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Abstract

Colloidal dispersion of nanoparticles (CNPs) has interesting properties both in terms of fundamental
studies and industrials applications. Particular focus on the phase equilibrium and separation dynamics of
CNPs has been necessary for understanding how exactly and fast CNPs are assembled and for controlling
the assembly structure and dynamic properties. For understanding and controlling assembly structure and
dynamics of CNPs, theoretical analysis in conjunction with computational approaches supported by
experimental validation is necessary. In this thesis, studies on the phase-equilibrium-mediated assembly
of CNPs are performed by using various computational tools accompanied by theoretical modeling to
cover wide range of spatio and temporal dimensions of the desired system containing CNPs. To address
the phase separation of CNPs, we studied on two main mechanisms; (1) cluster formation and (2)
spinodal decomposition. In each mechanism, we developed novel, effective, and efficient computational
algorithms to elucidate phase-equilibrium assembly structure and formation dynamics of CNPs: (1) a
kinetic Monte Carlo (KMC) algorithm for cluster formation in microscopic dimensions and spinodal
decomposition of homogeneous mixture of CNPs in mesoscopic scale, (2) a self-consistent mean-field
(SCMF) model for surface-directed separation of a binary mixture of CNPs in mesoscopic-macroscopic
scale, and (3) the spectral method for spinodal decomposition of a binary or ternary mixture of CNPs in
macroscopic scale. All the algorithms and results from the simulations were verified by either
mathematical proofs or comparisons to other computational methods. In particular, proof-of-concept
experimental results of the fabricition of a functional thin film in which a binary mixture of CNPs form
the controlled gradient concentrations profile across the thickness direction were presented. On the basis
of the experimental demonstration, we showed the validity of the computational model and possible
future applications of the fabricated thin film as an optically-functional material. The computational
algorithms and numerical tools developed in this thesis supported by theoretical analysis and
experimental demonstration can be applicable to various dynamic problems regarding CNPs, especially,
for the complicated cases including multi-component, multi-phase systems. We expect that the work

performed in this thesis can provide a substantial advantage for future research, such as controlled cluster
formation of CNPs by polymer gel mesh, cluster formation of Janus CNPs, and physically controlled
spinodal decomposition of CNPs in thin films, as well as progressive application to preparation of novel
devices.

Thesis Supervisor: T. Alan Hatton, Ralph Landau Professor of Chemical Engineering Practice
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Chapter 1

Introduction

1.1. Colloidal Dispersions of Nanoparticles

Inorganic nano-scale particles (NPs) and their dispersions as a colloidal phase (CNPs) are important as a

foundation for both scientific and industrial applications. When NPs with magnetic properties form a

stable and homogeneous colloidal phase, they have a wide range of industrial applications, such as

magnetic refrigerator [1,2], sealing materials such as an O-ring for a shaft in a rotary pump, and high

performance audio speakers [1]. This stable colloidal phase is called as a 'ferrofluid' [1,3,4], and these

fluids are distinguished from magnetorheological (MR) fluids in that the particles in MR fluids are

typically larger than 1 pm, whereas the size is typically less than 20 nm for CNPs [1]. Considering that

many inorganic NPs containing ferromagnetic and ferroelectric materials show a wide range of refractive

indices, it can be expected CNPs are useful for optical applications. In terms of conventional colloid

science, CNPs can be considered as a sol in which the dispersed phase is solid and the dispersion medium

is a liquid [5]. Studies of colloidal phases involving micrometer-scale particles (either inorganic or

polymeric), still focus mostly on their phase equilibrium and stability, in addition to their applications as

colloidal crystals (i.e., photonic crystal or glasses) [6-7]. Determining the applicability of CNP hinges

mainly on understanding the detailed phase equilibrium and their dynamic characteristics. This

understanding provides a basis on which the assembly properties of CNPs under variuous types of

external confinement can be controlled. Additional reversible phase transitions involving order-to-

disorder or order-to-order transitions of CNPs can be understood on the same basis. Further, these studies

are essential to research on device applicability according to the posssible controllability of the physical

properties.
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The basic thermodynamic properties of phase equilibrium in CNPs are determined mainly by the

temperature, NP size, strength if the interactions between the NPs- and the dispersion medium relative to

that of NP-NP interactions, and NP concentration. Under specific conditions that produce a stable

colloidal phase, CNPs behave as a homogeneous medium, whereas the unstable phase is separated into

two phases (i.e., NPs-rich and NPs-dilute hases). Duriung the separation, unstable CNPs loss

homogeneity by which NPs form assembled morphology. Considering the volume exclusion effects due

to NPs and the different wetting properties that result from coating materials on the NPs' surfaces,

approaches based on statistical thermodynamics are useful for analyzing the phase equilibrium. The phase

equilibrium also depends on the dimensionality. In three dimensions (3D), the assembly of NPs driven by

phase separation yields hexagonal close packed (HCP) structure, whereas this is not always the case for

two dimensional (2D) assembly [8-15]. One can also understand the dynamic characteristics of phase

transition of CNP phase transitions using the theoretical framework of nucleation followed by growth (i.e.,

binodal decomposition) and spinodal decomposition, which is a continuous phase separation mechanism

[16,17]. Additionally, this understanding should be accompanied by a detailed understanding of how to

control the phase equilibrium and separation dynamics using appropriate methods involving external

stimulation such as a magnetic or electric field or temperature quenching. These detailed fundamental

studies provide a basis on which to achieve controlled phase equilibrium-mediated assembly of CNPs. To

develop CNPs control, the characteristics of spontaneous or induced assembly should be considered. An

understanding of the assembly behavior under various external confinement involving geometric or

dimensional confinements and an external field expands the realm of CNP control. This control

corresponds directly to the manipulation of physical properties such as the magnetic, electrical, and

optical properties. Further, manipulating the physical properties enables the fabrication of novel devices

using the physical properties on a desirable time scale and with satisfactory process parameters. These

types of fundamental and applicative studies accompanied by the search for device applications of CNP

are attractive research subjects for both academia and industry. A brief history about CNP is given in

Table 1.1.

In recent decades, numerous theoretical, experimental, and computational studies of various types

of CNPs have revealed unknown phenomena and helped explain their novel properties [8-15,18-21].

Relatively few works, however, have described theoretical and computational studies of the phase

equilibrium and separation dynamics of CNPs. The phase-equilibrium-mediated and external-stimuli-

induced assembly behaviors of CNPs are also outside the range of intensive research. In particular, there

have been no theoretical or computational studies on ternary mixtures of NP dispersions (either

homogeneous CNPs in a binary mixture of solvents or binary mixture of CNPs in a homogeneous
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solvent). In addition, studies focusing on the thermodynamic properties of CNPs have not considered

more complicated but practically meaningful cases in which NPs are coated with structurally stabilizing

organic shells such as low molecular weight polymers (i.e., oligomer ligands) and fatty. To expand the

realm of knowledge on the fundamental physical properties of CNPs, these areas should be the subject of

intensive theoretical and computational work accompanied by experimental studies. With this expansion,

one can also expect more effective manipulation of the physical properties of different types of CNPs and

good possibilities for demonstrating and fabricating novel devices that control these properties.

Table 1.1. A brief history of CNPs [8]

Year Main Events

< mid 19c Pigments for paintings and stained glass

1857 Synthesis of Au NPs (Faraday)

1864 Synthesis of carbon-black for ink

1982 Synthesis of colloidal nanocrystals (Bell Lab)

1989 Synthesis of colloidal nanocrystals with organic ligands (Bell Lab)

1995 Synthesis of core-shell colloidal NPs

1996 Preparation QD aqueous solution

1998-present Beginning commercialization

1.2. Phase Equilibrium and Assembly of CNPs

The application of NPs largely depends greatly on the stable dispersion of materials in various types of

solutions at desirable temperatures [23]. To stabilize the stabilize the dispersions, electrostatic method,

such as the introduction of surface charge or an ionic solution [23], and steric methods, such as the use of

an organic layer involving polymeric ligands [24-31], are widely applied. Colloidal science recently

expanded its focus to the theoretical study of dispersions of various types of NPs such as magnetic and

surface-modified inorganic particles in different types of solvents, including polar [32,33] and organic

solvents [34]. In particular, the solubility of NPs in different solvents is an important issues that has been

studied both experimentally and theoretically [34-38]. Although numerous studies still focus on the

mechanism of CNP phase stabilization [32,33], only a few theoretical studies have intensively examined

the thermodynamic aspect, such as the phase equilibrium and separation dynamics [36,37].
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Thermodynamic analysis of CNPs is directly related to the solubility of the NPs and phase

equilibrium, and it should be accompanied by comparable experimental approaches. An understanding of

the nature of NP-solvent, NP-NP and solvent-solvent interactions enables quantitative analysis of the

effect of enthalpy. This corresponds to the calculation of the total thermodynamic free energy of the

dispersion for which the entropic effects obtained by mixing two materials of different sizes (i.e., NPs and

solvent molecules) complete the form of the free energy. This basic approach has been widely employed

to analyze various heterogeneous systems, such as metal alloys [16,39], polymer solutions [16,39], and

the NRTL or UNIQUAC model of fluidic phase mixtures [16,39,40], and their behavior, as well as the

static equilibrium of ferromagnetic colloidal systems under an external magnetic field [41,42]. In contrast

to traditional models involving the regular solution theory [39,40,43], hydrodynamics [16], and quasi

chemical approximation of the thermodynamic properties of solvent-solvent mixtures [39,40], a

theoretical model of CNPs might need to pay more attention to the wetting properties of NPs when they

are dispersed in a solvent in order to obtain a detailed understating of the thermodynamic properties [31].

This is mainly because of the size difference between the NPs (i.e., typically few-several tens of

nanometers) and solvent molecules (i.e., typically several angstroms) [38] and the relatively high surface

tension of inorganic NPs [44]. Another reason to consider the different wetting properties of NPs lies in

experimental demonstrations of CNPs, which maintains their homogeneous phase stability when they are

coated with organic surfactants [15,31]. When this organic surfactant layer between the inorganic NPs

and the solvent is introduced, the interfacial properties vary greatly. In addition, long-range interaction

among the NPs would be considered when it is comparable to or sufficiently greater than the short-range

interaction among NPs [35].

NP assembly has also been a continuous focus of active research owing to the relationship of

CNPs to fundamental condensed matter science as a model crystal and their applicability as functional

materials for advanced devices [45,46]. In particular, mono-dispersity in both the size and shape and the

stability of the assembled structure is important for the formation of well-ordered 2D or 3D assemblies

composed of inorganic NPs [8-14,47-49]. Several studies have shown that photonic crystals and glasses

can be fabricated by effectively controlling the size of the NPs [6,7]. For nearly mono-disperse NPs, the

lack of order at either the short- or the long-range is due mainly to the formation clusters of NPs by

isotropic (i.e., van der Waals interaction) or anisotropic (i.e., dielectric or dipolar magnetic interaction)

attractive potentials corresponding to particle-particle, particle-cluster (or flocculate), and cluster-cluster

interactions. An important method of producing nn ordered assembly of CNPs, such as a self-assembled

monolayer (SAM) accompanied by both short- and long-range order, is to coat NPs with different

materials that can yield a repulsive potential comparable to the attractive interactions [8-15] to stabilize
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the aggregate phase. The repulsive potential originates in both the steric characteristics arising from the

elastic deformation energy of the soft-sphere-like organic layer (i.e., capping ligand) and the entropic

features arising from the loss of entropy due to overlapping of the capping ligand [50]. Organic materials

consisting of surfactants, such as fatty acids and their amine and polymeric materials, can be employed as

capping ligands for the NPs [8], and experimental and theoretical research on this strategy is one of the

most meaningful paths to progress for both 2D SAMs [8-10,14,15] and 3D superlattices composed of NPs

[8,9,11-14,18,19]. In a 3D ordered assembly composed of surface-functional-group-coated NPs, the

formation of various types of symmetric structures was reported [8-13], and an empirical relationship was

suggested that predicts different symmetries [20,21].

Figure 1.1. TEM images of various 3D self-assembled structures of inorganic NPs. Original images were

taken from the literature [11,12,48].

Figure 1.1 shows a representative experimental realizations of the ordered structure of an NP-assembly

[11,12,48]. According to the empirical model, the geometric factor given by the size ratio of the NPs and

the thickness of the layer of the surface-functional group would be the prominent variable determining the
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governing symmetry phase. In most cases, the dominant symmetry has been observed to have face-

centered cubic (FCC), body-centered cubic (BCC), and HCP phases [8,9,11-14,18,19]. A theoretical

analysis based on the hard-sphere-like potential [18,19] showed that the FCC phase is more stable than

the HCP or BCC phase for a 3D superlattice, although their energy differences per unit particle are

considerably small compared with the thermal energy at room temperature, which indicates the possible

coexistence of heterogeneous phases. Using a free energy analysis focusing on dipolar interaction of the

NPs, a recent study explained the origin of new phases such as the non-close packed simple hexagonal

phase observed in several different 3D inorganic NP superlattices [49].
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Figure 1.2. TEM images of 2D assembly structures

fold (right) symmetries [66]

of Fe 30 4 NPs showing 3- (left), 4- (middle), and 2-

In a 2D SAM composed of core/shell structured ligand/inorganic NPs, numerous experimental

studies have reported the existence of highly ordered and well-defined superlattice-type phases [8-

10,14,15]. In contrast to the 3D case, interestingly, other types of 2D symmetry such as 2- (i.e.,

rectangular-shaped unit cell) and 4-fold symmetry (i.e., square-shaped unit cell) can be the dominant

symmetric phases, as well as 3-fold (i.e., hexagonal-shaped unit cell) symmetry for a 2D SAM when the

NPs are coated with a surfactant. Figure 1.2 shows the experimental results for a 2D assembly of Fe 304

NPs [66]. The detailed experimental procedure for preparing the assembly is given elsewhere [10,15,66].

The 3-fold symmetry corresponds to an HCP array in a 3D superlattice, whereas 2- or 4-fold symmetries
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correspond to the FCC or BCC phase [9], and it is also observed that their existence can be extended over

a relatively large (micrometer scale) area [15]. For a 2D ordered array of ligand-coated NPs, however, no

meaningful theoretical studies explaining the different symmetries have been reported. Moreover, the

confinement effects for the order-to-order phase transition in a 2D assembly of CNPs given by external

geometric confinement, e.g., by a micro-patterned elastomeric mold, are not under intensive investigation.

An assembled phase of CNPs shows more interesting properties when its degree of freedom is

limited by external confinements such as geometric or dimensional confinements. For fluidic phase

materials, soft-lithography techniques have served as an inexpensive and easy way of patterning thin

films [51]. By applying these patterning techniques, 2D and 3D assembled structures of CNPs can be

confined in a desirable geometry such as a confined area and shape [51,52], the number of particles in the

assembly can be limited. Further, one can predict that these confinement effects can give rise to additional

parameters that affect phase transitions such as order-to-order and order-to-disorder transitions in the

assembled CNP structure. Interaction with an external field can reveal interesting properties of the

assembled phase when it has permanent magnetic or electric properties [3,4,41,42,53]. Incontrast to MR

fluids, which use large magnetic particles (> 1 tm) [1], a stable colloidal phase of ferromagnetic NPs 20

nm or smaller is used in a ferrofluid [1]. de Gennes and Pincus analyzed the equation of state for static

equilibrium of CNPs with an electric or magnetic dipole (i.e., ferromagnetic) on the basis of pair-

correlation to show that a ferromagnetic colloid could be aligned by controlling the electric or magnetic

field [41]. Experimentally, Butter et al. reported a chain-like assembled structure of iron particles covered

with a polymeric layer in organic solvents and its transition mechanism under an external field [4]. Singh

et al. reported experimental observations of the nanowires-like morphology of an assembled structure of

core-shell magnetic beads (i.e., poly-styrene beads coated with maghemite (y-Fe2O3 ) NPs) using a

magnetic field and a soft-lithographic patterning technique [53]. These assembled structures of CNPs

have more potential as functional materials because the assembly can be easily manipulated by

controlling the thermal energy, composition, and field direction and intensity.

