
A Case Study of Server Selection

by

Tina Tyan

S.B., Computer Science and Engineering (2000)
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

© Massachusetts Institute of Technology 2001. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

August 8, 2001

C ertified by
M. Frans Kaashoek

Professor of omputer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARK ~MASSA CHUSETTS "ISTITEL OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES,-

A Case Study of Server Selection

by

Tina Tyan

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 2001, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Replication is a commonly used technique to improve availability and performance in a
distributed system. Server selection takes advantage of the replicas to improve the end-to-
end performance seen by users of the system. CFS is a distributed, cooperative file system
that inherently replicates each piece of data and spreads it to machines dispersed around
the network. It provides mechanisms for both locating and retrieving data. This thesis
considers the application of server selection to improving performance in CFS, in both the
data location and data retrieval steps. Various server selection metrics and methods were
tested in an Internet testbed of 10-15 hosts to evaluate the relative benefits and costs of
each method.

For the lookup step, we find that the triangle inequality holds with good enough corre-
lation that past latency data stored on intermediary nodes can be used to select each server
along the lookup path and reduce overall latency. For the data retrieval step, we find that
selecting based on an initial ping probe significantly improves performance over random
selection, and is only somewhat worse than issuing parallel requests to every replica and
taking the first to respond. We also find that it may be possible to use past latency data
for data retrieval.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

Several of the figures and graphs in this thesis, as well as the pseudocode, came from the

SIGCOMM[24] and SOSP[8] papers on Chord and CFS. There are a number of people who

have helped me through the past year and who helped make this thesis possible. I'd like to

thank Kevin Fu for his help getting me started, and Frank Dabek for his help on the later

work. Thank you to Robert Morris for his invaluable feedback and assistance. I would also

like to thank the other members of PDOS for their suggestions and ideas. I would especially

like to thank my advisor, Frans Kaashoek, for his guidance, patience, and understanding.

Thanks also to Roger Hu for always being available to answer my questions (and for all

the free food), and Emily Chang for her support and assistance in getting my thesis in

shape (particularly the Latex). Working on a thesis isn't just in the work, and so I'd like to

extend my appreciation to the residents of the "downstairs apartment", past and present,

for giving me a place to get away from it all, especially Danny Lai, Stefanie Chiou, Henry

Wong, Roger, and Emily. A special thanks to Scott Smith, for always being there for me,

whether with suggestions, help, or just an ear to listen. Lastly, I'd like to thank my family -

Mom, Dad, Jeannie, and Karena - for all their support and love. I would never have gotten

here without them.

5

6

Contents

1 Introduction 11

2 Background 15

2.1 Overview . 15

2.1.1 Chord . 16

2.1.2 CFS . 20

3 Server Selection in CFS 23

3.1 Server Selection at the Chord layer . 23

3.1.1 Past Latency Data . 25

3.1.2 Triangle Inequality . 26

3.2 Selection at the dhash layer . 26

3.2.1 Random Selection . 27

3.2.2 Past Performance. 27

3.2.3 Probing . 28

3.2.4 Parallel Retrieval . 29

4 Experiments 31

4.1 Experimental Conditions. 31

4.2 Chord Layer Tests . 32

4.2.1 Evaluating the use of past latency data 32

4.2.2 Triangle Inequality . 36

4.2.3 Chord Layer Selection Results . 43

4.3 dhash Layer Tests . 44

4.3.1 Server . 44

7

4.3.2

4.3.3

4.3.4

4.3.5

Ping Correlation Test

Selection Tests

Parallel Downloading Tests - Methodology .

Combined Tests

5 Related Work

5.1 Internet Server Selection

5.1.1 Intermediate-level Selection

5.1.2 Client-side.

5.2 Peer-to-peer Systems

6 Conclusion

6.1 Conclusion .

6.2 Future Work

8

. 4 5

. 4 9

. 5 0

. 5 1

57

. 5 7

. 5 8

. 6 1

. 6 5

69

69

70

List of Figures

2-1

2-2

2-3

Example Chord ring with 3 nodes. .

Example Chord Ring with Finger Tables .

The pseudocode to find the successor node of an identifier id. Remote pro-

cedure calls and variable lookups are preceded by the remote node.

2-4 CFS Software Layers .

3-1 Example of choice in lookup algorithm

4-1 RON hosts and their characteristics

4-2 Sightpath to Msanders Ping Times

4-3 Cornell to Sightpath Ping Times

4-4 Mazu to Nc Ping Times

4-5 nc to lulea Ping Times .

4-6 Simple Triangle Inequality

4-7 Triangle Inequality: AC vs AB+BC

4-8 Relative Closeness .

4-9 Chain of Length 3 .

4-10 Best and Worst Ping Ratios for Tests 1 and 2

4-11 Best Ping Ratio for Tests 1 and 2 (same as in figure 4-10)

4-12 Best and Worst Ping Ratios for Test 3

4-13 Best Ping Ratio for Test 3 (same as in figure 4-12)

4-14 Parallel Retrieval Results

4-15 Ping Probe Results .

4-16 Aros Ping Probe Results

4-17 Random, Best Ping, Parallel Results

9

17

19

20

21

25

. 32

. 34

. 35

. 35

. 36

. 37

. 38

. 39

. 41

. 47

. 47

. 48

. 48

. 53

. 54

. 54

. 56

10

Chapter 1

Introduction

The Internet is becoming an ubiquitous part of life as increasingly large numbers of people

are going online and the number of available resources grows. Users use the Internet to ob-

tain all types of public data, from web pages to software distributions. However, along with

increased popularity and usage come problems of scalability and performance degradation.

When a popular resource is only available from a single source, that server can experience

excessive load, to the point of being unable to accommodate all requests. Users located

geographically or topologically far from the server are prone to excessive latency, which can

also be caused by network bottlenecks or congestion. This sole source also provides a single

point of failure; if this server goes down, then the resource becomes completely unavailable.

Server replication provides a viable solution to many of these problems, improving per-

formance and availability. In replication, some subset of the server's data or a given resource

is duplicated on multiple servers around the network. The existence of replicas allows re-

quests for data to be distributed, lessening the load on each server and accommodating

greater overall load. Replicas also add redundancy to the system; if one server goes down,

there are still many others available to take up the slack. If the replicas are distributed

across the network, then a given client has a greater chance of being located closer to a

source of the data, and therefore experiencing lower latency than if it tried to contact one

central server.

Along with replication comes the added problem of server selection. In order for repli-

cated services to be useful, a replica must be selected and assigned to a client by some

method. This selection can be done by the server, by the client, or by some intermediary

11

service. The criteria and method of selection will have varying impacts on performance and

server load. It is in this step that the real benefits of replication are derived. The interesting

thing about server selection is that there is no easy way to choose the best server; varying

network conditions, server load, and other factors can change performance characteristics

from client to client and request to request. Additionally, what is considered to be "best"

varies from system to system.

This thesis considers the specific problem of server selection within CFS (Cooperative

File System), a distributed, decentralized file system designed to allow users to coopera-

tively pool together available disk space and network bandwidth. CFS has many useful

properties that make it an attractive system to use, and could benefit from improved per-

formance. An important feature of CFS is its location protocol, which is used to locate

data in the system in a decentralized fashion. CFS inherently takes care of replication,

replica management, and replica location, three primary concerns in any replicated system.

Although the basic motivation behind replication is the same as in other systems, CFS has

specific requirements and characteristics that make it somewhat unique from other systems

in which server selection has been studied.

CFS' decentralized, cooperative nature means that instead of having a dedicated set of

servers and replicas with distinct clients that access them, every node in the system can act

as both a client and a server. Also, the location protocol of CFS, to be described in greater

detail in chapter 2, utilizes nodes to act as intermediaries in the lookup process. Therefore

nodes acting as servers are constantly in use for purposes other than serving data, and do

not have to be particularly high performance machines behind high bandwidth links. CFS

also ensures that data is replicated on machines that are scattered throughout the Internet.

The pool of servers for a particular piece of data is therefore quite diverse, and certain

servers are likely to have better performance for a given client than others. Additionally,

while Web-based systems must deal with files of all sizes, CFS uses a block-level store,

dividing each file into fixed size blocks that are individually retrieved. These block sizes are

known and can be taken advantage of in choosing a server selection mechanism, whereas

the sizes of Web files are not known before retrieval, making any size-dependent mechanism

hard to use. Storing data at the level of blocks also load balances the system, so that the

selection method need not be particularly concerned with keeping the load balanced.

The primary concern for server selection in CFS is the improvement of the end-to-end

12

performance experienced by the client. For CFS, this does not only include the end-to-end

performance of the data retrieval from a replica, but also includes the overall performance

of the data location step. The requirements for selection for location are fairly distinct from

those of data retrieval. The purpose of this thesis is to investigate and experimentally eval-

uate various server selection techniques for each stage of CFS operation, with the intention

of improving overall end-to-end performance in the system.

Chapter 2 will give a brief overview of CFS and how it works. Chapter 3 goes into

more detail on the requirements for selection in CFS, as well as those aspects of the system

most directly relevant to server selection. Chapter 4 describes the experiments conducted

to evaluate the selection techniques introduced in the previous selection, as well as the

results so obtained. Previous work done in server selection, both for the World Wide Web

and other peer-to-peer systems, is described in chapter 5. Lastly, chapter 6 wraps up the

discussion and proposes future directions for work in this area.

13

14

Chapter 2

Background

This thesis studies server selection techniques and conditions in the context of the Chord/CFS

system. To better understand the problems that server selection must address, we take a

closer look at the system in question in this chapter. The next chapter will discuss server

selection within Chord and CFS and highlight relevant aspects of the system.

2.1 Overview

In recent years, peer-to-peer systems have become an increasingly popular way for users to

come together and share publicly-accessible data. Rather than being confined to the disk

space and bandwidth capacity available from a single (or even several) dedicated server(s),

the peer-to-peer architecture offers the ability to pull together and utilize the resources of a

multitude of Internet hosts (aka nodes). As a simple example, if the system was comprised of

1000 nodes with only 1MB free disk space on each, the combined disk capacity of the entire

system would total 1GB. Participating nodes are likely to contribute far more than 1MB to

the system. Given more hosts and more available disk space, the potential available storage

in such a system far exceeds that of a traditional client-server based system. Similarly, the

potential diversity of the available data is increased by the fact that there can be as many

publishers of data as there are users of the system. At the same time, since there is no

single source of information, the bandwidth usage is distributed throughout the system.

Although the concept of the peer-to-peer architecture is attractive, implementing such

a system offers some challenges. Recent systems like Napster and Gnutella have received

widespread use, but each has its limitations. Napster is hampered by its use of centralized

15

servers to index its content[16]. Gnutella is not very scalable since it multicasts its queries

[11]. Other peer-to-peer systems experience similar problems in performance, scalability,

and availability [24]. One of the biggest challenges facing these systems is the problem of

efficiently and reliably locating information in a decentralized way. CFS (Cooperative File

System) is a cooperative file system designed to address this problem in a decentralized,

distributed fashion. It is closely integrated with Chord, a scalable peer-to-peer lookup

protocol that allows users to more easily find and distribute data. We give a brief overview

of Chord and CFS in this chapter; details can be found in [7], [8], [24], and[25].

2.1.1 Chord

Chord provides a simple interface with one operation: given a key, it will map that key

onto a node. Chord does not store keys or data itself, and instead acts as a framework on

top of which higher layer software like CFS can be built. This simple interface has some

useful properties that make it attractive for use in such systems. The primitive is efficient,

both in the number of machines that need to be contacted to locate a given piece of data,

and in the amount of state information each node needs to maintain. Furthermore, Chord

adapts efficiently when nodes join or leave the system, and is scalable with respect to the

total number of participating nodes in the system.

2.1.1.1 Chord Identifiers

Each node in the Chord system is associated with a unique m-bit Chord node identifier,

obtained by hashing the node's IP address using a base hash function, such as SHA-1. Just

as nodes are given node identifiers, keys are also hashed into m-bit key identifiers. These

identifiers, both node and key, occupy a circular identifier space modulo 2 m. Chord uses

a variant of consistent hashing to map keys onto nodes. In consistent hashing, the node

responsible for a given key k is the first node whose identifier is equal to or follows k's

identifier in the identifier space. When the identifiers are pictorially represented as a circle

of numbers from 0 to 2 m - 1, this corresponds to the first node clockwise from k. This node

is known as the "successor" of k, or successor(k).

