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Abstract

A specialized board was designed to improve the performance of the Mark-II
Holographic Video system. Acting as a high speed-frame buffer, the Video Concentrator
Card takes in a computed holographic frame, stores it in Video RAM, and formats and
sends the data out to the display in analog form. In conjunction with the Avid Jupiter
HD card, the two sets of cards would make up Holo-Chidi. Holo-Chidi is designed to be
a stable and efficient method for delivering computed holographic fringes to the
Holovideo system in real-time. A data processing system, the Data Handler, was
developed to handle all the control signals on the board. Using programmable logic, the
basic framework on the Data Handler was developed. Initialization processes were
developed, as well as access process for the various components on the board.
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Chapter 1: Purpose
This Master's Thesis focuses on the issues related to the design, implementation,

and verification of a data-managing system, or Data Handler (DH). DH is the control

system for the Video Concentrator Card (VCC). It manages the control logic and

controls all the 1/0 chips on the board. The VCC acts in a similar fashion to a frame

buffer contained in all video cards for the modem PC. The purpose of this design is to

ensure that high bandwidths of data generated from multiple processor cards are

transmitted to the VCC, formatted, buffered, and then passed properly to the outputs. All

these design points must occur as efficiently as possible, avoiding any timing issues, such

as data contention and in conformity with valid setup and hold times (tsu and thold

respectively). Together, these design points and efficiency considerations create a very

vast and complex system. While many commercial frame buffer cards exist in today's

market, none can handle the magnitude of the bandwidth or processing power for the

target system of this design: holographic video (Holovideo).

The material contained in this thesis is divided into 4 main chapters. The first

chapter describes the holovideo system and how the VCC fits into that system. This

section describes the predecessor system to VCC, or CHEOPS. The main focus of the

second chapter is the general design of the VCC, with a look into the key components

design of this system. The third chapter describes techniques for designing and

developing a control logic system: the materials with which to create one, the

methodology behind complex logical systems, in depth descriptions of the language used

to create DH, and the chip on which the design will fit. Finally, the focus shifts to the

actual development of DH. Its main modules are discussed in full, from design to

implementation to verification.

The magnitude of this project is fairly vast. During the initial design stages, the

schematics and layout notes were created, and a netlist was generated. Then the project

shifted to acquisition of all the components that are contained in VCC. The components

and designs were then sent out to an independent contractor for layout, fabrication, and

assembly. Upon its return, the simulated designs of DH were tested in the actual board.

This field-testing of DH created a greater understanding on how to create a "safe" design,
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that while efficient, contains enough redundancy to eliminate possible errors that

improper control logic can create.

The main scope of this thesis is to describe how to create modules for a data-

management system. It gives a description of the requirements of the system, how to

implement the system, and the actual design of that system. The system itself is divided

into seven main modules, some containing several sub-components. The interaction of

these modules is essential for the creation of a functioning system, while allowing it to be

as easy as possible for future designers to understand. The thesis concludes with some

potential research areas that can be pursed using the components outlined in this thesis.
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Chapter 2: Holographic Video
Holographic video is an electronic imaging system that can render and display

computer generated holograms at near-video rates. Holographic video was developed by

Dr. Stephen A. Benton et. al. at the MIT Media Lab in the late 1980's.' The Mark-II

Holovideo display is the current generation of that initial work.

Overview of a Holovideo System

3-D Image

Ik Viewer

Fringe Display
Computation System.

User Interface,

Content processing

Figure 1: Overview of a Holovideo System'

Dr. Benton's group developed the Mark-Il system in the early 1990's.2 The system is

capable of producing 36-MB images as large as about 150 mm in width, 75 mm in height,

and 100 mm depth. The computation involves transforming a 3-D numerical description

of the object scene into a holographic fringe pattern.

Unfortunately, many of the possible avenues of research for this system have yet

to be explored, due to the fact that the computational tools, modulation tools and the

communication bandwidth are limited. Imagine having a holographic television in your

home, or a cardiologist having the ability to look at a moving holographic representation

of a patient's heart to "see" if any problem areas exist. These potentials cannot be

accessed by the system that currently exists. The main bottleneck for this system is the

computation hardware that is connected to the Content Processing, between the user

interface and the fringe computation. To tap the potential of holovideo, its hardware

needs to be upgraded beyond its current specifications, to allow for faster computation

and rendering.
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2.1 Background

2.1.1 Holographic Video Display

The initial work on electronic holography began in 1987 at the MIT Media Lab.

It was not until 1989, before the researchers were able to display simple geometric

patterns on the holographic display. At that time, only horizontal scan lines of low

spatial resolution were available for the display. This system only supported a single

channel, on which 2MB of data could be transmitted. By 1990, an increase in the number

of scan lines allowed a higher resolution hologram to be displayed, while three channels

of data could be supported. The following year, further progress was made, as the

display could support color images. In 1992, additional channels were added to the

display. It could now display 36 MB of data, transmitted through 18 channels, or holo-

lines, as they were called. This became available through the use of a new image

processing system, known as Cheops. Cheops had a large reconfigurable frame buffer

and also contained hardware for computing holographic data. Using this large amount of

data, the viewing size and image volume of the display were greatly increased, creating a

convincing 3-D image. 3 This version is the current model being used for research at the

MIT Media Lab.

2.1.2 Cheops

The hardware that supplies the appropriate data to the holographic display is

known as Cheops. Cheops was developed by the Information and Entertainment group at

the MIT Media Lab in 1995. The Cheops Imaging System is a compact, modular

platform for acquiring, processing, and displaying video sequences and model-based

representations of moving scenes. This hardware allowed the user to perform several

different operations on streaming data, a task, when left to software, is incredibly

computationally intensive. It has the ability to perform these tasks in parallel by using

dynamic scheduling of resources. It also contains buffers that enable slower-than-real-

time processing of data, when the demand for data exceeds the resources available. This

quality made it an ideal choice for use with the Holovideo system, which requires a

efficient and flexible frame buffer for outputting holographic data.
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The Cheops system is composed of three modules: processor, input/memory, and

output. These modules are interconnected with three linear data buses. Two buses are

capable of performing high bandwidth transfers (>100Mbyte/sec) of pixel rasters (the

Nile Buses) and the third is a 32Mbyte/sec bus supervisory control of the 1/0 modules by

the processor (the Global Bus). The system also contains 8 blocks of video random

access memory (VRAM), which is used to store data before it is processed. Data is

accessed from the VRAM and sent to specialized stream processors for manipulation or

computation. The properly modified data is then sent back into a separate portion of

VRAM, where it waits to be outputted.

Analog or Digital
Video In

Input/Memory Module(s)
Processr(up to 4)

OR-Processor Module(s)
(up to 4)

I'

41t
Nile Buses I & 2
large blocks of
ordered data
(e.g. rasters)
such 48 bits wide,
25M tran sferalsec

Output Module(s)
(up to 4)

Analog or Digital
Video Out

'High.Speed

Host
Computer

(SCSI
RSn232)

Global Bus
control and
general data
communications
32 bits wide,
8M tran sforslsec

Figure 2: Cheops System Architecture4

Through some modifications to the programmable array logic chips (PALs) used

on the Cheops and in the display software, it became a suitable component of the

Holovideo system. It provided six synchronized frame buffers to drive the 256Kx 144
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display as well as a high speed interface to host processors and a local data-flow

processing card for decoding of encoded or compressed image formats. Each Cheops

framebuffer board contained 3 output channels, which allowed 6 boards to support 18

holo-lines. Each channel includes a digital to analog converter (DAC) with 8 bits of

resolution. Each of these channels access 2.1 Mbytes of data that are outputted from the

VRAM. The 6 boards allow the system to process 36 MB holographic frames. The data

rate on the output was 110 MB/s.

With the need for high-speed data transfer systems, as well as the availability of

faster technology, the current Cheops system is no longer satisfactory for any expansion

of the Holovideo system. Until a faster architecture is in place, future research will be

severely hindered. The current programs that are contained on Cheops require out-of-

date Legacy operating systems in order to compile them. In addition to these issues, the

temperature sensitive nature of the boards requires large air-conditioners to be constantly

on, though the boards will continue to crash on occasion. All of these problems have been

a driving force in pushing for the development of a new, faster system that is reliable and

allows for holograms to be displayed and edited in real-time.

2.2 Current System

The holographic display that currently exists is composed of the aging Cheops

system and the Mark-II Holographic Video Display. The system is capable of producing

36-MB images as large as about 150x75x100 mm in width, height, and depth.

Computation involves transforming a 3-D description of the object scene into a

holographic fringe pattern. This information is then transferred to the optical setup where

the fringe patterns can actually be displayed through a specialized system designed to

diffract and focus laser light.
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2.2.1 Mark-II Holographic Video Display

The Mark-fl Holovideo display was designed to exploit parallelism whenever

possible, both optically and electronically, such that the approach could be expanded to

arbitrarily large image sized displays. To achieve the goal of a 150x75xI00mm image,

two 18-channel Acousto-Optic Modulators (AOM) were used, with each channel of a

single AOM modulating beams of red light (X = 633nm) in parallel.5 An AOM is a

crystal combined with an ultrasonic transducer that converts the complex fringe pattern

required for holography into an optical beam. The AOM takes in RF signals as an input,

where upon six tiled horizontal mirrors scan across matched to the speed of the signal in

the AOM, such that it appears the diffraction pattern in the AOM is stationary. These RF

signals come from an RF processor that takes the analog output of Cheops and converts it

into usable signals.

U

U U

rnc4uI~Ir~r5

Figure 3: Overview of the Mark-I Holovideo display 2

As the mirrors scan from left to right, one AOM provides 18 lines of rastered

image. When the mirrors return from right to left, the second cross-fired AOM provides

the next 18 lines of rastered image. A vertical scanner images each 18-line pass below the

previous one, with 8 horizontal scans in all, providing 18x8=144 vertical scan lines.

The resulting image is horizontal parallax only (HPO), with video resolution in

the vertical direction, and holographic resolution in the horizontal direction, with a 30-

15
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degree view zone. A HPO image does not require as much information to generate,

making it a good choice for Holovideo where information efficiency is important. In

order to avoid flickering on the screen, the display must be refreshed at a minimum

refresh rate of 30 frames/s. Standard television signals refresh at 60 frames/s. A frame

image consists of 36 million samples. Thus the minimum required rate of samples per

second is 1.14 billion.2 Since it was currently impossible to create that sample rate,

Cheops, with its parallel architecture was used to approach the desired rate. The analog

signal needs to have a bandwidth of 55Mhz. Cheops uses a sampling rate of 110Mhz

ensuring an output sample with no aliasing, since the sampling rate will be at the Nyquist

rate.6 Each horizontal line of the display is 256-thousand pixels of holographic fringe

pattern translating to 36Mbytes of information per frame, fed at a total data rate of

2Gpixels/sec into the display from the frame buffers.