A comprehensive study of the understanding and control of CNPs assembly would start by

understanding the basics of the phase equilibrium and separation dynamics. The thermodynamic principle

suggests the use of a thermodynamic state function, e.g., the free energy as a function of the intensive

variables such as temperature and pressure, to describe phase equilibrium. For example, a functional

profile of the grand potential G for an unstable ideal binary mixture governed by the designed order

parameter 0 can be found, as shown in Figure 1.3 [87].
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Figure 1.3. A functional profile of the grand potential, G, of an ideal binary mixture (top) as a function of

the designated order parameter # and the corresponding temperature ( T )-density ( p ) phase diagram

(bottom). For the diagram, blue-colored region denote the metastable phase while red regions is for the

unstable phase. Yellow horizontal arrow denotes the phase boundaries given by profile of G at constant

temperature. The original image was adapted from Lu's doctoral thesis [87].

The number of independent order parameters is equal to the number of independent densities of different

components. For example, in an A-B binary mixture, there is only one independent order parameter,

#=# - #B, where #A is the density of the i th component. Given the profile of G (0), the stable,

metastable, and unstable phases can be detemined by calculating the double derivative of G (#) with

respect to #; 2 <0 for the unstable phase. In this phase, the mixture tends to spontaneously

T
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separate into two phases with different values of # [39]. Further, for the unstable phase, the phase

separation dynamics is normally governed by a continuous process such as spinodal decomposition, in

which a small concentration fluctuation in the initial stage triggers phase separation with a continuous

concentration profile over the spatial domain. Even in the phase with a2 0 , it is still possible
ao2T

for the homogeneous phase to separate into two phases provided that the initial value of # is between the

spinodal and bimodal boundaries (see Figure 1.3). This is mainly because the summation of the free

energies of the separated phases is smaller than the free energy of the homogeneous phase in this range.

The difference between the unstable phase and the phase in this range is that the latter must overcome a

certain energy barrier called the nucleation energy. This is why it is called the metastable phase. The

phase separation dynamics of the metastable phase is bimodal decomposition, in which the nucleation of

small and randomly formed nuclei proceeds with time. The concentration profile observed during bimodal

decomposition is discontinuous around the boundary between the nuclei and other phases. When the

02 G(#)homogeneous phase satisfies the condition ) 0 and the initial value of # is outside of the
a2T

bimodal boundaries, the phase maintains morphological and phase stability for a long time unless further

stimuli are given. Therefore, it is natural to extend the concept of conttrol of the phase equilibrium and

separation dynamics by introducing additives such as a phase stabilizer and surfactant, by controlling the

temperature and/or pressure, or by manipulating the interface energy between the materials in the system.

It is also possible to control the phase equilibrium by controlling the interaction range among certain

components; this is done by introducing screening effects from other components. In CNPs, these

methods can be applied progressively to obtain reliable controllability of the phase equilibrium and

separation dynamics in order to guide the assembly and its dynamics.

Given a detailed understanding of the mechanism of the dynanmics of phase

equilibrium/separation followed by CNPs assembly, more feasible and facile applications to the

fabrication of functional materials can be expected. The electronics and photonics industries are

intensively researching and commercializing phase-change memory (PCM) and storage devices based on

a crystalline-amorphous reversible phase transition driven by rapid control of the temperature in the range

of the glass transition temperature and melting point of chacogenide glasses such as germanium-

antimony-tellurium (Ge-Sb-Te, GST) alloys [54]. In PCM, a temperature gradient in the GST layer is

generated and manipulated with programmable Joule heating by an electrical pulse [54] to control the

electrical properties of the materials.

35



This concept of the phase transition and control of the physical properties based on it can be

implanted to develop phase change optical media such as the gradient (refractive) index (GRIN) lens. A

conventional GRIN lens works because a desirable gradient of the refractive index is realized in a flat

transparent medium in which light is bent. The bending of light is achieved not by geometricaly designed

lens materials (i.e., conventional curved lens) but by guided refraction [22,55]. There are two types of

GRIN lenses; the radial type (i.e., R-GRIN lens shown in Figure 1.4) and the axial type.

f Nc" sin(Lc"):

Focal length at length L

Ix

LnL
N(r)= No(1 - (K/ 2)r2):

Gradient Refractive index

Figure 1.4. A schematic diagram for the radial-type GRIN lens. Profile of the refractive index along the

radial direction, N (r), and the relationship between the focal length (f ) and the gradient coefficient (K)

are also given [55].

The fabrication of conventional GRIN lenses relies on an ion exchange method in a glass; for example,

Sodium ions are immersed into and partially exchanged with Lilthium ions in a liquid melt, depending on

the position in the sample (i.e., larger amount of exchange at the edge). Thus, the sample obtains a

gradient material structure that realizes a refractive index gradient [55]. As a more inexpensive way of

fabricating GRIN lenses, copolymerization of different monomers such as methyl methacrylate (MMA)-

acrylonitrile (AN)-vinyl benzoate (VB) can be employed with controlled diffusion techniques [56].

However, the gradient properties of conventional GRIN lenses cannot be controlled after the lens is

formed from the composite materials. Recently, Mao et al. demonstrated a micro-fluidic-system-based

GRIN lens (also called the liquid GRIN lens) by controlling fluidic mixtures in a micro-channel; this

result represents a significant advance toward in situ control of light [22]. They used the diffusion of a
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CaCl2 solute into co-injected laminar flows aligned in parallel and showed that light propagation could be

controlled by manipulating the diffusion mechanism in the planar liquid GRIN lens. Considering that

phase-equilibrium-mediated assembly of CNPs requires neither complicated processes nor devices such

as PCM and the liquid GRIN lens nor an ion-exchange mechanism and relatively high temperature in a

solid medium, it has potential as a material for novel optical devices such as GRIN lenses with in situ

tunable optical properties. Additionally, one can expect more promising features because the control

parameters for tunable optical properties based on phase-equilibrium-mediated assembly of CNPs can be

derived from the control of process conditions such as temperature quenching, application of an external

magnetic field, and composition variation.

1.3. Comparison of Computational Methodologies

We employ computational approaches, one of the most powerful tools tfor verifying and analyzing the

physical properties of the assembly structures and dynamics of CNPs. Computational approaches achieve

importance and usefulness when they can explain known physico-chemical phenomena, elucidate

complicated experimental observations, and predict the physical properties of a desirable materials system

that have been either unknown or considered to be difficult to prove experimentally. In the same spirit, we

employ various computational methodologies to address the problems we encountered in our studies of

the assembly of CNPs by different phase separation mechanisms in systems of different spatio-temporal

dimensions. Depending on the feature size of the NPs and the characteristic length scale of the assembly,

which are either comparable to the system dimension or not, one needs to consider the relevant

computational tools for studying and analyzing the equilibrium and non-equilibrium properties of the

CNP assembly structure.

1.3.1. Molecular Dynamics

The first computational tools we consider is molecular dynamics (MD) [67]. For fundamental studies, it is

one of the most powerful and suitable methods in computational condensed matter science owing to its

theoretical robustness, numerical convenience, wide applicability with different conditions, ability to

incorporate complicated inter-molecular potentials, and other characteristics. The MD approach is then

divided into two categories. (1) classical MD, in which the thermodynamic properties of a system are

calculated by considering only the weak forces (i.e., non-bonding forces) and (2) quantum MD, in which
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the chemical transformations of materials are calculated considering the strong forces that participate in

chemical reactions, electron transfer, enzyme catalysis, and other processes. Quantum MD is usually

accompanied by other quantum chemistry and mechanics-based methods such as density functional

theory (DFT). Classical MD would be a more appropriate approach for the phase equilibrium and

assembly of CNPs. The basic fueature of classical MD is a deterministic framework in which the

outcomes of system dynamics can be calculated and predicted by a finite number of system updates using

Newton's equations of motion. For example, consider a simple case of N NPs dispersed in a non-

reacting non-polar liquid medium in which the effective molecular interaction potential between the ith

and j th NPs separated by r r -r . Then, the potential for the interaction between the two

neighboring particles V (r is assumed to be the Lennard-Jones potential,

)12 _6V(r J=4, (1.1)

where a denotes the size of the NP, and E represents the interaction energy density among the NPs.

This potential assumes that the NPs interact with each other only via short-range two-body interaction.

For the i th NP, the effective force driving the motion, F, is written as

F = -ZV V(r,). (1.2)
j#i

The finite differential form of the equation of motion of the i th NP is then written using the Verlet

algorithm [67] as

F1 (t)0t 2  aF1 (t) St
rj (t +(5t )= rj (t )+ Vi(t ),t + + +0(8*)

2m at 6m

(t-)t=r(t)-V(t)t+ aF(t) & +0(t), (1.3)
2mi at 6mi

where vi (t) and mi are for the velocity and mass, respectively, at time t. Then vi (t) is given by

Vit)=ri (t + 5t) )- r (t - '5t) + 52 14
25t

Using eqs.(1.3) and (1.4) with the velocity Verlet algorithm [67], the master equation for the dynamics of

the system can be written as
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ri (t+ 5t) z ri(t) + vi(t)& + - i ,& Fj (t)=-1 VV, (ji (t) -r,-(t)j)2m

V( (t +() ) (t)+ (0) (1.5)
2m

In the initial stage, the thermal energy associated with the kinetic energy affects the NPs' momentum

distribution according to the Maxwell-Boltzmann distribution. Further, eq.(1.5) is numerically solved as a

function of time. One of the advantages of using classical MD is that it preserves the total free energy of

the system (i.e., sum of the potential and kinetic energies), which guarantees the physical exactness of the

description of the system dynamics. However, the problem with using classical MD to describe the phase

equilibrium and separation dynamics of CNPs is that it is computationally limited, although many have

tried to use classical MD for this problem [67,71,73]. For example, for a system with a spatial domain of

a few tens of micrometers in the planar direction and a few hundreds of nanometers in the thickness

direction with a 0.1% initial volumetric fraction of 10-nm NPs, it is necessary to describe and update two

independent information sets on the positions and momenta of ~108 NPs. Additionally, to investigate

the most interesting dynamics phenomena, observers must examine the dynamic processes for at least a

few micro seconds and up to a few hours. For a typical classical MD simulation, the characteristic time,

r -(mo / )1/2 is normally r - 10 - s for NPs a few tens of nanometers in diameter. With the

typical characteristic-time-based differential time for system updates, 9t 10- - 1010 s ; therefore, it

would be necessary to describe the system using 104 ~1014 iterations. This is a highly cost-ineffective

approach. Although the number of independent information sets for the positions and momenta can be

reduced by considering the nearest neighbors within a certain cut-off distance, it is still well beyond the

computationally achievable realm. In addition, when the dispersion medium is a polar solvent or ionic

liquid, the computational cost increase polynomially (i.e., ~ N 2 ), because the number of independent

information sets for the positions and momenta rapidly increases.

1.3.2. Brownian Dynamics

Instead of classical MD, a computationally effective description such as Brownian dynamics (MD) would

be a candidates for studying the phase equilibrium and separation dynamics. BD is based on the Langevin

equation [67-71], which ignores the inertial effects of the particle. Instead, two additional forces are

employed: (1) the frictional force from the dispersion media and (2) the stochastic force from random
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collisions of NPs with solvent molecules. In particular, the stochastic effect is based on the implicit

solvent model, which assumes that the solvent forms a background field represented by the screening

constant, which is a function of the dielectric constant. The ignorable inertial effects should be checked

considering that the mass of a single individual NP becomes negligibly small compared to the Stokes'

drag coefficient = 3riio-, where q is the viscosity of the liquid medium, when a is sufficiently small.

The stochastic force acts to make the diffusional motion of NPs a random walk such that

r,.(t+ 6t) - ri(t) 2D )12O t,0iW=loxWOYWOz(1r~I!U1)-~~1)c - O0(t), 01 (t0=[O,,(t) ,(t) Oiz (t)],

I OiK ()

P (0,K(t)) = eXp - ,(1.6)
2Z 2

where D is the diffusion coefficient of the NP which can be deduced from Einstein's relation as

D=kBT4;', and iK is a random variable for the motion of the ith particle in the K th-dimension. The

probability distribution P(OK) is assumed to satisfy the normal distribution with a mean of zero. In

particular, the temporal correlation of the stochastic force should satisfy the equilibrium ensemble average

relationships (denoted by brackets) such that

(0, (t)) =0,

(0, (t) o (t'))= a(t -=t') ,

where is 8(x) the Dirac delta function. This is from the dissipation-fluctuation theorem of the Langevin

equation, in which the temperature is affected by the adjustment of . The drag force reduces the

velocity of the particle:

VV(R(t)) r) ( Nh 12 - 0_

(5v,(t)=- , V (R(t)) = Vej (R(t))= 4. -Srn (t)- r, (t) ri (t)- r(t) (J'

R(t) =[r, (t),- N (t](1.7)

Using the second-order stochastic Runge-Kutta (SRK) BD algorithm, the equation of motion of the NPs

described in eqs.(1.6) and (1.7) can be expressed with the finite differential form of the system dynamics

as [69]
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rj(t+(t) (t) -A& (VV(R(t))l +V V(R(t)) +(2Dot) 01(t). (1.8)

Owing to the stochastic factor in the master equation, the system dynamics would not be reproducible;

however, important ensemble-based statistical information such as the structure factor, radial distribution

function g (r), and correlation time and length can be obtained.

Using eq.(1.8), we examined a representative scenario for the phase separation of A- and B-NPs

dispersed in a non-reacting non-polar Newtonian liquid medium. For the simulation, we used

St 5 x 1 0- s on the basis of the characteristic time of the system dynamics, r ~ 10-5 s (i.e., from the

Brownian relaxation time r ~ m / 4 ) when A- and B-NPs are spontaneously demixed at room

temperature; 86 =eBB 4SA/ 3 2 kBT U =0
A = 2u /3=2Onm [72],

D =DA =DB = -10-" M2 S- , and BA =qSB =8.5 x 10-2 (i.e., 510 particles for each) in a 3D box of

0.2 x 0.2 x 1.2 pm 3 . To study how fast the confining wall-effects emerge when the phase separation

morphology is controlled, we also added wall effects represented by V(R(t))Q =Ve (R(t)) -t

where A is the wall-NP interaction parameter (i.e., Aw = 0, AB =1 0OC3 for a B-attractive wall), and

r (t) is the vertical position of the NP relative to the bottom wall. As Figure 1.5 clearly shows, the BD

simulation would describe the controlled concentration distribution of selectively attracted NPs (i.e., B-

NPs) near the bottom wall.
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Figure 1.5. Brownian dynamics simulation of the temporal evolution of controlled separation of 20 nm-A-

and B-CNPs in 3D box of 0.2x0.2xl.2 pm3 with a B-selective attractive bottom confining wall.

Distribution of A- and B-NPs (green dots for B- and red dots for A-NPs in the 1 't column), radial

distribution function for A- and B-NPs (left for A- and right for B-NPs in the 2 "d column), and the

concentration profile along the direction normal to the bottom wall (green for B- and red for A-NPs in the

3rd column). See the section 1.3.2 for the detailed simulation condition.
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From the results we can also observe that the confining wall effects emerge rapidly after 10 4 s .

Although it is not discussed in detail in this chapter, the computational efficiency was enhanced by

considering only the nearest neighbors within the cut-off distance rc =2.5- and the minimal image

convention [67,71,73].