A simple example of a Chord network for which m=3 is seen in Figure 2-1. There are

three nodes in this network, with identifiers 0, 1, and 3. The set of keys' identifiers to be

stored in this network is {1, 2, 6}. Within this network, the successor of key 1 is node 1,

16

7 1 successor(1)= 1

successor(6)=0 6 2 successo(2)=3

5 3

4 2

Figure 2-1: Example Chord ring with 3 nodes

since the identifiers match. The successor of key 2 is node 3, which can be found by moving

clockwise along the circle to the next node after 2. Similarly, the successor for key 6 is the

first node found clockwise after 6 on the identifier circle, which in this case wraps around

to node 0.

2.1.1.2 Consistent Hashing

There are several benefits to using consistent hashing. Consistent hashing allows nodes

to join and leave the network with minimal disruption. When a node joins the network,

a certain set of keys that previously mapped to its successor are reassigned to that node.

In the above example, if node 7 were to join the network, key 6 would be reassigned to

it instead of node 0. Similarly, when a node leaves the network, its keys are reassigned

to its successor. In this way, the consistent hashing mapping is preserved, and only a

minimal number of keys - those for the node in question - need to be moved. Consistent

hashing also provides load balancing, distributing keys with high probability in roughly

equal proportions to each node in the network.

In a centralized environment where all machines are known, consistent hashing is straight-

forward to implement, requiring only constant time operations. However, a centralized sys-

tem like that does not scale. Instead, Chord utilizes a distributed hash function, requiring

each node to maintain a small amount of routing information.

17

2.1.1.3 Key Location

In order for consistent hashing to work in a distributed environment, the minimum amount

of routing information needed is for each node to be aware of its successor node. A query

for a given identifier k would therefore follow these successor pointers around the circle until

the successor of k was found. This method is inefficient, however, and could require the

query to traverse all N nodes before it finds the desired node. Instead, Chord has each node

maintain a routing table of m entries (corresponding to the m-bit identifiers), called the

finger table.

The finger table is set up so that each entry of the table is "responsible" for a particular

segment of the identifier space. This is accomplished by populating each entry i of a given

node n with the Chord ID and IP address of the node s = successor(n + 2i-mod2"),

where 1 < i < m. This node, s, is also known as the ith finger of n, and is denoted as

n.finger[i].node. Thus, the 1st finger of n is its immediate successor (successor(n + 1)),

and each subsequent finger is farther and farther away in the identifier space. A given node

therefore has more information about the nodes nearest itself in the identifier space, and less

information about "far" nodes. Also stored in the ith entry of the finger table is the jth finger

interval. This is fairly straightforward; since the ith finger is the successor of (n + 2 i-) and

the i + 1 th finger is the successor of (n+ 2 i), then n.finger[i].node is this node's predecessor

for any identifier that falls within the interval [n.finger[i].node, n.finger[i+1].node).

Figure 2-2 shows the finger tables for the simple Chord ring examined earlier. Since m

= 3, there are 3 entries for each finger table. The finger table for node 1 is populated with

the successor nodes of the identifiers (1 + 21-1) mod 23 = 2, (1 + 22-1) mod 23 = 3 and

(1 + 231) mod 23 = 5. In this particular network, successor(2) = 3, successor(3) = 3, and

successor(5) = 0. The finger tables for the other nodes follow accordingly.

These finger tables allow Chord to systematically and efficiently search for the desired

node by directing queries increasingly closer in the identifier space to that node. The closer

a node is to a region of the identifier circle, the more it knows about that region. When

a node n does not know the successor of a key k, it looks in its finger table for the set of

nodes between itself and the destination in ID space. These nodes are all closer in ID space

to the key than the origin, and are possible candidates to ask for its location. The simplest

implementation chooses the node n' closest in ID space to k and sends it a closest-preceding-

18

finger table keys
start int.

odode [1 [1,2) 1
2 ,4 finger table keys
4 [4,0) 0 start int. ode

2 [2,3 3
3 [3,5,3

S5 [5,l) 0

7 1

6 2

5 3
finger table keys

4 start int. node
4 [4,5)

7 [7,3) 0

Figure 2-2: Example Chord Ring with Finger Tables

nodes RPC. Node n' then looks in its finger table and sends back the list of successors

between itself and the destination, allowing n to select the next node to query. As this

process repeats, n learns about nodes with IDs closer and closer to the target ID. The

process completes when k's predecessor is found, since the successor of that node is also k's

successor. The pseudocode for these procedures can be found in figure 2-3.

A simple Chord lookup query takes multiple hops around the identifier circle, with each

hop eliminating at least half the distance to the target. Consequently, assuming node and

key identifiers are random, the typical number of hops it takes to find the successor of a

given key is O(log N), where N is the number of nodes in the network. In order to ensure

proper routing, even in the event of failure, each node also maintains a "successor-list" of

its r nearest successors on the Chord ring. In the event that a node notices its successor

has failed, it can direct queries to the next successor in the "successor-list," thus updating

its successor pointer.

The Chord protocol also has provisions for initializing new nodes, and for dealing with

nodes concurrently joining or leaving the network. These aspects of the protocol are not

relevant to server selection, and are not necessary to understand the system.

19

// ask node n to find id's successor
n.find-successor(id)

n' = (id);
return n'.;

// ask node n to find id's predecessor
n.find-predecessor(id)

n' = n;
while (id V (n', n'.])

1 = n'.closest-preceding-nodes(id);
n/ = maxn" E 1 s.t.n"isalive

return n';

/7 ask node n for a list of nodes in its finger table or
7/ successor list that most closely precede id
n.closest-preceding-nodes(id)

return {n' E {fingers U successors}
s.t. n' e (n,id)}

Figure 2-3: The pseudocode to find the successor node of an identifier id. Remote procedure
calls and variable lookups are preceded by the remote node.

2.1.2 CFS

Chord was created as a general-purpose location protocol, with the intention that higher-

level systems with more specific functionality would be built on top of it. One such system

is CFS, a read-only file system designed to allow users to cooperatively pool disk space

and network bandwidth in a decentralized, distributed fashion. CFS nodes cooperate to

locate and load-balance the storage and serving of data in the system. CFS consists of

three layers (Figure 2-4): the file system layer, which provides the user with an ordinary

file system interface; the dhash layer, which takes care of data storage and retrieval issues;

and the Chord layer, which provides mappings of keys and nodes, and acts as a location

service. Data is not stored at the level of full files, but instead as uninterpreted blocks of

data with unique identifiers. The client may interpret these blocks as file data or as file

system metadata.

2.1.2.1 dhash layer

For the purposes of server selection, the relevant functions of CFS occur at the dhash layer.

The way that blocks are assigned to servers is very closely tied to the way the underlying

20

FS

DHash DHash DHash

Chord Chord Chord

CFS Client CFS Server CFS Server

Figure 2-4: CFS Software Layers

Chord protocol functions. Each block of data has an associated unique identifier. This ID

could be a cryptographic hash of the block's contents or a public key, and is equivalent to

a key in Chord. A block is stored at the server that Chord identifies as the successor of the

block's key.

There are some tradeoffs to keeping everything at the block level and storing the data

in this way. Blocks are distributed roughly evenly around the ID space, since the hash

function uniformly distributes the block IDs. Consequently, the data is not all retrieved

through the same paths and bandwidth usage is spread around the network. This provides

the system with a certain degree of load balancing. However, instead of doing one Chord

lookup per file or file system accessed, this system requires there to be one Chord lookup

per block retrieved, reducing location and retrieval efficiency.

2.1.2.2 Replication

CFS takes advantage of other properties of Chord to increase availability and potentially

increase efficiency through replication. As part of its failure recovery mechanism, each

Chord node maintains a "successor-list" of its nearest r successors on the Chord ring, which

is automatically updated and maintained as nodes come and go. These successors are

a natural place to replicate the data. There are two main concerns for replicated data:

keeping track of the replicas so that the data can be found and updated, and making sure

the replicas are independent of failure, so that if one machine goes down, the replica will

still be available. The node is already keeping track of the r successors through its successor

21

list, so there is no need for an external mechanism to maintain the replicas. At the same

time, these successors are unlikely to be near each other geographically or topologically,

since their Chord IDs are hashes of their IP addresses. Numerically similar addresses are

unlikely to hash to numerically similar identifiers, by the nature of the hash function. This

means that the replicas are more likely to be failure independent and also that it is likely

that at least one of the replicas will be close to a given client.

Aside from providing higher availability, this replication scheme paves the way for per-

formance improvements through server selection, as will be described in greater detail in

the following chapter.

22

Chapter 3

Server Selection in CFS

The current implementation of CFS does not do any sort of server selection, and instead

just uses the first server found to contain the desired block. Performance tests run on a

collection of 8 CFS servers spread over the Internet indicates that performance is strongly

affected by the characteristics of the particular servers involved. When a server was added

which happened to be far from the client, transfer times increased dramatically, while

nearby servers helped to decrease transfer time. Although some of the effects of this can

be alleviated through the use of pre-fetching (requesting several blocks simultaneously),

these tests indicate a strong need for server selection to reduce variation in and improve the

performance of the system.

There are two particular points in the CFS system where server selection could come

into play. The first is at the Chord level, during the location protocol, while the second is

at the dhash layer, in the actual data retrieval step. The nature of the selection required is

somewhat different at these two layers, and leads to different requirements for a selection

method.

3.1 Server Selection at the Chord layer

Server selection in the lookup layer strives to reduce the overall latency and variation in

lookup times by eliminating as much as possible the need to make large geographical leaps

in the lookup process. The CFS implementation of the Chord protocol facilitates the use of

server selection by naturally providing a list of alternative nodes at each stage of the lookup

process.

23

When a lookup is performed, the origin node n tries to find the predecessor of the desired

key k by issuing a closest-preceding-nodes RPC to a node n' in its finger table that is closer

in ID space to k than n is. Node n'subsequently looks in its own finger table and returns a

group of successors that are all closer in ID space to k. This process is reiterated until the

desired successor is found. In the current implementation, the node in this list of successors

with the ID closest to k is the one selected for the next step of the implementation. While

this method keeps the number of necessary hops around the Chord ring to a minimum since

it makes the largest advances in ID space towards the target, the overall lookup time is

strongly dependent on the performance of each intermediate node. If even one intermediate

node thus chosen is particularly slow - in a different country, for instance - then the

overall lookup time is significantly impacted. Potentially, server selection could be used at

each stage of the lookup process to keep each query local, resulting in perhaps more hops

but lower overall latency.

The developers of Chord and CFS are currently investigating an alternate lookup algo-

rithm that would utilize server selection in a different way. Instead of simply picking the

node with the closest ID, this algorithm examines all the possible servers in the finger table

and selects the one that is most likely to keep the overall latency minimal. This is deter-

mined through a combination of factors. At each step of the lookup process, the algorithm

strives to get closer to the destination ID through bit correction of the IDs - picking servers

whose IDs match increasingly more bits of the destination ID. The number of future hops

needed to arrive at the destination from that node can therefore be estimated by looking at

the amount of bit correction needed on that node's ID. At the same time, CFS keeps track

of the costs of all RPC's in the system, and can use this to estimate the average hop latency.

By using a combination of these two estimates, and factoring in the latency between the

selecting node and the potential intermediate node, the client can choose the intermediate

node with the lowest potential cost/highest potential gain for the next step of the lookup.

