during the second half of a time quantum. These
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Figure 4-1: Cache allocation to a process approaches a steady-state value about which
the allocation varies slightly. Stone, Turek, Wolf simulate this behavior under a LRU
replacement and their own Modified-LRU. If the process has not obtained its steady-
state allocation by the time quantum midpoint, our assumption of self-similar cache
footprints does not hold. However, short transients prevent most time quanta and
workloads from falling in this range.

characteristics do not hold for all time quantum lengths and workloads. However, we

assume these characteristics without the loss of generality because it is applicable to

a large number of time quantum lengths and workloads.

For typical applications, the graph of footprint size verses time indicates that cache

allocation changes rapidly if the new allocation is quite different from the present

allocation. The rate of change slows considerably as the current allocation comes

close to the steady-state allocation. The region of time over which footprint growth

significantly slows to a steady-state allocation is often referred to as the "knee" of the

graph. Past this time, cache allocation varies over a range centered on a long-term

asymptote. Stone et al. simulate and model this behavior as shown by the LRU and

Calculated pair of curves in Figure 4-1[19, p. 1062].

If the footprint has not grown to its steady-state allocation by half of the time

quantum, our assumption of equivalent footprint sizes during time quantum halves

does not hold. In this case, the footprint continues to grow steadily during the second

half of the time quantum. We argue that because the transient in cache allocation is

very small, most time quanta and workloads do not fall in this range.

Our experiments indicate that this assumption is valid. We analyze various multi-
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process workloads using a round-robin scheduling policy. We specifically look at

four different time quanta, Q-=100, 1000, 10000, 100000. Each workload execution

is simulated for 1000 distinct time quanta (1000*time quantum length) data cache

references. In each case we measure the number of distinct virtual addresses accessed

in each time quantum half. Figure 4-2 reveals that the number of virtual addresses

accessed during the first half of the time quantum is approximately equal to the

number of virtual addresses accessed during the second half of the time quantum.

This indicates that cache allocation at the midpoint of the quantum is sufficient in

a fully associative cache in which each cache line only contains data for one virtual

address (cache-line size of 1 word).

For a fully associative cache having a cache line size of one word, there is a strong

correlation between virtual address access patterns and cache allocation. However,

this correlation may not exist for larger cache line sizes. For example, assume that

100 distinct virtual addresses are accessed during each half of the time quantum.

A cache line size of one indicates that 100 distinct cache lines are accessed in each

quantum half. A cache line size of eight indicates that between 13 and 100 distinct

cache lines are accessed in each quantum half; it does not indicate that the number

of cache lines accessed in each time quantum half is equal. If the referenced virtual

addresses are distributed over the same number of cache lines in each quantum half,

then virtual address access patterns are a good indication of whether or not the cache

allocation granted to the process at 2 is sufficient to maintain cache performance in

a fully associative cache.

To obtain more precise cache allocation statistics, we measure the number of

distinct cache lines accessed in each time quantum half, assuming a cache line of eight

32-bit words and an infinite number of cache columns, each containing 128 sets (4KB

column). Figure 4-3 indicates that the cache allocation obtained at halfway through

the time quantum is large enough to hold the cache lines that will be accessed during

the second half of the time quantum in an infinite-sized fully associative cache.

In order to determine whether or not allocation is sufficient on a per set basis, we

look at the distribution of these cache lines within a 4KB page. By measuring the

45



Number of Distinct Virtual Addresses Accessed During 2nd Half of Time Quantum,
Normalized to First Half
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Figure 4-2: Bar graph detailing the average number of distinct virtual addresses
accessed in the second half of the time quantum, normalized to the the number of
distinct virtual addresses accessed during the first half of the time quantum. Results
are shown for multiple DIS and SPEC benchmarks, and time quantum lengths of 100,
1000, 10000, and 100000 memory references.
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Number of Distinct Cache Lines Used During Second Half of Time Quantum,
Normalized to First Half
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Figure 4-3: Bar graph detailing the average number of distinct cache lines accessed in
the second half of the time quantum, normalized to the the number of distinct cache
lines accessed during the first half of the time quantum. A 32-byte cache line and a
4KB column is assumed. Results are shown for multiple DIS and SPEC benchmarks,
and time quantum lengths of 100, 1000, 10000, and 100000 memory references.
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number of cache-line-sized chunks of memory that map to the same position within

a page, we can determine the number of distinct cache lines mapping to the same

set that are accessed during a time quantum half. If the number of distinct cache

lines accessed within the set during the first half of the time quantum is greater than

or equal to the number of cache lines that are accessed within the set during the

second half of the time quantum, for all sets, cache allocation at the time quantum

midpoint is technically sufficient for a set-associative cache. Figure 4-4 indicates that,

on average, the application uses the same number of cache lines in a particular set

during each quantum half. The difference between cache needs during time quantum

halves is characterized by the normal distribution function. For most applications the

standard deviation is quite small, although certain applications can vary its memory

access patterns widely between quantum halves. We notice a correlation between

these applications (requiring high associativity) and applications that perform poorly

under the Lame Ducks scheme. We also notice that increasing time quantum lengths

lead to a larger variance in cache access patterns between quantum halves. For smaller

time quanta, as in 100 memory references, cache allocations granted within a set

during the first half of the time quantum may differ from the cache allocation needed

after the time quantum midpoint is almost always sufficient. If not, an additional one

or two cache lines is generally sufficient.