Although BD simulations can be used for short-term processes during phase separation and

imposes less computational cost than MD with advanced numerical schemes, it is still restricted to larger

spatial domains and longer temporal dimensions. Another disadvantage is that it is difficult to incorporate

either the short-time correlation, which is affected by the inertial effects, or realistic hydrodynamic

interactions between NPs and solvent molecules. In addition, it is still computationally expensive to

employ a polar solvent and ionic liquids as the dispersion medium; this also applies to MD simulations.

1.3.3. Monte Carlo Simulation

Simulation of an entire system composed of billions of particles is practically impossible. Instead, it is

well known that sampling and averaging would represent the collective and average behaviors of the

system. Statistically, the error introduced by sampling and averaging, A, is related to the sample size

M as A9 oc M 112 [67,71]. This implies that the distribution of a certain quantity is sharpened by

introducing a larger sample size. For example, it would be critical to select an appropriate system

configuration to realize the distribution of the system free energy around the average. However, it is

difficult and ineffective to set the configuration in an a prior manner. In 1953, Metropolis et al.

[67,71,73,74] introduced the importance sampling scheme considering a Markov chain, which tends to

arrive at the equilibrium state considering that the Markov chain has 1) ergodicity, which suggests that the

ensemble average should reach the average over time after a finite number of trials, 2) normalization,

which sets the confining condition for the set of transition probabilities, and 3) reversibility, which

guarantees arrival at the equilibrium state in a finite number of trials.

Let us assume a system composed of multiple configurations among which the transition

probability, T (A -> B), where A and B represent the configurations, is known. The master equation

for the temporal evolution of the probability of the system being at configuration X at t, P (X, t), can

be written as
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aP(Xt) [(P(Y,t)Q(Y,X))-(P(Xt)Q(X,Y))], Q(X,Y)=T, X ->Y)-A, X -+Y), (1.9)
at

where A, (A -+ B) denotes the acceptance probability for the transition between configurations A and

B . On the basis of the properties of the discrete Markov chain, we can find that I Q (X, Y) = 1 and
y

Y p(e) (Y)Q(Y,X)= p(eq) (X) , where the superscript (eq) denotes the equilibrium state. At
y

equilibrium, a = (Xt) -0 ; therefore, lp(eq)(Y)-Q(Y,X)= p(e)(X).Q(X,Y) . Next, we find that
at

p(eq) (Y). Q(Y, X) = p(eq) (X). Q(X, Y), considering that the Markov chain configurations are independent

of each other from eq.(1.9). The last relationship is called the detailed balance. When the energy of the

specific configuration, E(X), is known, we can apply the Boltzmann distribution at temperature T for

p(eq)(X) , p) (X)=exp(-E (X)/kBT/Z , where kB is the Boltzmann constant, and

Z = exp (-E (Y) / kBT), which denotes the partition function. The original concept of Metropolis et al.

is to write [74]

A(X -> Y)= min 1, p(e)(X)j

which can be read through the Boltzmann distribution as A (X -+ Y) = min 1, exp , where
kBT

AE= E(Y) -E(X). This scheme to drive the system to equilibrium is called the Metropolis Monte Carlo

(MMC) algorithm [67,71,73,74]. Although this scheme appears simple, it has been widely used and is

well known to provide an exact description of a system at equilibrium. On the basis of the ergodicity

property of the Markov chain, it can be conjectured that a system can reach the equilibrium state within a

finite number of trials of the transitions among the configurations provided that the system can be

described as a Markov chain. Most thermodynamic phenomena can be considered as Markov processes in

which the next state function is considered to be only a function of the predecing state function; therefore,

phase equilibrium can be successfully described and analyzed by the MMC algorithm. There can be

additional forms for A (X -> Y) that can satisfy the detailed balance; well-known examples include the

Glauber dynamics and Kawasaki dynamics [67,71].
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Figure 1.6. A simulation result based on the 3D Metropolis Monte Carlo (MMC) algorithm for the

calculation of distribution of A- (red dots) and B- CNPs (green dots) in a thin film after 11,570 iterations.

For the simulations, each of the NPs was assumed to interact via the Lennard-Jones potential and move on

the square lattice in a 3D box with the dimensions of Lx = Ly = Lz =50a. For the confinements, the

bottom surface was assumed to be attractive to A-NPs while repulsive to B-NPs.

It is advantageous to employ MC algorithms to study the equilibrium properties of the system;

simultaneously, this is the most important shortcoming because it is difficult to describe the dynamic

properties of the system without the aid of an additional dynamic framework, such as adaptive matching

between the MC iteration step and the physical flow of time. It is also known that the MC algorithm can

be parallelized to enhance the computational efficiency, particularly the particles move on a lattice

[67,71].

Figure 1.6 shows a representative scenario of the phase separation of A- and B-NPs in a thin film

simulated by the MMC algorithm. The simulation were similar to those of the BD simulation used to

generate the results shown in Figure 1.5, except that #A =B = 0.1 (i.e., 12,500 particles per each NP-
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type), Aw =10OU3 , and Aw = -10ao-3 . A periodic boundary condition was applied in the planar

direction, whereas a non-flux condition (Neumann condition) was used for the direction normal to the

confining walls (i.e., the z -direction). The bottom wall was assumed to be selectively attractive to A-NPs,

whereas B-NPs were repelled by the wall. Although it is not shown in Figure 1.6, the calculated

distribution of the concentrations of each type of NP along the z -direction shows good agreement with

the results from other computational methods such as a method based on the self-consistent mean field

(SCMF) (see Chapters 4 and 5). This implies that the MMC algorithm can be employed as a

computational tool to describe the properties of the phase equilibrium and separation of CNPs. One of the

disadvantages of using the MC algorithm is that it becomes computationally expensive for larger spatial

and temporal dimensions, although this was also found when other computational methods were applied.

Additionally, it takes an unreasonably long time when the simulation is stuck on the local minimum of the

free energy, and thus, it may not realize the real and global minimum energy states at equilibrium. In

particular, it is more expensive when one tries to simulate the system using an off-lattice method. This is

because of the computational cost of generating random numbers.

1.3.4. Kinetic Monte Carlo Simulation

The conventional MC simulation can be used in combination with a powerful dynamic tool such as a

stochastic algorithm to describe the system dynamics. One method of incorporating the dynamic

calculation is to employ the relationship between the MC step and a realistic time scale. This is called

dynamic MC (DMC) [67,71,75]. The problem with this method is that it cannot help introducing a certain

numerical artifact when connecting the stochastic iteration step and real-world dynamic characteristic

time. As an alternative and fundamental method, Gillespie [76] introduced a kinetic Monte Carlo (KMC)

algorithm based on the reaction kinetics, which can be modeled as an independent discrete Markov

process. In the reaction kinetics, the average waiting time of each reaction is compared to that of each of

the others and the fastest reaction is fired, which affects the overall dynamic properties of system

equilibrium. Gillespie's stochastic algorithm, also called the first reaction algorithm or direct algorithm

[76], is exact and efficient for a small system; however, it is computationally limited for larger systems

mainly because of a problem with sorting the waiting time for numerous reaction (or diffusion)

propensities. To incorporate the sorting problem, Gibson and Bruck [77] introduced a binary tree data

structure based on the heapsort scheme [73,77] to efficiently sort the waiting times with several specific

data structures such as a dependence matrix. This algorithm is called the next reaction method (NRM)

algorithm because it updated the system dynamics by considering only the affected reaction/diffusion
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propensities. The NRM algorithm also exhibits dramatically enhanced computational efficiency because it

can re-use the random numbers used for updating the system dynamics [77]. The most distinctive

advantage of the KMC is that it is physically exact for a system under stochastic effects. It generates

random numbers to update the dynamics as BD does; however, the update scheme is more robust because

it considers a designed distribution of the waiting time before generating the stochastic effects. It is also

advantageous for system dynamics simulations in large spatial- and temporal domains owing to the

computational efficiency of the NRM algorithm. It is also flexible for incorporating a variety of dynamics

processes. For example, we show that the KMC can be progressively applied under various conditions in

Chapters 2 and 3. It is also promising to extend KMC algorithms over parallel computing environments

by transforming the computable data structure over a set of computing cores. Note, however, that it is still

limited to a few hours for larger domains covering a few hundreds of micrometers. Detailed information

on the KMC algorithm is available in Chapter 3 and Appendix A.

1.3.5. Numerical Simulation based on Continuum Framework

If we can assume that the system is a coarse-grained entity or is in a continuum framework, the

concentration of CNPs can be set as the continuous field variables. Using these variables, we can

construct a macroscopic mass transport model to solve the problems of the phase equilibrium and

separation dynamics of CNPs. For example, one may solve the partial differential equations (PDEs) for

the phase separation governed by spinodal decomposition on the basis of the phase field model (PFM),

which assumes that the concentration field is continuous around the interface. The PDEs can be solved in

a reasonable amount of computation time by employing several advanced numerical methods, such as the

finite difference method, with numerically effective and reliable integration schemes, such as the explicit

Runge-Kutta algorithm [73,79], the second-order Adams-Bashforth algorithm [73,78-80], and spectral

transform [81].

Since its recent introduction, the lattice Boltzmann method (LBM) has been increasingly used to

solve phase separation problems [82-86]. It is beyond the scope ot this thesis to introduce detailed

theoretical models based on the LBM to solve the problems of phase separation by spinodal

decomposition. However, an increasing number of researchers found wide applicability of the LBM for

complicated boundary conditions and multi-component and multi-phase system. A disadvantage of using

the LBM is that it is still controversial whether numerical models for the LBM, such as the D2Q9 scheme,

guarantee the conservation of energy and momentum [85,86]. Another open question regarding the use of

the LBM is that there is no congruent viewpoint on the description of the boundary conditions [82-86].
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Detailed discussions of the PFM and spinodal decomposition are provided in Chapters 3 and 6. The most

distinctive advantage of using numerical methods to solve the PDEs is that they are fast and accurate for

large spatial domains.

Another perspective on using the continuum framework is the SCMF model. A wide range of

thermodynamic problems on equilibria based on statistical mechanics principles can be approached using

the Boltzmann theorem. Given a specific ensemble for the system, such as a canonical or micro canonical

ensemble, one can calculate the average probability of the distribution of specific thermodynamic

variables such as the order parameter in either the spatial or temporal dimension. However, the

distribution itself is a function of the distribution of other variables that affect the thermodynamic free

energy. Therefore, it can be easily conjectured that the master equation, such as the system equation, has

an implicit form; therefore, it is not possible to solve the problem using an analytic method. To solve the

implicit problem, numerical methods can be applied; however, it is more effective and efficient to use a

designed algorithm based on the SCMF method in particular cases, such as minimization of the

morphology of a relaxed protein chain. In an equilibrium distribution of a mixture of CNPs in a system

with the desired dimensions, we may also apply the SCMF method instead of conventional MC

simulations to obtain computational efficiency. The disadvantage of using the SCMF method is that we

cannot obtain dynamic information on the system from a simulation or on-the-fly calculation. Therefore,

it would be difficult to analyze the phase separation dynamics of CNPs by using the SCMF algorithm.

1.3.6. User-Informative Diagram for Choosing Computational Methods

In the previous sections, we described the features and representative application results of a variety of

computational methods of analyzing and describing the equilibrium and non-equilibrium dynamic

properties of CNPs. It would be instructive to provide a summary illustrating the spatio-temporal domains

and the corresponding effective and efficient computational tools. As shown in Figure 1.7, each of the

methods exhibits strength and effectiveness in certain ranges of the spatial and temporal domains. Further,

the applicable ranges usually overlap. Irrespective of the computational methods, a trade-off relationship

always exists among the computational accuracy, scalable computable domains, and computational cost.

All of the factors depend strongly on the computational power, e.g., the CPU speed and available memory.

Ever increasing computational capacity allows users to combine different methods for more and wider

applications.
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Figure 1.7. Comparison of a variety of computational methods both in computing-effective spatial and

temporal ranges. The molecular dynamics (MD) area colored with violet denotes the classical MD. The

SCMF algorithm concerns only spatial domain due to its limitation in calculation of the non-equilibrium

dynamic properties. Note for the abbreviations: LBM = Lattice Boltzmann Method, SCMF = Self-

Consistent Mean Field, QM/QC = Quantum Mechanics/Quantum Chemistry, DFT = Density Functional

Theory, BD = Brownian Dynamics, Q-MD = Quantum Molecular Dynamics.

Recent progress in parallel computing algorithms using a general-use graphic process unit (GUGPU), for

example, the Compute Unified Device Architecture (CUDA TM) algorithm by NVIDIA® [88] would

improve the computing performance by extending the computable domain while retaining reliable

computational accuracy.

1.4. Structure of the Thesis

In this doctoral thesis, I performed the following research; 1) studies of the fundamentals of the phase

equilibrium and separation dynamics of CNPs, 2) theoretical and computational studies of the assembly
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behaviors driven by phase separation accompanied by external confinement, and 3) experimental

realization of the possible application of CNPs as functional materials. For each of these items, I tried to

develop novel computationally efficient and mathematically effective algorithms to solve the problems of

the assembly structure and dynamics of CNPs. For the computational studies, I also developed several

useful and convenient supplementary numerical algorithms. To verify the computational results and

confirm the consistency of the theoretical model, comparative studies of the different computational and

theoretical approaches were performed to solve the problems under consideration. Further, I suggested

that theoretical and computational studies could be useful resources for preparing functional materials

with seleected distributions of NP concentrations through proof-of-concept experiments. Figure 1.8 is a

schematic diagram that summarizes the structure of this thesis. Note that some parts of the research are

not included in this thesis for consistency and because of conflicts of interest concerning collaborative

work with others.
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Chapter 2

Computational Study on Cluster Formation of Colloidal

Nanoparticles: A Kinetic Monte Carlo Simulation and Rate

Theory Modeling on Scaling Behaviors of Clusters*

Abstract

An understanding of the statistical and time-dependent features of cluster formation is essential for the

application and control of the dispersion quality of colloidal nanoparticles (CNPs). We performed

computational and theoretical studies on the formation of clusters in CNPs, focusing on the scaling

behavior of the growth of the cluster size and size distribution, with analysis of the fractal dimension. For

the study, we employed a kinetic Monte Carlo (KMC) algorithm in which NPs are moved by self-

avoiding diffusive jumping with a random walk. To describe diffusion of the NPs in a colloidal

environment, the diffusivity was modeled as a configuration-dependent function of the interacting

potential of the clusters. To verify the computational analysis, a kinetic model based on rate theory (RT)

was used to analyze the temporal evolution of the concentrations of the monomer and clusters. The KMC

simulations agreed well with the predictions from RT in terms of the description of the scaling behaviors.

In particular, we observed that the scaling exponents for the average cluster size and weight are smaller

than the conventional predictions, although the fractal dimension of the cluster was comparable to that

observed in the typical reaction-limited aggregation of particles. We provided a semi-empirical

explanation of how the scaling exponent of the cluster size and weight should be reduced depending on

the scaling behavior of the monomer concentration. We also provided a model to explain the dependence

of the induction time for cluster formation on the initial monomer concentration; the model is supported

by the KMC simulation and RT calculation. The results of this study can be used to design and control the

colloidal quality of NP dispersions by understanding the cluster growth behavior and its dynamics.

