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ABSTRACT

Coded Aperture Imaging is a technique originally developed for X-ray astronomy, where typical
imaging problems are characterized by far-field geometry and an object made of point sources distributed
over a mainly dark background. These conditions provide, respectively, the basis of artifact-free and high
Signal-to-Noise Ratio (SNR) imaging.

When the coded apertures successful in far-field problems are used in near-field geometry,
images are affected by extensive artifacts. The classic remedy is to move away from the object until a far-
field geometry is restored, but this is at the expense of counting efficiency and, thus, of the SNR of the
images. It is shown in this thesis that the application to near-field of a technique originally developed to
mitigate the effects of non-uniform background in far-field applications results in a considerable
reduction of near-field artifacts. This result opens the way to the exploitation in near-field problems of the
favorable SNR characteristics of coded apertures: images comparable to those provided by state-of-the-art
imagers can be obtained in a shorter time or while administering a lower dose to patients.

Further developments follow when the SNR increase is traded for better resolution at constant
time and dose. The main focus of this work is on a coded aperture camera specifically designed for high-
resolution single-photon planar imaging with a pre-existing gamma (Anger) camera. Original theoretical
findings and the results of computer simulations led to an optimal coded aperture that was tested
experimentally in phantom as well as in-vivo studies. Results include, but are not limited to, 1.66-mm-
resolution images of 99mTc-labeled blood and bone agents in a mouse. The theoretical bases for extension
to sub-millimeter resolution and higher-energy isotopes are also laid and a candidate aperture capable of
0.96-mm resolution proposed. Potential applications are in small-animal imaging, pediatric nuclear
medicine and breast imaging, where increased resolution can result in earlier diagnosis of disease.

The last Chapter of the thesis extends the ideas developed to the design of a coded aperture
suitable for CAFNA (Coded Aperture Fast Neutron Analysis), a contraband detection technique that has
been under development at MIT for a number of years.

Thesis Supervisor: Dr. Richard C. Lanza
Title: Senior Research Scientist, Department of Nuclear Engineering
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LIST OF SYMBOLS

CAPITAL BOLDFACE indicates a discrete 2d function or matrix.

Lowercase boldface indicates a Id array.

CAPITAL ITALIC indicates a continuous 2d function or a scalar variable.

Lowercase italic indicates a continuous I d function or a scalar variable.

definition

x: correlation: H(5) = F(i) x G() = JJF(5)G(9+ -d 2,

0: correlation (periodic): H(Q)= F(1i) 0 G(i) J=JF()G( D h)d2 i

*: convolution: H(Q) = F(i) * G(i) =JF(X)G( -i)d%2

0: sum modulo p

Q. cyclic difference set

9: Fourier transform operator

3: Inverse Fourier transform operator

91: reflection operator

A: aperture transmission function

A': projection of the aperture on the detector

AT: finely sampled aperture array

AF: finely sampled aperture array, 6 decoding

G: decoding function

GF: finely sampled decoding array

GFS: finely sampled decoding array, 6

decoding

GO: sampled decoding array resulting in no

sidelobes

H: rect function

N: noise distribution

0: object intensity distribution

0': pinhole image of an object

0: object estimate

R: recorded data

Y: concentration parameter

a:

b:

object-to-mask distance

mask-to-detector distance
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LIST OF SYMBOLS

Cr: quadratic residues modulo r.

dd: detector size

d,,: mask size

e: NTHT array parameter

f: illumination fractions

FoM: figure of merit

Fo V: field of view (fully-coded)

M: magnification coefficient (coded aperture

camera)

np: magnification coefficient (pinhole

camera)

n: number of mask pixels (side); integer

pd: detector pixel size

p,,: mask pixel size

r: radius

r : position vector

t: mask transmission

t,: thickness of one mask layer

x, y: coordinates

w,.: pinhole width

M: sidelobe height

N: total number of open holes in a mask

NT: total number of positions in a mask

p,: mask pixel size

S,,: shape of mask pixels

S: shape of detector pixels

S',M: shape of the projection of a mask hole on

the detector

z: object-to-mask distance

U: sampling parameter; incidence angle

5: Dirac delta function

5(i,j): Dirac delta function

AS: angular field of view

0: incidence angle

Xg: geometric resolution

k,: system resolution

p: attenuation coefficient; mean value

p: array open fraction (density)

CY: standard deviation

4: noise parameter

X: parameter for the calculation of the effects

of the intrinsic PSF on resolution

Q: solid angle

Also see section 4.2 for a description of the

symbols involved in SNR calculations.
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NRA: Non Redundant Array
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URA: Uniformly Redundant Arrays

12



INTRODUCTION

The original motivation for our research group to study coded apertures was the development of a

non-intrusive bulk inspection system, CAFNA (Coded Aperture Fast Neutron Analysis), which has been

under development at MIT for a number of years. CAFNA is the combination of coded aperture imaging

with Fast Neutron Analysis (FNA), an established bulk analysis technique based on the detection of y-

rays generated by inelastic scattering of fast (>1 MeV) neutrons. Since the energy of the photons emitted

is specific to the isotopes present in the inspection volume, FNA is sensitive to the isotopic composition

of materials. Information on the relative and absolute amount of common elements such as carbon,

oxygen and nitrogen can uniquely identify a number of materials ([1], [2]), hence the interest in the

technique for security applications (explosive detection in luggage or cargoes) and contraband detection.

Since the cross sections and solid angles involved in FNA of a volume as large as a cargo container

typically lead to poor statistics, it is imperative to make optimal use of the photons obtained. The idea at

behind CAFNA is to form an image of the spatial distribution of the y-rays generated in FNA by using a

coded aperture in place of inefficient image-forming devices like collimators and pinholes.

The design of a CAFNA system requires work on two system components: a position and energy-

sensitive y-ray detector and the coded aperture. Of course the two problems are interdependent, the design

of the detector depending on the design of the coded aperture and vice-versa. Both detector and aperture

need significant development, but, while the considerations involved in the design of the detector can rely

on a well-established body of knowledge, the design strategy of the coded aperture was largely uncharted

territory to us. To get an approximate idea of the requirements on the detector we needed to tackle this

latter problem first.

The complexity and size of a system such as CAFNA not only demanded theoretical

investigation, but also verification by simulation and experiment, which requires use of a y-ray detector.

To this end, we needed to concentrate momentarily on a problem for which a fully-developed 7-ray

position-sensitive detector is already available. This is the case of the Anger (or gamma) camera in

Nuclear Medicine, so we started looking into the problem of taking a 7-ray picture of a thyroid (a classic

test object in the field) with maximum resolution and Signal-to-Noise Ratio (SNR). At the beginning, the

study focused on the determination of basic imaging parameters of the coded aperture camera (the

combination of a coded aperture with a detector) such as field of view and resolution. Simulations



INTRODUCTION

confirmed the predictions of the theoretical analysis, but also showed that other factors, in particular the

object-to-detector distance, play an important role in the imaging process. This was not surprising,

because we were aware that coded aperture imaging was originally developed for a very different

application, X-ray space telescopes. The geometry of this case (a far-field problem, because the object

can be considered very far from both coded aperture and detector) is radically different from that of our

case (a near-field problem, because, for counting efficiency reasons, the object must be kept as close as

possible to coded aperture and detector). In particular, all the apertures that in far-field ensure artifact-free

imaging deviate significantly from ideality when used in near-field. The goal of devising a rational design

procedure for the coded aperture was now expanding to include near-field artifact reduction. A second

finding of the simulations was that, among the many apertures that provide ideal far-field imaging, some

families have a SNR significantly superior to others, which opened yet another question, that of finding

the optimal aperture family. This thesis describes the theoretical analysis developed to address these

problems, the supporting simulations and experimental confirmation of the theory, and the solutions

implemented in the design of a prototype coded aperture to answer all challenges in a rational and

practical way.

There are two main results of this work. The first is the experimental demonstration of the

feasibility of near-field artifact-free imaging over small fields of view. The high SNR achieved despite

the high resolution (about 3 times better than achieved by state-of-the-art collimator and pinhole systems)

is very promising for immediate application in routine small-animal laboratory planar studies. The design

ideas presented in this thesis allows one to continue the development of a coded aperture camera for

Nuclear Medicine along several lines. First, preliminary studies show that sub-millimeter resolution can

be reached while retaining acceptable SNR. Even more interesting is the case of isotopes emitting high

energy y-rays, which, penetrating collimator septa, are very difficult to image with conventional methods.

Second, the experience gained in the Nuclear Medicine study is the best validation of ideas and

procedures general enough to be applied to CAFNA. A better understanding of the performance of coded

apertures has allowed us to estimate the requirements of a satisfactory y-ray detector. In particular, a

prototype detector under development at MIT already seems to provide sufficient energy and position

resolution. Its limit was rather found in its size, currently limited to an 8x8 array of 10 x 10 cm detectors,

but can be easily overcome with translations in this experimental phase and by simply building a larger

array in a full-scale system.

The results of the Nuclear Medicine application have met considerable interest in the medical

arena, for both animal and human studies. The development of new pharmaceuticals typically passes

through small animal studies whose aim is to identify if the compound is actually metabolized as

14



INTRODUCTION

expected. Given the dimensions of the animals, resolution is key in these studies. With the 6-mm

resolution characteristic of current methods it is very hard to identify parts of organs often smaller than a

centimeter. Sub-millimeter resolution would provide researchers with a tool more practical than

autoradiography techniques, which require painstaking surgical procedures and sacrifice of the animal,

precluding time-dependent studies. Resolution is also of great interest in pediatric imaging, where

reduced dimensions pose a challenge to current instrumentation, and in adult studies, such as breast

imaging. This application is particularly suited to coded aperture imaging because it requires that a hot

spot be located on a colder background. In this case better resolution can lead to all the benefits of an

earlier diagnosis.

Given this potential, the investigation of coded apertures for nuclear medicine has become an

independent project which will be hopefully continued in the future.

15
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Chapter 1 OVERVIEW AND HISTORICAL BACKGROUND

The goal of this Chapter is to put this thesis in context and introduce some problems of coded

aperture imaging, so that the thesis outline can be discussed in some detail. Accordingly, only a broad

overview is provided of questions that are going to be discussed in the next Chapters, to which rigor is

postponed for clarity and brevity. Reviews of coded aperture imaging basics can be found in ref. [3]-[6].

1.1 The classic methods of 2d imaging

An image is a mapping over space of some distribution, in our case that of a photon emitter. At

the energies of our interest (140 keV - 10.8 MeV)1 wavelengths are small (8.9 pm - 115 fin), so that

diffraction can be neglected and geometric optics used with excellent approximation. Placing a position

sensitive detector directly before the emitting object (source) is not enough to generate an image because

any photon detected (event) could be due to any part of the source (Figure 1.1a). In this sense, no spatial

information is obtained and it is impossible to produce an image. An imaging system must associate

o-S

Source Pinhole Detector

b)

*--------

Source

c)

Collimator/Detector

Figure 1.1: a) if no imaging system is present, a count collected at the detector can not be traced back to any specific
part of the source. A pinhole (b) and a collimator (c) establish a one-to-one correspondence between detector and
object. With a geometrical construction one can associate each detected event with an emission location.

140 keV is the energy of the y-rays from the de-excitation of 99mTc, used in the great majority of Nuclear
Medicine exams. 10.8 MeV is the energy of a thermal capture event on 14N, a reaction used in explosive detection
systems based on thermal neutrons.

Source

a)

Detector



@ 1.1 The classic methods of2d imaging

events with a place of emission.

The simplest imaging device is the "pinhole", a slab of material opaque to radiation in which is

poked an infinitely small (ideally dimensionless) hole. Since every event must have come from the object

through the pinhole, along a straight line (Figure 1.1b), every point of the detector represents a point of

the source and an image is formed. By inspection, the photon distribution recorded at the detector is an

inverted picture of the object. A second system is the parallel-hole collimator, an array of infinitely small

little tubes, whose walls are opaque to radiation, typically of hexagonal or circular section, placed side by

side until the detector is covered. In this case, photons must have come from a line perpendicular to the

detector (Figure 1.1c), which identifies the place of emission. The image is directly the photon

distribution recorded by the detector.

Ideal pinholes and collimators share the property of realizing a one-to-one correspondence

between object and image. Also, in both cases, for a given source, only photons traveling in one direction

are collected. Lens systems also work with the same idea of one-to-one correspondence but, unlike

pinholes and collimators, bend the path of incoming photons. This means that a point of the source can

Total source counts 350k

Total source counts: 35M Totat source counts: 35M

a) b)

Figure 1.2: a) resolution loss when an ideal pinhole is enlarged to increase throughput. b) intuitive visualization of
the trade-off between noise and resolution for pinhole and collimator imagers. Three pictures of the original object

(top left) were simulated for constant exposure time. The ideal pinhole was 1 xl image-pixels wide (1:1

magnification). The image is very noisy (top right). To obtain better statistics one can widen the pinhole to l0x 10
image pixels and collect 100 times more counts. This does improve the signal in the image (bottom left) but also
blurs it. In a half-open 1 5x1 5 coded aperture there are approximately 100 lxi pinholes: hopefully, this yields the
same signal advantage of the larger pinhole while preserving resolution (bottom right). In Chapter 4 we will see that
this argument holds for a point-like source only. For images as complex as the one chosen here, depending on its
statistical details, there may be no SNR advantage in using a coded aperture.

20



OVERVIEW AND HISTORICAL BACKGROUND

contribute a whole cone of different directions to the image, with great advantage for the SNR.

Unfortunately, photons of the energies of our interest can not be bent by refraction optics. Bragg

diffraction mirrors used in space telescopes work well up to 15 keV ([3]), but further extension requires

sophisticated manufacturing techniques and does not exceed 80 keV.

In theory, the resolution provided by an ideal pinhole (i.e. a dimensionless point) is perfect. An

intuitive argument is that two point sources arbitrarily close in the object will always show separated on

the detector 2. However, this comes at the price of no counts at all, because the area of the ideal pinhole is

zero and the photon flux through it must be zero as well. This is also true of collimators, but not of lenses,

which offer a finite area to the incoming flux, but, again, do not work at the energies of our interest. Real

pinholes, however, must have a finite size. This allows some photons to pass, which does increase the

SNR, but does not come completely to our rescue. Figure 1.2a shows that if two point sources are close

enough, their projections on the detector, which would be distinct in the case of an ideal pinhole, are not

separated. Resolution must have decreased. Another way of looking at the same issue is to recognize that

the larger pinhole realizes only an "approximate" one-to-one correspondence. For a complex object,

resolution loss means a blurred image. This is shown pictorially in the example of Figure 1.2b, where the

ideal pinhole (in this example a very small hole of finite size) is compared to a real one.

In conclusion, the pinhole (or collimator) hole size can not be increased indefinitely to increase

efficiency because some resolution limit will be reached. In typical collimator systems only 0.1% or less

of the emitted photons are counted, giving a noisy image unless a long exposure time is used or lower

resolution accepted for a constant exposure time.

1.2 Why a coded aperture?

Coded apertures try to achieve the resolution of small pinholes while maintaining a high signal

throughput. The basic idea is to overcome photon shortage by opening many small pinholes instead of a

larger one. These pinholes are placed in specially designed arrays called patterns. The aperture (or mask)

is the physical realization of a pattern. The mask forms with the detector the coded aperture camera.

2 Since here we are concerned with the properties of the imaging optics, not with the system as a whole, an
ideal (perfect resolution) detector is assumed. A complete discussion of the resolution of a coded aperture camera is
given in sections 2.6 and 7.1.
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@ 1.3 Coded aperture imaging in a nutshell

1.3 Coded aperture imaging in a nutshell

Since the number of photons passing through a pinhole of the coded aperture is independent of

photons passing through all other pinholes, each pinhole is independent of the others. The projection of

the object through the mask can be decomposed in the sum of contributions from each pinhole. From the

discussion of section 1.1, a pinhole casts on the detector an inverted image of the object, which

superimposes to projections from other pinholes (Figure 1.3a). The counts collected at the detector are,

then, the superposition of many shifted copies of the object. In a far-field approximation, i.e. when the

object is sufficiently far from mask and detector, the projection process follows the equation:

O xA=R (1.1)

where 0 is the irradiance (number of photons emitted per unit area) of the object, A the transmission of

the coded aperture (a function ranging from 0 for complete opacity to 1 for complete transparency), R the

counts recorded by the detector and x indicates non-periodic correlation. A rigorous definition of the far-

field approximation is given in Chapter 5, where eq. (1.1) is derived as a particular case of a more general

formulation.

As the pinholes can be several hundreds, R does not resemble 0 in any immediate way. An

alternative way of looking at the same process is to say that a point in the image is not represented on the

detector by a point, but rather by a pattern of points. This is the mask itself, as follows from eq. (1.1),

when 0 is replaced with Dirac's delta function 6:

R=SxA=A (1.2)

Therefore, each point source is present in the projection not as a point but as a known pattern.

Original M ask

URA CAMERA 2

0 20 40 60 0 5 10
Projection Fourier Reconstruction

ECONSTRUCTED
APERTUREECDDTMAGE

P"CT*W W1PUTER'01 30 3DECODING

a) PROCEDURE b) a10 20 2n4600

Figure 1.3: a) pictorial summary of a coded aperture camera concept (here indicated with a URA camera). Adapted

from [6]. b) a sample of the process from the object, through the mask, to projection and reconstruction.

22
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OVERVIEW AND HISTORICAL BACKGROUND

Different point sources are characterized by the pattern shift. In this sense the signal from the source is

encoded. The first consequence is that a point source is not counted once, but once for every pinhole of

the coded aperture, which is expected to increase the counting statistics and, consequently, the SNR. The

second consequence is that at each detector point is present information about many points of the source:

in this sense information is multiplexed. The third consequence is that the recorded pattern R must be

decoded to obtain an image. In intuitive terms, R must be scanned looking for known patterns which must

be replaced with the point source that cast them. This is the same as separating the overlapped copies and

is done by an operation known in signal processing as "matched filtering" ([5]). The technique prescribes

to take the correlation of the collected data with the known pattern, in our case A. In a more general case

in a pattern may be sought not through the pattern itself, but through an associated decoding pattern (or

decoding array) G such that:

A®G=S (1.3)

where 0 indicates periodic correlation, the matched filtering process is:

ROG (1.4)

The result of this operation is to produce a perfect copy of the object 0. In fact, given the linearity

of correlation operations and eq. (1.1) one can write (using Appendix A.3):

O =R0G=(0xA)®G= O* (AOG) (1.5)

where 0 is by definition the estimate of the object or reconstructed image. This chain of equalities shows

that the output of the imaging system is not directly the object but, as in all linear systems, a convolution

of the object with a kernel, in this case A 0 G. The convolution kernel is also called the Point Spread

Function (PSF), which is the imaging analogue of the Pulse Response Function of electrical circuits. With

this definition, eq. (1.5) becomes:

0=0 * PSF (1.6)

The name Point Spread Function comes from the fact that the PSF is the image produced in

response to a point source. In fact if 0 = 6:

0=6 * PSF=PSF
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21.3 Coded aperture imaging in a nutshell

which means that the PSF describes the imperfections that cause a system not to reconstruct a point with a

point, but to spread it over a certain area. The PSF summarizes the behavior of the imaging system

because the output of the imager can be predicted from knowledge of the input (the object) and the PSF

alone, via eq. (1.6). Its importance is enormous both in theory and in practice. From eq. (1.5) and (1.6), in

coded aperture imaging:

PSF = A 0 G (1.8)

Fortunately A and G are both in the hands of the designer. Furthermore, considerable literature is

dedicated to the generation of pairs of A and G satisfying the constraint of eq. (1.3). Such pairs are said to

have perfect imaging properties. In fact, substitution of eq. (1.3) in eq. (1.8) and then in eq. (1.6) gives:

0=0 * 6Z=0 (1.9)

which means that if the PSF is a 6 function the reconstruction is perfect. This should not be surprising,

because in this case a point in the object corresponds to a point, and not a blur, in the image.

In conclusion, coded aperture imaging can produce a perfect copy of the object. It is a two step

process: the first is physical, the projection of the source through the aperture; the second is

computational, decoding. The motivation to go through this complication is the potential of achieving a

higher SNR. Chapter 4 is dedicated to quantifying this potential and understanding the hypothesis under

which it is actually present.

Of course, the result of ideal reconstruction is due to a number of hypotheses. The first, and most

relevant, is that eq. (1.1) holds only in the above-mentioned far-field approximation, which is the implicit

starting point of all coded aperture literature. This approximation does hold in most literature

applications, especially the early ones, which developed the basic ideas of coded aperture imaging in the

context of space applications. However, in Nuclear Medicine, the concern is to collect the maximum

number of photons, and the detector must be placed as close as possible to the source. In typical cases, the

far-field approximation breaks down, but little attention to this is found in published works. Chapter 5 is

dedicated to the examination of the consequences of using methods developed for far-field applications in

a near-field geometry and the development of suitable remedies.

The second major hypothesis is that detector and mask be ideal. As for the former, a typical state-

of-the-art Anger camera provides a 3 .7-mm-FWHM (Full Width at Half Maximum) PSF at the center of

the crystal. This means that an infinitely narrow beam is seen not as a point but as a blur reaching half of

its peak value only outside a diameter of 3.7 mm. This figure gives a first idea of the resolution that can
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OVERVIEW AND HISTORICAL BACKGROUND

be reached with such a system, but it has to be combined with a second factor. In fact, eq. (1.3) holds in

this exact form only for an aperture with dimensionless pinholes. Real pinholes and collimators have a

finite size, which further degrades resolution. As an example, the Ultra-High-Resolution collimator

supplied by Siemens for use with its E-Cam gamma-camera has a hole diameter of 1.16 mm and is

capable of a system resolution of 6.3 mm for 99'Tc at 10 cm. This collimator, however, has the low

sensitivity (counts per unit activity in the source) of 100 cpm / pCi at 10 cm. For comparison, a High-

Sensitivity collimator (1063 cpm / pCi at 10 cm) has a resolution of 14.6 mm at 10 cm. In Chapter 7 is

provided a thorough description of how all these factors were combined in the determination of the

resolution of a coded aperture camera and how the limits for the achievable resolution were investigated.

1.4 Coded aperture history

Coded aperture techniques were first proposed in 1961 by Mertz and Young ([7]). The aperture

they proposed was the Fresnel Zone Plate (FZP), in theory a circularly-symmetric mask having

transmission:

cos (r2 ); 0 : r ;+c00 (1.10)

where r is the radius from the center of symmetry. This pattern was inspired by holography, where it is

used for its property of refocusing coherent light in a focal point. This characteristic can be used to

decode the projection. In early experiments the projection was recorded on a film, which was developed

and then exposed to coherent light of wavelength comparable to the size of the projected pattern. Since

each projected zone plate is refocused in a point, the image is decoded. Note that while the projection is

cast by X or y-rays, coherent radiation of optical wavelength is used in decoding, which was an optical

A
(b)

Figure 1.4: theoretical (a) and practical (b) Fresnel Zone Plate. The latter is non-ideal because transmission is either
total or null (instead of being continuously modulated) and because the plate is not infinite but stops after a few
circles.
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21.5 Applications of coded apertures

procedure ([6]).

The advent of fast digital computers made it possible to exploit a second nice characteristic of the

FZP: the auto-correlation of an FZP is a a function ([3]), so the decoding method of section 1.3 can also

be used. However, perfect imaging properties hold only if the plate is infinite and has a continuously

varying transmission. Since this entails considerable fabrication difficulties, in real applications the FZP

must be approximated with a finite series of concentric circles of radius:

r,, = r-fJ, n =, 2 , 3 ... ,nm (1.11)

where the annuli are alternatively totally opaque and transparent (Figure 1.4). A particular case is that of

the annulus, where a single open ring is used. These approximations cause significant deviation from a 6

function, even if more general formulations of eq. (1.11) are used ([8]). This, however, did not stop early

experiments. Despite having been proposed for space applications, the first actual demonstration of FZP

imaging was a study of a thyroid phantom ([9]). Fabrication difficulties, with the problems associated

with optical decoding, made the technique impractical.

The advent of more manageable apertures gave new momentum to the field. In 1968, Dicke and

Ables independently pointed out that a square arrangement of randomly distributed square openings (a

random array) has reasonable self-correlation properties ([10], [11]). Unfortunately, just like the FZP, a

random aperture provides an ideal PSF only if it is infinite. In 1971 the Non Redundant Arrays (NRAs,

[12]) were proposed. These arrays are compact but have ideal properties only on a small field of view and

contain a small number of holes, which prevents great improvements in the SNR. The difficulty was

overcome in 1978, when Fenimore and Cannon introduced the rectangular Uniformly Redundant Arrays

(URAs, [13]), which have an ideal PSF and are finite. A decade later URAs were followed by the

Modified URAs (MURAs), which have the additional convenience of being square ([14]). Meanwhile, a

number of other apertures were discovered. They are described in section 2.4.

1.5 Applications of coded apertures

Applications of coded apertures have been, for the vast majority, in astronomy. A number of

examples can be found in ref. [3]. This is due to two reasons. The first has to do with the appearance of

the object (in astronomy a number of isolated bright spots, the stars) and the detector high-background

environment, often an orbiting satellite or a balloon-borne telescope. As we shall see, it is in these

conditions that coded apertures provide the largest SNR advantages over pinholes and collimators. The
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second reason is that star imaging is a perfect example of far-field imaging, a condition not affected by

artifacts.

Other fields of application are nuclear medicine ([9], [l5]-[18]), nuclear fusion ([19], [20]),

industrial imaging, e.g. clean-up and decommissioning of nuclear sites ([21]), contraband detection ([22]),

chemical spectroscopy and optical image processing ([3]).

1.6 Thesis outline

The thesis is divided in three parts. As the reader will have found out by now, Part I provides

context and a general overview. The second Chapter is a more detailed presentation of coded aperture

imaging. An analysis of the imaging geometry is presented with the goal of deriving fundamental

relations among basic parameters such as field of view and resolution. For comparison reasons, the case

of the pinhole is also briefly summarized. Extensive details on the options available for the aperture and

decoding pattern are provided. Listing all pattern families and generation rules may seem tedious and not

original, but the goal was to provide some order in information otherwise scattered in a number of papers.

Furthermore, a reasonably comprehensive knowledge of patterns is very useful in understanding SNR and

artifact reduction problems. Some considerations on the 3d properties of coded apertures close the

Chapter.

Part II of the thesis is its original core. It discusses the simulation and theoretical tools used in the

investigation, how they were used in the design and construction of a prototype aperture and the

experimental results obtained.

Simulation has played a fundamental role in this project to the point that it is not unfair to say its

results directed the work. Since some aspects of simulation are not trivial, Chapter 3 describes the

simulation code. In this Chapter is also included a description of the optical simulator that provided the

first link between the computational and the real world, supporting the credibility of computer

calculations.

Chapters 4 and 5 concern, respectively, the SNR and artifact reduction. A major problem was

finding a rational procedure to design the coded aperture. For example, from literature are known several

families of pairs (A, G), and, within each family, patterns of many different sizes. Since all families and

patterns provide ideal far-field imaging, the problem was to find some other criterion that made a family

preferable to others. To answer this question, Chapter 4 looks closely at the SNR of coded aperture

families. One of the conclusions is that coded apertures do not always provide an advantage over a

pinhole or collimator system. In particular, a coded aperture is advantageous for sparse objects (a result
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well-known in the literature), i.e. objects for which the activity is concentrated in a relatively small part

(on the order of 10% or less) of the field of view, unless a very high background is present. A less-known

result is that low-throughput apertures do not always provide better performance for sparse objects, a

statement that has led some researchers to erroneously propose some aperture families as optimal for

medical applications. Finally, investigations in the literature have considered the ideal system: for

instance, the area around mask holes is perfectly opaque and far-field geometry is assumed. In the

analysis of the SNR partial mask transparency is introduced because, while it does not introduce any

artifacts, it does reduce the SNR. Results extend and correct some of those previously published and will

be later applied to the determination of mask thickness and in the investigation of higher energy isotopes.

In Chapter 5 several other non-idealities are presented and their impact on the final image

described. These are mainly related to how the detector samples the projected pattern, but the most

interesting for planar imaging are those due to near-field geometry and mask thickness. The far-field

approximation is derived as a particular case of a more general mathematical framework capable of

predicting near-field artifacts, which are described, classified and compared to published results. On these

bases, some remedies are proposed and their effectiveness tested with computational simulations. The

Chapter closes with a description of the origin of thickness artifacts.

The pairs (A, G) are found in literature as dimensionless 2d arrays of numbers. The question of

finding the physical dimensions to fabricate a pattern into a mask is closely related to that of finding the

field of view and the resolution of a coded aperture camera. Chapter 6 tackles the problem in a systematic

way by applying to the design of a coded aperture the concepts developed in previous chapters. The

reason for every value of a mask specification is explained. The mask designed was actually built and

experimental results are presented.

Part III contains advanced topics and extensions of the work presented in Part II. Chapter 7

revisits the resolution of the prototype mask to include the effect of detector sampling and intrinsic PSF.

After different detector setups are discussed, the characteristics of an advanced mask design, capable of

sub-millimeter resolution, are derived. Since the ultimate limit on resolution is found to be mask

thickness, a method for an accurate determination of optimal thickness is developed.

Chapter 8 is about future work that can be done with the prototype mask, the bases for the

imaging of higher-energy isotopes and the general issues involved in 3d coded aperture imaging.

Finally, Chapter 9 introduces fast neutron analysis and presents experimental results which

provide insight on issues, such as background and noise, likely to play a prominent role in the design of a

CAFNA system. The details of a candidate mask for CAFNA are also given.
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Chapter 2 FUNDAMENTALS OF CODED APERTURE IMAGING

This Chapter explores the fundamentals of coded aperture imaging more in depth. First, the

pinhole camera gives an opportunity to introduce at an intuitive level many ideas useful for what follows.

Different aperture families, code aperture camera geometries and decoding strategies are then presented

along with many different families of apertures. A few considerations on elementary three-dimensional

properties of coded aperture imaging close the Chapter.

A basic exposition of coded aperture imaging that also provides historical background can be

found in ref. [6]. Ref. [13] is more technical and is probably the most referenced paper in the field.

2.1 The pinhole camera

The photon distribution recorded at the detector of a pinhole camera follows from the one-to-one

correspondence established between object and detector. With the definitions of Figure 2.1, the photon

distribution at a generic detector position R (xi, y,), must be due to the point source at (x0, y,) only, to

whose irradiance 0 (xo, yo) must be proportional:

R(x,y,)oc O(x, y) (2.1)

Defining the vectors:

1i =(x, y ) and t= (x, yo) (2.2)

which, because the ray going from Ft to i must pass through the pinhole, are related by:

a
il =b-,(2.3)

eq. (2.1) becomes:

R(F,)c O f J (2.4)
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Figure 2. 1: pinhole camera geometry.

This relationship shows that the projection through the pinhole is a copy of the object, inverted

(because of the minus) and rescaled. Since a and b can be any positive number, the rescaling constant can

be any positive number. If a> b, i.e. the pinhole is closer to the detector than to the object, the object

appears minified, while for a < b, the object is magnified. From Figure 2.2a one can verify that the ratio

of the projected object size to the original is (neglecting the inversion):

hiyb

hi- b-=M P(2.5)

ha b

which demonstrates that the rescaling coefficient is the magnification coefficient of the pinhole m,.

If ha is set equal to the size of the detector, ds, the size of the field of view of the pinhole, i.e. the

set of points in the plane of the object that can be imaged, is obtained:

Fo V = (2.6)

MP

In the case of the ideal pinhole, resolution is, of course, perfect. If the pinhole had a finite width

w,,, each point would cast an image of size:

Wd - a+ b Wll=(+ MP ) W. (2.7)
a

If the resolution of the system is defined as the minimum distance between two pot i in the plane

of the object such that their projections are separated in the image, from Figure 2.2b and simple geoetry:
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Figure 2.2: a) Determination of the pinhole magnification coefficient b) Determination of pinhole resolution.

I a W = 1 W",(2.8)
b M

With this definition of resolution, low values indicate good resolution. This clarified, this

equation shows that the best case is that of infinite magnification and that resolution is limited by the size

of the pinhole. It is interesting to note that while resolution improves for increasing magnification, the

field of view shrinks. The ratio of the two is:

FoV dd (2.9)
1 (1+m)w,,

This ratio could be taken as a figure of merit for an imager, which ideally should have the widest

possible field of view and, at the same time, the best possible resolution. The maximum value is dd / w,,

and is obtained for m, -> oo. As magnification increases, resolution improves but eventually reaches the

asymptote w,, while the field of view decreases indefinitely until the figure of merit vanishes.

2.2 Encoding the signal: object projection

Chapter 1 showed that coded aperture imaging is a two step process. The first step, encoding, is

the physical process of projection of the object, through the mask, onto the detector. Since at the energies

of interest geometric optics is applicable, it is possible to calculate the projection from aperture and object

with a purely geometrical argument. With the definitions of Chapter 1 and Figure 2.3a, the photon

distribution R recorded at the detector position , and due to the point source at F% must be proportional
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32 §2.2 Encoding the signal: object projection

to the irradiance 0 (4), modulated by the transmission of the mask A evaluated at the point of

intersection with the ray going from 1, to 4r:

R() o0(F)AK, + a P
z)

(2.10)

To simplify construction, A is almost always considered a two-valued function. It is also very

often thought as a grid of square elements, so that it can be represented with a matrix whose elements are

Is and Os (respectively, holes and opaque elements). To obtain the total recorded photon distribution, it is

sufficient to repeat this argument for all point sources and add all the results, i.e. integrate over the object

plane:

R(4)oc JO(F,)AL4, + "- a d20
K o z

(2.11)

Here the assumption that the detector responds linearly is made, i.e. the response to the

simultaneous exposition to several sources is equal to the sum of the responses obtained from the sources

taken one at a time. By definition:

za+b

A

(2.12)

so that:

A

4-4 rVrt
'C

V

a

A'
a0
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C)
0

V
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z
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Figure 2.3: a) projection geometry. b) calculation of the magnification coefficient of the mask
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R(Fc IO(,)Ara ;b"d20 (2.13)

which, with:

bb =--r,,(2.14)
a

becomes:

R(5)a c JJO(=ffh)A<Y )jd2 (2.15)

From its definition, 4' is the point that would be associated to F in-a pinhole imager, i.e. it is the

point of the detector aligned with , and the mask center. Two more definitions will help cast this

equation in a more meaningful form:

' r-0 F and A'()= A f < (2.16a-b)

0' is a scaled and inverted version of 0. The scaling coefficient is the same as the magnification

coefficient of a pinhole camera (see eq. (2.5)). In other words, 0' is a pinhole image of the object

(eq. (2.4)). Similarly, A' is a scaled (but not inverted) version of A. The scaling coefficient makes A'

larger than A. Figure 2.3b helps in the calculation of the ratio of the size of the mask projection to the size

of the mask itself:

h Z
--- = - Z(2.17)
h,, a

which is the scaling coefficient of definition 2.16b. The magnification of A' is due to the projection of

the mask pattern on the detector. Substitution of eq. (2.16a-b) in eq. (2.15) gives:

RQ(j;) cc Jo'(4 ' )A'Q 7i ) d 0'A'(2.18)
r~
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which shows that the projection process is described by the convolution 3 of the pinhole image of the

object 0' with the projection of the mask pattern A'. A physical interpretation of this equation is that the

projection is the sum of magnified mask patterns, each shifted according to the location 4 of the point

source casting the shadow and weighted according to its irradiance.

An alternative interpretation is obtained exploiting the commutative property of convolution:

R=O'*A'= A'*O'= JJA'Q ,',)0'(i -,|,)d 2i,| (2.19)

where 4 is a dummy variable spanning the detector. In this form the projection is the sum of equal

pinhole images of the object, shifted and weighted according to various positions in the mask. From

Chapter 1 we know that the aperture is in practice a collection of N pinholes. Assuming ideal pinholes, A

can be written as a sum of shifted 6 functions:

A(F,,) = Z6 Q,, -1F,) (2.20)
n=1,2,...N

where ,, is a generic position on the mask plane and F,,,, the position of the nib pinhole on the plane. The

projection of A on the detector is:

A'(,|%)= Z6(F, -t, (2.21)
n=1,2,.. N

which can be substituted in eq. (2.19) to get:

R = f Z (,| -rf| )O'(F -,|)d2 _z a, (2.22)
jn=1,2,.. n=1,2,...N

In several papers this convolution is reported to be a correlation. This difference comes from a different
definitions of terms or a different setting of the axes on the object or the detector. For instance, for simplicity, in

b
Chapter I the object was not inverted. This is equivalent to defining '=b -F,, which means an inversion of one set

a

of axes. This definition leads to: RQf) Oc Jfb ,'9A + 4 )d4' , which is the correlation of eq. (1.1).

roi
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To establish the connection between il, and 15, we can simply recall that the former is the

projection of the latter on the detector, so, from Figure 2.3b:

' = - (2.23)
a

In conclusion:

R= 0' r, (2.24)
n=1,2, ...N a

In this form the projection is the sum of N shifted copies of the pinhole image of object. While

this point of view is useful in establishing a relationship with the pinhole camera, the decomposition of

the projection into the sum of mask patterns is useful in introducing the decoding step. As we shall see in

the next section, the procedure of decoding can be thought of as one of scanning the projection to identify

mask projections.

2.3 Decoding: computer post-processing

The second step of coded aperture imaging is extracting the encoded data, i.e. the object from the

convolution of eq. (2.18):

R(,) oc O'* A' (2.18)

The classic strategy makes use of the convolution theorem:

(R) oc (O')4-J(A') (2.25)

and the inverse Fourier transform to obtain the object estimate 0:

6=- 1 r 5 =(R) (2.26)

Also note that with this and definition 2.16b: A'(,' =A ,' = A(Q
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Unfortunately this works only in absence of noise. In a real case, in fact, some noise N adds to the

recorded data:

R(g)cc O'* A'+ N (2.27)

Fourier-transformation of both sides and rearrangement yields:

Q0= (A-' ) = - JA)(2.28)

In the assumption of white noise, &(N) is constant at all frequencies. On the other hand, J(A')

typically has zeros. The net result is that the reconstruction of 0' is dominated by the noise term. While

improvements can be obtained by Wiener filtering ([23]), a different strategy gives better results. In

section 2.2 was shown that each point of the source is present in the projection because it deposits a

shadow of the mask on the detector. The correlation method of decoding is a way of locating mask

patterns in the projection. The reconstructed object is defined to be:

O =RxG (2.29)

Substituting the expression for R:

b=(O'*A'+N)xG=('*A')xG+NxG=O'*(A'xG)+NxG (2.30)

But if:

A' x G=6 (2.31)

eq. (2.30) becomes:

0=c'+NxG (2.32)

The noise term is still present but, unlike in the Fourier transform method, is not ill-behaved. On

the contrary, N x G is the convolution of a constant (only in an average sense and in the assumption of

uniform noise) with a function, which is a constant no matter what the second function may be (see A.2).

To gain some insight, it is convenient to neglect noise, which, anyway, contributes a constant

background to the image. So, let R be:
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R(4i )cac O'* A' J=JO'(F )A'(i - Fd2 (2.33)

From the definition, the reconstructed image is, inverting the integration order:

Or=sR xG = fJJR (F) G (F, + F)d2 1 f f0'Q,')JJ fA'Q5 i-iF,' ) G (15 ±4j ,) d2 ,d2 (2.34)

What a correlation does is to take the decoding pattern, G, shift it (by adding the reconstruction

variable Fr to the argument F1), multiply it point by point with the data R and then add all products

(integration). The result is the brightness of the image at the reconstruction point F,. The procedure is

then repeated for all shifts (,) to complete the image. Since the operation is linear, we were able to invert

the integration order: linearity reduces the problem to the simpler one of correlating G with a shape

independent of the object, the mask A, or, better, its projection A'. G is a decoding array stored in the

computer. A common choice is that it be also made of Os and Is, just as, in most cases, A. Indeed, it is not

uncommon that G = A. In this case, when the reconstruction shift (the shift of G) with respect to A is 0,

the Is of G and A coincide. Point by point multiplication and successive summation gives the number of

holes, which is the maximum possible result. For all other shifts some of the holes (Is) of A fall on the Os

of G and do not contribute to the sum. Importantly, if the result were the same for all these other shifts,

the image would be a bright spot surrounded by a constant background (that can be set to zero by

subtraction). The condition A x G =6, therefore, can be interpreted as follows: the correlation tries all

possible shifts and indicates the one matching the shift of the mask projection with a bright spot. Since

this shift depends on the position of the source,,the bright spot indicates the position of the source.

Mathematically:

JJA'(F, - it') GQ5 it- + d2 1 ('5)(2.35)

The 6 function sifts the object 0', selecting one point source at a time. In fact:

0 s'(F')eJfA'(ein -)G(ratr ± ihd'd =e J0'(F)( tini)dte d='(it) = n (O')(2.36)

where 91 is the reflection operator, which restores the reflection in the definition of 0'.

r
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In conclusion, reconstruction is the identification of a known pattern in a signal. This process is

known in communication theory as "matched filtering", which is the optimal strategy for detecting a

known signal in noise when the SNR tends to 0 ([5]). The drawback is that the design of the coded

aperture is restricted to patterns having a very particular property. Fortunately, such patterns are not

uncommon and different families of such patterns are available in literature. They are described in the

next section.

2.4 Coded aperture families

In this section are described some families of coded aperture arrays, their generation rules and

correlation properties. Even though a library of arrays would be of great help to coded aperture designers,

we are not aware of any complete listing. The following is a reasonably comprehensive collection of

arrays found scattered in many papers and reviews, but is very far from complete.

Literature nomenclature is very confusing. There are several instances of the same name being

used for different sets or for a set and one of its subsets. For instance Caroli et al. ([3]) use the term

Pseudo-Noise (PN) sequence as an equivalent of m- sequence, Calabro and Wolf use it for twin-prime

Hadamard sets ([25]), while Nelson and Fredman use it for all Hadamard sequences ([26]), which were

later recognized to be Uniformly Redundant Arrays ([27]), a term initially reserved to Hadamard twin-

prime sequences ([13]). Also, Non-Redundant Arrays should be, and are often defined as, a particular

case of Uniformly Redundant Arrays, but, in common usage and in this thesis, they indicate yet another

i Random MURAs

Table 2.1: Summary of array families.

NRA

9 Singer

Cyclic Hadamard
(quadratic residues, twin-

Difference Sets primes and m-sequences)

e Low-density
(biquadratic and dilute URAs)

* PNP

* MP
Product Arrays

* MM

* NS

Geometric

NTHT

Imperfect masks

3 8
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family, with slightly non-ideal properties. In this thesis, the term Pseudo-Noise is not used (but Pseudo-

Noise-Product is used) and URA is reserved to twin-prime Hadamard sets so that there be no overlap with

m-sequences.

General definitions are those of self-supporting masks (one in which all opaque areas are

connected at least along a line) and a binary array (an array taking on two values only, typically 0 and 1).

Before entering the details, note that if A x G=6, also the pair (1-A, G) has ideal imaging

properties, except for a removable constant sidelobe value. In fact:

(1-A)xG =IxG- A xG =L-G-NS (2.37)

The sidelobe value can be removed with an appropriate rescaling of G. The negative of a mask,

i.e. a mask with open and opaque positions exchanged, is, then, also a mask with ideal imaging properties.

2.4.1 Random array

In the random pinhole array ([10], [11]) holes are placed at random. The decoding array is the

array itself, so G = A. In an array with a total number of positions NT an arbitrary number N -<NT of open

positions can be placed. A nice characteristic of the random array is that the density of the holes:

N
NT

(2.38)

which is a critical parameter in the determination of the SNR of an aperture (see Chapter 4), can any

arbitrary value (unlike some other arrays we will meet later). The peak value of the autocorrelation is N,

20

40

s0

Random array 62 x 62

20 40 60

- -,

621
31O

Figure 2.4: 62 x 62 random array and its periodic self-correlation. Note the variation in the sidelobes (inherent
noise).
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while the off-peak (or sidelobe) value is lower but not constant. In fact, this number is that of the holes

still overlapping with other holes after the shift. Since there is no correlation between neighbors, this

process is entirely random and the result varies with shift. For this reason, random arrays do not provide

ideal imaging properties (see Figure 2.4). This does not necessarily mean that random arrays can not be

used without significantly degrading image quality. First, assuming periodic decoding (see section 2.7),

the value of any point in the sidelobes is a sample from the same probabilistic distribution: this means

that, on the average, sidelobes are flat. Furthermore, since neighbors are not correlated, the sidelobes

show no recognizable structures. The effect is that of adding a noisy background, even for an infinite

number of counts, but not artifacts. For this reason this "noise" is sometimes called inherent noise,

because it is "built in" the mask. The question is whether or not inherent noise is large when compared to

statistical noise in typical cases.