Figure 3-1 gives a simple example to explain how this algorithm works. Nodes A and B

are on the identifier ring between the client X and the target Y. B is closer to the target in

ID space, and has a latency from the client of 100ms, while A is farther and has a latency

of 10ms. As CFS runs, it keeps track of all previous transactions, and can determine the

average latency of a hop based on this information. The client can also estimate the number

of hops remaining between a given node and the target, based on the ID. Using these two

24

B

Target (Y)

A looms

lOm

Client (X)

Figure 3-1: Example of choice in lookup algorithm

pieces of information, the client can then make a comparison between nodes A and B. If

HopLatency * NumHopsAy + LatencyxA < HopLatency * NumHopSBY + LatencyXB

then it may be better to pick node A rather than B. This is also another application of the

triangle equality, with A and B acting as the intermediary nodes. If X-A-Y is not less than

X-B-Y, then the whole thing falls apart.

The goals of server selection, and therefore the relevant metrics, can change depending

on its overall purpose. In this case, the purpose of selection is not to find the server that

will return data the fastest, but instead the server that responds fastest to a small lookup

query. Therefore, round-trip latency should be a good indicator. However, it is not just a

straightforward matter of always picking the successor with the lowest latency. There are

a number of issues to be resolved in order to choose an appropriate selection method, and

to determine if selection is even viable at all in reducing the overall latency of the lookup

process.

3.1.1 Past Latency Data

Unlike with large downloads, where the time to probe the machines before selection is

insignificant in comparison to the download time, each lookup hop only imposes a small

overhead on top of the time to reach the machine. This overhead includes transmitting

the request, searching the finger table, and returning the list of successors. Therefore, the

time it would take to make just one round trip to the machine to probe it would impose a

significant overhead on the overall time. Selection would be useful only if it could be done

25

solely on the basis of past latency data. If latency between machines varies widely over

time, then past latency data may be insufficient to select the fastest machine.

Even assuming that the fastest machine can be found using past latency data, it is not

clear that this will necessarily lead to better overall lookup latency. For every step of the

lookup process except the initial request, the client chooses from a list of successors given to

it by another node. The client does not maintain any past metrics for these machines and can

rely only on the other node's information. Therefore, the available past performance data

is not directly relevant to the client doing the selection, and it is impractical to probe the

nodes before selecting one. If it could be shown that this indirect information is sufficient to

improving the overall performance, then it will be possible to devise a good server selection

method for the Chord layer.

3.1.2 Triangle Inequality

The specific question at hand is whether knowing which machine is closer to an intermediate

machine is correlated to knowing which is closest to the client. A basic expression of this

is the triangle inequality, which seeks to determine if machine A is close to machine B,

and machine B is close to machine C, does it necessarily follow that machine A is close to

machine C? More relevantly, if B is closer to X than Y, will A also be closer to X than Y?

Since an actual lookup is likely to take several steps, it may also be useful to examine chains

of such comparisons to see if utilizing the same methods through several levels of indirection

still yields similar answers. If this is true, then always picking the fastest machine in each

step of the lookup process will succeed in keeping the lookup process as topologically close

to the client as possible, thus reducing the overall latency. If this isn't true, then latency

won't help in deciding which machine to choose.

3.2 Selection at the dhash layer

After the lookup process is completed, and the key's successor is known, the client has the

necessary information to download the desired block. It can choose to download from the

actual successor, or to utilize the replicas on the following k successors in some sort of server

selection scheme. The main goal of such a selection scheme would be to improve end-to-end

performance.

26

3.2.1 Random Selection

The simplest selection method would be to randomly select a node from the list of replicas

to retrieve the data from. This method incurs no additional overhead in selection, and

has the effect of potentially distributing the load to these replicas if the block is popular.

Although the random method has as good a chance of picking a slow server as a fast one,

with each subsequent request it will likely pick a different server and not get stuck on the

slow one. Without selection at all, if the successor of the key is slow, then all requests will

be limited by the response time of this particular node.

3.2.2 Past Performance

Alternatively, selection could be done on the basis of past performance data. Clients can

make an informed decision using past observed behavior to predict future performance.

Previously, systems using past performance as their metric made use of a performance

database, stored either at the client or at some intermediate resolver. This performance

database included information on all known replicas for a previously accessed server. In a

Web-based system with a few servers and many clients, this method is quite manageable.

However, keeping such a performance database is less viable within CFS. The database is

only useful if a client is likely to revisit a server. When a client has no knowledge of a

particular set of replicas, it can not use past data to perform selection and must use some

other form of selection for that initial retrieval. Even if it has accessed this data before,

if the access did not take place recently, the performance data may no longer be relevant

because of changes in the network. Thus the performance database must be kept up to

date. With the potentially large number of nodes in a Chord network, and the way that

blocks are distributed around the network, it does not seem likely that the same client will

retrieve blocks from the same server with any great frequency. Therefore, it will constantly

be encountering servers for which it has no information, while its stored performance data

for other servers is rarely used and rapidly goes out of date.

However, past performance can still be used as the basis of server selection in CFS,

without the need for a performance database. The method would in fact be very similar

to that used in the Chord layer. Each node in the CFS system keeps in regular contact

with its fingers and successors in order to keep its finger table and successor-list up to date.

27

The node therefore already stores fairly up-to-date latency information for each of these

servers. Since the replicas for this node are located in the successors to the node, the node

has past latency information for each replica. Using this information will require no extra

trips across the network or additional overhead. Each lookup ends at the predecessor to

the desired node, and its successor list will include all the replicas and their corresponding

latency data. When the lookup returns the list of replicas to the client, the client can just

use this information to select a server, much as it does for each stage of the lookup. A

few crucial assumptions must be true for this method to work well. Since the nodes store

past latencies, and not end-to-end performance data, latency must be a good indicator for

end-to-end performance. The current block size in CFS is 8KB, which is adequately small

enough that this is likely to be true. At the same time, the client is using latency data as

measured from a different node to select a server that will provide it with good performance.

In much the same way that the triangle inequality needs to hold for selection to work in the

Chord layer, the triangle inequality also needs to hold for this method of selection to work

at the dhash layer.

3.2.3 Probing

Unlike the location step, which only requires the round trip transfer of essentially one

packet, the dhash layer involves the transmission of data blocks which can be of larger

sizes. Therefore, the overall access time at the dhash layer is more likely to be dominated

by the transfer of the actual data block. Thus, the additional overhead of probing the

network before selection is more acceptable and is potentially countered by the increase

in performance derived from selecting a good server. There are several different ways to

probe the network. A fairly simple method would be to ping each replica, and request

the block from the replica with the lowest ping time. This method works well if latency

is a good indicator of the bandwidth of the links between the client and server. If servers

tend to have low latency but also low bandwidth, then the performance will be worse than

for machines with high latency and high bandwidth. In a system where very large files

are transferred, latency may not be a very good indicator of actual bandwidth. However,

since CFS transfers data at the level of blocks which are unlikely to be larger than tens of

kilobytes, latency may be a good metric to use.

Since the issue at stake is the actual transfer time of a block, which is closely tied with

28

the bandwidth of the link, it may make sense to somehow probe the bandwidth rather than

the latency of the system. A simple way to do this would be to send a probe requesting some

size data from each server. Bandwidth can be calculated by dividing the size of the request

by the time it takes for the request to complete. The server that has the highest bandwidth

can than be selected to receive the actual request. To be useful, the probe should not be

comparable in size to the actual request, or the time it takes to make the measurement will

make a significant impact on the overall end-to-end performance. At the same time, probes

that are too small will only take one round trip to fulfill the request, and are equivalent to

just pinging the machine to find out the round trip time. Unfortunately, since CFS uses a

block-level store, the size of the actual request is fairly small. Consequently, the probe must

be correspondingly small, and therefore will be essentially equivalent to just measuring the

latency.

3.2.4 Parallel Retrieval

The replicas can also be used to improve performance outside of just picking the fastest

machine and making a request from it. Download times can potentially be improved by

splitting the data over several servers and downloading different parts of the block from

different servers in parallel. This effectively allows the client to aggregate the bandwidth

from the different servers and receive the complete block in less time than it would take to

get it from one server. This does not mean, however, that the best performance necessarily

will come from downloading a fraction of the file from all the replicas. The end-to-end

performance of these parallel downloads is constrained by the slowest of the servers. Even

if 4 out of 5 of the servers are fast, as long as there is one slow server, the overall end-to-end

performance could be worse than downloading the entire file from one fast server.

A better solution would then be to find the p fastest of the r replicas, and download ! ofp

the block from each replica. This could be done in a few ways. The client could use one of

the above two probing methods to find the p fastest servers and issue requests to just those

machines. Alternatively, the client could simply issue a request for blocksize to each of thep

replicas, and take the first p to respond with the data. Depending on how many replicas

there are, how large p is, and the size of the request, this method could potentially use a

lot of bandwidth.

29

3.2.4.1 Parallel Retrieval with Coding

This latter method bears closer examination. For p = 1, this is equivalent to issuing a

request for the entire block to all the replicas and downloading from the fastest. In a way,

it's an alternative to probing the network to find the fastest machine, only with higher

bandwidth utilization. On the other hand, if p = r, then this is essentially the same as

striping the file across the r servers. Performance is dependent on none of these servers

being particularly slow. However, if 1 < p < r, it is not just a simple matter of taking the

data returned by the first p machines to respond. In order for this to be possible, it can not

matter which blocks are returned, as long as enough data is returned. This is obviously not

true of a normal block, since each segment will contain unique data. This situation is true,

however, if the system utilizes erasure codes. The main idea behind erasure codes is to take

a block or file composed of k packets and generate a n packet encoding, where k < n. The

original file can then be recreated from any subset of k packets [3]. CFS currently does not

use erasure codes, but it is worth studying whether there is a benefit to using them, at least

in regards to end-to-end performance.

Regardless of which method is used to choose the parallel machines, the performance

of the parallel retrievals depends a great deal on the characteristics of the replicas. If there

are five replicas but only one fast one, it may be better to download only from one machine.

On the other hand, if all five replicas are fast, it might prove optimal to download 1/5 of

the block from all five servers. Unfortunately, it is impossible to know in advance which

of these conditions is true; if it were, selection would not be necessary. While it is not

possible to find the optimal values for p and r that will apply in any condition, it may be

possible to find values that will lead to good performance most of the time. This thesis

strives to experimentally evaluate each of the above techniques, and to resolve some of the

issues associated with each method.

30

Chapter 4

Experiments

This thesis evaluates the different methods and issues of server selection described in the

previous section by running experiments on an Internet test bed of 10-15 hosts. The objec-

tive was to use this testbed to generate conclusions that could be implemented and tested

later on a larger deployed network. While the tests were designed to address specific issues

that would arise in Chord and CFS, they were not run on Chord servers or within a Chord

network. Therefore, some of the conclusions drawn from these studies could apply to other

systems with similar parameters, and are not necessarily specific to Chord. Correspondingly,

these conclusions require further verification and refinement within Chord.

4.1 Experimental Conditions

All tests were conducted on a testbed of 10-15 Internet hosts set up for the purposes of

studying Resilient Overlay Networks(RON), described further in [2]. These machines were

geographically distributed around the US and overseas at universities, research labs, and

companies. They were connected to the Internet via a variety of links, ranging from a cable

modem up to the five university computers on the Internet 2 backbone. Most of the hosts

were Intel Celeron/733-based machines running FreeBSD with 256MB RAM and 9GB disk

space. While some of the machines were more or less dedicated for use in this testbed,

others were "in-use" machines. To a certain extent, this testbed attempts to reflect the

diversity of machines that would be used in a real peer-to-peer network.

31

Figure 4-1: RON hosts and their characteristics

4.2 Chord Layer Tests

4.2.1 Evaluating the use of past latency data

Server selection at the Chord layer is mainly focused on finding the machine with the best

latency. Each step of the lookup process takes little more than one round trip time for

the closest-preceding-nodes request to be relayed to the server and the information for the

next node on the lookup path to be relayed back. Ping times are thus closely correlated

to the performance of the lookups. At the same time, since the time for a given step in

the lookup path is roughly equivalent to the ping time between the two nodes, pinging

all the machines first to choose the fastest one adds a significant overhead to the overall

performance. Instead, the selection mechanism must rely on past performance data to

choose a node.

In order to test whether past ping data is an accurate predictor of future performance,

tests were run to determine how much latency between machines varies over time. If latency

varies widely, past data would be a fairly useless metric unless it was taken very recently. If

latency holds fairly steady, then the past ping times stored in each node would be sufficient

to select the next server on the lookup path.