*Parts of Chapter 2 will be submitted to a peer-reviewed journal (Authored by S. Joon Kwon & T. Alan Hatton).
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2.1. Introduction

Cluster formation has been a subject of intensive research interests in areas ranging from statistical

physics to industrial applications [1]. Conventionally, theoretical and experimental studies have

concentrated on cluster formation as a model for the aggregation of particles, agglomeration of soft matter,

nucleation followed by growth in a continuum framework, and so on [1-5]. As the spatial scale of

materials of which both the dimensions and shape can be controlled has decreased recently, the study of

cluster formation has expanded to include nano-scale materials such as nanoparticles (NPs), nanocrystals,

and nanowires as the cluster components [4-10]. At the atomic scale, for example, computational and

experimental studies have already focused on the formation and growth of 2D islands of adatoms on the

surface in the context of cluster formation [7,9,11]. On the selected surface, the statistical characteristics

of cluster growth, such as the time-dependence of the average cluster size/weight, and the scaling

behavior of the cluster size distribution, can be evaluated by assuming discrete movement of adatoms on

the surface along the designed lattice directions with a hopping distance.

Conventionally, Brownian dynamics (BD) simulations as well as molecular dynamics (MD) has

been intensively used to describe the dynamic properties of clustering or aggregation of colloidal particles.

However it is computationally expensive toe simulate the dynamics for long times. In addition, the

physical description from the BD simulation can be in accurate [18]. In addition, MD or BD simulations

would be lacked with the consideration of the stochastic effects provided by the liquid dispersion medium

when the colloidal particles are nanometer-scale. For the case where of solid adatoms form clusters on the

2D lattice surface in gaeous environment, statistical features of the clusters can be effectively evaluated

using a kinetic Monte Carlo (KMC) simulation because the diffusional movement of adatoms is confined

to a selected number of possible jumping directions (i.e., 4 on the square lattice) with a fixed jumping

distance [8,9]. This feature of the KMC simulation provides enhanced computational efficiency compared

to conventional simulations, particularly for longer time regimes [9]. Instead of the conventional MD or

BD simulation, the KMC algorithm would be more suitable to simulate the long-time dynamics of the

cluster formation of nanoparticles in a liquid medium. Ineed, the use of the KMC algorithm has attracted

increasing interest for quantitative measurement of the cluster formation process under a variety of

conditions that are difficult to set up and examine experimentally.

Unfortunately, little research has been done on theoretical and computational studies of systems

that are more attractive to industry, such as NP dispersions in liquid media. In particular, a colloidal

dispersion of nanoparticles (CNPs) required further study in terms of cluster formation. A CNP is a

dispersion of NPs in a liquid medium that maintains phase stability by balancing the attractive and
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repulsive forces among the NPs. Typically, NPs around ten nanometers in size interact with each other via

van der Waals forces and electrostatic or dipolar interaction between surface-coating molecules such as

oligomers [6,12]. With time, NPs tend to form cluster, because they lose the potential balance by with

reductions in the surface functionality, temperature fluctuations, and so on. Once clusters consisting of

NPs form, they can grow continuously in a manner similar to the Ostwald ripening. It is important to

understand how cluster formation occurs and proceeds, mainly because the dispersion property of CNPs

is affected by the growth of the hydrodynamic radius of clusters and its distribution. The quality of the

dispersion of CNPs for a sufficiently long period depends on the temporal evolution of the clustering

behavior of NPs.

In this chapter, we provided a computational and theoretical analysis of cluster formation in

CNPs. To describe the colloidal dispersion, one can use a complicated potential model considering a

variety of potential contributions arising from the relationship between NPs and the electrolyte used as the

dispersion medium, and among NPs, the hydrodynamic interaction among NPs, the entropic effect

yielded by the elastic properties of the surface-coating molecules, and so on. Although the complicated

potential model can describe more realistic CNP environments, we employed the Lennard-Jones (U)

potential, a simple potential model that can achieve potential balance. Without loss of generality, the

simple potential model can allow us to more efficiently extract the critical features of the statistical and

temporal evolution of cluster formation in CNPs. For the computational study, we employed a KMC

simulation based on an efficient stochastic algorithm, the next reaction method (NRM) [13]. To verify the

computational observation, we also analyzed the cluster formation based on rate theory (RT) assuming a

continuum framework for the concentration of clusters and a single NP (i.e., monomer). The

computational and theoretical analysis showed that the scaling of the average cluster size and weight as a

function of time differs from the conventional expectation, although the fractal dimension of the clusters

was similar to that observed in other studies such as those of reaction-limited aggregation (RLA).

Interestingly, we found that the growth rate of a cluster consisting of CNPs is much slower than that

observed in conventional cluster formation phenomena involving Ostwald ripening with a lower scaling

exponent. We provid an explanation of how the scaling of the cluster size and weight are affected by the

time-dependence of the monomer concentration. This work would provide a substantial advantage to

those who want to understand, control, and modify clusters in CNPs.

2.2. Theoretical Framework
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2.2.1. Configuration-Dependent Diffusivity

CNPs generally maintain their stability by balancing the repulsive and attractive forces among NPs. In

particular, van der Waals interactions among NPs contributes greatly to the attractive potentials when the

NP size is several tens of nanometers. Dipolar interactions between functional groups on the NP surfaces,

mechanical stress caused by elastic deformation of the functional group, or the entropy cost, which

increases with increasing distance r among the NPs, contribute to the repulsive force. Below the critical

temperature, the entropy contribution to the free energy decreases; therefore, NPs try to aggregate to

minimize the enthalpy contribution to the free energy. In this study, we employed the U potential model,

one of the simplest models for the inter-particle potential, as follows:

126

F(r)=4e[ - - - , (2.1)
r r

where e and o- are the potential well depth and NP size, respectively. Although the U-potential model

does not reflect the precise nature of the attractive and repulsive forces among NPs dispersed in a liquid

medium, it is useful for obtaining critical features of the behavior of NPs when they move collectively,

for example, in clusters. To realize the condition for cluster formation, we assume that the diffusion of

monomers and clusters is discrete and depends on the configuration, as in KMC simulations of island

growth on the lattice [6-8]. This assumption is in contrast to the continuous description of particle

diffusion in Brownian dynamics (BD) or MD simulations [14,15]. To describe diffusion in our KMC

simulations, we introduced the differential hopping distance of a monomer, h , by which the KMC

simulation is physically equivalent to BD or MD simulations, as follows [14]:

h2 = Dogt, (2.2)

where D,,o is the diffusivity of a monomer, ignoring environments effects involving potentials from

other monomers or clusters, and 5t is the differential characteristic time employed in BD or MD

simulations. In addition, the diffusivity of an individual particle that is not a monomer is assumed to

depend on the configuration of the particle when it experiences environmental effects contributing to

cluster formation. For the diffusivity of the ith particle, D,, the Arrhenius-like dependence is employed

as follows:

D O = D, exp(-AE / kB (2.3)
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where kB is the Boltzmann constant, and T is a constant temperature. In eq.(2.3), the effect of the

environment is reflected by the energy barrier AE., which can be calculated as:

AE = -- J2;rrg (r)poF (r) dr, (2.4)

where g(r) and p. denote the 2D radial distribution function and the initial number density of the

particles, respectively. In eq.(2.4), the cut-off distance among the particles, re, is conventionally set to

rc = 2.5-.

10 0-
10t =0.5

0 002_ t=1

102 ~AE/=7.13 AE/ S=5.90

10~ 0
13 10 4)e- O 05

U) St=1
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0 10 *10

10 2 4 1 8

0 2 4 6 8 AEE = 0.98 AE/ = 0.00
AE/a

Figure 2.1. Behaviors of the normalized diffusivity, D, / DiO, of a single particle as a function of the

configuration represented by the normalized energy barrier for the diffusion, AE / , at different

normalized temperatures (t = kBT / c). Inset is for the relationship between the average waiting times for

a single particle in the cluster to diffuse out of the cluster with different values of t. Right panels are for

the illustrations for the diffusion energy barrier a single particle (depicted by red circle) feels for given

configurations of particles (depicted by blue circles).
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Eqs.(2.3) and (2.4) indicate that an individual particle in a cluster has a diffusivity much lower than that

of the monomer because of its configuration in the cluster. This is illustrated in Figure 2.1, in which we

see that as the number of neighbors surroundinga a single particle increases, the diffusivity becomes

smaller, and waiting time for diffusion of the particle becomes longer. In the KMC simulation, the

average waiting time for the next hopping event of the ith particle, r;, is inversely proportional to the

particle's diffusivity, more precisely [16],

h2
=. = log (rand-),

where rand denotes a random number uniformly distributed between zero and unity. Therefore, the

configuration-dependent diffusivity as well as the hard-sphere-like nature of a particle in the cluster

kinetically interfere with detachment of the particle from the cluster. However, this does not necessarily

define irreversible cluster formation in CNPs; rather, it is a reversible process, because a single particle at

the edge of the cluster can become detached, although this occurs much more slowly than diffusion of

monomers into the cluster. To estimate the configuration-dependent diffusivity of a particle at the

perimeter of an (s) -mer cluster, namely, D,(s), eq.(2.4) can be modified as follows:

D,(s) = D 0 exp Ic f rg (r) p ddr , (r)=arccos , (2.5)fa -#(r) kBT 2r (Rs -(a- / 2))

where Rs is the characteristic size of an (s) -mer cluster. Considering that it is energetically favorable for

a cluster to maintain its form and morphological stability by assembling particles in a hexagonal close

packed (HCP) structure at the optimized interparticle-distance of the U-potential such that re = 21/6 a

eq.(2.5) can be further simplified as follows:

Ds) = DinO exp #/(r) L F(rk) , (2.6)
k=1 B

where the integer k represents the k th nearest shell of the particle at the edge, and Lk denotes the

coordination number of the k th shell (i.e., L1 =6). Within the cut-off distance, the maximum number of

shells interacting with the particle on the perimeter is four; therefore, [LI L 2 L3 L4 ]=[6 6 6 12] and

[r r2 r r4[] - [ 31/ 2 r 2r 7 1/2] for am HCP structure.
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Figure 2.2. Dependence of the normalized diffusivity of a single particle out of an (s) -mer cluster,

D (s / D,,o, on the normalized cluster size R, / 07. Inset plot is for the linear fitting between o-/ Rs and

log (D() / D,,, ) with fitting line (red dot).

Eq.(2.6) can be further simplified as

D,(s(r& )Li y 3 + -)) 3,6r
D F ~ D .,8 e Fr)Txp - , exp - + ,rk T (2.7)

B R, B

where we used the fact that the first term in the summation in eq.(2.6) governs the summation when R. is

not too close to or (i.e., when R 5cr ) with the first order approximation of # (r) . Using this

information with the condition that c = 2kBT at room temperature [12], eqs.(2.6) and (2.7) yields the

dependence of D(s) on R,, as shown in Figure 2.2. As expected, Figure 2.2 shows that D (s) decreases

with increasing Rs, which indicates that as a cluster becomes larger, it becomes more difficult to detach a
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monomer. Additionally, the linear fitting of log D() as a function of R- 1 , shown in the inset, reveals

that the simplified form of the dependence of Dl(s) on R works well. In particular, the linear relationship

between log (D(') / and o/ R, yields the fitting parameters 7=2.626 and 8 =1.885 x 104,

which are close to the values predicted by eq.(2.7), y = 2.144 and 81= 4.522 x 10-4, respectively.

2.2.2. Characteristic Length Scale and Fractal Dimension of Clusters

From the analysis above and the results in Figure 2.1, we can conjecture that the average size of the

clusters grow with increasing time, and small clusters merge into larger ones because the smaller ones

lose monomers more quickly than larger ones do, as observed in Ostwald ripening [17]. The main

difference between cluster formation in CNPs and the Ostwald ripening or island growth of adatoms on a

lattice is that the former is a reversible process and does not depend on the lattice size or directionality. In

particular, this KMC study also considers cluster formation in CNPs as the energetically preferable

process by which cluster growth and monomer consumption are driven to minimize the total free energy

of the system (or to make the energy difference before and after the diffusional jump, dE, negative) in

the standard MC manner,

SE > 0: Acceptable if rand 1/ (1 +exp(SE / kBT))

SE 0: Always acceptable,

where we used the Glauber acceptance scheme for the detailed balance in the Markov process [18]. This

consideration reflects the prediction that clusters of hard-sphere-like particles interacting via the isotropic

potential are more convex-shaped and compact instead of fractal-shaped, e.g., having the dendritic or

snowflake-like shapes observed in typical diffusion-limited aggregation (DLA) [1,19] or RLA at longer

times [1]. This prediction automatically corresponds to the prediction that the fractal dimension of the

clusters, df , should approach two (however, smaller than two) in 2D simulations and three in 3D

simulations with sufficient time. The existence of the fractal dimension also indicates that cluster

formation is a scale-invariant process in which the growth of the cluster size and weight is governed by

the power-law dependence between R, and the number of particles in the cluster s

R, ~ a-(s / Af ) ~'f o- (s / A )'/2 , (2.8)
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where Af is the coefficient for the fractal relation. Computational and experimental studies of DLA and

RLA found that the clusters formed by RLA are more compact and have a higher fractal dimension than

those formed by DLA. The main reason for this difference is that the clusters formed by RLA require

monomers to overcome the activation energy for the reaction; therefore, monomers try to maximize the

number of neighboring particles in the cluster. Similarly, we can extend the discussion of these studies to

predict the appearance of clusters in CNPs.

As a practical representation of the characteristic length scale of the clusters (R?), the size of a

cluster has been defined as the radius of gyration, Rg

1/2

R g = I:Ir -ro ,2

where ro is the position of the particle that has the minimum total distance from the other particles at

position r in the cluster. However, R9 tends to underestimate the real size of symmetrically shaped

clusters, as shown in Figure 2.3(a). Determining the real size of clusters is particularly important in

defining the capture length, Rsc , which affects the distance from the center of the (s) -mer cluster to the

center of the monomers within which the monomers spontaneously approach the (s) -mer cluster to form

a larger cluster. Additionally, Rg does not necessarily determine the effective hydrodynamic radius of

clusters, which corresponds to the definition of the fractal dimension [2]. Instead of Rg , we can use

another type of cluster size, RM, which can be defined as:

RM = max(r-r).

We compared the measurement of the cluster size using R9 and RM , assuming that the cluster is a 2D

HCP structure composed of hard spheres. As Figure 2.3(a) shows, Rm describes the characteristic size of

clusters in a geometrically more realistic manner than R9 does. In terms of defining Rsc , the cluster

measured with R9 does not include particles outside the boundary of R9 ; therefore, monomers might be

allowed to occupy the same position as particles in the cluster.
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Figure 2.3. (a) Measurement of cluster size for hexagonal-shaped clusters with R. (left) and Rg (right).

Blue and red lines denote the size measured by the maximum distance from the center of the cluster ( RM)

and radius of gyration (Rg ), respectively. (b) Dependence of R on s (R. in red) and (R9 in blue)

with slopes from the linear fitting. (c) Dependence of Rsc on s (R. +r , in red) and (R9 +ri in blue)

with slopes from the linear fitting.

This is unphysical, and therefore, this study does not use Rsc , which is based on Rg , to describe the

detachment of monomers from clusters. From the double logarithmic relationship between R, and s

shown in Figure 2.3(b), Rg yields a larger value for df than R. does (i.e., df = 1.959 vs.

df =1.718 ). In this study, we employ both RM and R9 to quantitatively define R. To distinguish one

cluster from another, we can also use Rsc . Energetically, Rsc can be defined as the range in which the

free energy between the monomer and the cluster is negative, implies that Rsc R, +rc . However,

geometrically, it is more appropriate to define Rsc - R, + i, where r, denotes the distance from the

center of a particle to the first nearest neighboring shells. Conventionally, r is calculated from the

position at which the minimum between the first and second peaks in the 2D radial distribution function is

located; r, = 1.58a. We also define a double logarithmic relationship between Rsc and s on the basis of

both ( RM + t in red) and ( R9 + r, in blue) in Figure 2.3(c). Because of the addition of r, , the cluster size

measured using Rsc is observed to have a higher fractal dimension (i.e., 2.677 from Rg +r and 2.292

from RM +r,, respectively); however, this does not necessarily mean that the real fractal dimension of

the clusters can exceed two in a 2D system. This comparison also supports our choice of

Rc - Rm ±,

Because the measured dimension is closer to two than that measured using Rg + r . As a convenient

approximation, we use the power-law dependence of Rsc on s ,

RsC -1.029js 0 4 6

for the calculations of the time-dependence of the average cluster size and size-distribution in RT.
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2.2.3. Kinetic Model Based on the Rate Theory

Without chemical reactions, cluster formation is attributed entirely to mass transfer through reversible

diffusion of monomers m and (s) -mer clusters s , as shown in eq.(2.9).