Because of independence, shifting the decoding array is equivalent to generating a new one with

the exact same number of holes. A given sidelobe value is given by the number n of superpositions with a

new random pattern. The number of different patterns of N holes with NT positions is given by the total

number of possible permutations of all positions NT! divided by the number of permutations of the holes,

N!, which do not produce a different pattern, and by the number of permutations of the opaque positions,
I

(N-N)!, for the same reason. This ratio is the binomial coefficient ('j. The number of different
N

arrangements leading to the same n is given by the number of possible arrangements of n superpositions

over N holes, NI, times the number of different arrangements of the remaining (N-n) decoding array
n

holes over the (NrN) opaque positions,N. Of course:
(N -n

N (OEIZNIID KN7j (2.39)
n1=0 n N -n N

and the probability distribution function of n is:

5 Also see Vandermonde's identity (r forr+s N in ref. [24].
1=0 M) m(
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N)'Nr -N)

n N-_n
p(n)= X(2.40)

Nr

independently of position within the sidelobe. In Appendix B. I are calculated the average value (pN) and

the standard deviation (~-(1- p) pN) of this distribution. Defining the signal as the difference between

the peak value and the average sidelobe value and the noise as the standard deviation of the latter, the

SNR is:

N -pN N
SNR-= =N-=p NT (2.41)

p(1- p)2 N P

which increases indefinitely with Nr and is independent of p. An infinitely large random array would

have perfect imaging properties. In our case, one can see that the 62 x 62 array of Figure 2.4, which has

1860 holes and is thus 48.39% open, has an average sidelobe value of 900, with a standard deviation of

about 15.5, as confirmed by a direct evaluation from the autocorrelation function of this particular

realization. Since the signal (peak - sidelobe average) is 960, the inherent SNR of this pattern is, as

expected, 62. As we shall see in later sections the limit on the SNR imposed by counting statistics is more

restrictive, so that this degradation would not be visible.

In conclusion, even if random apertures do not have ideal imaging properties, they are still

attractive because they do not contribute structured artifacts to the image and can easily be made of any

open fraction and size. Furthermore, even in practical cases they can be large enough so that the inherent

SNR is negligible. A major drawback is that very likely they do not have a self-supporting structure.

2.4.2 Non-Redundant Arrays

When the autocorrelation of a binary pattern is taken, the number of hole coincidences at each

shift equals the number of holes of the pattern separated by a (vectorial) distance equal to the shift. If this

number is 1 for a certain shift, only one hole in the pattern is separated from any other hole by that shift.

If this happens for all shifts, the pattern is such that every (vectorial) distance between holes appears only

once. For this reason these patterns are called the Non-Redundant Arrays (NRAs). If this were true for all

shifts, the self-correlation function would be one everywhere, except for no shift, where a peak of height

equal to the number of holes in the pattern is formed. In other words, a delta function is obtained and the
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Non-Redundant Array 19 x 19

20,

15 M15

1601102

100

20
20

6 10 15 1 1

0 0

Figure 2.5: 19 x 19 Non-Redundant Array. Note the imperfection in the autocorrelation function.

pattern is an aperture having ideal imaging properties. In practice, sidelobes are only approximately

constant, often out to a certain lag, after which they oscillate between 1 and 0 and then eventually drop to

0, when non-periodic correlation is used (see section 2.5). The classic reference on NRAs is ref. [12],

which reports a number of patterns with optimal or nearly optimal imaging characteristics. More

construction methods are provided in ref. [28], from which the example of Figure 2.5 is taken.

The drawbacks of the NRAs are mainly two: non-optimal imaging properties (which limits the

field of view to the region where sidelobes are constant; [3], [6]) and the small number of holes, which

results in a small signal throughput ([4], [13]). Nevertheless, they were used in Nuclear Medicine studies

([29]).

2.4.3 Arrays based on cyclic difference sets

The most widely used class of masks relies on cyclic difference sets ([30]). These are a set of N

numbers with values between 0 and NT -I such that if all possible differences modulo N in the set are

taken, all solutions between 1 and NT1 - appear a constant number of times M. In more mathematical

terms, a difference set 9is the set of N residues modulo NT such that for any residue q J 0 (mod NT) the

congruence d- d= q (mod NT) with di,, d eQD has exactly M solutions pairs (di, d) in 9. Cyclic

difference sets are characterized and classified by the triplet (NT, N, M). An example is the set {0, 1, 2, 4}

with parameters (7, 4, 2). The sets can also be represented by a binary sequence {a,} of NT Os (locations

not belonging to the set) and Is (locations belonging to the set), i.e.:

1 if ice$.
a = (2.42)

' 0 if i e
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with i=0, 1, ... , N-1. In this example the sequence is 1110100. The periodic autocorrelation of these

sequences are two-valued:

NT-1 N if mod(i+1,NT) =0

aainod(i+,Nr)=M - N(N - 1) otherwise (2.43)
LONT-I

This comes as little surprise, because each sidelobe value equals the number of occurrences of a

distance, which, by definition of cyclic difference set, is the constant M. The only exception is no shift, in

which case the autocorrelation is equal to the total of Is in the associated sequence, i.e. of elements of the

set, N. In this example, one can verify that the peak is 4 and the sidelobes 2.

Two subclasses of cyclic difference sets are Singer sets, for which NT= (I"' 1) / (t- 1),

N= (t'-1) / (t-1) and M= (t"-l) / ((-1), where t is a prime number, and Hadamard sets, for which

NT= 4t-1, N= 2t-1 and M= t-1, where t is an integer. Hadamard sets are at the basis of Pseudo-Noise

(PN) sequences and can be classified in ([3]):

Quadratic residues: the set is given by the squares, mod(NT), of the first (N+l) / 2

integers, with NT prime.

Twin primes: a set is twin prime if NT is the product of two prime numbers whose

difference is 2.

rn-sequences: sets for which NT=2"'- 1 with m integer greater than 1. These also fall under

the definition of Singer sets for t = 2.

Some sets may belong to more than a subclass. For example, our sample sequence is both a

quadratic residue and an m-sequence. In fact, the squares of the first (7+1) / 2 = 4 integers are 0, 1, 4, 9

and 16, which, mod(7), are 0, 1, 4, 2 and 2. Furthermore, if m = 4, 2 -1 = 7 NT.

From the definition, Singer sets can be seen to have density N / NT ~-I / t. Hadamard sets all have

a density of about 50%. Hadamard sets are related to Hadamard matrices, orthogonal matrices (H-1 = IHT,

i.e. row (column) vectors are mutually orthogonal) whose elements are either 1 or -1. Hadamard matrices

have a close relationship with m-sequences. An m-sequence can be placed as the first row of a cyclic

matrix, by definition one in which a line is obtained from the previous by shifting all elements one place

to the right and moving the last element at the right to the left. If a column of ones and a row of zeros is

added to the matrix so obtained and the resulting matrix is rescaled between one and minus one, a
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Hadamard matrix is obtained ([26]). The equivalence of URAs and Hadamard coded apertures is also

treated in ref. [27] and [14].

Cyclic difference sets generate 1d sequences that, for our ends, need to be folded in two

dimensional arrays. For rectangular arrays this is possible only if N is not prime, which excludes

quadratic residue and part of the m-sequences. A first way of folding a Id sequence in a 2d sequence is to

place the elements along a diagonal continuing at the opposite side when an edge is reached (Figure 2.6a),

[31]). While with this method the periodic self-correlation of the 2d array is immediately a 6 function, it

works only if NT can be factorized in the product of two mutually prime numbers. A more straightforward

way is to arrange the sequence by rows and columns, for instance lexicographically. However, one can

not decode by simply taking G = A and using periodic correlation (see section 2.7). This is because when

the self-correlation is calculated, while all elements moving, say, one place to the right are displaced by

one position on the decoding array, the last column must be reinserted to the left, which is equivalent to a

much longer displacement, equal to the size of the mask. Since not all elements are displaced by the same

amount, correlation properties are lost. The decoding array needs to be defined in the way seen in Figure

2.6b, but this requires that the decoding array be larger than the mask. An advantage of this folding is that

the dimensions need not be mutually prime.

URA: Uniformly Redundant Arrays

The Uniformly Redundant Arrays (URAs) are the sequences indicated as pseudo-noise by

Calabro and Wolf in 1968 ([25]). Their application to imaging was expounded in 1978 by Fenimore and

Cannon ([13]). The name comes from the property that all separations between holes in the pattern occur

a constant number of times (A4). If M were 1, we would be reduced to the case of the NRAs. In all other

cases all distances appear a constant number of times, hence the uniform redundancy. Of course, this

1 16 31 11 26 6 21 0 1 2 3 4 5 6 7 8

22 2 17 32 12 27 7 5 6 7 8 9 10 11 12 13

8 23 3 18 33 13 28 10 11 12 13 14 0 1 2 3

29 9 24 4 19 34 14 0 1 2 3 4 5 6 7 8

15 30 10 25 5 20 35 5 6 7 8 9 10 11 12 13

a) b)

Figure 2.6: a) diagonal folding of a 35-element Id array in a5 x 7 2d array. b) Decoding array associated to a 3 x 5
array folded by rows. Note how the last column and row were left out to avoid ambiguities in the decoding (see

aliasing in section 2.6).
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property is common to all arrays coming from cyclic different sets, but in common usage the term URA

came to indicate twin-prime Hadamard arrays. Fenimore and Cannon give a procedure to generate

directly a 2d array bypassing folding:

A,= 0 ifi=0 (2.44)

1 ifj= 0,i#0

1 if c,(i) c(j) = I

0 otherwise

where

cr(i) 1 if there exists an integer x, 1 S<x <r (2.45)

such that i = mod, x2

-1 otherwise

and I r - s =2, with r and s prime. The positive coefficients cr are called quadratic residues modulo r. c,

is defined similarly to Cr. The array is generated as an r x s 2d array. By definition, it is a twin-prime

array. In fact, it can also be generated ordering along the diagonal a twin-prime r x s sequence.

For a URA:

M=N and N=NT l(2.46)
2 2

so that the density is about 50%, as for any Hadamard set.

From the definition of cyclic difference set, the decoding array is the mask array itself, except for

a linear rescaling (see section2.7). It is important to stress once again that the autocorrelation properties

URA61x59

10 -3 4-

20--

30 E

40 - -

60111 0 40 60

10 20 30 40 150 2 2k

0 0

Figure 2.7: 61 x 59 Uniformly Redundant Array. Note the perfect autocorrelation function.
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m Length (2'"-1) Size m Length (2'-1) Size m Length (2'"-1) Size

I 1 1 6 63 9x7 11 2047 89x23

2 3 3x] 7 127 127xl 12 4095 65x63

3 7 7xi 8 255 17x45 13 8191 8191x4

4 15 5x3 9 511 73x7 14 16383 129x427

3 31 31x1 10 1023 33x31 15 32767 217x151

Table 2.2: sizes of m-sequence arrays available by folding along the diagonal. The size closest to a square is

listed. Note that sequences with m = 2, 3, 5, 7 and 13 can not be folded in a 2d array because their length is a

prime number.

are ideal only for periodic correlation. The reason is clear from the construction procedure and ultimately

descends from the definition of distance in a cyclic difference, which is a distance modulo N7 .

Finally, it is worth mentioning that a subset of the quadratic residue arrays (those in the form

NT =12s+7 = 4(3t+2)-l with NT prime) can be folded in hexagonal arrays ([3], [14]).

m-sequences

An ni-sequence (maximal-length linear shift register sequence) is built from an irreducible (or

primitive) polynomial of degree m of coefficients po, pi, ... p,,, where p is either 0 or 1, V i ([32]). The

i-th element of the sequence is given by:

rn-1

a+,, = Yp a i = ,1,...,2"' - m - 2 (2.47)

J=O

where the summation is a summation modulo 2 (so 1 + 1 = 0) and ao, a, ... , a,,, are chosen arbitrarily

(but are still either 0 or 1), each choice resulting simply in a different cyclic shift of the final sequence.

Sequences have lengths restricted to 2"'-1 and a number of open positions 2"'--1, for a density of about

50%, as expected for a Hadamard sequence. An alternative construction method generating directly a 2d

array is given in ref. [25], where m-sequences are also called Gordon arrays. If m is even, the length of the

sequence can be factorized in the product (2"'.2+1) x (2"h2_1), which is an almost square array.

An example is given in Figure 2.8, where a 65 x 63 m-sequence is shown with its self-correlation

function. Its structure is very different from that of a twin prime array, a property of potential interest in

both the study of near-field artifacts and 3d laminography ([33]). Unfortunately, for this class of masks
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m-sequence 65 x 53

10

36 L20 9--9

30 J-

40

La

Sor

26 4 640 60

0 0

Figure 2.8: 65 x 63 rn-sequence. m = 12. Note the perfect autocorrelation function.

not many pattern sizes exist because the length is constrained to 2"'- 1. In Table 2.2 are shown the possible

patterns with m < 15. It is also possible to fold m--sequences in such a way that a self-supporting array is

obtained ([34]).

Low density arrays: biquadratic and dilute URAs

Some low density arrays still have perfect autocorrelation properties and yet are not part of the

above categories. They are the biquadratic arrays and the dilute URAs.

Biquadratic arrays have a 25% open fraction ([35]). Given an odd integer t such that NT= 4t2+1 is

prime, a Id biquadratic sequence a, is generated with the following rule:

a= 0 ifi=0 (2.48)
1 ifi=modfNr)foranyO<j<n and i# 0

For these arrays N= (NT - 1)/4. Unfortunately the restrictions on N allow only a few possible

lengths: 5, 37, 101, 197, 677, 2917, 4357, 5477,

The dilute URAs were found with an extensive computer search ([36]). Their lengths are given by

N= N(N-1) + 1. The search found 1 code of length 21, 5 of length 31, at least 6 of length 57 and at least

one of length 73. No codes of length 43 were found. For N =2, 3 and 4 codes previously known as Barker

codes were found. Since no generation rule is available, arrays are simply listed.

Except for the 57 dilute URA, the length of all these sequences is prime. Nevertheless, these

sequences are useful in the generation of 2d arrays if they are taken as starting 1d sequences for product

arrays (see §2.4.5).
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2.4.4 MURA: Modified Uniformly Redundant Array

Quadratic Residue Arrays are an extension of the one-dimensional quadratic residue sequences of

§2.4.3 ([25]). These arrays, of area p x q, with p and q prime, have different properties depending on

whether q -p = 0, 2, 4, or 6. For twin-prime arrays (URAs) q -p[= 2. This is the only case in which the

autocorrelation of the array is a 6 function. However, also arrays for which q - p 0 have interesting

properties, the first of which being that they are square. The arrays are generated with the same algorithm

used for the URAs, so:

A,= 0 ifi==0 (2.49)

1 ifj= 0, iJ 0

1 if c,(i) c(j) 1

0 otherwise

where

c(i)= I if there exists an integer x, I x <p (2.50)

such that i = mod x2

-1 otherwise

However, G can not be equal to A because the autocorrelation is not a 6 function. Gottesman and

Fenimore ([14]) pointed out that a slight modification in the definition of A gives the G resulting in ideal

imaging properties (G 0 A = 6). The decoding function is now 6:

G = 1 ifij= 0 (2.51)

1 ifA,=I,iOj#0

0 if A;,= 0, iDj#A 0

The only difference is in the element i j= 0 which is now 1 rather than 0. The only limitation

on the parameters is now that p be prime. So square arrays of side 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97 are possible, when masks with less than 10000

elements are considered.

As it can be seen in Figure 2.9 these patterns are invariant for a 1800 rotation about the center. For

a 900 rotation some arrays, which we will call symmetric, are also invariant, while others, which we will

6 In the original paper Gottesman and Fenimore propose balanced decoding and indicate a coefficient -1 in

place of 0. See the discussion of Chapter 4 for details.
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call anti-symmetric, exchange open and closed positions. All arrays however, have the same open

fraction. Since:

2
(2.52)and N -NT-

2

the open fraction is N / NT= 50% as for URAs.

MURAs can also be generated as Id sequences. Provided NT= 4+1 (teN) and prime, the binary

sequence:

(2.53)a, 0 if0i=0

1 if i= mod(j 2, NT)for any 0 ];j< n and i # 0

0 otherwise

and the decoding array:

(2.54)g = 1 ifi=0
I ifaj= 1, i # 0
0 ifa=o,i#0

are such that a 0 g = 6. The only difference between a and g is the first element of the sequence.

Like URAs, MURAs can be folded in hexagonal arrays.

2.4.5 Product Arrays

Another class of arrays with ideal correlation properties derives from the implementation of the

following ([25]):

MURA79 x 79

20 40 60

MURA73 x 73

20

40

60

20 40 60

I)

80

0.
20

Figure 2.9: MURA patterns. While the 79x79 is anti-symmetric about its center, the 73x73 is symmetric. To show
symmetry, the pattern was periodically shifted so that lines i= 0 andj = 0 are at the center.

40

60
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THEOREM: If A is a 2d array formed by taking the term-to-term product of two

1 d sequences b and c (A= b c'), then the 2d auto-correlation of A is the

product of the individual autocorrelations of the sequences, i.e.:

A®& A = (b & b) (c 0 c)T (2.55)

where vectors are column vectors and T indicates transposition.D

If b and c are perfect arrays, b 0 b and c 0 c are Id § functions, their product is a 2d 6 function,

so A is also a perfect array, which is named, after its construction procedure, a product array. Moreover,

the theorem can be extended to cross-correlations as well ([25]):

THEOREM: If A and B are 2d arrays formed by taking the term-to-term product

of two Id sequences (A = c d and B = e fT), where c and e, and d and f, have

the same length, then the 2d cross-correlation of A and B is the product of the
individual cross-correlations of the Id sequences, i.e.:

A0& B = (c 0 e) (d& f)T [ (2.56)

This theorem reduces the 2d problem to two separate Id problems. 2d arrays can be generated

from any pair of 1 d sequences having perfect cross correlation, i.e. such that c 0 e=6 and d 0 f = 6,

where 6 is a Id S function. Note that non-zero sidelobe values of the ld cross-correlation function can not

be ignored because such values would, upon external multiplication of the 1 d arrays, replicate the spike

present in the other array in all rows (columns) and the 2d cross-correlation function would then look like

a cross with a peak at the center. 1d decoding arrays must be scaled so that the 1d cross-correlation is

truly a 6. This precludes decoding any array (except for a pinhole) with itself: rescaled versions of the

decoding array must be used in place of sequences of Os and Is. If the Id sequences are URAs or

MURAs, the associated decoding sequences are made of Is and -Is. In fact, the value of the sidelobes is

given by the number of holes that still superimpose after shift (in this case N/2) plus the number of holes

that do not (of course also N/2) times the value associated to closed positions in the decoding array.

Setting this value to -1 is equivalent to setting the sidelobe value to 0, as is necessary for the 1d

sequences of product arrays.

No relationship is constraining the size of the 2d array other than those limiting the originating 1d

sequences. 2d arrays take different names depending on the Id sequences chosen.
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6
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20

25
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PNP 33 x 33 decoding array

5 10 15 20 26 30

Figure 2.10: 33 x 33 product array, its cross correlation function, and
decoding array, white represents +1 and black -1.

the associated decoding array. For the

Pseudo-Noise Product arrays: PNP.

If the 1d sequences are quadratic residue sequences, the product array takes the name of PNP or

Pseudo-Noise Product ([37]). The correct decoding array is obtained from the point-by-point

multiplication of the properly scaled Id decoding sequences coefficients. The 2d array can be rescaled

after its calculation in any arbitrary way without perturbing autocorrelation properties, the only effect

being that of adding a pedestal value. Peak and sidelobe values can so be modified arbitrarily.

A nice characteristic of these arrays is that they are self-supporting. Their open fraction, being the

product of two half-open sequences, is about 25%. In Figure 2.10 is the example of a 33 x 33 array.

M-P and M-M arrays

If a 1 d MURA sequence is used in place of a PN sequence, an array of the M-P family is obtained

([38]). If both Id sequences are Id MURAs, an M-M array is obtained. The properties of these families

are completely similar to those of the PNP arrays. However, they are important in that they extend the

number of available pattern sizes.

NS arrays

A second cross-correlation theorem can be used to generate low open-fraction Id arrays ([39]).

The authors of ref. [35] seem to indicate with PN a quadratic residue sequence.

PNP 33 x 33

1I t

2 li Mm i 0 0m

m El 10. 0-, 2, 0 25 3

30
30

u u
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a (or g) a g

Pi

P2

I'
I'

/ \

I'
I'

I ~

I'
I'

/ \

P

P

Figure 2.11: formation of a NS array and its cross-correlation function.

THEOREM: If ax are x = 1, 2, ..., s different Id sequences, each of order px,
mutually prime, and g, the corresponding decoding functions, then the new

sequence, of order p = px defined by:
x=1

S S

a = Ja, (mod, i), g, =JJg,(modp i) (2.57)
x=1 x=1

has the cross-correlation function:

R, =J7R, (2.58)

where R, is the cross-correlation function of the pair (a5, g,).o

It is still important that gx be scaled so that the sidelobes of the cross-correlation be 0. In practice,

a low open fraction Id array is generated by taking two (or more, in general s) 1 d arrays, with relatively

prime lengths, p, and P2. The first array (and decoding array) is replicated P2 times while the second is

replicated p, times, then a point-by-point multiplication is made. The new sequence, which is long

p =pPxp2 , has a cross correlation function which is the point-by-point product of the individual cross-

corrrelations. These are 5 functions within the period p, and P2, respectively. When the periods are

replicated, so are the 6 functions in the individual cross-correlations. From application of the theorem

above, the cross-correlation of the product array is the product of the cross-correlations. Since p, and P2

are prime to each other, only a S for every period p survives multiplication and the product array has
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New System array 15 x 21

15

10

5 10

20

New System array 15 x 21 - decoding

10

15
5 10 15 20

Figure 2.12: 15 x 21 NS array generated from two NS Id sequences. These are formed from a 3 and a 7 URA Id
sequence and a 3 URA and a 5 MURA Id sequence. The density of this pattern is 10.2%.

perfect correlation properties over a period p (see Figure 2.11), just like the initial sequences had perfect

properties overp, andp2. In symbols:

R,(k) = HR, (k)=%
L0

mod,(k)=0

mod,(k) 0

with n, the number of holes in each of the original sequences. The open fraction of each sequence is

T = n, /p and the open fraction of the new pattern is

Tx=F nx lip

x=1 x=1 Px p
(2.60)

The new 1 d sequences can then be combined with the methods of the previous sections to give a

2d array of open fraction equal to the product of the open fraction of the two Id sequences used. These 2d

arrays were not given a specific name but are referred to as the "new system" by their discoverer ([39]).

We will use the initials NS. They are a further generalization of the product arrays of previous

paragraphs. They extend the number of sizes available, are all self-supporting, and, more importantly, the

values of the open fraction are not constrained around 25% but range from a few percents to 30%. Arrays

of the same size can be constructed in different ways, each leading to a different open fraction.

2.4.6 Geometric arrays

Geometric apertures are recognizable from regularities in their pattern. Several shapes have been

suggested ([40]-[42]), but final designs seem to focus on the L and the X type ([42]; these are design I and

(2.59)
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III of ref. [40]). Two examples are shown in Figure 2.13. The autocorrelation function is not ideal, but it

is possible to define three-level decoding arrays so that the cross-correlation is ideal. For the L family the

three levels are:

ac [5(n-1)-n2] / (n-2) at the top left (2.61)
1 on the first row and column (except top left)

p = -1 / (n-2) elsewhere

where n is the side of the array, which is square. The array density is 2(n-1) / n2 ~ 2 / n. For the X family

they are:

a = [-11+9n-n2 ] / (n-4) at the top left (2.62)
1 on the first row and column and diagonals (except top left)

= -3 / (n-4) elsewhere

The density is exactly twice that of the L family: 4(n-1) /n 2 ~ 4 / n. For L arrays there is no

restriction on n, while X arrays need n odd. Other densities are achieved by adding rows and lines or

eliminating a diagonal: these are the geometric families not mentioned here.

Unfortunately these apertures do not provide the same SNR of other patterns, noticeably the

URAs. Furthermore, as we shall see in Chapter 4, noise does not affect the image uniformly but some

points show a SNR much lower than others, so that image quality depends on the location of sources on

the field of view. This is because the decoding coefficients are not unimodular (i.e. do not have all the

same magnitude) as is for product arrays and cyclic difference set sequences.

Mask Decoding array

5 5
a5

210 10

E 15 15

5 10 15 5 10 15

X5

-a,10 10

5 10 15 5 10 15

Figure 2.13: geometric coded apertures. Top left: 19x19 L array. Top right: associated decoding array. Bottom left:

19x19 X array. Bottom right: associated decoding array. The decoding functions have three levels (see text for exact
values) indicated in white, black and gray.
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2.4.7 NTHT arrays

So far arrays have been treated as dimensionless sequences of numbers. A was assumed to be a

square grid of open and closed positions. This is not necessary at all and actually leads to an imprecision

most easily seen switching from a discrete representation to the underlying continuous-space

representation. In the following the finite size of the hole is shown to prevent the correlation of A and G

to be a 6, which is true only in the sense of a discrete array representation. Building on this idea a new

family of arrays is discovered.

Let A be a continuous-space 2d function representing -a mask with perfect autocorrelation

properties, as shown in any of the previous figures, based on the 2d array A,,. A can be written as the

convolution:

A =A8 * S,,, (2.63)

where S,,, is a 2d function describing the shape of a mask hole (assumed all equal) and A6 is a sum of

displaced 6 functions (continuous variable) placed at the centers of the holes:

A6 V(F)=EA,(F -Fi ) (2.64)

The vectors 4, form a rectangular array of positions at some of which is present a hole,

according to A. S,, is non-zero only on a small area around iji. In the examples above it is a square of

side equal to the spacing of the t; s. In the following imaging properties are shown not to be disrupted if

the shape of the holes is changed (for a frequency-space derivation of the same result see [43]): S,, turns

out to contribute only a constant. This observation is at the basis of an extension of any of the masks

presented above, the No-Two-Holes-Touching masks ([44]).

The continuous function describing the photon distribution projected on the detector is, in the far-

field approximation:

R)=A(F) = JJA % s,,ff -)d 2 4 (2.65)

where a point source has been assumed without compromising generality because of linearity and A and

,', are defined, respectively, as the projection of the mask holes and their shape on the detector:
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A' (F) = A (-aF), S' vF) = S,,"' (2.66)
Z Z

The detector samples this projection on a rectangular lattice <ra by integrating on an area

surrounding each node of the lattice described by the detector pixel shape S,, also assumed all equal. The

number of counts are stored in the matrix Rr,s, the digitized projection according to:

R,, = ffR()S,(F - F,,)d 2F =JJS, (F - )JJA'(%)S,', (F - )d 2d 2F (2.67)

and expressing A8 in terms of A:

Z A,,J JJS,(F - 15S,( Fi4)d 2F LA 1 i,.FriS-.j (2.68)

where:

Fr-isj= fjSp(F Fr.3"s 1,(iF <,) d 2 F=S X S,'(2.69)

is the form factor and provides the bridge between the analog signal and its digital representation. In the

hypotheses that the two grids 15, and rshave the same pitch, Rrs is the discrete convolution:

R = A * F (2.70)

If the projection of a mask hole covers at most a detector pixel:

f 6(r - i,s - j) (2.71)

where f is the area of the superposition of hole projection and detector pixel. So the form factor is zero

everywhere except at one location. Substitution in eq. (2.68) gives:

Rrs = ZAjf (r -i,s - j)= f Ars (2.72)

which can be decoded by discrete correlation with the decoding array G:
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62 x 62 MURA NTHT Decoding array

20 - -20

40 4""-" -"--- 0

20 40 60 20 40 60

Figure 2.14: NTHT array derived from a 31 x 31 MURA. An opaque row and column was inserted between all rows
an d columns. The Decoding array is three valued: I white, 0 gray, -1 black.

Q,= R0 G ZfAGrunv, = fb(u,v) (2.73)
r,.

which is the point source. The only effect of the hole shape is to multiply the image by a constant. This

ultimately comes from the hypothesis made that the projection of one hole fall on one pixel only8. If in

any of the arrays so far encountered the holes are reduced by adding a border around them, we still have a

valid array. All holes become isolated, hence the name No-Two-Holes-Touching (NTHT) and the array

also becomes self-supporting. If the added border is such that the side of the hole is reduced by a factor

Ile, the operation is equivalent to adding e-1 opaque rows and columns of size Ile between all mask

positions. The open fraction is so reduced by a factor e2.

From the proof above, the array has still ideal properties if sampled according to its original size,

i.e. when the added rows and columns are not seen as new mask pixels, but just as shape factor. However,

the mask can be thought of as a completely new array each pixel of which is sampled in the projection,

including the opaque new ones. The decoding array has to be modified to match the new dimensions of

the recorded data. This is done by adding lines of Os corresponding to the new rows and columns. If the

original decoding array was scaled so that sidelobes in the PSF are zero, the NTHT array has indeed ideal

properties. In fact, for the shifts of G that superimpose pixels of the original mask and decoding arrays,

the cross-correlation is always 0 except for no shift, which gives the peak value N. For all other shifts all

mask holes fall on the newly added zeros of the decoding function, giving again a sidelobe value of 0 and

preserving ideality. As for geometric arrays, now the decoding array is a three-leveled function.

8 This hypothesis will be relaxed in section 2.7 where a more general case is discussed.
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§2.5 Coded aperture camera geometries

2.4.8 Imperfect masks: two spatial scales

A very interesting design was proposed by Skinner and Grindlay ([45]). In X-ray astronomy

detectors and masks have to cover as wide an energy range as possible. Masks designed for low-energy

imaging typically have fine details to achieve good resolution. They are lost at higher energy, because

photons are more penetrating and, in addition, can not be located as precisely at the detector. The idea is

to use a mask which is the superposition of two masks with two spatial scales, a finer one for low energy

and a coarser one for high energy. The low-energy mask is thin enough to become almost transparent at

high energies (Figure 2.15a). If the coarser mask has perfect imaging properties, high-energy imaging has

poor resolution, because the mask is coarse, but still perfect properties. At low energy resolution is

higher, because the finer mask is opaque, but the PSF is not perfect because the coarser mask

superimposed cancels some of its parts.

The PSF as a function of energy is in Figure 2.15b. For low energy, a broad peak due to the

coarse mask is surmounted by a thinner peak, due to the finer mask. Since in this case the finer mask is a

random array, sidelobes are not flat. As transmission through the fine mask increases with energy the

broader peak increases until it is the only structure left, indicating inferior resolution (see section 2.6).

2.5 Coded aperture camera geometries

From the discussion of section 2.4 it is clear that perfect imaging is possible for masks of finite

Two scale mask Transmission = 0 Transmission = 0.25

10 
L

20

340 0 20 40 60

Transmission = 0.65 Transmission = 0.95

40

50

60

10 20 30 40 50 60 0 20 40 60 0 20 40 60

a) b)

Figure 2.15: two scale mask. a) A 9x7 m-sequence is superimposed to a random array, partially opaque. b) Section

of the PSF of this mask for increasing transmission.
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size only for arrays that are decoded with a periodic correlation. It is also clear that perfect imaging is

possible only if complete mask patterns are projected on the detector. This section presents the

geometrical arrangements of mask and detector that realize these prerequisites ([13]). In the following we

assume a point source located at infinity, so that the projection of the mask on the detector has the same

size as the mask itself. The argument is easy to extend to near-field sources.

The most straightforward arrangement is that of Figure 2.16a. The mask and detector have the

same size. This configuration is called the box camera ([4], [46]). In this case only a source on the

instrument axis can cast a complete mask pattern on the detector. The Fully-Coded Field of View (FCFV

or simply FoV) is a point. All other sources still project some part of the mask on the detector (they are

part of the Partially-Coded Field of View (PCFV)) and can not be reconstructed perfectly. Of course, one

could make a smaller mask, but other solutions turn out to be more advantageous. A larger detector is

certainly a possible solution (Figure 2.16b), but very often fabrication issues or cost set a limit on detector

size. In these cases it is more convenient to instead enlarge the mask, by replicating it in a 2 x 2

arrangement called mosaic (Figure 2.16c). All sources within the FCFV still project an entire mask

pattern on the detector, but the pattern shifts are different, depending on source position. The FCFV is

enlarged at the expense of a larger mask. Note that points at the very border of the FCFV all project the

same pattern. For example, the point that projects the top left corner of the mosaicked mask onto the top

left corner of the detector projects the same pattern shift as the point projecting the center of the mosaic

on the same detector corner. The two sources, despite having different locations would be reconstructed at

the same point. This problem, called aliasing, is why replication of the mask can not go beyond 2 x 2,

indeed not even reach 2 x 2 but should, rather, leave out a row and a column. This said, in the calculations

Mask Mask Mask

-..- Detector

Detector: Detetector
Mask shdow

a) b) c)

Figure 2.16: three possible coded aperture camera geometries. a) Mask and detector have the same size. b) The

detector is larger than the mask. c) The mask is larger than the detector. It is a 2x2 mosaick of the basic pattern used

in a) and b). Note that parts of the mask projection miss the detector. This does not matter as long as the detector

captures some full period of the mask. Point source at infinity assumed in all cases.
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FCFV FCFV

PCFV PCFV PCFV PCFV

Detector

a) b)

Figure 2.17: Fully-coded field of view (FCFV) and Partially-Coded Field of View (PCFV) for a) non-cyclic and b)

mosaicked geometry. Source assumed at infinity. Detector assumed larger than a mask period.

that follow we wilH always assume for simplicity that the mask is a complete 2 x 2 array.

The problem with the sources in the PCFV is not eliminated with the second two arrangements.

The simplest solution is to shield these sources or introduce collimators that exclude them from seeing the

detector, but this is not always possible, a notable example being astronomy. In these applications, the

effect of partial encoding combines dangerously with aliasing to a degree that the partial encoding of the

box camera is a lesser evil (Q47]), even if one has to resort to Wiener filtering or maximum entropy

algorithms to reconstruct the image ([48]). This is not surprising, because faulty encoding due to

discontinuities in the detector can also be overcome ([49]). In planar Nuclear Medicine studies the PCFV

is very easy to shield, and therefore we do not need to consider the box camera any longer. A geometric

representation of the extension of FCFV and PCFV is in Figure 2.17.

2.6 Field of View and resolution

In the previous section, the geometric configuration of the coded aperture was shown to

determine the field of view of the camera. A second geometric parameter of great importance is the

geometric resolution, i.e. the resolution of the system due to its geometric design, assuming the detector

to be ideal. Actual images have worse resolution, the system resolution, which also includes the effects of

a non-ideal detector, such as intrinsic point spread function And sampling. This extension is fairly

complex and is postponed to Chapter 7.

Field of view and geometric resolution are strictly related to each other and to mask and detector

parameters. The analysis can be carried out in I d because generalization to 2d is immediate. Two near-
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field configurations are examined. The first resembles that of the box camera: a single period of the mask

is projected on the detector. In this case the whole projection must be cast on the detector. The mask, of

side d,,,, is smaller than the detector, of side dd. It is convenient to define the magnification coefficient as

the ratio of the projection of the mask to the size of the mask itself:

d1a+b
Mr= a =I+ -- (2.74)

d,,, a

where, consistently with previous usage, a is the object-to-mask distance and b the mask-to-detector

distance. m is always greater than 1, a value which is approached as the object is moved away from the

camera. Note that this is not the magnification of the pinhole camera m,, which was defined as the ratio of

size of the projection of the object to the size of the object itself. From eq. (2.5), the relation between the

two coefficients is:

mr=nm, + 1 (2.75)

With this definition the mask projection has size m d,,, which leaves a space (d - m d,,) / 2

available on both sides of the center to shift the mask. By looking at the shaded triangles of Figure 2.18a:

dQ - md..
H 2 a (2.76)
2 b

so that the field of view is:

dd-md,,7 - dd md(
H r=-i n-i -i' (2.77)M -1 m-1 m - I

In a box camera m d,,= dd and Fo V = 0 as already discussed.

The second configuration is cyclic. The mask is mosaicked in a 2 x 2 array and only one of the

four copies of the basic pattern covers the detector completely, while the other three are free to miss it

(Figure 2.16c). From the shaded areas of Figure 2.18b one can write:

FoV - dd (2.78)
a b

hence:
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- - - - - - - - - - -- - -

- - - - - - M i l

FoV d d
FoV d, dg

a b a ba b

z z z

Mask Detector Mask Detector Mask Detector

a) b) c)

Figure 2.18: calculation of field of view for a) non-cyclic geometry and b) cyclic geometry. The mask was

mosaicked by placing an elementary period at the center and two half elementary periods at the sides. All points in

the field of view project a complete mask shift on the detector. c) the calculation of the geometric resolution kg.

Fo V = d (2.79)
rn-i

which is readily seen to be larger than the field of view of the non-cyclic arrangement for a given

detector. In both cases the field of view diverges to infinity in the far-field limit. In fact, as a -- oo,

m -+ 1. In this case, however, one is interested in angular rather than absolute distance. The angular field

of view, is defined as:

FoV
A,9= arctan( ) (2.80)

2a

The coded aperture camera can reconstruct objects perfectly within an angle ±A4 from its axis. In

the case of a cyclic system, this is:

A3 = arctan(dd ) (2.81)
2b

Resolution can be defined in a number of ways. The most commonly accepted rule is that the

resolution of an imager is the distance that must separate two point sources in the object so that their

image is still perceived as two separate points. The question is, now, to give a more rigorous definition of

this perception. Very often the two sources are declared separated if they are a Full-Width-at-Half-

Maximum (FWHIM) of the PSF apart. We adopted this definition. Note that a low value of the resolution
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is good resolution. This should not be confused with the expression "high-resolution" of common use,

which also indicates good resolution.

The question is reduced to the calculation of the PSF. Following the formalism of the argument of

§2.4.7 a reconstruction of a point source can be obtained, but the argument must be modified because in

the calculation of geometric resolution sampling effects must not be considered. Also, following the

idealization of an ideal imaging system, decoding has to be performed with a continuous convolution. A

suitable decoding function can be defined similarly to the function A 8 :

G(F) = ZGkM6 - ) (2.82)
k,

G6 is a collection of infinitely narrow peaks displaced on the lattice F,. The projection of a point

source on an ideal detector through a mask A with holes of shape S,, is given by eq. (2.65), which is re-

written here in a form equivalent but more convenient for the following:

R(F) = A(F) = ff'j )S, &d2 (2.83)

With these definitions, the decoded image is now a 2d continuous function:

0(,.)= R(F)® G(F) =JJJJA' (F -)S,',( )dkG 6 (i 0,.)d2 = JJS,',1(A)JA/F -4)G (F ,.)d2 d

(2.84)

The correlation can be shown to be 6(& @F,) (see Appendix A.6) because (A, G) is a perfect pair.

Recalling that this is the reconstruction of a point source, 0= PSF:

PSF(F,) = JJS,,()( 4)d = ', (2.85)

So the PSF has the same shape of the mask hole. To find its size we first need to revert to S,,:

SI ; )=S,Q 1 )=S .. (MO )(2.86)
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If we do not allow any modulation of the mask transparency, but, as we have done so far, just

either complete transparency or opacity, the FWHM is the same as the size of the hole magnified by the

factor m. This, however, is in terms of the variable r,., which covers the detector space and must be

translated in terms of object space. From the definition, the question is how far two sources must be in

object space for their projections to be a projection of the mask hole (which, we have just learned, is a

FWHM) apart. From Figure 2.18c this spacing, which by definition is the geometric resolution of the

system, is:

nm rmXPm'"- P, (2.87)
b rM-1

wherep,, is the size of a mask hole (or pixel).

This whole argument is long but explains the logic of all factors involved in the final expression.

The first is the hole size, because it determines the shape of the PSF. When projected on the detector,

holes are magnified by a factor m. The magnified projection has then to be rescaled in terms of the object

space, which brings about the division by the factor m-1. The net effect is that the mask hole size is

multiplied by m / (m-1). Since m> 1, this function is always decreasing with m and greater than 1, so it

causes a degradation in resolution, whose theoretical limit is, then, the size of the hole, obtained for

M - 00, i.e. for a ->0 or b -- >oo. Interestingly enough, in this case FoV -> 0 and the detector must be

made infinitely large. Furthermore, the function reaches 1 asymptotically, so even big increases of m for,

say, m> 4, bear little improvement. A better strategy is to reduce the size of the holes: in the limit, p,, = 0,

so Xg= 0, which is the only way to attain perfect resolution.

A relation between field of view and resolution can now be derived for the cyclic configuration.

Taking the ratio of eq. (2.79) and (2.87):

Fo V dd(2.88)

X9 m p,,

Since the projection of the mask takes the whole detector, for all shifts:

dd = m d,, (2.89)

which leads to:
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FoV= 
(2.90)

XIg Pil

The ratio of the mask size to the mask pixel size is the number of pixels in the side of the mask

pattern n. We thus obtain the fundamental relationship:

FoV=Xn n(2.91)

which is independent of magnification. For a given field of view, good resolution requires the highest

possible number of holes. Conversely, for a given resolution, a large field of view is possible only for

large patterns. A third implication is that for a given mask, field of view can be traded for resolution. In

fact, for a given mask and detector, magnification can still be changed. From eq. (2.79) a larger

magnification implies a smaller field of view but, as the ratio to resolution is constant, resolution benefits

(see also eq. (2.87)). Magnification can be adjusted by modifying the mask-to-detector or mask-to-object

distance, or both, which can be done at constant object-to-detector distance by simply moving the mask.

Note, however, that if both mask and detector are given, in a cyclic geometry, m is fixed through

eq. (2.89). Changing the magnification implies not using the whole detector (m < dd / d,), which means

that m is not as big as it could be. Since the active area of the detector is m x d,,,, this expression can be

substituted in place of d in eq. (2.79). The field of view becomes:

FoV= '"l (2.92)
rn-

m-

m=dd/dm

dh

atan(n)

Figure 2.19: trade-off between resolution and field of view (h) for a given mask and detector.

L. - - -71 - -1 Lm-mrAwA

65



§2.7 Decoding techniques

which shows that the field of view is a decreasing function of magnification. From this and eq. (2.87),

setting m according to eq. (2.89) is recognized to be a maximum-resolution minimum-field-of-view

setting. A graphical visualization of the problem is provided in Figure 2.19. The lower limit for ni, which

is 1, does not set a limit on the maximum field of view. However, we shall see that another limit, set by

detector sampling, may limit the minimum m and, thus, the maximum field of view. On the other hand,

the limit on resolution is set by the maximum m, which comes from eq. (2.89).

Of course, the detector size poses limitations. The one on the field of view is clear from

eq. (2.79). The advantage of having a large detector in terms of resolution is not so immediate. Solving

eq. (2.79) for i and substituting in eq. (2.87) gives:

= P, (+ FoV (2.93)
dd

which shows that a large detector allows better resolution at constant field of view.

2.7 Decoding techniques

The issue of decoding has been long debated. In particular, attention has focused on two

problems: the appropriate scaling of decoding coefficients and actually realizing a periodic correlation.

To understand the origin of these problems we have to bear in mind that in the early days of coded

aperture imaging optical methods were used in decoding, which limited decoding coefficients to positive

values. Following the historical developments helps in understanding the solutions that were devised and,

thus, current methods. The use of optical decoding techniques is obsolete for a number of reasons: non-

linearity of the film, practicality, ease of data storage, difficulty to use negative and variously scaled

decoding coefficients.

2.7.1 Early methods

Early authors dealing with random arrays used matched decoding, in which G is the same as A,

i.e. is an array of Is and Os, and a non-cyclic geometry ([13]), probably because a matched filter was

assumed optimal ([6]). The decoding pattern is the pattern itself, its elements being Is and Os. Neither

array is mosaicked. A complete mask array is projected on the detector, which is not completely covered

(Figure 2.16b). Typical PSFs looks like a spike on top of a pyramid whose base is as large as the

projection (Figure 2.20. See also [13], [50]). The ratio between the spike and the top of the pyramid is
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equal to the open fraction and is the peak-to-average-sidelobe discussed in §2.4.1. The pyramid appears

because as the decoding array is shifted, the overlap between A and G decreases until, at the border, the

disengagement of the arrays is complete and zero reached. Brown introduced a first solution, mismatched

decoding ([50]), in which the Os of G are substituted with -Is. Since the optical methods used at the time

prevented the use of negative decoding coefficients, two positive decoding arrays were used and results

subtracted. The average of the sidelobe level drops immediately to zero, so that the pyramid is canceled.