32

Name Connection Description
Aros T3- ISP in Salt Lake City, UT
CCI T1? .com in Salt Lake City, UT

CMU T3 + Internet-2 Pittsburgh, PA
Cornell T3 + Internet-2 Ithaca, NY

Kr unknown South Korea
Lulea unknown Lulea, Sweden

Mazul unknown MA
MIT T3 + Internet-2 Cambridge, MA

Msanders Ti Foster City, CA
Nc cable modem Durham, NC
NI unknown Netherlands

NYU T3 + Internet-2 New York, NY
Pdi unknown Silicon Valley, CA

Sightpath unknown MA

4.2.1.1 Methodology

The necessary data was collected using perl scripts running on every machine in the testbed.

Every five minutes, the script would ping each machine in a list that included every other

server in the testbed, plus an additional ten Web hosts, and record the ping results in a file.

The Web hosts included a random assortment of more popular sites, such as yahoo, and less

popular sites in both the US and Canada. They were included in the test to increase the

data set, and to test the variance in latency for in-use, commonly accessed servers. These

scripts were run several times for several days on end to get an idea of how ping times

varied over the course of a day as well as over the course of different segments of the week.

The resulting ping times between each pair of machines were then graphed over time, and

the average, median, and standard deviation for the ping times were calculated. Since each

ping only consisted of one packet, sometimes packets were lost between machines. Packet

losses are graphed with a ping time of -1, but were not included in calculating the statistics.

One point to note is that these experiments used ICMP ping, which may not be exactly

representative of the actual behavior Chord will experience. Chord's lookup requests use

a different communication protocol, which may therefore have different overheads and pro-

cessing than the ICMP packets. Another experiment that may be interesting to conduct

is to graph the round trip latencies for an actual request using the desired communication

protocol.

4.2.1.2 Results

For the most part, results tended to look much like that in Figure 4-2. While individual

ping packets sometimes experienced spikes in round trip time, overall the round trip latency

remained steady over time. Some pairs of machines experienced greater variability in the

size of the spikes, while others had far less variation. In general, machines with different

performance tend to have fairly different ping times, and even with these variations, it is

fairly obvious which are relatively better. Those that are closer in ping time tend to have

more or less equivalent performance, so it does not matter as much if at a particular point

in time, one has a better ping time than the other.

Several of the graphs depicted shifts in ping times such as those shown in Figure 4-3,

and more drastically in Figure 4-4. Such shifts in latency are probably fairly common, and

33

200

150

100
E
a)
E

01
CL 50

0

-OU
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (minutes)

Figure 4-2: Sightpath to Msanders Ping Times

indicate rerouting somewhere in the Internet between the two machines. While it is evident

that there will be a period of instability during which stored past latency data will not

accurately predict future performance, for the most part, latency holds steady before and

after the change. Therefore, while past latency data will not always be the best indicator,

it is good enough the majority of the time.

However, on occasion results look like Figure 4-5. Each of the large spikes in the graph

seems to correspond to a different day of the week, indicating a great deal of variability

during the daytime hours. The machines in question are connected to a cable modem

in the US and at a university in Sweden. The higher spikes on weekends might indicate

greater usage of cable modems when people go home on weekends; however, none of the

other results to or from the cable modem show similar spikes. In fact, none of the other

results to or from the Swedish machine show similar spikes either. The route between these

two particular machines may be unusually congested and be more significantly impacted

by traffic over the Internet than the other routes. This graph is not very characteristic of

latency trends in this set of experiments, including the ping times to the web hosts that

were not part of the testbed.

34

I IIt

-

2 0I I I I I I I I

200 -

150 -

E 100

50

0

-50n
0 1000 2000 3000 4000 5000

Time (minutes)
6000 7000 8000

Figure 4-3: Cornell to Sightpath Ping Times

t till

~ALLJ
-I

~I1 1k d TtX~Lii
.1 It t It

0 1000 2000 3000 4000 5000
Time (minutes)

6000 7000 8000 9000

Figure 4-4: Mazu to Nc Ping Times

35

9000

250

200 I

150

cII
E
aI)
E 100

I-

501-

0

i4it

17

250

It. t--

-U0

1600

1400

1200

1000

800
E

M 600

400

200

0

-200
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (minutes)

Figure 4-5: nc to lulea Ping Times

4.2.2 Triangle Inequality

The Chord protocol has the option at each step of the lookup process to select from a pool of

servers, some further in ID space than others, some closer in network distance than others.

The proposed server selection method is to select a server closer in network distance (using

round trip latency as the distance metric) at each hop, in the hopes of minimizing the overall

latency of the lookup process. Due to the fact that the data used to determine network

distance is actually an indirect measurement made by another node, this approach is based

on the assumption that the triangle inequality holds true most, if not all, of the time. The

ping times collected in the previous experiment were used to test this assumption.

There are actually three variations of the triangle inequality that were tested, each

increasingly specific to this problem.

4.2.2.1 Simple Triangle Inequality

The first examined is what is normally meant by the triangle inequality, and is the only

variation that actually involves a triangle. It states that if machine A is close to machine

B, and machine B is close to machine C, then machine A is also close to machine C. This

36

C

B

<A

Figure 4-6: Simple Triangle Inequality

can be expressed as follows:

PingAB + PzTn9BC PingAC

This is generally useful since each step of the lookup algorithm essentially involves asking

an intermediary node to find a third node.

In general, the triangle inequality is expected to hold. A direct path between two nodes

should be shorter than an indirect path through a third node. However, network distances

are a bit more complicated than physical distance. If the direct path is congested, lossy, or

high latency, it may be ultimately slower than an indirect path made up of two fast links.

This is somewhat akin to taking local roads to get around at traffic jam on a highway. Also,

routers in the network may handle traffic in an unexpected manner, giving certain traffic

higher priority than other traffic. Therefore, the triangle inequality should not hold all of

the time.

4.2.2.2 Triangle Inequality Methodology

The simple triangle inequality was tested by collecting the ping data from the previous

experiment in section 4.2.1, and finding all combinations of three machines where ping data

existed between all three machines. Using this data, the components of the inequality were

calculated, and the percentage of time the inequality held for all combinations of three

machines was determined.

37

AB+BC=AC - -
+ *+ + *+

+ +I-+ +-H++
+++ ++ --

+ + + +++U*+

+ + -4

+ ++ + + ++

+ +
+

+ ++++++ + +

+ +

0 200 400 600 800
AB + BC (ms)

1000 1200 1400

Figure 4-7: Triangle Inequality: AC vs AB+BC

4.2.2.3 Triangle Inequality Results

All told, 20 different samples of ping times taken at different times over the five day period

were examined. Each of these samples consisted of a complete set of ping data taken from

each machine at approximately the same time of day on the same day. Of the 30,660

combinations of 3 machines examined using these samples, the triangle inequality held for

90.4% of them.

Figure 4-7 pictorially illustrates how well these samples fit the triangle inequality. The

diagonal line indicates the case when PingAB + PingBC = PingAc, and the triangle

inequality holds for it and everything under it. This graph indicates that for the majority

of cases, even those cases that do not fit the triangle inequality are not that far off. This is

fairly consistent with the expected results and indicates that the triangle inequality can be

assumed to hold in general.

38

1400

+ +I4*-*-

1200 -

1000 -

800 -

600 -

E

400

200

0

~1

X

B3

A

Figure 4-8: Relative Closeness

4.2.2.4 Relative Closeness

The second form of the triangle inequality is more restricted and specific. Instead of just

determining if C is close to both A and B, this also tests relative closeness. Will asking

an intermediate node for its closest machine also find the machine closest to the origin? In

other words, if B says that it is closer to machine X than machine Y, will A also find that

it is closer to X than Y? This is determined by calculating if the following is true:

(PingAX < PingAY) == ((PingAB + PingBX) < (PingAB + PingBY))

This is equivalent to:

(Ping AX < PingAY) == (PingBX < Pin9BY)

This expression is more relevant to Chord lookups, since the proposed selection method

uses indirect data to select close machines.

From a purely logical standpoint, assuming latency is directly correlated to geographic

distance, if A, B, X, and Y are randomly chosen out of a set of geographically dispersed

servers, there should not be any real correlation in relative closeness between A and B. A

has just as good a chance of being close to X as it is to Y, and B, quite independently, also

has an equal chance of being close to one or the other. Therefore, the relative closeness

expression above should be true about 50% of the time.

39

4.2.2.5 Relative Closeness Methodology

For this test, a list of all machines to which there was ping data was compiled, including

all 15 machines in the testbed and the 10 additional Internet hosts. These machines were

used to generate all possible combinations of X and Y. Then, a different list of machines for

which ping data from those machines was available was also compiled and used to generate

all possible combinations of A and B. Using this data, the percentage of trials for which the

above expression held was calculated for all combinations of A, B, X, and Y.

4.2.2.6 Relative Closeness Results

In this case, some 783,840 combinations of A, B, X, and Y were generated using the same

20 samples of data from section 4.2.2.3. Relative closeness held for 67.2% of ABXY combi-

nations. This correlation is better than expected, and suggests that indirect data from an

intermediary node may be useful for determining relative proximity from the origin server.

The question may be raised as to why the correlation is better than random, since A, B,

X, and Y were essentially randomly chosen. The 50% correlation discussed previously as-

sumes a network in which the servers are evenly dispersed, and where latency is directly

correlated to geographical distance alone. In an actual network, this may not be the case.

The network is not arranged homogenously, with each server behind identical links and at

regular intervals from each other. Instead, some machines may be behind very high speed,

high bandwidth links in a well-connected AS, while other machines may be attached to high

latency links that are somewhat removed from the backbones and peering points. While

geographic proximity does contribute to latency, it is not the only factor involved. There-

fore, some servers may frequently be relatively faster, while others are relatively slower,

regardless of where the client is located.

This can be seen within the particular testbed being used in these experiments. Three

of the machines in the testbed are in countries outside of the US, one in Korea, one in the

Netherlands, and one in Sweden. The latencies to these machines are significantly higher

than to any other machine in the US. Therefore, if one of these machines was X, then A

and B will always agree that Y is closer. The results are also biased, because four of the

machines are connected to each other via the Internet-2 backbone, which has considerably

higher bandwidth and lower latency than the regular Internet backbone. Most of these

40

servers also have good connections to the Internet, and therefore are relatively fast to the

other servers in the testbed. A specific example would be NYU, which is never slower than

the fifth fastest for any of the other machines. In fact, a quick examination of ranked ping

times for each machine indicates that the relative rankings of the machines do not differ

that much, although the results tend to be biased based on geographic region.

If these tests were run on a different testbed, the results may change. A less diverse

testbed would not have as defined fast and slow machines, and would perhaps have a

lower correlation. In this particular testbed, however, relative closeness holds with good

correlation.

4.2.2.7 Chain of Machines

B D F

A

C E G

Figure 4-9: Chain of Length 3

The third test conducted investigated a more complicated scenario of a chain of the

choices studied in the previous example. Since the actual lookup will involve several steps

of selection decisions, we seek to determine whether the "right" decision can still be made

with this degree of indirection.

Despite the indirection involved in these chains, what this experiment ultimately tests is

essentially the same as the previous relative closeness tests. Once one of D or E is selected,

then it should pick the "right" one of F or G with the approximately the same probability as

it did in section 4.2.2.6. Since the intermediate node is not randomly chosen, the probability

may not be exactly the same. However, since each indirect server was chosen to be close to

the original, and since both relative closeness and the triangle inequality seem to hold with

great probability, the probability of D or E selecting the right answer could potentially be

even higher.

41

4.2.2.8 Chain of Machines Methodology

In order to test this, chains of machines were constructed such as the one in Figure 4-9. In

this particular example, a chain of length 3, A determines which of B and C is closest to it,

and asks that machine, say B, which of D and E is closest to it. B then asks that machine,

say D, which of F and G is closest to it. This final choice is then compared to the relative

closeness of AF and AG to find out if the "right" decision was made. Chains of length 2

were also studied, using combinations of A, B, C, D, and E.