Assuming an infinite-sized cache allows us to be conservative in determining which

cache allocations fall in this category. If we take cache capacity into account, cache

allocations obtained at g may consist of entire sets (if we are referring to a set2

associative cache), or the entire cache (if we are referring to a fully associative cache).

In this case, the cache allocation to the process is constrained by the cache itself.

The process can not obtain a larger cache allocation during the second half of the

time quantum. So cache allocations obtained at Q are large enough to maintain the

performance of the process, despite the fact that footprint characteristics may differ

between quantum halves.

By showing that the cache allocation obtained at 2 is enough space to hold the

cache lines needed after 2, we argue that with a smart replacement policy the pro-
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Figure 4-4: Histograms detailing the difference between the number of cache lines
accessed during the second half of the time quantum and the number of cache lines
accessed during the first half of the time quantum, on a set by set basis. A x-
coordinate value of negative two indicates that two fewer cache lines were accessed
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Histograms are shown for two DIS benchmarks (Dm and Iu) and multiple SpecCPU
benchmarks. Data for time quantum lengths of 100, 1000, 10000, 100000 are shown.
Notice that most applications exhibit a normal distribution about 0, and the standard
deviation increases with time quantum length.
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cess(es) can maintain the same level of performance by constraining its footprint at

Q by allowing its footprint to grow until the end of its time quantum.

4.2 Cache Allocation During a Time Quantum

If we graph the cache needs of a process during a single time quantum against per-

centage of time quantum elapsed, we obtain a convex curve (resembling a hill) that

equals zero at the beginning and end of a time quantum. At the beginning of its time

quantum, the current process only accesses a few cache lines and therefore needs only

a few cache lines to ensure a cache hit. Initially, the curve looks very much like the

transient portion of the cache allocation curve. As the quantum elapses, the process

uses more of its working set, thereby increasing the number of cache lines it must

keep resident in cache. As the time quantum ends, memory references of the process

are made from a smaller set of cache lines. Finally on the last memory reference of

the time quantum, the process requires that only one cache line be resident in cache

to obtain a cache hit.

If we look at the cache needs of a process over multiple round-robin cycles of

time quanta, it becomes clear that it is advantageous for the process to maintain

ownership of at least a few cache lines during its dormant phase. These cache lines

help mitigate the effect of cold-start misses incurred when the process becomes active

again. The second graph in Figure 4-5 confirms that this is true by graphing Ideal

cache allocations to a process during a time quantum. Again we have a convex curve,

but this hill lies on top of a plateau. This plateau is space allocated for shared

variables that will be accessed during the next active time quantum. The hill is space

allocated for local variables. In this manner, the Ideal replacement policy limits the

amount of cache pollution a process can cause to the footprints of other processes.

LRU cache allocations to a process during a time quantum are often in excess

of how much space the process actually needs. We compare hit rates of Li cache

size N KB using the LRU replacement policy with an Li cache of size N KB using2

the Ideal replacement policy. For every workload and time quantum simulated, Ideal
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Figure 4-5: (a) Cache allocation required by a single process during a single time
quantum, (b) Fpppp Mgrid and Applu are scheduled in a round-robin fashion, with
equivalent time quanta of 100,000 memory references. The cache allocation granted
to Fpppp over a cycle of time quanta is graphed as a percentage of a 16-way set
associative 64 KB $L1. Cache allocations are shown for Ideal, LRU, Lame Duck,
LDV and Intelligent Lame Duck replacement policies.

outperformed a cache twice the size running LRU. Ideal makes more efficient use of

the cache than LRU, and so it outperforms LRU even if the number of cache lines

accessed during quantum halves is not equal.

Lame Duck dynamically constrains the footprint size of each process, thereby cur-

tailing the excess cache allocation to any particular process and maintaining dedicated

space for shared variables. We define shared and local variables as the two types of ad-

dresses encountered during a time quantum. Shared variables are addresses accessed

during both quantum halves. Local variables are addresses accessed exclusively dur-

ing a time quantum half. (The status of an address may change over different time

quanta; currently we are only concerned with access patterns within a single time

quantum.) By constraining footprint growth, Lame Duck attempts to mitigate the

cold start of processes by leaving useful data in the cache for each process to use the

next time it is executed. By definition, Lame Duck tries to keep shared variables in

the cache.