S +M d+' Sm, (2.9)1d (s)

where d±(s) and d_(s±1) are the kinetic rate constants for the attachment of a monomer to an (s) -mer

cluster and the detachment of a monomer from an (s +1) -mer cluster, respectively. Noted that in eq.(2.9),

neither aggregation (i.e., s+q K(s,q) s- q, where K(s,q) denotes the reaction kernel between an (s) -

mer and a (q) -mer clusters [20]) nor fragmentation of clusters (i.e., s -'*q > p + q , where

L (p, q)(S) denotes the fragmentation rate constant of an (s) -mer cluster into a (p) -mer and a (q) -mer

clusters) is allowed. This is one of the main differences between the conventional Smoluchowski

coagulation model [20-22] and the cluster formation model in this study. CNPs cluster formation was

reportedly controlled reversibly in an experimental study [10]. In eq.(2.9), an (s + 1) -mer cluster forms

when a monomer within Rsc diffuses toward the center of an (s) -mer cluster. Considering the flux of

monomers at the perimeter of an (s) -mer cluster, it can be found that

2(D, ±D+1))
d+(s) = 2r (D + D ,,), d +l0 - 2

Notably, these quantities can be simplified such that d ~(s) 2 D, 0 , whereas d_(s0 ~ 2D (s+i) / R(s+0c

considering that the diffusivity of an (s) -mer cluster, Ds , is negligible compared to either D,,, or Di (s)

when s is sufficiently larger than unity [22]. The main reason is that clusters are rarely displaced by

simultaneous diffusion of each of the particles in the cluster in the same direction; in addition, the cluster

size generally exceeds the monomer size by one or more orders of magnitude. Thus, the master equation

for the temporal evolution of clusters can be obtained using RT as follows [7,8,20]:
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d(n,)

dt= (n,))+2 D1(s+I) ,)
R(s+I)c2

D (n,)

R 2
, s >2,

d(n,) 2 4D (n ) 2D(k) d=2rD, (n) I(n,) -4rD(n) 2 2 +) 2D1 k ( .k)dC kk3 kC

(2.10)

To compare this to the conventional RT combined with the self-consistent mean field (SCMF) model

[7,8], note that the factor for the capture number of a cluster employed in the SCMF model corresponds to

2;7 , whereas the escape rate of a monomer from an (s) -mer cluster is equal to 2DI(s) / RsC2 in

eq.(2. 10).

By assuming that n is the continuum over the spatial dimension under the condition

limni = (n), a diffusion-reaction-like equation regarding n can be written as
r -*ci

an = J(t)+ D 0 V 2 n - D0 O (t)-2 n1,
at

(2.11)

where J (t) and (t) denotes the monomer flux and the mean free distance for monomers to travel

without engaging in cluster formation, respectively [7,8]. By comparing eq.(2.1 1) with the second term in

eq.(2.10), we can extract J and < 2 as

4D,2 ) (n2) 2DI(k) (nk)
3 2 + , ,

R2C k RC~

5-2 =2r (n)+ 4;f(n),
k>2

(2.12)

(2.13)

Respectively. By using eqs. (2.12) and (2.13), we can find the relationship [7,8]

(2.14)

where the spatial dimension is normalized (indicated by the over-bar) with respect to r (r r / ), and

the rate of fluctuation of n1 around (nI) is assumed to be negligible. Eq.(2.14) has a solution based on

the zeroth-order modified Bessel function, KO (x) , tailored for an (s) -mer cluster in which
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2rDO (n ) ((nsI)

V nj - (n, -( n,)) 0,



n (r) = (n1) - K o (), where A, is the constant determined by a boundary condition at the cluster

radius.

2.2.4. Scaling Analysis

Assuming that a cluster is circular in shape, mass conservation based on a continuum approximation of

the monomers flux for an (s) -mer cluster at its radius, J, 0,n, ,with eq.(2.14) gives rise to the relationship

Os O
s = - ,Jcon, = 2rD,(R, 0n

at ar ,
=-2rD,() ASR K,

where D denotes the effective diffusivity for the monomers flux at Rs. From the microscopic point of

view, the flux attributed to detachment and attachment of monomers, micro' is written as [7,8]

Jmicro = (n± I -2;r (Rs +r,) n + '
(n')h

(2.16)

where Cos is the detachment rate of monomers from an (s) -mer cluster. For a microscopic mass balance,

Jeont =micro ; therefore, eq.(2.17) can be derived from eqs.(2.15) and (2.16) as

ani = X (niL
ar Rs s

(q) , R ) J RD+(s)h - _
R, ( R, + r )D,,,0

r , n(q) R,

where we used a continuum approximation for n, (r) in the first order, where n

From eq.(2.17), As is calculated as

Sn, R(q) )
Ko (Rs / )+ ,'K (R, / c)*

To find De(s) as a function of DnO and R, we can introduce another continuum approximation for the

temporal evolution of (n,) in eq.(2.1 1):
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h (nR, ,) o 0 ('j,
2;T ( R, +r t) D.,0 (n )'

(2.17)

n , s R , nOn

(2.18)



a(n)
at

1

as
(2.19)2D, (ni) - RSC2 (n,) =0.

By comparing this to the continuity equation, we can express as / at as

as 2D(')
-= 2grD (n1 ) - 2.t Rto e

According to eqs.(2.15), (2.18), and (2.20),

2 RD,( nI|R R, )K, (Rs / )
-27rRDOI nRs

(2.20)

(2.21)
2D(s)

R SC2

When we use the convenient and conventional method of determining coefficients by term-by-term

comparison, eq.(2.16) yields information on De(s) and Wt as follows:

D (s) =D0 ( Ko (R, / )+ Xs- K (Rs / ))
RK (R, / )

(ns) Cos, _O
1 (n,) (Rs +r,)h

(2.22)

At longer times, R, >> r,, so De(s) in eq.(2.22) can be further simplified to

De(s) 2D, 2

2R'
(2.23)

where we used the fact that >> R, and applied asymptotic forms of the modified Bessel function,

. From eqs.(2.8), (2.15), (2.17), (2.18), and (2.23), we can describe the temporal

evolution of the cluster size as:

aRsd' 27o-'DmO n|at A RsI

(2.24)-ni ()R,

where we used the fact that R >> h. With the continuum approximation, the Gibbs-Thomson equation

[17,19] can act as a boundary condition for a 2D circular cluster such that

nj R n. exp (F / R,),
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where n, denotes the number density of monomers in equilibrium, and F represents the capillary length,

which can be expressed as F = YLA / kBT. For the capillary length defined in a 2D system, A indicates

the area occupied by a monomer, and yL represents for the line tension of a circular cluster. At room

temperature for typical inorganic materials [12], F is measured to be at the same order of magnitude as

a when a is smaller than 10 nm. When the concentrations of clusters and monomers are sufficiently

dilute, it can be found that

(n.) - (n )(R,)

Then, eq.(2.24) can be further simplified to

Sdf a.(R,)df 2radfD'no n)F (2.25)
df+l at Af

When (nj) scales with time according to a scaling exponent u satisfying (n) - tu at longer times,

eq.(2.25) yields the following scaling behavior of (R,):

p+1

(R,)~ t d±l. (2.26)

In a 2D system, an ideal compact and isotropic cluster has a fractal dimension df = 2, and

p+1

therefore, its scaling behavior is approximately (R) ~ t 3 at longer times (c.f., for 3D clusters, it can be

p+1 p+1

shown that (R,) t df , which will give rise to the same scaling behavior of (Ri) -t 3 with an ideal

fractal dimension df = 3 ). In addition, (nj) decreases with increasing time at longer times, whereby

p <0 ; thus, (R,) grows less rapidly than predicted by a conventional dynamics such as Ostwald

ripening. Interestingly, when p = 0 , which implies that the monomer concentration is described by a

continuum field and is sufficiently larger than the cluster concentrations throughout the cluster growth

process, the scaling behavior of the cluster size converges into the conventional Lifshitz-Slylozov-

Wagner (LSW) relationship for 2D circular droplet growth, such that (R,) = Kt 1
/
3 [23], where

C = (3Dn,,n1FA) 3 .
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2.2.5. Scaling Behavior of the Cluster Weight Distribution

At longer times, it is also expected that the cluster weight will exhibit scaling behavior distributed around

MN when the distribution is self-similar (i.e., scale invariant). In other words, in the limit of a large

cluster weight, MN can act as the representative weight of the entire cluster. Among numerous forms, the

following functional form has been conventionally defined as the cluster weight distribution [7,8]:

F(s)=s ()

When the distribution functional form is invariant against scale, the homogeneity condition should be

satisfied,

F(cos)= -F(s),

where co can be set to co= MN- 1 . By introducing the universal distribution function, G (X), where

X = sMN , which acts throughout the cluster formation process at longer times, one can find the

following:

G (X)= MN9F (s),

Further, because of the constraint given by particle number conservation in a closed system, G (X) must

satisfy

M -1 = 0  G(X),

from which the scaling exponent is found to be L9 = 1. Therefore, G (X) can be written as [7,8]

G(X)=MN2X 0,) (2.27)

The plot of G (X) versus X reveals whether cluster formation is a self-similar process at longer times.

In a simplified model based on the conventional Smoluchowski coagulation theory [20], (ns) is known
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to scale with time, with a scaling exponent of -0 at longer times and an exponential tail, which is a

function of the cluster weight (s ) such that [21]

(ns ~t exp T z

where T is a constant, and Z is the scaling exponent for the time-dependence of the tail function. With

this form, it can be shown that MN-~ tz / T ; therefore, the distribution function is given as

G(X) Xexp(-X)t2Z-19. When the distribution function is universal, yielding time- and scale-invariant

behavior, the condition of 2Z -0 = 0 is expected to be satisfied, and consequently, G (X) peaks around

X = I, indicating that the distribution is effectively represented by MN as the characteristic weight of the

clusters. For irreversible DLA with more realistic cluster formation conditions, Marquesee and Ross

provided a detailed calculation that describes G (X) at equilibrium for cluster growth governed by

Ostwald ripening [17,24]. In this study, however, we do not require the SCMF method of solving G (X)

because the capture number and detachment rate of monomers from the clusters can be derived in the RT-

based model. Instead, we introduced a semi-empirical form of (ns) to describe G (X); it has a scaling

dependence similar to that found in the Smoluchowski model by assuming that (n t ~- exp K z
tz

where y was introduced to address the possibility of an exponentially scaling tail with a nonlinear order

of s at longer times (i.e., y > 1 ). With a continuum approximation, it can be shown that

MN t Z/y , where D (y)= F (2 /y) / F (1 / y) and F (x) denotes a gamma function. Then, unde

the condition 2Z - yO = 0, G (X) is found to have the form

G(X)~ X exp(-(X (y))). (2.28)

Eq.(2.28) indicates that G (X) peaks at X, - y-IY / D(y). Note that XM =1 when y = 1, which

corresponds to the expectation from the simplified form of G (X) from the Smoluchowski model.
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Figure 2.4. A relationship between the nonlinearity of the exponential tail function, y, of the universal

distribution function of the cluster weight at longer times (G (X ) ) and the peak position XM.

In Figure 2.4, we show the functional relationship between XM and y , where the peak position in

G (X) shifts gradually from XM =l as the nonlinearity of the exponential tail becomes stronger.

2.2.6. Induction Time for Cluster Formation

It is also important to understand how soon the clusters start to form as a function of the initial monomer

concentration. We can expect that clusters form earlier at higher initial concentrations of monomers. The

time for the first cluster formation can be defined as the induction time, tind. To determine tind, we can

use a simplified form of the rate equations as follows:

8(n1 ) 2 4D__
a~ 7Tf-4/D l i) + (2)2

at R2C 2(

8(n 2 ) 2 2D, 2 1  (2.29)
at R 2C
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where we assumed that the concentration of clusters with s > 3 is negligible compared to (n,) and (n 2 )

at t ~ tind. The temporal dependence of (n 2 ) from the solutions of eq.(2.29) can be written as

(n2 I-2 D,,o (n0)2 t (2.30)
4n2D ~ ,n(2.3l)4;TD,. (no)t + I

where weDused the fact that (n2)<(n 0 ) with D( 2 ~0.135D from eqs.(2.3) and (2.4). Defining tnd as

the time at which (n2) / (n0 ) reaches a threshold ratio, v (0 < v < ), eq.(2.30) can be written as

V 0). (2.31)
ind 2rcD,, (n )i

This relationship holds for CNPs with a relatively dilute initial monomer concentration. For CNPs with a

relatively rich initial monomer concentration, tmd approaches zero when (no) approaches

(no) = 2 / (31/2 1;2 , which corresponds to the HCP structure of monomers in which entire monomers are

aggregated in a single large cluster at t = 0 . From eq.(2.3 1), we can find that tind is inversely

proportional to (no). Computationally and experimentally, tid can be measured from the time after

which the growth of the average cluster size/weight scales with time.

2.3. Computational Method

For the simulation of cluster formation in CNPs in a 2D system, we used a KMC algorithm based on an

efficient stochastic algorithm. One of the advantages of the KMC algorithm over other computational

approaches for a dynamic system, such as MD or BD simulations, is that it is more appropriate for

describing a system under stochastic effects involving thermal noise or noisy fluctuations in the external

factors. Although it is not shown here, it is possible to incorporate noise effects during the simulations

without adding a considerable computational load, whereas it is necessary to generate random numbers

and calculate the noise effects at every iteration step in MD or BD simulations. Another advantage of the

KMC algorithm is that it is much more efficient for describing dynamic processes, particularly at longer

times. For example, at longer cluster formation times, most of the NPs are found in clusters, and their

diffusivity Dl(s) is much smaller than D,,o (i.e., D(s) 10-4- 6D 0 ). This indicates that the average
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waiting time for the next diffusional jump of an NP increases by four to size orders of magnitude at

longer times. In MD or BD simulations, the time step at every iteration step is typically fixed unless an

adaptive algorithm to update the differential time is incorporated; therefore, they require much more time

to update the system dynamics at longer times, which prevents their use at longer times. In contrast, the

KMC algorithm does not employ a fixed time step but updates the waiting time according to the order of

all the particles' diffusional propensity at every iteration step to determine the next diffusional jump.

Therefore, the system dynamics at longer times can be effectively and efficiently addressed.

For a chemical reaction with a rate propensity r,,, the probability that the reaction occurs in a

sufficiently short time interval dt is r,,dt. Therefore the probability that the reaction occurs only after

some time r (i.e., definition of the waiting time) can be calculated as follows:

P(r)= p (no reaction for 0 t < r)x p (reaction during r t < r + dr)

= p(no reaction for t < r -dr) x p (no reaction for r - dr t < r) r dr

Sp (no reaction for t < r - d- X (1 - rndr) rnd-r.

Then, defining Q (r) p (no rxn for 05 t < r)

Q (r)= Q (r - dr)(1- rwndr)

I n Q (r)- In Q (r - dr) = in (I- rxndr)~- -rwn dr,

d ln Q(r)

dr
*Q (r)= A exp(-rir)= exp(-rxnr) (- Q(O)=1),

-*. P(r)dr = exp(-. r)r,1,dr = Probability density of the waiting time.