4.2.2.9 Chain of Machines Results

The same 20 samples of data used in the previous tests were used to generate all possible

combinations of five machines for chains of length 2 and all possible combinations of seven

machines for chains of length 3. Of the 3,603,387 combinations examined for chains of length

2, 69% of them made the "correct" final selection of D or E. Of the 146,556,900 combinations

examined for chains of length 3, 65% of them made the "correct" final selection of F or G.

These results are consistent with the results of the relative closeness test. In fact, the

results for chains of length 2 are actually better than those for relative closeness. Selecting

the closer intermediate server may have increased the chances of selecting the correct final

server. This is consistent with the triangle inequality. When the chain lengthens, however,

the correlation drops somewhat. With the extra degree of indirection, the probability of

selecting a "wrong" intermediate node (one that is slower for the origin) increases somewhat,

and that intermediate node is more likely to pick the "wrong" final node, since what is close

to it may not be close to the origin server. However, since relative closeness does hold 67%

of the time, that intermediate node also has a good chance of selecting the "right" final

node. Therefore, the drop in correlation is slight.

In fact, since the crucial step seems to be the final selection, it seems that it should

not matter at all whether the closest machine is selected at each intermediate step. The

"correct" final answer should be found with about the same probability regardless. This

hypothesis was tested by conducting the same test, but selecting the worse of the two choices

at each step until the final decision, at which point the best was selected. Sure enough,

for chains of length 3, the correct final answer was still arrived at 61.7% of the time. This

probability is lower than it is for selecting the best machine at each step for likely the same

42

reason the longer chains have a lower correlation. Selecting the slower server at each step

increases the probability that that server will have a somewhat different view of the network

than the origin, and will therefore pick the "wrong" server.

Since the probability of finding the "correct" server through indirect queries is about

the same for selecting the best machine vs the worst machine, the next question to address

is what the improvement is in overall latency. The overall latency was calculated as the sum

of latencies between the original server and its chosen server at each level of the chain. The

improvement in latency between selecting the worst server at each step and selecting the

best server at each step was marked. Picking the best server had an overall latency that was

one quarter to one fifth that of selecting the worst. Therefore, picking the fastest machine

at each step does win considerably on latency, while still arriving at the correct answer with

reasonably good accuracy. This test is of course a simplification of what will really happen

in CFS. In CFS, it is unlikely that choosing different servers will lead to the same length

chain to arrive at the destination. Therefore, additional considerations regarding the overall

number of hops must also be taken into account. However, this test does provide a good

indication of the benefits of this approach.

4.2.3 Chord Layer Selection Results

Overall, the results of these three tests, coupled with the study of variance in latency,

indicate that the proposed selection method of picking the fastest server at each step of the

lookup process based on past information should be successful at reducing lookup latency.

This method requires a minimum of overhead, and should keep the variation of performance

experienced by different machines in the network low. However, it is important to note that

these tests only indicate that these assumptions are true in this particular testbed. While

indicative, it is not necessarily representative of how often it holds for the Internet as a

whole.

43

4.3 dhash Layer Tests

Selection at the dhash layer is directed towards improving the end-to-end performance

experienced by the client during data retrieval. End-to-end performance is measured as the

time from when the client issues its request to when it finishes receiving all of the expected

data. To that end, although all of the tests below measure the time for the client to issue

the request, the server(s) to read the data out of the file, and the server(s) to transmit the

data back to the client, none of them include the time to write the data to disk on the

client. In fact, none of the tests actually did write the data to disk after it was received.

This decision was made with the assumption that local disk write time was the same for

the various selection methods, and that the greatest variation in performance came from

the actual retrieval of data across the network. The end-to-end performance measurement

also did not take into account any additional processing time on the client that a particular

method might actually require. Analysis and comparisons between the various methods of

selection was thus purely based on network and server performance. Further analysis of

additional overhead from processing, disk writes, and other costs should be done to fully

compare these methods.

4.3.1 Server

For the purposes of the dhash layer related experiments, a simple TCP server was run on

each host. Each host also stored a 3.5MB file for use by the TCP server. Upon startup, the

server would open the file for reading and then wait for incoming connections. The protocol

for contacting the server was very basic; it was designed to accept requests with a very

simple syntax: "GET [size]". When it received such a request, the server would read [size]

bytes of data from the open file into a buffer and send the buffer back over the connection

to the client. The server never explicitly shut down a TCP connection until it detected

that the client had closed down the other side of the connection. This was so the client had

the option to send additional requests over the link without having to establish a new TCP

connection and go through slow start again. The client could also just abort any ongoing

connection it no longer needed, and the server would eventually detect the disconnection

without the need for an explicit message from the client.

44

4.3.2 Ping Correlation Test

Although the size of the blocks used in CFS is relatively small, there is not necessarily a

direct correlation between latency and bandwidth. A given server could be relatively close

to the client, thus having low latency, but also be behind a small link, cutting down its

bandwidth. If the block size is less than the size of one packet, then ping time may be a

good indication of performance. However, the larger the block size, the less likely there

is to be a good correlation. Thus, it is useful to determine the actual correlation between

ping times and retrieval times within this testbed. How often does the fastest ping actually

correlate with the fastest machine, and what is the penalty from downloading from the

fastest pinging machine? How does this penalty vary with size? At what size does the

correlation begin to weaken?

4.3.2.1 Ping Correlation Methodology

The basic test designed to answer these questions cycles through a list of servers, first pinging

the machine and then actually retrieving data from that machine. Both the ping time and

the retrieval time are recorded. This script uses a system call to the actual ping utility,

specifying 1 ping packet and a max wait time of 3 seconds. When the test finishes running

through all the machines, the machines are ranked by ping time and by retrieval time and

the ranked lists are printed to a file for further analysis. This test was run for request sizes

ranging from 1 byte up to 64KB, with ten iterations of the test at each size. There were

also two other versions of this test. For one, all possible combinations of five machines

were generated and the test was run once for each possible combination and size. The

third version of the test used sizes of 1KB through 2MB, doubling each time, and requested

from all machines once, but then subsequently generated all possible combinations of five

machines to study. The reason behind studying different combinations of the machine was

to vary the pool of ping and retrieval times, since some groups of machines may exhibit

more variation than others. These tests were also run using each machine in the testbed as

a client.

45

4.3.2.2 Ping Correlation Results

The data from all the tests run using the first two versions of the test was compiled together

for analysis. The data for all the tests run using the third version of the test was compiled

separately, since the range of sizes tested differed from the previous tests. The analysis

for each set of data was the same, however. For each individual test with its rankings of

machines, the ratio of the retrieve time from the fastest pinging machine to the fastest

retrieve time was calculated. In order to determine if this ratio is actually significant, the

ratio of the retrieve time from the slowest pinging machine to the fastest retrieve time was

also calculated. In the final version of the test, a third ratio was computed of the retrieve

time from a randomly selected machine to the fastest retrieve time. This was added to show

the relative improvement in retrieval time derived from pinging as opposed to simply picking

a machine. Ultimately, ratios from individual tests and different clients were averaged

together to produce an overall ratio for each request size. This ratio essentially correlates

to the penalty derived from selecting the machine with the fastest ping - the ideal is a

ratio of one, where the fastest pinging machine is also the fastest retrieving machine. When

the ratio goes above 1, then the retrieve time for the fastest pinging machine is worse than

optimal. However, this machine could be the second fastest and still have reasonably good

performance, keeping the ratio close to 1.

The overall average ratios for best ping time and worst ping time compiled from the first

and second tests described above were graphed in Figure 4-10. The ratios for best ping,

worst ping, and random from the third test were graphed in Figure 4-12. The best ping

time ratios from Figure 4-10 and Figure 4-12 were graphed individually in Figure 4-11 and

Figure 4-13, respectively. For both sets of data, results from thousands of combinations

of servers from 13-14 clients were compiled. In both cases, the ratio for the fastest ping

machine's retrieve time to the fastest retrieve time is quite close to 1, indicating that ping

chose a machine that had the fastest, or close to the fastest retrieval time the majority

of the time. Figure 4-11 and 4-13 indicate that for file sizes below 64KB, the ratio never

gets higher than 1.1. Even for file sizes up to 2MB, the ratio stays under 1.5. Ping time

therefore appears to have a good correlation with actual end-to-end performance and is a

good metric to use for data of these sizes.

46

8

7

6

A)

5
CD,

0

a)

a)

A)

23
C

0
0 10000 20000 30000 40000 50000 60000

Size (bytes)

Figure 4-10: Best and Worst Ping Ratios for Tests 1 and 2

.025 -

1.02 -

.015 -

1.01

1.005 -

0 10000 20000 30000 40000 50000 60000 70000
Size (bytes)

Figure 4-11: Best Ping Ratio for Tests 1 and 2 (same as in figure 4-10)

47

Best Ping
Worst Ping ---x---

- -
- --- - - - -

Best Ping -

E

A)

(D
a

.0
0 1

cc

1.035

1.03

1

1

I

500000 1e+06 1.5e+06 2e+06 2.5e+06
Size (bytes)

Figure 4-12: Best and Worst Ping Ratios for Test 3

500000 1e+06 1.5e+06 2e+06 2.5e+06
Size (bytes)

Figure 4-13: Best Ping Ratio for Test 3 (same as in figure 4-12)

48

12

10

8

6

4

2

E

a)

C0

Best Ping -
Random Choice --- x---

Worst Ping --- *---

A

- - -- --x --x

0
0

Best Ping I

E

Z,
a,

-0

E

A)

CL

Z5

CC)

1.5

1.45

1.4

1.35

1 .3

1.25

1.2

1.15

1.1

1.05

1

.)K- -- - - - - - - - - - - - - . - -x - - - - - - - - -

_--x ------------

-
0

4.3.3 Selection Tests

Although ping appears to select a high performance server for data retrieval with good

probability, the overhead for the initial ping probe may cause another method to yield

better overall performance. Since the primary concern of server selection is overall end-

to-end performance, several different server selection techniques were studied, including

random selection, ping, and parallel download. Bandwidth probing was not studied in any

depth since for block sizes as small as those used in CFS, the bandwidth probes would be

too small to yield useful information beyond a ping. There were also no specific experiments

designed to test the past performance method. However, the results of the ping variance,

triangle inequality and ping correlation experiments test the main points of concern for this

method.

Each of the following programs were implemented separately to test different selection

techniques, and then run together in a Perl script that will be described later. With the

exception of the test to determine the correlation between the best ping time and the fastest

server, which was implemented in Perl, all the programs were implemented in C. Most of the

programs were based around asynchronous events and callbacks rather than threads. Each

program was designed to make just one request per execution so that it could be utilized

in a variety of different tests with different arguments.

4.3.3.1 Random Selection

The random selection program was designed to test the performance for requesting data

from a randomly selected server. It takes in as arguments the size of the block to request

and a list of machines to select from. A server is selected by generating a random number

between 0 and NumMachines - 1, and finding the machine in the server list with that index.

The output of the program is the time it takes for the client to generate the random number,

the request to be made, and the data to be returned.

4.3.3.2 Latency Probing

The ping program was designed to test the performance for probing the servers and then

requesting the data from the server with the lowest latency. The ping program does not use

the ping utility, precisely, but instead issues an ICMP echo packet to each machine to probe

49

the latency between the client and the potential servers. This ping probe times out after

a minute, in which case the program just aborts with no output printed. Otherwise, the

program waits for the first ping packet to return, and issues a request for the appropriate

size to that machine. The time printed in the output measures the period of time from

before the program resolved the hostnames and sent out pings until after the data was fully

retrieved. This program is actually a bit more complex than this, as will be more fully

described in section 4.3.4.1.

4.3.4 Parallel Downloading Tests - Methodology

An alternative to picking one fast machine to download from is to download parts of the

block in parallel from multiple machines. This allows the client to take advantage of the

aggregate bandwidth of the combined servers while downloading smaller amounts of data

from each machine, thus increasing overall performance. Although aggregating bandwidth

is useful, the client must be careful not to request from so many servers at the same time

that the bandwidth capacity of the link is exceeded. Also, if the client chooses to download

a portion of the block from a slow machine, the overall retrieve time is limited to the speed

of that machine. Therefore the degree of parallelism, as well as the machines to retrieve

from, must be carefully chosen.