For some workloads, Lame Duck cache allocations over a time quantum closely

mirror the characteristic "plateau" found in Ideal cache allocations, while LRU's
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allocations are significantly different. Lame Duck curtails excess cache allocations

granted under the LRU scheme. By virtue of constraining footprint size, Lame Duck

dedicates some amount of cache space to the current process. The policy updates the

partition every time quantum. Although the partition is not updated at very small

time intervals, Lame Duck is an improvement upon the statically defined partitions

used in the aforementioned cache partitioning scheme.

4.3 Performance Analysis

In this section we present the results of trace-driven simulations of set associative

and fully associative two-level caches in which $L1 cache sizes range from 16 KB to

256 KB, and $L2 cache sized range from 32 KB to 640KB. Each column contains

128 sets, and each cache line contains eight 32-bit words yielding a 4KB column.

The simulations compare caches managed by a conventional LRU algorithm to those

managed by our Lame Duck algorithm. The results are grouped into three sections

which evaluate the original Lame Duck Policy, LDV and the Intelligent Lame Duck

Policy respectively.

For simplicity, all simulations contain two or more processes running in a round-

robin fashion having identical time quanta. All processes execute for the entire dura-

tion of the simulation; at no point during the simulation does the number of scheduled

jobs or the round-robin ordering change. In addition, each process executes for an

entire time quantum length. Each workload is simulated for 50-150 million references,

depending on the number of processes interleaved.

Simulations are constructed in the following way:

1. Specify a workload that exhibits certain characteristics:

{small/large working sets, data sets, number of processes, amount of streaming
data, etc.}

2. Choose replacement policy:
{Lame Duck, LDV, Intelligent Lame Duck, LRU, Ideal}

3. Choose cache associativity:

{set associative, fully associative}
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4. Choose a cache size:
$L1::{16, 32, 64, 96,128,192, 256}KB
$L2::{32, 64, 80, 128, 256, 320, 640}KB

5. Choose a time quantum length:
{100, 1000, 10000, 100000} memory references

6. Simulate workload execution using hiercache

4.3.1 Performance Metrics

Each simulation is evaluated on the basis of two metrics, hit rate and run-time cost.

Hit rates are calculated as the percentage of cache hits among all memory references,

and are obtained with respect to individual processes as well as aggregate workload.

Run-time cost is approximated by calculating the average number of cycles the pro-

cessor must wait on each memory operation based on statically designated costs.

Table 4.3.1 lists the cycle costs associated with each memory operation outcome for

a two-level cache.

Hit rate allows us to compare efficiency of cache usage between various replacement

policies. Identical simulations (workload, cache characteristics, time quantum) are

carried out for each replacement policy. We compare Lame Duck with LRU and

Ideal, to show not only how the policy does with regards to the standard but also

how closely the policy models the behavior of an "oracle", the optimal attainable

performance.

Cycle cost is a useful metric because it allows combined $L1 and $L2 hit rates to

be compared easily between replacement policies. For some workloads, Lame Duck

and LRU hit rates are nearly equal for $L1 caches. At times, Lame Duck yields hit

rate degradation in $L1 caches coupled with a significant increase in $L2 hit rates.

We incorporate $L1 and $L2 hit rates into a single value by using the memory access

cost model in Table 4.3.1.

As the gap between processor and memory speeds widen, the cost associated with

cache misses will increase.
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cost
hit in $L1 1
miss in $L1, hit in $L2 10
miss in $L1, miss in $L2 100

Table 4.1: Cost of Memory Operations Approximated in Cycles

4.3.2 Lame Duck

First we look at Lame Duck performance in fully associative caches. Although most

caches are set-associative, fully associative caches are easier to think about; the effects

of set contention can be disregarded.

Fully Associative Caches

For fully associative caches, Lame Duck hit rates are very close to those of LRU. $L1

hit rates are within 0.1% of each other. For workloads consisting of a large number

of applications (in our studies, larger than 5 applications), Lame Duck hit rates are

typically the lower of the two. This finding underlines the fact that Lame Duck must

be used with discretion; it does not perform well for all workloads and time quanta.

For workloads consisting of a large number of applications (each desiring cache space),

Lame Duck is unlikely to yield performance improvements. In this case, Lame Duck

constrains footprint size despite the large probability that a process' entire footprint

will be evicted over a cycle of time quanta (assuming a round-robin scheduling policy).

This scheme proves detrimental to cache performance when cache misses incurred as

a result of preventing footprint growth that cannot be amortized over cache hits from

saved state. Figure 4-6 shows Lame Duck and LRU hit rates for a 36 process workload

on a fully associative 64KB $L1 cache. Notice that for increasing time quanta hit rates

for both policies increase significantly, yet Lame Duck does not outperform LRU.

Lame Duck performance cannot be so easily generalized for workloads containing

fewer applications. Memory access patterns of each application and time quantum

length both play crucial roles in determining where Lame Duck performs well.
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Figure 4-6: Hit rates obtained for the interleaved execution of 36 DIS and SPEC
benchmarks under Lame Duck and LRU replacement policies. Hit rates are given for
a fully associative two-level cache, 64 KB $L1 and 80 KB $L2

A textbook use for Lame Duck is in conjunction with streaming applications.