Therefore, the waiting time has an exponentially diminishing probability distribution.

For a simple Markov chain composed of two different possible transitions from state A to either

state B or state C with transition rate rB and rc, respectively, the probability of any transition at time t,

using the above relationship, is

p(t) dt = exp(-rBt)exp(-rt)(rB+ rc ) d.

Thus, the average lifetime of state A is
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(t) = tp()d=f exP(-(rB ± (B ±rC)dt = 1
rB± rC

For a random variable u between zero and unity, let us think about the other variable, 0, which has a 1-

to-I functional relationship (or mapping) with u , thus,

du _ du
p(0) = p(u) dOdO

-- If u = exp (-r) or equivalently 0 = ln - ,

-> p(O)dO = r,,, exp(-,,,O)dO.

This is exactly that same distribution as that of the reaction waiting time. Therefore, for m possible types

of reaction with respective reaction rates of r (i =1, 2,---, m), we can execute a numerical simulation

for the stochastic process (i.e., Gillespie's first reaction method (FRM) algorithm [16]) according to a

process as provided in Table 2.1.

Table 2.1. A summarized stochastic algorithm based on the Gillespie's first reaction method (FRM)

A Kinetic Monte Carlo (KMC) Algorithm on the basis of the FRM

Step 1. For each of the reactions, draw a random number, ut, between zero and unity

Step 2. Generate the waiting time for each of the reactions using u1 based on the mapping such that

Oi =In -

Step 3. Choose a reaction which has the shortest waiting time

Step 4. Update the total reaction time and total system (number of species in the reaction network)

End of Algorithm

Conventionally, the original stochastic algorithms such as the first reaction method (FRM) and

the direct method suggested by Gillespie [16] have been widely applied in KMC simulations to simulate

chemical reactions. In a stochastic simulation of a spatio-temporal transition driven by a diffusion process,

however, the original algorithms are often computationally inefficient. To solve multi-particle-based
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diffusion problems, a more efficient KMC algorithm would be valuable, and the next reaction method

(NRM) algorithm suggested by Gibson and Bruck [13] is an advanced algorithms used to address the

problem. The NRM algorithm is based on a binary sorting method to determine the fastest transition at

each iteration. Rapid calculation by the NRM requires the construction and maintenance of several

hierarchical data structures such as a dependency graph, indexed priority queues, and an index structure

for the individual transition processes. Although these data structures incur a computational cost, the

NRM performs well when simulating a system with a larger number of transition, for example, in a multi-

particle-based diffusion problem. In comparison, the computational cost of Gillespie's algorithms scales

with the number of independent transition processes ( N ), whereas the NRM scales with log N. In

addition, the NRM reduces the computation time by re-using the random number at each of the iteration

steps. With these advantages, the NRM algorithm provides a path to effective simulation of cluster

formation in a system composed of thousands of NPs.

Table 2.2. A Kinetic Monte Carlo algorithm for the cluster formation of CNPs

A Kinetic Monte Carlo (KMC) Algorithm to Simulate Cluster Formation of CNPs

Step 1. Set initial positions (considering self-exclusion effects) of NPs

Step 2. Find a list of nearest neighbors (nns) for each of the NPs and

calculate neighbors-dependent diffusivities

Step 3. Calculate exponentially distributed waiting time for each of the NPs

Step 4. Sort the waiting times using binary sorting algorithm, and fire the fastest diffusion

Step 5. Allow the fastest diffusion if the energy change is acceptable in Monte Carlo scheme

(i.e. Glauber exchange scheme)

Step 6. Construct a list of new nns of the fastest NP

Step 7. Find affected diffusion processes by the fastest diffusion

Step 8. Update waiting times for the affected diffusion propensities

Step 9. Go back to the Step 4 during iteration

End of Algorithm

For the study described in this chapter, we used the KMC algorithm based on NRM with an

iteration number of 108 2 x 108. In a 2D system, the desired number of self-avoiding particle, which

model the NPs, were introduced with a periodic boundary condition. To avoid numerical artifacts that
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might interfere with the measurement of the cluster size and weight, we employed a 2D simulation box

with an edge length of 200u ~ 300o- . Each of the simulations was repeated 16-times to obtain

statistically averaged results. To measure the cluster size and weight distributions, we used the Delaunay

triangulation algorithm [25] to define the nearest particles, whether they exist in the cluster or as

independent monomers with the cut-off distance of r , and to distinguish one cluster from another.

Detailed algorithm is given in Table 2.1. More detailed fundamentals of the NRM algorithm are given in

Appendix A.

For numerical integration of the equations in RT, we introduced the maximum weight of the

cluster, No, which is the number of particles initially introduced to the 2D box in the KMC simulation.

The differential equations given by RT were numerically integrated using the forward Euler method with

a finite differential time that was evenly distributed over the log-scale time range.

2.4. Results and Discussion

By using RT and the KMC algorithm, we calculated and simulated the time-dependent properties of

cluster formation in CNPs with five different initial concentrations of monomers, (no )U2 = 3.872 x 10-2,

6.255x1T-2 , 9.771x10- 2 , 1.123x10-1, and 1.741x10- . For the calculation conditions, we used

typical properties of inorganic NPs: Dno = 10-2 m2 /s, =10-9 m, and c= 2 kBT [12]. Figure 2.5

shows a representative KMC simulation result for cluster formation in CNPs as a function of time when

(nO)U2 = 9.771 x 10 2 . As expected, the clusters grow with time in terms of both size and weight. In

particular, we can also observe that the clusters maintain as compact a structure as possible, exhibiting a

nearly close-packed structure, as the radial distribution function g (r) of the particles in Figure 2.5 shows.
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Figure 2.5. (Left column) Representative images of morphological evolution of the cluster consisting of

NPs simulated by the kinetic Monte Carlo (KMC) algorithm with the initial monomer concentration of

(no)&7 =6.255x10-2 observed at t=4.571x10-5 s , t=2.722x1T-3 s , t=2.10lx10-2s , and

t = 2.122 x I0-s , from the first to fourth row, respectively. Images correspond to the expanded region of

a 2D simulation box with dimension of 100- x 1OOu-. (Right column) Radial distribution function

(g (x)) of the particles as a function of x = r / a- observed at the same times.

We can calculate g (r) using the equation [18]

1 No
g(r)=- ( ,(r-rj +rk) , (2.32)

No j;, k )j,k

where r denotes the normalized position vectors, 3(x) represents the Dirac delta function, and the

angular bracket denotes an ensemble average over every pair of NPs. Considering that the peaks in g (r)

determine the number of neighboring coordinate shells, it is evident that cluster growth proceeds while

the NPs inside the cluster become close packed. In addition, we can also observe that the peaks become

narrower and the intensity of the peaks at longer distances increase, indicating that the cluster shape

becomes isotropic and circular. When the cluster shape is dendritic or chain-like, the peak height at longer

distances are much smaller and thus cannot be observed.

To validate of the RT and KMC simulations for describing cluster formation, we compared the

calculated and simulated temporal evolution of the normalized monomer and cluster number density,

(n)/(no) and (Ns)/(no) , where (Ns) denotes the total number density of the clusters:

(Ns) (n,). As Figure 2.6 shows, the KMC simulation results agree with the RT calculation with
s 2

different (no), although (Ns) from the KMC algorithm is commonly underestimated compared to that

yielded by RT at shorter times (i.e., before the time at which (Ns) reaches the maximum). This

discrepancy in (Ns ) between the RT and KMC simulations might be explained by the following facts: (1)

the governing clusters are dimers at shorter times, (2) the approximate form of the detachment rate

constant of monomers from the cluster in eqs.(2.7) and (2.10) is inversely proportional to the size of the

cluster, and (3) RT overestimates the cluster size of dimers.
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Figure 2.6. Comparison of calculation results from the rate theory (RT) and the KMC simulation on the

temporal evolution of the normalized number densities (p ) of monomers ((n) /(no and clusters

( (N,) /(no) ) with different initial monomer densities ( (n ).2 = 6.255 x 10- 2 
, 9.771x10 2 , and

1.741 x 10-1 for (a), (b), and (c), respectively).

Therefore, at earlier times, RT underestimates the detachment rate of monomers from the clusters,

which leads to overestimation of the number of clusters. Because of this property, it is also easily

predicted that the number- (MN) and weight-averaged cluster weights (Mw), which are defined as

Is (n,)

(Ns)

and

~s2(n,)
W s

s>2

respectively (c.f., where the 'weight' of the cluster does not physically mean the real molecular weight;

rather it denotes the number of unit particles in the cluster), are overestimated in the RT calculation

compared to the KMC simulation at earlier times. This prediction is verified later. After (Ns) reaches

the maximum, simulation results of (Ns) from the KMC algorithm show good agreement with those of

the RT calculations. Notably, there is still a discrepancy between the RT and KMC results when (no) is

relatively high (i.e., (n ) .2 = 1.741 x 10' in Figure 2.6(c)). This may be explained by considering that

the average distance between clusters decreases with increasing (no), and at longer times, the number of

clusters can be underestimated when the distance is within the cut-off distance for configuring the clusters.

The overall deviation of the KMC simulations with respect to the RT calculation are reduced as the

simulation box size and No increase.
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Figure 2.7. Comparison of calculation results from the RT and the KMC simulation on the scaling

behavior of the average cluster size ((R, / o-) in the first column) and weight (M in the second column)

with different initial monomer densities ((n )0. 2 =6.255 x10-2 , 9.771x10- 2 , and 1.741x10 1 for the

first to third row, respectively). Linear fitting for the scaling behaviors of (R, / o) measured from the

KMC simulations are represented by red (for (RM / a)) and blue (for (R, / a) ) dash-dot lines,

respectively. For the linear fitting of the scaling behaviors of M observed in the KMC simulation, red

and blue dash dot lines denote the number averaged (MN) and weight-averaged cluster weight ( M ),

respectively.

Table 2.3. Comparison of scaling exponents for the average cluster size and weight obtained from the

linear fitting of the kinetic Monte Carlo (KMC) simulations and the rate theory (RT) predictions at long

times. The fractal dimensions of the clusters, d,, are calculated based on the scaling exponents.

(n0 )0. 2  (RM) (Rg) MN Mw dfNM dfm dflg dwg

KMC 3.872x10-2 0.140 0.131 0.249 0.251 1.78 1.79 1.91 1.93

6.255x10-2 0.141 0.130 0.250 0.252 1.77 1.78 1.92 1.93

9.771x10-2  0.141 0.130 0.247 0.250 1.76 1.77 1.90 1.93

1.123x10'- 0.142 0.121 0.251 0.251 1.77 1.77 1.91 1.92

1.741x10- 1  0.143 0.132 0.254 0.256 1.77 1.79 1.92 1.94

RT 3.872x10-2  0.140 0.131 0.249 0.251 1.77 1.79 1.90 1.92

6.255x10-2 0.142 0.131 0.250 0.251 1.76 1.78 1.90 1.92

9.771x10-2  0.141 0.129 0.247 0.250 1.75 1.77 1.91 1.93

1.123x10'- 0.141 0.131 0.252 0.250 1.79 1.78 1.93 1.92

1.741x10I-1 0.145 0.132 0.253 0.257 1.75 1.78 1.92 1.95
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We also compared the RT calculations and KMC simulation results for the scaling behavior of

the average cluster size (R,) and weight M . For the comparison, we measured (R,) using either R9

or RM and measured M using either MN or Mw. As shown in Figure 2.7, the RT and KMC results

both show power-law dependences of (R,) and M on the time at later stages of cluster formation. From

the plots, notably, the RT and KMC results agree well in describing the power-law for both (R, ) and M

at longer cluster formation times with different (no). Interestingly, we found that the scaling exponents

of (R,) and M obtained by linear fitting do not vary considerably up to relatively high initial monomer

concentrations (i.e., (n 0 )0. 2 =1.123x101). For example, as provided in Table 2.3, the KMC and RT

calculations show scaling exponents of aR. =0.145 ~ 0.148 for (RM) - t~aR and

aR =0.123~ 0.125 for (R)~ t"R.

Table 2.4. Comparison of df observed from the KMC simulations and the RT (dANM and dNg) with the

expected values, dexp, based on the

times.

scaling exponent of the monomer concentration predictions at long

(n 0 ).7 2  U d NM dNM,exp dfig dfgexp

KMC 3.872x10- 2  -0.610 1.78 1.78 1.91 1.99

6.255x10-2  -0.613 1.77 1.74 1.92 1.97

9.771x10-2  -0.615 1.76 1.74 1.90 1.97

1.123x10- -0.612 1.77 1.74 1.91 1.96

1.741x10-' -0.616 1.77 1.68 1.92 1.91

RT 3.872x10- 2  -0.611 1.77 1.77 1.90 1.92

6.255x10- 2  -0.612 1.76 1.74 1.90 1.92

9.771x10- 2  -0.615 1.75 1.73 1.91 1.98

1.123x10-1  -0.611 1.79 1.77 1.93 1.98

1.741x10'- -0.614 1.75 1.67 1.92 1.93
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For M , they show scaling exponents of a MN = 0.237 ~ 0.240 for MN ,a"N and

aM, = 0.234 ~ 0.241 for M, ~ t"" . When (no) is considerably high (i.e., (no) o 2 = 1.741x10-'),

the exponents increases notably. This observation might be attributed to the fact that the distance among

clusters is not sufficiently greater than the cluster size when the initial monomer concentration is high.

This finding corresponds to the gelation point observed in studies of DLA [1,4]. In this study, we limit the

scaling behavior observed in cluster formation to the case in which (n0 ) .2 < 1.741 x 10- . From the

observed scaling exponents, we can calculate df, and it is possible to define four different df values

with four combinations of scaling exponents from among [aR aR] and [aM aM].

In Table 2.3, we presented the calculated values of the four different df values, denoted by

dfM =aMN aR, dfwm = aM/ aR, dg = aMN laR, and dwg = aM/a R Interestingly, the RT

and KMC results both reveal that dfNM and dfm range between 1.75 and 1.79, whereas dfivg and dg

range between 1.90 and 1.95. The difference between the fractal dimensions measured using RM and Rg

is due mainly to the measurement method, as identified in the analysis of the characteristic cluster size

shown above and in Figure 2.3. The fractal dimension measured by dfNM and dfM is comparable to the

observation from stochastic simulations of DLA assuming 2D irreversible on-lattice diffusion (i.e.,

d ~1.7 ) [3]. Additionally, we must note here that the fractal dimensions dfNM and dig are also

comparable to df for the HCP structure in Figure 2.2 measured using Rg and RM, df =1.72 and

df = 1.96 , respectively. This finding also indicates that the cluster shape is nearly isotropic and compact,

which is consistent with the finding from g(r) in Figure 2.5. To verify the predicted scaling behavior of

p1+1

(Ri) as a function of the scaling behavior of the monomer concentration, (Rs) ~ t+1 in eq.(2.25), we

compared df and df,,X, where

d = t+1_dfexp a

On the basis of the observation of p, dfNM, and dig from the KMC and RT calculations. As Table 2.4

shows, dfiNMexp agree well with dfNM , although it is generally smaller than djNM. Interestingly, djgexp
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is generally greater than dfig,, although it also shows good agreement with djNg . The overall agreement

between the prediction and the simulation and calculations verifies that the model we used in this study is

self-consistent. Unfortunately, the observed scaling exponents and fractal dimension do not show good

agreement with the experimental observation of colloidal gold NPs by Wilcoxon et al. [4], who reported

that the observed scaling of the cluster size is much slower than the conventional DLA behavior (i.e.,

(R,) - to3 vs. (R,) - to".56 [4]). Considering our observation from the KMC simulation and RT

calculation that (R,)~ t 0 4 , the clusters grow even more slowly than the rate observed experimentally

for the Au CNPs. Note, however, that the dimensionality dependence, which determines the scaling of the

cluster size employed in conventional diffusion-limited studies as well as in the experimental observation,

is based on the theoretical model of the Brownian Smoluchowski process, in which the rate constant for

the attachment of clusters plays an important role [4,20]. The present study excluded cluster-cluster

interactions, assuming virtually immobile clusters compared to the fast movement of monomers. In

addition, the experimental observation is of the expedited cluster formation rate obtained by the addition

of pyridine in the earlier stages of cluster formation. In the present study, the addition of this phase

destabilizer was addressed neither in the KMC simulation nor in the RT calculation. These differences

would produce the observed difference in the scaling exponent for the cluster size.