4.3.4.1 Ping

Assuming the block is replicated on n servers, one way to select the k to retrieve from is to

ping all the machines and take the k fastest. The program described above in section 4.3.3.2

is not restricted to only retrieving from the machine with the fastest ping. It actually takes

in two parameters additional to the list of repliacs: the number of machines to retrieve from

and the size of the total request. Ping probes are issued to all n replicas in parallel, and

the client requests a different TotalRequest segment of the block from the first k machines to

respond to the ping. The total time of this test is measured from before the ping packets are

issued until the last portion of data has been retrieved. The test described in section 4.3.3.2

is simply this program run with k = 1.

50

4.3.4.2 Direct Parallel Download

If there aren't too many replicas, and the block size is reasonably small, another possible

method is to issue a request to all n replicas and using the data from the first k to respond.

As was described in section 3.2.4.1, this is not entirely equivalent to the parallel retrievals

described in the previous section. When k = 1, this method is essentially another way to

find the fastest machine without probing the network. When k = n, this is the same as

striping, and in fact is a better test for striping than setting k = n for the ping program,

since there is no need to probe when requests are being issued to all the replicas. However,

when 1 < k < n, this method is more roughly equivalent to using erasure codes with parallel

downloads than simple parallel downloading. With erasure codes, the client would request

a different segment of the block from each of the n replicas and be able to reconstruct the

block from the first k segments it receives. Using erasure codes is slightly different than

the above described methods since the block will not be fully replicated on the n replicas,

but instead be split into n encoded segments. If CFS were to use erasure codes, there

would need to be further study into the overhead of encoding and reassembly, as well as

management issues of how the segments are maintained as nodes leave and join the network.

This thesis only seeks to discover if there are any performance benefits to using this type

of retrieval, and therefore ignores any overhead associated with encoding. It also assumes

that the client is not receiving any duplicate packets, and that the first k are unique and

sufficient to reconstructing the block.

To this end, the program designed to test parallel downloads takes in the same parame-

ters as the ping program - the number of machines to download from (k) and the size of the

overall request (TotalSize). It then opens TCP connections to all n machines, and issues a

request for TotalSize to each machine. When it has finished receiving data from the first k

machines to respond, it stops timing and prints out the total time of the test.

4.3.5 Combined Tests

Although it is interesting to study each of the above methods individually, the real question

was the relative performance of the various methods under different conditions. These

conditions include varying the size of the total request, changing the value of k, and seeing

how well each method performed from clients with different characteristics to differing

51

groups of servers. Some of the methods might work better for clients behind slow links,

and others with fast clients. Similarly, if the replicas were all behind high-bandwidth links,

striping the block might have better performance than if only one or two replicas were fast.

Since in the real network these conditions are unknown, the selection mechanism cannot

be adapted to real-time conditions. Therefore, a selection method needs to be found that

may not provide the best performance in every situation, but provides a reasonably good

performance in most.

4.3.5.1 Combined Tests Methodology

In order to evaluate the different server selection methods, a perl script was written to run

the previously described tests in various conditions. The script takes in a list of machines

and generates all possible combinations of five servers from the list. The number five was

chosen since it seemed to be a reasonable number of replicas. For each of these combinations

of machines, the script iterated through request sizes ranging from 1 byte to 64KB (doubling

in size each iteration). For each size, the random, ping, and parallel tests were run with

k varying from 1 to 5 for the ping and parallel tests. All the results from these tests were

written to file for later analysis. Each of the hosts in the testbed in turn acted as the client,

with the rest of the hosts making up the pool of available servers. Results from early tests

indicated that there was not much difference between 1 byte and 1KB, since they both less

than a size of a packet, so later tests did not use a request size of 1 byte. For various clients,

the number of available servers ranged from 9 to 13. All the individual tests were run

serially so that the results were not corrupted by interference between the different tests.

Overall, these tests reflect results for different sizes, clients, and combinations of servers.

4.3.5.2 Combined Tests Results

In order to get a sense of the overall performance of each of these methods, irrespective of

external conditions, all the performance data from the various tests were compiled together

and the median test times for each method at each size was determined. The resulting times

are representative of "typical" performance for each metric, without taking into account the

particular clients, servers, or time of day the test is done at. Since the objective is primarily

to determine relative performance of each method, the specific times are less relevant to

this study.

52

900

800 Parallel 4 e
Parallel5 -5 ---

700

600 - ~.-.-
E

.....0.. -- ----

E 500

400 x-

A9

~300

200 B

0
0 10000 20000 30000 40000 50000 60000 70000

Size (bytes)

Figure 4-14: Parallel Retrieval Results

Figure 4-14 shows the results for direct parallel downloading without first probing the

servers. Each line represents a different degree of parallelism. Par 1 represents the case of

requesting the whole block from all five servers, and using the first to finish returning the

data. Par 5 shows the results of striping the block across all five machines and retrieving 1/5

of the block from each server. The other lines Par k represent varying degrees of parallelism,

where a fraction of the block fies is requested from all servers, and the process is complete

when k servers return the data. From the graph, it is apparent that the best results were

derived from downloading the block from only one or two machines. Whether one or two

machines should be used is dependent on the size of the block in question.

The results for pinging the machines first to select the servers to download from are

shown in figure 4-15. The overall trends and relative performance of the various degrees

of parallelism closely matches that of directly downloading the block in parallel. In this

case, pinging and downloading from just one machine is almost invariably better than other

methods, although downloading from two machines has only somewhat worse performance.

Striping from five machines is the worst for both methods.

In order to determine that the overall results were not skewed due to the results of one

or two clients, the results from each individual client were also examined. For 11 out of the

53

Parallel 1 -i--
Parallel 2 --- x---
ParaIIeI 3 i-

0 10000 20000 30000 40000 50000 60000 70000
Size (bytes)

Figure 4-15: Ping Probe Results

0 10000 20000 30000 40000 50000 60000 70000
Size (bytes)

Figure 4-16: Aros Ping Probe Results

54

1000

900

800

700

600

500

400

300

200

1001

Ping 1 - --
Ping 2 ---x-

- Ping 3 ----
Ping4 -
Ping 5 ---

---- ---- ~ ~

w- - -- -- ~--

-i a-.....

E
II)

E

-
(D

cU

IIu

0

1200

1000

800

600

400

200

In
E
(D
E
Z5

.u)

Ping 1 -+ -
Ping 2 --- x--
Ping 3 ---
Ping4

- Ping 5

- -- - --

--- ----

0

13 clients, the results paralleled the overall results, indicating that the best performance

was to be derived from downloading from just one or two machines. For the other two,

striping or downloading from four machines actually yielded better performance. However,

as can be seen in figure 4-16, the performance derived from striping was not significantly

better than that of downloading from just one machine, especially for smaller block sizes.

Therefore, the policy of downloading the entire block from the fastest machine would yield

the best performance in most cases, and only marginally worse performance for a minority

of clients.

These results at first are surprising in light of the fact that previous work ([3],[19])

has shown significant improvements in download times through parallel access. However,

that work was done with large files. For blocks of the size being examined in this test,

performance of parallel downloading using TCP connections is strongly influenced by TCP-

related overheads. When an already small block of data is split into even smaller fractions,

the number of packets required to send that data is minimal. Therefore, TCP connection

set-up time dominates the retrieval time and the window never opens enough to reach path

capacity. This time is not reduced in any way by the striping of the data. Striping data

only increases the number of TCP connections being established at the same time. In the

event of a packet loss, TCP's congestion control mechanisms will cause the window size to

decrease and the data throughput to be reduced. With five TCP connections instead of

one, the chance that there is a packet loss on any of these links is increased. Therefore, the

overall performance is reduced since any packet loss will require the client to have to wait

longer for a response from one of the servers. CFS already provides parallelism in its block-

level store and the way it distributes data around the network. Further parallelism in the

server selection step does not add any optimizations to the overall end-to-end performance

of the block retrieval.

While the above graphs illustrate the relative performance of different degrees of paral-

lelism for each method, the different methods also need to be compared to each other. Fig-

ure 4-17 plots the best ping and parallel methods along with the random selection method.

The results for the ping and direct parallel methods closely mirror each other, with ping

being slightly worse due to the overhead of the ping probe. Both methods produce a sig-

nificant improvement in overall performance compared to random selection. However, both

methods also incur a certain degree of overhead that must be considered in the choice of a

55

1100
Parallel 1 ----
Parallel 2 --- x-

1000 Random ---
Ping1 - .

900 Ping 2 - -

800

700

50 - -
600 -

P

500

400A ------------

300 -

100

0
0 10000 20000 30000 40000 50000 60000 70000

Size (bytes)

Figure 4-17: Random, Best Ping, Parallel Results

selection algorithm. Direct parallel downloads increases bandwidth usage, much of which is

ultimately unproductive. Of five connections established for each block, only one is really

used. In the meantime, unnecessary data is being transferred over the network through

the other connections. Since the block sizes are so small, this bandwidth usage is minimal

for the transfer of an individual block. However, real file accesses in CFS will require the

retrieval of many blocks in order to reconstruct the file. If each of these retrievals uses its

share of unnecessary bandwidth, the costs begin to increase. The probes used in the ping

method add a latency cost to the end-to-end performance of a retrieval, and increase the

number of packets being sent in the network at a given time. However, these additional

packets occupy less bandwidth than parallel downloads do, and the overhead due to ping is

relatively insignificant compared to the amount of performance gain derived from using this

method. Factoring in the results of the ping correlation test, using ping probes to select the

server from which to download a complete block is the best selection method of the three

tested. However, further tests should be conducted to compare the performance of using

ping probes to using past latency data. If the performance is comparable, then using past

latency data may be a better overall method since it imposes no additional overhead and

does not require additional mechanisms beyond those used at the lookup layer to implement.

56

Chapter 5

Related Work

The idea of improving performance of a distributed information service through replication

has been a subject of interest in many past studies and systems. Although past studies have

been primarily focused on improving performance in the World Wide Web, other studies

apply to different kinds of distributed systems. While the specific system influences the

direction and specific conclusions for each study, the concepts in question are relevant to

any replicated system. This section will first examine relevant server selection work in the

Internet in general, and then focus on selection within other peer-to-peer systems similar

to Chord or CFS.

5.1 Internet Server Selection

In a replicated system, server selection can take place in one of three possible places: the

server, the client, and the network (at some intermediary).

The server - most likely some central server that controls the replicas - can receive

requests from clients and decide which replica to direct the request to. This is good from a

load balancing perspective, since the server is very aware of what requests are being made

at any given time and what servers are fulfilling those requests. However, this method

requires a centralized server, which provides a central point of failure and a performance

bottleneck, and is unlikely to be aware of the performance between the client and any

one of the replicas. Server-side selection makes most sense in a centralized system where

load balancing is the primary concern, perhaps in a cluster-based system. Since this is not

relevant to CFS, server-side work will not be described here.

57

5.1.1 Intermediate-level Selection

The system can also have intermediate resolvers or proxies that reside between the clients

and servers. These resolvers can keep track of server and network performance that is

hopefully locally relevant, and select a server based on this information. These resolvers do

not have to be aware of all the replicas in the network, nor do they have to handle all the

client traffic. Therefore, there is no centralized point of failure, and there is some element

of load distribution, if the resolvers are set up correctly.

DNS (Domain Name System) utilizes server selection and load balancing in different

steps of its name resolution. When a DNS lookup request is made, for instance to an

address such as www.lcs.mit.edu, the request will first go to the .edu server. From there, it

will be redirected, to the mit.edu server, etc, until it finds the actual host. However, there

can be more than one server for each level of the hostname. In the BIND implementation

of DNS, BIND keeps track of the round-trip times for all of its queries to each server,

and redirects subsequent queries to the server with the "best" round-trip time. While

this method is effective for finding high performance servers, it is not very good at load

balancing. BIND also addresses load balancing/sharing without considering performance.