The peak value remains the same because for no shift all -is are canceled by opaque positions of A. Note

however, that the effect of non-periodic correlation is still evident in the sidelobe variance, which

diminishes to 0 as disengagement completes. This is different from the uniform behavior seen in §2.4.1,

where periodic correlation and a mosaicked array (Figure 2.16c), a case to our knowledge not found in

literature, were assumed.

Mismatched decoding works only for 50% open arrays, but can be extended to other open

fractions. The result is balanced decoding ([13]): the decoding array is still assumed two-valued: be these

values g+ and g. For a random array of open fraction p the number of holes is pNT and the number of

holes still superimposed after shift is ~ p2 NT. When decoding any off-peak position, these p2 Nr holes of

A are multiplied by g, while the remaining (pNr -p2 NT) are multiplied by g.. The decoding coefficients of

balanced decoding are obtained by setting the reconstructed peak height to N, which gives g±= 1, and g

so that the sidelobe value is 0:

Matched decoding Balanced decoding

20 00 - - .... 1.2 00 --..

1000 ..- .. .. ..-.. ... 1000 -. -. ---

500 . -- ---. --.- 6500 -- .- .-

0 0-

-500 -500
100C 0 0 0 50 100 100 0 50 l0

2000 2000

1600-1500-

1000-1000-

500 -500-

0 0

- 0 50 100 - 0 50 100

Figure 2.20: PSF of a ~50% open 62 x 62 random array for matched and mismatched (in this case the same as
balanced) decoding. The bottom figures are a line-by-line plot of the 3d surfaces above them.
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g± p2 Nr + g (pNT -p2 NT)= 0 (2.94)

which gives:

_ (2.95)
P-1

2.7.2 Periodic projection

Non-periodic correlation is used only in the decoding of random and non-redundant arrays. If

arrays somehow based on cyclic difference sets are used, periodic correlation must be used- The most

straightforward case is that of Figure 2.16c, where the recorded pattern is some periodic shift of the basic

pattern. Decoding prescribes that the recorded projection be correlated with the decoding array.

Correlations are equivalent to convolutions, provided that one of the arguments is first reflected. In their

turn, correlations can be calculated via the convolution theorem, i.e. as inverse-transform of the product

of the Fourier transforms of the arguments, with the relative computational advantages of Fast Fourier

Transform (FFT) algorithms. Modern computers have made worries on computational time and the need

of storing large decoding arrays obsolete ([6], [27]) and modern algorithms also have eliminated the

annoying restriction on the size of the arguments, which used to be limited to powers of 2. Conveniently

for us, the FFT algorithm assumes periodic functions so that the recorded data can be directly correlated

with the decoding array with no need of zero padding or mosaicking of the decoding array. An exception

is that of Id sequences folded in rows (see §2.4.3), for which the decoding array does not have the same

size as the elementary basic pattern. In this case zero padding of the data is needed. Decoding is then

performed by taking the valid part (the part where superposition of the arguments is complete) of a non-

periodic correlation, which is equivalent to a periodic correlation.

If the projection of a basic pattern takes less than the whole detector area because maximum

magnification is not used (see section 2.6) or because of depth dependence (see section 2.8), it is easy to

use data from an area around the detector center only and cut the rest, which is the same as making the

detector artificially smaller to match the projection of an elementary pattern. If the decoding pattern is

scaled appropriately, the PSF is not affected. Zero padding or mosaicking are not necessary.

Under these conditions there is no need to worry about the PSF smoothly connecting to 0 at the

boundaries. In fact, inside the reconstruction area, which is the only area displayed, the PSF is a 5

function on the top of some baseline level, which can be subtracted. In Chapter 4 is shown that all choices

of the decoding coefficients related by a linear transformation are completely equivalent and do not affect
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the SNR. The decoding array can then be rescaled to satisfy some criterion other than an ideal PSF, which

is always the case. For g± = 1 and g.= 0 matched decoding is found, for g+ = I and g.= - mismatched

decoding is obtained and g+= I and g.= p / (p-1) corresponds to balanced decoding. However, other

criteria may guide the choice. For example, if the number of counts in the image must be the same as the

number of counts collected, the correct coefficients are g± = 1 and g= (1-1/plN) p / (p-1). Other

possibilities are setting the expectation value of uniform background to 0, the baseline generated by any

source to 0, the peak height over its own baseline to a multiple of the peak height, the pixels in the

reconstruction to be statistically independent ([51]). It turns out that combinations of these conditions can

be satisfied at the same time. For example, if the peak height can be fixed, at the same time pedestals can

be set to 0 and total counts conserved. This leads to mismatched decoding. On the other hand, if one

wants to set peak height to some multiple and background to zero, balanced decoding is obtained. These

different choices matter only as long as the absolute value of data is of interest and measurements or fits

with theoretical models need to be done. The appearance of an image is independent of any of these

choices.

All our experiments were carried out in periodic geometry with balanced decoding.

2.7.3 Non-periodic projection

When data are acquired in the geometry of Figure 2.16b particular care must be taken because the

projection of the pattern is now surrounded by zeros (for a point source). Of course, cutting an area

around the detector center as in the previous paragraph would not work because parts of the only

projected period of the pattern would be lost. A possible strategy is to cut an area equal to (almost) twice

the size of the projection of a mask pattern and then mosaic the decoding array in a 2 x 2 array (minus a

row and a column to avoid aliasing, see section 2.5). Decoding with periodic or non-periodic correlation

maintains an ideal PSF.

2.7.4 Detector sampling

When using digital decoding a number of choices must be made, first of all how to sample the

projection 9. So far, we have implicitly assumed that the projection of each mask hole is sampled once.

More in general, the projection of each hole can be sampled on an c x a square of square pixels. This

leads to another fundamental equation:
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m7Pn = a pd (2.96)

where pd is the dimension of a detector pixel. This equation represents the passage from the continuous to

the digital representation. The shadow of size np,, is the specialization to the case of square holes of S',

while one of the a x a pixels is a similar specialization of S,. If the mask is a r x s array, the data is

recorded on a ar x as array where each a x a square is filled with Is or Os, according to the mask. It is

surely possible to collapse the array back into an r x s array by summing over the a x a squares, but this

would simply bring us back to the previous case. For obvious reasons, the case a > I was given the name

"fine sampling" ([44]).

The decoding array also has to be extended from r x s to ar x as. Since we still have to match the

mask shape, each location in the original decoding array is expanded to a a x a square, whose new

locations must then be filled. This can be done in at least two ways: (i) by using the same coefficients of

the original decoding array; or (ii) Os. The latter method is called 6 decoding ([44]). It is interesting to

analyze the PSF obtained in these two cases.

The analysis starts once more from the projection of a point source. In this case the form factor is

(from eq. (2.69)):

Fr - H r 7 s (2.97)
r-s' a -l'a-1)

where

F1 O si,j
H(i, j)= (2.98)

0 otherwise

i.e. an a x a square. Note that this time the grid over which F is defined is finer than the grid over which

A, is defined because the projection is fine-sampled. In the case of a point source, let the recorded pattern

= A,, where Ar, is the finely sampled (hence the superscript F) 'array obtained from A, by

expanding each location to an a x a square and then filling the new positions with Os and Is according to

the original element. It is also convenient to define the array AVj. As Af, it is defined as an expansion

9 In the following, misalignment between mask projection and detector sampling, that will be analyzed in
Chapter 5, is neglected. The projection of a mask hole is assumed to fall exactly on some number of detector pixels.
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a) b) c)

Figure 2.21: comparison of the PSF for a) fine sampling and b) fine sampling and 5 decoding. In this case oc = 3.

of Ai;. This time the a x c squares are filled, in the new positions, by Os (hence the superscript 6, by

analogy with 6 decoding). Clearly:

A, = AD* H (2.99)

Similar definitions can be given for Gf, and Gj. It is important to recognize that

AD0GF =6 but AF,0Gfl 6 (2.100)

In fact, in the first case, when the shift is such that original positions of A are superimposed to

original positions of GfI, the point by point multiplication is zero at all new points, so the value of the

correlation is exactly the same as for A 0 G = 6. For all other shifts, original positions of A are

superimposed to Os of GF, so that the correlation is once again 0 outside the peak. On the other hand,

from their definition:

AF OGF =(AFS *H)0(GF8 * H)= 9[(GFb ®&AF)* H]* H (2.101)

where 91 is the reflection operator and the result of Appendix A.5 was applied twice and that of Appendix

A.4 once. Since A 0G = 6, applying Appendix A.4 once more gives:

AF0GF = 91[6 * H]* H = 9i[H]* H = H x H (2.102)

If 6 decoding is used the PSF becomes:

PSF = AF 0 G F = 9[G F (AF6 * H)] = 91[(G F8 0 A FS)* H] = 91[H]

71

(2.103)



§2.8 Depth offocus and 3d laminography

In neither case is the PSF a 6 function: with fine sampling the details of the finite dimension of

the holes are now seen. The two PSFs are compared in Figure 2.21. They are seen to have the same

FWHM, which is the same resolution, according to our definition. Still, the FWHM does not tell the

whole story. Possibly because of the sharper peak, S decoded images seem to have somewhat better

resolution ([44]). Note, however, that in 8 decoding each position is reconstructed starting from fewer

data points than in normal decoding. Actually, from the two PSFs it is clear that nonral decoding is

equivalent to S decoding followed by convolution with H. This is an averaging operation over a x a

pixels, which is an example of low-pass filtering. In conclusion, 6 decoding provides better resolution but

also worse statistics. It is convenient because the result of normal decoding is just a convolution away.

2.8 Depth of focus and 3d laminography

From the discussion of section 2.7 it is clear that the decoding array must be scaled to match the

dimensions of the projected pattern which is, by definition of m:

mnp,,=1+- n p, (2.104)

where n is the number of pixels in the mask (side only). If the match is less than perfect, the PSF is

corrupted. When a thick object is imaged, all object planes parallel to the detector have different object-

to-detector distances a and each plane is associated to a different size of the projection. Only one depth at

a time can be decoded with ideal PSF; all others still contribute to the image because they are still present

in the recorded data, but their reconstruction is corrupted by a non-ideal PSF. From an a-priori point of

view, this can be bad, because distorted signals appear in the. image, as well as good, because if all other

planes were blurred in a uniform, featureless background, the only plane with ideal PSF would stand out

sharply. Unfortunately it is difficult to predict which is the case, but the potential for 3d laminography is

much advertised in literature ([13], [6]) and has been investigated experimentally ([33]).

The best indicator of performance is again the PSF, this time as a function of three variables, the

most interesting being depth. This investigation must be carried out either experimentally or by

simulation. Results are in Chapter 3 and Chapter 8. However it is still possible and interesting to study

analytically how sensitive the mask sampling is to depth variation. Substitution of eq.(2.74) in eq. (2.96)

yields:
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a pd 1+-)pll(2.105)
a

An experiment is performed with a given mask, detector and a given mask-to-detector distance.

Keeping track of constants, differentiation of both sides gives:

da - gbda -p (2.106)
da Pdaa

This derivative shows the sensitivity of the size of the projection (in units of detector pixels) to

changes in object-to-detector distance. The negative sign implies that as the object nears the mask, the

size of the mask projection increases. The dependence of the projection size on a is greater for small a,

i.e. for high magnification. In this case, we expect a small depth of focus because planes not too far from

the focal plane are already out of focus. A 3d PSF is obtained repeating the decoding of the projection of

a point source for several depths. Depth of focus can be defined as the FWHM of this PSF measured

along this depth variable. Experiments and simulations will show that the FWHM along depth is about

one order of magnitude worse than the FWHM along transverse directions.

Eliminating a with eq. (2.96), we can assess the variation per image pixel (da / a) due to a

displacement da:

da b -- ni -1(2.107)
a da za z

A first observation is that maximum defocusing is obtained at low object-to-detector distance and

for high magnification. This suggests to image as close as possible to the detector, near-field artifacts

allowing ([33]). The final design parameters will turn out to be z = 40 cm, a _ 10 cm, b _ 30 cm, so

da / (a da)~ 0.075 / cm, i.e. the size of the pattern changes by 7.5% for a displacement of I cm from the

focal plane. A second observation is that this equation is useful in fine focusing when experimental

placement uncertainties need to be accommodated. An adjustment procedure is as follows: take an image

of a point source; measure on the screen how many detector pixels the projection of a mask period takes;

compare with the design parameter; calculate da as the design a minus the measured a; use the measured

values in:

da= za dca (2.108)
ab
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to obtain an estimate of how much the mask should be moved.

Dependence of m on depth leads to different resolution and field of view for the different planes.

A limit is set on the plane with maximum magnification, i.e. the one closest to the mask. Since an entire

elementary pattern must cover the detector, m <d / d,. Substitution of eq.(2.74) gives:

b
dd-1

(2.109)

Planes closer than a to the mask can not be reconstructed with an ideal PSF because they cast too

big a projection.
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Chapter 3 SIMULATION TOOLS: COMPUTER CODES AND

OPTICAL BENCH

The design of a mask involves many parameters many of which can not be optimized in any other

way than trial and error. Some others are determined using new theoretical findings involving

approximations that suggest some kind of verification prior to finalization of the design. In this Chapter

the two simulation tools used are analyzed. The first is an original computer code. It is not a Monte-Carlo

method in that it does not attempt at simulating the physics of the process particle by particle. Rather,

projections are calculated according to geometric optics. Of course, a major advantage of computer

simulation is the ability to switch pieces of physics on and off as needed to gain insight.

The second simulation tool is an optical analogue of the coded aperture camera. The experiment

uses visible light and a CCD camera in place of y-rays and an Anger camera. It is set up on an optical

bench placed in a light-tight box. This experiment provided experience with problems likely to be found

in a real environment, where alignment, placement of components and size of objects can not be as

regular and ideal as in a fast computer simulation. Indeed, a strong deviation from isotropy of a semi-

transparent screen greatly enhanced near-field effects, leading to the realization that, far from being a bug

in simulation codes, they would be a primary issue in system design.

In this Chapter are described the two simulators and some of the results they produced. The

predictions of the computer code are compared to results from the optical simulator and data obtained

from a Siemens E-Cam in a preliminary experiment. With the goal to provide a better understanding of

the system the codes intend to simulate, the first section gives a very brief description of the principles of

operation of an Anger camera.

3.1 The Siemens E-Cam

An Anger camera is a single, large (53.3 x 38.7 cm active area for the Siemens E-Cam), crystal of

scintillating material (0.95-cm-thick NaI(Tl)) to which are optically coupled about 60 photo-multiplying

tubes which convert a light signal to an electric pulse. When a y-ray interacts in the crystal, light is

produced at the point of interaction as well as in its neighborhood and is emitted in all directions. Each
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phototube is illuminated differently, depending on the location of the event, whose center of mass is

calculated by processing the signal from different tubes. Events do not look like a dimensionless point,

but are spread over a region. This blur due to the physics of the process is measured by the intrinsic PSF

of the detector. Technical data for the Siemens E-Cam report for the intrinsic PSF a 3.7-mm FHWM at

the center of the crystal for 140 keV photons, increasing to 3.9 mm at the edges of the crystal.

The position of the event is then located on a square grid of pixels and a counter associated to the

corresponding pixel increased. The final image is this distribution of number of events over space. The

details of the discretization are treated at length in Chapter 7.

3.2 The simulation code

The core of the simulation code is a module that calculates where the projection of a single mask

hole cast by a point source falls on the pixel grid of the detector. The code is reported in Appendix D.2.

Mask holes are assumed square. Applying purely geometric formulae, the code finds the location of the

borders of the projection of the hole by ray tracing. For a given point source and a given mask hole, a

detector pixel can be totally, partially or not illuminated at all (the vast majority of pixels). In the first

case a I is stored in the pixel, in the last a 0. Partially illuminated pixels are assigned a number equal to

the illuminated fraction of their area. An example is given in Figure 3. 1a-b. The process is then repeated

for all mask holes. To accelerate the procedure, mask positions are not considered one at a time, but are

clustered in larger squares when they form one (see Appendix D. 1). This greatly accelerates. the

simulation of URA patterns, while it is of no benefit for NTHT arrays which, however, have a relatively

small number of holes anyway. When the projection of a mask pattern is completed, a correction is made

to include the effect of mask transparency. The correction varies over the mask even for masks of

constant thickness because of the different incidence angle of y-rays at the mask, oblique rays effectively

seeing a thicker mask. All detector pixels are then multiplied by the activity of the point source, the

exposure time and the solid angle subtended by the central pixel. Each pixel is then multiplied by a

spatially dependent factor, the cubed cosine of the incidence angle at the pixel. This factor comes from

the inverse square law and an obliquity factor. With reference to Figure 3.1c, the number of photons

passing through an infinitesimal area dA around point P and originating at S is:

I(P) dA = r o idA (3.1)
4ir2

------ -- . ....... ...
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WAV w
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a) b) c)

Figure 3.1: a) projection of a mask hole (dashed line) over a 4 x 4 area of the detector b) values applicable to the

pixels of a). No mask transparency assumed. c) Definition of terms for the evaluation of the flux at a pixel.

where the caret indicates unit vectors. Since z= r cos(&) and ro n = cos(W):

I(S)I(P) dA = 2 cos3(4) dA (3.2)
4mwz

At the end of these multiplications each pixel contains the average number of counts due to a

point source in the object. The result is stored and is later added to the results from all other point sources.

The point sources are placed at the knots of a 3d orthogonal grid, so that thick objects can be simulated.

The grid pitch can be adjusted independently in the three dimensions. Continuous objects were simulated

by setting the grid pitch to a value smaller than the design resolution of the coded aperture camera,

compatibly with execution time. The thyroid shape extensively used in our simulations is a 91 x 79 grid

with a pitch of 0.9 mm (Figure 7.12a). 3820 points have some activity. All of them must be projected

through all mask holes. For a NTHT mask with 480 holes, projection takes about 2 hours on a 333MHz

Pentium II personal computer. The code was run as a non-compiled Matlab script.

This basic procedure handles the effect of discrete pixels and near-field geometry. However,

many other non-idealities are left out: finite mask thickness, the intrinsic PSF of the detector, statistical

noise and overflow. The final projection is saved in a dedicated variable before these other effects are

added to avoid a whole recalculation when only some parameters not influencing geometry, such as

intrinsic PSF, exposure times and activity, change. The effect of PSF blurring and statistical noise are

added in a few seconds.
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3.2.1 Finite mask thickness

Simulation of mask thickness is fundamental for the optimization of this dimension and the

object-to-detector distance. The code is fairly complex and is best explained following the history of its

development.

The mask is treated as made of a variable number of layers, to be optimized on the basis of a

trade-off between accuracy and execution time. In our cases a value of 7 seemed best, which leads to

simulation times of 14 hours for the thyroid phantom. The question is how to combine projections of

different layers. In early versions of the code, the projection of the whole object through each layer,

supposed isolated, was calculated first. Since multiplication by the source irradiance was delayed to the

last layer, each layer stored values between 0 and 1. Following the logic that a ray must pass through all

layers to reach the detector, projections were multiplied point by point. This procedure is wrong because

it holds for the same point sources only. To see this with an example, assume a uniform object. The

projection is (see Appendix A.2):

R = 0 x A = constant (3.3)

for every layer. Point by point multiplication of the results from different layers simply changes this

constant, uniformly over space. On the other hand, if the projection of a point source through a whole

layer is calculated and then multiplied point by point with the projection of the same point source through

a second layer, the multiplication has the effect of canceling from the first layer the fraction of rays that

do not pass through the second layer. For example, if a pixel is completely illuminated through a layer,

but only partially through another, the product would substitute the I assigned by the first projection with

the fraction of rays passed by the second layer. This is why it is important that the cycle over mask slices

be carried out inside the cycle over point sources.

Unfortunately this approach still has a serious problem. In fact, if only half of a certain pixel is

illuminated through a certain layer and if incidence angles are not very high, the same pixel is also

illuminated in a very similar way through an adjacent layer, i.e. the illuminated region does not change

much. Yet, if the product of the illuminations were taken, the result would be that only a fourth of the

pixel is illuminated. The problem is that since adjacent layers look very much similar to impinging y-rays

there is a strong correlation between the probability of passing through a layer and the successive. So the

probability of passing through both layers is not the product of the probabilities of passing through the

individual layers. This explained why the codes were sensibly underestimating the total number of counts

when thick masks were simulated.

80



SIMULATION TOOLS: COMPUTER CODES AND OPTICAL BENCH

The problem was solved by defining an equivalent illumination fraction. Be f and f' the

illumination fractions of a detector pixel due to the first and the next adjacent layer when taken

individually. The equivalent illumination fraction of the first layer is the sum of the fractions of rays that

reach directly the detector plus the fraction of those that penetrate the mask:

(l- f)e -Pp'' /cos() + f (3.4)

where p is the attenuation coefficient, p the density of the material, u the incidence angle and t,,, the

thickness of a mask layer. In the hypothesis that the shadow cast by one of the two layers completely

covers the shadow cast by the other, the combined equivalent fraction allowed on the pixel is:

(1 - f')e-2 pl,/cos(t) + (j' - f )eP'''/cos(") + f for f <f'

(1 -f)e-2pp,,/cos(L) +(f f)- P'/COS(ct) + f' for f'(< f

Defining:

{ (2)= f'+(f - /f')e"'"cos() for f < f'(3.6)
f(2j= f +(f'-- f)eP'',,/cos(a) for f'<f

the simpler form:

(1- )e + f(2), with f( = min(ff') (3.7)

is reached. The argument can be iterated for all other slices. In general:

= ±+( -f')e os cz) for fi-I) <p' g ~I'+ (f f ')e P', /,frf <f with f =min(f 'f') (3.8)
f(,= f-(') + (f'- f-))--Pcos) for f-1) > f

where f' is the illumination fraction of the ith layer. It can be shown that with the new technique, if

illumination fractions of all n slices are equal tof the combined illumination coefficient is:

f (I-f(1 f)e -"P''/ cos" ) + f (3.9)

which is the exact result for an infinitely thin mask. Neglecting correlations as explained above, the result

would be:
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(1- f)e-P'l/'coS(c) + f)" (3.10)

which vanishes for n - oo. However, in both cases the limiting situations in which f= 0 and f= 1 are

handled correctly.

Not even the solution in terms of the average illumination is exact because the hypothesis on

which is based (that the shadow from one layer completely cover or be covered from the shadow of the

next) is not always respected. However, in practical cases mask layers are very close, and incidence

angles not very high, so projections of adjacent mask layers do not greatly shift, and the hypothesis is not

far from reality.

The layer-by-layer approach makes it possible to simulate holes of varying cross-section with no

significant different in execution times.

3.2.2 Detector PSF

Assuming a constant PSF over the detector makes it possible to convolve projection data with a

2d Gaussian of standard deviation:

a = FWHM =1.57 mm (3.11)
2[21n 2

to simulate intrinsic PSF blurring (FWHM = 3.7 mm). The curve was normalized to conserve the total

number of counts:

PSF,(F) = 2 x- 2) (3.12)
2y2 a 2CT

3.2.3 Statistical noise

Once the blurring is complete, each pixel stores a realistic average value of the photon count.

Coming from radioactive decay, counts at all pixels are independent. Strictly speaking their distribution is

binomial, but radioactive processes satisfy the conditions for the Poisson distribution to be an excellent

approximation, as long as counts are taken for periods of time much shorter than the half life of the

isotope involved. Sampling a Poisson distribution is cumbersome but necessary because a Gaussian

approximation holds only in the case of a high average of counts (> 15). If a Gaussian approximation

82



SIMULATION TOOLS: COMPUTER CODES AND OPTICAL BENCH

were assumed, it would be possible, and indeed quite likely, to have negative values after noise is added,

which is clearly not physically possible. However, when the expected value of counts was greater than 15,

Gaussian statistics was adopted to accelerate simulations.

A routine not provided by most software packages was used to sample from a Poisson

distribution. It is provided with an explanation of its basics in Appendix D.4.

3.2.4 Overflow

In the parts of the projection where noise was added according to the Gaussian model the integer

part of the result must be taken because a real value must be integer. Note that this is not adding

digitization noise, but it is merely making sure that the Gaussian approximation does not yield physically

unreasonable results. 16 bit memory was also assumed, so any counts in excess of 65535 were reset to

this value.

3.2.5 Decoding

After the projection is calculated and blurring and noise are added, zero-order artifact correction

is applied'0 (see §5.4.3) and the image decoded (Appendix D.3). The technique of choice is a decoding

because other methods' results can be obtained with an additional convolution (see §2.7.4). Initially the

code decoded only with integer values of a (for its definition see §2.7.4). Successive developments

(section 6.3), eliminated this limitation.

3.2.6 Some sample simulations

In Figure 3.2 are provided some sample PSFs of the coded aperture camera. The projection of a

62 x 62 NTHT array (13.81 cm side) on 124 x 124 pixels (29.74 cm) of a larger detector placed at 4 m

was simulated with different conditions. Note that a=2. When no noise or blurring is present and the

mask is infinitely thin, the PSF is a rectangle, two pixel wide, as expected for a decoding. The effect of

the intrinsic PSF (FWHM = 3.7 mm, i.e. 1.54 detector pixels) is to spread the rectangle over first

neighbors and, thus, also lower the peak height. Noise was then added by lowering the activity of the

source. The peak is now uneven and sidelobes are not flat. Finally, the activity was restored to the

previous value and a 0.7-mm-thick mask was used in place of an infinitely thin (but still attenuating)

"0 This correction is not applied to the results of the rest of this Chapter, unless otherwise stated, because
artifact theory had not yet been developed at the time.
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Figure 3.2: sample simulations of PSFs for a 62 x 62 NTHT MURA with a mask pixel size of 1.114 mm. a) No

blurring or noise. Mask opaque but infinitely thin. b) Gaussian blurring with FWHM 1.54 pixels. c) Noise added by
lowering the activity by a factor of 1 million. d) Activity restored to original value but finite mask thickness

introduced. All simulations in far-field (object-to-detector 4 in).

mask. Some variations in the sidelobes are evident and show that mask thickness may be an issue. This is

.even more relevant at distances lower than the 4 m of this simulation, because incidence angles at the

mask increase until a thickness of few millimeters becomes more significant.

The effect of finite mask thickness is twofold: thin masks project a pattern close to ideal, but are

partially transparent and do not stop rays that should be blocked, allowing a higher background to corrupt

the signal. Thicker masks reduce such background but also cut rays that should pass, distorting the shape

Mask transmission 0.9 Mask transmission 0.1 Mask transmission 0.01 Mask transmission 10-6 Ideal mask

50 150 50050
10 10 00100 100

%ioo j1010 100

150 150 150
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

iJ

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 3.3: projection and PSF for increasing mask thickness. The PSFs are a column-by-column plot of a 2d

distribution. The ideal mask is a 62 x 62 NTHT MURA, pixel size 1.114 mm, 1% transparent but with no thickness.

A tungsten mask and '9mTc were assumed (g = 1.56 cm2 / g at 140 keV, p = 19.3 g / cm 3). Mask thickness:

0.035 mm (transmission: 0.9), 0.763 mm (0.1), 1.527 mm (0.01), and 4.580 mm (10-6). Object-to-detector distance:

40 cm. Point source: 200kCi, exposed for 1053 s. Zero-order artifact correction applied to isolate the effects of mask
thickness from near-field artifacts.
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Figure 3.4: Simulations of near-field artifacts for point sources. Contrast is greatly enhanced for display purposes.
The simulated mask was a non-centered MURA 61 x 61. The FoV was 9 cm. Mask 70% transparent, but infinitely
thin to rule out thickness artifacts. Object-to-detector distance 40 cm. a) Point source at a corner of the FoV. b) The
brightness of a) is plotted column by column to show the actual importance of the "cross' artifact. Note the
discontinuity at the center of the field of view. c) Point source at the center of the FoV. Note the "bows" entering
from the sides.

of the pattern and creating artifacts. This conflict explains the trends of Figure 3.3, where the effects on

the PSF are also shown. Note in the sidelobes the progressive reduction of noise (due to lower

transmission) and then the appearance of spurious peaks (due to pattern distortion).

At low object-to-detector distance near-field effects also become an issue. In the projections of

Figure 3.3 the cosine cubed modulation is clearly visible but it can be removed with a zero order

correction (§5.4.3) in the case of a point source at the center of the field of view, which we did to

concentrate on the effects of thickness. When the point source is moved, results like those of Figure 3.4

are obtained. Given the obvious regularities, the phenomenon is clearly not due to random noise. While in

this figure artifacts had to be emphasized with an increased contrast, it gives a good idea of what happens

in the case of extended objects. In fact, even if the various point sources are spread over the field of view,

they all seem to contribute to the "cross" and "bows" artifacts in the same way, so that they build up,

source by source, until images are so badly affected that the object is almost lost. Given the dramatic

implications, another simulation tool was needed to verify the trustworthiness of these predictions of the

computer code.

3.3 The optical simulator

Designing the computer code to simulate non-idealities, such as a rotated or non-uniform mask,

mask or object scatter and non-uniform unencoded background, would have slowed the calculations

excessively. A physical simulation experiment was prepared to get some idea of if and how these and
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Window To computer acquisition

Halogen lamp /// . Light tight box
with dimmer

E/

Alignment
laser

Diffuser Object Coded TranslucentRail Lens CCD camera

aperture screen
mount

Figure 3.5: top view of the optical experiment setup.

other unexpected factors would affect images. Predicting, outcomes of this optical simulator with the

computer code would also be a good means of verifying the validity of computer simulations.

For practical reasons, the experiment uses incoherent visible light from a 60 W halogen flood

lamp in place of y-rays. Light is shaped into an object with a thin black cardboard sheet in which holes are

pierced with a pin ("object" in Figure 3.5). The object is in contact with a piece of diffusing glass that

scatters light just before it passes through these holes. This has two reasons. First, to simulate a radiation

source, the points of the object must emit radiation isotropically, at least at the angles that are going to hit

the detector. If there were no diffuser, photons passing through the hole would mainly have angles close

to the system axis because the holes are thick enough to provide some collimation. Second, if the object is

a point source, i.e. a pinhole, with no diffuser and without the coded aperture in place features of the light

source, such as the pattern of the glass bulb or the filament, if an incandescence lamp is used, appear on

the screen. In other words, the object would work as a pinhole camera rather than as a source. The second

reason why the diffuser is used is to cancel memory of the features of the original source.

As the object is very dim because of its size and the diffuser, imaging must take place in a light-

tight box. Lamp and object are placed outside it to avoid overheating. Inside the box, movable mounts for

the coded aperture, a translucent screen and a CCD camera are provided by an optical rail. The coded

aperture is printed directly on transparency with a laser printer. To block light missing the mask pattern,

the mask is taped to a paper sheet having a square hole of the size of the mosaicked mask at its center.

The sheet is in its turn taped to a glass slab that provided stiffness and mounted on the optical rail. The

screen is a semitransparent diffuser glass. Its task is to intercept the rays passed through the coded

aperture. The image formed on its back is digitized by a 800 x 960 pixel CCD camera focused on the
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back of the screen. The combination of screen and CCD camera simulate the Anger camera. The system

is aligned with the help of an external laser beam.

3.3.1 Some results

The optical simulator was used with masks under investigation for use with the Anger camera.

Two apertures were considered to see the effect of different array families: the 61 x 61 MURA and the

63 x 65 m-sequence of Figure 3.6. Parameters were chosen with the aim to build a 1 to 3 copy of a

realistic system. Accordingly, masks were made with a pixel size of 0.377 mm and images taken with the

CCD camera were cut and pixels clustered to simulate a 1 to 3 copy of the real detector. The test object

was a set of pinholes forming the letter H. To test resolution at the bottom right two pinholes were pierced

as close as possible. Since the field of view of the real system is 9 cm, the letter H was made about 3-cm

tall (2.8 cm) to allow a direct test of the FoV. The closest pinholes were separated by 0.7 mm, the closest

distance we could obtain with a pin and cardboard from the back of a note pad. From eq. (2.91) the

predicted geometrical resolution of the system is 30 mm / 61 ~ 0.5 mm. In this case, it is a good

approximation of the system resolution because the light experiment with a CCD camera is not affected

by the 3.7-mm intrinsic PSF of 7-rays on an Anger camera. The system should be capable of resolving

even the closest pinholes of the letter H.

In Figure 3.7a experimental data show the field of view and resolution are as expected: all

pinholes are resolved and the letter is about the size of the reconstruction area. Also, the image is

corrupted by artifacts. In Figure 3.7b is a series of simulations that, starting from ideal conditions, adds

non-idealities one at a time. At the top left only near-field geometry is assumed. At the top right the mask

is made 70% transparent. This explains the dark areas at the sides. Then the central row of the letter H is

MURA 61 x 61 MURA 61 x 61, centered M-sequence 63 x 65

40 2 -

601 1,601 11 60&S

20 4 020 40 60 20 40 60

Figure 3.6: masks used for physical simulations. The mask are a 61x61 MURA and a 63x65 m-sequence.
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MURA 61 x 61, physical simulation MURA (61x61) M-sequence (53x65)
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Figure 3.7: a) physical simulation with a MURA 61 x 61. b) Computer simulations progressively adding deviations

from ideality provide insight in the artifacts seen in a). In all simulations the mask is partially transparent but

infinitely thin. This makes sense for the optical experiment because the mask is actually a printed transparency. c)

Comparison between computer prediction and physical simulation for different masks.

assumed to be 5 mm below the center of the field of view, which enhances the horizontal step of

brightness seen just above the center of the H (bottom left). Finally, a slight displacement is assumed to

make a = 1.98 in place of 2. This enhances the vertical and horizontal artifacts seen to start from all point

sources (bottom right).

In conclusion, the computer code seems to predict very reliably a number of effects, even for

different mask families (Figure 3.7c). While for the MURA family bright areas appear at the side of the

H, for the m-sequence they take the corners of the field of view.

3.3.2 Design advance

Once work with the optical simulator indicated the reliability of the computer code, design efforts

were made to improve the quality of the images. The first example is mask centering.

Mask centering

An MURA pattern is basically made by squares more or less uniformly distributed. The most

noticeable exception are the first row and column. This irregularity suggested that the particular shift of a

mask may influence the image in near-field geometry. An image of the test object was taken with the

centered MURA pattern of Figure 3.6. In Figure 3.8 the vertical line cutting across the center of Figure

3.7 has completely disappeared, while the horizontal has moved to the top (this result is explained with a

small misalignment in the vertical direction). Other artifacts, however, remain. This was the first
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experimental evidence that near-field artifacts could be predicted by computer simulation and, if not

eliminated, eased.

Screen materials

Non-idealities involved in the physical reconstruction do make things worse than initially

predicted by computer simulation. The major villain is the screen. Ideally, it should transmit light

uniformly. Since light coming from a point source is modulated by the cubed cosine of the incidence

angle, light transmitted through the mask should follow the same distribution. Unfortunately, this is not

true for the glass screen, which is found to attenuate peripheral areas much more than the center.

Empirically, a distribution modulated by a cosine elevated to a power much higher than 3 is measured.

The result is an apparent enhancement of near-field effects.

A way of reducing this effect is to build a smaller-scale model so that only the center of the

screen, where incidence angles are still low, is used. A 1-to-9 model was built: the mask had a pixel size

of 127 tm, i.e. 3 dots per pixel at 600 dpi. With this, the geometric resolution of the system is 164 im

and the FoV is reduced to 1 cm. A 1-to-3 model of the previous test object was also built. Despite the best

efforts, the closest pinholes were now 1.1 mm apart.

The result is in Figure 3.8b. Near-field effects are still severe. Resolution is such that pinholes

(0 = 0.63 mm) now appear finite and spread over some pixels. Materials other than glass, such as mylar,

were tried for the screen. The best result was obtained with a thin paper screen. Near-field artifacts

disappear, indicating more ideal transmission, but the texture of the screen is now visible.

MURA 61 x 61, centered, physical simulation MURA 61 x 61, centered, glass screen MURA 61 x 61, centered, paper screen
0.0 0

0.8 0.3 0.3'

E 1.5 E 0 5. E 0.5

2.3 08 0.8

32 1L

0 0.8 1.5 2.3 3 0 .8 1 0 0.3 0.5. 0.8 1

cm cm cm

a) b) C)

Figure 3.8: a) image of the test object, after mask centering. b) small test object, MURA 61 x 61, glass screen image

c) small test object, MTURA 61 x 6 1, paper screen image
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3.3.3 Comparison to pinhole

For comparison purposes a pinhole image of the small test object was also taken. The image is

not only much noisier than the coded aperture image but it also shows some artifacts because not all holes

are equally bright, despite having the same size. Resolution is not as good as the code aperture image.

This is because to generate some sort of image with the same source and exposure time used for the coded

aperture, we needed to use a pinhole much wider than the mask pinhole size.

3.4 Validation with E-Cam data

All of the above simulations required the full availability of the imaging equipment and the

possibility of building a number of masks in a short time. These trials could not have been done on the

actual system. By courtesy of the Brigham and Women's hospital we were able to work on a Siemens E-

Cam for a whole day. It was possible to compare the computer code directly with data from the E-Cam. In

the past, our research group had built a 1.5-mm-thick lead 11 x 13 URA with mask pixels of 5 mm. The

mask had a 1-mm-thick supporting aluminum backing plate. To reproduce results obtained by the

Pinhole Coded Aperture

Figure 3.9: the object and the coded aperture image are the same of Figure 3.8. The pinhole image is affected by

near field and random noise much more than the coded aperture. The exposure time was the same, but the pinhole

had to be made larger than the pinholes of the coded aperture mask to get enough signal to take a picture.
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Figure 3.10: comparison of computer simulation with data from the E-Cam for a URA I x 13 pattern. One pixel is
equivalent to 1.28 mm. The dimension of the points is 8.9 mm, against a geometric resolution of 7.7 mm. Object-to-
detector distance: 28 cm. Near-field geometry effects appeared to be negligible. Relative intensities are
reconstructed accurately. For the simulation a is integer and the mask is infinitely thin. Better agreement is possible
if these parameters are changed.

designer of this mask, a mask-to-object distance of 10.1 cm and an object-to-detector distance of 19.1 cm

were used. This implies m = 2.89, which leads (eq. (2.87)) to a resolution of 7.6 mm, a used detector area

of 15.9 x 18.8 cm, and a field of view of about 8.5 x 10.1 cm. The maximum achievable resolution for

this mask and the same field of view is obtained for maximum magnification, which is, from eq. (2.79):

M=dd +1= 38.7+1=5.55 (3.13)
FoV 8.5

because 53.3 x 38.7 cm is the maximum active area of the E-Cam". Resolution would be, from

eq. (2.87), 6.0 mm. Note that this is not the maximum resolution configuration for which we would have:

d e 38.7
M-- = 0.- 1-7.04 (3.14)

d,, 0.5 -11

which leads to 5.8 mm and a smaller field of view (7.58 x 6.4 cm). The aperture was tested with an object

made of three point sources. Agreement with the computer simulation is remarkable (Figure 3.10).

dd 53.3
" For the other dimension: m = + I = + I = 6.33, which is less restrictive.

h 10
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Chapter 4 THE SIGNAL-TO-NOISE RATIO IN CODED

APERTURE IMAGING

The main motivation behind coded aperture imaging is to improve the SNR relative to a pinhole

camera.

The SNR properties of the URAs were calculated shortly after their application to imaging was

proposed ([52]). These fundamental results showed that coded apertures do not always perform better

than pinholes and that the biggest advantage is obtained for high background situations and point-like

objects. Also, for extended objects, the SNR was showed to depend on the open fraction of the coded

aperture, low fractions giving higher SNR. This led some researchers to suggest that low-throughput

arrays (in particular product arrays) were suitable for use in Nuclear Medicine problems ([39]), where

objects are typically extended.

To verify this statement we simulated the performance of a few families of masks. Results were

surprising: not only did low-throughput arrays not outperform URAs, but they were also outperformed by

other designs. This Chapter starts by showing these results. They triggered a reinvestigation.of the SNR

formulae available in literature: in particular an extension of the results of ref ([52]) to arrays other than

URAs was needed. After a precise definition of SNR is given, an expression valid for any family is

derived. Particular care is dedicated to the issues of rescaling the decoding coefficients and mask

transmission, neither of which is treated in the literature.

In section 4.3 the formula is specialized to different mask families. We found that our results,

apart from minor corrections, confirm some particular cases available in literature ([37], [52]), to which

they are compared. When applied to low-throughput arrays, the formula predicts the poor performance of

product arrays observed in the simulations.

The Chapter ends with a discussion of problems in which coded apertures can be applied with

considerable advantage over conventional techniques. Its main result is the identification of the array

family chosen for the design of the prototype mask.



§4.1 An intuitive summary of the problem

4.1 An intuitive summary of the problem

The idea behind code aperture imaging is making more efficient use of the detector. In fact, a

detector with, say, 128 x 128 = 16384 pixels, can be thought as a set of 16384 independent counters. If

the object were a point source, only one-of these would be used in a pinhole imager. Coded apertures aim

at getting better statistics by using more detectors, one detector for each open position, to take several

measurements of the same source.

The potential SNR advantage over a pinhole is 7W, with N number of open holes in the coded

aperture. In fact, if the source is measured with a pinhole for a certain time giving the number of counts s

(the signal), according to Poisson statistics, the associated standard deviation (the noise) is Ts and the

SNR vII. If the same source is counted independently N times, the total count is, on the average, N s; the

variance, being the sum of the variances of independent counts, is also Ns, so that the SNR is [Ns . The

SNR advantage, the ratio of the SNR obtained with a coded aperture to the SNR obtained with a reference

method, is, then, WN. A similar analysis was first done in the late 1950s by Fellgett in the field of

spectroscopy, hence, in this field, the SNR advantage is sometimes called the Fellgett advantage ([26]). In

imaging the name multiplexing advantage is also common ([31]). The prototype mask we eventually built

has 480 holes. This means an SNR advantage of about 22. However, from the argument above, the SNR

of a pinhole camera is recognized to be proportional to the square root of time or activity (because s is a

total number of counts), so, a better way of evaluating this advantage is to think that 480 holes are

equivalent to a reduction in time (or activity) of 480.

Unfortunately, this is a limit achieved only by point sources. It is interesting to note that if we

knew a priori that the object is point source, and the objective is to determine its total brightness, the best

strategy would be to use no mask at all, and simply take a count with the maximum possible open area. In

our case, this would mean to open all the 62 x 62 positions of the mask, for a total of 3844 holes. Of

course, it would not be fair to compare this result with an image because this integral count would not

give the position of the point source. This shortcoming can be overcome using a single opaque element.

The position of its shadow on the detector would sacrifice one pixel only, but give complete spatial

information. This imager would be, so to speak, an anti-pinhole camera.

If the object is extended, the advantage is not as large. Several point sources project overlapping

mask patterns, so each detector records information from more than one source and measurements are not

independent. Overlaps, i.e. multiplexing, cause some costs in terms of SNR, depending on the extent of

superposition. We shall see that if an object takes the whole field of view, the SNR advantage may be
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lower than 1, i.e. a pinhole image would offer a better SNR, a result well known in literature ([31], [52]).

Two conflicting needs arise: opening more pinholes, to increase the SNR advantage N, and opening

fewer pinholes, to reduce superposition. This trade-off is the necessary (but, as we shall see, not

sufficient) condition for the existence of an optimal mask open fraction.

In conclusion, coded apertures try to take advantage of parts of the detector not used with

conventional methods, provided that that such regions actually exist. This depends on the object and the

open fraction of the aperture used. A qualitative analysis is needed to find if an optimal value of the open

fraction actually exist. In the following, this analysis is presented. Other considerations, such as mask

transmission, decoding coefficients, effect of background and different mask families are also taken into

account.

4.2 SNR definition and choice of the decoding coefficients

The ultimate figure of merit of a medical image is the detectability of some abnormality

(reference here). However, such measurements are very impractical and it is very common practice to rely

on some definition of the Signal-to-Noise Ratio to have a quantitative measurement of image quality.

This approach does have the limitation of depending on the particular definition of the SNR assumed.

However, it is the method followed by the vast majority of the related literature. We never relied solely

on the analytical results obtained, but constantly checked them against a visual assessment of simulated

reconstructions, because we were aware of the problem

The SNR can be defined in a number of ways. After several trials, mathematical tractability and

agreement with visual evidence were obtained for the simplest definition of SNR. Unlike detectability,

our definition the SNR, which is essentially equivalent to that given in most literature (e.g. [3], [4], [37]

and [52]), is not an overall figure of merit, but is defined on a local basis and varies point by point. At a

given point, the SNR is defined to be the average value of the reconstructed activity at that pixel, divided

by the standard deviation of this value. This definition, however, requires a little refinement. In fact, in

these terms, the SNR would change if the image underwent a linear transformation. Let c be a number of

counts collected in a Poisson process with mean n. According to the definition, "signal" is n c, and

"noise" its standard deviation J%, so that the SNR is V . If this same calculation is carried out after a

linear transformation of c, the "signal" becomes s n + q, and "noise" s -n, so that:
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SNR = s-n+qj- q (4.1)
sn S54HF

with s and q constants. The SNR depends on s and q, which is not acceptable.