2.2.2 Holo-Chidi

The new processor and video concentrator cards, that can handle the demand for

the computation and data transfer necessary for the increasing demands placed on

Holovideo, is known as Holo-Chidi. Chidi is the name of a Nigerian god, from which the

system derives its name. Currently in development, this system will ultimately replace

the Cheops processing system. Holo-Chidi will have the all the functionality of Cheops,

while being more efficient, scalable and stable. The system, when fully integrated, will

make development of complicated holographic images a possibility, allowing for

binocular and monocular cues to a viewer. Eventually, it will be able to accept

standardized holographic description files, and through internal computation of the

holographic fringe patterns, provide the appropriate data for the Mark-II system. The

addition of an additional piece of hardware enabled Cheops to compute holographic

fringes. Due to the limited speed of that hardware, the limited system does not allow for

the ability to modify or edit these holograms in real-time. Development is currently

underway for the system hardware that will scale-up the computational capacity of

multimedia processors and ultimately lead to real-time rendering for and computation of

computer-generated holographic stereograms and holographic frames of moving scenes

at video rates.
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The Holo-Chidi system will be used for hologram computation, data archival/retrieval

to/from a host system, and for the control of the Mark-Il. It is composed of two main

components: the set of Avid Jupiter HD processor cards and the display interface cards,

known as the video concentrator cards.

-----------------------.HOSTO

LV-Id 0 O t

F Avid
USART 0aes-5

HOST 1

Output .

V Cardt

S Avid 45ar

* __j________

HOLO-CHIDI

Figure 4: Basic Layout of the Holo-Chidi system

A Holo-Chidi system with nine Avid PCI processor cards and three display

interface cards can perform over two billion superposition (8 bit multiplication and 21 bit

addition) operations in one second. This throughput is enough to compute a 36MB

hologram frame in less than 0.6 seconds (worst case, for a hologram with only non-zero

values in its input data) and in lesser time for a hologram with sparse input data. The

system can also display the computed holograms at video refresh rates. This will enable

research in more computationally expensive algorithms, such as for full color holograms,

or ideally, full-motion holograms.

2.2.2.1 Avid Jupiter HD Processor Board

The Avid boards, which will ultimately total nine in a Holo-Chidi

implementation, were initially developed for the high definition television (HDTV)

market. It was designed to interface with HD software that provides HD-capable

17



compositing, effects, titling, and editing systems. The board contains a LVDS serial

digital interface with one input and two outputs, allowing simultaneous feeds to two

devices without loop-through. The similarities in the computation complexity of HDTV

and holograms made this board an ideal fit for Holo-Chidi. The Avid HD system is

capable of digitizing and recording uncompressed HDTV in real time.7 Utilizing the full

editing abilities of this board, holovideo will be able to display larger, more complex

holographic images that can be modified in real-time, as the display is being viewed. The

main fringe computation for the real-time display will take place on this card. It will be

modified to compute holographic stereograms by linearly superposing pre-computed

fringe elements and rendered parallax views of a scene.' The computed video data output

from the boards will need to be multiplexed together in order to pass the data efficiently

to the Mark-II. The video concentrator card will accomplish this task using a high-speed

parallel 1/0 port synchronized with a common clock signal for the entire system.

2.2.2.2 Video Concentrator Card

The display interface card, or Video Concentrator Card (VCC), formats computed

holographic data and converts it to RF analog form to feed the Acousto-Optic-Modulators

of the Mark-II holographic display system. The system has a data- encoding throughput

of up to 5 GigaBytes per second and will ultimately be capable of computing/rendering a

hologram of a moving scene at video rates. The display system is designed with: a high-

speed 1/0 interface where data is transferred from the Avid processor cards, a set of

FIFOs used to buffer data for the holo-lines being displayed, and digital-to-analog

converters (DAC) that convert the digital fringes to analog form.8 The number of DAC's

will total 18, 6 per card. Each DAC handles one holo-line of data. The first DAC

outputs the value for the first scan line, the second DAC outputs the value for the second

scan line, and so on until the first 18 scan lines are outputted. The first DAC then outputs

the value for the 19th scan lines and so on, until all 144 vertical scan lines are created.

This is only for one frame of the hologram. The system then repeats the process with the

next frame of data.

The data enters the VCC through an LVDS data receiver connected to the LVDS

transmitters of the Avid card. This card contains a high-speed data bus, controlled by a

bus arbiter contained with a processor. This processor could eventually be used to assist

18



in the computation of the holographic fringes. This card will also generate the control

signals using a programmable logic device (FPGA) that will be used to handle all the

signals needed by the chips on the board, as well as used by the scanning mirrors of the

Mark-II. The FPGA is a device, with over 500 thousand system gates, and could

eventually serve as a co-processor on the board, again improving the computational

power of the entire system.

In order to allow for an expansion of the size of the holographic display, these

cards have a highly scalable design. By increasing the number of cards connected to the

system, it will be possible to increase the number of holo-lines, and the size of the actual

holograms, assuming the proper modifications are made to the Mark-II system. This will

not only allow and increase in the display size, but will also enable the possibility of

creating a full color holographic display.
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Chapter 3: Video Concentrator Card

3.1 Overview

The Video Concentrator Card (VCC) is a device that takes computed data, stores

that data and then outputs it as an analog output. The system is being developed by the

Spatial Imaging Group at the MIT Media Lab under the supervision of Dr. Thomas A.

Nwodoh. The main design goals for this system are to:

1) Design a system that can process large amounts of data, like those necessary

for holographic applications.

2) Design a system that can properly interface and control the Mark-II

Holographic Video System.

3) Design a system that has strong computational power that can be incorporated

into future research projects.

4) Implement a highly scalable, efficient, and stable system that utilizes

parallelism whenever possible.

The VCC contains a general purpose processor, as well as a field-programmable gate

array (FPGA) that could eventually be used as a co-processor in the system. They share a

single data and address bus, as well as four blocks of SDRAM memory. The board

communicates with other boards through 2 different inputs, an LVDS interface and a

USB interface. The board also contains 6 analog outputs for communication with the RF

processor of the Mark-II system. These analog outputs are created by 6 digital-to-analog

converters (DACs). Data is supplied to these DACs from either the LVDS connection or

the USB connection. The data is also stored in SDRAM memory blocks that represent

the Video memory of the system. Various FIFO's, buffers, and latches are also placed on

the board in order to ensure stable data and avoid issues like bus contention and glitching

signals. A basic design of the system is shown below.
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Figure 5: General Block Diagram for Video Concentrator Card

I.

The VCC is designed to support high bandwidths of data. The data bus is 32 bits

wide and runs at 50 MHz. The speed of the FPGA is design dependent, but is being run

at 48 MHz to match the processor speed. The LVDS interface is 8 data streams wide and

achieves data transfer rates of 5.7 Gigabits per sec (Gbps). The USB interface can

receive 16 bits at a time and receives data at 12 Mbps.

3.1.1 Improvements upon Cheops

One of the problems of the Cheops system was that there were several

computation stages, each requiring its own computer. The holographic files were usually

rendered separately on a different machine. The data was then fed into a different

machine, which was connected to the Cheops system. If any data needed to be modified

or computed in Cheops, another delay was added, until the appropriate data was finally

outputted to the RF processor.
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Holo-Chidi hopes to improve on this design by combining all these separate

machines into one machine. On this machine, the user will be able to render or compute

the holographic data, send it immediately to the hardware, which would in turn output the

data to the RF processor. The machine would contain a back-plane that would house the

9 Avid cards and the 3 VCC's. This machine would eliminate the bottlenecks that would

occur when data needed to be transferred to the hardware, and would allow for easier

upkeep, since only one host computer would need to be maintained, for data archival and

retrieval.

3.1.2 General Design

The Video Concentrator Card needed to be designed from the ground up. The

initial board design needed to take place. The initial design also involved selecting all

the components that would best suit the design. Numerous components were compared

in order to find which ones that had the best properties required for the board. Once the

components were selected and purchased and the design was finalized, the boards were

sent to an independent contractor (DDI Advanced CAD Solutions). The contractor then

created the layout for the board, fabricated and assembled the board with the appropriate

parts. Once the board was returned, work began on the verification of the board design,

and the programming of the main components of the board. Upon completion, the board

will be integrated with the Avid Processor card. Once mated, the two systems will be

integrated into the holovideo system.

The design had to be verified for full functionality as well as errors that could

hinder the abilities of the board. Functionality, as well as cost effectiveness and space

issues, became key points in deciding many of the design decisions. The large number of

components required to support 6 channels of data led to the creation of a fairly large

board, so any unnecessary components were quickly removed. This work involved

researching and selecting the appropriate chips necessary to complete the project.

Before it could be sent for fabrication, a netlist was generated, to allow the contractor to

properly match signals to their corresponding ports on the components. This netlist also

ensured that all the power pins were properly routed, so all of the chips on the board

would be supplied with the appropriate power source.
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Upon completion, the board ended up having 9 PCB layers. It was heavily

populated on both sides. Its size was 6 inches by 12 inches. Due to the variety and

complexity of the components, the board requires 4 different power sources to enable all

of the chips: 12V, 5V, 3.3V, and 1.8V. The majority of the components require a voltage

of 3.3V, keeping the board as low power as possible. With the number of components on

the board, power considerations are a key concern. The board must be ideal for use in

Holovideo, requiring it to have as low a power source as possible.

3.1.2.1 Cadence Design Software

Before the board could be sent off for fabrication, its complete schematic needed

to be designed and verified. Cadence design software was selected as the tool to perform

this task. This program gives a point-and-click method of designing complex board

schematics. The Cadence software was selected for its ease of use, and wide

functionality. Every component of the board was carefully laid out and connected

completely. Once completed, the pins of each of these chips need to be assigned. The

software had an excellent debugger, which enabled design mistakes to be caught in the

earliest stages of design. The whole system is divided into pages, which each contain a

portion of the card, e.g. each DAC controller, along with its buffer and SDRAM, are

contained in one sheet. Due to the complexity of the system, the board required several

schematics pages of layout, 11 in total. The convenience of the Cadence software

allowed a great decrease in the time needed to complete the schematic layout of the VCC.