Figure 2.8 compare the results of the RT calculation and KMC simulation regarding the

scalability of the cluster weight distribution, G(s / MN), during cluster formation as a function of the

normalized cluster weight s / MN, observed at different times with different (no) and different initial

monomer concentrations. As the plots demonstrate, we can find neither the existence of a peak nor

convergence of the distribution function in either KMC simulations or the RT calculations at earlier times.

In contrast, the scale-invariant property of G (s / MN ) emerges at longer cluster formation time (i.e.,

t 10-4 s ). The converged form of G(s / MN ) predicted from the RT calculation is comparable to the

KMC observations. In particular, G (s / MN) at longer times shows a peak around s / M, -- 1.
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Figure 2.8. Relationship between the cluster weight distribution function ( G (X) ) and X , where

X = s/MN , with different initial monomer densities ( (n )02 = 6.255 x 10-2 , 9.771x10- 2 , and

1.741x10-' for (a), (b), and (c), respectively). Different symbols in the plots denote data taken at

designated time (time scale: s). Left column is for the KMC simulation results and right column is for the

results from the RT.

From the peak position and eq.(2.27), the nonlinearity factor is found to be y =1.30. Although it is not

shown here, however, the expected distribution form of G (s / MN) in eq.(2.28) with y =1.30 does not

match the KMC and RT data well. This deviation implies that an unknown correlation with cluster growth

affects the equilibrium distribution of the cluster weight [7,8]. This peak position, interestingly, is

comparable to that predicted when the initial monomer concentration is relatively high from the mean-

field model of Marquesee and Ross for diffusion-limited coarsening [24]. The distribution function is well

known to be peaked when the cluster formation is a diffusion-limited process; therefore, the observed

behavior of G (s / MN) supports the idea that the modeled cluster formation process of CNPs is

diffusion-limited even when the diffusion of monomers is a configuration-dependent reversible process.

Finally, we describe the relationship between tind and (no). To quantitatively define t ind , we

calculate the time at which the fitting curve of the average cluster size for longer periods and the

horizontal fitting line for earlier times of cluster formation meet. As shown in Figure 2.9, the observations

from the KMC simulations and RT calculations both show a linear relationship between t ind and (no ,

as expected from eq.(2.30), except for (no) 2 = 1.741 x 10-' . As expected, when the initial

concentration of monomers is relatively rich, tind deviates from linearity and approaches zero. For a

dilute initial concentration of monomers, the inverse proportional relationship of tind with respect to

(n0 <, accompanied by good agreement between the KMC simulation and RT calculation, also validates

the model in this study to describe cluster formation in CNPs in a self-consistent manner.
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Figure 2.9. Relationship between the induction time for the cluster formation (tind ) and the initial

monomer densities ((no) a 2)

2.5. Conclusion

In Chapter 2, we presented a study of cluster formation in colloidal nanoparticles (CNPs). To represent

the CNPs, which maintain a balance between the attractive and repulsive potentials among NPs dispersed

in a liquid medium, we employed the Lennard-Jones potential and the potential-dependent diffusivity of a

single NP (configuration-dependent diffusivity of a monomer). To describe the stochastic movement of

NPs in the liquid dispersion medium, we employed a kinetic Monte Carlo (KMC) algorithm based on an

advanced stochastic diffusion model. The KMC simulation results were compared to the results of rate

theory (RT) calculations focusing on the analysis of not only the temporal evolutions of the monomer and

cluster concentrations but also the scaling behavior of the clusters. For the scaling analysis, we

concentrated on the scaling of the average cluster size and weight as a function of time, which is

represented by a power law at longer times. To measure the cluster size and weight, we also employed

two different quantities. The observed scaling exponents for the cluster size and weight were smaller in
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both the KMC simulations and the RT calculations than those in conventional cluster formation studies.

The reduction in the scaling exponents was attributed to the reversible diffusion of a single NP from the

cluster, although the detachment of a monomer is much slower than the attachment. In particular, the

observed scaling exponent for the cluster size from the KMC simulation and RT calculation agreed well

with the prediction from RT, in which the scaling behavior is a function of the time dependence of the

monomer concentration for longer cluster formation times. We also observed scale-invariance of the

cluster weight distribution at longer times irrespective of the initial monomer concentration when it is

sufficiently small. Additionally, we also compared a theoretical prediction based on RT of the relationship

between the induction time for the initial cluster formation and the monomer concentration with the

corresponding results of the KMC simulation and RT calculation. The comparison verified the predicted

inversely proportional relationship of the induction time and the initial monomer concentration. This

study is expected to provide useful information for those who want to understand and control the

morphological stability of a colloidal phase consisting of NPs. In addition, this study can be applied to

CNPs with higher dimensions and multiple-components.
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Chapter 3

A Kinetic Monte Carlo Algorithm for Spinodal

Decomposition of Colloidal Nanoparticles*

Abstract

An algorithm based on the kinetic Monte Carlo (KMC) method for spinodal decomposition of a colloidal

dispersion of nanoparticles (CNPs) as a binary mixtureis presented. For the algorithm, we considered the

free energy barrier calculated from the phase field model (PFM). We also considered the diffusive jump

of particles among discrete compartments to be constrained by the free energy barrier. These

considerations were combined to develop an efficient KMC algorithm namely free energy-limited next

reaction method (FENRM). By constructing the diffusive master equation for the discretized system, we

also demonstrate that the biased diffusive jump governed by the Boltzmann distribution is mathematically

in accordance with the governing spatio-temporal differential equation known as the Cahn-Hilliard

equation for the spinodal decomposition of a binary mixture. Computer simulations with different initial

conditions based on the FENRM exhibited the typical temporal evolution of microstructures in the course

of phase separation governed by spinodal decomposition except for the existence of an intermediate stage

before the late stage. The physical validity of the proposed algorithm is also examined by comparson with

different numerical calculations. The proposed KMC algorithm demonstrated its ability to describe the

dynamics of unstable systems by capturing most of the critical characteristics of the microstructural

evolution and its dynamic properties. We expect that this stochastic algorithm can be extended and

applied to simulate more complicated dynamic systems involving unstable multi-phase multi-component

mixtures and reaction-diffusion systems with phase separation.

Parts of Chapter 3 will be submitted to a peer-reviewed journal (Authored by S. Joon Kwon & T. Alan Hatton).
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3.1. Introduction

The Kinetic Monte-Carlo (KMC) method, a meso-scale computational method, is noted for its power and

success in describing both equilibrium and non-equilibrium processes in dynamic systems [1]. Owing to

its ability to track the state-by-state transition kinetics, it can effectively and accurately simulate the

temporal evolution of a dynamic system in an unstable state. This feature of the KMC algorithm has made

it an important tool for the stochastic simulation of a network of biochemical reactions [1,2]. In addition

to chemical reactions, the KMC algorithm can be extended to describe the spatio-temporal evolution of

unstable systems on the basis of diffusion processes [3,4]. In particular, the KMC algorithm is adequate

for application to a dynamic system under stochastic effects, such as randomized intrinsic noise, that drive

the system through the stochastic states. An interesting spatio-temporal dynamic of unstable systems,

spinodal decomposition, has been intensively analyzed experimentally and theoretically as a mechanism

of the phase separation of a mixture [5-13]. Most of the theoretical approaches to spinodal decomposition

have been done in the continuum regime by solving the deterministic governing differential equation [6-

9,13], although there are several different approaches such as the Monte-Carlo (MC) method [10,12] and

molecular dynamics (MD) [11]. It is well known that in principle, the continuum approach has many

computational difficulties owing to the highly nonlinear properties of the governing equation, such as the

concentration-dependent mobility and the fourth-order partial derivative in the spatial domain [14,15].

Because of this nonlinearity, the continuum-based method is prone to accumulate computational

uncertainty and error, especially in later stages of the dynamics. Other approaches also face difficulties in

describing the decomposition process. For example, a solid physical relationship is required when using

an MC simulation to connect the MC step and the real time scale [16]. Otherwise, it is necessary to

employ empirical or phenomenological parameters for matching the probabilistic jumping to the

movement of particles such that the conventional MC method describes the real-time process of diffusive

motion. The introduction of these parameters leads to unexpected errors in describing the time-

dependence of the separation process. In addition, most MC methods can analyze only a limited spatial

domain in a reasonable computation time. These limitations make MC methods an inefficient way of

simulating the evolution of the microstructures of a dynamic system. MD methods provide the most

accurate description by tracing the time-dependent configuration of particle-by-particle movements in the

system; however, they are computationally limited in not only the spatial domain but also the time

domain, because the duration of the computable course is often less than 10~' s. Considering that the

typical time scale for many real-world meso-scale dynamic phenomena involving spinodal decomposition

is greater than 1 s, this time-limitation reduces the effectiveness and efficiency of the MD method for

simulating microstructural evolution.
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In Chapter 3, we suggest a simple, efficient KMC algorithm for spinodal decomposition of CNPs.

The KMC method employed in this study is based on a discrete system with compartments in which

designated numbers of different particles are traced throughout their temporal evolution. When the size of

the compartment is appropriate for the diffusive process, the compartment-based simulation work as the

coarse-grained simulation method that can allow the expansion of the computationally approachable

number of dimensions in the spatial domain. This feature makes a significant advance in the statistically

more appropriate approach for molecular simulation without much computational cost, which has been a

main obstacle for MD or Brownian dynamics (BD) simulations. Therefore, it is highly probable that the

KMC algorithm can effectively describe microstructural evolution in longer times and in larger spatial

dimensions compared to the conventional MD or BD simulations. By enumerating and determining the

fastest diffusion process, the KMC algorithm also guarantees that both real-time progress is maintinaed

and the stochastic nature of time-dependent processes is considered. For computational efficiency, we

started with an advanced KMC algorithm called the next reaction method (NRM), a powerful tool for the

computation of a dynamic network consisting of a thousand or more processes [2].

The most distinctive aspect of the proposed algorithm is the introduction of a biased diffusion

process. In contrast to conventional idea on diffusion, the jumping of a single particle from one

compartment to anoother is not completely random in that it is a probabilistic process governed by the

free energy difference. In particular, the free energy is not homogeneous but is non-uniform over the

spatial domain when the system is an unstable multi-component mixture. To consider the free energy as a

functional of the non-uniform concentration, we employed the phase field model (PFM) [5]. This model

includes additional free energy from the interface energy, which is a function of the spatial variation in

the concentration. By mathematically matching the probabilistic diffusion master equation with the PFM,

we consider the discretized interface energy to determine the time dependence of the diffusion process.

And the derived numerical scheme and computational algorithm guarantee more physically accurate

description of spinodal decomposition because it consider the appropriate form of the concentration-

dependent mobility for the separation dynamics. The results of a computer simulation based on a method

combining the PFM with the KMC algorithm demonstrate that the stochasticity, in conjunction with the

biased-diffusion model, can describe the temporal evolution of microstructure found in spinodal

decomposition. Although we simulated CNP assuming it as an A-B binary mixture with identical

diffusivity as the simplest model, the proposed computational algorithm can be easily extended to more

complicated non-equilibrium transitions affected by the free energy, such as the nucleation and spinodal

decomposition of multi-phase and multi-component mixtures with different-sized molecules and different

diffusivities.
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3.2. Theoretical Framework

3.2.1 Free Energy Model for Mixtures

As the free energy model, a regular solution model was employed for a homogeneous A-B mixture.

Without loss of generality, let A denotes the NPs, whereas B represents the solvent. A normalized form of

the total Helmholtz free energy (F / kBT) as the volume fraction of A particles (# ) is given as

F K Z( CA+ EBB -2-AB)
F X g(I-#)+((1--#)In(1-#)+# In #), X=--, KC= (3.1) + B

kB BT 2

where eA, cBB, and "AB represent the interaction energy among the nearest A-A, B-B, and A-B pairs,

respectively; kB is the Boltzmann constant; T is the temperature; and Z is the coordination number (i.e.,

Z = 6 for 3D system). By applying thermodynamic stability criteria, the boundaries for the phase stability,

such as the spinodal ( Ts) and binodal curves ( TM ), are expressed as [17]:

kBs =S1o( )

kBTM ( (3.2)

In

A metastable condition is satisfied when T : T TM , which leads to binodal decomposition of a

homogeneous mixture via nucleation followed by growth due to the threshold homogeneous or

heterogeneous nucleation energies [17]. An unstable condition such that T Ts results in spontaneous

dynamics instability followed by phase separation via spinodal decomposition [5,17]. In this study, we

focus on spontaneous phase separation of a mixture when it is quickly quenched below Ts by spinodal

decomposition.

3.2.2. Spinodal Decomposition

In the spirit of the original idea of the PFM suggested by Cahn and Hilliard, the driving force for phase

separation is the difference of the chemical potential of two coexisting phases and the interface energy [5].

When a homogeneous mixture is unstable under fluctuations in an order parameter such as the
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concentration, the free energy can be expressed as a functional form of the order parameter, which is a

function of the spatial coordinates. Accordingly, the normalized Helmholtz free energy, FN/kBT, is

expanded to include the free energy contributed by the interface as follows:

FN - Cl2 724, C= Z. (3.3)
kBT kBT 2

In eq.(3.3), C is the normalized gradient energy coefficient, which describes the free energy of the

diffuse-interface between phases, and / is the phenomenological interaction distance between two

distinctive phases [5]. The gradient energy coefficient was obtained from an expansion of the

homogeneous energy such that FN [#(r)] = FN (#,V#) based on a lattice model. The flux of A-particles

relative to B-particles in a closed system conserving the total volume J is defined as:

aF 0(1 - ) L
J= (1-#b)jA- B =BM()V(PA-IB) IA JB N ___) ____

C90T

S=-cLVp, L, = " ,jwhere i, j = A, B, (3.4)

where u is the molecular volume of an individual A- or B-particle, c is the concentration of i-particles

(i.e., cV -=#), and Lij and Lji are the Onsager coefficients for the diffusion of materials in a binary

mixture [18]. In eq.(3.4), we used the Gibbs-Duhem relationship incorporated with a condition of mass

conservation such #LAVpA +(1-b)LBVpB =0. We can ignore the cross Onsager coefficients for isotropic

transport process [19], L 1 ; therefore, simply the composition-dependent mobility, M(#), considering

the Nernst-Einstein equation, L = , where D* is the intrinsic diffusivity of B-particles. The flux
vkB

J in eq.(3.4) can be simplified as

_(1-$) D*a [F
ik -vkBT ax Lao

by assuming an isotropic diffusion flux. By substituting J into the continuity equation, we can obtain the

Cahn-Hilliard (CH) equation:
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=K M -2C 2 kBT 2  2  2Cl2k BT (.M (Lt I ~ x ax4 ) ax) ao C9 a0 ~ ~ ax) ax,) 35

This equation can be further simplified as shown in eq.(3.6) by assuming that the Fourier component

governing the compositional fluctuation in the earlier stage of spinodal decomposition is sufficiently

small to neglect the second-order terms in eq.(3.5).