In section 2.7 was shown that the decoding array can be scaled in a number of ways to

accommodate different needs. The scaling of G does not influence image reconstruction. In fact, if G is

the decoding array such that A 0 G" = N (where A, having a physical meaning, is an array of Is and Os

and 6 is a true discrete 6 function, i.e. is 1 on the peak and 0 outside), decoding with the array

G"" = sG"+ql, where 1 is an array of Is of the same size as G", gives:

A®G"" =l A(sGo +1q)=sJAGO +qYA1= sNS+qN (4.2)

which is a 6-like function. Choosing s and q is equivalent to choosing the g± and g of section 2.7. To see

the impact on the image, consider eq. (1.5). If G' is replaced by any of its linear transformations G"",

from the linearity of the operators, the reconstructed image, 0"", is just a linear transformation of 0, i.e.

" = sNO + qN. This is a change in the brightness and contrast of the image, typically overridden by the

displaying equipment which rescales the data, leading to the same result obtained with G. Provided that

the correct correlation is used, there is no difference in looking at an image after decoding with G or any

of the G1 "'s. From a theoretical point of view, this is important because if G is a valid decoding array, so

is G"", which makes the constants s and q available for some kind of optimization, examples of which

were given in section 2.7. One of the objectives of the calculation of the SNR of a coded aperture is to

find, in the same fashion, the pair (g±, g) that avoids the appearance of spurious terms, like the term

proportional to q in eq. (4.1), in the SNR.

The calculation is simple but involved and must be carried out under a number of approximations.

Far-field geometry is assumed. Furthermore, each detector pixel has the same size of the projection of a

mask hole on the detector, which is assumed to fall exactly on detector a pixel. To keep track of all

constants, the decoding process is followed with the decoding array G"" rather than with G. Some new

variables are introduced to handle the effects of background, statistics and partial mask transmission.

Trying to keep the notation consistent with that of ref. [52], let (u,v) be a position of the detector and:

Qkl: matrix of the number of the photons collected at (u,v), due to the sources present

within the kl reconstruction position and emitted in a solid angle subtending a single

mask pixel. In a far-field approximation, the elements of the k/l matrix all are different
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only because they are different realizations of the same random process (the decay of

the k0" source) and have the same average value.

'Qk: matrix of the number of photons collected at (u,v), due to the sources present at the k/l

reconstruction position, emitted in an angle subtending a single mask pixel, after

passing through a hypothetical mask with all positions closed (but partially

transparent).

0: matrix of the average activity of the object: its entry (kj) is defined as the mean value

of any of the elements of kl. It is a function of (u,v) only.

IT sum of all the elements of 0. It is proportional to the total power of the object.

D: matrix of counts due to uncoded noise at (u,v).

B: mean value of D. Since D is assumed uniform over the detector, B is a scalar quantity.

NT total number of elements in the mask.

N total number of open elements in the mask.

t: mask transmission (average fraction of photons that passes through an opaque element

without interaction)

4.2.1 Definition of signal

With these definitions, R, the number of counts recorded at (uv) is:

R(u,v) = 92k,(u,v)A(u + k,v + 1) + '%, (u,v)[1 - A(u + k,v + l)]+ D(u,v) (4.3)
kl k.

Since all functions involved are functions of (u,v), the argument is henceforth omitted. The

dependence of A and G on shift is indicated with a subscript: AN, indicates the pattern A, shifted to

represent the projection of a point source located at reconstruction position (k,l) and G; indicates the array

G shifted to decode position (ij) of the reconstructed image.

In eq. (4.3), R is a particular realization of a random process because, 2kJl, r2kl and D are Poisson-

distributed random variables. This is obvious for D, which is background, and ( ,, which is due to y-rays

coming directly from the different sources in the object. However, 'IU represents 7-rays reaching the

detector after passing through shielding and is the cascade of a Poisson process (the radioactive emission
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associated with Ri) with a binomial process (passing with probability t through the mask): '4i is, then,

Poisson distributed (see Appendix C.1), with mean t 0. R is the sum of Poisson variables and is, thus,

Poisson distributed.

The reconstructed image is given by eq. (1.5):

6(i,j)= R 0G " = ZZS GYA k/ sG j +q)+ y'n (i- Akl)(sG 0 + q)+ZD(sG1 +q) (4.4)
kv k,iU'v

Rearranging:

0(i,j) = sLZZ(tk/A kGY--'If, k/A kG+' 1G+EDG +
Luv hi 

1'v (4.5)

+(qA/ -1 Q A Al+1 ik/i)+ 1 D
u, v kj U, 1.

In these sums all terms have random variables contributing variance to 6(i,j). The terms

multiplied by s all depend on (ij) and, thus, vary across the image. The expectation value of this part is:

E Kmod (i, ) = s[ (O(k, l)A,/ G -- tO(k, l)A, 4 G + tO(k, l)1G + BG 1
L"' kjl (4.6)

S(-- t( 0(k,l)Z A,,G +tn 0(k,l)Z G 4 + BI G
I k j U, 1,k,l U'v U'v

Now assume that G is G, i.e. the version of the decoding array for which:

A i G = N6(i-kj-l ). With this, the equation above becomes:

E Omod (i,jjj= s(1 -t)NO(i, j) + s(tI + B)ZGO, (4.7)

>GO does not depend on the reconstruction position (ij). The first term represents the net

signal. The effect of mask transmission is to decrease the signal by the amount of counts that have passed

through the mask. This is quite reasonable, because all these counts partially fill positions that would be

dark in an ideal case, giving the same number of counts as a reduced source over an increased constant
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background. And in fact, in the second term, transmission background (tIT) and uncoded background (B)

sum to the same flat (in an average sense only) contribution.

In eq. (4.5), the terms multiplied by q do not depend on (ij) and must be exactly constant (not

only in an average sense) over the whole image. They add a perfectly flat background, which does

fluctuate over different images, but does not change in the same image because it affects all pixels in the

same way. Accordingly, even if they contribute variance to the absolute value of 6(ij), they should not

be included in the noise term either. The origin of this flat pedestal can be traced back by taking the

expectation value:

E[OPd(iJ)] = q ZZ(O(kl)A1 - tO(k,l)Ak,+tO(k,l)1)+ B =

q (-t)5 5 O(k, l)Ak, + t5 5 O(k, 1) + NTB8[ ju,v k, u,v k,j(

q jt) O(k,')Z Ak, +t5 O(k,l)Z1+ NTB =
k,l 74,1' kju

=q[(1 - t)NIr +tNTIT + NA/B]

The first term comes from the net signal (it is the contribution of the sidelobes), the second from

mask transmission, the third from unencoded background counts. G is a convenient choice of G because

q = 0 and E[60 Pd(i, j) = 0, i.e. the pedestal and its fake variance do not appear in 6(i,).

In conclusion, the decoding of the collected counts R with an arbitrarily scaled decoding array

Gl"" is the sum of three kinds of terms: one proportional to the emitting source and two flat contributions.

Of these, one is flat in an average sense only while the other is perfectly constant. The suppression of

these last two terms would require, respectively, s = 0 and qz= 0 (unless 5G.- = 0, which would make

any s acceptable, provided q = 0, but may not be the case), which is clearly unacceptable. The first two

contributions add noise to the image and share the property of being proportional to s. The third provides

a pedestal level, proportional to q, which fluctuates over different images but is uniform on the same

image, so that it introduces no visible noise. In light of this, the signal is defined to be:

(4.9)
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4.2.2 Definition of noise

Given the definition of signal of the previous section, it makes sense to identify noise with the

standard deviation of the term proportional to s in eq. (4.5). The calculation starts again from the

reconstructed image of eq. (4.4) and calculate the variance. This expression is a convenient starting point

because all random variables in here (Qkl, 
0

k1 and D) are independent and appear only once. The variance

is then the variance of the sum of independent variables, which is the sum of the variances. Using the fact

that A is binary with values 0 and 1, and thus A = A2

varO(i, j)] = O(k,l)Ak, sG + 4 +q ) tO(k, l)(1 -- AI )(sG. + 4 +I B(sG + q ) (4.10)
nv k,1 tv kI .,v

Unlike 0 k1,, O(k,) is a constant over the detector and can be taken outside the summation over u

and v. A similar observation applies to D, leading to:

var[6(i, j)= (I-t)Z O(k,l)X A(sG + + tZO(k,1)1Z sG
k, v k,I nv

Simple algebra gives:

+q + BZ(sGO. +q (4.11)
U,v

var[6(i, j)] = (-- t)sZ0(kl)X AkIG

s 2 t O(k,l)ZGO2

s2BZG0
2

U V

+ 2(1- t)sq O(kl)1Ak G0

kil n,v

+ 2sqtj O(k, ')Z G
k,l 1,v

+ 2sqBEG5

+ (1-t)q 2 O(k,)IA , +
k,l ulv

+ tjO(k,l)j1q 2  +

k,l 1,v

+ q 2 B
HOP.

(4.12)

Using AkGO =N(i-k,j -AN, ZO(kl)=Ir q21=q 2 NT, ZBNrB
it vki nv14t1'

and observing that ZGO is a constant, not dependent on (k,l) or the shift (ij):

var[ O(i,j)]= (l-t)s'O(kl)YA kGo
2  2(1 -t)sqNO(i, j) + (1 - t)q 2 NIr +

k,l n,v

s2tjO(k,l)jG. + 2sqtI1 G2 tNrq 2I7 +

k,l Uv nv

S2BZGO0 + 2sqByGo + q2 NB
n'v ii v

(4.13)
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THE SIGNAL-TO-NOISE RATIO IN CODED APERTURE IMAGING

One can also start from eq. (4.5), which is just eq. (4.4) rearranged, but has to be careful because

its two terms are not statistically independent because the same realizations of the random variables

appear in different places. The result is the same as eq. (4.13), and has the form:

var d(i, j)1= vars[...]+ 2 cov{sf...], q[...]}+ var{q[...]} (4.14)

where in the square brackets are the same terms that appear in eq. (4.5). With a little work one can

confirm that this is the same as eq. (4.13), but this is not necessary to prove that the first column of

eq. (4.13) is the variance of the term proportional to s in eq. (4.5), the second is the covariance term and

the third is the variance of the term proportional to q, because one can just look at the constants s and q to

reach the same conclusion. After the discussion on the origin of the variance of the signal, we know that

the only variance of interest is the variance of the term proportional to s because other terms are the

variance of a perfectly flat contribution that varies only over different images, and consequently define

noise as:

N =s (I- t)5O(i,ij)A , ,G +(tI +B) G(4.15)

where the contributions are, from left to right, from statistical noise in the net signal, transmission and

uncoded background. Also note that s, also present in the signal, cancels out in the SNR:

SNR(i, j) = -- It) N O(i, j) (4.16)
(1-t)XO(k,l)ZAG. +(tIT +B) G

This means that s can be arbitrarily chosen. With the current definitions, choosing s = 1 implies

that a unit point source reconstructs to a peak of height N, which is quite convenient, because it is

consistent with the definition that a unit point source reconstructs to a peak of height I in a pinhole

imager. From the definition of signal (eq (4.9)), this choice is the one that conserves the number of counts

in the image in the ideal case of no mask transmission, i.e. SO(i,j)= 5R(uv). The final step is to
ij7u.1

divide numerator and denominator by the total source power to introduce two dimensionless parameters,

=O(i,]j) B
Wy, = and = . y and 4 express, respectively, the fraction of the object activity concentrated

at one reconstruction position (in this sense y is a concentration parameter) and the background level (at
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§4.2 SNR definition and choice of the decoding coefficients

one pixel) relative to the total object activity. y is constrained between 0 and 1 while is always positive.

Two interesting limiting cases are that of a point source and an uniform object. In the first case, all

activity is concentrated at one point, so y = I at one point and 0 elsewhere; in the second, it is uniformly

spread over NT, so y I= / NT everywhere. Note that for points with no activity y = 0 and SNR = 0. With

the new definitions:

SNR (i, j) FT - t

(1-+t) Y A/G2+(t+)ZG 4.17)
-tLk,Z ,G5 1'

From eq. (4.17) we can see that, once a pattern and its decoding array are given, the quantities

S A41 G# and ZG,. , which is sometimes called the energy of the decoding pattern ([53]), are all that is
11,1 V '

needed to calculate the SNR. From the derivation it is clear that the formula holds only if G = Go, i.e. is

such thatZAk,GCj oc N. This condition is equivalent to choosing some particular linear transformations
11,)

of G, those for which q = 0, and is emphasized in eq. (4.17) to be part of the definition of the SNR. In

fact, linear transformations of G such that AIG,, = sN + q introduce terms that should be

disregarded in the calculation of the SNR: eq. (4.7), (4.8), and (4.17) provide the terms that would have to

be subtracted from an image reconstructed with such Gs and its variance before the SNR is calculated as

the ratio.

The SNR changes from point to point. The only literature example we know of a global definition

is ref. [53], where noise and signal are summed over the whole image. This was expressly done to

simplify the expression of the SNR by eliminating dependence on the parameter y, a step which, as we

shall see, would not be to our advantage.

Except for the considerations on linear transformations and mask transparency, a similar formula

was reached by Gottesman and Schneid with a heuristic derivation ([37]). In the next section it is

specialized to some families and is shown to lead to very intuitive results for some simple cases, such as

the pinhole camera or a point source.
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4.3 The Signal-to-Noise Ratio of different coded apertures

In this section is calculated the SNR of some coded aperture families. The most important is the

case of the (M)URA, because it provides a reference point for comparison with literature results. The case

of product arrays is then treated to show that this family always performs worse than (M)URAs. The

mask we eventually built is a NTHT array, which is treated next. The case of the pinhole is also

indispensable for the calculation of the SNR advantage. The interesting case of the negative pinhole

closes this section providing additional insight.

From the definition of the SNR, the first step is always to find the particular G = Go.

4.3.1 Uniformly and Modified Uniformly Redundant Arrays

For MURAs and URAs the number of open mask positions is, respectively, N= (NT + 1) / 2 and

N= (NT - 1) / 2. In matched decoding the sidelobes have a value M, which is useful in our calculations

because it represents the number of Is in A that overlap with g±'s in G for shifts (relative to A) other than

0. Applying these properties:

AklG40 = Mg,+(N - M)g +65(i-k,j-l)(N - M)g,-- g )(4.18)

Setting G= Go gives g±= I and g= MI(M- N), which are the coefficients of balanced decoding.

For a 50% open array M= N/2 so that g = -1. For the more general case of an arbitrary open fraction p,

N= pNT. In the approximation M= p 2NT, g= p / (p - 1):

AkG2=PNT [p ± Q(i - k, j - l)(1--2p)] and G = pN (4.19)

which substituted in eq. (4.17), gives the SNR:

SNR1 -= N-TTp-p)(I-t)p 4  (4.20)
I(T-t) p+ (- 2p)W i + t + E

which is the same as Fenimore's expression ([52]), except for the factor 2 in the denominator. As all

definitions are consistent, this difference comes from the substitution, in his derivation, of a sum over all

sources except O(ij) with IT, causing an overestimate of the variance not relevant for most cases but with

some effects for large p. An example is the case of a point source. With no transmission or uncoded
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104 §4.3 The Signal-to-Noise Ratio of different coded apertures

background (wq = 6 (ij), t = 0 and =0), the SNR at the source location is pNTIT =NIT , which

makes sense, because under these conditions all the coded aperture does is to count the same source N

times. There is no need to justify an apparent -F reduction in SNR as many authors do.

The SNR is always positive and is zero for a completely open and a completely closed pattern.

Setting the first derivative of the SNR with respect to p to 0 gives the open fraction that maximizes the

SNR:

P op,f
t ± + (1 - 2t) - [t + + ''! (I - 2t)]2 -(1 - t)(2w -- )[Wq(1 - t) + t + L]

(1 - t)(2w -1)
(4.21)

which, for t = 0, reduces to:

pot
PY 2xj-1

(4.22)

p7' can range from 0 to 1 (Figure 4.1), depending on the activity concentration at the point of

interest in the image. If it existed, the best (M)URA to image a point-like source (y = 1) with no

background ( =0) would be a completely open pattern, which, as already discussed, is not surprising.

Note that the existence of p 'P does not have anything to do with the actual existence of a corresponding

10- , 0.01, 0.1, 1,10, 100

0.9

0.7
0.6

0.4

0.2
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Figure 4.1: optimal open fraction as a function of y for
different backgrounds for (M)URAs. (eq. 4.22). Note
that especially at low background, the optimal open
fraction for low yi (extended objects) can be
significantly less than 0.5. It can be proved analytically
that all curves have odd symmetry about (0.5, 0.5)
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Figure 4.2: SNR loss in using the half-open pattern in
place of the optimal, for different backgrounds. The loss
is never more than 25%, as first reported ([52]).
Following from the error pointed out in the text, in this
reference these graphs stopped at yy = 0.5, about which
curves are symmetric.
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Optimal open fraction for different transparencies
0.03

0.025 - t= 0.001
t 0.01

0.02
U)

001zr
0.005

0 02 04 0.6 08 1
p

Figure 4.3: SNR as a function of the open fraction for different mask transmission (0.1, 0.01 and 0.001). The result

is normalized to the SNR of the pinhole and NT . For the case of our interest, t = 0.01. Since the maximum

normalized SNR is 0.025, NT must be at least 40 for the coded aperture to perform better than the pinhole.

(M)URA. In fact a totally open (M)URA does not exist because a totally open mask can convey no spatial

information. This result is not discussed in ref. [52] (or in the anywhere in literature) because, following

the algebraic mistake pointed out above, graphs ended up stopping at Yy;= 0.5.

In images where more than half of the activity is concentrated in one reconstruction pixel, more

than half open (M)URAs should be preferred if that one pixel is the only one of interest. To our

knowledge, these patterns do not exist in two dimensions, but more than half-open Id URA sequences

can be constructed by inverting dilute URAs (§2.4.3). It must be pointed out that best performance is

obtained at the point for which y,;> 0.5, and that, since Z _ y#;= 1, at most one pixel can have yP;> 0.5.

Also, the greater the maximum i, the lower all other y;g's and the greater the loss in SNR for all other

points. In the vast majority of cases high-open fraction apertures are not beneficial.

A second interesting implication of eq. (4.22) is that the higher the background, the lower the

influence of choosing the right open fraction, as it can be verified in Figure 4.1. In Nuclear Medicine

applications this is not the case: typical backgrounds are as low as ~ 5 x 10-'. Since typical average y''s

are about 0.01, the loss, though at worst 25% in SNR, still amounts to a factor of 2 in exposure times or

activity. Hence our efforts to find an optimal pattern.

With the parameters applicable to the thyroid phantom (yq;= 2.6 x 10-4, 5.5 x 10-4), assuming

a transmission of 1% (see §6.1.4) one can find that the optimum open fraction is 9.42%. In Figure 4.3 this

value is shown to depend on mask transmission and increases with increasing transmission. Because of

this result, we set out to find a 10% open pattern.
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§4.3 The Signal-to-Noise Ratio of different coded apertures

4.3.2 Product arrays

For product arrays (§2.4.5) A # G, which was an assumption necessary to derive the results of

§4.3.1. This is the reason they can not be applied to product arrays and one must restart from eq. (4.17).

The definitions given in §2.4.5 lead directly to G4. The elements of this array are 1 and -1, which is

enough to prove that:

ZAIG2 = N and ZG,= N (4.23)

Substitution in eq. (4.17) gives:

SNR.. =N Jp(l -t(4.24)
(1-t)p+t+4

Since for all physically allowable values of the parameters the SNR is an increasing function of p,

the optimal open fraction is simply the largest that can be achieved. Substituting p =0.25, which is the

only possible value for PNP arrays as defined in ref. [37], the results of this paper are reproduced.

4.3.3 No-Two-Holes-Touching (M)URAs

With the rules of ref. [13] and [14] only half-open (M)URAs can be generated. This limitation

can be overcome by inserting a number e-I of opaque columns (rows) between all columns (rows) of an

original array, to form No-Two-Holes-Touching (M)URAs (§2.4.7). The open fraction can only be

smaller than that of the originating array and the mask pattern looks like a grid in which are placed the

elements of the original array. The decoding array Go is a three-valued function. At the positions of the

original elements are present Is and -Is, while at all other positions are present Os. This structure does

influence the quantities we have to calculate, which take on different values depending on whether or not

the shift is such that the blank lines of G overlap with the non-blank lines of A:

20 for No (e2 -1)shifts

XAkG = =shifts and G2= No(4.25)
U'1'N for N) shifts Y ,

where N is the total number of positions of the original array while Nr= e2 N,' still is the total number

of positions in the pattern. With this:
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N?

Z O(k,/)Z AkG. = NZ O(k,1) (4.26)
k,lnv k,I

where the summation on the right hand side indicates a sum over pixels of the image reconstructed for

shifts of G which superimpose its blank lines to those of A. If the source has no particular structure (such

N

as a point (see §7.4.2) or a line parallel to the lines of G), ZO(k) is simply the normalized activity of
k,/

a Ile 2 fraction of it. One can substitute this sum over a partial number of elements with a sum over all

elements:

NNT N (.7
Z O(k,l)ZAlG2 =I O(k,l)= xb(4.27)

Since the only (M)URAs we know are 50% open, the calculation is carried on only in this case,

for which the open fraction of the array becomes a function of e only: p = (2 e)'. The final result is:

SNR, = (4.28)
(1--t)p+t+{

Taking the derivative with respect to p proves that best performance is again obtained for

maximum p, i.e. p = 0.5, which would be the same as the original URA: a 50% URA is always better than

a NTHT array based on it. The maximum, non-trivial, p is obtained for e =2 and, thus, popt= 0.125. A

second important result is that, for any given open fraction p < 0.5, the SNR of a NTHT is higher than

that of product arrays.

Note that for NTHT patterns a valid pattern is obtained by inverting the elements of the original

(M)URA pattern only, but not the opaque lines. The pattern is still self-supporting. For existing 50% open

patterns, this does not change the open fraction, so that the SNR is the same of the original NTHT pattern.

Even if this pattern is not the negative of the original pattern, it still is effective in eliminating near-field

artifacts (see Chapter 5).

4.3.4 Pinhole

The pinhole itself is a limiting case of NRA because A 0 A= 6. The method used for all arrays

can be applied to calculate the SNR with G = A. One can see right away that:
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AkIQ =6(i-k,j-l) and G =1 (4.29)

which lead to:

SNRO = IT t(4.30)

(1 -t)yi + t+#

in complete agreement with a direct calculation and ref. [37] and [52]1, providing an additional

validation of eq. (4.17). Note that this formula may be unfair to the pinhole because it assumes uniform

mask thickness; however a pinhole mask can be made very thick far from the pinhole, reducing

transmission. For this reason, very often in calculations it is better to set t = 0 for the pinhole but not for

coded apertures.

4.3.5 The negative pinhole

By "negative pinhole" we indicate a mask completely open, except for one location. The

appropriate decoding array is obtained by setting A 0 G8= (N- 1)6, which leads to g± = 2-NT and g.= 1.

With these:

YA,,G2 =(N -1)[N - 2+(3 - NT)(i-k,I-)] and XG .=N>-3Nr+3 (4.31)

which lead to, with N=NT- 1:

NT-I IT(- t)Wd

SNR]? - NT -2 (4.32)
1 --3 Nj N# - 3 NT +3
NT -2 + N --3 NT +2

The expression can be simplified with the approximation NT >> 1:

SNR V = T(t)Wyq (4.33)
- (I - t)mlU+T
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The SNR advantage over the pinhole is:

SNR NP / P (t)y 0 t4

This is always an increasing function of Pu The breakeven point is y,;= 0.5, V t, . If y, < 0.5,

the pinhole prevails, while the opposite is true for y > 0.5. It is interesting to see that for y;j;= 0 the

_+_ 1+advantage is while for y = I it is . If c- oo or t = I, both these limits, that confine the

whole curve because it is monotonically increasing, tend to 1. For normal values of the parameters,

however, 0 and t is a few percent, which makes the negative pinhole very attractive for imaging

concentrated sources.

Unfortunately, the approximation NT>> 1 does not hold for the important case Vy = 1. In this

case, for t = 0, one can prove that the SNR advantage over the pinhole is:

SNRNP /P= Nt-I (4.35)

i±K+NT-li

which is always greater than 1. Thus, for a point source, a better local SNR is obtained with the negative

pinhole. This does not mean necessarily a better image, because the SNR at the sidelobes may be much

worse. However, at the point of interest, a better result is obtained. This apparent contradiction originates

from the local nature of the definition of SNR.

A last case of interest is that of no background and no transmission. The negative pinhole has an

advantage only for points with y9';> 0.5. If y;= 1 the advantage is NT -1 as can be obtained from

eq. (4.35). Note that the other factor in eq. (4.35) represents the loss of advantage caused by background.

4.3.6 Random array

For the random array, the height of the peak is Ng. Setting this to N gives immediately g±= 1.

The sidelobe value is given by (N-M)g + Mg, where M is the number of superpositions of Is of A with

12 In this reference the SNR of the pinhole was calculated with an independent calculation, so it is not
affected by the above mentioned algebraic error.
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g+'s of G and can be approximated with pN. Setting the sidelobe to 0 gives g_ = p / (p - 1), which are the

coefficients of balanced decoding. With these:

N for no shift

Ak/G pN -12 +(N -- pNfP otherwise and
" ' p -1)

N+(NT- N)
P -1)

1
-N (4.36)

1 - p

which are the same as the (M)URA case. The same SNR expression applies. While known (M)URAs

only have 50% open fraction, random arrays can be made of any open fraction, so that the maximum SNR

predicted for (M)URAs can actually be obtained. However, this SNR has to be combined with the

inherent SNR (see §2.4.1). If patterns are large enough, this latter contribution is negligible.

Unfortunately, random patterns are not self-supporting and, if forced to be so, undesirable correlations

with first neighbors are introduced.

Array family A G ZG 2 SNR

(M)URA pN[ [ + - 2p] pNT JTp(I-p(I 1-tY

Random 1- P iI --P 1-tT)p+(1-2p)W 1J+t+

Product arrays NTIJ p(1 -

(PNP, MP, N NT -t)p + t +
MM, NS)
Negative ) 1 2Np(1-p) TJT')

product arrays (1p 2 -N N 9 pY2"+ ) Pp N + 2 pjR 1 +Q±+(p2+

NTHT f 0 for je2-1)shiftsN~ NIP(1 t4

(M)URA N for N' shifts (1-t)p+t+4

(M)URA T (1 -- t) +t

Pinhole 8(i - k, j-) 1 -Ow
(1-t)W y + t +

Negative N -2

(Nr1)[( Nr-2 )+6 (3-NT)] N2 -3 N + 3 NsNR, = NT- 3-2 N 3Nr+3
pinhole W) - + (/ + )T-37

Table 4.1: expressions needed for the calculation of the SNR via eq. (4.17) for the arrays discussed in this paper and

final result. For NTHT (M)URAs N2 is the total number of positions of the original array and Nr = e2 N is still

the total number of positions in the pattern. See text for e. Of course, G = Go.
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All results are gathered in Table 4.1, where the case of the negative product array is also included.

It is not treated in detail because calculations are lengthy and do not offer particular insights. The result,

however, will be later necessary to explain simulation results.

4.4 Comparing the SNR performance of different arrays

All masks except the random array offer ideal imaging but different SNRs. Given the number of

parameters involved, a number of comparisons can be done. In general, the result is that coded apertures

are favored for high-background and concentrated sources. We were particularly interested in two types

of comparison. The first is between. two apertures for different objects and background: a sample

comparison between the pinhole and a NTHT mask based on a 50% open MURA is presented in detail.

The second is a comparison of different apertures for a given object.

4.4.1 Effects of y and on the SNR

From Table 4.1 the coded aperture has a SNR higher than a pinhole for t= 0 if:

(2- Nrp)4 ; Nrpy -2p (4.37)

Since the smallest URA is a 5x3 array with 8 open positions, the smallest open fraction is

8
P =T , so the left hand side is always negative:

N,.

pN "2p (4.38)
2 - pN 2 -PNr

This inequality can be interpreted as the separation of the (y, ) plane in two regions. The right

hand side is the family of straight lines passing through the point 2 ,0j. To each p corresponds a
(N

different line,, which can be identified by its intersection with the axis, i.e. 0, A coded
pN -2),

aperture has a SNR higher than the pinhole depending on its parameters (i.e. N, and p) and the image (i.e.

y, and 4). If the point of interest of the image lies above the line, the coded aperture is favorite.
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§4.4 Comparing the SNR performance of different arrays

We can already draw the conclusion that regardless of , the coded aperture offers an advantage

for all points such that y , >2 / NT. The first result of the SNR analysis is that coded apertures perform

best for objects whose activity is concentrated in a few points, the best case being that of a point source.

Around this first result a number of corollaries can be elaborated. For objects that fill the FoV, the

average kV; is <g;q>= I/NT and if background is low enough, there may be no advantage for points of

average brightness. If the object fills only a fraction/ of the area of the FoV (f being the 1 d reduction in

the FoV), <yg; > = 1/fNT, which shows that the smallerf, the higher the advantage over the pinhole. For

f< -J there surely is an advantage for the average source and if the object takes about 10% of the FoV

(a 2x2 cm2 area in a 9x9 cm2 FoV), then the SNR advantage would be a factor of almost 7, which is a 49-

fold reduction in time or activity at constant image quality.

The sources of a particular object can also be located on this graph. Since 4 is constant for all

points, an object is represented by an horizontal line going from the minimum to the maximum yiu in the

object. In Figure 4.5 is presented the case of a thyroid case study (see section 0). First, the result that

points with high y are favored is found again: in fact, they are deeper into the coded aperture advantage

region. A new result is that the SNR advantage of the coded aperture increases with background. In

typical nuclear medicine conditions background is low, but this is not the case for CAFNA measurements,

where background is responsible for the vast majority of recorded events.

Finally, in §4.3.3 the SNR of a NTHT (M)URA was proved to be an increasing function of p.

This can be recognized in Figure 4.4 as well: for increasing p, the intersection of the boundary line with

CODEDm5.6 104

8/3 NTA-----

.n5.56 10-4
2p / (pN7-2) 5.22 io-4

Popt

2 /(NT- 16)

PMAXPNOLPWHL

2 / (NT -4 ) w104
5.21 -

2 N

Figure 4.4: y-4 plane indicating the situations for which a coded Figure 4.5: application to the thyroid case
aperture offer a SNR higher than the pinhole. study. All image points are imaged with better

SNR than they would have been with a pinhole.
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the 4 axis occurs at ever lower points, expanding the region of better performance of the coded aperture.

Since p must be greater than pa,,1 but less than p x= 0.5 (URA case), not all the lines of the family have

a physical meaning. In Figure 4.4 the solid lines represent these limits. The line for p = p0,= 0.125 is the

one for which a real NTHT array gives best performance (which may or may not be better than that of the

pinhole).

4.4.2 The SNR of different mask families

The graphs of Figure 4.8 were produced from the formulae of Table 4.1. A direct comparison of

the SNR of different families can now be made by inspection. The following conclusions can be verified

to be general with analytical methods too long and uninteresting to find place here.

For product and NTHT (M)URA arrays there is no optimum p for any combination of and y .

For both families the SNR increases with p. For p <0.5, a half-open (and even more an optimally open)
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Figure 4.6: comparison of the SNR of different masks for zero transparency. All curves are drawn for

My;;= 2.6 x 10-4, the average value applicable to the thyroid study. The continuous line refers to URAs, the dashed to
No-Two-Holes-Touching arrays and the dash-dot to product arrays, including the NS arrays of ref. [39]. The SNR is

normalized to (i.e. it has been divided by) the SNR of the pinhole and NT Multiply by NT to -obtain the

advantage over the pinhole. Note that the SNR advantage increases with ,.
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Figure 4.7: SNR curves for existing arrays. The SNR is normalized as in Figure 4.4. For this graph y = 2.6 x 104

and E = 5.56 x 10~4, as applies to the case study. The advantage over the pinhole for the NTHT mask of is about 1.5
in SNR terms (2.4 in time or activity) for this "average" image pixel.

URA always performs best. However, for p > 0.5 product arrays have a SNR higher than all other arrays.

It is important to recall that the curves of Figure 4.8 are not concerned with the actual existence of

patterns. They only state what the SNR of an array of a given family and open fraction would be if it

existed. None of these families of arrays have patterns with an open fraction p > 0.5.

The observation that the negative of a good pair (A, G) is a good pair is encouraging because the

negative of a low-open fraction mask must have a large open fraction, which makes it a good candidate

for a high-SNR mask. Furthermore, the investigation of negative patterns is also relevant to near-field

artifact correction methods (see §5.6). Both factors demanded the investigation of the negative of a

product array. Unfortunately, it turns out that the SNR formula applicable to negative patterns is not the

same as that of the original family (see Table 4.1) and the new calculation shows that the SNR for the

negative array is much worse than predicted for the original array.

If the same curves of Figure 4.6 are sketched for existing arrays only, the situation is that of

Figure 4.7, which is an explanation of our choice of the pattern family. The best SNR is achieved for a

half-open (M)URA or m-sequence, but none of these patterns is self-supporting. A slightly inferior SNR

is obtained with a NTHT (M)URA, which is self-supporting. Product arrays always offer a much lower

SNR, this disadvantage increasing when the negative pattern, which is needed for near-field artifact

removal, is also considered. This consideration does not affect (M)URAs, because the negative pattern

has the same open fraction. This also holds for NTHT (M)URAs, because they can be considered

(M)URAs with a hole smaller than the array position (§2.4.7). A more complete explanation of this
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important result, which allows us to say that the negative of an NTHT (M)URA based on a 50% open

pattern has still the same open fraction, and thus the same SNR, of the positive, is provided in Chapter 5.

4.5 Dependence of the variance on other sources

From the general expression for the SNR (eq. (4.17)), the SNR for one source depends on other

sources through:

ZWkS AkIG 2  (4.39)
k,/ v

ifY k AG were a constant over space, this term would be constant and the dependence would
11,1

disappear. Gottesman and Schneid pointed out ([37]) that this is so for unimodular decoding arrays, i.e.

those whose coefficients are all the same in absolute value. This is a desirable property of half-open

(M)URAs and product arrays. One potential disadvantage of NTHT arrays is they do not satisfy this

condition. To quantify the dependence of the SNR of a point on other sources of the object, the test

proposed by Gottesman and Schneid was performed: given an object made of two point sources, one is

kept fixed while the other is moved continuously from a pixel to a first neighbor. Let the shift be R.

Measured in pixels, it ranges from 0, for no shift, to 1. In Figure 4.8 the variation of the SNR is evident,

but it not as dramatic as for geometric arrays. This test is performed with point sources and no

background, conditions that maximize the effect. In real cases "point sources" are spread over more than 1

pixel ([35]). For NTHT arrays, if the point source is a square of e x e pixels, no dependence at all is found

1600

1400 URA (43x41)

1200 FPNP (43x43)

1000 -

Z 800- -

N-T-H-T (43x43)

400-

200

01
0 0.2 0.4 0.6 0.8 1

R (pixels)

Figure 4.8: Dependence of the SNR on the position of sources. IT = 104 and = 0 as in Ref. [37]. For higher
backgrounds the dependence is not as strong, but this is not the case in Nuclear Medicine applications.
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because ZJk!Z AkJG2 is constant. In fact, from Table 4.1 A/G2 is 0 for shifts that superimpose
k.1 11,1'i

blank lines of G with holes of A and N otherwise. This means that ZAkjG 2 is a matrix of zeros with

peaks of height N arranged on a square grid and spaced by e in each direction. If the source is uniformly

spread over a few pixels as mentioned, this array must be convolved with the e x e square, giving a

constant. Indeed, we found in the image structures due to this dependence on the SNR only for a

particular source used in a preliminary experiment. These are the capillaries of Figure 6.7 and Figure 6.8.

In these cases, points with no signal are still affected by noise through the cross-talk term (4.39). Since

the sources are not spread over a e x e square, but along a line, the peaks of the function Ak G 2are

replicated by k;il only in directions parallel to those of the capillaries, leaving intermediate regions empty.

The effect is to create a striped background, as can be verified in the above-mentioned figures. A broader

theoretical discussion of noise correlations in quantitative measurements can be found in ref. [51], which,

however, does not address directly the case of imaging.

MURA Product NTHT M-sequence

U)

M 11ME I IIiiin .I.I.I... --I..-V

CU

.0

Figure 4.9: coded apertures used for thyroid phantom simulations. Top row: 79 x 79 MURA. Open fraction: 0.5.

Mask pixel size: 0.921 mm, geometric resolution: 1.139 mm. Product: 77x77 NS array built from a 7 and an 11 ld

URA. Open fraction: 0.097. Mask pixel size 0.9 mm, geometric resolution: 1.2 mm. NTHT array based on a 31 x31

MURA, with e = 2. Open fraction: 0.125. Mask pixel size 1.1 mm, geometric resolution: 1.5 mm. 63 x 65 m-

sequence. Open fraction: 0.5. Mask pixel size 1.1 mm, geometric resolution: 0.14 mm. For all masks: FoV 9 x 9 cm,

thickness 1.5 mm (1% penetration at 140 keV). Only the elementary pattern of a 2x2 mosaic is shown. Bottom row:

simulation results with near-field artifacts suppression.
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4.6 Simulations

Several simulations were run to verify theoretical predictions. For purposes of comparison with

the literature and previous results obtained by our group, the object simulated was a thyroid phantom. The

simulation was a 17.5-min exposure with 40 cm object-to-detector distance. The activity was 200 pCi of

99 'nTc (140 keV). The mask designs under investigation are shown in Figure 4.9. They were chosen to

provide the maximum resolution for a field of view of 9 x 9 cm given the constraint that the projection on

the detector should take no more than 160 x 160 pixels with a = 2. Given the extension of the object and

the fact that the open fraction of the NS array was chosen as close as possible to the optimum value

prescribed in ref. [52], according to ref [39], we should have expected best performance for this aperture.

The simulation results are also shown in Figure 4.9, after near-field artifact suppression (Chapter

5), which seems equally good in all cases. In agreement with theory, best performance is shared by m-

sequence and MURA. Slightly worse is the NTHT pattern, which still shows better SNR than the product

array, despite the higher open fraction. The error of ref [39] (also found in [3] and [40]) was to extend the

results of ref. [52], derived for and, thus, applicable only to URAs, to product arrays. A hint might have

been that the SNR of PNP arrays, which are strictly related to the NS arrays, was known, under particular

conditions (no mask transparency and zero background), to compare unfavorably with URAs ([37]).

4.7 Observation on the relation between SNR and sensitivity

Specifications of collimators and pinholes do not list their SNR. An indirect measure is offered in

terms of sensitivity, which is by definition the number of counts obtained per unit time and activity in the

source. This is indeed a good indirect measure of the SNR for such non-multiplexing devices. Since there

are no superpositions to be undone, every count is a "good" count for the system. In fact, from the

expression of the SNR for the pinhole, for no transmission and background one gets:

SNR]? 4 =TWI1i = (4.40)

which means that the SNR of a-source in the object is the square root of the number of counts coming

from that source, i.e. it is the square root of the sensitivity of the system multiplied by activity and time.

The relationship between sensitivity and SNR is not as direct for coded apertures, because of

decoding. In fact, for an (M)URA, for no transmission and background:
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SNR0 = jpNTIT p -, = NIr j (4.41)

but the sensitivity to a source is proportional to NI 7v;;. This means that sensitivity is subject to a

loss before it is translated to SNR. For a point source there is no loss, confirming that the origin of the

loss is in the superpositions. In this sense not all counts, but only a fraction of them, are "good"

counts to a coded aperture and the tremendous advantages in sensitivity seen in the next Chapters should

not be overestimated.



Chapter 5 ARTIFACT THEORY

Even a device as simple as the pinhole camera is affected by non-idealities. A perfect pinhole is a

dimensionless hole in an infinitely thin, but yet perfectly opaque, screen. In these conditions, resolution

and the field of view are limited by the detector. Intensities are modulated by a cos3(O) factor, but with

knowledge of the object-to-detector distance the collected data can be corrected and the effect

compensated. In reality, the hole must have a finite size, which limits resolution, and thickness, which

cuts rays entering at angles, limiting the field of view and changing the brightness of off-axis sources,

which becomes a function of the incidence angle even in far-field geometry. Finally, noise in the data

make compensation for near-field geometry only approximate.

Coded apertures suffer from the same limitations. The most impressive artifacts, however, come

from the cos 3(O) factor. With it, the projection of the mask does not look exactly like the mask itself.

When a correlation is taken to decode the data, G is not correlated with A, but with A modulated by

cos 3(O). The result is not a 6 and artifacts appear in the image. The scope of this Chapter is to gain insight

in the process. A mathematical framework is developed to predict artifacts and develop solutions.

Predictions are compared to simulation, experiment and literature data. Sampling effects, such as border

and non-integer a are also considered. The last section is dedicated to mask thickness.

The only paper discussing artifacts we know is ref. [54], where mask transmission, geometry of

the open elements, finite positional resolution of the detector, its possible malfunctions, alignment

problems and sources in the PCFV are treated.

5.1 Mask transmission

An ideal mask is infinitely thin and perfectly opaque, i.e. blocks all y-rays falling on opaque

positions. In reality, these rays have a finite probability t of passing through the mask. From the theory of

y-ray attenuation, the fraction of rays passing through opaque locations (t, transmission or transparency of

the mask) is:

t - e-(5 (5,1)
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where p is the density of the mask material, g its attenuation coefficient, evaluated at the energy of

interest, and x the mask thickness. For example, the attenuation coefficient of tungsten at 140 keV, the

energy of 99"'Tc 7-rays, is 1.76 cm 2 /g. Since the density of the material is 19.3 g/cm3 , from eq. (5.1), for a

1.5-mm-thick mask t = 0.006 or 6%o. For "'In (171, 245 keV) the attenuation coefficient in tungsten

(p = 19.3 g/cm 3) is 0.458 cm 2 /g:, which makes the same mask 26% transparent.

Eq (1.1) does not hold and must be corrected. When transmission is modeled, the pattern recorded

at the detector is the contribution of a fraction (1-t) of photons that "see" an ideal mask (and which are,

then, described by eq. (1.1)), plus a fraction t of photons that do not see the mask at all:

R = (1-t) O x A + t Ox 1= (1-t) O x A + constant (5.2)

where 1 is an entirely open mask and the result of Appendix A.2 was applied. Mask transmission reduces

the signal in the ideal image and adds background. These effects do cause a loss in SNR, as discussed in

Chapter 4, but do not distort the image or contribute artifacts. Ref. [54] reports experimental verifications

of this argument and adds a SNR formula extending the work of Fenimore along the lines seen in Chapter

4.

5.2 Sampling

By sampling artifacts we refer to artifacts caused by the fact that the detector is not a smooth

continuum, but is, effectively (but not physically), made of pixels. They are divided in border and non-

integer a artifacts.

5.2.1 Border

In the ideal case, if a, the number of pixels on which is projected the shadow of a mask position,

is an integer, the projection of a point source covers exactly a square of a x a pixels. All pixels in the

square are completely illuminated and the reconstruction is exactly as expected for an ideally continuous

detector. In reality, this happens only for very particular positions of the point source in the object: Figure

3.1 shows the example of a projection not matching detector pixels but covering a part of an a+1 x a+1

square. Of these, pixels on the border of the square are only partially illuminated. If a is integer, the

distribution of y-rays on different pixels of the square is the same for all mask holes, and simply takes

place at different parts on the detector. Furthermore, if a 2 at least one pixel for every mask hole is
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Object Mask (MURA 61x61, particular)
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Figure 5.1: border effect on the reconstruction of a point source. In the reconstruction note the gray pixels
surrounding the white center pixel. These arise from the gray areas surrounding the black and white zones of the
mask projection: these are detector pixels partially illuminated because of border effect.

totally illuminated. These pixels are spaced by a pixels, on a rectangular grid, in both directions. In the

case of 6 decoding (see section 2.7), at the corresponding reconstruction positions the brightness of the

source is reconstructed as if the shadow was cast matching exactly the boundary of the pixels. This is true

for all totally illuminated pixels. Border pixels, however, show a reduced brightness. However, if a

certain pixel has a brightness reduced by a certain factor, all pixels shifted by a positions from it, also

have the same reduction. Therefore, next to the main peak, appears another perfect reconstruction of

lower brightness. In conclusion, a point source which is ideally reconstructed on a a x a square of pixels

of constant brightness is in reality reconstructed on a a-1 x a-1 square of pixels of constant brightness

surrounded by a border of pixels of lower brightness. This is what we called the border effect.