3.2 Hardware Functional Blocks

3.2.1 MPC850 Integrated Communications Microprocessor

The Motorola MPC850 was chosen to be the processor for the Video

Concentrator Card. The chip contains a single-issue, 32-bit version of the embedded

PowerPC core with 32 x 32-bit integer registers, used for application programming use.

This processor is integrated with a communications processor module (CPM), which

contains a special-purpose 32-bit scalar RISC communications processor.9 This two-

processor architecture is more efficient than traditional architectures because the CPM

offloads peripheral tasks from the embedded PowerPC core. One of the other advantages
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of the CPM is that it supports up to seven serial channels, including a universal serial bus

(USB) channel.
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Figure 6: Block Diagram of the MPC8509

The MPC850 will be in charge of controlling the data bus, through the use of its

internal bus arbitration system. The processor will arbitrate between the systems on the

board that require the data bus to transmit data. Once the processor releases control of

the bus, it waits for the next request for control of the bus, or asserts control itself.

Discussion of how the bus control signals work will be reserved for Chapter 5, when the

Data Handler bus control system is looked at in greater detail.

The USB port is vital in ensuring the soundness of the design of the VCC. The

processor will serves as a verification system. The USB controller that the CPM contains

will be used to send data into the VCC system. It will take some time for the LVDS

interface with the programmable Avid cards to be fully up and running. Until that section

is running, the USB port will allow frames of data to be fed into the system. The CPM

will decode this data and, once bus control is gained, the processor will place this data on

the main memory. From the main memory, the data is sent to the display memory by the

FPGA. The DAC's will convert this data to analog form and output it to the RF
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processor, without fully functioning Avid cards. Full debugging of the VCC can be

completed while the Avid boards are still being configured.

In addition to serving as a verification component, the processor might be able to

assist the Holo-Chidi system. Holographic video requires an immense amount of

computational power in order to quickly render the frames in real-time. The MPC850

might be used in future projects to assist in that computation. The VCC has been

designed to allow flexibility for the researcher to use the great processing power of the

processor to assist however they see fit. Future projects could benefit greatly from this

flexibility.

3.2.2 Field Programmable Gate Array

The Field Programmable Gate Array (FPGA) is the most important chip on the

entire board. The HoloFPGA (holographic FPGA) is the essential control interface for

the video concentrator card. It is the programmable device that contains the synthesized

VHDL code that will manage the control signals for the entire board. The FPGA will

have the responsibility for moving data through the system, storing the data in the proper

locations, and outputting the correct data values to the Holovideo system. The FPGA

also has the ability to run different applications at different clock frequencies, which is

important when dealing with different components running at different speeds. The Data

Handler system, the VHDL system in charge of the VCC control, is implemented inside

the FPGA. The Altera Apex 20K200KE FPGA was selected to control the VCC. This

FPGA has a maximum 526,000 system gates, which consists of 8320 logical elements

(LEs) and 52 Embedded System Blocks (ESBs).10 The FPGA also contains a maximum

of 376 user 1/0 pins that are available for use.

The FPGA will function as one of the bus masters on the data bus. It will be able

to gain control of the bus. Again, to ensure no bus conflict, the bus controller on the

FPGA needs to closely follow the structure of the controller on the MPC850. Care has to

be given in this design, so neither controller ends up interfering with the performance of

the other. With its immense size, the FPGA could also possible assist the processor in

computing duties for the data entering the system. It is another tool that greatly improves

the flexibility of the system. A full description on general and Altera Apex20K family
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specific FPGA architectures is given in chapter 4. Chapter 5 is devoted to the Data

Handler system contained within the FPGA.

3.2.3 LVDS Interface

The system incorporates a Low Voltage Differential Signaling (LVDS) standard

for point-to-point physical layer interface data transfer. LVDS is a high speed, low

power general purpose interface standard that allows for the ability to transfer data at

high rates. Through the use of differential signal transfer techniques, LVDS technology

delivers the bandwidth necessary for high-resolution displays, while maximizing bit rates.
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The LVDS connection will be the main method of communication between the Avid

cards and the VCC. The computed fringe patterns will be passed through the LVDS

connection, to the Display SDRAM and on to the DACs for analog conversion. Three
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LVDS receivers are required per board, and each will handle two channels of holographic

data.

The computationally intensive holovideo system requires high bandwidth in order

to allow real-time streaming of the holographic frames. The faster the throughput, the

faster the frames become available to the Mark-II Display system. In addition, LVDS

technology is not dependent on a specific power supply, such as +5V. This means there

is an easy migration path to lower supply voltages such as +3.3V while still maintaining

the same signaling levels and performance. This is useful for the Video Concentrator

Card, since the various chips need different voltage levels in order to function. The

LVDS system enables us to power this variety of chips without worrying about the

integrity of the signal. The LVDS system accomplishes high data rates, low power, and

reduced EMI effects by reducing the signal levels.

3.2.4 Digital to Analog Converter

In order for the Mark-II system to function properly, it requires RF analog signals

to drive the AOMs. Since holographic data is in a digital format when is arrives at the

VCC, it will need to be converted into an analog format. Also, the analog signals need to

be powerful enough to drive the holographic display. The Texas Instruments TVP3010

Video Interface Palette is the device being used on the board. This device can

accommodate 64-, 32-, 16-, 8-, and 4-bit pixel buses without any additional circuit

modifications. The device contains three 8-bit digital to analog converters, which are

capable of directly driving a doubly-terminated 75-4 line. The device is also highly

system integrated. It did not require any external buffer logic when connected with the

data bus. External buffers were utilized, only to detach the two data bus paths for the

inputs from one another, in an effort to avoid possible bus contention.

3.2.5 SDRAM

The SDRAMs, or Synchronous DRAMs, are the main storage component of the

VCC. This is where the frames will be stored and made available for output or

manipulation. The Micron MT48LC16M16A2 256 Mb SDRAM was selected for the

system. It contains 4 banks of 4 Megabits (Mbs), each 16 bits deep. This component was

selected for its ease of use, fast writing times, and for its storage locations of 16 bits.
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Two of these memory chips are enough to handle a 32-bit data bus. Another major

benefit of this SDRAM is its allowance of burst reads and writes. A burst transfer means

that accesses start at a selected location and continue for a programmed number of

locations in a programming sequence.13 The burst lengths of 1, 2, 4, or 8 locations, or

the full page is programmable for the READ or WRITE operations. This allowance for

synchronous burst data transfers at high speeds is essential for efficient data transferring

within the Video Concentrator Card. The quicker data can be stored, the faster it can be

outputted, or made available for possible computational purposes. The SDRAMs are

divided into two sections on the board: main memory and video memory.

3.2.5.1 Main Memory

The Main Memory is a bank of 4 SDRAM's connected to the data and address

buses. These buses are accessible to both the FPGA and the processor. The main

purpose of this memory is to store frames of data that enter the system through the USB

port. Data is stored in the SDRAM, and then it is outputted to the DACs. This SDRAM

is initially used for verification of the VCC system. Eventually, these memory banks can

be used to assist the processor and the FPGA with its processing potential. Frames can

be stored in the main memory, in order to be accessible by these devices for computation

or manipulation. This is another level of flexibility that gives the VCC great potential to

become more than a simple frame buffer.

3.2.5.2 Video Memory

The video memory is also known as the display SDRAM. This section of

memory is responsible for actually storing frames as they enter from either of the input

interfaces. The data is passed on to the DACs for conversion to analog format. There are

12 SDRAMs on the board that make up the display SDRAM. Each channel has two

associated SDRAMs. Two were necessary for the 32-bit streams of data, since the

SDRAM can only store 16-bits at any given location. Each holo-line will store data on

these SDRAMs to allow for error recovery and better streaming of holographic frames

that might be slowed due to intense computation.
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3.2.6 Flash ROM

The main purpose of the Flash ROM is to contain the boot code for the processor.

The processor will not be able to function unless it is loaded with the proper

programming. The Am29LVO40B is 4 Megabits (512K x 8-Bit), composed of eight 64

Kbyte sectors, that operates at low power levels. 14 Also, any combination of these

sectors can be erased, including the full chip. One problem with the ROM is that it

outputs only 8 bits for any address, even though the rest of the system, including the

processor, runs on a 32-bit bus. So, 4 addresses were required in order to receive one full

command for the MPC850. The Flash ROM has an access time as fast as 60 ns.

3.2.7 Alphanumeric Display

The alphanumeric display is one of the main tools to test the functionality of the

system. It displays data on 4 display modules that can display 5x7 dot matrix characters.

It contains RAM memory to allow displayed data to be stored until over-written by newer

data. The Infineion DLO-1414 alphanumeric display has to ability to output 128 special

ASCII characters. 15 For the purpose of testing, the board only requires the display to

show hexadecimal numbers.
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With this device, the actual state of the system can be viewed. Two of these

displays were used on the board. Using these 8 character displays, any set of signals

could be viewed. As the system operates, the addresses to which the holographic

information is being written can be displayed, or the data that is actually being

transmitted. This flexibility improves the ability to verify the functionality of the board

at a faster pace.

3.3 Implementation

Once these functional blocks were selected for the VCC, they needed to be

acquired and assembled on the board. Upon completion of the assembly, the boards were

then ready to be tested. The initial power up and test of the board proved that it was

running at full power and all of the components were on. Now, the focus of the projected

shifted to the development of the data processing subsystem that would control the

functions of all the hardware.
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Chapter 4: System Control Logic
In order to understand how to design a control system for the VCC board, one

must first understand what designing a system entails. A specific methodology must be

set in order to avoid confusion and allow for a stable design. The tools required for such

a task must be studied and understood to allow the design to function at peak efficiency.

The device on which the design will be placed must be looked at as well. Every device

has its own abilities, which can benefit and also hinder design efficiency.

4.1 General FPGA Overview

The device that we will be using to handle the control design for our board is an

FPGA, or Field Programmable Gate Array. An FPGA is essentially a two-dimensional

array of programmable logic cells. These cells can communicate with one another and

also with 1/0 pins connected to the device. Through the use of routing wires, or

channels, the different programmable elements can communicate with one another in the

device. A programmable, switching network, known as interconnects, are placed in a

grid-like structure made of vertical and horizontal columns. These interconnects can be

enabled or disabled to create logical communication paths between the logical cells. The

channels also connect the logic cells to the 1/0 pins that enable the programmed logic to

interface with the rest of the system.