Lame Duck prevents the streaming application from polluting the entire cache with

stagnant data and evicting the working sets of other processes. The application,

Mcf[3], streams over 12 million addresses. Memory references in this range are sparse

and exhibit some locality. Interleaved with this application is Data Management (Dm)

[1]. Data Management also has a large footprint; its data set spans nearly seven

million addresses. However, they only account for a minority of the memory accesses;

80% of all references are stack references (approximately 4K addresses).

While Mcf exhibits little locality, Dm exhibits strong locality. Lame Duck im-

proves Dm hit rate as we suspect. However, Lame Duck's effect is limited since both

applications have large footprints and tend to pollute each other's cache allocation.

Figure 4-7 shows Lame Duck and LRU hit rates for a time quantum length of 10,000

references and various cache sizes.

Workloads consisting of applications having small working sets also benefit from

Lame Duck. Fpppp, Mgrid, Applu are SpecCPU Benchmarks [3], each of which can

contain their working set in 8KB of cache. Although each process contains many

small streams, they exhibit strong locality. Each cache line is accessed multiple

times consecutively, resulting in few capacity misses; most cache misses are cold-
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Cache Size vs. Hit Ratio Cache Size vs. Hit Ratio
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Figure 4-7: (a) Lame Duck and LRU hit rates obtained by simulating Dm and Mcf in
fully associative $L1 caches of sizes 16KB, 32KB, 64KB, and 96KB for a time quantum
length of 10,000 memory references. (b) Lame Duck and LRU hit rates obtained by
simulating Fpppp, Mgrid, and Applu in fully associative caches of sizes 16KB, 32KB,
64KB, and 96KB for a time quantum length of 100,000 memory references.

start misses. Figure 4-7 shows Lame Duck and LRU hit rates for a time quantum

length of 100,000 references and various cache sizes. We see an increase in cache hit

ratios from 98.71% to 98.84%, a 10% reduction in miss rate. For smaller time quanta

and the same cache size, Lame Duck $L1 hit rates are slightly less than LRU (within

0.05%)

Although increases in $L1 hit rates are small, significant increases in $L2 hit rates

boost Lame Duck performance with regards to the cost metric. Figure 4-8 graphs cycle

costs of Lame Duck and LRU. The graph indicates that for a time quantum of 100,000

memory references and a fully associative two-level cache (64KB $L1 and 80KB $L2)

using the Lame Duck replacement policy, memory operations cost almost 6% less than

it would on the same cache using an LRU replacement policy. Admittedly, gains are

not universal, even for this workload. For smaller time quanta, memory operations

made under the Lame Duck policy cost more than under LRU.
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Figure 4-8: Average cost (in cycles) of LameDuck and LRU memory operations based
on $L1 and $L2 hit rates and statically defined costs. Fpppp Mgrid and Applu mem-
ory costs are calculated for various time quantum lengths assuming a fully associative
two-level cache, $L1 64 KB and $L2 80 KB.

Set Associative Caches

We notice that that Lame Duck exhibites significantly different behavior when one

considers set associative caches. For example, workloads consisting of application

having large footprints, such as Mcf and Dm, yield Lame Duck performance gains for

a fully associative cache; however, performance decreases for set associative caches.

Lame Duck performance also decreases for workloads in which a large number

of processes aggressively compete for cache space. Figure 4-9 shows $L1 hit rates

and memory operation costs for an application consisting of nine applications in a

two-level cache (96KB $L1, 128KB $L2). Lame Duck hit rates perform up to 35%

worse than LRU hit rates, and memory operations cost up to 40% more than LRU.

It is not surprising that Lame Duck does not perform well for this type of workload

in a set associative cache since it did not yield significant benefits for the same in a

fully associative cache.

In previous sections we argue that self-similar footprints result from fairly regular

cache line access patterns, and as such the number of cache lines accessed within a

set during the first half of a time quantum is always nearly equal to the number of

cache lines accessed in that set during the second half of a time quantum. Thus cache
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Figure 4-9: Memory accesses made by nine Spec and DIS Benchmarks were simulated
on a 24-Way set associative 96 KB $L1 cache. (a) Lame Duck and LRU hit rates.
(b) Lame Duck and LRU memory operation costs.

allocations obtained at time quantum midpoints are technically enough to maintain

cache performance while constraining footprint growth. However, Lame Duck sim-

ulations for set associative caches indicate that constraining process footprints at Q

generally yields sub-LRU hit rates and memory operation costs. We explain this by

noting that constraining footprint size at halfway through the time quantum can ef-

fectively halve cache associativity available to each process. There is an important

distinction between halving cache capacity and halving cache associativity. Cache

designers often choose to decrease column size over decreasing cache associativity.