Of course, the total activity is the same, but is distributed differently in the two cases. It is

important to notice that the height of the peak does not change with source shift if a > 2, because at least

one totally illuminated pixel is always present. This is not so for a < 2. For example, for a = 1, depending

on the position of the source, the activity can be distributed on a pixel only, which gives a peak with a

height of, say, 1, with neighbors at 0, or on 4 pixels, each with a height of . In between these limits a

number of combinations is possible, all giving different maximum heights. This can be very confusing

when two or more sources are present in the image because sources of the same brightness can result in

different maximum heights, and thus be visualized by widely different colors, giving the false impression

of different activity. To avoid the problem, we always chose a > 2, even if in literature this assumption is

deemed "unnecessarily conservative" ([33]).
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Ref. [54] indicates that these artifacts can be deconvolved. The approach, in our opinion, has two

limitations. First, noise may be a limiting factor. Second, the PSF to deconvolve depends on the position

of the point source in the FoV and is different for different point sources.

5.2.2 Non-integer a

Much more serious is the effect of a non-integer value of a. For a given mask and detector, a

depends on distances from the mask:

c=M1(5.3)
Pd

For non-integer values of a it is impossible to scale the decoding pattern, which is an array stored

in the computer, to match exactly the size of the projection of the mask. This implies that G and A can not

have the same size. The effects are very difficult to predict analytically and were simulated. In Figure 5.2

is shown the effect of decoding for a = 2 point sources projected for a only approximately-equal to 2. A

5% difference in a is already enough to disrupt the PSF. Unfortunately, complex and orderly structures

appear. Artifacts are expected to contribute to the reconstructed images. This is also a serious blow to

hopes for laminography (see section 8.4), because it proves that off-focus planes do not contribute a

uniform, blurred background.

These reconstructions are not equivalent to a 3d PSF because here different data are decoded at

the same depth, which, in principle, is not the same as decoding the same data at different depths. This is

a=1.8 a=1.9 a=2 a=2.1 a=2.2

X 10 X 10 X 10 X 10 X 10

6 6 6 6 6
6 6F

0 0 04A A O0 L.A a.-

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 5.2: decoding for a = 2 of a point source projected for different values of a. 62 x 62 NTHT MURA was used
with very high activity source in a far-field geometry to avoid interference with statistical noise and near-field
artifacts. The PSF is ideal only for exact decoding.
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indeed possible and in a continuous way, i.e. it is possible to decode the data with non-integer a, and is

explained in Chapter 8.

Two solutions are possible to avoid these artifacts. The first is to focus the coded aperture camera

very carefully. In our experience this is best done by trial and error, with the help of the strategy outlined

in section 2.8. The second is to be able to decode for any value of (x. In either case artifacts are

completely avoided for 2d or very thin 3d objects only. A measure of how thin is an object can be

obtained solving eq. (2.107) for da:

dcx b da n-ida
=_ =+ Z (5.4)

ax za 2 z 2

where da is the thickness of the object and the factor % comes from the assumption that the on-focus

plane is at the center of the object. If da / c> 5%, Figure 6.1 shows that artifacts from the external object

planes should be expected. Of course, the limit on the maximum acceptable da is largely arbitrary.

5.3 Rotational misalignment

Artifacts arise if the projection of the mask is not parallel to detector pixels but is rotated at some

angle. These artifacts are also complex. We did not undertake a full investigation of the issue because

proper alignment can be reached by trial and error using a point source and verifying the position of the

projection. To allow fine tuning, it is important that any flange connecting the mask to the detector have a

rotational degree of freedom to allow the fine tuning necessary.

5.4 Near-field artifacts

From geometric optics, the expression giving the number of counts recorded at the detector

position 1 is:

R(Q)cc JO(F)AK%7 +tijcos3(0)dZ (5.5)

where 0= atang4 - % /z), and all other symbols were defined in section 2.2. Defining:
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z=400 cm z=40cm z=20cm z=10cm

Figure 5.3: cos3 (O) modulation as a function of object-to-detector distance. Infinitely thin mask and activity to avoid

confusion with mask thickness and noise effects.

- b = a (a4 = -- , 0'(f) 01--ri and A'(r)= A--ri (5.6)
a yb z

the form:

R() cc JJO'(A)A'( -)cos3Fatan 01] d'h (5.7)

is reached. Recall from section 2.2 that 0' and A' are, respectively, a rescaled and reflected form of the

object and a rescaled version of the mask pattern. Eq. (5.7) is not in the form of a convolution because of

the near-field term cos3 (O) whose effect on the projection is shown in Figure 5.3: it is not a modulation of

the object by a constant factor cos 2(00), as for off-axis sources in far-field problems ([33]).

From coded aperture theory we know that the reconstructed image 0 is obtained from R via

periodic correlation with the decoding pattern G associated with the mask A:

O=R®G (5.8)

If no assumptions are made, this form is not analytically tractable.

5.4.1 The far-field approximation

If the object is far from the detector so that 4 -4 «<z, V (,1,) then:

cos 3(O) ~ 1 (5.9)
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This is the far-field approximation. Under this hypothesis, eq. (5.7) is reduced to the convolution:

R = O'*A' (5.10)

which is the far-field case already discussed treated at length and summarized here for convenience. For

ideal pairs (A, G), eq. (5.8) becomes:

0 ='* A') 9 G = 91[0' * (G 0 A')] = 91(0' * ) =91(0')(5.11)

where 91 is the reflection operator (see eq. (2.36)). The reconstructed object is the object itself apart from

a rescaling constant. However, if condition (5.9) does not hold, eq. (5.7) does not assume the simplified

form of eq. (5.10) and this result is not reached; the image is corrupted in some way.

5.4.2 The near-field case

In some applications it is imperative to collect data as close to the source as possible. For

instance, in Nuclear Medicine sensitivity must be maximized to keep the dose to the patient as low as

reasonably achievable. Hence, in such applications, 8 - 1, is often comparable to z and eq. (5.9) does

not hold. To make the problem still mathematically treatable we expanded the near-field term of eq. (5.7)

in Taylor series to the second order with center r,. The result is":

S + 1) 3/z -I-2 5/2z2-)2

cos3 (atan( ))= cos3(atan(t ))< /z- a i+ ;_ t _(r> (5.12)

1 + 2 I 
I + i 2

2 2

where o indicates scalar product. This expansion is the more accurate the larger the margin by which the

condition:

at
T - <1 (5.13)

13 Before starting this calculation it is very convenient to use: cos(arctan(x))=

1±+x2

125



§5.4 Near-field artifacts

is true. When high resolution is sought, magnification tends to be high, so a / b is generally small.

Another way of looking at the same condition is to recognize that 4, is a variable spanning the object.

Because of high magnification, if the object fits in the field of view, it is typically much smaller than the

detector and 4, <4, which makes the Taylor approximation a good one over most of the detector. In our

applications stopping at second order was sufficient to explain the artifacts we were seeing. Note that high

magnification is only a sufficient condition for eq. (5.13) to hold, but it can be satisfied in many other

cases.

Eq. (5.12) breaks the near-field term cos3(0) into the sum of a zero, first and second order

contribution: eq. (5.7) is decomposed to a sum of parts that can be examined one at a time.

5.4.3 Artifact prediction

In the following, an attempt to predict the shape of near-field artifacts in the reconstructed images

is made. Examples will be taken from the same thyroid phantom study of section 4.6. Images were taken

for an object-to-detector distance of 40 cm and a magnification factor m = 4.3. The mask used was a

62 x 62 NTHT based on a 31 x3I MURA and was made of 1.5-mm-thick tungsten. Its pinholes were 1.1-

mm-wide.

Zero order correction

If the expansion is stopped at zero order, from eq. (5.12) one has:

cos3 (atan( )) cos3 (atan(L)) (5.14)
z z

which does not depend on 4 and substituted in eq. (5.7), gives:

R(4) = cos (atan(L")) JJO'(R) A'( - ) d2  (5.15)

Since R is not the convolution of 0' and A', correlation with G does not produce the object.

However, the near-field effect is reduced to a prefactor depending on the detector coordinate , only. It is,

thus, easy to correct zero order artifacts exactly by dividing the projection data R by this prefactor. The

projection is now a convolution and we are reduced to the far-field case of §5.4.1. A physical
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Uncorrected 0 order corrected
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Figure 5.4: effect of zero order correction. The white rims surrounding the cold spots and the right lobe of the
thyroid are not artifacts but part of the simulated object (see Figure 7.12).

interpretation is that, in this approximation, artifacts are the same as if the object were all concentrated at

the center of the field of view. So, if the object is a point source at the center of the field of view, the

correction restores the ideal image.

All decoding programs include this correction. The effects can be seen in Figure 5.4. Even if

some improvement is achieved, the artifacts, the bright "bows" seen at the top and bottom, are hardly

eliminated. Higher order terms are not negligible and must be analyzed. Also note that the noise level of

the image in Figure 5.4 is somewhat increased. By dividing by a constant we are artificially increasing the

number of counts of side pixels. The average value is restored, but the variance remains that of a lower

number of counts.

First order: centering the mask pattern and the object

From eq. (5.12) the expression for first order term is:

cos3 (atan( ) cos3 (atan(-!I)) r 1  koZ4] (5.16)

2
Z

where the bar at the left-hand side indicates that this expression includes the first order term only.

Substitution in eq. (5.7) leads, after zero order correction, to:

R 2) c $1 2 JfrO'(A'( - ) d2  (5.17)
Z2 + i
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To reach a useful interpretation, it is important to bear in mind that A' is a function describing

the aperture. Typical coded apertures are binary, i.e. can assume only two values, 0 and 1, indicating,

respectively, the closed and open positions of the mask. In light of this, one can recognize that the

integrand is the center of mass of the object "cut" by A'. Convolution makes the result a function of the

shift of A'. Now, if A' covers the field of view uniformly and the object is also reasonably uniform, the

result is not a strong function of shift and gives an approximately constant contribution. In the thyroid

case study, the integral in eq. (5.17) gives R only a small modulation of the main structure coming from

the first factor. Consequently, the integral can be replaced with a constant vector, 0'. The result can then

be substituted into eq. (5.7). Since 6' is constant, it can be taken out of the correlation integral. The result

is:

(5.18)d oc O'oJJ-_2 2 GGiid2,
-rZ2 + 1

The important consequence here is that, under the above-mentioned hypotheses, the shape of first

order artifacts depends on G only and can be calculated with this integral. This noted, a further
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Figure 5.5: center of mass of the decoding pattern G as a
function of shift for a MURA. The expected form of the
artifact is at the bottom left. Cross sections of this
function are shown on its top and right. If a shift different
than that in which the arrays are given by generation
rules had been used, the result would have been that at
the top right. This shift corresponds to putting the solid
black row and the solid white column of the MURA at
the center of the mask.

Figure 5.6: first order artifacts for three different array

families. Top: 31x33 m-sequence. Middle: 33x33

Pseudo-Noise-Product (PNP). Bottom: 34x34 NTHT
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approximation allows the discussion of this same result in more intuitive terms. However, the following

observations could have been referred to this more involved form as well.

In the thyroid case study, 4 spans at most a 38.6 x 38.6 cm 2 area and z is 40 cm. For these values,

substitution of the fraction in the integral with 4 /Z2 is accurate within 28% at the worst points:

6dcc 6'oJJ4 GQ Fi+ ) d£4 (5.19)

Both factors are important in the discussion of first order artifacts. The integral, just like

eq. (5.17) for 0', gives the position of the center of mass of the open positions of the decoding pattern G

as a function of decoding position (which is the same as the shift of G). Therefore, the object

reconstruction 0 involves an additive term depending on the particular form of G. The case of a MURA

pattern is shown in Figure 5.5. The image at the bottom left, shows that this function has a sudden drop at

its center, resulting in a vertical and a horizontal line at the center of the reconstruction. If G (and thus the

mask pattern A) is not taken as generated by the rules found in literature but is shifted by half a period in

both directions, these drops can be moved to the borders of the image, removing the most unpleasant part

of the artifact. We called this technique pattern centering. The case of other patterns (a 31x33 m-

sequence, a 33x33 product array and a NTHT MURA is shown in Figure 5.6.

The first factor in eq. (5.19), the center of mass of the object, can be used to remove this artifact

completely. In fact, if the object were centered on the field of view, 0' would be zero, canceling the

term. From a practical point of view one can take a first, raw, image to estimate 6' and then make the

necessary adjustments before taking a second picture. Examples are presented in §5.5.1. However, we

shall see that taking two pictures is not necessary.

Second order: mask and anti-mask

If the object is centered on the FoV, first order artifacts disappear, but second order artifacts,

normally hidden by the stronger lower order ones, become visible. This must be the case of Figure 5.4,

because the terms so far analyzed still do not explain the "bows" corrupting the image. The starting point

is the substitution in eq. (5.7) of the second order terms of eq. (5.12):
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3 __b+a_ H 3/z2 2 5/2z2
Cos (atan( ")) cos (atan(-)) r 2:;i-_, e )2(5.20)

z z2 2b-12 b

I+I 2 I -+ I

z 2Z2

This time two terms must be considered. The first is:

R(') oc 2 O'(4)A'( -4) 4dk (5.21)
zi 2 2+ |i

The integrand is the second moment of inertia of 0', cut by A', with respect to an axis

perpendicular to the object plane and passing through its center. If the open positions of A' are uniformly

distributed (which is the case for all patterns of this paper) the shift of A' does not greatly modify the

result. The integral is, then, approximately constant. If we note, as we did for first order artifacts, that

4 < , the factor outside the integral does not depend strongly on 4. Therefore, upon decoding, G is

convolved with a constant, giving a constant term that can be neglected.

The second term of eq. (5.20) gives:

2

R(4) oc ' JJO'(A'( - 4)(r, o 4 d2 4 (5.22)

where r, is the unit vector having the same direction as 4. The integrand is the moment of inertia of 0',

cut by A', with respect to the axis in the plane of the object perpendicular to r as a function of the shift

of A'. In the usual assumption that the open positions of A' are uniformly distributed, it is a function

with little dependence on 4 . The integrand can be approximated with p i), where p is the open

fraction of A and I the moment of 0' we have just discussed:

I(r)= jjO'() o (ri d 2 (5.23)

The contribution to the decoded image is obtained by substitution in eq. (5.7):
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MURA 31 x 31 NTHT 34 x 34
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Figure 5.7: second order artifacts for the arrays of Figure 5.5 and Figure 5.6 (after pattern centering) calculated with
eq. (5.25). Note the similarity of MURAs and NTHT MURAs, which effectively are (M)URAs with smaller holes.
This is also true of first order effects.

oc ' p(r )G(4 + ) d2g
z 2 +

(5.24)

Dependence on the object enters this equation only through its moment of inertia L Therefore it is

stronger the less isotropic the object; as, for example, a line source. For isotropic objects, like a circle, I is

a constant (rtR 4 / 4 where R is the radius of the circle) and comes out of the integral. In this case, artifacts

depend again on G only, i.e. the mask family we are using:

zJ2 G 2
- F.2

(5.25)

As a first approximation, one can ignore the denominator and conclude that second order artifacts

have the shape of the moment of inertia of G (with respect to an axis perpendicular to its plane and

passing through its the center) as a function of shift. In the calculations, however, one can implement as

easily the whole eq. (5.25): the application to different array families is in Figure 5.7.

Not surprisingly, at second order the second moments of 0 and G appear. For isotropic objects,

artifacts depend only on a quantity we know (G) and can be predicted independently of the object.
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§5.4 Near-field artifacts

However, we found empirically that the prediction is accurate even for objects that, as our test object, do

not seem particularly isotropic.

Mask transmission in near field artifacts

The argument of section 5.1 can be repeated to see if mask transmission generates artifacts in near

field. The starting point is rewriting eq. (5.7) as:

R(Q) cc (l - t)JO(,)At{54 + -ttcos3(O) d, + t JO()cos(O) d , (5.26)
z z 

F

The first term is a fraction (1-t) of the one discussed so far. After applying arguments similar to

those presented above, we found that the second term does not change the shape of the artifacts, but

intensifies them. This should be expected, because in the previous derivation the effect of our

approximations was to ultimately consider A a constant, leading to terms in the form of the second term

of eq. (5.26). This does not mean that the shape of the artifacts is independent of A. In fact, the

dependence on the array comes back through G, which is intimately and uniquely related to A.

Background nonuniformity

The theory can also be extended to the case of background nonuniformity, which is also relevant

to far-field applications. In these problems the recorded pattern is:

R(g) oc fJO'()A'( -- ) d 2&,+ B(4) = O'*A'+B() (5.27)

which, with use of eq. (5.11), upon decoding becomes:

Odcc (O'* A')®0G + B(Q)®0G = 91(0')+ B(Q)®G (5.28)

The artifacts are, then, given by B(Q)0G, which is constant in the common assumption of

uniform background. Otherwise B can be expanded in Taylor series and first and second order

contributions are found again. For example, in the case of a linearly varying background:

B(F,) = i o 8 + q (5.29)

where S and q are constants, the artifact has the shape:
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0 = fJB() G(7 + ij)d4 = i o f G(Q + ij)d2 4 ± const (5.30)

which has the form of eq. (5.19) despite originating from a completely different term.

5.5 Verifying the near-field artifact theory

5.5.1 Simulation results

The first batch of simulations aimed at reproducing first order artifacts. Results for a NTHT

MURA mask are shown in Figure 5.8. The centering artifact is evident in the simulation of the thyroid

test object. The effect is very obvious despite the fact that the object is fairly well centered in the field of

view, which tends to attenuate the artifact. To show the plane seen at the top right of Figure 5.5 the mask

pattern must be centered and an off-centered object used. A square source close to the top left corner of

the field of view was simulated. As expected, a linear modulation of the brightness appears in the image:

the bottom right corner of Figure 5.8b is brighter, brightness decreasing linearly as the top left corner is

approached. The slope of this plane depends on the position of the object as well as on the rotation of the

mask and can be predicted from eq. (5.19). Some other structures are seen to the right and below the

object. These could be due to the approximations made, in particular that about the uniformity of the

object, which in this case is probably not valid. Finally, if the object is moved to the center of the field of

view, the artifact, as expected, disappears (Figure 5.8c).

NTHT MURA 62x2

5.8

T 2

8.7
1.4 29 43 58 7.2 8.7 12 0 o I2 o d o 1. M

a) b) c)

Figure 5.8: simulation of first order artifacts. The mask was a 62x62 NTHT MURA. (a) centering artifact for a non-
pattern-centered mask. For a pattern centered mask: (b) first order artifact for off-center object (c) if the object is
centered the artifact vanishes.
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§5.5 Verifying the near-field artifact theory

To reproduce second order artifacts, projections of the thyroid test object were simulated for

different patterns (after pattern centering). The results are in the last two columns of Figure 5.9 (for an

explanation of the other columns see section 5.6). Artifacts match the shape predicted by theory and

shown in Figure 5.7.

5.5.2 Published results

Results of earlier work on coded apertures appear in literature. In Figure 5.10 are shown two

coded aperture images of a hand and of an ECT cold rod phantom from ref. [18]. We know that the

authors have used a 1-mm-thick lead mask with 1.5-mm holes arranged in a URA pattern, but we do not

know the dimensions. The artifacts for this family are almost identical to those expected from NTHT

MURAs (see Figure 5.6 and Figure 5.7).

Mask Anti-mask Sum Difference Predicted

E

z

Figure 5.9: simulation results. Four arrays were considered: a 79 x 79 MURA, a 77 x 77 NS array (a product array
similar to the 33x33 PNP of Figure 5.6), a 62 x 62 NTHT array based on a 31 x 31 MURA and a 63 x 65 m-
sequence. The five columns show, for each mask, the two views, the sum and the difference picture (see section
5.6), and the prediction of the artifact according to eq. (5.25). Note the poor SNR for the NS mask and, especially,
anti-mask, as predicted in §4.4.2.
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We believe the large background of the hand image to be the plane predicted by theory and seen

in our simulations. Such artifact is replaced by second order artifacts in the phantom images, consistently

with our observations on the centering of the object. In this image, a horizontal line is also evident.

Unfortunately, we do not know the shift of the pattern used in that study, or whether it was different from

that used for the hand image. Here we can only note that it would be consistent with a first-order-

centering artifact due to mask centering along one dimension only. The presence at the same time of a

first and a second order artifact could be an indication that the center of mass of the object was close to,

but not exactly on, the center of the field of view. In this situation first order artifacts would be reduced to

the point that second order artifacts would become visible.

The artifacts seen in the images of Figure 5.10 are consistent with the predictions of the theory.

5.6 Near-field artifact reduction

We have already pointed out that, given a pair (A, G) with ideal correlation properties, also its

negative, i.e. the pair (1-A, -G) has ideal correlation properties. In A closed elements are substituted with

open elements and vice versa (section 2.4). This is also called the anti-mask (e.g. [55]). When the image

is reconstructed, the two sign changes cancel in eq. (5.11), so that the reconstructed object does not

change sign, i.e. we are not taking a "negative" picture:

6 = [O'* (i -A')] (-G)= 9o'* [(-G)® (1-A')D=9[O'*(const+ 6)]= 9(o')+ const (5.31)

On the other hand, first and second order artifacts are seen to depend only on G (eq. (5.19) and

(5.25)), and must change sign. So, when an image of the same object is taken with an anti-mask, artifacts

change sign while the reconstructed object does not. Adding the two images should cancel artifacts and

reinforce the reconstruction, while subtraction of the two pictures should cancel the object and reinforce

artifacts. We simulated this experiment with the test object: the remarkably successful outcome is shown

in Figure 5.11.

In Figure 5.9 the same experiment was repeated with equal success for different array families.

From these simulations we learn that, when applying this artifact reduction technique, one should be

aware of the noise properties of both mask and anti-mask in the choice of the mask pattern. For instance,

even if low-throughput arrays such as the NS arrays of §2.4.5 have poor but still reasonable noise

properties, the associated anti-mask is very noisy (section 4.4), causing a considerable signal-to-noise loss

in the reconstructed image. In our experience, (M)URA or (M)URA-based patterns provide the most
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a) 'I 2 b)

Figure 5.10: a hand (a) and a ECT cold rod phantom (b). In this phantom the smallest rod diameter is 6.4 mm. From
ref [18].

balanced performance. Note that an NTHT (M)URA can be considered a (M)URA with partially closed

holes. Its inverse, therefore, is a (M)URA with partially closed holes. The result is the same as inverting

only the original positions of the NTHT (M)URA. Blank lines, therefore, are not inverted, which explains

why the negative of an NTHT (M)URA can be made of the same density of its 12.5% open positive.

From a point of view of the decoding array, the change of sign of blank lines is irrelevant, because they

correspond to Os of G (§2.4.7).

5.7 Experimental results

To verify our simulations, a series of experiments were carried out using a thyroid phantom in

conjunction with a Siemens E-Cam. The results from the exposure of a 2d phantom injected with

~200 pCi of 99mTc are reported in Figure 5.12. With the phantom about 40 cm from the detector and

approximately 9 cm from the mask, distances suggested as optimal by our simulations (see Chapter 6),

the two exposures took about 8 minutes each. Agreement with the computer simulation of Figure 5.11 is

satisfactory.

5.8 Mask thickness artifacts

A thick mask stops rays that ideally pass. This generates artifacts because the pattern projected on

the detector is altered and can not be decoded properly. These artifacts are difficult to predict theoretically

and were investigated by computer simulation. The result is in Figure 5.13. Artifacts are not unbearably

disruptive, but do generate false peaks in the sidelobes, in vertical and horizontal alignment with the

source. For a constant mask thickness, smaller pinholes generate worse artifacts because the acceptance

angle of the mask is even smaller. The optimal mask thickness must be chosen with a compromise with
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the SNR. In fact, if a mask is made too thin to avoid artifacts, statistical noise may be such that false

peaks from thickness artifacts will always be lost in noise and there would be little point in not increasing

the mask thickness. A way of reducing this effect would be to move the detector away from the source,

but this would attenuate artifacts at the expense of collection efficiency and, thus, of the SNR.

The problem of finding the optimal mask thickness is treated at length in Chapter 6 and Chapter

7, where a quantitative approach to solving the tradeoff between noise and artifacts is developed.

5.9 Summary

The arrays that provide an ideal point spread function in far-field coded aperture imaging do not

operate under ideal conditions in near-field imaging. The images produced are affected by artifacts that

have already been encountered by other researchers and are found in published results. A theory capable

of predicting the shape of such artifacts has been developed, providing valuable insights.

A few image improvement strategies are suggested. Centering the object and the mask pattern

were shown to eliminate first order artifacts, the strongest, but are not effective in eliminating residual
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Figure 5.11 simulation of two exposures of a thyroid: Figure 5.12 experimental results for a thyroid phantom.
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§5.9 Summary

second order artifacts. The use of a technique previously suggested ([55]-[58]) for non-uniform

background reduction proved successful: two images are taken, one with a mask and one with its anti-

mask, and then added. The exposure time, divided in two halves, is not increased by more than the time

necessary to physically change the mask pattern and start a new acquisition. Furthermore, if the mask is

anti-symmetric (a pattern in which some rotation or reflection results in the replacement of open with

closed mask positions and vice versa), the anti-mask is simply a rotation or reflection of the mask and

there is no need to fabricate two masks. Also, changing mechanisms, when needed, are greatly simplified

([55]).

The price paid is a reduced range of available patterns: in our case we were forced to choose a

62 x 62 pattern in place of a 74 x 74, with a 17% loss in resolution at constant field of view (see section

Transmission: 10-6

20

40.

Z 601 .
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20 40 60 80 100 120
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Transmission: 0.1 Transmission: 0.01 Transmission: 10 Transmission: 10-10

50 50 50 50-

100 100 100 100
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Figure 5.13: simulation results. Top: PSF of a thick mask. Contrast greatly enhanced to show artifacts. A

quantitative idea can be obtained by looking at the plot of the same PSF in the bottom row. Bottom: Mask thickness

affects the shape of the projection of the mask onto the detector. Small holes at an angle from the center disappear

from the projection when mask thickness is increased. The PSF deviates from ideality. Mask used MURA 61 x 61

with p,, = 1.128 mm. Very high activity, a = 9.41 cm, z = 40 cm. Mask made of tungsten. Isotope: 99mTc. Thickness:

0.763, 1.527, 4.580 and 7.633 mm. Zero order correction applied. The central 122 x 122 portion of the projection

shown above was used for decoding.
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6.1).

A factor expected to strengthen artifacts is the field of view. In this application we were mainly

concerned with high resolution. For a detector of given dimensions, this results in a relatively small field

of view (see section 2.6). In applications with a wider field of view, expansion to the second order may

not be sufficient, but one can also argue that the method can be extended to higher orders, and the ensuing

artifacts may turn out to be eliminated with the same mask / anti-mask technique. This method has indeed

already. given a proof of robustness. In fact, collimation effects from finite mask thickness, even if

included in our simulations, were not taken into account in the theory. However, both simulations and

experiments show that taking two pictures seems to overcome this additional difficulty.





Chapter 6 DESIGN AND FABRICATION OF A CODED

APERTURE: EXPERIMENTAL RESULTS

In this chapter all ideas, concepts and methods of the previous chapters are implemented in the

design of the coded aperture for a high-resolution camera. The aim is to provide not only a set of

technical specifications but also a rational design procedure, that determines mask parameters one at a

time from sound principles.

Experimental results follow. Experimental practice showed that it is very tedious to have to

achieve and maintain perfect focusing. In section 6.3 is described an empirical technique to decode

projections for non-integer values of the sampling parameter (x, which makes the issue of correct

focusing, if not irrelevant, certainly less critical.

6.1 Mask design

The mask was designed to optimize resolution over a 9 x 9 cm field of view. For the design of the

first coded aperture, not wishing to push any design limits, the E-Cam was set up to make 222 x 161 pixel

pictures with a pixel size Pd=2.398 mm. With these choices, enough data are available to determine the

mask pattern and several dimensions.

6.1.1 Material and technology

From the discussion of mask thickness artifacts (section 5.8), the best material to fabricate the

mask is the one having minimum thickness for a given attenuation. From the theory of -ray attenuation,

this is the material with the maximum product g x p, with p' attenuation coefficient and p the density of

the material. The best material is uranium (48.97 cm-' at 140 keV), followed by platinum (38.4 cm-1),

gold (35.9 cm-1), tungsten (30.5 cm-1) and lead (22.96 cm'). The choice is dictated by practicality,

availability, cost and fabrication technology. We picked tungsten and, since it is very hard to machine, we

chose to photo-etch the pattern.



16.1 Mask design

6.1.2 Pattern family

The drawback of photo-etching is that non-self-supporting arrays are very difficult to make (if at

all) because the mask is built from very thin layers (which will be stacked later), each of which has the

shape of the mask. This ruled out the use of the array family with the highest SNR, the (M)URA. m-

sequences can be folded in self-supporting 2d arrays (§2.4.3), but, from artifact theory, we would like to

have an anti-symmetric mask. NTHT (M)URA patterns with e = 2 (see §4.3.3) are the family with the

next-highest SNR. Candidate patterns still have to be anti-symmetric: when used in an NTHT pattern

URAs and MURAs still offer the same SNR. URAs have axial symmetry: after rotation about the

symmetry axis, its points do not change place and, thus, do not change sign. For MURAs, which are

symmetric about a center, the problem is limited to a point, the center of the rotation. Consequently we

chose a NTHT MURA mask pattern. The pattern is going to be shifted so that the center of symmetry is at

the center of rotation. This means that the totally closed and open line at the center of the original MURA

must be at the center of the pattern.

6.1.3 Geometric parameters

From sampling considerations (see §5.2.1) a was set to at least 2, i.e. the projection of each mask

hole must cover 2 detector pixels or more. Maximum resolution for a given field of view is obtained for

the highest number of mask pixels (eq. (2.91)). Since at most 161 pixels of the detector can be used, using

the minimum a is equivalent to choosing the maximum number of mask elements, which is, since a = 2,

161 / 2 = 80.5, i.e. 80. Since NTHT MURAs with maximum SNR have e = 2, the MURA on which it is

based must be at most 40 x 40. The side of a MURA must be a prime number. The largest prime number

smaller than 40 is 37, but the 37 x 37 MURA is symmetric, not anti-symmetric. The next array is a

31 x 31 and happens to be anti-symmetric. This was our final choice. The corresponding NTHT is a

62 x 62 array (NT= 3844, N= 480, see §2.4.4) projecting on the 222 x 161 pixels available. Not all of the

active area of the detector is used, a limitation coming from the decision to keep a integer to avoid

sampling artifacts (see §5.2.2). The effective area used is dd, eff 62 x 0.2398 cm = 29.74 cm. Data outside

this area will be discarded, so this is the value to be substituted in eq. (2.79) to get m:

m = 29.74 +1=4.304 (6.1)
9

The mask pixel size is then determined from eq. (2.96):
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ad
PM - 1114 mm (6.2)

ni

The geometric resolution is given by eq. (2.87):

Xg r-i=1.45mm (6.3)

to be compared against the 3.7-mm intrinsic PSF limiting the resolution of the Anger camera. This value

must then be combined with collimator parameters to obtain system resolution. Specifications of the

collimators equipping the E-Cam indicate that the high-sensitivity collimator has 2.405 cm-long

hexagonal holes with a side-to-side distance of 2.54 mm. For 99'"Tc, it has 14.6 mm geometric resolution

at 10 cm from the detector, while the ultra-high-resolution collimator (3.58 cm-long hexagonal holes with

a side-to-side distance of 1.16 mm) has 4.6-mm resolution at 10 cm. The price is paid in terms of

sensitivity: 1063 vs. 100 cpm / kCi. A 4-mm pinhole, the smallest available, has a reported geometric

resolution of 6.2 mm and a sensitivity of 123 cpm / pCi.

To estimate the sensitivity of the coded aperture we first need to determine the object-to-detector

distance. In fact, the design process has so far fixed only the magnification coefficient, which determines

the ratio of the mask-to-object and mask-to-detector distance (respectively, a and b) but not their sum z.

In the determination of this variable, many tradeoffs are involved. Low z leads to higher count rates and,

thus, better statistics, but mask thickness artifacts are enhanced (section 5.8). On the other hand, if the

mask is too thin, the SNR of the image, which depends on the particular object at hand, decreases. The

issue is very involved: an empirical approached was chosen to determine mask thickness and object-to-

detector distance at the same time.

6.1.4 Determination of mask thickness and object-to-detector distance

The ultimate factor in determining optimal performance is the quality of the image. This is

affected by random noise, which can be quantified in terms of the SNR, and the presence of artifacts.

Building on the observation that thickness artifacts look in many ways like random noise, it seemed

reasonable to forget the distinction of the two and define a figure of merit (FoM) as the normalized

second moment of inertia of the peak reconstructed from a point source. Mask thickness causes the peak

to broaden and others to appear, while counting statistics causes noise peaks in the sidelobes to increase:

in both cases the moment of inertia of the central peak increases. The mathematical definition of the FoM

is:
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JM(x-gJ2+(y-g,)2^(x,y)dxdy

F 6 (x, y)dxdy
(6.4)

wt x 0 (x, y)dxdy

JJ6(x, y)dxdy
and f y (x, y)dxdy

Jo(x, y)Adxdy

where O(x, y) is the brightness of the reconstructed image of a point source. Note that this definition

implies that the lower the FoM, the better the result.

Before using the FoM, its efficaciousness was tested in a series of trials targeting its dependence

on different parameters. The mask under consideration has the characteristics described in the previous

section. In Figure 6.1 is shown the dependence of the FoM on the object-to-detector distance. The mask

thickness was kept constant and the object activity set to a very high level to avoid interference with

Poisson noise. The FoM decreases, i.e. improves, with distance. The effect on the reconstruction is also

shown in three sample reconstructions. Of course, artifacts have some structure, but are fairly well
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Figure 6.1: NTHT MURA 62 x 62 mask. Figure of Figure 6.2: Figure of Merit as a function of exposure

Merit as a function of z at constant transmission time at constant transmission (t = 0.01, mask

(t = 0.01, mask thickness = 1.524 mm) and infinitely thickness = 1.524 mm), object-to-detector distance

good statistics. As expected, at low z image quality is (z = 40 cm) and source activity (1 Ci). As time

degraded due to thickness artifacts. At z = 40 cm little increases the source stands out more sharply on

artifacts are seen. Other simulation parameters: a = 2, background noise and the FoM decreases. Other

n = 62, Pn = 1.114 mm, detector effective area simulation parameters as in Figure 6.1.

29.74 x 29.74 cm, pj = 2.398 mm.

(6.5)
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distributed over the image and are very similar to random noise in raising the sidelobe value relative to

the peak. In Figure 6.2 mask thickness and object-to-detector distance are fixed and exposure time is

varied. As expected, the FoM decreases for increasing exposure time.

To determine the best mask thickness and object-to-detector distance a set of simulations

calculated the FoM for a wide range of thickness and distance. The result is in Figure 6.3. The absolute

minimum is obtained for a distance of 30 cm and a mask thickness of about 1.2 mm. We decided to adopt

z =40 cm because the curve has a wider plateau, which should be more forgiving of the approximations

of the method. A mask thickness of 1.52 mm was chosen, corresponding to I% transmission for 99 'mTc.

This higher value seemed more attractive also because the mask would be thick enough to be useful for

higher-energy isotopes as well. For comparison, the septal penetration of collimators is also in the order

of 1%, depending on resolution. Note that for increasing distance, the FoM minimum occurs at higher

thickness. This is understandable, because a higher z is more tolerant of mask thickness and so favors

better opacity to increase the SNR diminished by the higher distance.

Once z is determined, a and b are easily found:

z
a + b=z a=_

bI->bm (6.6)
a{:2: {b=zmn1

A lower limit on z may be imposed through a by the need to allow some space between mask and

object plane to allow placement of the sample. In this case, there is little worry because a = 9.29 cm and

z (cm)
45 20
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40 40
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Figure 6.3: Figure of Merit as a function of mask thickness for different object-to-detector distances. Activity
10 gCi, exposure time 300 s. As expected, the FoM has a minimum. Other simulation parameters as in Figure 6.1.
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16.1 Mask design

b= 30.71 cm.

The final characteristics of the mask are summarized in Table 4.1, where they are compared to

those of a mask previously built by this research group.

6.1.5 Calculation of mask sensitivity

With all dimensions determined it is possible to estimate the sensitivity of the coded aperture by

adding the flux through all pinholes. The solid angle subtended by a pinhole on the instrument axis is

given by ([59]):

Pill Pl
p"/2 ,/2 dx dy 2 2

a fp/2 £Inm/2 (x2 + y2 r 2 2 a2
arr'J + jj + a2

2 2

(6.7)

Substituting the values: Q = 1.44 x io-4. Assuming this constant for 480 pinholes, the fraction of

emitted photons passing through the mask is 480 Q / 4n = 5.49 x 10-3. An activity of 1 pCi =3.7 x 104 Bq

is equivalent to 2.22 x 106 cpm, so the sensitivity is about 12200 cpm / pCi.

Mask pattern NTHT MURA 62 x 62 URA 43 x 41

Open fraction 12.5% 50%

Mosaicked yes no

Self-supporting yes no (aluminum back pane used)

Mask pixel size 1.11 mm 4 mm

Resolution (at FoV=9 cm) 1.5 mm 9 mm

Mask symmetry anti-symmetric about center even (horizontally) / odd (vertically)

Material Tungsten Lead

Fabrication technology Photo-etching Computer controlled milling

Thickness 1.5 mm 3.17 mm

Attenuation at 140 keV 99% 99.3%

Table 6.1: summary of the properties of the prototype mask. Characteristics are compared to those of another mask
previously built by this research group.
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This is a very rough estimate because it does not take into account mask transmission, thickness

and the fact that £ is not the same for all pinholes. The first effect is the only one that can be calculated.

Since the seven eighths of the mask that are supposedly opaque are in reality 1% transparent, the number

of counts is 7% higher (1% for each of the 7 opaque positions corresponding to an open position). With

this correction the expected counts are about 13000 cpm / [xCi. The other two corrections are more

difficult to calculate and were evaluated with the help of the computer code. They both go, however, in

the sense of a reduction of the expected number of counts which, in fact, turns out to be about

8150 cpm / kCi. Sensitivity can then be used in the expression of the SNR to determine, with object and

background parameters, the SNR (see section 4.7).

6.2 Experimental results

The first round of experiments was carried out on July 18, 2000 on a Siemens E-Cam at the Dana

Pd U nmax F

n

d

dLd

m

Ig dm

oV All mask and detector

parameters: simulation
-- -- -- --- --- - -- --

z mt

_ L_

t

a, b

Activity Time ky

Figure 6.4: flow chart showing the procedure to determine all the design parameters. On top are the parameters
imposed or chosen but not constrained by others. nd,,,, is the maximum number of detector pixels (in this case 161).
mt is the mask thickness. All parameters to the left of the dashed line feed into the simulation and affect, at least
potentially, the deternmination of z and mt (dashed arrow).
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§6.2 Experimental results

Farber cancer institute in Boston. The first objective was to measure the PSF of the mask built. In all

experiments 99mTc was used.

Unfortunately it was not possible, due to a mechanical constraint, to locate the mask 40 cm from

the detector. The maximum z achievable was 38.6 cm. b was recalculated to be 29.62 cm and a 8.98 cm.

Even if the difference is small, it is important to keep track of it because c is very sensitive to variations

in these parameters (section 2.8) and the reconstruction very sensitive to variations in c (§5.2.2). Due to

measurement imprecision, the first decoded image revealed that a = 2.02 and the PSF was not as good as

it could have been (Figure 6.5). The procedure presented in section 2.8 was used to fine tune the

instrument until the result of Figure 6.6 was reached.

With the instrument focused, the next objective was to test resolution. Two capillaries, 7.5-cm

long, with an internal diameter of 1.15 ± 0.05 mm were filled (except some distance at the extremities to

insert cotton plugs against spills) with 150 gCi each. Two pictures were taken, each for a total of 2

million counts. Each exposures took 80 seconds. The result is in Figure 6.7.

Artifact reduction works as predicted. The strips in the background running parallel to the sources

are due to noise correlations and the nature of the object (see section 4.5). Interestingly enough the effect

disappears in the difference image, where other artifacts are evident. Resolution can be appreciated in the

very sharp line representing the capillaries. The closest point between the capillaries was a 3-4-mm gap

Projection Projection

0 3 6 9 0 3 6 9
Reconstruction Reconstruction

0 0 0 0

31 3 3 3

ICEl E E E
6 6 6 6

9 9 9 9
0 3 6 9 0 3 6 9

cm cm

Figure 6.5: experimental PSF. 800k counts in 44 s. Figure 6.6: experimental PSF. 1.6M counts in 736 s. The

Projection, reconstruction and cross sections of the projection showed that ca =2. The PSF improved
reconstruction through the peak are shown. The sensibly. Meanwhile, during adjustment, the center of the

projection showed that cc= 2.02. Some fine tuning was field of view was aligned the mask rotated. The

necessary. technologist was also able to prepare a smaller point
source. Of course, none of these changes affects
focusing.
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and is clearly resolved. Also note the aliasing of the top of the left capillary, that exits the picture from the

top left corner to reappear to the top right. More care should have been taken in blocking the PCFV or

positioning the source within the FCFV. However, the result is not a disaster, proving the robustness of

the technique. To get a better measurement of resolution three capillaries were used. They were taped side

by side and only the outer ones were filled. The center tube was used as a spacer. Including a wall

thickness of 0.2 ± 0.02 mm, the distance between the edges of the active regions was 1.95 ± 0.13 mm

while the center-to-center distance was 2.9 ± 0.08 mm. It is evident that resolution is better than both

these limits.

The object of the next experiment was a thyroid phantom, filled only at its bottom to avoid object

thickness effects. The phantom was placed so that the activity was equal everywhere, except at the cold

spots that had no activity. For this object the maximum y , is 5.6 x 10-4 and the average 2.6 x 10-.

Background was also mesured and resulted in 4= 5.56x 10-4. The result is Figure 6.9. Near-field artifact

reduction is still very successful and resolution is still high. All cold spots are clearly identified and a hint

of the injection channel is visible at the top right, exiting from the lobe of the thyroid. As expected, noise

correlations do not result in particular structures because the shape of the object is not as particular as that
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S44 .

2.9729

7.3 -7.3

8.71 8.7 -
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Figure: 6.7: reconstruction of two capillaries. Top left:
picture obtained with the mask. Top right: picture
obtained with the anti-mask (rotation of the mask).
Bottom left: sum image. This is the final image. Bottom
right: difference image: this imagre shows near-field
artifacts. It is important to verify that the object
disappears, which. indicates correct alignment of the
images of the top row.
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Figure 6.8: reconstruction of two parallel capillaries. At
the bottom left is a plot of the brightness along the
horizontal section at 4.4 cm. Two peaks are clearly
resolved. They are separated by 4 pixels, i.e.
4 x 2.398 mm at the detector. Dividing by m-I one can
get the object space equivalent, which is 2.9 mm. See
text for capillary specifications. Two exposures of about
80 s for a total of 2 million counts each.
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Figure 6.9: thyroid phantom. Only the bottom was filled.
to have a 2d phantom. Two reconstructions. 350 kCi
injected. Two exposures, each for 20 million counts
(about 500 s).
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Figure 6.10: the phantom was filled completely to see
the effects of out-of-focus planes on the image. Due to a
focusing error the reconstruction is severely blurred. 20
million counts for each projection.

of a line source. These results can be compared to those of references [29], [40] and [42] where cold spots

are barely recognizable.

The last experiment of the day was to fill the phantom to see the consequences of imaging a

three-dimensional object which would include out-of-focus planes. Before taking the image the system

was refocused because filling up the thyroid causes its average plane to move away from the detector.

Unfortunately, as can be seen in Figure 6.10, the compensation was wrong.

6.3 Electronic focusing

The focusing mistake was fixed by simply resampling the data with linear interpolation'. In other

words, it is assumed that the real data, as a continuous function of space, can be recovered from the

values stored in the pixels by assuming a linear distribution of brightness between pixels. This continuous

function can then be sampled with any pitch, giving an estimate of what the pixel counts would have been

if pixels had been on a grid having this new pitch. The approach is crude, but we found it to work rather

well. The implication is that decoding can be carried out for any value of c, not only for integer values.