FPGAs have many desirable qualities that are essential for the efficient operation

of the VCC. Reprogrammability is one of the most important benefits. FPGAs can be

reprogrammed hundreds of times, which is important when debugging a design. If this

option did not exist, it would be impossible to implement a perfect design on the first

attempt. Also, due to the flexible nature of the duties of the FPGA in the VCC,

reprogrammability allows the researchers to experiment with how it is used in the system.

FPGAs are versatile devices. They can handle multiple designs within its logical

structure. In the VCC, the FPGA will need to handle the control logic of the system, but

could also contain some processor functions, if desired. Since all of these abilities fit

within one device, space on the crowded VCC is saved.
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Though ideal for the VCC, FPGAs do not come without their share of drawbacks.

Timing analysis of an FPGA can prove to be difficult. Signal propagation delays become

a function of the number of cascaded logic cells, the number of programmable

interconnects through which the signal propagates, the technology used to design the

system, fan-out, and 1/0 cell delays.16 If this information cannot be determined, accurate

estimates of system performance and propagation delays will be difficult to ascertain.

Software packages that contain static timing analyzers can assist in determining these

values.

There are many manufacturers of FPGA's. Xilinx, Altera, and Lucent are some

of the more commonly known ones. An Altera device was chosen as the FPGA for the

VCC. Several factors contributed to this choice. Altera devices are inexpensive, relative

to the amount of gates contained on the device. The designers of the VCC have some

experience with Altera products and software packages. This allows design,

implementation, and verification to be completed in a faster time frame. Also, the Altera

chips are incredibly flexible, as they can be implemented to hold standard logic, or to act

as memory, through the use of the Embedded System Blocks (ESBs).

4.2 Altera APEX 20K200E Design

4.2.1 Overview

The APEX 20K200E device, containing 526,000 system gates, is designed with

the Multicore architecture, which combines look-up table (LUT)-based logic, product-

term-based logic and memory into one package. LUT-based logic provides optimized

performance and efficiency for data-path, register-intensive, mathematical, or digital

signal processing designs. Product-term-based logic is optimized for complex

combinatorial paths, such as complex state machines. Applications involving all three

forms of logic can be integrated in the FPGA. Embedded system blocks (ESBs) are used

to implement memory and product-term-based logic, while logical elements (LEs) are

used when implementing LUT-based logic. Table 1 summarizes the features of the

APEX 20K200E.
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Features Device

APEX 20K200E

Maximum System Gates 526,000

Typical Gates 200,000

LEs 8,320

ESBs 52

Maximum RAM Bits 106,496

Maximum User 1/0 Pins 376

Table 1: APEX 20K200E Device Features"

The signal interconnections, within the device and with the 1/0 pins, are implemented

using the FastTrack Interconnect system. It is a series of fast, row and column routing

channels that run throughout the length and width of the device.' 0 A block diagram

relationship between all these components is shown in Figure 9.

Four-inputWT
fordab path and
DSP fundkm.

Prcviuct-rm
integrafion Ar
hkh-speedi
cwikvibocand

FatTack
4tecomet

1mory mo moy I

10ds suppOft
PCI, GTL+,
SS A-L 0VE,
and other
standadl.

Fleible integra in
of embeJdd
menoyindudlng
CAM, RAM,
ROA( FIR and
othermenmy
funcions

Figure 9: APEX 20K200E Device Block Diagram"0

Due to the large number of components on the board, an FPGA with enough I/O

pins to connect to all of the control ports of these devices was required. With its 376 user

I/O pins, the APEX 20K200E was ideal for the unique and demanding requirements of

the VCC.
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The Data Handler data processing system was implemented with the APEX

20K200E. The FPGA has enough gates to not only implement this system, but also to

allow for further research possibilities as other designs can be included in the device.

This FPGA provides the entire board with flexibility necessary in a research

environment.

4.2.2 Logic Elements

The logic cell, the basic unit of a FPGA, is implemented as a Logic Element (LE)

in the APEX 20K200E. Each LE contains a 4-input LUT, which can implement any 4-

input function. 10 LEs compose a logic array block (LAB). Figure 10 gives the basic

structure of the LE and how it connects to the various interconnects.
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Figure 10: APEX 20K200E Logic Element 0

Each LE contains a programmable register, which can be configured for D, T, JK, or SR

operation.10 For combinatorial functions, a bypass exists to allow the LUT to directly

drive the outputs of the LE. The APEX 20K200E architecture supports carry and cascade
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erconnect,
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chains. Without using the interconnect resources, adjacent LEs are grouped together.

This feature is useful when designing high-speed adders, counters and wide fan-in

functions.

4.2.3 Embedded System Block

Embedded System Blocks (ESBs) can be used to implement product-term logic

and several memory functions common to logical designs. These functions include

common storage devices, such as context-addressable memory (CAMs), RAMs, dual-port

RAMs, ROMs, and FIFOs. ESBs contain input and output registers that are useful when

implementing memory. The input registers synchronize writes and the output registers

can pipeline designs to improve system performance. ESB memory can be configured in

5 possible sizes: 128x16, 256x8, 512x4, 1024x2, 2048x1. By combining multiple ESBs,

larger memory blocks can be implemented. A block diagram of an ESB module is

located in Figure 11.
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In the previous chapter, the use of the FPGA as a flash ROM was mentioned.

ESBs can implement logic functions when programmed with a read-only pattern during

configuration, creating a large LUT. In order to store the boot code for the MPC850, the

FPGA needed to create a 4096x32-bit ROM using the ESBs. The actual implementation

of this ROM will be discussed in Chapter 5.

4.2.4 FastTrack Interconnect

FastTrack Interconnect provides connections between all of the APEX 20K200E

elements. By using a global routing structure, this form of interconnects avoids the

pitfalls that accompany a segmented routing scheme. In a segmented routing scheme,
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switch matrices connect variable routing paths, which can lead to increased delays and a

decrease in efficiency. A global scheme results in predictable performance, even in

complex designs. In the APEX 20K200E, FastRow interconnect creates faster routing of

input signals. It is driven by column I/O pins, without the need to use the LAB

interconnect, by routing it directly to the local interconnects. This enhanced structure,

detailed in Figure 12, is useful when the input signals have a high fan-out, which occurs

when it needs to drive multiple outputs.
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4.3 Software

After gaining a good understanding of the inner workings of the FPGA, the

methods through which a design will be created need to be studied. The most appropriate

design methodology is one that increases the efficiency of the designers. It must

facilitate capturing, understanding and maintaining a design. It must be able to support
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complex designs with hierarchy and gate-level to system-level design. It should have the

flexibility to support multiple levels of design description.

There are two hardware description languages (HDLs) that satisfy these digital

design requirements: Verilog and VHDL. Verliog is less verbose than VHDL, but it can

be argued that this is at the expense of language richness and features.1 6 For the purposes

of documentation, synthesis, and simulation for both devices and systems, VHDL is the

best choice for the VCC.

4.3.1 VHDL

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware

Description Language. It has powerful language constructs that can be used to write

efficient code descriptions of complex control logic. The language is highly portable,

meaning synthesized designs can be simulated. Since the language is common in

industry, multiple software packages have the ability to read and synthesize it.

There are some shortcomings associated with VHDL. The control of the

definition of the gate-level implementation of circuits is lost to high-level abstract

concepts. Fortunately this is not a problem that greatly affects most designers. Most

modem synthesis tools give some level of control over the implementation, especially to

make area-efficient versus speed-efficient choices. Also, logic implementations created

by synthesis tools are relatively inefficient. These synthesis tools are designed to be

generic in nature. Compilers use algorithms to decide upon logic implementations,

following standard design methodologies. These implementations might not always be

optimized for a specific design, since the tools are meant to work with all designs and not

a specific one. This problem can be fixed by creating efficient code. Inefficient code can

lead to unneeded, repetitive, or nonoptimal logic.

The Data Handler system is implemented in VHDL. For the purposes of creating

the system level control logic, VHDL was a sufficient language. The designers of the

project were also very familiar with the language and had experience using it to designing

large systems. This led to a more efficient design process, easier debugging, and better

optimizations, leading to a timely completion of the project. Quatus II was the best

package for the development of the Data Handler system, since Altera also built the

FPGA used on the VCC.
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4.3.2 Quartus II

Altera's Quartus development system offers a single, integrated package that offer

HDL and schematic design entry, compilation, and logic synthesis, full simulation and

worst-case timing analysis. Quartus has support for a wide range of Altera devices,

including the APEX 20K200E. Along with this important quality, it provides several

additional benefits that made it the ideal package to use for the VCC control logic. The

Quartus software supports system level design with block-level editing, workgroup

computing and expanded support for Altera Megafunctions. A megafunction is a pre-

verified HDL netlist files for complex system-level functions and are optimizedfor Altera

device architectures.17 It is a convenient way for a designer to create simple logical

designs, or to view the techniques necessary for taking full advantage of Altera hardware.

Quartus can incrementally recompile designs, which can lead to huge savings in

development time. Any small changes will not require an entire system-wide

recompilation, but will only recompile the module in which the modified code exists.

Quartus also provides full support for VHDL, the chosen HDL for the VCC.

4.4 Design Process

With a better understanding of the properties of an FPGA, and the tools with

which to program it, the creation, implementation, and verification process involved in a

system design needs to be understood. Without the proper design methodologies,

development of a large, complex system can be tedious and difficult. Figure 13 shows a

suitable design flow for ensuring an efficient and stable design.

Figure 13 FPGA Design Fow
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4.4.1 Design Entry

The first step in developing designs for FPGAs is to formulate a design in a way

that utilizes a particular design environment. This involves specifying the design and

device requirements, deciding on a design methodology, and coding the design. The

device selected for the VCC was the APEX 20K200E. The design was created using a

top-down approach. The top-down approach requires that you divide your design into

functional components, each component having specific inputs and outputs and

performing a particular function.16 A top-level module is created to tie the design

components together. Then the components themselves are designed. The Data Handler

system contains 1 top-level module and 7 components. The design was translated into

logical devices, such as block diagrams, dataflow diagrams, state tables and state

diagrams, which are used to design the general flow of the code. The code for Data

Handler is VHDL-87 compliant. In order to ensure the best design, many of the Altera

examples of VHDL code were used to help design the system code. By doing this, the

code would use the Altera device to its fullest advantage, as their design engineers

created VHDL templates to use as many of the FPGA features as possible.