One reason is that higher associativity provides the cache with greater flexibility in

determining cache line placement, which leads to less set contention.

Not all processes have self-similar footprints. As a result, cache needs during the

first half of a time quantum provide no insight into cache needs during the second

half of the time quantum. A process may access many lines in a particular set after

the time quantum midpoint. If the process owns only a few cache lines in that set,

or worse yet does not own any lines in that set, the application's hit rate will suffer

very noticeably. This is particularly problematic for applications having "hot sets" in

which a process uses a limited number of cache sets, but many cache lines mapping

to that set are accessed. A good example is an application that strides through a
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large array such that all accessed indices map to a few sets.

Swim, a Spec95 benchmark, exhibits a very particular memory access pattern. The

application consists of ten interleaved streams. These streams move very slowly and

in unison. Each stream accesses cache lines from the same set, and each cache line

is accessed multiple times, as depicted in Figure 4-10. However, once the application

moves past the current set of addresses, it does not access them again. This peculiar

behavior makes Swim a nightmare for Lame Duck. The fact that multiple streams

are accessing the same set simultaneously means that the application requires high

associativity to store its working set in cache. For typical streaming applications

this would not matter since each address is only accessed once; Swim differs radically

since it exhibits local temporal locality. Each stream accesses the same cache line

on the order of twenty times consecutively. Afterwards the cache line is not accessed

again. Swim requires high associativity to do well; in a cache having low associativity,

constraining the size of Swim's footprint at any point during the time quantum is

a bad idea. Figures 4-10 graphs $L1 and $L2 hit rates for Swim, Mgrid and Image

Understanding, the latter is a Data Intensive Benchmark while the two former ap-

plications are Spec95 benchmarks. Hit rate decreases in $L1 and $L2 lead to high

memory operation costs, up to 80% more than LRU costs. Figure 4-10 depicts costs

for a 16KB $L1 cache.

This is not to say that Lame Duck performs poorly for set associative caches on

the whole. Workloads consisting of multiple applications having small working sets

exhibit performance gains under Lame Duck for set associative caches. Two such

workloads consist of interleaved traces of three Fpppp applications, and the second

of Fpppp-Mgrid-Applu. The former shows strong performance gains for both hit rate

and memory operation cost, with $L1 hit rates outperforming LRU by as much as

22.6% and costs up to 11.8% lower than LRU. The performance gains of the latter are

more modest and are specific to long time quantum lengths, e.g. 100,000. Figure 4-11

shows hit rates and memory costs for the Fpppp application in a 16KB $L1 cache and

32KB $L2 cache.
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4.3.3 Lame Duck Variation

While Lame Duck performance gains over LRU do exist for set associative caches, the

gains are specific to a certain time quantum lengths and cache configurations. Which

simulations yield positive Lame Duck performance is highly dependent on workload

characteristics. In order to address poor performance in set associative caches, we

study a variation of the Lame Duck cache replacement policy. Instead of constraining

cache footprint size at the time quantum midpoint, we allow a process to continue

growing until it owns half of the cache lines in the targeted set. This guarantees each

process at least of the cache available for its use. While this does not remove the

effect of halving cache associativity to a process, it ensures that the process obtains

at least half of its optimal allocation within a set, even if new sets are accessed during

the second half of the time quantum. Note that this algorithm is not meant for fully

associative caches since that would require the process to own half of the cache before

recycling cache lines.

This modification avoids many of the bad cases for original Lame Duck. For exam-

ple, for workloads consisting of six, nine, twelve and thirty-six interleaved processes,

LDV performs just as well if not better than LRU for multiple caches size and time

quanta.

For applications having large footprints, simulations using LDV on a set associa-

tive cache behaves similarly to Lame Duck in a fully associative cache; Lame Duck

(fully associative) and LDV (set associative) outperform LRU for the same time

quanta and cache sizes. Figure 4-12 shows hit rates for Mcf and Dm in various cache

sizes and associativities, given a time quantum of 10,000 memory references.

For applications having small working sets, LDV once again outperforms the orig-

inal Lame Duck policy. Unlike LRU, LDV achieves better or equivalent hit rates as

compared to LRU for short time quanta (e.g. 100) as well as long time quanta.

Performance improvements made possible by changes to the original Lame Duck

policy do not hold for all workloads. Applications requiring highly associative caches

to perform well, such as Swim, are still a source of severe hit rate decreases and mem-
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Figure 4-12: Dm Mcf $L1 hit rates as simulated in $L1 caches of size 16KB, 32KB,

64KB, and 96KB for time quantum length of 10,000.

ory cost increases (with respect to LRU; LDV obtains better hit rates and memory

costs than Lame Duck). This is not surprising since we have already established

that the manner in which LDV constrains footprint size can effectively halve cache

associativity.