14 Other resampling methods (bicubic and spline) were tried but did not seem to provide any advantage.
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In fact, resampling the data with a different pitch means assuming that the detector pixel

dimension is different. With this trick, we can restore cc to an integer value, a', that can be set to the

integer closest to a. The resampling interval is obtained setting (see eq. (2.96)):

a'p', = d = m p,, (6.8)

which gives:

A' ' (6.9)

where a is measured directly on the acquired image. Of course, the fact that a is not what we expected,

means that m must be different from its design value, because pi, and Pd are fixed. The real (experimental)

value of m can be recalculated by using:

M c Pd (6.10)
Pil

The deviation from design conditions can be due to a, b or both (eq. (2.74)). In our case this is of

little interest, but there is a case in which this information is fundamental. If the object-to-detector

distance is not known, the cc needed for the correct reconstruction is not known. One can then decode

trying a range of different a and choose the sharpest reconstruction as the good image. Possible values of

c range from pi /Pd (because m is at least 1, so the minimum size of the projection of a hole is the size of

the hole itself) to the ratio of the number of active detector pixels to the number of mask pixels n. From

knowledge of the successful a one can find an estimate of m and, from it, of a. From (eq. (2.74)):

b b b
a =b = ,bc,(6.11)

because only when the sampling grid cc'p' matches the pitch of the mask projection m p,, can the

reconstruction be sharp.

The technique was applied to the thyroid data of the previous section. The result is in Figure 6.11.

A first, coarse, scan helps focusing on the correct region which is then explored in more detail. The

thyroid clearly comes in focus as cc changes. The best result is obtained for a 2.27. In this image all four

spots are clearly resolved. The top left spot is a hot spot, the other three are cold spots. The hot spot has
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a =2, a=9.01 cm a 2.1833, a= 8.05 cm a=2.3667, a=7.28 cm a =2.55, a=6.64 cm
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Figure 6.11: electronic refocusing. Top row: coarse scan. The focal plane seems to be between ( =2.18 and

a = 2.37. Bottom row: four other reconstructions were decoded for a spaced so that there would be 6

reconstructions at equal intervals between 2.18 and 2.37. The focal plane seems to be somewhere around a = 7.6 cm.

about the same activity of the right lobe and stands out of the left lobe, which is actually a colder lobe,

having 50% of the activity of the right lobe.

The result is also in good agreement with eq. (2.106). In fact, susbtituting the mask and detector

parameters, with b = 29.8 cm and a = 8.8 cm (our best estimates):

da dilb Idc - d"=-.17 1(2.106)
da- da 2  cm

For the thyroid, which is 2.2-cm-thick, da = -0.17 x 1.1 =0.19, which is exactly in the order of the

observed defocusing. This is an experimental proof of the sensisitivity to depth of the method.

Fortunately, electronic refocusing can recover data taken with a defocused setup.

6.4 In vivo experiments

All in vivo experiments were performed at the Center for Molecular Imaging of the

Massachusetts General Hospital in Boston.
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Figure 6.12: body scan of a white mouse. Blood pool
agent. Total exposure time 6 min 30s. Total number of
counts 40 x 106. Best estimate of the injected activity
1.5 mCi.

Figure 6.13: same mouse, the body below the neck was
shielded with a lead sheet. Details of the head are now
clearly visible. 277+279s exposure for 5 x 106 counts
each.

6.4.1 Blood pool agent

The first trial was with a blood pool agent, MPEG-PL, labeled with 99
mTc. First, a picture of the

whole mouse was taken (Figure 6.12). The shape of the body is clearly recognizable. Most of the activity

is concentrated in the trunk. Activity outside the body is also visible, but can be easily discriminated by

resetting the lower threshold of the color scale. Resolution is high as compared to collimator scans, but

the SNR is poor at dim points. This is expected from SNR theory, where advantages were proven to be

present for bright points only.

A much more interesting picture is obtained when the body is shielded and the head is placed at

the center of the field of view (Figure 6.13). The image is much brighter and the SNR improvement

allows localization of details, including major vessels and vessels to and from the nose, that were

invisible in the whole bodu scan. Isolation of the head, has tremendously improved kV# for points of the

head because, shielding the activity in the trunk reduced IT. Note that this does not necessarily diminish

the interest of the study, which may be focused on an area of the body only, in this case the head.

6.4.2 Bone agent

A bone agent, 99"Tc-labeled MDP, was tried next. The experiment of a whole body scan (Figure

6.14) followed by a focused image was repeated. The body was shielded from the waist up to shield

1.4

2.9

E 43

5.7

7.2

8.6

nose
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Figure 6.14: whole body scan of 99 'Tc-MDP in a mouse.

Top view. 2 x 4 x 106 counts collected in 490+495s.

Injected activity: 100 pCi. Most of it ends up in the

bladder.

3.6
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99mTc MDP: top view of a mouse head
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Figure 6.15: after shielding the mouse from the waist
down, the SNR is improved. Same mouse as in Figure
6.14. 2 x 2 x 106 counts in 739+754s.

activity in the bladder (Figure 6.15). Once again the increased SNR allows the determination of fine

details as the shoulders.

A side view of the mouse was also taken (Figure 6.16). Details of the spine and skull (orbits,

brain vault, jaw) are clear. The rib cage is also seen under the thoracic spine and two ribs may also have

been separated. A hint of the position of the arms also appears. These attributions, however, need further

supporting evidence.

In Figure 6.18 it is seen that the resolution of the coded aperture is much superior to that of a

99rnTc MDP: side vAew of a mouse, 2M cts in 9 min

thoracic spine

cervicalispine

brain

3.6 kvaul

E idrar spine

5.41-jw
ribs arms m

7.2K c

1.8 3.6 5.4 7.2 9
cm

Figure 6.16: bone scan of a mouse: side view. Activity Figure 6.17: comparison to a high-sensitivity collimator.

injected: 300 kCi. 521+531 s exposure for 2 x 2 x 106 System resolution: 15.2 mm at 10 cm. Courtesy of

counts. Siemens Nuclear Medicine Group.
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Figure 6.18: comparison of coded aperture vs. high-sensitivity collimator, for the same activity (1 mCi injected) and
exposure time. Activity shielded below neck (data cut in the case of the collimator). Poor performance as compared
to previous experiments indicated a suspect bad injection. Code aperture image: 4 x 106 counts total in 26min 25s,
corresponding to 1320 cps. Collimator image: 264 cps, after decay correction.

collimator. However, the exposure time is longer than that of the mouse of Figure 6.16, which was

injected with about one third of the activity.

The suspicion of a wrong injection was strengthened when a picture of the upper torso was taken

(Figure 6.19). This shows a line of activity at the edge of the lead shield. A whole body scan (Figure 6.20)

revealed that the bulk of the activity was in the perineum, around the injection point. Not only this

explained the poor.pick up, but also the activity at the edge of the lead shielding. In fact, the lead screen

used to shield activity in the bladder kept the waist of the mouse above its shoulders, so activity loose in

the perineum may have can flowed by gravity along the body, up to the diaphragm.

99mTc MDP: a wrong injection
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Figure 6.19: scan of a mouse above the chest. Case of Figure 6.20: whole body of the mouse of Figure 6.19
wrong injection. showing activity loose in the perineum.
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§6.5 Summary

6.5 Summary

From the characteristcs of an existing Anger camera and the SNR and artifact reduction ideas

developed in previous Chapters a prototype mask was designed and built. Its characteristics are in Table

6.1 and are compared to those of pinholes and collimators in Table 6.2. The geometric resolution of the

coded aperture is 1.45 mm. In Chapter 7 is developed the theory necessary to evaluate system resolution,

which is shown to be 1.66 mm, which is consistent with experimental evidence. These numbers are lower

than the intrinsic PSF of the Anger camera because the camera operates with a relatively high

magnification (m = 4.3).

The sensitivity of the instrument is about 10 times higher than that of the most sensitive

collimator and 100 times higher than that of a pinhole larger than the holes of the mask. However this

does not translate immediately in an SNR advantage because of multiplexing. Different resolution should

also be considered in a fair comparison.

A picture of the protoype mask is in Figure 6.21. Experiments showed that this mask is capable of

high-resolution 2d imaging with very little artifacts. Not all images, however, have the same quality. In

agreement with theory, best performance was obtained for sources concentrated on a limited part of the

field of view.

Collimator
Optics (99mTc) Pinhole Coded Aperture

High Sensitivity Ultra-high-resolution

Hole diameter (mm) 2.54 1.16 4 1.11

Geometric resolution 14.6 4.6 6.2 1.45
@ 10 cm (mm)

System resolution 15.2 6.3 6.6 1.67
@ 10 cm (mm)
Sensitivity @ 10 cm 1063 100 123 ~10000
(cpm/pLCi)

Table 6.2: comparison of the characteristics of the coded aperture with conventional optics. Pinhole cone length:
20 cm. Collimators have hexagonal holes.
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Figure 6.21: the prototype mask. It is a 62 x 62 mosaicked, pattern centered, anti-symmetric NTHT MURA with
open fraction 12.5%. It is made of 12 layers of photo-etched tungsten for a 1.5-mm thickness. Square straight holes
of side 1.114 mm.
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PART III:

ADVANCED TOPICS AND FUTURE DEVELOPMENTS





Chapter 7 ADVANCED MASK DESIGN

This Chapter gathers two advanced topics: ultimate resolution limit and a more thorough

investigation of optimal mask thickness.

In the first section the effect of detector non-idealities is investigated to calculate the system

resolution of a coded aperture camera and understand what sets the ultimate limit on system resolution. In

designing the prototype mask the acquisition parameters of the E-Cam were assumed fixed. Here different

camera configurations are analyzed in the design of a mask designed for the highest possible resolution.

Since maximum mask thickness turns out to be a major factor setting the resolution limit, a theory more

accurate than the one developed in Chapter 6 was needed. It led to the conclusion that the prototype mask

is indeed too thick for 99mTc but would be about optimal for slightly higher-energy isotopes as "'In.

Experimental PSF substantiating this claim close the Chapter.

7.1 Resolution in a real detector

In section 2.6 the resolution of a coded aperture camera was shown to depend on magnification,

detector dimensions and the field of view, but the ultimate limit seemed to be set by the mask pixel size

Pm. With those arguments, there is no lower limit to resolution, provided mask holes can be made small

enough. This would not even reduce the signal throughput, because the total open area can be kept

constant by making the coded aperture pattern larger. This surprising result comes from a mix of

assumptions on detector, mask and exposure time (or activity): the calculation of resolution has so far

assumed an ideal detector, i.e. it has been a calculation of geometric, not system resolution.

In reality, a mask with very small holes would have two problems. The first is that the intrinsic

PSF of the detector or the number of pixels in the acquisition may not allow one to resolve the shape of

the shadow. The second is that small holes also imply a reduced thickness to avoid collimation and

ensuing artifacts. In the following a general theory to calculate system resolution is developed and then

applied to the case of the prototype mask.



@7.1 Resolution in a real detector

7.1.1 Mathematical derivation of system resolution

The main non-idealities of an Anger camera are two: intrinsic PSF and discrete data handling.

The intrinsic PSF of the Siemens E-Cam is Gaussian, with a FWHM of 3.7 mm at its center,

increasing to 3.9 mm at its sides (see §3.2.2 and eq. (3.12)). The shape of the projection of the mask as

seen by the phototubes is the ideal, continuous projection of eq. (2.18) convolved with PSFi:

R(F) oc (o'* A')*PSF (7.1)

where A' is the geometric projection of the mask cast on the detector by a point source. To keep the

formulation general, A' is defined in terms of the finely sampled array AF (see §2.7.4) and the mask hole

shape S,' ,which gives the shape of the projection of one (finely sampled) mask position on the detector:

A'(')A>s;, ~ F,6 -i',) ,,,-ZF HaS(F;' -4i')* ', (7.2)
A I F ) A t , I J 6 i i iI , .!~

Hc is an a x a square array of Is. The continuos distribution R is then digitized in pixel counts.

This process is equivalent to integrating over the area of a pixel and then sampling on a grid with pitch

equaletothe pixel size Pd. This was already encountered in eq. (2.67), which is repeated here for

convenience:

Rr,i = JfR(fls, rV- .,)d 2j;(2.67)

or, shortly,

R = R x Sp, (7.3)

where the vertical bar indicates evaluation at point .S. This is the sampling grid and may or may not be

centered on or have the same pitch as the grid 4', of the centers of the projections of the pinholes of the

mask. If the pitch is the same, then a mask pinhole is projected on an integer number of detector pixels

and a is integer. In this case, there are no defocusing artifacts (see §5.2.2). If the two grids are also

superimposed there are no border artifacts (see §5.2.1).

The continuous function R has turned in to the discrete array R. In practice, this is the data

generated by the Anger camera and fed to the decoding algorithm to give the reconstructed image:
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O=R®G (7.4)

The analytical calculation is more convenient if the continuous function R x S, is correlated with

G6, the continuous analogue of G (see eq. (2.82)) and the result sampled:

O = R xS, &G8 (7.5)

This derivation is different from that of section 2.6 because of the additional convolution with PSF,

and S,. Substituting in eq. (7.1), with the help of eq. (7.2):

0=o'* A' * S,,, * PSFx S,0® Gd 0* A&Gd* S,,, x S* PSf} rs (7.6)

Like A', G8 can be written in terms of the finely sampled array GF:

G6  ZGFa' -i7y.) = ZGF5 *H06(' -'1i (7.7)
i,j 1,j

where Hp is a P x 0 square array of Is and GFb was defined in §2.7.4. P can range from 1, in which case

G = GF6 (6 decoding), to a. Substituting eq. (7.2) and eq. (7.7) in eq. (7.6) gives:

*N1A n 1 1~,,, H, x SP,) < *

0=oG* H ,FG *11* H -i -)(F'- *,xS *PSF =
i,j i+k,j+l i,j

o'zH~H6v J,)v 3)S;,xS ,*PSF =(7.8)

= o' * @X(F' -tH *s( jJ - * rZHS(-FI ,',,xS * PSF =(..ij r,s

=O'f* H 8(i; -i y )*S',, * ZH 8( ' -i ) x SP *PSF

ij r.

where:

ZAY5GF+ =(kg)+(7.9)
ij

was used with the fact that the grids associated to A and G have the same pitch. In the correlation:

Z 113(7' - 7) * ,',, (7.10)
i,j
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Z a(tJ) S;,

k--k-4
Pd Pd

Figure 7.1: convolution of a grid of S functions with a rect function having the same side as the grid spacing.

the first factor is an infinite grid of 6's, only an a x a square of which has a non-zero coefficient. In the

case of totally open square mask holes, S',, is a square having exactly the size of the distance between the

Ss of the first factor. As shown in Figure 7.1, the result is that the convolution is an apd x cpd rectangle.

Similarly, S, generates a pd x pPd square. With the symbol:

(1-c/2<i <c/2 and -c/2 i c/2

rect(i; c)= (7.11)
0 elsewhere

6 becomes:

0 = o'*rect(t ;uad,)*rect(F';rPd, )* PSFIr,. (7.12)

The system PSF, which is the basis for the evaluation of the resolution, is calculated substituting 0'

with a point source:

PSF> = 6 * recti ;ad,)* rect(';pd,)* PSF, = rect(i; ad,)*rect(F';Id)*PSFIrs (7.13)

The system PSF is the convolution of two rectangles, one of the size of the projection of the mask

pixels and the other of the size of the detector pixels, with the intrinsic PSF.

7.1.2 Analysis of the coded aperture PSF

For simplicity, the issue of sampling is momentarily set aside, and the result analyzed in Id. With

this simplification the system resolution , is the FWHM of PSF, rescaled in terms of object space (see

section 2.6):

S = FWHMs,3 (7.14)
Mr-1
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The convolution of two rectangles is a trapezoid. Since one of the rectangles has side a Pd, the

other ppd and P a, the trapezoid has area c43Pd and its FWHM is ap, (Figure 7.2). The remaining

convolution with PSF, can be split in the sum of three parts, each being the convolution of a straight line

with a Gaussian. For a the generic line:

y= mx + q (7.15)

the convolution between xi and xf is:

-xf _/& 2(m(x - &)+ q)d

which, with a little math, becomes:

AP Pd

a+- p P - P
2 Pd 2 P

ILN

2 P 2P

Figure 7.2: trapezoid coming from the convolution of two rectangles of side (LPd and pPd.

Interval [xi, xj]Interval Equation m q
(with dimensionless par.)

+__ , ctf ] [-I+r,-1-rl]sjOj yxa+j a+f3P
2 2 2 2 2 2

Pd' rd Y Pd 1 P

[ -P d' Pd1  [--1-r,1-] sJ% y= pa o PPd
2 2 2 2

[%d' , P] [I1-r ,1+r]siia--x a+3 a+d±1
2 2 2 2 12 2Pd

aPd -
-F23a c

Table 7.1: parameters useful in the calculation of the system PSF.

(7.16)

pp-
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nxqerfX- ) -erfy + me2ti xjf2 (7.17)

where the error function is:

erf(x) > e2 _dt (7.18)

All that is left is to find the parameters m and q for each of the three parts of the trapezoid. From

simple geometry the results of Figure 7.2 and Table 7.1 were obtained. Substitution of these values in

eq. (7.17) allows the calculation of the three terms whose sum is the PSF of the system. The algebra is

straightforward and not followed by major simplifications, so that it makes little sense to report the result

here. Sample plots of the system PSF are provided in Figure 7.3 instead. For increasing a, the PSF

gradually deviates from Gaussian and takes the form of a trapezoid with smoothed edges. In this process

the FWHM increases, because the resolution of the coded aperture (the geometric resolution) is now

added to the intrinsic resolution of the detector. Conversely, decreasing a improves geometric resolution

until intrinsic resolution dominates.

PSF,, is a function of the variable x only and depends directly on u and through the boundaries x,

and xj of Table 7.1 on the three parameters a, fP and Pd. One parameter can be eliminated because x and xj

are actually a function of two parameters only, for example the product apd and r = -. With the

d= 0.2398 cm

1

a

/51V

-1 -0.5 0 0.5 1
cm

Figure 7.3: system PSF for different values of a. u = 1.571 mm, 1. As (x increases the intrinsic PSF is broadened

by the projection of the mask holes.
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definition of the dimensionless variables = and s - , the dependence of PSF, 1on a is also

removed, because a becomes simply a scaling constant.

In conclusion, PSF, depends only on a variable, ,, and two parameters, s and r, which are the only

ones to influence its FWHM. s is proportional to the ratio of the projection of a mask hole (through

eq. (2.96)), which is strictly related to the geometric resolution (see section 2.6), to a measure of the

intrinsic resolution of the detector. The parameter r is uniquely related to the decoding strategy. The

parameters r and s can vary for a number of reasons: because Pd or a change, or because cc changes

because magnification changes (affecting r as well).

To quantify the deviation of the system resolution from the geometric resolution given by the

eq. (2.87), was defined the factor y:

,=x~x = pill -
m -

(7.19)

where x takes the dependence on s and r:

x = x(s, r) (7.20)

X must be calculated numerically, but its dependence on the parameters can be predicted with some

intuitive arguments. From the physical meaning of s, if geometric resolution is poor as compared to

intrinsic resolution, s is high. The effects of intrinsic resolution are too small to be seen and resolution

r= 0.1, 0.5, 1

0 1 2 3 4

r = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
3

2.5

2

1.5

b)
0 12

S

Figure 7.4: a) FWLHM as a function of s for different values of r. The line x = 1 indicates the hypothetical case of a
detector with a = 0. b) x as a function of s and r.

1

0.6

0.2:

z (r,s) r

a)
3 4
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17.1 Resolution in a real detector

must essentially equal geometric resolution: in the limit x approaches 1. As s decreases, the effect of

intrinsic resolution becomes visible. In Figure 7.4a one can see that despite the decrease in s, the FWHM

does not get below 3.7 mm, the intrinsic FWHM. Correspondingly, x rises from 1, indicating that the

hypothesis of ideal detector does not hold. Deviation from geometric resolution makes y larger than 1.

The first lesson learned is the s should be kept as small as possible, but improvements have a limit and

decreases in s eventually become too costly for little additional advantage.

In Figure 7.4b is shown the dependence of x on r and s. Low values of r ( decoding) give better

resolution but caution should be used in determining the minimum r. In fact, if a given configuration

enjoys low s, it may be due to a low ct. This increases the minimum r that can be used, because r is the

ratio P/ a, with P integer greater or equal to 1. A common case is cc= 2, in which case r is no less than

0.5. This is also an example that not all configurations with the same product CC Pd are equivalent, as one

may think because of the same s: for the same product, the configuration with maximum cc (and minimum

pd) should be preferred because r can be made smaller. In the next paragraph is discussed a second reason

leading to the same conclusion.

7.1.3 Effects of discretization on resolution

The issue of the system PSF actually being a sampled version of a continuous function was so far

neglected. Discretization may degrade resolution a little more because point sources that would be

resolved if the image were continuous may not be resolved after sampling of the image. An example is

that of two Gaussian curves separated by a FWHM: such curves show a 7% dip between the peaks (see

Figure 7.5). If the image is sampled too coarsely, samples may be taken just at the peaks, and separation

0.8

0.4/

0.2

0-

-4 -3 - -1 0 1 2 3 4

Figure 7.5: two Gaussian curves with u 1, displaced by a FWHM (2.3548) and summed give a curve with a

minimum at 0.9272.
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would be lost.

A first solution is to use a small sampling period pd, so that dips will not be missed, but finer

sampling may hurt the SNR of the image. This loss, however, can be compensated by increasing Pto

keep summing over the same detector area in reconstruction. To show this with an example, if Pd is

halved, a is automatically doubled if mask and geometry are constant because a mask pinhole is projected

on twice as many pixels (in Id). s remains constant and, if 6 decoding is adopted, reconstruction includes

data from a smaller pixel only, i.e. must rely on a smaller number of counts, which reduces the SNR. But

if P is also doubled, i.e. set to 2, an area of 2 x 2 pixels, equivalent to the old pd, contributes data, leaving

the SNR intact. r also remains constant, so the resolution indicated by eq. (7.19) is constant, but

resolution of the real image is a little better because of the finer pixels. An image completely equivalent to

the previous can be obtained by discarding every other column and row of this new image.

The lesson learned by looking at sampling is that for a given s, which may be fixed because of the

geometry and the mask, a combination that minimizes Pd is to be preferred. Better resolution is obtained

because of better sampling. In the next section is shown that pixels have a typical size of 0.6 mm or less.

This number is 6 times less than the intrinsic FWHM. In these conditions, we can be confident that

sampling does not cause additional resolution losses and shall be happy with the resolution theory

developed for the continuous version of the system PSF. To maintain the SNR, the data so collected can

always be clustered in larger pixels, giving images equivalent to those obtained with larger pixels, a

process that can be incorporated in decoding using the parameter p.

7.1.4 System resolution of the prototype coded aperture camera

For the coded aperture designed in Chapter 6, cc = 2, Pd = 2.398 mm and [3= 1. These data imply

s = 2.1546 and r = 0.5. With these values x = 1.146. From eq. (7.19) the system resolution of the coded

aperture camera used is:

M
=p,,-X=1.66 mm (7.21)

M-1

If conventional instead of 6 decoding is used, then r = 1, X = 1.297 and Xg = 1.88 mm. This value

should be compared to the Siemens high-sensitivity low-energy (99mTc) collimator, whose system

resolution is 15.2 mm, the ultra-high resolution collimator (6.3 mm), and the 4 mm pinhole (6.6 mm) (see

Table 6.2).
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§7.2 Choosing a configuration

7.2 Choosing a configuration

In Chapter 6 the configuration of the E-Cam (the way it makes pixels) was set for simplicity to a

commonly used one. Better performance can be obtained by optimizing its setup.

The detector of the Siemens E-Cam has an active area of 53.3 x 38.7 cm. Pixels are made by

dividing a nominal area of 61.4 x 61.4 cm in 32 x 32, 64 x 64, 124 x 124, 256 x 256, 512 x 512 or

1024 x 1024 pixels. Only as many pixels as fit in the active area are actually active. For example, for

256 x 256 pixels, each pixel is 61.4 cm / 256 =2.398 mm and only 38.7 / 0.2398 = 161 pixels are active

(222 along the other direction). Smaller pixels can be obtained by using a zoom factor, which reduces the

nominal area by a factor of 1, 1.23, 1.45, 1.78, 2, 2.29, 2.67 or 3.2. For a zoom of 1.78 the nominal area is

61.4 / 1.78 = 34.5 cm (on both sides), which is less than the active area, so all pixels will be active. In

these cases parts of the active area are not used. Since we know that best resolution for a given field of

view is obtained with the largest detector available (see section 2.6), it is not beneficial to use this or any

higher zoom.

From §7.1.2, the most advantageous configurations are those with the smallest pixel size, so zoom

1.45 and 1024 pixels should be preferred. In this case Pd=0.4134 mm. Also note that the largest pixel

size for 1024 pixels is 0.6 mm for zoom 1.

What is the best configuration that can be used with the designed mask? Since the camera must

make at least 124 pixels to sample properly its projection, only configurations with 256 pixels or more are

acceptable". For each of these, a can be set to its maximum possible integer value, obtained by dividing

(along the short side of the detector) the number of detector pixels by the number of mask pixels, i.e. 62.

Once a choice of P is made, all parameters needed to calculate the system resolution of the prototype

mask with all configurations are available. Depending on how integer numbers fit in the detector's active

area, results can be a bit unpredictable and must be calculated one by one. They are reported in Table 7.2.

Two decoding strategies are considered. To compare configurations at constant SNR P = a should be

used while P= I gives best resolution regardless of SNR. The result is the same in both scenarios: zoom

1.45 and minimum Pd should be used. Differences are not dramatic. By using this configuration in place

of that of Chapter 6 system resolution improves from 1.66 mm to 1.4 mm for 6 decoding and from

1.88 mm to 1.65 mm for conventional decoding. Nonetheless, the advantage comes only at the expense of

having to handle larger files.

15 Due to the restriction on the active area, the configuration at 128 pixels actually makes 81, 99 and 117

pixels along the shorter side for zoom 1, 1.23 and 1.45, respectively.

170



ADVANCED MASK DESIGN

pixels zoom pd (mm) Ct (mm) X X(mm)

1024 1.45 0.414 15 1 1.0312 1.400 15 1.2124 1.646

512 1 1.199 5 1 1.0419 1.426 5 1.2215 1.671

1024 1 0.600 10 1 1.0382 1.420 10 1.2215 1.671

256 1.23 1.950 3 1 1.0570 1.454 3 1.2284 1.690

512 1.23 0.975 6 1 1.0457 1.439 6 1.2284 1.690

1024 1.23 0.487 12 1 1.0430 1.435 12 1.2284 1.690

512 1.45 0.827 7 1 1.0471 1.444 7 1.2314 1.699

256 1.78 1.347 4 1 1.0720 1.505 4 1.2537 1.761

512 1.78 0.674 8 1 1.0652 1.496 8 1.2537 1.761

1024 1.78 0.337 16 1 1.0635 1.493 16 1.2537 1.761

256 1.45 1.654 3 1 1.1081 1.592 3 1.2833 1.843

256 1 2.398 2 1 1.1457 1.662 2 1.2968 1.882

Table 7.2: E-Cam configurations for use with the designed coded aperture. Two decoding strategies are considered.
To compare configurations at constant SNR use P = a, while to achieve best resolution P = 1. The result is the same
in both scenarios. Configuration with zoom 1.78 were also included to make sure the effects of using integer
numbers did not change the result. m = a Pd /P, is different for every configuration.

7.3 The design of an optimal resolution mask

A very different question is that of incorporating different detector configurations in mask design

to optimize resolution. An additional advantage that could be included is that deriving from use of non-

integer a (see section 6.3). This avoids the need to have a integer, which forced the use of an area of the

detector smaller than its active area, unnecessarily limiting resolution (see 2.6). In this hypothesis m is

determined by the design field of view (eq. (2.79)):

_ d 38.7
m = =3+1= +1 = 5.3

FoV 9
(7.22)

From this m and eq. (2.87) one can calculate that pm is multiplied by a factor of 1.23 to give

resolution: reducing the field of view to improve magnification can not improve resolution by more than

23%.
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Best resolution is obtained for the minimum s and 5 decoding. s is proportional to pd, whose

minimum value (excluding configurations with a smaller detector active area) is 0.4134 mm, obtained for

zoom 1.45 and 1024 pixels. For a given configuration, a and Pd are constants, so minimum s is the same

as minimum u,16 which, from the discussion of border artifacts (see §5.2.1), is 2. With these numbers

s = 0.3722. For r = 0.5, FWHM = 3.754 mm and X = 4.5388, while for r = 1, FWHM = 3.785 mm and

= 4.5771. The value of the FWHM indicates that the limit on resolution is being set by the intrinsic

PSF. The value of X indicates that system resolution is 4.5 times worse than geometric resolution, a fact

suggesting further investigation.

The calculation can be carried on to calculate all mask features. Since the number of active pixels

is 38.7 / 0.04134 = 936, for u = 2 the mask array is 468 x 4687. System resolution is then given by

eq. (7.14): Xs = 0.3754 / 4.3 = 0.087 cm or 0.87 mm. From eq. (2.96) the mask pixel size is

P, = 2 x 0.0413 / 5.3 = 0.015 cm or 150 jim. While technology does exist to fabricate such small holes,

the question is whether it is worth it, given the great loss caused by the intrinsic PSF. For example, a

similar calculation shows that with zoom 1, 1024 pixels (pd= 0.599 mm), a= 4 and f = 4, then

x = 1.8365, FWHM = 4.405 mm and X, = 1.024 mm. Resolution is 17% worse but mask holes are

P,, = 4 x 0.599 / 5.3 = 0.452 mm, which is almost three times as large. Holes of this size would also allow

thicker masks, and, thus, higher SNR.

The best approach is to scan systematically all detector configurations and then compare mask

designs. Of course, the procedure can be automated. For a given detector configuration a minimum

acceptable value of a (at least 2) is set and the corresponding maximum number of pixels of the mask

calculated, with the restriction that the pattern must be an anti-symmetric NTHT MURA. When this

number is known, a can be recalculated as the ratio of detector pixels to mask pixels. As m= 5.3,

eq. (2.96) givesp,:

PM= Pd (7.23)

which can be substituted with eq. (7.22) in the expression for system resolution eq. (7.19) to get:

16 Setting a to its minimum value is not in contradiction with what was done in the previous section, where

the mask already existed and its performance had to be optimized. The first concern is to minimize s, i.e. Pd and a.
In the previous section s was constrained because the mask was already built. In these conditions, where the product

of a and pd is constrained, a should be maximized.
17 Such array may not exist and if it does is not an NTHT MURA because 468 / 2 = 234 which is not prime.

This does not invalidate the discussion following.
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caxd m =FoV FoV
k r = x(rS)=rnid dX(r, s) = Vds-s X(r, s)

m M-1 dd dd
(7.24)

which is a function of r and s only, i.e. of the detector configuration and the choice of a and P. Since the

scope is to achieve maximum resolution, p = 1. All is known to calculate X. for the configuration at hand.

The procedure can then be repeated for all detector configurations and minimum values of a.

arn zoom a n p,, (mm) k (mm)

2 1.4500 2.0595 454 0.161 4.4108 0.874

2 1.2300 2.0759 382 0.191 3.7344 0.880

3 1.4500 3.0960 302 0.242 2.9791 0.888

2 1 2.1358 302 0.242 2.9874 0.890

3 1.2300 3.0267 262 0.279 2.6111 0.897

4 1.4500 4.3692 214 0.341 2.1690 0.912

3 1 3.0140 214 0.341 2.1747 0.915

5 1.4500 5.6325 166 0.440 1.7435 0.945

4 1.2300 4.7771 166 0.440 1.7454 0.946

5 1.2300 5.0190 158 0.462 1.6766 0.955

4 1 4.0823 158 0.462 1.6788 0.956

6 1.4500 6.5845 142 0.514 1.5404 0.976

6 1.2300 6.7203 118 0.619 1.3510 1.030

7 1.4500 7.9237 118 0.619 1.3499 1.030

5 1 5.4661 118 0.619 1.3525 1.032

8 1.4500 9.9468 94 0.777 1.1817 1.131

7 1.2300 8.4362 94 0.777 1.1825 1.132

8 1.2300 8.4362 94 0.777 1.1825 1.132

6 1 6.8617 94 0.777 1.1835 1.133

7 1 7.5000 86 0.849 1.1353 1.188

8 1 10.4032 62 1.178 1.0308 1.496

Table 7.3: system resolution for maximum usage of the detector. All results for zoom 1.78 resulted in worse

resolution with smaller mask pixels and were not included. m is the same for all configurations.

173



§7.4 An improved figure of merit

Results are in

Table 7.3. The best configuration achieves Xs= 0.874 mm with a 454 x 454 pattern. At the other

end is the familiar 62 x 62 mask, now achieving a better resolution than previously encountered because

of the relaxation of the condition on a. It is difficult to set a threshold on the minimum acceptable mask

pinhole size. An attractive pattern was the 158 x 158 because it provides sub-millimeter system resolution

and needs values of u not too distant from an integer value, which could result in better results of the

decoding algorithm. The problem is again to optimize the thickness and then verify if, for the resulting

transparency, the SNR is acceptable. Of course, the SNR depends on activity, but this effect is only

partially included in the treatment done in terms of the figure of merit. A more quantitative approach is

needed.

7.4 An improved figure of merit

Low transparency has two beneficial effects on the SNR: the net signal is higher and the sidelobe

variance lower. From Table 4.1, the SNR of a NTHT (M)URA mask with an open fraction of 1 / 8, in the

assumption of no background, depends on t as follows (see also Figure 7.6):

SNR(t) 1-t (7.25)
SNR(t =0) 71+7t

From this perspective, optimization of the SNR requires a mask as thick as possible, but this

Point source reconstruction
x 10 for a thick mask in absence of noise

0.8

0.61

(D0.4<

0.2

-5 -302-j0-

10 1 10 1 10 10 10 0 1.45 2.9 4.35 581 7 86 71
t cm

Figure 7.6: SNR loss from an ideally opaque mask as a Figure 7.7: reconstruction of a point source with no

function of transparency t. statistical noise. Variation on the side values is due to
thickness artifacts, not to randomness. This is revealed

by the approximate symmetry of the peaks.
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generates thickness artifacts. As already pointed out, on a slice through the reconstructed peak thickness

artifacts seem to have no particular structure: deviations from ideality resemble deviations due to low

counting statistics. Of course, there is a big difference between the two effects: thickness artifacts are

deterministic and do not depend on exposure time or object activity. However, it is not too far from truth

to say that artifacts influence the image very much like poor statistics and, in this sense, can be quantified

in terms of the SNR. In this way the problem of optimizing mask thickness is reduced to that of finding an

optimal value of some combined SNR as a function of mask thickness. An overall figure of merit FoMt

was defined. It is made of two parts.

7.4.1 Artifact contribution

The first contribution to FoM, is its artifact part FoMa, which can be quantified by simulating the

reconstruction of a point source in absence of noise. A typical result is in Figure 7.7. FoMa is given by the

ratio of a signal, the expected height of the peak NIT (1-t), to the average standard deviation from 0 of the

sidelobes:

FoM, = NIr(1-t) (7.26)
G a

where Ga is obtained with a simulation in absence of random noise.

7.4.2 Statistical contribution

The second piece of FoM1 , the SNR deriving from Poisson noise, can, in principle, be taken

directly from the SNR theory of Chapter 4. Unfortunately, predictions would not be accurate in this case

because that derivation does not account for the effect of the intrinsic PSF. A precise calculation must

restart from the expression of the noise (Poisson, hence the subscript p) variance valid for an NTHT

(M)URA:

Ir(1- t)Z ,ZAk/,GU + tN (7.27)
_ k) U'vI

but, for a NTHT (M)URA mask with e = 2, on the jt1 line:
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2 in l/2 cases
AkJG I IN in1/2 cases (7.28)

Due to the intrinsic PSF, even for a point-like source yq; is spread over a few pixels. In our

conditions, the projection of a mask hole is about 4.8 mm (2.4 mm for sub-millimeter resolution designs),

while the FWHM of the intrinsic PSF is 3.7 mm. This means that the central resolution element contains

only about half of the activity, while the remaining is divided between the two first neighbors. With this:

N N + +- 0 forj even (odd)

Vk,I A,,G3 -=>=2N (7.29)
k,I Uiv tIO+rI±±jN forjodd(even)

Fortunately, the case of reconstruction of the peak need not be separated from the reconstruction

of adjacent positions. The fluctuation in both cases is:

2 TF(1-)N+tN =ItT - t + 4=I T [+ 3t] (7.30)CYP j ITLV0L- Y 0IV2T 2 2

and the SNR:

N N
ITr2(1-_ t) IT 2(0 - 0) N0- 0

SNR[= 2 2 =1F +(7.31)
IT b3t] 2 #1+3t

2

where the signal at the peak was divided by two because of the intrinsic PSF.

This is the part of the FoM associated to Poisson noise, FoMp:

NI(1--t) TN (1-t)FoM == r(7.32)
2cIT2 -1+3t

This expression also shows that if the signal is rescaled to NIT (1-t), the appropriate standard

deviation is 27p.
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7.4.3 Aggregate figure of merit

FoMp and FoM, must now be combined in FoMt. Defining the signal as NIT (1-t) and assuming

that the two sources of noise are not correlated, FoM, is defined as:

NIT(1- t)
FoM, = G4 (7.33)

which leads to:

(7.34)FoM,I 1 ,1
1 1 1 2 1+3t

FoM' FoM' FO M NIT (i-

where care must be taken that in IT are counted only photons that actually reach the detector. These are

less than predicted by looking at the solid angle subtended by all holes in the ideal mask because of

collimation caused by mask thickness. This reduction can be handled by calculating a collimation factor

with a noiseless simulation.

7.4.4 Determination of mask thickness

99mTc Resolution: 1.7 mm

-2 ,. -1 . . .

10 -2 10
Mask Thickness (cm)

104

10,

0- 10

10,

10

10 3
b)

99rmTc Resolution: 1.7 mm

-2 .. .- 1.. .

102 101
Mask Thickness (cm)

Figure 7.8: a) The top curve is the theoretical prediction of FoM,. The other curve is the theoretical prediction of
FoM, which also includes thickness artifacts. Dots indicate the result of simulations with noise and are in agreement
with the theoretical prediction. Exposure time 8000 s, activity 0.1 kCi. b) Same as a), for different time. The number
next to each set of curves indicates 0.1 pCi of activity for 8000 seconds, i.e. 29.6 million decays.
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§7.4 An improved figure of merit

An example of FoM, as a function of t is in Figure 7.8a. Two curves are drawn, FoM, and FoMp.

FoMp is a theoretical prediction of the SNR due to Poisson noise, taking into account the reduction in the

count rate due to collimation (obtained with a simulation with no statistical noise), but does not include

the effect of thickness artifacts. This was estimated using the same noiseless simulation to get FoM,

(lower curve). The dots show FoMt as calculated directly from the reconstruction of simulations with

noise. Figure 7.8a shows good agreement. Since FoMp accounts for the reduction in counts due to mask

thickness it also has a maximum, which occurs at higher thickness because near-field artifacts are not

included.

The optimal thickness seems to be about 0.6 mm, but this value depends on the activity of the

point source for which these curves were calculated, a problem overlooked in the previous definition of

the figure of merit,.when activity and exposure times were fixed to a reasonable value (10 gCi and 5min)

but dependence of the result on the hypothesis was not investigated. If the activity level is changed, the

set of curves of Figure 7.8b is obtained. Agreement between the two FoMt curves is good for all activity

levels. This is important because it makes simulations of different activity levels redundant. Only one set

of simulations, for the case of no noise, is necessary. A number of observations can be made:

FoM, curves simply translate vertically for different activity or exposure time.

SNR 20, noise limited SNR = 67 SNR 20, artifact limited

_ _II I

I \I 1V' VIA'IVv

0 41 83 124 0 41 83 124 0 41 83 124

pixels pixels pixels

Figure 7.9: three sample PSFs for the case of the 1.66 mm resolution mask and 99mTc. From left to right, the mask

thickness (transmission) is: 0.16 mm (0.60), 1 mm (0.45) and 0.35 mm (2.6 x IV-). Total decays for 800 s and

0.1 pCi: 0.1 (see caption of Figure 7.8). The transition from Poisson-limited SNR, to optimal SNR and artifact-

limited SNR is obvious from the structure of the sidelobes and their variance.
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For a given exposure time and activity, increasing thickness leads to better FoMt until a

maximum is reached. The maximum is reached later for lower exposure times, which

have poor statistics, so that better statistics due to lower transmission is worth more than

increased artifacts. After the maximum the common limit FoMa is reached by all curves.

Since FoMa is set by artifacts, it is independent of statistics.

For any thickness, FoM, increases with exposure time (or activity) because statistics

improves, unless the artifact limit is reached.

In most cases, a given SNR can be obtained with two masks of different thickness. The

thicker one is much closer to the thickness artifact limit: longer exposure times bring

little benefit. On the other hand, the thinner mask has about the same SNR, but the limit

would now be set by statistics. Recalling the assumption that artifacts and noise look the

same, the overall image would look the same, but in this case longer exposure times can

still provide some improvement. This latter choice is, thus, preferable. A pictorial

example is in Figure 7.9.

The absolute value of FoM, is also important. Indeed one of the reasons that suggested to define it

in terms of a SNR is that SNR actual values of an image can be at least intuitively understood. A

reasonable image is obtained for SNR~5 while SNR-50 is an image where noise would be barely visible

(Figure 7.10). In a real case a good compromise is probably a SNR of about 10. The lowest exposure time

considered here is, then, already acceptable.

All curves rely on the assumption of a given mask and object-to-detector distance, in this case

40 cm. Of course, the result depends on the size of the mask hole. The rest of the study can focus on

adjusting these parameters. FoM curves for the prototype mask of Chapter 6 were compared to similar

curves for the same mask at a different energy ("In, 245 keV and 171 keV photons) and for the high-

SNR=1 SNR 2 SNR=5 SNR = 10 SNR=20 SNR = 50

Figure 7.10: pictorial representation of the meaning of different SNR levels. Poisson statistics assumed at each
point,
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180 §7.4 An improvedfigure of merit

resolution mask of §7.1.4 at the same energy (140 keV, 99mTc) (Figure 7.11). In the comparison to a

different energy, interestingly enough, the line defining the thickness artifact limit does not shift but the

maximum reached for any given activity shifts to the right. One can calculate by tracing a vertical line

corresponding to the thickness of the prototype mask (1.5 mm) that the maximum SNR achievable is, in

both cases, about 100. However, while this limit is reached for 99"Te for 26.9 million source decays, for

"'In it is reached at 269 million source decays. The line also intersects other curves on the right of the

maximums for 99DTc and on their left for 1'In. In conclusion, for the mask we built and "'In, a lower

SNR is expected for the same activity, the limit being set by statistics rather than by thickness artifacts. A

second observation is that the mask we built may be too thick for 99mTc.

For the high-resolution mask the same SNR limit due to artifacts is reached at lower thickness,

and the SNR can not be as high for the same thickness. As an example, an SNR of 60 allowed a

maximum mask thickness of 2 mm for the prototype mask and of 0.8 mm for the high-resolution mask.

99mTc resolution 1.7 mm
1013

12 10 -210 - M

10 ,-,
0.2 -

01
0.05'-'

0.01
10 1 .-

10 10 2 10 100
Mask Thickness (cm)

1111n resolution 1.7 mm
10 ..

io2-3

02

10 100

10

100 1 0 1

1M0skh10-2 k10 ( 10
Mask Thickness.(cm)

99mirc resolution 0.9 mm
103

12

1001
100

110c

0.2
01

S 0. 05 0.0100

10 10-2 10110,

Mask Thickness (cm)

99m-c thickness artifacts
10,.

Tc 1.7 mm

102

M Tcs n 1.7 mm

10

Tc 0.9 mm+

10-: 10-2 10-1 1 0
Mask Thickness (cm)

Figure 7.11: plots of the FoM, curves (experimental and theoretical) for different levels of activity. Top left:

prototype mask. Top right: mask suggested in §7.1.4. Bottom left: mask of Chapter 6 for '"In, an isotope emitting y-
rays of energy higher than 99TTc (245 keV vs. 140 keV). Bottom right: direct comparison of the maximum activity

curve in the three cases (2.69 billion source decays).
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156x156 NTHT MURA 62x62 NTHT MURA

Zitc

Original object

a) b)

Figure 7.12: b) simulation of the thyroid phantom of a) for the high-resolution 158 x 158 mask and that designed in
Chapter 6. While resolution is better, the SNR of the new mask is noticeably inferior. Activity: 200 pCi. Exposure
time: 1052 s.

Consequently, the limit can be reached for 5.38 million source decays for the prototype mask but requires

26.9 million source decays for the high-resolution mask. This means that high resolution is indeed

achievable, but requires a longer exposure time. An alternative point of view is that reducing the mask

hole size to increase resolution shifts towards the bottom the limiting curve FoMa: for a given thickness it

may become impossible to achieve an SNR achievable with a coarser mask, no matter what the activity.