4.4.2 Compilation and Functional Simulation

After the design is laid out, it was compiled and simulated at the functional level.

This ensures that there are no design flaws with the code, and allows the design to see if

the code functions as expected. This is done with the aid of an EDA software package.

The package contains no information of the target device, or how the design is placed, the

designer must provide the appropriate test vectors for proper simulation. Incorrect

simulation results are typically caused by errors in the source code, or inappropriate test

vectors. Designers targeting the VCC's FPGA use the Altera Design Compiler for

compilation and the Altera ModelSim for functional simulation.

4.4.3 Logic Synthesis

The next stage in the design flow is the logic synthesis. It results in the reduction

of a general design description to a lower-level circuit implementation. It basically

converts a design into a set of equations and netlists. After synthesis, a netlist is created

to show how the components of a design are wired together. Synthesis should be
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technology specific. By assigning specific timing and area constraints on the synthesis

tool, a designer can attempt to optimize a design to an efficient form. For Data Handler,

Alera's ModelSim was used for logic synthesis.

4.4.4 Place and Route

Once a design is successfully compiled, it needs to be placed onto the logic

device. Propagation delays can depend significantly on routing delays. A good place and

route tool places critical portions of a circuit close together to eliminate routing delays.1 6

A designer must give the proper parameters for place and route, such as the logic

synthesis style, optimizations for speed or area, and device selection. Quartus II was

used to provide place and rout for the VCC FPGA.

4.4.5 Timing Analysis

A successfully placed and routed device must now be simulated according to the

timing constraints of the FPGA. This step not only verifies the functionality of the

design, but also such timing constraints as setup, clock-to-output, and register-to-register

times. A timing simulation allows the designer to see if the design will function, given

the timing information of the target device. If the simulation fails, then the functionality

of the design was violated by the timing requirements. In order to solve these problems,

the design needs to be optimized. Optimization can take place by placing registers in the

critical path delay, a technique known as pipelining. Also, placing timing or placements

constraints on a design before it is synthesized can also shorten delay paths and speed up

the system. Data Handler needed to run at 50 MHz, in order to match the maximum

processing speed of the MPC850.

4.4.6 Device Configuration

After completion of the design, synthesis, optimization, placement and routing,

and successful simulation, the device is ready to be configured and tested in the actual

system. For the VCC, device configuration for the APEX 20K200E is done through the

use of two EPC2 configuration EPROMS. The design, through the use of a Quartus

created .pof file, is burned into the chips, using an Altera MPU programming unit. They

are then placed on the VCC to configure the FPGA upon power up.
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Chapter 5: Data Handler System Implementation

5.1 General Design

Data Handler is the name given to the control logic design for the Video

concentrator Card. Using proper design methodologies, the design was placed in the

Altera APEX 20K200E FPGA. This chapter contains a description of the design flow,

the general coding techniques used throughout the design, and a description of each

component, with verification information.

The Data Handler is meant to be a stable and efficient system that properly

configures the VCC, as well as creating the architecture to allow for flexible use of the

FPGA. The functional scope of the FPGA can change from project to project, but these

changes will be made at the top hierarchy of the existing system. The Data Handler has

several design goals that need to be supported for the VCC to be appropriately

configured:

1) Processor initialization

2) Bidirectional data and address buses

3) Port programming of the alphanumeric display

4) Interfacing with the bus arbiter resident in the processor

5) An optional internal 2048x32-bit ROM

6) Initialization of system SDRAMs

7) SDRAM writing

8) Debug port configuration

These design goals make up the initial version of Data Handler, the main focus of

this chapter.

5.1.1 Top-level Design

At the top level of the system, there are seven components, some of which have

their own set of sub-components. These 7 components are referenced at the top-level

design file. Using the top-down design method, the top-level file was first created and
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then each subcomponent was created and tested before moving on to the next component.

A basic structure of the Data Handler is included below in Figure 14.

Processor
Bus

Control
SDRAM SDRAM
Write Initialization

Alphanumeric
System /L \---- Data Handler Display

Initialization Top Level Port

Programming

Flash ROM FPGA
Data Retrival ROM

Figure 14: General Structure of the Data Handler System

This method adopted in Figure 14 allowed for easier verification of the actual

board as each component on the board could be isolated and tested independently. The

FPGA was designed so that it will be used for testing the entire system. Although the

schematic design and actual layout were completely reviewed and verified, any design

flaws that could have occurred during the fabrication might not be detected until the

signal routes started being used by the board components.

The first design of the Data Handler only created a netlist, which set all of the

user-defined pins on the FPGA as inputs. The parameters in the Quartus II allowed some

control for the settings of all the user-specified pins on the chip. If there was no logic

that utilized a pin, then that pin was held at a default value. Inputs were held to high-

impedance, while outputs where held low by default. Since many of the devices on the

board are asserted low, setting all of the pins as outputs would have enabled every device

on the board and led to inadvertently enabling of signals, bus contention and timing

errors. With all of the signals initially specified as inputs, the initial configuration of the

FPGA could be tested, ensuring that the EPC2 configuration device's configuration and

the FPGA itself were functioning properly.
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Also, since the design of the board was specified before work was begun on the

VHDL code for the FPGA, the pins of the FPGA were pre-specified and routed

throughout the board. This meant that a normal place and route, which places the pins

assignments in the most efficient arrangement depending on the code, could not be left up

to the software. These pins needed to be individually specified and "forced" to the values

assigned during the initial design phase of the system. The designers felt that this would

be the best option for the system, since designing the code before building the board

would have led to an extremely slow development process.

A successful trial run proved that the FPGA and its configuration devices were

functioning according to specifications. The FPGA is currently being clocked at 48

MHz, in order to match the operating frequency of the processor. Design then began on

the actual components that would be instantiated at the top-level design file. For the sake

of modularity each component of the design was separated into individual files and

referenced in the root file. This made the code easier to understand, and ensured that

debugging of individual components could be accomplished with greater efficiency.

5.1.2 Common Designs

VHDL has the ability to allow a designer to create a component and then

instantiate that component as many times as desired in a different file. This eliminates

the repetition of routines in each component. The Data Handler utilizes several basic

logical constructs in multiple places in the design. The Data Handler design is optimized

for the Altera system architecture.

5.1.2.1 Finite State Machine

Finite state machines (FSMs) are commonly used implemented in programmable

logic designs. FSMs are usually generated from state diagrams. State diagrams consist

of the possible states of a system, and transition flows that show how a given state is

entered or exited. These transitions usually occur given the condition of some input

signal. If the input signal does not hold the value given to any of the transitions then the

FSM does not transition out of its current state. Each state holds the value of all the

output signals of the FSM. These outputs are assigned values given the current state.

When the FSM transitions into a new state, the outputs are given the new states values.

Since all HDLs support FSMs, they are an easy way for a designer to specify complex
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logical structures without having to figure out the gate level implementation of such a

system. By abstracting the system into states and transitions, a FSM can perform system

tasks without much difficulty, as the state is preserved if no transition inducing signals

change.

There are two techniques for creating FSMs: Moore and Mealy. In Moore

machines, outputs are strictly functions of the current state. Mealy machines are different

in that outputs are functions of the current state and the current input signals. Transitions

occur similarly in both implementations, but the Moore machines are much more simple

in that outputs only change when the states change. These transitions are synchronous

with the system clock, leading to a lower possibility of glitching on the output values. In

Mealy machines, transitions can occur whenever an input changes, which can even

happen between clock cycles. The asynchronous nature of Mealy machines, made the

Moore machine structure the ideal method for implementing the components of Data

Handler. The structure of a Moore state machine is detailed in Figure 15.

Net- net_stae sze cnent_state
stae -- OuA Lc -
LoWC

Figure 15: General Design for Moore Machine FSM

The FSMs in this system are implemented using a synchronous two-process

design with an asynchronous reset. In one process, the states, transitions and outputs are

all specified. The second process is necessary to actually transition the system. Two

state variables exist: the current state and the next state. Whenever the FSM is in a state,

it assigns a value to the next state variable. The actual transition does not occur until the

next rising edge of the clock signal, where the next state variable is set to be the current

state. Every FSM in Data Handler requires two processes to function.

The Data Handler FSMs used a CASE statement implementation in

implementation. The other possible implementation was the IF statement method. IF

statements produce priority-encoded logic, while the CASE statement creates parallel

logic.18 IF statements contain a set of different expressions, while case statements are
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evaluated against a common controlling expression. CASE statements are used for

complex decoding, which made them ideal for the system design for Data Handler.

Once the state machines have been specified, the designers must determine the

best way to encode the states. There are two types of encoding for a state machine:

sequential and "one-hot" encoding. Every FSM requires registers to store the value of

the state bits. These encoding styles depend on the number of registers that are required

to implement the FSMs, and each has their own advantages and disadvantages.

Sequential encoding involves finding the minimum number of bits necessary to

implement the given number of states in an FSM. This uses a small number of state bits,

but the decoding hardware that will determine the sate of the system can become quite

complex. Sequential encoding can lead to incorrect transitions on large systems with a

high number of states. If more than 1 bit flips between states, then possible glitches and

incorrect state transitions can occur. Designers must enumerate the states so that a

minimum number of bit transitions occur when transitioning between states. One-hot

encoding uses n registers to represent a FSM with n states. Each state has its own

register, and only one holds the value of 1 or gets "hot". Decoding is simplified, since

detection of the register with the 1 is all that is necessary. The complexity required to

decode FSMs with large number of states greatly increases as the number of states

increase, making one-hot encoding the preferred method when an FSM has a large

number of states, and sufficient space exist on the logic device. Typically, FSMs with

fewer than 10 states are encoded sequentially. Anything larger has complex decoding

circuitry, and is better implemented using one-hot encoding. Due to the varying

complexity of the various FSMs in Data Handler, both the sequential and one-hot

encoding styles were used.