We solve this problem by introducing random hashing [10, 11]. Random hashing

decreases set contention for any individual set by re-mapping cache lines to sets other

than the one indicated by the specified bits of the relevant physical address. This

is key to improving Swim cache performance; hashing removes Swim's need for high

associativity by decoupling the streams within the application. As a result, hit rates

for Lame Duck, its Variation, and LRU improve drastically. However, since Swim

with hashing behaves similar to typical streaming applications, Lame Duck is able to

outperform LRU, both with regards to hit rate and memory operation costs. Figure 4-

13 graphs memory operation costs obtained under LDV using a 96KB $L1 cache and

128KB $L2 cache. Values for simulations with and without hashing are shown.

Even though LDV improves upon Lame Duck performance, LDV as a whole per-

forms the same as LRU. We can at least partially explain why it does not do better

by noting that although Lame Duck does not assume locality between processes, it

uses the same metric as LRU to decide what cache line should be evicted. Constrain-

ing footprint size prevents cache pollution to a degree, but the right cache lines still
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Figure 4-13: (a)Memory operations costs without hashing the address, as calculated
via simulation of a 96 KB $L1 and 128 KB $L2 cache. (b) Memory operation costs
with hashing for the same cache configuration.

need to be kept in cache. The goal of Lame Duck is to keep shared variable in cache

between time quantum halves. If Lame Duck does not do this well then constraining

space will decrease cache performance; this is specifically true if locality arguments

do not apply to a particular process. By allowing a process to increase the size of its

footprint, the replacement policy is allowed a margin of error. An intelligent replace-

ment policy would use the cache more efficiently, thereby making recycling of cache

lines beneficial.

4.3.4 Intelligent Lame Duck

For workloads consisting of applications with large footprints, Intelligent Lame Duck

$L1 hit rates outperform both Lame Duck and LRU. In order to measure how close

the policy performs to optimal, we compare Intelligent Lame Duck hit rates with

Ideal hit rates. Although Intelligent Lame Duck does not make significant progress

in bridging the gap between LRU and Ideal hit rates, we notice that Intelligent Lame

Duck performs almost exactly the same as using an Ideal policy on half the cache

size.

For workloads whose performance is severely limited by cache capacity, it is un-

likely that that a given process will have cache lines resident in cache when it regains
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Time Quantum vs. Hit Ratio Time Quantum vs. Hit Ratio
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Figure 4-14: Intelligent Lame Duck hit rates obtained for Iu Swim Mgrid in a (a) 32

KB $L1 cache. (b) 64 KB $L1 cache. Intelligent constraining of cache footprint size

can improve Swim's cache performance.

control of the processor. Even if the cache has access to future information, it may be

of little use if no single process can fit its footprint in the cache. Since constraining

cache footprints size is detrimental to such workloads, we expect a noticeable differ-

ence between Intelligent Lame Duck and Ideal hit rates for the same cache size. If

cache capacity does not place severe constraints on cache performance, Ideal of cache

size N KB and Ideal in a cache of size i KB is vrulyeul

For set associative caches, LRU and LDV obtain better hit rates and memory op-

eration costs than Intelligent Lame Duck on applications requiring high associativity.

Swim (without hashing), our running example of such an application, obtains the best

hit rates under LRU for most cache sizes and time quanta. For a 32KB $L1 cache,

LRU obtains better hit rates than Intelligent Lame Duck, but Intelligent Lame Duck

obtains better hit rates than LDV. In this case, efficient use of the cache outweighs

the value of a slight increase of cache allocation to the process. A significant increase

in cache allocation, as given by an LRU replacement policy, outweighs efficient use

of effectively half the cache. Figure 4-14 depicts Iu[1] Swim Mgrid hit rates obtained

using a 32KB $L1 cache.

We notice that for a $L1 set associative cache of size 64 KB, Intelligent Lame

Duck outperforms both LRU and LDV. In this case, halving cache associativity by
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Figure 4-15: Intelligent Lame Duck hit rates are very close to optimal for workloads
consisting of applications having small working sets.

constraining footprint size does not pose a significant limitation on the cache per-

formance for this workload, as long as the space allocated to the process is used

efficiently. Figure 4-14 depicts Iu Swim Mgrid hit rates obtained using a 64KB $L1

cache. These results show that although in the general case it almost never makes

sense to constrain the footprint of Swim at the time quantum midpoint, in particular

cases it can lead to performance gains over LRU.

Intelligent Lame Duck also obtains hit rates very close to Ideal for workloads con-

sisting of applications having small working sets. For a 256 KB $L1 cache, Intelligent

Lame Duck hit rates are within 0.05% of Ideal. Figure 4-15 shows Fpppp Mgrid Applu

hit rates obtained by both replacement policies for various time quantum lengths.

Workloads consisting of applications having large footprints perform well in caches

using the Intelligent Lame Duck replacement policy. Simulations interleaving traces

of Dm and Mcf yield Intelligent Lame Duck hit rates that surpass LRU and Lame Duck

Variation hit rates. As we expect, Intelligent Lame Duck hit rates are not very close

to optimal; in fact, they are closer to LRU than to Ideal. We attribute this behavior

to the streaming nature of Mcf and LRU's inadequacy in dealing with streams.