In DNS, a given hostname can map to a variety of IP addresses. When requests are made,

the name server round-robins through the list of IP addresses, sharing the load equally

among requests. This means, however, that on a given request, the client can be redirected

to both far and close servers, and performance will vary widely [1].

In the SPAND (Shared Passive Network Performance Discovery) system, applications

on clients utilize local repositories of shared network performance data to make predictions

for future performance. This shared data is passively acquired; no probes are sent into the

network. Instead, data from actual transactions are pooled together and shared between

clients likely to have similar performance. This data focuses on application-level perfor-

mance, and can include response time or Web page download time. The system does not

specifically specify metrics, but instead provides a database-like interface to allow applica-

tions to specify their own metrics. The performance of this system depends on the amount

of variation in network performance the clients experience due to network fluctuations,

temporal fluctuations, and relevance of the data to individual clients. Stemm, et al, found

that variation increased only slightly between receivers, and that performance could vary a

58

lot over large time frames but not as much for on a smaller time scale. However, network

variation was enough that SPAND data could only effectively be utilized to differentiate

among orders of magnitude change in performance [23].

A similar method with a different data-collection method, application-layer anycast-

ing, was proposed by Fei, et al. Replicas were made part of an anycast group identified

by an anycast domain name. The design centered around the use of anycast resolvers,

which mapped the ADN to specific IP addresses on request. These resolvers had associ-

ated databases of server performance data that were periodically updated through server

push and probing. For the former, the server would monitor its own performance and push

information to the resolvers when interesting changes occurred. For the latter, probing

agents, often co-located with resolvers, periodically send queries to servers to determine

performance. The metrics used to evaluate performance were primarily concerned with

response time and throughput. They tested this method on machines located around the

US. This method, by their experimentation, had reasonable accuracy, and better response

time performance than random selection or selection by number of hops. Anycasting does

impose additional cost to the network; client queries to the resolver, server monitoring and

push, and the probes sent by the probing agents. While anycast query resolution can be

combined with DNS lookups, both probes and pushes add traffic to the network. However,

they argue that the push messages are small, while probes are relatively infrequent and

therefore to no impose a significant burden on the servers [26].

Heidemann and Visweswaraiah studied a variety of server selection algorithms that uti-

lized an intermediate replica selector. The selector handled HTTP-requests from the client,

selected a nearby replica, and returned a redirect message to the client. The algorithms

used were random selection, domain-name-based approximation, geographic approximation,

and measurement of propagation latency. Unlike this thesis, however, they did not measure

overall performance of each of these methods, instead looking at the costs of the selection

step itself. By their measurements, random selection and domain-name based selection had

the least selection cost, while measuring latency or using geographic approximation had

the greatest selection cost. Also, since the selector was not co-located with the client, its

latency measurements were not as accurate unless they used source-routing, which is not

always supported in the Internet [12].

Cache Resolver utilizes a combination of consistent hashing and DNS redirection to

59

coordinate caches and direct clients to an appropriate cache. Consistent hashing is used

to map resources to a dynamically changing set of available caches. Since Cache Resolver

is designed for use in the Web, it is limited by the use of largely unmodified browsers on

the client side. Therefore, it uses modified DNS servers to support consistent hashing and

perform the resource to cache mapping. An extension to the Cache Resolver system adds

locality to the choice of caches by ensuring that users are always served by caches in their

physically local regions. Users can specify their geographical region when downloading the

resolver script, and the script in turn will generate geographically specific virtual names.

When DNS resolves these virtual names, it will be directed towards DNS servers that are

geographically local to the user [131.

Several commercial companies in recent years have based their business models around

the problem of improving Internet performance through replication. The most well-known

of these in recent years has been Akamai. Akamai's solution "FreeFlow" utilizes modified

DNS resolvers to redirect requests to topologically closer replicas. There are several different

aspects to their technology. The customer, a web service provider, will mark certain pieces

of data on their web pages to be "Akamaized" (served by Akamai servers). The tags to

these pieces of data will be automatically rewritten to point to Akamai servers, instead of

the original server. When the web page containing this content is requested, the browser

will request a lookup from the top level DNS server, which will redirect the query to one of

Akamai's top level name servers. This server does some processing to determine the client's

topological location and redirects the client to a lower level DNS resolver responsible for

traffic near that user. Akamai also does some dynamic load balancing and real-time network

monitoring to assist in their redirection decisions [22].

Another company, Cisco, has a different product to accomplish the same ends, the

"Distributed Director". The DistributedDirector utilizes routing table information in the

network to redirect users to the closest server, where closest is measured by client-server

topological proximity and link latency. Cisco deploys agents throughout the network, both

on border routers and within the network, that use the Director Response Protocol to

coordinate with each other. After taking into account the BGP (Border Gateway Protocol)

and IGP (Interior Gateway Protocol) routing table information about latencies, etc, a DNS

or HTTP response is returned with the redirect to the "best" server for that client [9].

Most of these systems using intermediate resolvers require fairly complicated mecha-

60

nisms to keep the data relevant for use by the clients. Many base their server selection on

geographical locality, rather than any performance metric. Most systems seem to depend

on a fairly fixed set of replicas. They also require the use of additional components in the

system, aside from the client and the server. If CFS were to use intermediate resolvers to do

server selection, it would require either the deployment of additional, fixed machines or for

some of the nodes to be designated as intermediaries. Both of these go against CFS' ability

to adapt to a changing network, at least for the data retrieval step. Using intermediate

nodes to do lookup, and picking the lowest latency lookup node in some ways reflects this

use of intermediate resolvers.

5.1.2 Client-side

An alternative that is more relevant to this thesis is to place the server selection mechanism

on the client. By locating it at the client, the selection mechanism can take advantage of

locally relevant metrics to optimize end-to-end performance seen by the client.

Crovella and Carter studied the correlation between number of hops and round trip la-

tency, finding that the two are not well correlated, and that the round trip latency is a much

better indication of server performance than number of hops. They also determined that

dynamic methods were more effective at reducing transfer times than static methods[6].

Additionally, they developed tools to measure both the uncongested and congested band-

widths of the bottleneck link in the path. While the predicted transfer time derived from the

combination of these measurements performed well, they found that simply using round-trip

latency measurements yielded very similar performance [5]. They continued to study server

selection using the bandwidth probes devised in [5], with the objective to minimize cost due

to the measurements. From their simulations, they determined that a predicted transfer

time (PTT) derived from combining round trip time and bandwidth was more effective

than other methods, but that simply taking the average of five pings and picking the fastest

server had behavior that was fairly close to that of the PTT. Even sending only one ping

and picking the fastest had good correlation, though correlation improved the more ping

packets used. From this information, they derived the OnePercent Protocol, which sought

to keep the number of bytes used to probe the network to one percent of the total request.

In general, they found that this protocol yielded results that were fairly close to optimal

[4].

61

Obracza and Silva revisited Crovella and Carter's study in 2000 to recorrelate hops to

ping times. They studied both AS and network hops to determine the correlation between

the two. They discovered that the correlation between AS and network hops was 70%,

while the correlation between network hops and ping was found to be 50%. This was in

contrast to Crovella and Carter's reported correlation of less than 10% between hops and

ping. They surmised that the correlation had increased due to changes in the Internet since

1995, and that hops were potentially more useful than previously determined. However,

their conclusion was that round trip time should be the metric of choice when trying to

reduce the clients' perceived latency, and that it was also a lower cost metric to measure

than hop count [17].

Both Sayal, et al, and Lewontin and Martin developed server selection methods that

required the client to keep track of past performance data. In Lewontin's method, the

client obtains a list of replica locations and keeps them in a vector, while a parallel vector is

maintained containing performance information for each site. Each element of this vector is

a running average of performance for each server, and is updated with each request. Server

selection is thus essentially based on the best historical average [15]. Sayal's algorithm uses

HTTP request latency as a measure of response time, and a list of replicas and latencies

are kept. It then used one of two methods to select a server to send requests to. The first is

probabilistic, selecting servers with probability inversely proportional to the most recently

measured latency for the server. This allows the servers to be periodically refreshed since

the requests won't always go to the same server or subset of servers. The other always sends

requests to the server with the least latency, but also periodically refreshes. This requires

extra overhead for refresh, but ensures that the request is always sent to the optimal server.

Both these methods were found to yield better performance than most other methods [21].

Ogino, et al, of FastNet Inc, studied a server selection method that combined both

network and server measurements to find the best server. They used AS (Autonomous

System) path routing information to determine the logical distance of the network, and

then measured the status of the network by round trip time, packet loss, throughput, and

number of hops. They also measured the web server status based on load, as determined

by the number of TCP connections, disk load, CPU idle status, and load averages. These

factors, combined, were used to select the server. Their performance evaluations centered

more on accuracy of selection (what percentage of the time was the "Best" server chosen?)

62

than on end-to-end performance. What they found, however, was that the round trip time

was the most accurate metric for finding the correct server, while network information such

as number of hops and length of path were far less useful [18]. Although they did not test

it, this scheme is likely to impose a great deal of overhead, while not deriving a great deal

of benefit from the extra measurements. This mechanism also involved the cooperation of

both the client and the server.

Dykes, et al, empirically evaluated several different server selection algorithms in a very

similar study to that described in this thesis. The algorithms of choice were two statistical

algorithms, one using median latency and the other median bandwidth, a dynamic probe

algorithm, two hybrid algorithms, and random selection. The two statistical algorithms

used the median of stored data from past transfers, while the dynamic probe algorithm used

tcping to probedall the servers and requested from the first to respond. The two hybrid

algorithms used both statistical data and dynamic probes. The first used the median data

to select the n machines with the fastest bandwidth and then sent probes to each of these

servers. The second sent a probe to all the servers, and then waited a certain period of

time for responses. It then picked the server with the fastest median bandwidth among

those that replied within that length of time. Tests were performed on three clients in

different geographical regions, accessing a pool of government web servers. Out of this pool

of 42 web servers, ten were randomly chosen to be the group of replicated servers, and

the six selection algorithms were iterated through. Number of bytes, algorithm overhead,

connection time, read latency, and remaining read time were all measured and noted. They

discovered that overall, the probing algorithms were better at reducing response times than

the statistical algorithms, or latency, and that the simple probe was just as effective as the

hybrid algorithms. Of the two statistical algorithms, latency was worse, with only Random

having poorer performance. They also determined that overhead from the various selection

algorithms was not very significant, and that connect, latency, and read times tend to follow

the same performance order as total time. The overall distribution of times was found to

have large skews, and long, low, flat tails that were attributed to dropped packets and

the resulting TCP/IP retransmissions and window adjustments. They also studied time of

day effects, and discovered that Internet traffic and server loads increase in the mornings,

decrease in the late afternoons, and are much lower on weekends than during the week.

The performance of the selection algorithms retained their relative order as load changed,

63

so one algorithm should be sufficient regardless of load. Overall, Dykes, et al's study [10

concluded that

1. dynamic probes were better than statistical estimators, especially in light of network

changes

2. including nearby servers in the candidate set improve performance for all algorithms

3. performance should be evaluated by total elapsed time rather than latency or server

load.

4. pathologically long delays can be reduced, but not eliminated by these algorithms

5. when there are a large number of servers, use bandwidth data to reduce the number

of probes

Rodriguez, et al, studied the use of accessing multiple mirror sites in parallel as an

alternative to server selection to load balance and speed up performance. Their general

method was to open TCP connections to all the mirror sites and request pieces of the

document from each site in an adaptive way. They studied two specific implementations

of this method. One was to request sizes from each server proportional to its server rate,

based on a database of periodically refreshed past server rates. The objective was to make

requests such that all accesses completed at the same time, and the link was fully utilized.

This method was found to work well when the network was stable, but wasn't as useful when

network and server conditions changed rapidly. The other was a more dynamic method; the

file was split into many small blocks, and one block was requested from each server. As one

returned, then another block would be requested from that server. When all blocks were

received, the file was reassembled and reconstructed. Performance could be improved by

pipelining the blocks to the servers. This method was more adaptive to changing conditions

in the network. From experimentation with a client in France and servers geographically

dispersed in a number of different countries, they determined that these methods caused very

high speedups when all the servers have similar performance, but less significant speedup

if one server is much faster than the others. However, response time was found to be at

least as low as that of the fastest server in all cases. Therefore, although parallel access

worked best with no common bottleneck link, its performance was still as good as that of

the fastest connection and was therefore equivalent or better than explicit server selection.