5.1.2.2 Counters

Counters are logical devices that increment a given number or signal. While

essentially simple in design, they are complex devices when converted into logical

equations. Counters utilize adders to implement the incrementing. Logical adders are

complex logical structures that get more complex the larger the size of the vector used for

counting. Every use of a '+' in VHDL also creates a new adder, so implementing

efficient counters is important.
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VHDL does not have a convenient method for delaying signals. If a designer

wants an output to be assigned a specific value, 100 ns after an FSM transitions to a

certain state, there is no direct way to specify this condition. Wait statements, common

structures in software languages, have no meaning in HDLs. During synthesis, these

statements are usually removed. The only way to delay a signal is to create a delay

counter. Delay counters are usually asynchronously clearable, but synchronously

enabled. When the FSM moves into the new state, it sees if the counter holds a specific

value. If that value exists, it executes the corresponding output assignments. If it does

not have that value, the counter will be enabled, and continue to increment by one value

every clock cycle until the counter reaches the desired value. Thus, delay counters are

useful tools to guarantee that a signal will obey the setup and hold times of the devices on

the board. In Data Handler, counters are created as subcomponents and instantiated only

in the components that use them.

5.1.2.3 Bidirectional Signals

Bidirectional signals are very useful for minimizing the amount of space used to

create a board. They essentially have three states: as an input, as an output, and as a

high-impedance (high-Z) state. The high-Z state exists so the signal does not drive a

shared bus at the wrong time, or so bidirectional pins may be driven by off-chip signals.

When designing bidirectional signals, careful consideration needs to be taken to see when

the signal should be in a certain state.

A bidirectional signal in VHDL can be implemented using a two-process system.

Once the signal is declared as a birectional signal in the VHDL entity list, an internal

signal must be declared that is the same size as the 1/0 bidirectional signal. This signal is

used as a temporary storage location for the value of the 1/0 pin. One process ensures

that the signal will keep its previous value or a value driven onto the pins from another

device. The other process enables the signal to be an output, or those outputs are placed

in a high-impedance state otherwise. Together a bidirectional signal can be implemented,

as one state allows the signal to be driven as an input when the output is not enabled, and

as an output in the other case. Data Handler has several bidirectional signals. Not only

the data and address buses are bidrectional, most of the signals that connect the FPGA to
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the bus controls of the processor, as those signals will be controlled by the MPC850 in

certain occasions and the FPGA in other occasions.

5.1.2.4 Flip-flops

A flip-flop is a set of logic gates that can store the value of the input when

enabled, or hold the previous value when disabled. A flip-flop is useful when designing

logical systems, since they can maintain values of signals. They are used to improve

critical path delays in a system, by placing them along the critical path. A poorly

designed flip-flop can result in extra propagation delays, which can cause violations of

the timing requirements of the device.

Flip-flops are used throughout the components of Data Handler. The main reason

for these flip-flops is to ensure the stability of signals in the system. Without them,

signals tend to glitch when trying to hold their value combinationally, i.e. by constantly

reassigning the same value to the signal every clock cycle. A flip-flop will allow a

temporary signal to remain stable, while it is sent to the output without glitching. Only

appropriate transitions of the signal will be transmitted to the output. In Data Handler,

these flip-flops are implemented with an asynchronous reset and a synchronous load. On

a system wide reset, they will be cleared automatically, but they will only output new

values when they get a load signal.

5.1.2 System Debugging

Once the initial test of the HoloFPGA system was successful, the next stage of

developing Data Handler took place. The VCC has many headers that are assigned to

pins on the FPGA. These pins are meant for debugging purposes, essentially for

verifying any complex system. These signals were available for assigning any value the

designers needed. After the signals were assigned to the values of other signals, a logic

analyzer could be connected to the debug headers for viewing of different signals. In

VHDL, outputs cannot be assigned to more than one value. When it became necessary to

view an output signal on the logic analyzer, the output signal needed to be mapped to a

temporary variable that was then mapped to the debug port. There are occurrences like

this in many of the components of Data Handler, because at times, it was necessary to

view certain signals when debugging the VHDL code in the actual system, to ensure that

51



it was functioning properly. Once the debugging structure was in place, work began on

the many components of the Data Handler.

5.2 System Initialization

The first component of the Data Handler involved initializing the system. This

requires feeding the MPC850 processor a data vector for its configuration register when

the hard reset (/hreset) signal is asserted. The processor, on which resided the bus arbiter,

had to be enabled properly to avoid bus contention. Bus contention occurs when two

different devices are trying to drive the same bus to a value at the same time. When

dealing with a data bus, special care needs to be taken to be sure that only one device is

driving the bus at a time, hence the need for an arbiter.

5.2.1 Design Overview

This design, though relatively small, combined many of the design techniques

discussed in the previous section. The actual initialization occurred within a FSM,

sysini. This FSM contained 4 states: reset, outhold, datain, and dataout. The small

number of states allowed this FSM to be encoded sequentially. The FSM design is

shown in Figure 16.

hreset

hreset ts or ta or cs(o)

hreset
Sreset out-hold

rom_dataready ts or ta or cs(O)

data_out data-in

rom-datajrdy rom-data-ready

rom-datajrdy

Figure 16: State Diagram for System Initialization
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When the system is powered on, it is in an unknown state. This is a problem that cannot

be fixed. Therefore it is necessary to reset the entire system once it is powered on, to

ensure the performance of the system.

On a system reset (activated by pressing a push button located on the VCC), the

system will jump into the reset state of sys_ini. The processor needs to be initialized

before it will function after a reset. A 32-bit data vector, specially designated to properly

enable the MPC850, is placed onto the data bus by the FPGA. After the reset is de-

asserted, the FPGA will continue to output the vector until the processor is prepared to

take control of the data bus. Once the processor is ready, it asserts ts, ta, or cs(O) (See

Appendix A for a complete listing of MPC850 bus arbiter signals). At this point the

processor will take control of the data bus, controlling the necessary signals. Therefore,

the FSM enters datain, unaffected by the changes of these signals. In data_in, the data

bus of the FPGA is no longer outputting the initialization vector. These data pins are set

at high-impedance, no longer driving the bus. This prevents bus contention between the

FPGA and the processor. This means that the data bus was declared as a bidirectional

signal. Whenever the data output enable signal (output.en), an internal signal, is high,

the FPGA will output data to the bus. Otherwise, the data pins are set to input. This

means they will hold whatever value the previous had on them, until driven to a new

value. In order to ensure that the no bus contention occurs, the data bus is zeroed (set to

all '0's), before it sets the data pins to high-Z. The main signals that could possibly cause

bus contention, such as the data pins and the output enable where sent through flip-flops,

ensuring stable signals and no bus contention. The FSM remains in this state, until the

FPGA regains control of the bus. The dataout state will be discussed in the "Data

Retrival" section of Chapter 5.5: Flash ROM Implementation.

5.2.2 Timing Analysis

Upon successful compilation, the sysini FSM was tested in the post-synthesis

timing analysis. The FPGA clock was operating at 48 MHz for this simulation and

simulations for all other components. Upon a /hreset assertion, it takes 12.4 ns before the

data bus begins to output the initialization vector for the processor. Once one of the three

signals, ta, ts, or cs(O), is asserted, there is a delay of 26.2 ns before the data output is set

53



to all zeros. This value is held for 22.8 ns, until the data bus changes to an input and

enters the high-impedance state.

5.3 Alphanumeric Display Port Programming

The next component that was created, involved programming the FPGA to

properly access the alphanumeric display. The alphanumeric display is used for

debugging purposes. Larger bus signals could be viewed in hexadecimal format, 0

through F. Using the hexadecimal format, each display displays of 4 bits. Since the

VCC has 8 display characters, 32-bit numbers could be fully displayed.

5.3.1 Design Overview

The alphanumeric display FSM, alphadisplay, utilized an FSM, a delay counter,

and several flip-flops. The display itself has a large library of ascii values it can display,

so it was necessary to create a small table within the FSM in order to have a hexadecimal

display. It takes 7-bits of data to display an item from the alphanumeric ascii table.

4-Bit Number (Binary) Alphanumeric Data 4-Bit Number (Hex)

0000 0110000 0

0001 0110001 1

0010 0110010 2

0011 0110011 3

0100 0110100 4

0101 0110101 5

0110 0110110 6

0111 0110111 7

1000 0111000 8

1001 0111001 9

1010 1000001 A

1011 1000010 B

1100 1000011 C

1101 1000100 D

1110 1000101 E

1111 1000110 F

Unknown 1011000 X

Table 2: Mapping of data, alphanumeric display data, and hexidecimal values 15
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The FSM consisted of 13 states: start, disO, disi, dis2, dis3, dis4, dis5, dis6, dis7,

datacheck, delay, write, and restorestate. Due to the large number of states, one-hot

encoding was used for this FSM. The FSM design is located in Figure 17.
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---- dis sel = 1
hreset wr-address =10

start

delay_.c

dtcekdelay 0 write restore-state

disO

dis-sel =0
wr-address = 0

dis1

dis-sel =0
wr-addres .- 01

dis2

dis-s =0
wr-ad ess = 1

dis3 dis-se = 0
r-add ss = 1

dis._s = 1

dis4 r-add ss = 0

dis-s = 1
wr-ad ess - 01

dis5

dis el = 1
wr-a ress =1

dis6

dis7

Figure 17: State Diagram for Alphanumeric Display Port Programming
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Since the system initialization needs to occur before any other FSM begins to function,

the display needed to use signals common to the sysini in order to transition properly.

On a hard reset, the alphadisplay FSM enters the start state. It deactivates the

displays in this state. Once cs(O) or cs(7) (See Appendix A) is asserted, the display enters

the first phase of writing to the diplay, state disO. Since the designers set the value that

will be written to the displays, an input of 32 data bits is required. The actual bits that are

used by the display are specified in the top-level file with the instantiation of the

alphanumeric display component. In the current design, the first 6 displays look at the 24

lower order bits of the address bus. The last two display the 8 highest order bits of the

data bus. Due to the fact that the same alphanumeric display address and data bus are

shared by both displays, each display can only be written to one at a time, while the other

is disabled. Once one display has been written, the next one is activated and written.

From disO, the 4 bits corresponding to that display are selected, by assigning them to a

temporary signal. The FSM enters the datacheck state, which contains a case statement.

This case statement corresponds Table 2 (see above). It matches the data in the temporary

signal to the chart and finds the appropriate data for the alphanumeric display. The FSM

transitions to the delay state. The reason that the data must be delayed before it can be

written to the display has to do with the setup time of the device. This issue will be

discussed in the Timing Analysis section below. After the appropriate delay, the display

enters the write state. In this state, the display write signal, the data, and the display

address are sent to the display. The data value set in disO is finally written to the display.