For the first half of the time quantum, the cache allocation of each process grows as

under a LRU replacement policy. This allows Mcf to pollute the cache with data that

will not be accessed again, resulting in the eviction of many cache lines belonging to
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Dm. Although Lame Duck can help curtain the damage streaming applications inflict

on the cache footprints of other processes, (as is shown by Intelligent Lame Duck's

improvement over LRU), it can not outperform a policy that never allows streaming

data to be cached. As a result, Intelligent Lame Duck hit rates for this workload are

not comparable to Ideal hit rates obtained using a cache half the size. Figure 4-12

shows Dm Mcf hit rates for a 64 KB $L1 cache. Notice the gap between Intelligent

Lame Duck hit rates and Ideal hit rates. Ideal for a $L1 cache of size 32 KB is also

plotted on this graph.

In addition, Ideal hit rates for a cache of size N can be noticeably higher than

Ideal hit rates for a cache of size I, (increased cache size decreases capacity misses,

which is often a source of hit rate degradation for processes having large footprints).

This further widens the gap between bit rates obtained by Intelligent Lame Duck and

Ideal.

We only simulate Intelligent Lame Duck in $L1 caches, so no memory operation

cost approximations were calculated for comparison with LRU and other Lame Duck

policies.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

The main contribution presented in this thesis is the exploration of a cache replace-

ment policy that considers the effect of context switching between multiple processes

upon cache performance. While LRU often provides near-optimal hit rates, in truth

it is a static policy that assumes locality of reference between memory accesses of

different processes. This false assumption can result in sub-optimal cache allocations

to processes and the degradation of cache hit ratios.

We present Time-Adaptive algorithms, a class of cache replacement policies that

does not assume locality of reference between memory acceses made by different

processes. In order to prepare the cache for the end of one process' execution and the

onset of another, Time-Adaptive algorithms constrain the footprint of the currently

executing process at some point through the time quantum. The policy fixes the cache

allocations to each process, allowing the current process only to evict its own data

from cache. By constraining footprint growth, Time Adaptive algorithms mitigate

pollution of cache footprints and keep more cache lines resident in cache between

active phases of a process, resulting in the reduction of cold start misses incurred

after a context switch.

We build upon the work of Stone, Turek, and Wolf whose "Multiprogramming Re-

placement Policy" [19] falls into the category of Time-Adaptive Caching. Their work
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set the foundation for this research and posed the following questions: "For multi-

programmed systems, what is a practical means for implementing a limit on cache

allocation? Does such a scheme produce sufficient benefit to justify its implementa-

tion? How large do caches have to be for non-LRU replacement to be worthwhile?"

We make progress on answering these questions through our studies of the Lame

Duck cache replacement strategy, a specific Time-Adaptive algorithm that strives to

improve overall cache hit rates by constraining footprint size once the midpoint of

the time quantum has been reached.

Lame Duck implementation requires minimal modifications to current cache ar-

chitectures. It allows interaction between the operating system and cache hardware,

enabling the cache to dynamically change cache replacement policy based on time

quantum lengths and the amount of time quantum elapsed. Lame Duck's metric for

deciding when to limit cache allocation to a process leverages information about self-

similar cache footprints. The simplicity of the metric makes it practical to implement,

but not necessarily worth the resources.

Lame Duck performance is equally dependent on a number of factors, making the

generalization of "good cases" and "bad cases" extremely difficult. Memory access

patterns of each interleaved process, time quantum, and cache size all play a role

in deciding when, if ever, constraining footprint growth and recycling of cache lines

improves cache hit rates.

Our simulations show that while Lame Duck does outperform LRU for certain

workloads and time quanta in fully associative caches, it yields little and often negative

benefit for set associative caches. The reasons for this are two-fold. Lame Duck

effectively halves the cache associativity available to a process by constraining the

size of process footprints at the time quantum midpoint. In addition, the LRU metric

for deciding which cache line should be evicted on a cache miss is not good enough.

Consider identical workloads simulated on two caches, the first of size N KB

using the LRU replacement policy and the second of size and half the associativity

using an Ideal replacement policy. For many workloads, the latter simulation will

obtain higher hit rates than the first, indicating that LRU does not use cache space
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as efficiently as it could. By constraining the cache footprint of a process we make

this problem worse, resulting in lower hit rates (even though the cache allocation may

technically be enough space to hold all of the needed data).

In order to alleviate these problems we proposed a variation of the Lame Duck

policy that allows the process to increase its cache allocation until it owns half of the

cache lines in the set. While this does not remove the effect of effectively halving the

cache associativity available to each process, it ensures that the process is granted

at least half of its optimal allocation within a set. Our simulations show that LDV

performs much better than the original Lame Duck, and that LDV often meets or

surpasses LRU hit rates for set associative cache configurations.