The best thickness seemed to be about 0.8 mm, allowing a 9% transmission. For the same activity and

exposure time, the SNR is inferior to that of the prototype mask. The result of a simulation for the same

activity and exposure time is shown in Figure 7.12, where a noiseless simulation is also provided to show

that better resolution is achieved if time is not an issue.

These results apply to a given object-to-detector distance only, in this case 40 cm. Simulations

should be repeated for different distances. The wealth of information obtainable from these curves is such

that it is difficult to cover all cases. Their use depends on the problem at hand. For instance, to overcome

the limitation that they apply to point sources only, from knowledge of the object and the SNR formulae

of Table 4.1, one can calculate from the SNR of a point source the SNR of an extended object.

Accordingly, general conclusions are not drawn in this Chapter, which is content with having developed

the general tools capable of answering a broad range of particular questions.
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Prototype mask and 9
5
9mTc
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102
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100
10

Mask thickness (cm)

Figure 7.13: selected FoM, and FoMa curves from Figure 7.11. The dashed line indicates the thickness of the
prototype mask.

7.5 Experimental results: "In

The curves of Figure 7.11 can predict if a mask is artifact or Poisson noise limited. Figure 7.13

predicts that a 6.6 gCi 99mTc point source imaged with the prototype mask for 735 s, which is equivalent

to 179 million source decays, is Poisson limited. This is seen by looking at the value of FoM5 and FoM,

pair with parameter 179 / 29.6 ~ 6 at the mask thickness. Since for the pair with parameter 1 FoMp is

already much higher than FoMa, one expects the reconstruction to be artifact limited. A 36 pCi "'In point

source imaged with the prototype mask for 75 s, which is equivalent to a parameter of about 1 after the

99-mTc "11In, short 111In, long

Figure 7.14: reconstruction for the 99mTc (a) and the two 'In sources (short (b) and long (c) exposure) showing

Poisson noise vs. thickness artifact limited reconstructions. Contrast greatly enhanced to show artifacts. In the 99mTc
image the ratio between the height of the main peak and the highest side peak is 13.
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lower efficiency for ("1.'In) of the detector is factored in the calculation (graphs assume 100% efficiency),

is in a borderline situation were artifacts and Poisson noise are equivalent. Finally, a 30 pCi "'In point

source imaged with the prototype mask for 12 h (parameter ~500), should show thickness artifacts again.

Agreement with these predictions can be verified in Figure 7.14, where contrast was greatly

enhanced to show artifacts. It is worth noting that in the 99mTc image the ratio between the height of the

main peak and the highest side peak is 13 vs. 12.5 for the long "'In image. This is in agreement with the

overlap of the curves of the artifact limit at the bottom right of Figure 7.11, which predict equivalence for

the prototype mask at the two energies.

A last check was that the transition to higher energy did not affect resolution. In Figure 7.15a is

shown the reconstruction of three points spaced by 1 cm. The largest spot has a diameter of 2.7 mm (as

measured on the image). All points are resolved and minimal artifacts appear (below the lowest point) on

a uniform background. The result is compared to a medium-energy collimator in Figure 7.15b, where

lower resolution is evident. This is due to the characteristics of this collimator, whose septa must be made

thicker to avoid penetration, which, not only results in a resolution loss but causes artifacts as well. Figure

7.16 shows that an "'In source penetrates a low-energy collimator (i.e. one designed for 99'Tc) in a non-

isotropic manner related to the arrangement of the collimator holes. Thicker septa can not be

accommodated by simply reducing the hole diameter because this would reduce sensitivity. A complete

redesign eventually leads to lower resolution. In Figure 7.16 collimators are also compared to the

prototype coded aperture, which shows the same resolution for both low and medium energy.

1111n, 1 cm reference marks "'In, 1 cm reference marks, Collimator

1.8 L1.6-

363.2-

54

3.A

7.3.

1.8 3.6 5.4 73 1.6 3.2 4.8 6.4 8
cm cm

a) b)

Figure 7.15: a) 3 marks spaced by 1 cm. Image taken with "'In, two exposures for 1 million counts (about 10 min
each). The sources were three drops of solution on a strip of paper: because of absorption it is difficult to know their
exact diameter. b) Image of the same marks obtained with a medium energy collimator (hole diameter 2.07 mm,
system resolution 10.2 mm at 10 cm)
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7.6 Summary

This Chapter revisited the issue of optimal mask design and developed an advanced method for

the determination of optimum mask thickness. The ultimate limit for resolution was recognized to be in

the SNR. An- optimum resolution mask was tentatively designed for imaging with 99 'Tc. Its

characteristics are compared to those of the prototype mask in Table 7.4. Theory, simulation and

experiment show good agreement.

0
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4-
0

LEHS collimator, 1111n

. ... ...
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2 3 4

Coded Aperture, 99MTc
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ME collimator, 1111n
0
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4
0 1 2 3 4

Coded Aperture, 1111n
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o 1 2 3 4

cm

Figure 7.16: experimental results. Top left: an "'In source penetrates a low-energy collimator, causing artifacts and
loss of resolution. Top right: a medium energy collimator does not have artifacts but still has low resolution, due to
its geometric characteristics that must accommodate thicker septa. Bottom: even though a comparison is difficult
because of the different number of counts (100k for 99mTc and 267M for "'In) the prototype coded aperture gives
the same resolution at both energies. Also note that, due to magnification, the same field of view is covered by many
more detector pixels in the case of the coded aperture (pictures were acquired with the same detector configuration
in all cases).
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Mask pattern NTHT MURA 62 x 62 NTHT MURA 158 x 158

Open fraction 12.5% 12.5%

Mosaicked yes yes

Self-supporting yes yes

Mask symmetry anti-symmetric about center anti-symmetric about center

Material Tungsten Tungsten

Fabrication technology Photo-etching Photo-etching

Mask pixel size 1.11 mm 0.46 mm

a -2 4.082

Magnification 4.3 5.3

Resolution Geometric 1.45 mm 0.57 mm

(at FoV = 9 cm) System 1.66 mm 0.96 mm

Thickness 1.5 mm 0.8Mm

Attenuation at 140 keV 99% 91%

(at 592M source decays) ~20 ~9
SNR

max ~A0O~4

Table 7.4: comparison of the prototype mask and the high-resolution design.
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Chapter 8 EXTENSIONS AND FUTURE WORK

Future work can head in several directions. Some were explored in theory and simulation.

In section 8.1 are suggested some experiments for the mask already built that were not already

done because of time constraints and limited availability of the E-Cam.

In Chapter 7, a mask capable of sub-millimeter resolution was designed but developments along

lines different than simply better resolution are also possible. An example is the transition to higher

energy isotopes. In section 8.2 is shown that the higher penetration encountered at higher energy may

result in a considerable SNR loss. This can be recouped by prolonging exposure times, but a more

practical solution is trading resolution for SNR. The example of the design of a mask for 511 keV photons

is presented with a quantitative assessment of the amount of resolution that needs to be sacrificed to

preserve exposure time. While this development can still rely on the ideas developed in this thesis, of

which is an evolution, others require that more theoretical work be done. The most important is transition

to a full 3d coded aperture system. In this Chapter is shown that only poor results can be obtained from a

laminography approach, where several slices are reconstructed from data from one view. Theoretical

reasons for the problem are briefly summarized in section 8.4.

8.1 Experiments with the current mask

Some obvious experiments with the prototype mask were planned but never carried out because

of limited access to the E-Cam. The most interesting is perhaps a test of the dependence on the object-to-

detector distance, which was always set to 40 cm in our trials on the basis of the very first optimization

procedure (§6.1.4).

Moving the object closer to the detector has the promise of increasing the SNR, but artifacts

(near-field and thickness) are also reinforced. Two aspects should be clarified: if 40 cm is actually the

best compromise and dependence on object thickness. In fact, eq. (2.106), for a given m, becomes:

dc pb - p,, M-I p,, (m -1)m

da Pma2 Pd a Pd Z
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which indicates that defocusing depends on the object-to-detector distance z, the sensitivity of u on a

decreases for increasing z. In other words, for high z, a thicker slice da of the object is in focus because it

causes a smaller variation in da. In the case of small animals, this may result in better images because a

considerable part of the object can be on focus, which reduces defocusing artifacts from other planes.

8.2 Extension to higher energy

At higher energy the main problem is increased mask transmission. The SNR formulae of Table

4.1 can be used to calculate the increase in exposure time needed to offset SNR losses due to penetration.

Considering the prototype mask, its SNR can be rearranged to highlight the trade-off:

NTHT =NIr/2(1-t) m (1-t)SNR t' = ~+4-Time +
d(l-t)p +(t+c (1- p)t+ p

(8.2)

where zero background was assumed. The graph of Figure 8.1 was obtained from this formula. While the

time increase needed for 99'Tc is only 5% higher than the time needed if the mask were perfectly opaque,

it increases rapidly to 33% for 201T1 and is more than 500% for 11 1 n. At 511 keV, constant SNR requires

an exposure time 61 times longer. In Figure 8.3 is shown that this estimate is fairly accurate despite the
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Figure 8.1: exposure time increase needed to offset a
SNR loss due to mask transmission, as calculated from
the analytic expression of the SNR, for a 1.5 mm-thick
mask. The reference exposure time is the case of 0
transmission. The first, unlabeled, point is 99mTc (140
keV). Also shown the energy of the emitted y rays (in
keV).
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Figure 8.2: SNR at 511 keV as a function of resolution.
The ratio with the SNR for a 1% (at 140 keV)
transparent mask is shown. At 3 mm the SNR loss due
to increased transmission is compensated.
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approximations involved (mainly from mask thickness, whose effects are not included beyond the

difference in transmission). The result is discouraging, even more so when the shorter half-lives of

positron emitters are included in the calculations. However, the mask was not optimized for this energy.

The simplest remedy is to increase mask thickness and, at the same time, use larger holes to avoid an

increase of thickness artifacts, which leads to a decrease in resolution. Manipulation of the SNR formula

can again give an estimate of the trade-off between resolution and SNR. The starting point is:

NTHT 

NNTI-ITA NIT (I - t)
SNRt = 7 t(8.3)

2 (1-t)p~t

again in the assumption of no background. Only two elements of this formula depend on resolution: the

transmission t and the concentration parameter yW. In fact, magnification is constant because the field of

view and detector dimensions are constant (eq. (7.22)). The mask size also remains constant, because its

projection still has to cover the whole detector. The number of open holes must change because the size

of the holes is changing. However, the product NIT equals pNTIT, where NTIT is the number of photons

incident on the whole mask area, which is constant, and p is also constant because the array family is the

same, so the photon throughput does not change (first factor of eq. (8.3)).

Since m is constant, geometric resolution (the only resolution that actually matters for resolutions

worse than that of the prototype mask) is proportional to the mask pixel size p,,,. In first approximation

140 keV, 1000s 511 keV, 1000s 511 keV, 17hr

Figure 8.3: if the prototype mask is used with 511 keV photons, the SNR of the image is greatly decreased, all other
things being equal, because of mask penetration. The SNR can be recouped extending the exposure time. Since the
first two images were taken for 1000 s, a factor of 61 (see text) leads to 17 hours. The resulting image has SNR
comparable to the 99mTc image. Decay of the source not included in the calculation of the new exposure time. This
would be quite relevant for positron emitters, typically short lived.

--- - -------- -
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§8.2 Extension to higher energy

140OkeV,=1.5 mm 511lkeV,=3 mm

Figure 8.4: the SNR can also be recouped by reducing resolution. If holes are made larger until a resolution of 3 mm

is reached, the resulting image has a SNR comparable to that obtained with 99 Tc for the same time and activity.

Radioactive decay of the source not included (but much less important on short exposures).

transmission can be related to p,, by assuming that the ratio of mask thickness and mask hole size is a

constant. This means that also the ratio of mask thickness and resolution is a constant, which is set to the

value of the prototype mask: 0.1524 / 0.1452 = 1.05. In this assumption, mask transmission is:

t = e"1.05(8.4)

where g is the coefficient of attenuation at 511 keV, which is 0.125 cm 2 / g. This substitution makes the

second factor of eq. (8.3) a function of resolution only.

y# is also a function of resolution because better resolution implies that parts of the object are

resolved in smaller parts of lower activity, the effect being clearly proportional to 22. In conclusion:

NTHT

SNR cc f()k? (8.5)

where f(%) is the second factor of eq. (8.3) where t was replaced by means of eq. (8.4). This expression

can be evaluated for the generic resolution X at 511 keV and for 99mTc for a resolution of 1.5 mm. If the

ratio is taken proportionality constants are eliminated and the graph of Figure 8.2 is obtained. The

equivalence point occurs at 3 mm. The calculation is again fairly accurate (Figure 8.4) despite

approximations.
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8.3 Artifact reduction

After near-field artifact correction, the main source of artifacts is mask thickness.

It is interesting to note that near-field artifacts are greatly enhanced by mask thickness. A second

interesting observation is that, without resorting to the mask / anti-mask technique, these artifacts can be

substantially attenuated by dividing the collected data by a cos"(O) term with n > 3. In other words, a zero

order correction with a higher-power cosine almost eliminates near-field artifacts. Powers as high as 8

have been found to be optimal, but the recovered image is very noisy, due to the high correction factors

involved.

This observation clarified the link between near-field artifacts and mask thickness. Mask

thickness alters the flux through each pinhole because of collimation of the beam (the collimation factor

of section 7.4), an effect difficult to quantify but arguably related to the cosine of the incidence angle of

the photons at the mask: thick masks pass preferably photons parallel to the axis of the camera and it is

natural to think that this other angle-dependent attenuation will have a shape resembling that of a cosine.

To attenuate the effect, pinholes may be done of varying cross-section, i.e. can be tapered to allow angled

photons to still pass. In addition, nails can be inserted in the pinholes to block some fraction of photons

arriving from directions parallel to the axis ([60]). The technique is actually the whole art of pinhole

imaging (state-of-the-art examples are ref. [61]-[63]). All these methods do not seem to be necessary in

light of the success of the anti-mask technique, but may still be worth investigating.

Artifact reduction can also be achieved with the use of non-linear method such as ART ([29], [48]

and [64]) and maximum likelihood (or maximum entropy) algorithms ([23] and [65]), but these methods

are computationally more demanding than simple correlation. Of course, the methods can be combined

and the image produced by correlation can be used as a first iteration to accelerate the convergence of

these algorithms. This may be another direction of future research, which turns out to be related to the

issue of three-dimensional imaging.

8.4 Three-dimensional imaging

Coded apertures present some three-dimensional imaging potential because depth information is

encoded in the size of the projection of the mask. A second way of explaining the origin of three-

dimensional information is to think that each pinhole of the aperture provides a different view of the

object. However, all views are restricted around the axis of the instrument. Nevertheless, this potential has

been indicated as one of the major advantages of coded apertures ([13]) and a number of publications
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have presented simulation and experimental results ([33], [66]-[67]). Systems relying on a single view

(i.e. a single coded aperture image), however, do not seem to provide a performance as good as multiple-

view systems (typically two orthogonal views ([20], [68])). Some researchers claim that maximum

likelihood expectation maximization algorithms can provide improvements ([69]), but other studies report

the equivalence of different reconstruction methods ([70]-[71]) and indicate that the most restrictive limit

is imposed by the limited range of angles from which different views are taken, which explains the clear

superiority of orthogonal-view systems.

A thorough investigation shows that the restricted view angle results in severe undersampling of

some regions of the Fourier space ([72]). Criteria for successful imaging (concerning the extent of the

object in real and Fourier space) have also been given starting from the formulation of a sampling

theorem which shows that the finite aperture bandlimits the spatial frequencies present in the object

([73]). A more obvious limit is that 3d data are compressed in a 2d projection, which often causes a loss

of information. Application of a priori knowledge, generally object outer boundary and positivity, can

significantly improve the reconstructed images ([74]).

Depth 9 cm, uc=2
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Figure 8.5: experimental three-dimensional PSF. The image at the bottom right is a color-coded top view of the 3d
plot at the top left. At the other corners are two sections through the peak. The FWHM in the transverse direction is
about 3 mm, due to 1.7 mm system resolution plus about 1 mm of width of the point source used. The FWHM in
depth is very close to 1 cm, a factor of 5 worse than the transverse FWHM (the point source was flat, so the FWHM
must be compared to 1.7 mm, not 3 mm). Note that the field of view is a function of depth. Anti-mask picture. Total

number of counts 1.6 x 106 obtained in 735 s from 99mTc. Depth measured from the mask (mask-to-object distance).
Mask-to-detector distance: 29.41 cm, Pd= 2.398 mm, p, = 1.114 mm. b is different from the design value 30.7 cm
because of experimental adjustments (see section 6.2).
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In light of this, it should be no surprise that single-view coded aperture 3d imaging (a

laminography approach, including a moving object approach) is unlikely to be successful.

An indication of this is the 3d PSF that can be obtained from any of the experiments. In Figure

8.5 is shown the reconstruction of a 99'"Tc source. The reconstruction is performed for different values of

a, each corresponding to a different depth (distance from the mask) according to (see eq. (2.105)):

Pd a

(8.6)

At each depth is plotted the vertical section through the reconstructed peak of the point source as

a function of a transverse coordinate (a coordinate on the plane parallel to mask and detector). Note that

the field of view is a function of depth. In fact, substituting in eq. (2.78) dd, which indicates the active
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Figure 8.6: distribution of a 99mTc-labeled blood pool agent in a mouse. Decoding at different depths is an attempt at
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area of the detector, with the size of the projection of the mask on the detector n i,:

FoV -d -md,, "' K aI+--(8.7)
M - IM -- I b)

where and eq. (2.74) was used to eliminate m. This shows that the field of view increases with depth,

starting from the 9 cm at the design depth.

The most important result is that the FWHM in the depth dimension is a factor of 5 worse than

the FWHM in the transverse plane. Also note that only for on-focus conditions (in this case a =2, a depth

of 9 cm) the field of view is equal to the design value 9 cm and sidelobes are minimal.

A first example of 3d reconstruction was presented in section 6.3. A second is in Figure 8.6,

where the data of Figure 6.12 were decoded for different depths. All slices look very much similar, due to

the poor depth resolution of the system. As a result, the most visible effect of decoding at different depths

is the artifacts from out-of-focus planes at the sides of the object.

It must be pointed out that in a few special cases these limited capabilities can still produce good

results. This was the case of a bone scan of a rat (Figure 8.7). The rat was placed with its back facing the

camera. Starting from outer planes, one can see that the knee farthest from the detector (the left one in the

image) is focused first, then both knees are focused (at 10.21 cm from the mask), then the first knee is lost

and starts contributing defocusing artifacts to the image (two vertical crosses centered on the two point

sources of the knee). Finally, both knees are lost, but the spine is resolved in detail. Vertebrae can be seen

to have a triangular shape, as it should be for young rats such as this one, a result possible only because of

the high resolution of the coded aperture. Unfortunately, artifacts from out-of-plane sources corrupt the

image. This corruption, however, is not severe to the point of making the image useless. Indeed, if the

problem were that of locating in space an isolated point source, these artifacts may be irrelevant: almost

complete 3d information is then obtained from a single view. This result is not surprising, because

complete 3d information on a single point source can be obtained with a two-pinhole system, by simple

ray-tracing.
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Chapter 9 APPLICATION TO CAFNA

CAFNA is a bulk inspection nuclear technique based on two main technologies: coded aperture

imaging and Fast Neutron Analysis. The former was discussed at length in Part I. In this Chapter FNA is

introduced and some experimental results discussed. A sample CAFNA image of carbon blocks was

obtained and improved with the mask / anti-mask artifact reduction method, which is again demonstrated

to be useful. In the last section is designed a prototype mask for-a CAFNA system, whose performance is

roughly estimated.

9.1 Basic principles of CAFNA

CAFNA aims to image the spatial distribution of the elemental density of materials. It shares the

major advantage of nuclear techniques of identifying materials by their elemental composition, not simply

by their density as with x-ray techniques. As in FNA, in CAFNA fast neutrons are used as probing

radiation. The y-rays emitted from elements such as carbon, oxygen and nitrogen or chlorine and

hydrogen after inelastic scattering or capture in the container are detected. Since the energy is peculiar to

the emitting nucleus, different species (in theory isotopes) can be identified by measuring the energy of

the y-rays. The central difference between CAFNA and other neutron techniques is the method of

localizing the emission point of the y rays: a coded aperture replaces pinhole or collimator optics. The

entire inspected object is simultaneously probed by a flood beam of neutrons from a commercial sealed

D-T tube of the type used in the well logging industry. The tube generates neutrons using the reaction:

2H+H_>4He +n (Q = 17.6 MeV) (9.1)

of which about 14.6 MeV are picked up by the neutron. Typical fluxes are in the order of 108 neutrons per

second over a solid angle of 4c and are generated with a current in the order of 100 p.A at 80 kV. Since

the emission location of the ensuing y-rays (typically 1.5-11 MeV) is imaged directly through the coded

aperture, neutron scattering does not affect the image and all y-rays can be used. Furthermore, not having

to tag the neutrons in space and time allows the use of the entire output of the source without

compromising resolution or sensitivity. By using 14-MeV neutrons, depth penetration is high, and more
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uniform penetration can be achieved by arranging multiple sources around the object. This solution would

also increase flux uniformity and provide enhanced reliability through redundancy. Similarly, multiple

coded aperture detectors can be used to achieve increased three-dimensional information and counting

efficiency. The system is scalable in size in the sense that the number of sources and detectors can be

suited to the inspection volume: CAFNA can be tailored to work with small objects, such as luggage, as

well as with cargo containers.

These characteristics compare to those of another nuclear technique recently developed, Pulsed

Fast Neutron Analysis (PFNA), which mechanically scans the container with a narrow beam of neutrons

and determines the position of the material along the beam line by means of precision timing of the

arrival of 7-rays. Since this approach assumes that the neutron interacts on the line along which it was

emitted, it is potentially affected by scattering. In fact, if a neutron is scattered and then generates a y-ray

in a second scattering, the event would be placed incorrectly along the emission line of the neutron.

However, in an inelastic scattering event a neutron loses energy. For example, 8 MeV neutrons do not

have, after a first scattering, the energy necessary to generate inelastic scattering 7-rays in a second event,

and would not present the problem. To generate neutrons of this energy the less energetic D-D reaction:

'H+2H-AHe + n (Q = 3.26 MeV) (9.2)

can be used. Neutrons so generated are too slow to generate 7-rays from common elements such as carbon

(4.44 MeV, which is also the threshold energy of the reaction) or oxygen (6.13 MeV). To achieve 8 MeV

the incoming particle must be accelerated to several MeVs. Furthermore, short (ns) pulses must be

generated because one must keep track of the departure time of the neutron to later localize the scattering

event. Finally, the neutron beam must be collimated, which limits the usable fraction of particles

generated. The result is that a large, laboratory-type accelerator must be used, making the technique very

expensive. PFNA also requires complex mechanical motion to scan the object, and is not scalable in size

because, in theory, only one neutron at a time can be present in the inspection volume.

9.2 The basics of Fast Neutron Analysis

The basis of fast neutron analysis is the inelastic reaction:

^X +n-^X +n'+ y (9

198

(9.3)
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The threshold energy of these reactions, whose cross section is in the order of tens of millibarns (about

200 mb for the most favorable case of '2 C), is the energy of the emitted y-ray, which is peculiar to the

target (Figure 9.1). To identifey targets, then, a spectrum of the y rays emitted by the object is acquired.

The quantity of different elements can be worked out by counting events in each full-energy peak after

background subtraction but another, more efficient technique, can be used to utilize events outside the

peak. The idea is to decompose the acquired spectrum in terms of some known calibration spectra.

9.2.1 Spectral deconvolution

The idea of spectral deconvolution is best explained with an example. In an exploratory

experiment two sources, a 60Co and a 137Cs source, were used to simulate the emission of two nuclides.

Four counts were taken with a 10 x 10 x 10 cm 3 NaI(Tl) scintillator connected to a PC-based Multi-

Channel Analyzer via a Camac module. First, the 60Co source was put on the detector and a spectrum
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acquired (Figure 9.2, top left). This was the first calibration spectrum. Then, without altering the position

of the 60Co source to maintain the geometry constant, the '37Ce source was added on the detector and a

second spectrum, the sum spectrum, was taken (Figure 9.2, top right). The third spectrum, the '37Ce

calibration spectrum, was collected after removing the 60Co source (Figure 9.2, bottom left). Finally, all

sources were removed to acquire a background spectrum. All counts were taken over a real time of 120

seconds.

The idea of spectral deconvolution is to try to reconstruct the sum spectrum from the two

calibration spectra. A first guess would be that the sum spectrum is just the sum of the other two.

Unfortunately, this is not true because we would be double counting background. In fact, calibration

spectra are not background free, but are the sum of a spectrum due to the source alone and a background

spectrum. In symbols, if naught indicates the ideal background-free spectrum:

(9.4)Co(i) = Coo(i) + b(i)

and

(9.5)Cs(i) = Cso(i)+ b(i)

where i indicates the spectrum channel. The sum spectrum, is:

s(i) = so(i) + b(i) (9.6)
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Figure 9.2: raw calibration, sum and background spectra.
Calibration coefficients: slope = 5.7597 keV/channel
offset = 227.8542 keV

Table 9.1: table of coefficients k for the example of
Figure 9.2. The standard deviation was assessed with a
MonteCarlo simulation that, assuming a mean value
equal to the collected data, added an estimate of
statistical noise and calculated the resulting variance of
the coefficients.
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where

so(i) = CoO(i) + Cso(i) (9.7)

while the sum of the spectra is

Co(i)+ Cs(i) = Coo(i) + Cso(i) + 2b(i) (9.8)

which is not the sum spectrum:

Co(i)+ Cs(i) = so(i) + 2b(i) # s(i) (9.9)

The conclusion is that the sum is reconstructed, ideally, by summing the two calibration spectra

and by subtracting background, which is making a linear combination of the three spectra Co, Cs, and b

with coefficients, respectively, 1, 1, and -1. However, due to the statistical nature of nuclear counts, this is

true only in the limit of a very long acquisition time or for average values. In real cases we can only

verify that these coefficients are within a few standard deviations of their expected value. An estimate can

be obtained by writing a system of equations with fewer variables than equations and look for the least-

mean-square-error solution. In fact, for every energy channel:

k, Co(i) + k2 Cs(i) + k3 b(i) = s(i) (9.10)

where k1, k2 and k3 are three coefficients proportional to the quantity of the corresponding element and

the subscript i indicates the energy channel. In this case 499 channels were used so i = 1, 2, ... , 499 and

the system is made by 499 equations in the three unknowns k1, k 2 and k 3. The system of equations can be

written in matrix form:

C k = s (9.11)

where C is a 499 x 3 matrix whose columns are, respectively, the cobalt, cesium and background spectra,

k is the 3 x I column vector of components k], k2 and k 3, and s is the 499 x I sum spectrum. The solution

in the least-mean-square sense is given by (Appendix E):

k = (CT C)I CTs (9.12)

The result for the data of Figure 9.2 is reported in the first column of Table 9.1. Even if

agreement within 11% was achieved, deviation can not be explained by statistical fluctuations, because
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the disagreement is in the order of 5 standard deviations or more. Indeed repeating the experiment taking

four new sets of counts yielded similar results.

The problem was identified in the different activity of the two sources. Since the 60C source was

stronger than the 'Ce source by a factor of 3, the live count time for cobalt was lower than that of

cesium, which then appears as a more intense source than it actually is. The algorithm, then, tends to

compensate, reducing the relative coefficient. The dead time correction can be carried out, for all four

spectra, channel by channel. For cobalt the correction formula is:

CoC - Co-(9.13)
I1- Co

where CoCj is the corrected spectrum, t is the dead time per event and T the real count time'" (120 s in

our case). For this calculation an estimate of i is needed. It was calculated by adding two contributions,

the dead time associated with a single event, which is comprehensive of detector dead time and analog-to-

digital conversion time (12 ps), and the dead time associated with data transfer from the Camac memory

to the PC of batch of events (32 Rs = 0.0314 s per data transfer / 992 events per transfer). The total is

about z = 44 ps. The corrected coefficients are in the second column of Table 9.1. The results are now

within statistical deviation.

The sensitivity of the results to the value of T is shown in Figure 9.3, where the coefficients are

CobaN

Cesium
1.05 --- - bckg

0.95

0.9

0 1 2 3 4 5
Dead lime.per eent (s) x 10

Figure 9.3: dependence of the coefficients on dead time. The value calculated for.our counting system (44 gs) is
shown by the vertical line.

8. The Camac-based system did not have the option of counting for a preset live time that would have made

the dead time correction unnecessary.
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plotted as a function of z. Given the accuracy of -i (a few gs), the result is fairly stable,

9.2.2 Fast neutron analysis: experimental data

The first task on the road to a complete FNA study was to verify the ability to generate and detect

inelastic neutron scattering 7-rays. To do this, samples of different materials were exposed to fast neutrons

and spectra collected in a series of 5-minute acquisitions. Graphite, water, polyethylene, sucrose and

ammonium chloride were chosen because they contain all the elements present in cocaine hydrochloride,

so that an appropriate mix can be used as simulant (see Table 9.2).

In the following experiments the neutron pulse repetition rate was set to 10 kHz with a duty cycle

of 20%, i.e. 20 pts pulses were repeated every 100 pts, allowing an 80 ps interval between pulses. The

neutron flux during the pulse was about 3 x 107 n/s. The geometry of the experiment and the pulse

sequences used are in Figure 9.4.

For each material, two spectra were collected: one in correspondence of the neutron pulse ("fast"

spectrum), the other with the pulse off ("thermal" spectrum). The results are in Figure 9.5, where units on

the y axis are counts per pulse (and energy channel). From theory, carbon peaks are expected at

4.43 MeV, oxygen peaks at 6.13 MeV, nitrogen at 1.63, 2.31 and 5.11 MeV. Hydrogen, not having a

nuclear structure, has no inelastic scattering interactions, so only capture interactions are expected. The

corresponding peak is at 2.22 MeV.

By looking at the results, we can make the following comments (the uncertainty of the following

experimental results is ± I channel = 30.4 keV):

Material Chemical Molecular Moles per il moles Mole Weight Weight
composition Weight of hydrochloride % (g) %

Graphite C 12.011 128 64.64 1537.4 36.02
Sucrose C12H220 11  342.299 4 2.02 1369.2 32.07

Ammonium NH 4 Cl 53.491 11 5.56 588.4 13.78Chloride
Polyethylene CH2  14.027 55 27.78 774.0 18.13

Cocaine
Hydrochloride C2 1H22 NO4C1 387.862 1 100.00 4269.0 100.00

Table 9.2: components of a cocaine hydrochloride simulant. The main goal of the choice of materials was to achieve
the correct atomic composition rather than the correct mass density.
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1. Graphite shows a clear inelastic scattering peak at 4460 keV, with an escape peak at

3974 keV (expected: 4440 - 511 = 3929 keV).

2. Water shows a peak at 2210 keV in both spectra and a minor peak at 6130 keV, with its

escape peak at 5675 keV (expected: 6120 - 511 = 5609 keV), due to inelastic scattering

in oxygen.

3. Polyethylene shows contributions from both hydrogen (2240 keV, both spectra) and

carbon (4550 keV and 4000 keV).

4. Sucrose has contributions from hydrogen (2240 keV), oxygen (6285 keV and 5800 keV)

and carbon (4550 keV). Note that only the right edge of the carbon escape peak is

visible. This is due to the contribution from oxygen, which fills up the space to the left

of the peak, as can be seen from the water spectrum (see Figure 9.6). These counts can

not be due to hydrogen, because its y rays can not contribute above 2.22 MeV. This can
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also be verified on the polyethylene spectrum, which shows two recognizable carbon

peaks in spite of the presence of hydrogen.

5. Except for a peak at 2600 keV, no particular structures are recognized in the spectra for

ammonium chloride. However, this peak is common to all spectra.

To confirm the suspicion that this peak may be due to the energy level 2614 keV of 201Pb present

in the shielding two experiments were carried out. In the first, lead was used as target material; in the
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Figure 9.10: spectra acquired for different time delays of Figure 9.11: spectra collected with different thicknesses
the 16 gs-gate signal: 0, 16, 32, 48 and 64 Its. Note that of polyethylene neutron shielding and 4 inches of lead y
for the first delay the contribution of fast neutrons is still shielding.
evident. Lower threshold set at 1500 keV.

second, the amount of lead shielding, that originally surrounded the detector completely, was reduced to

that necessary, on one side only, to stop the y radiation coming directly from polyethylene neutron

shielding. Using lead as a target amplifies the low energy part of the spectrum (-~1200-4500 keV): in

particular the peak, now at 2550 keV, is enhanced (Figure 9.7).

Reducing the amount of lead shielding around the detector confirms the result because the peaks

disappear (Figure 9.8). However, as expected, background increases and other peaks come into view

(2150, 5615, 6130 keV). These may be due to hydrogen and oxygen present in the room walls. This

hypothesis was confirmed by moving the detector away from the wall for the following experiments.

Overall, these results confirm that the experimental setup can see 7-rays from carbon, oxygen and

hydrogen. However, the neutron background is still sufficiently high to mask fast interactions on nitrogen

and chlorine. Some more aspects of the system needed to be investigated to reach optimal performance.

9.2.3 System Optimization

To test if a pileup rejection circuit would be beneficial for the collection chain, two measurements

of the same carbon target were taken. It can be recognized from Figure 9.9 that the count rate is

sufficiently low that the only effect of the rejector is to lower the counting efficiency, without affecting

the overall shape of the collected spectra. Quantitatively, an integral of 1,889,080 counts was obtained

excluding the rejection circuit, versus 1,730,485 counts obtained with the rejector, for a difference of

158,595 + 1,902 (1 a). These numbers imply that the counts per pulse are 0.63, confirming that, at least at

this neutron pulse frequency and flux, pile-up rejection is not critical.



§9.2 The basics of Fast Neutron Analysis
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a) b)

Figure 9.12: graphite spectrum decomposition. a) Background can be estimated by fitting and exponential curve to
the data to the left and the right of the peak region. b) The curve can be subtracted from the raw data to estimate the
net signal.

The dependence of the spectrum on syncronization with the neutron pulse was assessed by taking

spectra after delaying a 16 ps gate by 0, 16, 32, 48, and 64 pLs with respect to the shut off signal of the

accelerator pulser. In Figure 9.10 the first spectrum still shows the presence of fast neutrons. This is due

to the finite time needed to actually shut the accelerator beam off, which suggests not to gate the Multi-

Channel Analyzer directly on the pulse signal to the accelerator but to introduce some delay. The optimal

settings used for later experiments were a 20 ps gate delayed by 12 ps. All other spectra are similar in

shape and magnitude, showing a very slow overall signal decay.

The effect of the thickness of polyethylene shielding was the goal of the next series of tests. Since

the target is in contact with the detector, adding polyethylene is expected to reduce background counts,

but also to increase the source-to-target distance, reducing signal from the target as well. Indeed the

results show that fewer counts are obtained with 30.48 cm of polyethylene. However, when the thickness

is reduced, the signal increases significantly but so does background. At 15.24 cm of polyethylene the

background increase clearly more than offsets the signal gain (Figure 9.11). A more quantitative

description can be given starting from an empirical fact. At least for graphite, peaks seem to appear on top

of an exponential background that can be fitted using data from the sides of the peaks and then stripped.

In Figure 9.12a the procedure is shown for one of the spectra. Signal was defined as the integral of the net

(total - extrapolated background) counts in the peak region and noise was defined as the standard

deviation of signal. Results are in Table 9.3 and confirm the intuition that the SNR decreases for

decreasing thickness. In conclusion, 20.32 cm of polyethylene were used for the next experiments.

The dependence of the spectra on the source-to-detector distance was investigated next. As

expected, the signal is strongest when the target is in contact with the detector and gradually vanishes to
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x 10 Effect of distance: 0, 4, 8, 12, 16"
2.5

2 -

G-) z3 -5-

0.5-

0 1 00 2000 3000 4000 5000 6000 7000 8000
Energy (keV)

Distance (cm) SNR

5.08 94

15.24 140

25.4 182

30.48 179

Figure 9.13: effect of target-to-detector distance on Table 9.3: signal to noise ratio for the curves of Figure
spectrum. From top to bottom, the spectra collected at 0, 9.12b
5.08, 15.24, 30.48 and 40.64 cm. For increasing
distance carbon peaks disappear in background.

reach almost zero at 40.64 cm (Figure 9.13). This means that the arrangement in use, with the neutron

source at the detector's side with 20.32 cm of polyethelene shielding followed by 10.16 cm of lead

shielding is hardly suitable for coded aperture imaging, in light of the distance needed to accommodate

the mask between object and detector.

9.2.4 Quantitative assessments

After verifying that the system was capable of recognizing the qualitative properties of the target

materials, quantitative experiments were tried. The first was the simplest: two bricks of graphite were put

in front of the detector in a geometry such that they would look the same to the detector as much as

possible (they were on top of each other). Given the geometry, when two bricks are in front of the

material, twice as many net counts were expected (Figure 9.14). The ratio of the counts can be assessed

by subtracting the background spectrum and then dividing the total number of counts. The result is

1.9766 + 0.0364, after deadtime correction.

Given the good success of the experiment above, a more challenging trial was attempted,

involving more materials. Three samples of similar geometry but different compostion (water, graphite

and sucrose, see Table 9.4) were irradiated for a nominal time of 10 minutes. These materials were chosen

because sucrose (C12H2 20 11) can be thought to be the sum of 12 atoms of carbon and 11 molecules of

water, for a molar ratio of 12/11 _ 1.09. In principle, the sucrose spectrum can be reconstructed with a

linear combination of Water and graphite calibration spectra. The coefficients can be obtained by a least

mean square technique as explained in §9.2.1.
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Energy (keV)

Figure 9.14: a quantitative test. The top curve
shows the spectrum collected with two bricks of.
graphite in front of the detector. The middle
curve was collected with one brick only, the
bottom curve with no material at all (background
count).

Weight mol mol (Water) mol (C)

Sucrose 765 2.237 24.61 26.84

Water 829 46.06 46.06 -

Carbon 1063 88.58 - 88.58

Table 9.4: weight of the samples used for the sucrose
experiment

The samples were placed close to the detector. The neutron source was at the detector side,

shielded by 10.16 cm of lead and 20.32 cm of polyethylene. The resulting spectra are in Figure 9.16. A

comparison between the measured spectrum of sucrose and the spectrum reconstructed as linear

combination of water, graphite and background is shown in Figure 9.15. Note that despite the enlarged

energy scale, the reconstruction is still very good.

From the coefficients the carbon to water ratio in the sample and the total mass of the sample can

be estimate. The results are in Table 9.5, where good agreement can again be verified.

Xo10 Sucrose as sum of Carbon and Water

Sucrose
10 - - Reconstruction

C: 9
-0 8

7I

a ,

3

3500 4000 4500 5000 5500 6000 6500
Energy (keV, 26.9 keV/channel)

Figure 9.15: measured and reconstructed spectra of
sucrose. Only the particular of the 4000 to 6500 keV
zone is shown to have sufficient enlargement.

x 10-4

11

10

61

'E 5)

3

35

Sucrose as sum of Carbon and Water

---- Sucrose
- Carbon

Water

N-

N.. /

'-'N

00 4000 4500 5000 5500 6000
Energy (keV, 26.9 keV/channel)

6500

Figure 9.16: spectra collected for sucrose, carbon and
water.
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Measured Actual Difference
Total mass 864±28.7 808±7.09 +7%

(g)
Molar ratio 1.13±0.07 1.09 +4%

C_/__1_1

Table 9.5: total mass and molar ratio of the sucrose experiment. Comparison between expected and measured results

9.3 A Id carbon image

The detector that will eventually be used for CAFNA is still under development. In its current

configuration it is made of 64 10 x 10 x 10 cm 3 NaI(TI) detectors arranged in a 8 x 8 array. All tubes are

associated with a dedicated multi-channel analyzer which acquires data when a common gate signal is

given. This is triggered by the sum signal over all phototubes.

To test the detector with a coded aperture a simple experiment was tried (Figure 9.17). Only a

horizontal line of seven detectors facing a table was used. On the table were arranged a coded aperture

and a graphite block, which, bombarded, would be the y-ray source. The neutron generator was put

immediately under the table, below the source. The detectors were shielded from direct neutrons by lead

Figure 9.17: experimental setup. The neutron generator, not shown, is under the object. In the experiment with a
single source, the graphite block was put exactly at the center of the object space.

Position

1 2 3 4 5 6 7

Detector array 10cm

5 cm

Mask Central period

10 cm

Object
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212 §9.3 A Id carbon image

blocks placed under the table, between the neutron source and the detector.

The aperture was a Id URA of 7 positions, with four open holes. The sequence used was

0 0 1 0 1 1 1 and it was extend by 3 positions on each side to provide mosaicking. The positions were 5-

cm-wide and 5-cm-thick lead was used to close opaque positions. Since the mask-to-object distance and

the mask-to-detector distance were the same (25 cm), magnification was 2 (eq. (2.74)). For this crude

experiment a = 1 but sources were positioned to minimize border effects (§5.2.1). The active area of the

detector was therefore 70 cm and the field of view (eq. (2.79)) 70 cm for a geometric resolution of 10 cm

(eq. (2.87)). This configuration is expected to resolve the position of a 10 x 10 x 10 cm block of graphite,

which, not exceeding the system resolution, should appear as a point source. Two 5-minute acquisitions at

3 x 10 7 n/s, one without the source to assess background, were completed and the signal at each detector

was defined to be the sum over all channels of the difference of the spectra acquired with and without the

blocks. The signal was processed by simply taking a correlation with the decoding array, in this case

coincident with the mask (Figure 9.18).

The experiment was successful because one peak is clearly visible, but sidelobes are far from

being even, a deviation that can not be explained by statistical fluctuations. Since the object is a point

source at the center of the field of view, zero-order correction was expected to eliminate these artifacts

(§5.4.3). Decoding was repeated after dividing the signal by a cos"(O) factor where 9 is the incidence

X 10 Position 1 X10 Position 2 x 1 Position 7

6 6 6

4 4 4

0202 02

0 0 0
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000

Energy (keV) Energy (keV) Energy (keV)

X 10 Position x o10' Position 4

6 6

f 4 4 x 10 tecoded 1D image
04.5 - --

2 2

0 04
2000 4000 6000 8000 2000 4000 6000 8000 U)

Energy (keV) Energy (keV)

3.5-
X10 Position 5 x 104 Position 6

6 6 -

04 042.5
2 2 -30 -20 -10 0 10 20 30
0' 0 Position (cm)
2000 4000 6000 8000 2000 4000 6000 8000

Energy (keV) Energy (keV)

Figure 9.18: seven spectra acquired in the 1d experiment with the single graphite block. The decoded image shows
uneven sidelobes with fluctuations not explained by statistical deviations.
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1P imioge
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Figure 9.19: a) reconstruction of the point source of the one block experiment with and without zero order
correction. b) Center of mass of the reconstructed image (ideally 0) as a function of the Cosine power p. Best
agreement for p = 3. c) Reconstruction for p = 0, 1, ., 5.

angle at the center of the detector.

Figure 9.19 shows that, as expected, best results are obtained for p = 3, even though deviations

are still beyond statistical fluctuation. This may be due to the poor sampling strategy (a = 1) and mask

thickness.

The next trial aimed at reconstructing the position of two sources to verify resolution. The sources

were placed at 10 cm from the center of the field of view, symmetrically about the center. The two blocks

were approximately the same and were illuminated in the same way by the neutron sources, that was

placed under the table, below the center of the field of view (Figure 9.17). The reconstruction is at the top

row of Figure 9.20. The two sources are correctly placed and resolution is confirmed. However, the

relative brightness of the sources is different from expected because the symmetry of the experiment does

not justify that the left peak be lower than the right beyond statistical fluctuations. Indeed repetition of the

experiment showed consistently a lower left peak. Once again, however, taking an anti-mask picture and

adding the results led to the expected result. This time zero-order correction is not sufficient (but still

necessary) because the object is not a point at the center of the field of view.

Finally the experiment was repeated to check if the coded aperture can provide an advantage over

the pinhole. From the formulae of Table 4.1 the expected SNR advantage is:

SNR -, + (9.14)
SNR 1+ 2

where a half-open (M)URA pattern was assumed.
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Mask pattern
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Figure 9.20: two blocks of graphite at 10 cm from the
center of the field of view. Positions are reconstructed
correctly but a quantitative reconstruction of intensities
needs near-field artifact removal.

Figure 9.21: comparison of coded aperture to pinhole.

The two terms making the SNR advantage have a simple interpretation. The first is the maximum

theoretical SNR advantage, obtained for Ay = I and = 0, and is equal to [I. The second factor is

always less or equal to one and represents the loss from ideality due to distributed sources and

background.