Once completed, the FSM moves to the restorestate state. The issues that occur with

having only one bus for alphanumeric data and address are dealt with here. An internal

signal is used to select between the two displays (dis-sel). Depending on this signal, the

first or second display is selected. Next, depending on the address that was most recently

written, the next state is selected. When the disO data was written, the alphanumeric

address was "00". Restorestate will send the FSM to the disi state, where the whole

process will occur again, for the next display address. Once the eighth display is written,

the FSM jumps back to the start state, waiting for cs(O) or cs(7) to toggle again.
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5.3.2 Timing Analysis

This FSM runs slowly compared to the other components. The reason involves

the setup time discussed above. The setup time for the data of the alphanumeric display

is 280 ns.15 This means that the data and address outputs to the display need to be stable

for that amount of time to correctly write. Since each clock cycle is approximately 20 ns

(48 MHz), the delay counter installed in the component must delay the system for at least

14 clock cycles. The delay counter in the alphadisplay FSM stabilizes the signals for 16

clock cycles (exactly 332.9 ns) to ensure that the signals have been stable for at east 280

ns. A four-bit delay counter module was created for use in this component. This delay

occurs for every display digit, resulting in a propagation delay of 2.832 ps until the

display is finished writing. Not until the display has finished writing will the data on the

display be re-written. Due to the slow nature of the display, there is a possibility that data

that should be shown on the display could change several times before the display is

ready to accept new data. This problem cannot be solved without slowing down the

system entirely, so the display will have time to refresh with the system. By setting delay

counters around the system to synchronize the display and the changes in data, this could

be accomplished. At the time of writing this thesis, this method of solution did not seem

necessary, as signals could be fed through the debug ports to the logic analyzer, which

has the ability to see changes in the data bus at the nanosecond level.

5.4 Processor Bus Control

Once the structure to debug Data Handler was in place, the focus shifted to the

arbiter on the processor. Before data could be successfully placed on the data bus,

control needed to be gained from the internal arbiter of the MPC850. Once the FPGA

had the ability to gain control of the bus, it could route data to its data pins without bus

contention occurring on the data bus.

5.4.1 Design Overview

The bus control FSM, bus_ctrl, allows the FPGA to negotiate for control of the

data bus. Busctrl uses an FSM, several flip-flops, and a bidirectional signal. Four states

were used in creating this FSM: reset, bus-request, buscontrol, and busdone. This

FSM was encoded using sequential methods. The state diagram in located in figure 18.
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hreset
start

outputen

bus-request

ctrldon bg and bb

bg or (bg and bb)

busidone bus-control

ctrldone ctrl_done

ctrldone

Figure 18: State Diagram for Bus Control Module

On a /hreset, the busctrl FSM enters its reset state. The FSM stalls in this state

while the system initialization occurs. Once the output enable signal goes low, meaning

the processor is initialized and ready for operation, the busctrl FSM transitions to the

bus-request state. In this state, the FPGA asserts br (bus request) (see Appendix A) and

waits for a response from the processor. If the processor asserts bg (bus grant), then the

FSM checks to see if bb (bus busy) is asserted. If it is, this means another device

currently has control of the bus. The FSM continues to wait until the bb goes high, where

upon it drives it low and assumes control of the bus. For this reason, bb is declared as a

bidirectional signal, since the FPGA will drive it if it gets control of the bus, but it will be

driven by another device if that device wins control of the bus. The FPGA can read bb

and output to bb depending on the situation. If no device is using the bus when the

FPGA wins control of it, the busctrl FSM switches bb to an output and drives it low.

The FSM moves to the buscontrol state, once control has been won. It will remain in

control of the bus by continuing to assert bb. The FPGA maintains control of the bus

until whichever component of Data Handler is finished using it and sends ctrldone high.

Ctrldone is an internal signal that allows components to interface with the busctrl
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FSM. If ctrldone is never asserted, then the bus remains in control of the FPGA.

Otherwise, the FSM moves to busdone, where it releases control of the bus. Once

control has been released, the FSM transitions to the busrequest state again, to attempt

to regain control of the bus for the next module.

5.4.2 Timing Analysis

Once the system has finished initializing, the busctrl FSM begins to request

control of the data bus. The propagation delay from outputen to br is 40.3 ns. The FSM

then waits for the bus to be granted to it. If the bus is not busy, then with a bg, it takes

46.4 ns before the bb is asserted. If the bus is busy, then the delay is directly dependent

on the amount of time it takes for the device with control of the bus to complete its

operations, and release the bus.

5.5 Flash ROM Implementation

With the ability to gain control of the data bus, Data Handler's focus could move

to actually transferring data along that bus. Accessing the information in the Flash ROM

became the next part of the project. The purpose of this system was to load the boot code

for the MPC850 from the Flash ROM. Assembler code, meant to run on the processor,

was complied and converted to a set of 32-bit hexadecimal vectors. Dr. Thomas A.

Nwodoh, a researcher in the Spatial Imaging group, developed the boot code for the

processor.

5.5.1 Data Retrieval

Initially, this component was designed to interface with the AM29LVO40B Flash

PROM on the VCC. This chip could only output a data vector of 8 bits, so it required 4

addresses to store one usable 32-bit vector. Due to a bad contact of the pins in the PLCC

socket that houses the Flash ROM, other immediate alternatives were considered to allow

the development of Data Handler and its verification to proceed. A review of the data

sheet for the APEX 20K200E FPGA, reacquainted the designers with the Embedded

System Blocks (ESBs) contained in the FPGA. A ROM of 2048x32-bits could be created

within the FPGA, while using only 61% (65536/106496) of the ESBs bits on the device.

A ROM of this size could fit all of the current boot code. Also, by implementing the
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ROM in the FPGA, then one address location would correspond to a 32-bit number. The

time saved on accessing the Flash ROM 4 times and then sending that data to the

MPC850 made this design change a logical choice.

5.5.1.1 Design Overview

The flashdata FSM accesses the data contained in the internal ROM and places

them on the data bus for the processor. In order to allow the Processor to access all the

boot code, the code for the bus_ctrl FSM had to be reworked. During the completion of

this component, the FPGA did not seek control of the data bus. The FPGA functioned

strictly as a system initializer, debugging tool and as a ROM. flash-data uses an FSM,

an instantiation of a ROM, and several flip-flops. The FSM consists of 4 states: start,

idle, get-data, setaddress. This FSM is encoded using the sequential scheme. The state

diagram is displayed below in Figure 19.

hreset
1 start

idle

cs(O) and memo outputen

output-en

getdata

cs(O) and memoe

Figure 19: State Diagram for ROM Data Read Module

On system reset, the flashdata FSM enters the start state. In this state, the ROM

that was instantiated in this component is disabled, so it will not output any data. The
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FSM transitions to the idle state. In the idle state, the ROM remains disabled. When the

system initialization is finished (output-en goes low), the ROM moves into the get-data

state. In get-data, the data in the ROM is accessed by enabling the ROM output. The

MPC850 processor supplies an address and the data for the corresponding ROM location

is returned. The data is fed into a temporary 32-bit signal. When cs(O) and memoe (see

Appendix) both go low, the processor is prepared to receive boot data. The flashdata

FSM sets an internal signal high (rom.datagrdy). This signal is similar to output-en, in

that it is instantiated in the top-level file, so it can be accessible to all the components.

These inter-FSM signals are essential for the smooth integration of all the components

into one system. This point is where the dataout state from the sysini FSM mentioned

above. This state allows the system data bus to output values to the data bus after it has

entered the high-Z state. When it sees romdata-rdy asserted, it starts to drive the value

of the temporary ROM data vector onto the data bus. The MPC850 accesses the data on

the bus, and uses it to run its programs. Once cs(O) and memoe return high, the processor

has successfully received the data and is ready to move to the next address. The FSM

moves back to the idle state, the data pins return to their high-impedance state and the

process continues until the processor has received the last of its boot code.

5.5.1.2 Timing Analysis

Once the system initialization has completed, the flashdata FSM moves into the

get-data state and beings to output the data for the address given by the MPC850. The

data only appears on the data pins when cs(O) and memoe are both asserted low. The

total delay from when theses signals go low until data appears on the data pins is 58.1 ns.

The delay for when an address changes until the data change appears at the output pins is

53.1 ns. These delays demonstrate that accesses to the internal ROM can happen fairly

quickly. In the previous version, using the board Flash ROM, the delay times would

depend on the time it took to read the ROM 4 times, the time it took the processor to

register the data on the data bus, and the delay in takes to receive a new address from the

processor.

62



5.5.2 Creating a ROM

Creating the internal ROM proved to be a fairly simple task. The Megafunctions

of the Altera Quartus II software package contain a VHDL ROM design file that can be

modified to suit the needs of any project, as long as it fits into the device size of the

chosen FPGA. Through the use of the Megafunction Wizard, a ROM was created that

had an 11 -bit address input and a 32-bit data output. The address inputs were clocked

with the system clock of 48MHz. This ensured that only the proper non-glitching values

of the addresses would be read in the ROM. The output changes asynchronously with the

addresses. The synchronicity problem is solved because the data is only being written to

a temporary signal. It is outputted when the romdata-rdy bit goes high, which is a

synchronous transition. So the data bus is always driven synchronously as an output

whenever the romdata-rdy bit is enabled.

5.6 SDRAM Control

The final component that is necessary for Data Handler is the ability to write data

to the SDRAMs, the devices that will serve as the video RAM for the VCC. In order to

achieve this goal, two separate systems need to be put in place: one that initializes the

SDRAM to receive data, and one that actually gets data and writes it to the proper

address in the SDRAM.

5.6.1 SDRAM Initialization

Before the SDRAM devices can be used at all they need to follow a specific

initialization process. Once completed the SDRAM will be able to read out data and

write in new data. The initialization does not need to reoccur unless the system is reset

again. The initialization process is the same for all SDRAMs.