We provide a general guideline of when LDV can yield gains in cache hit rates

and when it will not; the lists are not exact and are not complete. The seemingly

infinite number of possible combinations of workloads characteristics, cache sizes,

and time quanta makes exact delineation nearly impossible. The usefulness of cache

partitioning must be determined on a case by case basis. In addition, many of the

measurements are subjective ("long enough", "small enough") and workloads often

meet criteria on each list. An example is Swim, a streaming application requiring high

associativity.

Our simulations show that LDV should not be used in conjunction with

- cache sizes that are not large enough to hold the working set of one process
in addition to part of the working set of another process in the workload. If a
process is constrained by the size of cache, it should be allowed to use the entire
cache.

- time quanta lengths so long that by the time quantum midpoint the running
process has evicted all cache lines belonging to other processes.

- time quantum lengths so short that the time quantum midpoint occurs during
the cache allocation transient of the process. The goal is to curtail cache allo-
cations once they have reached steady-state, not to stifle processes by denying
them sufficient cache space.

- workloads consisting of a large number of processes such that regardless of time
quantum length and cache recycling efforts, no process will have cache lines
resident in cache upon return from a context switch. This is applicable to
muliple scheduling policies, but is easily understood in the context of a round-
robin scheduling policy.

70



- workloads containing one of more processes that do not exhibit self-similar cache
footprints.

- workloads containing one or more processes requiring high associativity to ob-
tain high hit rates. Processes that have "hot sets" can suffer from a large
increase in cache misses since Lame Duck effectively halves the available cache
asscociativity.

LDV yields hit rates superior to LRU for

+ cache sizes large enough to hold multiple working sets of the workload in cache
concurrently.

+ cache sizes small enough that it can not concurrently hold the cache footprints
of all processes in the workload.

+ a middle range of time quanta, neither too large nor too small, that can only
be specified with knowledge of cache size and process characteristics.

+ workloads containing one or more streaming processes. By constraining the
cache footprint of the streaming process, Lame Duck mitigates the cache pollu-
tion it gives rise to.

+ workloads consisting of processes having small footprints. Constraining the
cache footprint of any individual process has little effect on cache performance.
The cost of a few additional cache misses at the end of a time quantum is
amortized over the reduction in cold-start cache misses incurred after a context
switch.

Although LRU incorrectly assumes locality of reference among memory references

(made by different processes) surrounding context switches, Lame Duck is not the

solution. The hit rate gains afforded by Lame Duck (and LDV) are not significant

enough or broad enough to merit diverting both hardware and software resources

to it. Lame Duck studies do indicate that constraining cache footprints during a

time quantum can be beneficial; however, better metrics are needed to decide at

what point during a time quantum to begin constraining the cache footprint of the

current process, and to decide which cache line should be evicted on a cache miss once

cache recycling has begun. Although our work does not propose a viable solution to

the reduction of cache pollution in time-shared systems, it does provide insight into

when and where a similar policy can be useful. Lame Duck sets the stage for new

Time-Adaptive algorithms that may follow.
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5.2 Future Work

There are several topics requiring further investigation that lead on from this work.

5.2.1 Instructions per Cycle

Lame Duck performance was evaluated on the basis of cache hit rates and approxi-

mations of memory operation costs, e.g. the number of cycles needed to complete a

memory operations. Our cost approximations are very loose and do not account for

the cost of pushouts, stale data that is pushed out of the cache and written to mem-

ory (generally as a result of evicting a cache line). Cache-line writebacks use precious

CPU cycles, and can interfere with process execution. Instruction level simulators

such as Simplescalar can be modified to provide accurate informations detailing the

number of Instructions per Cycle (IPC) in multiprogrammed environments. Although

Lame Duck does not perform well with regards to hit rates, it may increase IPC.

5.2.2 Scheduling Policy

All of the experiments used to evaluate Lame Duck assume a round-robin scheduling

policy and equal time quanta for each process. These assumptions simplify the study

of how context switching effects cache performance. However, most modern operating

systems use a priority-based scheduling policy with varying time quanta. While many

of the conclusions we have drawn are valid for different scheduling policies and time

quanta, it is important to fully understand the potential benefits and pittfalls of Lame

Duck in more realistic settings.

5.2.3 Workload

In addition to applications, today's microprocessors spend a significant amount of

time executing small code segments for small processes such as interrupt handlers

and daemons. Various problems with our system-level simulator prevented us from

obtaining accurate instruction traces of such processes. As a result, the workloads we

72



have simulated consist solely of DIS and SPEC benchmarks. Interrupt handlers, and

the like, might prove to be the class of workloads for which Lame Duck universally

obtains higher hit rates than LRU. If an interrupt process gains control of the proces-

sor for a short period of time, LRU will allocate cache space to the process on every

cache miss. Lame Duck preserves the data belonging to the interrupted process by

allowing the interrupt handler a small cache allocation, but then quickly curtailing

its acquisition because of its short time quantum.
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