In the case of two graphite blocks, y = 0.5. The parameter was determined from experimental

data to be about 28 and N is 4 for the mask and 3 for the anti-mask. Substitution of these values results in

an SNR advantage of about 1.5, which is consistent with the approximate equivalence of the two plots of

Figure 9.21. This result should come as little surprise because in this Id example the number of open

holes can not be large, so even the maximum theoretical advantage can not be large. Numbers look

different in a more realistic application.

9.4 Design of a code aperture for CAFNA

A realistic problem in contraband detection could be that of finding some 50 kg of material in a

cargo of size 2 x2 x 2 M3. Assuming a density of 1.2 g / cm3, the volume of interest is 35x35x35 cm3: a

system resolution of 20 cm is sufficient. From eq. (2.91), the mask should have 10 x 10 positions. Since

URAs of this dimension do not exist, a 11 x 11 MURA pattern is chosen. It has 60 open positions, and

offers a little gain in FoV at constant resolution (FoV = 2.2 m). The detector currently available is a 8 x 8

square of 64 10 x 10 x 10 cm 3 NaI(Tl) scintillators, which provide the necessary energy resolution.
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Eq. (2.96) and eq. (2.87) lead to pm= 10 cm and m= 2, which, from eq. (2.74), means that the mask

should be midway in between object and detector, At 5 MeV, penetration is considerable (1% for 9.7 cm

of lead). However, the mask pixel is 10 cm wide, and the high thickness does not lead to collimation

artifacts much worse than those seen for the prototype mask.

It should be noted that the projection of the mask measures 2.2 x 2.2 m, but our detector is only

80 x80 cm. While in a real system a larger detector can be built, we can also think of scanning the

projection with our smaller detector or, better yet, move the mask so that the different parts of the

projection are, in turn, shifted onto the detector. This would be more practical, because the mask, lighter

and not wired, would have to be moved by smaller shifts, and advantageous, because incidence angles at

the detector would be lower, reducing near-field artifacts.

Since N = 60, 'the maximum advantage is 7.75. The reduction depends on and Y. The most

unfavorable case is = 0 and uniform object, for which w = 1/ NT at all reconstruction points. Since the

array is 50% open y = 1/ 2N: the advantage is reduced to i/421, i.e. the pinhole is actually favored. This

is actually the case in low-background applications, such as medical imaging. In a CAFNA application,

however, the background due to both y rays and neutrons is typically very high: with the experimental

values = 28 quoted above, the value of y, limited to 1, is irrelevant because eq. (9.14) reduces to

N/2. For a mask with 60 holes, the SNR advantage is 5.5. This value should not be underestimated

because it corresponds to a 30-fold reduction in time or activity.

9.5 Summary

Good results were obtained from FNA. Some further improvements were achieved for the FNA

experiment by replacing all polyethylene shielding with lead (as seen in Figure 9.4) and by smoothing the

data, after background subtraction, taking the average over five channels. Sample spectra obtained with

this method are in Figure 9.22. Melamine (C3 H 6 N6) is compared to sucrose (C12 H2 20 1 ). Indeed oxygen

peaks are seen in the sucrose spectrum (6.128 MeV) but not in melamine and, vice-versa, nitrogen is seen

in melamine (2.320 and 1.650 MeV) but not in sucrose. By comparison of the two spectra, the 2.320 MeV

peak in melamine can not be due to hydrogen. This improvement, however, concerns only an experiment

with the sample very close to the detector.

In Chapter 4 coded apertures were shown to have an SNR advantage over pinholes for point

sources and high-background situations. While the case of medical imaging can fall under the former

hypothesis, that of contraband detection may fall under the latter. In fact, neutron analysis measurements
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are typically performed in a noisy environment due to the presence of the neutron source. Preliminary

measurements indicate a value of the background high enough to justify use of a coded aperture.

However, even though the advantage over the pinhole may still be large, the absolute value of the SNR

may be very low. This may be a great difficulty to overcome especially when it is considered that in

CAFNA materials are eventually identified relying on calculated ratios of elements, such as the carbon-

to-oxygen ratio. To discriminate contraband from benign material, such measurements have to be within

10% or so ([2]) and propagation of uncertainty may further jeopardize the precision of the estimated

ratios to the point of thwarting identification.

This discouraging picture applies to the most favorable element, carbon. When other elements are

considered, it seems very dubious that the current detector will reveal them beyond 50 cm, especially

when a three-dimensional object is used, with the ensuing scatter and attenuation problems.

Background subtracted and smoothed with a 5-channel tophat
7000 1I1

N 1650
6000 - N 2320-Sucrose

-.-- Melamine
5000-

4000--

DS3000 --
0

2000-

H 2220
1000 - C 4440

06128
0

I I I I

1000 2000 3000 4000 5000 6000 7000 8000
Energy (keV) 26.88 keV/channel

Figure 9.22: spectrum after background subtraction and smoothing over five channels. A melamine is compared to

sucrose. Note the presence of nitrogen in melamine and of oxygen in sucrose. First and second escape peaks evident

for oxygen and carbon. Other minor peaks can be attribute to oxygen (3.710 MeV) and nitrogen (5090 MeV).
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The tools of Nuclear Medicine available today are the arrival point of a technology largely

optimized for human use. Physics has set the limits of radiation detectors in such a way that the resolution

attained is sufficient for studies of adults, but poses limits on pediatric applications. This limit is even

more severe in small animal imaging. Solutions proposed in literature are extreme pinhole and collimator

designs that do generate beautiful images, but whose practical applications are restricted by time and

activity constraints. In this thesis a sophisticated multiple-pinhole system, a coded aperture camera, was

proven both theoretically and experimentally to be capable of high resolution and SNR at the same time.

1.66-mm system resolution was demonstrated and sub-millimeter resolution shown theoretically possible,

under the same activity and time limits.

The result is not universal and relies on many assumptions. All were explored in detail. The first

is on the field of view. Ultimately, the high resolution achieved is due to the use of a large detector in

combination with a small filed of view, which allows high magnification. A second requirement for good

performance is that activity in the object be concentrated in a small fraction of the field of view. Finally,

the object should be thin because ideal imaging properties are limited to planar images. Despite their

number, all these assumptions are satisfied in a number of practical cases. In particular we.focused on

mouse imaging. A mouse can easily fit in the 9 x 9 cm design field of view, which can beimaged with a

magnification of 4.3 with a commercial Anger camera designed for human use. The thickness of a mouse

is just about equal to the depth of focus of the camera, so that nearly artifact-free pictures can be taken.

Typical Molecular Imaging studies are aimed at locating point sources in the body or concentrate on a

part or organ of the animal and do satisfy the requirement on the spatial extent of the source. As

experiments showed, the concurrence of these conditions makes mouse studies an ideal application for the

coded aperture cameras designed in this thesis.

A more subtle limitation affects images where almost all activity is concentrated at a very few

points. In typical cases the small activity spread around the body is still useful because it images the body,

and thus provides a reference point for locating the point sources. While this works well in a collimator or

pinhole study, with a coded aperture, while it is true that the bright points are imaged with high resolution

and SNR, the rest of the activity is imaged with a very low SNR and may be lost in the flat statistical
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noise coming from other peaks, thus making difficult the localization of the high-SNR points. However,

workarounds such as targeted double injections (one to provide the shape of the body) are possible.

There were three major difficulties overcome in the design of the camera: optimization of the

SNR, optimization of the dimensions of the aperture, and near-field artifact reduction. The first problem

was tackled by finding a general form for results (sometimes contradictory) already available in literature

and then applying it to the maximum variety of pattern families found in an extensive literature search.

The experience gained in the investigation greatly helped in understanding the limitations of the SNR in

coded aperture imaging. The last problem was solved within the framework of a general and original

theory capable of predicting the shape and origin of artifacts in near-field coded aperture imaging.

Despite the very abstract nature of the treatment, very practical remedies were proposed and were

incorporated in the mask design. The mask / anti-mask technique found to attenuate near-field artifacts

also turned out to be useful in attenuating mask thickness artifacts. As for the problem of optimizing the

physical dimensions of the aperture, the most challenging dimension was mask thickness. A reasonably

comprehensive and quantitative theory was developed and proven experimentally to be capable of

predicting the factor limiting resolution, which turned out to be Poisson noise for optimally designed

masks. This theory completes a logical and general design procedure for coded apertures. A much

expected conclusion is that the optimal mask depends on the application at hand. For example, a second

mask was designed specifically for high-resolution imaging, but we also showed how the design would

have been very much different if the problem had been that of imaging a high-energy isotope. Future

work on planar imaging can indeed be headed in both directions, as well as to the verification of some

other assumptions of the current design (cross section of the holes, object-to-detector distance). It is

finally worth mentioning the value of computer codes in the design: the prototype mask built proved to

perform as predicted with remarkable agreement.

A great advantage of the coded aperture technique is that it can be retrofitted to existing

technology. From an organizational point of view it is not very much different from one of the many

collimators that already equip Anger cameras. This is even more valuable when it is considered that most

innovative applications rely on a dedicated detector, which often entails considerable costs on top of those

of the detector itself.

A coded aperture camera for planar imaging seems to be ready for application. The last steps are

the construction of an automatic rotator, which must be interfaced to the data acquisition software, a

flange to mount the rotator to the E-Cam, and a user-friendly software interface for the final decoding,

electronic focusing and image display and data management.
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The issue of three-dimensional imaging is still open for exploration. This thesis can only reach

the conclusion that the approach of one-view laminography suggested in some literature is unsatisfactory.

Extension to three-dimensions must pass through a multiple-view system and is fundamental to the

practical use of the coded aperture technique. An application of enormous interest is, for instance, breast

imaging, where small hot spots must be located with the best possible resolution and SNR for early

diagnosis.

The application for which these studies were originally started, CAFNA, seems to be a very

difficult case. The advantages of coded apertures are not as large as first thought, but even before any

imaging is considered, the problem of extracting any signal from a large neutron background seems very

serious, even for the most favorable isotopes. The problem already limits applications with isolated

sources and can not but get worse when 3d objects must be located in space in the presence of self-

shielding and scattering, especially in light of the accuracy needed for measurements. In any case, the

detector actually available, while it seems to have reasonable spatial and energy resolution, is certainly

not large enough for practical uses. Current acquisition electronics, based on Camac modules, is also a

limiting factor, but little optimization has been so far attempted and is probably not the ultimate limiting

factor when the more stringent physical limitations of the system are considered.
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Appendix A CONVOLUTION AND CORRELATION THEOREMS

This Appendix gives the proof of some theorems used in the text. Proofs are given in Id for

simplicity of notation when the extension to 2d is simple.

A.] Definitions:

Convolution:

Correlation:'

Correlation:

F * G = F(x)G(y -x)dx

F x G = F(x)G(x-+y)dx

F O G = F(x)G(x G)1x

@ indicates sum modulo D. x @ y is x + y if 0 :(x + y) <D and the remainder of the division (x + y) / D

otherwise.

A.2 Theorem 1: correlation with a constant.

Be F a constant function. Then:

F x G JF(x)G(x +y):lx = F -G(x+ y)dx=FJG(x + y)dx=FJG(c)d o

A.3 Theorem 2: (OxA)®G=O*(A®G)

Proof:

(ox A) 0 G = O(x) A(x +y) dx)G(y S z)dy = O(x) {fA(x + y) G(y0 z)dy dx

By replacing 4= x+y

jO(x){ A(x + y) G(y ( z)dy dx f=O(x) { A() G(@ -x@ z)d dx f=O(x)H(z - x)dx =0* H

where

(periodic)



Convolution and correlation theorems

H(z - x) = A(@)G(@ -x G z)d4

Since it is recognized that H = A 0 G, the theorem is proven.o

A. 4 Theorem 4. relationship between correlation and convolution A x G = 91(A) * G = 91(G x A)

Proof:

A x G = fA(x)G(x + y)dx ={(x -> -x) = A(-x)G(y - x)dx = 91(A) * G

(x + y -> z) = JA(z - y)G(z)dz = JA(q)G(ri +y)dz =91(G x A)= A x G

where 91 indicates reflection.o

A.5 Theorem 5: A x (G * 0)=(A x G) * 0

Proof:

Since convolution is commutative:

A x (G * 0) =A x (0* G)= Ax JO(x)G(y-x)dx = A(y)JO(x)G(z-y-x)dxdy
x y x

Changing the integration order:

A x (G* 0)= JO(x)JA(y)G(z--x+y)dydx= JO(x)H(z -- x)dx =0* H = H *0

x y x

where H= A x G.o

A.6 Theorem 6: cross correlation for an ideal pair (A, G) in 2d continuous representation.

In section 2.6 we have to calculate the cross correlation:

A8 (F -Y)® G5 (F )= JJA,, V - G Di.)d 2 F (A. 1)
F

The first step is to substitute the definitions of A8 and G (eq. (2.64) and (2.82)):

A5 0G5 = JJXA 6(---i JXG6 -r-F id 2F (A.2)
t kj
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Inverting summation and integration and carrying out the integration:

A G= ZAi ,Gk + -i> 0r) (A.3)
i,j k,/

It is now convenient to define: = i= u(@ k andj= v qf .With these:

A8 0G5 = Z Au kvGIZG,I(Jl ,) +r)) U>k + 5.)ZG A(A.4)
ukv 1 k, u@k,'l k, l

But (A, G) is a perfect pair, so:

ZG lAu kv@ = 6(u,v) (A.5)
k,l

where 6(u,v)= 1 if u = 0 and v = 0 and 0 otherwise. Finally:

A50 G, = X(F,,, + .)(u,v)=6@05.) (A.6)
u®Ak ,vVl
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Appendix B AVERAGE AND VARIANCE OF THE SIDELOBE

OF A RANDOM ARRAY

B. I Exact calculation

In §2.4.1 the distribution of sidelobe values in the auto-correlation function of a random array was shown

to be:

N N -N

p(n)=( n)N-n)j
NT

(N

Its average value is given by:

(2.40)

N N-N
N n N-n
= ~NT=

N N (N-i1)! j

NT,=] (N-n)!(n-1)!(rN)
Setting m=n-1 and M=N- 1 we reach:

N m (M)Nr -N)
"N) I M -m

N

Using Vandermonde's identity (see note 1 on page 40) this becomes:

N NT- N + M N 2(N -1)! (NT -1)!N2N -pN
NT M ) NT! (N -1)! NT
N

.N

,= n p(n)
(B.7)

(B. 1)

(B.2)
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where p is the density of the pattern N / NT.

The variance can be reached from its definition:

a2, (n - pn)2p(n)=Y n2p(n)-p2,(B.3)

We have to calculate:

Nin(n)= N2NDNTND -N (+ n)N)N)-N . (B.4)
n P NT) n n N -n NT n (n -1)!(N - n)! N -n (34

The substitution m = n-I and M= N-I comes useful again:

n 2 p(n)=N rnrMYNr N) + (MNTN](B5)
1=0(NT] I m) M -iMn j 0 m)M -M

N

With the further substitutions r =m-I and R = M-1:

N ~ RR N- N) +1 M)N-N
j n2p(n)=NN M(MYNT+1(B.6)
n=]N T) HQ ,_ mX )M -m)J(B

N

and, with Vandermonde's identity:

N 2 N 1)Nr-2) NT -1]N 2 (N -1) 2 N 2

Zn2p(n)= t[(N-) +QN 1]]= 2 Y 7(B.7)
N)

Substitution in eq. (B.3) and some algebra lead to:

2 N 2 (NT-N)2 N2 2(1-P)2 P(
N(NT1-1) NTI -(B.8)
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B.2 An interesting approximation

A simpler approach would be to consider that at all open positions coincidences between open

holes of the array and the decoding array occur with probability p. The total number of coincidences

would then be given by the average of a binomial process of N trials with success probability p. In this

case the average would be pN and the variance p (1-p) N. So the average is the same as in the exact

calculation, but the variance is higher by a factor (1-p). This is because in a binomial model some

variance is added by the lack of the constraint that the number of open holes in the decoding array must

be exactly equal to the number of holes in A. In other words, in the exact calculation, trials are not

independent because for every success (failure) the probability of the next success decreases (increases)

because a hole, i.e. some potential for future coincidences, has just been "used" ("left over"). The

binomial model would be accurate if the decoding array were an entirely new random array.
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Appendix C POISSON THEOREMS

C. I Cascade of Poisson and binomial process.

In section 4.2 is stated that the cascade of a Poisson and a binomial random process is Poisson distributed

with mean equal to the product of the mean of the two processes. In this specific problem, the Poisson

process is one of radioactive decay and the binomial process is one of passing or not passing through the

mask at an opaque position. The following proof is carried out with reference to the specific problem but

its validity is general.

Proof:

The probability that x photons be emitted in a time interval T from an isotope with decay constant

X follows the Poisson distribution:

p(x) = eX(C.1)
X!

When the x photons hit an opaque position at the mask they can still pass through the mask with

probability t (transmission coefficient). The probability that y photons pass through is conditional on the

number of arrived photons x and is given by:

p(y Ix) = p'Q -t"- (C.2)

The distribution of the number of photons that pass through the mask is given by the cascade of

the two processes, i.e.:

p(y)= p(yIx)p(x)= (t(1-t)x-Y (C.3)
x=y X=y X!

Expansion of the binomial coefficient and rearrangement gives:



Poisson theorems

t' (X T~
p(y) =Ue- (kxT)yZ(I-t)y1! ,, (x-y)!

Substitution of =x-y gives:

(C.4)

p(y) - eXT(XT)yZ (I
Y! . o 1) ! y!

IT )Y e-=)XT T (C.5)
(2 Ty y!

which is a Poisson distribution with mean tXT. E

C.2 Convolution of two Poisson processes

In section 4.2 is used the result that the sum of two Poisson variables is also Poisson distributed.

Proof:

The probability that two random variables x and y, Poisson distributed with mean X and g add to

n is given by:

11+00 e tp-lXe-xXX

p(n) = ZP(Y =n- xIx)p(x)I= (C.6)
X=O x=Y (n-x )! x.

Some rearrangement and recognition of Newton's expansion of the binomial gives:

-+ 1) 1 ~xn--xm -s1 n -p1

p(n) = e 14tn! = e znx?1_x = e !(X + p)(C.7)
n!X=O (n - x)!x! n!Xx) n!

which shows that n, the sum of two Poisson distributed variables is Poisson distributed with mean equal

to the sum of the means. n
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Appendix D SELECTED COMPUTER CODES

In this Appendix are gathered the most relevant computer codes. Codes were written for Matlab

5. These codes were meant to be fast more than readable.

D.] Mask generation

The following program generates MURA patterns in the pattern centered shift and the associated

decoding array. It also returns the symmetry of the pattern. It calls the routine shif t.

% MURA2 MURA pattern generation

% [mask,g,sym]=MURA(n) generates the p x p 2D MURA

% returns mask, decoding array

% and pattern symmetry (1 sym, -1 antisym)

% s=shifted f=fast

function [mask, g, sym]=mura2sf (p)

if isprime(p)==

error('p must be prime')
end

ci=ismember([O:p-1],mod([1:p].^2,p))*2-1;

a= ((ci'*ci) +1) /2;

a( , 1)=ones (p, 1) ;
a(1,:)=zeros(1,p)

g=a*2-1;

g (1, 1)=1;

a=shift(a,floor(p/2),floor(p/2));

g=shift(g,floor(p/2),floor(p/2));

mask=a;

sym=prod(ci([2,p]));

The routine shif t is:
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function [m]=shift (m, hs, vs);

[rm, cm] =size (m);
m=[m(rm-vs+l:rm,cm-hs+1:cm) m(rm-vs+1:rm,1:cm-hs);

m(1:rm-vs,cm-hs+l:cm) m(1:rm-vs,1:cm-hs)];

Once the mask is generated it must be mosaicked using the lines:

[rm, cm] =size (mask);

npm=[rrm,cm];

mask=[mask(ceil(npm(l)/2)+1:npm(l),ceil(npm(2)/2)+l:npm(2)),

mask(ceil (npm(1) /2)+1:npm(1) ,:),

mask(ceil(npm(1)/2)+l:npm(1),1:floor(npm(2)/2));
mask(:,ceil(npm(2)/2)+1:npm(2)), mask, mask(:,1:floor(npm(2)/2));

mask(1:filoor(npm(1)/2),ceil(npm(2)/2)+1:npm(2)),,

mask(i:floor(npm(1)/2),:),

mask(1:floor(npm(l) /2), 1:floor(npm(2) /2))];

The mosaicked mask must then be processed by the routine cluster, whose output should be

stored in the variable blocks, for instance by launching cluster with the command:

[blocks] =cluster (mask) ; . This is the clustering acceleration procedure mentioned in section

3.2.

function [blocks]=cluster(mask);

% Converts matrix from matrix format to rect blocks

blocks=[];

passed=zeros(size (mask));
[rm,cm]=size(mask);

for i=l:size(mask,l)

for j=1:size(mask,2)

if (mask(i,j)*(1-passed(i,j)))
k=1;

while k

width=k;
if (j+k<=size (mask, 2));

k=prod(mask(i, j :j+k)) * (k+1) * (i-passed(i, j+k));
else

k=O;
end

end
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1=1;
while 1

height=l;
if (i+l<=size (mask, 1));

l=prod(mask(i+l,j:j+width-1))*(l+1);

else

1=0;
end

end

yc=mean(rm/2-[i,i+height-l]+.5);

xc=mean(-cm/2+[j,j+width-1]-.5);

blocks=[blocks; yc xc height width];

passed(i:i+height-1,j:j+width-l)=ones(height,width);

end

end

end

Finally, the six variables npm, rm, cm, mask, g and blocks must be save in a file that

will be loaded to import mask data in the projection routine.

D.2 Projection

The actual projection routine is launched by a larger file that prepares all inputs needed, from the

mask, to all physical dimensions, the shape of the object and so forth. This file also goes on to add noise

and launch decoding. The following is just an example of the (very!) many that were used. It simulates

the projection of a point source through an NTHT MURA 62 x 62.

% Gives FoM for a point source, thick mask with several slices
% All dimensions in cm
% Mask thickness is simulated with the average fraction algorithm

clear

detzoom=1;
npix=256;

alpha=2;

Dtot=[61.4 61.4]/detzoom;

dp=Dtot /npix;
npd=min([floor([38.7 53.3]./dp);[npix npix]]);

% Fixed parameters
rd=npd (1) ; cd=npd (2);
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D=npd. *dp;
fwhm=0.37; nbit=16;

sigma= (fwhm/ (2*sqrt (2*log (2))) ) /dp (1);

sigma=sigma^2;

H=[9 9];

% Dependent variables

load mura62

mp=1. / (npm. /H+1. / (alpha*dp))
m=alpha*dp. /mp

d=npm. *mp

op=H. /npm

npdeff=npm*alpha

Deff=dp. *npdeff

mu=1.563; rho=19.3; % At 140 keV in W (1.88 xcom)

z=40;

tr=.01;

a=z/m(1);

b=z-a;

psi=atan ( (Deff+H) /2/z);

% Define object

A=10; % Activity (uCi) at point (not on an area)

o=zeros (3);

o(2,2)=1;
realop=.09*[l 1];

o=o/sum(o (:) ) *A;
ro=size(o,1); co=size(o,2);

% Activity calculations

ster=4*atan((prod(dp)/4)/(z*norm([dp z])));

time=60; % Time in s

o=o*3.7e4*ster/(4*pi)*time;

mt=-log (tr) /mu/rho;

nslice=7;

if tr==1, nslice=l; end
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mts=mt/ns lice;

murhomt=mu*rho*mts;

av=linspace (a-mt/2+mt/nslice/2, a+mt/2-mt/nslice/2, nslice)

t=cputime;

pr=zeros (rd, cd);

for i=l:ro
i/ro

for j=l:co
if o(i,j)

yo=(ro/2-i+.5)*realop(1);
xo=(-co/2+j-.5)*realop(2);

if length(av)==1

am=av; oa=am; b=z-am;

prmem=pcpaffnnpotav (o(i,j),xo,yo,blocks,rd,cd,mp,mp,oa,b,D,dp,mur

homt);

else

[X,Y]=meshgrid(linspace(-(D(2)-dp(2) )/2, (D(2)-

dp(2))/2,cd),linspace(-(D(1)-dp(1))/2,(D(I)-dp(l))/2,rd));
X=X-xo; Y=flipud(Y)-yo;

cosalpha=cos (atan (sqrt (X .^2+Y.^2) /z));

am=av(l); oa=am; b=z-am;

prfp=ppaffnnpotav(xo,yo,blocks,rd,cd,mp, mp,oa,b,D, dp);

for am=av (2: length (av))

slice=find(am==av);

oa=am; b=z-am;

[prfprime]=ppaffnnpotav(xo,yo,blocks,rd,cd,mp,mp,oa,b,D,dp);

prfav= (prfprime+ (prfp-
prfprime).*exp(murhomt./cosalpha)).*(prfp<=prfprime)+(prfp+(prfpr

ime-prfp) .*exp(slice*murhomt. /cosalpha)) .* (prfp>prfprime);

prfp=min (prfp,prfprime);

end

prmem= ( (l-prfav) . *exp(-

murhomt*nslice./cosalpha)+prfp) .*(cosalpha.^3)*o(i,j);

end

pr=prmem+pr;

end

end

end

b=z-a;

prgeom=pr; clear prfp prfprime prfav prmem
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writetime(t,'Projection time');

% Noise addition

disp('Adding noise ... ')

if sum(pr(:))

if sigma
% Blurring

disp( ['Blurring: standard deviation (pixels) ',num2str(sigma) ]),

drawnow

[X,Y]=meshgrid(linspace(-cd/2,cd/2,size(pr,2)),linspace(-

rd/2, rd/2, size (pr, 1) ) ) ;

gau=l/(2*pi*sigma)*fftshift(exp(-((X-(l-rem(cd,2))*.5).^2+(Y-(1-
rem(rd,2))*.5).^2)/(2*sigma)));

pr=cvtwo (gau, pr);

end

% Poisson noise

disp(['Poisson SNR (sqrt(N)): ', num2str(sqrt(mean(pr(:))))),

drawnow

pr=randp(pr.*(pr<15))+round(pr+(sqrt(pr) .*randn(size(pr)))) .*(pr>

=15) ;

% Dynamic range

disp(['Dynamic range: ',num2str(nbit),' bits']), drawnow

pr=pr+ (2^nbit-l) * (pr> (2^nbit-1));

end

[X,Y]=meshgrid(linspace(-D(2)/2,D(2)/2,cd),linspace(

D (1) /2,D(l) /2, rd) ) ;

c=cos (atan (sqrt (X.^2+Y.^2)/z) ) .^3 ;

prc=pr./c;

% Decoding
[decim,prcut]=decd(prc,round(alpha),dp,g,l,mpO);

The heart of the code is the subroutine pcpaffnnpotav:

function

[prtot,pr,pratt]=pcpaffnnpotav(o,xo,yo,blocks,rd,cd,mp,mptfarbD,
dp,murhomt)

% p=projection, c=cosine, P=penetration, a=absolute number of counts,

ff=very fast

% nn=No noise po=point object, t=tapered holes, av=average attenuation
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% o=object (a scalar!), rd(cd)=detector rows (columns),

% define object so that its point values are uCi/prod(realop)

% mp=mask pixel size, a=object plane

% D=detector size, dp=detector pixel, N=counts per detector pixel

% mt=mask thickness, mu=attenuation coefficient

% Projection
%----------

pr=zeros (rd, cd);

% Convert blocks from pixels in cm

blocks=[blocks(:,1)*mp(1) blocks(:,2)*mp(2) blocks(:,3)*mpt(1)

blocks (:,:4) *mpt (2)];

% Select object real position

m=l+b/a;

z=a+b;

ytm=(yo*b+D(1)/2*a)/z;

ybm= (yo*b-D (1) /2*a) /z;
xlm=(xo*b-D(2) *a/2) /z;

xrm=(xo*b+D(2)*a/2)/z;

% Sweep mask holes

for k=1: size (blocks, 1)

ytb=blocks(k,1)+blocks(k,3)/2;
ybb=ytb-blocks(k,3);

xlb=blocks (k, 2)-blocks (k, 4) /2;

xrb=xlb+blocks (k, 4);

if ~((ytb<=ybm) I (ybb>=ytm) I (xlb>=xrm) (xrb<=xlm))

ytd= (ytb-yo) /a*z+yo;

ybd=(ybb-yo)/a*z+yo;

xld= (xlb-xo) /a*z+xo;

xrd= (xrb-xo) /a*z+xo;

ytdi=ceil ( (D(1) /2-ytd) /dp(1) )+1;
ybdi=floor( (D(l) /2-ybd) /dp(1));

xldi=ceil ( (xld+D (2) /2) /dp (2) )+1;
xrdi=floor( (xrd+D(2) /2) /dp(2));

top=ytdi-l- ( (D(1) /2-ytd) ) /dp(1);
bot= (D (1) /2-ybd) /dp (1) -ybdi;
left=xldi-1-(xld+D(2) /2) /dp(2);
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right=(xrd+D(2) /2) /dp(2) -xrdi;

prcr=[max(1,ytdi-1) :min(ybdi+1,rd)];

prcc=[max(1,xldi-1):min(xrdi+,cd)];

mem=ones (ybdi-ytdi+3,xrdi-xidi+3);

ms=size (mem);

mem(1, :)=top*ones(1,ms(2));

mem(:,1)=eft*ones(ms(1),1);

mem(ms(1),:)=bot*ones(1,ms(2));

mem(: ,ms (2) )=right*ones (ms (1),1);

mem(1, 1)=top*left;

mem(ms (1) , 1)=bot*left;

mem (ms (1) ,ms (2) )=bot*right;

mem(1,ms(2))=top*right;

% Store

pr (prcr, prcc)=pr (prcr, prcc) +mem (prcr-ytdi+2, prcc-xldi+2);

end
end

[X,Y]=meshgrid(linspace(-(D(2)-dp(2))/2,(D(2)-dp(2))/2,cd),linspace(
(D (1) -dp (1) ) /2, (D (1) -dp (1) ) /2, rd));

X=X-xo; Y=flipud(Y)-yo;

cosalpha=cos(atan(sqrt(X.^2+Y.^2)/z));

prt=(1-pr) . *exp(-murhomt. /cosalpha); % Transparent part

prtot=(pr+prt) .*cosalpha.^3*o;

The subroutine ppaf fnnpotav is different from pcpaf fnnpotav only for the part following

the last two end commands (a cosine correction). The routine cvtwo calculates a periodic convolution:

function [z]=cvtwo(x,y);

z=real (ifft2 (fft2 (x) . *fft2 (y)));

z=shift (z, 1, 1);

Here the routine shift is the same reported above. Last and least, the utility writetime is

used to display calculation times:

function writetime(t,string)
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% WRITETIME Writes execution time

% Syntax: writetime(t,'text')

% where t has been set earlier to cputime.

if nargin==l

string='';

end

endtime=cputime-t;

hr=floor(endtime/3600);

min=floor ( (endtime-hr*3600) /60);

sec=endtime-hr*3600-min*60;

disp([string, ' ',num2str(hr),'hr ',num2str(min), 'm

',num2str(sec), 's'])

D. 3 Decoding

Decoding is launched by the main program of D.2.

function [decim,pr]=decd(pr,alpha,dp,g, resc,mp,sigma)

% Decode only
% Uses delta decoding
% g enters as basic pattern (not mosaicked)

% Decoding

t=cputime;

disp('Preparing decoding array...'), drawnow

% Scale deconding matrix to size of the shadow

rex=alpha; cex=alpha;

ex=zeros(rex,cex); ex(ceil(rex/2),ceil(cex/2))=l;

dec=[];
[rm,cm]=size(g);

g=shift(g,ceil(cm/2),ceil(rm/2));

for k=l:rm

serg=[];

for l=l:cm
serg=[serg g(k,l)*ex];

end

dec=[dec; serg];
end
clear ex k 1 serg
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% Select center part of projection

if (((rex*rm)<size(pr,l)) ((cex*cm)<size(pr,2)))

pr=pr(ceil((size(pr,l)-rex*rm)/2 ) :ceil((size(pr,l)-rex*rm)/2)+rex*rm-

1, ...
ceil((size(pr,2)-cex*cm)/2) :ceil((size(pr,2)-cex*cm)/2)+cex*cm-1);

end

[rd, cd] =size (pr);

% Deblurring

if sigma
disp(['Deblurring: standard deviation (pixels) ',num2str(sigma)])

[X,Y]=meshgrid(linspace(-cd/2,cd/2,size(pr,
2 )) ,linspace(-

rd/2, rd/2, size (pr, 1) ) ) ;

gau=1/ (2*pi*sigma) *fftshift (exp (- (X.^"2+Y .^2) /(2*sigma) ) );

pr=ifft2 (fft2 (pr) .* (conj (fft2 (gau)) . / (abs (fft2 (gau)))));
if max(imag(pr(:)))<1e-6

pr=real (pr);

end

end

% Decoding

disp('Decoding ... '), drawnow

decim=ifft2(fft2(dec).*fft2(flipud(fliplr(pr))));

if max(max(imag(decim) ) )>le-3*max(max(real(decim)))
warning('Imaginary data')

end

decim=real (decim) /resc;

writetime(t,'Decoding time: '), drawnow

D.4 Poisson distribution

The routine mentioned in §3.2.3 to sample from a Poisson distribution considers all detector

pixels independent. In each pixel is stored the mean value of the distribution to be sampled there, r. First,

a sample x is taken from a uniform distribution:

F1 for 0 s x 1
p11 (x) = (D.1)0 elsewhere

then y = -ln(x) is calculated and added to z, a variable initialized to 0. The distribution ofy is:

Px(Y) = pUx y= e 1 (D.2)
dy
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If z < F, 1 is added to a random variable r, also initialized to 0, and another value of x sampled.

Otherwise the process is stopped. In other words, r works as a counter of how many random variables

distributed as y must be added before F is exceeded. r is the final result. We now have to show that it is

Poisson distributed with mean F.

The distribution of z after the s' sampling is given by the integral of s-I exponentials:

Z YJY2 s-1

p2(z)= .f.. ffle-YYe-Ye-Y ...e-±Y-dyidy2 ...dy_ = e_(D.3)
PZd d2 ..do1 (s -1)!

The distribution of r is given by the probability that the iterations will be brought to an end after

the (r + 1)"' sampling. This depends on the probability that z is some value in the interval [z, z+dz] after

the r sampling and the probability that the next sampled y is greater than F -z, which is:

p,(y > F- z)= e-Ydy=e'; (D.4)
r-z

Sampling of a new y does not depend on z, so probabilities can be multiplied. Since y is not

limited, iterations may end at any step for any z. Integration over all z < F (otherwise the process would

have already stopped) gives:

r-r-

Pr(r)=ez e- d - (D.5)
0 (r -1)! r!

which proves that r is Poisson-distributed with mean F.

function r=randp(lam,m,n)

% RANDP Poisson distributed random numbers.
% R=RANDP(LAM,M,N) generates a M-by-N matrix of Poisson distributed
% random numbers. If LAM is a matrix, each entry of R is Poisson
% distributed with constant LAM, according to its position.

lam=lam.*(lam>O);

if nargin==1

[m,n]=size(lam) ;
end

if nargin==2
error('Number of columns missing')
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end

p=zeros (m, n);
r=zeros (m, n)

while any(any(p<lam))

p=p-log (rand (m, n));
r=r+i* (p<lam);

end

D. 5 Read data from E-Cam

A number of codes were written to read and display data from the E-Cam. The E-Cam output was

saved in binary format (.img) and is accompanied by a text file containing useful information (.hdr). The

most general code (hrmamcv) imported data for both mask and anti-mask data and reconstructed the

image at several depths with continuous values of a. Different rotations and reflection of the imported

data had to be done depending on the particular E-Cam that acquired the data.

% hr hospital reconstruction

% mam mask antimask

% c alpha continuous (not integer)

% v alpha vector

% Output: several sum images

clear

% E-cam configuration

filename=input( 'Filename (no extension): ','s');

fid=fopen([filename '.hdr'],'r'),;

if fid == (-l), error(['Could not open file ' filename]); end

for 1=1:36 line=fgets(fid); end % Discard first 36 lines

%detzoom=input (' Zoom: ');
%npix=input('Number of pixels (scalar): ');

%dp=[61.4 61.4]/detzoom/npix;

line=fgets(fid); % Get matrix size from line 37

npix=str2num(line(20: 2 4 ));

for 1=38:40 line=fgets(fid); end % Discard lines 38 to 40
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line=fgets(fid); % Get detectop pixel size from line 41

dp=str2num(line(33:42) ) /10;
dp=[dp dp];

fclose(fid); clear 1 line

% Calculated parameters

npd=min([floor([38.7 53.3]./dp);[npix npix]]);

cd=npd(2);

rd=npd(l);

D=npd.*dp;

% Mask selection and parameters

load mura62 g

[rm, cm] =size (g);
npm=[rm cm];

b=input ('Mask-detector distance= ');

d=6.9092; %input( 'Elementary mask dimension (horizontal)= ');

d=[d/npm(2)*npm(l) d];

mp=d./npm;

% Imports .img files

fid=fopen( [filename ' .img'], 'rb', 'ieee-be');
pri=fread(fid, [npix npix], 'intl6') ';

%pri=fliplr (pri);

fclose(fid); clear fid

filename=input('Filename of .img file, rotated (no extension): ','s');

fid=fopen( [filename ' .img'],'rb','ieee-be');
prir=fread(fid, [npix npix], 'intl6') ';
%prir=fliplr (prir);

fclose(fid); clear fid

%load test
%pri=o;

%prir=or;

s=round ((size (pri) -npd) /2);

s=[s(l)+l s(l)+npd(l) s(2)+1 s(2)+npd(2)];

pr=pri(s(1):s(2),s(3):s(4));

prr=prir (s (1) : s (2) , s (3) : s (4));

243



Selected Computer Codes

alphav=input (['Reconstruction plane

(, num2str (max (mp. /dp)), '<=\alphav<=' , num2str (min (size (pr) ./npm))

, '): ']) ;

1=length (alphav);

m=(dp./mp) '*alphav;

H= (ones (length (alphav) , ) *d) '. /(1-1. /m) ;

a=b./(m(1,:)-1);

z=a+b;

op= (dp (1) ' . *alphav). / (m(l, :) -1);

q=ceil(sqrt(l));

r=ceil(l/q);

% Reconstruction

hs=Q; vs=Q;

decims=zeros ([size (pr) , length (alphav)]);

decimsr=zeros ([size (pr) , length (alphav)]);

decimsizes=[];

[x,y]=meshgrid(linspace(-(D(2)-dp(2).)/2, (D(2)-

dp(2))/2,npix),linspace(-(D(l)-dp(l))/2,(D(l)--dp(l))/2,npix));
for alpha=alphav;

c=cos(atan(sqrt(x.^2+y.^2)/z(find(alpha==alphav)))).^3;

c=c(s (1) :s (2) ,s (3) :s (4)

prc=pr ./c;
prrc=prr./c;

decim=decdcc(prc,shift(g,0,1),alpha,hs,vs);

decimr=decdcc(prrc,rot90(g) ,alpha,hs,vs);

decims (1: size (decim, 1) , 1: size (decim, 2) , find(alpha==alphav) ) =decim;

decimsr(l:size(decimr,l) ,l:size(decimr,2) ,find(alpha==alphav) )=de

cimr;

decimsizes=[decimsizes size(decim) '];

end

decims=decims(l:max(decimsizes(l,:)),l:max(decimsizes(2 ,:)), :);

decimsr=decimsr (1:max (decimsizes (1, :) ) , 1:max (decimsizes (2, :)) , :);

% Display result

figure

for alpha=alphav;

num=find(alpha==alphav);

subplot (r, q, num)
decim=decims(l:decimsizes(l,num) ,l:decimsizes(2,num) ,num);

decimr=decimsr(l:decimsizes(l,num) ,l:decimsizes(2,num) ,num);

im=decim+decimr;

imagesc(im);

244



Appendix D

caxis([ max(im(:))])
axis image, title(['\alpha = ',num2str(alpha),', a =

',num2str(round(a(num)*100)/100), ' cm']), colormap hot

set(gca, 'XTicklabel',round(str2num(get(gca, 'XTickLabel'))*op(num)

/alpha*10)/10)

if (ceil(num/q)==r), xlabel('cm'),end

set(gca, 'YTicklabel',round(str2num(get(gca, 'YTickLabel'))*op(num)

/alpha*10)/10)
if rem(num,q)==1, ylabel('cm'), end

end

colormap hot
zoom on

clear sigma filename t rm rd cm cd decim decimr im

The important part of the code is the decoding subroutine de cdc c:

function [decim,pri]=decdcc(pr,g,alpha,hs,vs)

% dec Decode only
% d uses delta decoding

% c alpha assumes continuous values
% c closest integer value of alpha
% g enters as basic pattern (not mosaicked)

if nargin==3, hs=0; vs=0; end

t=cputime;

alphai=round(alpha);

[rd, cd] =size (pr);
[rm, cm]=size (g) ;
g=shift (g, ceil (cm/2) , ceil (rm/2));

% Scale deconding matrix to integer part of alpha

dec=zeros([rm,cm]*alphai);

dec(ceil(alphai/2) :alphai:size(dec,l),ceil(alphai/2) :alphai:size(dec,2

) )=g;

% Select center part of projection

if (((alpha*rm)>size(pr,l)) I ((alpha*cm)>size(pr,2)))
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disp('\Projection too large!');

end

[xi,yi]=meshgrid([floor((cd-

alpha*cm) /2) :alpha/alphai: (cd+alpha*cm)/2],...
[floor((rd-

alpha*rm)/2) :alpha/alphai: (rd+alpha*rm)/21);

xi=hs+xi (1 cm*alphai, 1: cm*alphai);

yi=vs+yi (1: rm*alphai, 1: rm*alphai);
pri=interp2 (pr,xi,yi, '*linear') ;

% Decoding

disp ('Decoding ... ')

decim=ifft2(fft2(dec).*fft2(flipud(fliplr(pri))));
if max(max(imag(decim)))>le-3*max(max(real(decim)))

warning (' Imaginary data')

end
decim=real (decim);

writetime(t,'Decoding time: ')

A sample header file can help in understanding the way camera setup data are imported by

hrmamcv. The line ! INTERFILE := is the actually first of the file.

!INTERFILE

!imaging modality := nucmed
!originating system := SIEMENS

!version of keys := 3.3

date of keys := 1992:01:01
conversion program := ICONlnterfile

program author := Siemens Medical Systems - Nuclear Medicine Group

program version := 2.01

program date := 1994:04:22

!GENERAL DATA

original institution := UNKNOWN

contact person := SMS Hotline - (800)873-3582

!data offset in bytes := 0
!name of data file := image7.IMG
patient name := CODED APERATURE 1

!patient ID := 1
patient dob

patient sex := M
!study ID := Coded Aperature

exam type := obj -det 38.6

data compression := none
data encode := none
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!GENERAL IMAGE DATA :=

!type of data := Static
!total number of images 1

study date := 2000:07:18
study time 18:25:07

imagedata byte order := BIGENDIAN
!number of energy windows := 1
energy window[l] := Tc99m

flood corrected := N
decay corrected := N
!STATIC STUDY (General)

number of images/energy window := 1

!Static Study (each frame)

!image number := 1

!matrix size [1] := 256

!matrix size [2] := 256

!number format := unsigned integer
!number of bytes per pixel := 2

scaling factor (mm/pixel) [1] := 2.398

scaling factor (mm/pixel) [2] := 2.398

image duration (sec) := 734.622

image start time := 0.000

maximum pixel count := 233

total counts := 1600004
!END OF INTERFILE :=
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Appendix E LEAST-MEAN-SQUARE ERROR SOLUTION OF A

LINEAR SYSTEM

The least-mean-square error solution of the linear system:

C k = s

was stated in §9.2.1 to be:

(B.1)

(E.2)k=(CT C)~ CTs

Proof:

Define the square error:

(E.3)E = (C k - s)T (C k - s)

which is the sum of the squares of all the reconstruction errors:

k, Co(i)+ k 2 Cs(i) + k3 b(i) - s(i)

The error (and, thus, the mean error) is minimized if:

OF 0
ak

where OE / Ok is the column vector of the three derivatives OE / Ok;. However,

OE 2 CT(Ck-s)=0
ak

(E.4)

(E.5)

(E.6)

implies:

CT(Ck - s)= (.(E.7)
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which leads to the solution with a little matrix algebra. In fact

CTC k=CTS (E.8)

where CT C is square and can be inverted (C is the matrix of calibration spectra, which, being

independent vectors, make det (CT C) # 0) and multiplied to the left of both sides to get the solution. The

critical point is actually a minimum because:

=EC'C >0 m (E.9)
a2 k
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