5.6.1.1 Design Overview

The sdramini FSM is designed to run through the one-time initialization process

of the four SDRAM devices that make up the main memory. sdramini uses a FSM, a

delay counter, and various flip-flops for signal stability. The FSM consists of 6 states:

initialize, iniNOP, ini-precharge, ini arefresh, loadmode_reg, and ini_done. These

six states were encoded using sequential techniques. The diagram for the sdramini FSM

is located below in Figure 20.
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del

delay-cnt

hreset

hrst intaiebusctrl

hreset

ini-done iniNOP

ay_cnt = 11

= 11 loadmodereg ini-precharge

delay-cnt = 10 ini-arefresh

delaycnt = 10

Figure 20: State Diagram for SDRAM Initialization

On a /hreset assertion, the sdramini FSM enters the initialize state. The

SDRAM has 4 control signals, which are used to place the device in one of its many

states.
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NAME (FUNCTION) CS# RAS# CAS# WE# DoM ADDR

COMMAND INHIBIT H X X X X X

NO OPERATION (NOP) L H H H X X

ACTIVE (Select bank and activate row) L L H H X Bank/Row

READ (Select bank and column, and start READ
L H L H H Bank/Col

burst)

WRITE (Select bank and column, and start WRITE
L H L L L Bank/Col

burst)

BURST TERMINATE L H H L X X

PRECHARGE (Deactivate row in bank or banks) L L H L X X

AUTO REFRESH L L L H X X

OP-
LOAD MODE REGISTER L L L L X

CODE

Write Enable/Output Enable - - - - L -

Write Inhibit/Output High-Z - - - - H -

Table 3: Commands and Control Signals for the VCC SDR4 AMl

In the initialize state, the FSM outputs the Command Inhibit function. It remains in this

state until the busctrl FSM gains control of the data bus from the MPC850. To create

this FSM, the modifications made to makeflashkdata function were set back to their

original state. Once bus_ctrl (internal signal that is set high when the busetrl FSM gains

control of the data bus) is asserted high, sdramini transitions to the ini_NOP state. As

its name states, this state issues a NOP command to the SDRAMs. From here, the

initialization runs its course until it is completed. The FSM moves from state to state

until it reaches the final one. The next state, ini_precharge, issues a precharge command

to disable all the rows in all the banks. Next, two Auto Refresh commands are issued in

the iniLarefresh. The two commands are issued by introducing a 2-bit delay counter into

the state. Once the state has kept its outputs stable for two clock cycles, the FSM

transitions to the next state. The loadmode-reg state is responsible for loading the op-

code that configures the SDRAMs to accept the right type of data in the proper methods

wanted by the designers. The delay counter is used again, and this state is held for two

clock cycles, to ensure that the SDRAMs read the stable op-code address. Finally, the

FSM enters the ini_done state, issuing a NOP command. It remains in this state

permanently, unless another system reset is issued, where upon it reinitializes the

SDRAMs.
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5.6.1.2 Timing Analysis

The SDRAMs can operate at a clock speed of up to 100MHz, so our system

should not run into any timing issues with them. Clocking it at nearly half its maximum

speed (48 MHz) guarantees few timing errors will occur. The load mode register

command is held for 70 ns. The entire initialization of the SDRAMs takes 130ns to

complete.

5.6.2 SDRAM Write

The sdramwr FSM is the most complex FSM in Data Handler currently. It takes

advantage of all the design methodologies described earlier in the chapter. In order to

test the abilities of the SDRAM, the boot code located in the FPGA was the set of test

vectors used. These 32-bit vectors were retrieved from the internal ROM. They were

then sent on to the SDRAMs for writing.

5.6.2.1 Design Overview

The sdramwr FSM functions as a component that can write data to the

SDRAMs, but also manage the control of the data flow through output signals and inter-

FSM signals. flashdata needed to be modified once again. Since the processor was not

supplying addresses for the ROM, an internal address incrementer was implemented.

This module outputs a piece of data for an initial address, and holds that data on the bus

until the SDRAM writing is completed. Then, the incrementer increases the address and

returns the data at the next location. sdramwr consists of a FSM, a delay counter, 3

specialized address incrementers, a bi-directional vector, several signal multiplexers, and

multiple flip-flops. The FSM is made up of 9 states: start, row_ini, get-data, setdata,

write, checklocation, col clear, row-lear, baclear. This FSM was encoded using

sequential encoding. The state diagram for the sdram wr FSMis in Figure 21, located

below.
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hreset

sdram-ini-done
colhclear rowclear baclear __

hreset

(ba-sel and (ba-sel and
row _ad and row-ad and

col-ad col-ad)

(row-ad and
col-ad)

check-location row-ini delay-cnt =11

col-ad

delay-cnt = 11 delay-Qnt = 11

write get-data romn-data-rdy

delaydcnt = 11

romdatarrdy

set-data

Figure 21: State Diagram for SDRAM Write Module

On a system reset, the sdramwr FSM enters its start state. It remains there until

sdramini_done, the internal signal that is asserted once the SDRAM initialization is

completed, where it moves to the rowini state. The reason the command being issued

by this FSM does not affect the initialization of the SDRAMs is that a multiplexer design

was used to switch which addresses appear on the address bus. During the sdramini

FSM, the address bus is driven to the op-code value of loadmode-reg. Once the

sdramwr FSM enters row ini, the address bus outputs the row address for the SDRAM.

The rowini state issues an Active command. This command selects the bank and row in

the SDRAM to activate for eventual writing. For Data Handler, each state checks to see
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if it should be commanding the first set or second set of Main Memory chips. Since the

SDRAMs have 16-bit data 1/0 pins, two had to be used to get a full 32-bits. rowini is

maintained for 4 clock cycles in order to completely satisfy all the timing constraints of

the device. The next state is get-data. Another inter-FSM signal, sdram-rdy, is asserted

which starts the new flash-data FSM. It gets the data from the current internal address it

is keeping and outputs that vector to the data bus. The data reaches the two data buffer

devices that separate the data bus from the SDRAM data bus. If the romdata-rdy is

asserted, then the ROM data placed on the data bus and the sdramwr FSM transitions to

the setdata state. In this state, the buffers are disabled so no new data coming from the

FPGA can affect the data stored in the buffer. The stable data vector is outputted to the

SDRAM data bus. The FSM enters the write state by selecting the appropriate set of

SDRAMs on which to write. A write command is issued to the SDRAMs, while the data

is still stable on the bus, being driven by the buffer. The address multiplexer selects the

column address. The column address is an incrementer similar to the row address

incrementer. It specifies the appropriate column for the bank that contains the activated

row. Once the write state has been held for 4 clock cycles, the checklocation state

becomes the current state of the FSM. The SDRAMs are issued NOP commands during

this period. In this state, the next location on which to write is selected. If the last

column was written in the previous write, then the row address is incremented and the

FSM jumps to col-clear. If the row address of the previous write was the last row in that

bank, then next bank is selected and the FSM jumps to rowclear. If the bank was the

last bank in that SDRAM, then the next pair of SDRAMs is selected and the FSM jumps

to baclear. If none of these cases are true, then the column address gets incremented

and the FSM moves back to get-data. In colclear, the column address is reset and the

FSM transitions to start. In row-clear, the row address is reset and the FSM transitions

to start. In baclear, the bank address is reset and the FSM transitions to start. Once

both SDRAM pairs have filled up, the system will begin to overwrite the pervious values.

5.6.2.2 Timing Analysis

The sdramwr FSM runs for a long period of time in order to write to every

address of the SDRAM. This time is greater than the simulator in Quartus II can handle,

so no accurate timing information is available for the whole FSM. A row initialization
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requires 82.3 ns. The delay from entering the get-data state to when data appears on the

actual bus is 44.2 ns. One write cycle takes 61.7 ns. Since bank and SDRAM select

incrementers occur within the rowini state, their propagation delays are equivalent to

those of the row initialization.

5.7 Current System Status

All of the system deign blocks described here are currently functioning, and have

been tested within the VCC. Although the full potential has yet to be realized with the

Data Handler system, the main building blocks for the VCC control logic are firmly in

place. The current code will serve as the basis from which the rest of the system will be

designed.
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Chapter 6: Conclusion

Although the Data Handler system is well underway and a solid foundation has

been established, there are still many components of the design that need to be

implemented before the design is complete.

The Data Handler still cannot take data from the LVDS interface and pass it to the

DACs and out to the Mark-II system. Functionally, this is not a very difficult task.

Obeying all of the timing constraints of the data path could prove difficult to optimize,

but not impossible.

The SDRAM initialization code needs to be applied to the Video SDRAMs.

Since they use different control signals, it's a simple matter of mapping their signals to

the sdramini module. The writing module must also be applied to the Video SDRAMs.

Once these components are in place, the actually testing of the VCC as a

functioning part of the Holo-Chidi system can commence. It is then integrated with the

Avid card and the RF processor of the Mark-II. A back-plane for the large number of

boards will need to be built, so all the boards of Holo-Chidi will have the appropriate

power and interfaces to function properly.

This full verification will prove the most difficult, since the number of variables

that could fail is dependent on several systems. Even if the VCC is working completely,

there is no guarantee that the interface with the Avid card will be completely functioning.

The project is still a year or more away from completion, with two or more designers

working on the project.

6.1 Future Work

Once the Holo-Chidi system is completed and fully functioning, the true research

can begin. Holovideo will need to be retuned to the new devices. New holograms will

need to be rendered to push the limits of the new hardware. The possibility of creating

full motion holographic videos is an incredible challenge in itself.
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Appendix A: MPC850 Bus Arbiter Signals

The MPC850 system bus consists of all signals the interface with the external bus.

In Table 4, the bus signals used by the Data Handler processing system are described.

Signal Active I/O Description

TS Low 0 Asserted by a bus master to indicate the start of a bus cycle that
Transfer transfers data to or from a slave device. Driven by the MPC850 when
Start it owns the external bus. Indicates the start of a transaction on the

external bus.
TA Low 0 Indicates that the slave device addressed in the current transaction
Transfer accepted data sent by the master (write) or has driven the data bus
Acknowledge with valid data (read). Driven by the MPC850 when the slave device

is controlled by the on-chip memory controller or PCMCIA interface.
CS(O) Low 0 These outputs enable peripheral or memory devices at programmed
CS(7) addresses if they are appropriately defined.
BR Low I Asserted when a possible master is requesting ownership of the bus.
Bus Request Asserting BR when the internal arbiter is enabled indicates that an

external master is requesting the bus.
BG Low 0 Asserted when the arbiter of the external bus grants the bus to a
Bus Grant specific device. When the internal arbiter is enabled, the MPC850

asserts BG to indicate that an external master may assume bus
mastership and begin a bus transaction.

BB Low I Asserted by a master to show that it owns the bus. As When the
Bus Busy internal arbiter is enabled, the MPC850 asserts BB to indicate it is bus

master.
0 Asserted by a master to show that it owns the bus. As When the

internal arbiter is enabled, the MPC850 samples this signal to get
indication of when the external master ended its bus tenure.

Table 4: MPC850 Bus Arbiter Control Signals Descriptions9
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