64

This study focused on transferring large documents, on the order of several hundreds of

KB, and suggested that small documents should be grouped together into a larger one for

parallel access. If CFS continues to use a block-level store with blocks on the order of 10s

of KB, parallel access of the same block may not be nearly as useful as described in this

study [19].

Byers, et al, proposed a different method of accessing mirror sites in parallel, utilizing

erasure codes rather than renegotiating transfers with the servers. Erasure codes are de-

signed so that a k-packet file can be encoded to generate n packets, any k of which are

sufficient to reconstruct the entire file. These codes had been utilized in the past to pro-

vide fault tolerance. Byers' method still provides fault tolerance, but its main focus is on

improving download time, and hence utilizes Tornado codes, which have extremely fast

decoding and encoding algorithms, at the expense of some encoding efficiency. In other

words, more than k packets may be needed to decode the file. Also, when downloading

packets off of multiple servers, the recipient may receive duplicate packets. Performance

was measured by the reception inefficiency, which is the combination of the previously men-

tioned decoding inefficiency and the distinctness inefficiency due to duplicate packets. This

method was tested in simulation, and reception inefficiency and speedup were examined

as the number of servers and the stretch factor (degree of encoding) were varied. They

found that with moderate stretch factors, adding additional sources dramatically speeds up

downloads. When one sender was significantly faster than another, the speedup was found

to be equivalent to that of the fastest server. This is essentially the same result noticed

by Rodriguez. Overall, the conclusion was that parallel access through tornado codes did

provide improvements in performance over single downloads [3].

5.2 Peer-to-peer Systems

Several similar systems to CFS have been designed over the past few years, and many have

had to tackle the question of server selection within their respective architectures. Below

are a few examples of such systems and the mechanisms they use.

OceanStore is a utility infrastructure designed to provide persistent storage of informa-

tion on a global scale. It makes use of untrusted machines around the Internet, and utilizes

promiscuous caching, allowing data to be cached anywhere, anytime. Location is thus not

65

tied to information. Objects in the system are replicated and stored on multiple servers,

but the replicas are not tied to those servers, acting as floating replicas. OceanStore utilizes

two kinds of storage, active and archival. The active form of the data is the latest version

and is located by use of a two-tier architecture. The first tier is a fast, probabilistic local

algorithm that uses Bloom filters to route queries to likely neighbors at the smallest dis-

tance away. The metric of distance used is hop-count. The second tier is a global routing

algorithm that utilizes a hierarchy of trees through which data is replicated. Queries are

propagated up the tree until a copy is found. Due to the way the trees are formed, this is

likely to be a copy on the closest replica to the requester. OceanStore also has deep archival

storage, which utilizes erasure codes as described above to ensure the survival of data. At

the same time, OceanStore protects itself against slow servers by requesting more fragments

than needed and reconstructing the data as soon as enough fragments are available. Since

search requests are propagated up the location tree, closer fragments tend to be discovered

first. OceanStore provides for much stronger requirements and guarantees than CFS does,

and has a correspondingly more complex structure. CFS' simpler routing and data location

architecture lends itself to other forms of location and selection [14].

OceanStore is built around Tapestry, an overlay infrastructure for wide-area location

and routing. Tapestry's node organization and routing inherently use distance information

in constructing the topology. It also provides some flexibility in its routing architecture,

storing the location of all nearby replicas at each node on the route to the root node. The

root node is primarily responsible for knowing the location of a particular object and is

deterministically assigned to that object. Systems using Tapestry can choose their own

application-specific metrics in addition to the inherent distance metrics to select replicas.

It is therefore similar to CFS/Chord in that it provides a mechanism to locate and man-

age replicas, but does not actually implement selection in its infrastructure. Unlike CFS,

however, Tapestry takes into account distance and locality in its topology construction [27].

Pastry is a very similar location and routing system to Chord, using similar principles

of node IDs and object IDs. Additionally to maintaining routing information about nodes

that represent different parts of the ID space, it also maintains a "neighborhood set" at

each node that keeps track of a given number of nodes that are closest to that node by some

proximity metric. Pastry does not specify the metric, instead assuming that the overlying

application will provide a function for determining the distance of a nearby node by its IP

66

address. At each step of routing, the query is forwarded to the node in the ID space most

similar to that of the desired object that is also the closest by the proximity metric. In this

way it keeps the overall routing fairly short and essentially guarantees routing to the closest

replica [20].

67

68

Chapter 6

Conclusion

Replication is a common technique for improving availability and performance in a dis-

tributed system. Replicas dispersed throughout the network are failure-independent and

increase the likelihood that any given client will be reasonably close to a source of data. In

order to properly take advantage of a replicated system, server selection should be used to

locate a replica with reasonably good performance for a particular client. "Good perfor-

mance" can mean any number of things, such as good load-balancing, or good end-to-end

performance. CFS is a decentralized, distributed cooperative system that inherently repli-

cates each piece of data and spreads it to machines that are unlikely to be near each other in

the network. It also provides load balancing and allows replicas to be located without any

additional mechanisms beyond those needed to maintain the system. CFS therefore lends

itself well to the use of server selection to improve performance, in this case end-to-end

performance for the client.

6.1 Conclusion

Server selection can be used at two different levels of CFS: Chord, the lookup layer, and

dhash, the data retrieval layer. The requirements of the two layers are fairly independent.

The main concern for the lookup layer is to reduce the overall latency of a lookup path,

made up of a series of indirect queries. At the dhash layer, the main concern is to de-

crease data retrieval time for a direct connection from the client to the chosen server. If the

performance of both these layers was improved, the overall end-to-end performance experi-

enced by a client requesting a block would correspondingly improve. Even if performance

69

is not absolutely optimal, server selection will help to reduce the variation in performance

experienced by different clients.

Based on experimental evidence within a testbed of 12-15 Internet hosts, selection meth-

ods were found to improve the performance at each stage. In the lookup step, verification of

the triangle inequality, combined with the relatively stable nature of ping times over time,

indicate that the use of past performance data to select from a group of possible lookup

servers can reduce the overall latency of the lookup. In the dhash layer, comparative per-

formance of a number of different selection methods indicate that pinging the machines

first and then downloading from the fastest provides reasonably good performance that is

a significant improvement over random selection. However, it may be possible to use past

data in a way very similar to that of the lookup step to select a machine instead, which has

much lower overhead. Regardless of the method used, these experimental results prove the

benefit of using server selection in CFS.

6.2 Future Work

The experiments described in this thesis provide a good basis for future work in the area

of server selection in CFS. More work needs to be done to determine the actual value or

improvement each technique offers CFS, rather than how it compares to the others. A

comparative evaluation of the use of past latency data from an intermediate machine versus

directly pinging all the replicas and selecting one should be made. Further investigation also

needs to be made into the actual overhead and costs of each approach, in terms of latency,

bandwidth usage, and server load, to determine if the method is actually worth using.

More experiments should be conducted on an expanded testbed, or within simulation, so

that the conclusions are not biased by the particular characteristics of the machines within

this testbed. Recently, CFS has moved away from using TCP as its transfer protocol.

Therefore, these experiments should be repeated using the new protocol to determine how

well these methods perform using those protocols. Without the overhead of TCP connection

set-up, the methods may yield different results. Similarly, a different latency probe should

be used besides ICMP ping, to determine the relative overhead of using ICMP. Finally, the

final candidate methods should be actually implemented within CFS and tested on a real

CFS system to see the effects on overall file retrieval.

70

Bibliography

[1] Paul Albitz and Cricket Liu. DNS and BIND. O'Reilly and Associates, Inc., 1997.

[2] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert M orris. Resilient

overlay networks. In Proceedings of the 18th ACM Symposium on Operating Systems

Principles, October 2001.

[3] J. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel:

Using tornado codes to speed up downloads. In INFOCOM 99, April 1999.

[4] R. Carter and M. Crovella. Server selection using dynamic path characterization in

wide-area networks. In IEEE Infocom '97, 1997.

[5] Robert L. Carter and Mark E. Crovella. Dynamic Server Selection using Bandwidth

Probing in Wide-Area Networks. Boston University Computer Science Department,

March 1996.

[6] Mark E. Crovella and Robert L. Carter. Dynamic server selection in the inter-

net. In Third IEEE Workshop on the Architecture and Implementation of High Per-

formance Communication Subsystems, http://www.cs.bu.edu/faculty/crovella/paper-

archive/hpcs95/paper.html, August 1995.

[7] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, Ion

Stoica, and Hari Balakrishnan. Building peer-to-peer systems with chord, a distributed

lookup service. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems

(HotOS- VIII), Schloss Elmau, Germany, May 2001. IEEE Computer Society.

[8] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-

area cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on

Operating System s Principles (SOSP '01), To appear; Banff, Canada, October 2001.

71

[9] Kevin Delgadillo. Cisco Distributed Director. Cisco,

http://www.cisco.com/warp/public/cc/pd/cxsr/dd/tech/dd.wp.htm, 1999.

[10] Sandra G. Dykes, Kay A. Robbins, and Clinton L. Jeffery. An empirical evaluation of

client-side server selection algorithms. In INFOCOM (3), pages 1361-1370, 2000.

[11] Gnutella website. http://gnutella.wego.com.

[12] J. Heidemann and V. Visweswaraiah. Automatic selection of nearby web servers. Tech-

nical Report 98688, USC/Information Science Institute, 1998.

[13] Karger and et al. Web caching with consistent hashing. In 8th International

WWW Conference, http://www8.org/w8papers/2awebserver/caching/paper2.html,

May 1999.

[14] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakr-

ishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells,

and Ben Zhao. Oceanstore: An architecture for global-scale persistent storage. In Pro-

ceedings of ACM ASPLOS. ACM, November 2000.

[15] Steve Lewontin and Elizabeth Martin. Client side load balancing

for the web. In Sixth International World Wide Web Conference,

http://decweb.ethz.ch/WWW6/Posters/707/LoadBal.HTM, April 1997.

[16] Napster. http://www.napster.com.

[17] Katia Obraczka and Fabio Silva. Network latency metrics for server proximity, 2000.

[18] Ogino and et al. Study of an efficient server selection method for widely

distributed web server networks. In 10th Annual Internet Society Conference,

http://www.isoc.org/inet2000/cdproceedings/Ig/1gl.htm, July 2000.

[19] Pablo Rodriguez, Andreas Kirpal, and Ernst Biersack. Parallel-access for mirror sites

in the internet. In INFOCOM (2), pages 864-873, 2000.

[20] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and

routing for large-s cale peer-to-peer systems. In Proceedings of the 18th IFIP/A CM In-

ternational Conference on Dist ributed Systems Platforms (Middleware 2001), Novem-

ber 2001.

72

[21] M. Sayal, Y. Brietbart, P. Scheuermann, and R. Vingralek. Selection algorithms

for replicated web servers. In Workshop on Internet Server Performance '98,

http://citeseer.nj.nec.com/sayal98selection.html, June 1998.

[22] SEC, http://www.sec.gov/Archives/edgar/data/1086222/0000950135-99-004176.txt.

Akamai Technologies S-1 Filing, August 1999.

[23] Mark Stemm, Srinivasan Seshan, and Randy H. Katz. A network measurement archi-

tecture for adaptive applications. In INFOCOM (1), pages 285-294, 2000.

[24] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings

of the A CM SIGCOMM '01 Conference, San Diego, California, August 2001.

[25] Ion Stoica, Robert Morris, David Karger, M. Frans Kaa shoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet app lications. Technical

Report TR-819, MIT, Cambridge, MA, March 2001.

[26] Ellen W. Zegura, Mostafa H. Ammar, Zongming Fei, and Samrat Bhattacharjee.

Application-layer anycasting: A server selection architecture and use in a replicated

web service.

[27] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure

for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,

April 2001.

73