0 ( ) 2 (FO / kBT) 2 (23.6
~~#()#)D -2 , (3.6)

To calculate the governing spatial fluctuation of #, it is convenient to Fourier transform $(xt) in the

spatial domain into #(q, t) in the wave vector (q ) domain. The application of linear stability analysis to

the earlier stage of spinodal decomposition allows one to transforme eq.(3.6):

2 a2 (FO / kB(3-- ~;t - (1 -# )D*#g (q), g (q)= q2 a(2 +2q2Cl2 (3.7)
at 8

In eq.(3.7), # and a
2 FE / a# 2 were expanded and approximated up to the first derivative terms near the

initial condition, #0 . The critical wave vector qC describes the exponential decay or growth of the

compositional fluctuation (i.e., g(qc) = 0 from eq.(3.7)). In the earlier stage of phase separation, the

fastest-growing fluctuation mode, q,,, is expressed as q =q. C /2 from the condition that =0,

aq

which yields

a2 (-FO / kBT) 1/2  
1 1(.

qm = -- = - 1- .(3.8)
'" 4C0 20 14 2X#0 (I - 0) )

Conventionally, computer simulations of spinodal decomposition of a mixture have employed the CH

equation in various forms, as shown in eqs.(3.5)-(3.7) in conjunction with deterministic calculation such

as numerical integrations [8], the cell-dynamical system approach [7], spectral transforms [13], and the

lattice Boltzmann model [9]. The characteristic length scale in the earlier stage of spinodal decomposition,

A,. = 2T / q,, acts as a standard to determine the appropriate compartment size employed in the algorithm

we suggest in this study.
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3.2.3. Kinetic Monte Carlo Algorithm for Spinodal Decomposition

The KMC algorithm for a system undergoing temporal transitions calculates and updates the stochastic

distribution of the waiting times of different independent temporal processes. In particular, it is well

known that the probability density for the waiting times in a time-independent Markov process is

governed by an exponential distribution [1,2]. The exponential distribution of the waiting times, r is

mathematically equivalent to the uniform distribution of random variables between 0 and 1, 0,

r -ln - , (3.9)
r 0

where r is the propensity, which is equal to the transition rate constant multiplied by the number density

c. In diffusional processes, the system is spatially discretized with a finite number of compartments, and

the diffusion processes between any two nearest neighbor compartments with size h are considered to be

independent of each other and governed by a Markov process. This is supported by the assumption that a

single particle comes into local thermodynamic equilibrium between hop from one compartment to

another. The diffusional propensity is expressed as r = dc , similar to that of a first-order chemical

reaction, where d is the normalized diffusion coefficient (or diffusion rate constant) with respect to the

compartment size (i.e., d = D / h2 ). Although transition problems involving diffusion processes are

described deterministically in a continuum framework, the KMC method has advantages for simulating

the stochastic nature of diffusional processes. Conventionally, Gillespie's algorithms, such as the first

reaction method (FRM) and direct method, have been widely applied to KMC simulations of chemical

reaction networks. In particular, it is well known that the algorithms are effective for stochastic

descriptions of the temporal evolution of biochemical reaction networks in which reactions affect each

other relatively frequently (i.e., relatively high connectivity among reactions). For stochastic simulations

of spatio-temporal transitions in a system evolving via diffusion processes, however, those algorithms are

computationally expensive. The chief reason is that the connectivity among different diffusion processes

is relatively low. Gibson and Bruck recently suggested a mathematically equivalent but more

computationally efficient KMC algorithm called the next reaction method (NRM) [2]. The NRM is based

on an advanced updating algorithm such as a binary sorting method for determining the fastest transition

at each iteration. It hinges on the construction and maintenance of several data structures, such as a

dependency graph, indexed priority queues, and an index structure, during the computation. Although

maintainting these data structures incurs a computational cost, the NRM is suitable for simulating systems

with more transitions. In comparison, the computational cost of Gillespie's algorithms scales with the
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number of independent transition processes (N ), whereas the NRM scales with log N . In addition, the

NRM reduces the computation time by re-using the random number at each iteration step. These

advantages of the NRM algorithm provide a path to effective simulation of spinodal decomposition in

which diffusion is affected by the free energy difference.

In the conventional KMC algorithm, the free energy difference is not conbsidered during the

temporal process. Sauwerwine and Widom recently tried to incorporate the free energy difference into

Gillespie's direct method in order to stochastically simulate the thermodynamic equilibrium structures of

biological molecules [1]. However, their approach is limited to specific cases depending asymptotically

on the Arrhenius model. In comparison, the classical Metropolis Monte-Carlo (MMC) algorithm can

simulate a system considering a free-energy-directed diffusion process. Indeed, it is an efficient way to

describe the equilibrium state of a mixture of interacting particles [10,12]. However, it is intrinsically

limited because it required the use of empirical or experimentally obtained kinetic parameters for each

diffusional jump [16]. This limitation causes artificial errors in the kinetic and dynamic properties of the

system. It is our goal in this study, therefore, to develop a KMC algorithm that can describe real-time

transitions in an unstable system via diffusion processes. This is done by modifying the NRM algorithm

to appropriately incorporate a diffusion process limited by the free energy difference.

First, we need to determine an appropriate value for the compartment size, h . A fundamental

assumption is that in each compartment, the mixture remains homogeneous as a phase. This assumption

corresponds to the maximum limit of h . For example, h should be sufficiently smaller than the interface

thickness /I and the characteristic wavelength governing the earlier stage of spinodal decomposition Am.
Considering that 1, and A, are comparable in size according to the diffuse interface model [5], it is

sufficient to set AM as a guide to the maximum limit of h. For a 50:50 A-B binary mixture with = 3,

A. = 2rJl from eq.(3.8). This indicates that setting h as comparable to the interaction distance of the

interface between neighboring phases 1 is appropriate because h <<A. For the minimum limit of h , the

particle size /, and the molecular interaction cut-off distance lu, can be used. In particular, h should be

sufficiently larger than icu, to ensure that the fraction of pairs interacting in the short range confined in

the inner compartment is larger than that of pairs interacting inter-compartmentally. Conventionally, 'cut

is set to ICU, ~2.51, for pairs undergoing van der Waals interaction; therefore, setting h >> cu, is

appropriate for the minimum limit. In this study, we set h = l = 201c ~8u .
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Second, the free energy of an inhomogeneous system with a finite number of compartments is

written as follows from eq.(3.3):

M ~C12 , 'A 0FN =f(0) 2 n n0k -Zn njJ n nn n n ,, (3.10)
n=1 h n=1 1 kB

where m denotes the number of compartments, #n is the local volume fraction of A-particles in the n th

compartment, Zn is the number of nearest interacting neighbor compartments of the nth compartment

(i.e., Z, = 6 for three-dimensional system with periodic boundary condition), and O is the local

volume fraction of the kth nearest neighbor compartment of the nth compartment. For the discretized

form of the interface energy involving second order spatial derivative terms, we used the central finite

difference scheme. The factor of two in the denominator of the interface energy term is added to avoid

double-counting of the interface energy. At each iteration step, FN is updated by

FN (tn + At)= FN (tn ) ±AF N (tn )

where tn is the absolute time after n iterations, and Atn is the waiting time of the fastest diffusion at the

nth iteration, provided that randomly attempted diffusion of a single particle from one compartment to

another is not energetically rejected. In an A-B binary mixture, diffusion from one compartment to

another occurs by transport of either a single A or a single B particle. Accordingly, it is necessary to

consider two possible but different values of AFN (t ), AF (tn ) and foFNB (tn), for A-and B-particle

diffusion, respectively. On the basis of the MMC algorithm [10,12], the NRM algorithm can be

implemented with a free energy comparison reflected by the Boltzmann factor,

QA (t)=exp(- (/ BT B ( e NB (tn) / kBT) to construct the free energy-limited

NRM (FENRM) algorithm. To elucidate the mathematical equivalence of the FENRM algorithm to the

original CH equation, we can construct a master equation for a model diffusion system with a biased

transition rate in a ID chain-like space. For a ID chain space with K compartments, the temporal

evolution rate of the concentration of A-particles in the ith compartment at time t, q5 (t), is written as

follows:
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a8# (t )
at

=/ (I (--# (t)) x

#(i- (t) pi-_a (t) +#,,+ (t) pi+I' (t) -#,i (t) (pi'_, (t) + pj'j, (t))) -(#j+1 (t) +,_1 (t) - 20i (t))], (3.11)

where V/ is the transition rate of the concentration of A-particles, and p,, (t) is the probability that A-

particles move from the mth compartment to nth compartment at time t. Note that eq.(3.11) considers

the diffusion of A-particles relative to that of B-particles, which is realized by adding

-V/ (I -# (0))(, (t) +,_1 (t) - 2, (t)) . In eq.(3.l l), the factor 1 - 0, (t) is added to the transition rate

to consider the convergence of the local mobility of A-particles relative to the motion of B-particles in a

closed system with an NVT ensemble of the A-B binary mixture. Without this consideration, the extreme

case in which 0, (t) -*1 does not make physical sense because diffusion occurs with zero concentration

gradient. This is also in accordance with the Nernst diffusion relationship [18]. Further, p,n (t) is a

function of the difference in the total free energy of the system derived by the m -to- n transition,

FN -,n (t), and can be expressed in Boltzmann form as follows:

N m,n A ~
p,nf() exp AFN~ N, (3.12)

kBT kBT

where the approximation is based on the simulation condition that the free energy does not change greatly

per single diffusion event satisfying N (t) «1.
kBT

From eqs.(3.3), (3.11), and (3.12), the master equation for ID biased diffusion is found by

calculating the free energy change yielded by each of the possible transitions in the discretized ID chain-

like system:
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a'A (t)

at

=) +( - , (t)) x

-A (t) 2C6#(0-2 (t)-3#-, (t)+3#A (t)-#,, (t))+6C8(b 2 +# h (#-,' (t)- #) - f (,_(t))+ 4(# (t)+ o#)-fo(
k BT

-A+ (t) 2CS#(#Ai (t)-3#,(t)+3#i,(t )-A(t))+6C# 2 +5#0 f (#A,(t)- #)-f k(B,,(t +f (# (t)+ #)-f # t

+#,K(t) 2C50(-#B (t)+3#,_,(t)-3#,(t)+#,,(t))+6C,$2+8# f(#,(t)-9#)-h(#,(t

+#i (t) 2C6#(#A2  (t)-3#'A (t)+3',(t)-#Ax (t))+6C,5#
2 + # 5 fo(,(t)- s5)- f ('A(t)) k0T + ) -- fo (i+

where 5q# denotes the differential increase in the concentration of A-particles bdue to the transition.

Eq.(3.13) can be further simplified by a linear expansion

a(t) = l 2#,(t)(- )(tF) -2Cl2 a +(t) + a2 (, (3.14)
at Wx 0i 8x 2 Ot) a2 it-

L +) 2 ap 3.4

where we ignored second-order terms such as 5#2 a , and . For detailed derivation of
Sa) ax) ax3 )

eq.(3.14), see Appendix for Chapter 3. By setting D*= /12(5, we find that the approximated master

equation, eq.(3.14), is mathematically equivalent to the original CH equation given in eq.(3.6). This

finding also indicates that it is not necessary to make an additional approximation of the constant mobility,

which has been widely used in theoretical analysis and computation based on a continuum framework [6-

9,14]. In particular, the mobility for diffusion has been linearly approximated around the initial condition

such that D*# (1 -) D* 0 (1 -#) for simplicity [6-9,14]. The CH equation is well known to present

some degree of difficulty in the numerical calculations owing to its non-linear terms in the differential

equation. In particular, when the initial mixture is far from equilibrium, more complicated factors such as

a composition-dependent diffusivity involving D*#(1-#) make the problem more difficult to solve.

Therefore, the biased diffusion algorithm is more accurate for describing the kinetics, especially at later

stages of spinodal decomposition, and this feature represents an additional advantage of the proposed

KMC algorithm for simulating spinodal decomposition. On the basis of the mathematical justification

from the master equation, the FENRM algorithm for biased diffusion-derived spinodal decomposition of

A-B binary mixture in an NVT ensemble is given in Table 3.1.
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Table 3.1. A summarized algorithm for a kinetic Monte Carlo calculation of spinodal decomposition

FENRM Algorithm

Step 1. Set initial configuration of A- and B-particles over finite number of compartments

Step 2. Construct a dependency graph for every possible diffusion processes

Step 3. Generate exponentially distributed waiting times of every possible diffusion processes

Step 4. Do a binary sort for the possible diffusion processes ascending order of waiting times and

construct an indexed priority queue and an index structure for every diffusion processes

Step 5. Fire the first diffusion process in the priority queue (the one with the shortest waiting time)

Step 6. Calculate QA (t,) and QB (t)

Step 7. Determine whether the first diffusion process by transporting single A- or B-particle occurs or not

If Q (t?) 1 and QB(t) 1

Calculate relative probability of A- or B-particle diffusion such that

PA (ta)= # (t" ) QA (t,) and generate a random number Rn
(#t)A(tn)) +((0-(tn)) QB (n

If p^ (tj ! k

Fire A-particle diffusion

Else

Fire B-particle diffusion

End if

Else If QA (t)1 and QB(t)<1

Generate two random numbers, R 1 and R,

If QB (tn) R n

Set QB (tn)O

End If

If p^ (tn ) Rn,2

Fire A-particle diffusion

Else

Fire B-particle diffusion

End if
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Else If QB (n)1 and QA (t )<1

Generate two random numbers, R n and R 2

I f Q^ (tn )< R! k'

Set QA(tn)=O

End If

If pB (n)>R 2

Fire B-particle diffusion

Else

Fire A-particle diffusion

End if

Else If QA (t)<1 and QB(t)<I

Generate two random numbers, R 1 and R 2

If [Q.A (t) + QB (n ) R n

Calculate PA (t)

If pA (tn) >R 2

Fire A-particle diffusion

Else

Fire B-particle diffusion

End if

Else

Fire neither A- nor B-particle diffusion

End if

End if

Step 8. Update free energy of the system, waiting times for next diffusion and the priority queue

Step 9. Iterate by going back to the Step 5

End of Algorithm
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The algorithm uses an efficient diffusion process by simultaneously searching for opportunities for either

A- or B-particle diffusion instead of separately calculating the A- and B-particle diffusion. Detailed

description about updating schemes for the waiting times and the data structures at each iteration are

given elsewhere [1,2] and explained in Appendix A.

3.3. Results and Discussion

By using the FENRM algorithm, we simulated A-B binary mixtures with 50:50 or 40:60 number ratios. A

constant number-volume-temperature (NVT) ensemble was employed at X = 3 . For the simulation

system, we used 60x 60 compartments that discretize a 2D plane with dimensions of 12x12 pm2 ,

because of a 2D system can capture the critical properties of the dynamic process, although many real

cases are more effectively represented by computations using a 3D system. The total number of A- and B-

particles per compartment was assumed to be N = 400. For simplicity, the diffusivities of the two

particles were both assumed to be D = 10 12 m 2 / s, which is a typical value for nanometer-scale particles.

To avoid potential artificial effects of the simulation box size on the determination of the characteristic

length scale of the microstructure, a periodic boundary condition was applied. The dynamic process was

initiated by a random fluctuation in the number of A-particles in each compartment from the initial value.

Each simulation was repeated with 160 trials to obtain statistical features of the simulated system's

kinetics. Figure 3.1 shows the temporal evolution of a phase-separated symmetric A-B binary mixture

undergoing spinodal decomposition. As is apparent from the 2D images, an interconnected morphology

of the concentration distribution over the system emerges after a certain period of initial fluctuation. The

dynamics of spinodal decomposition in the simulation also exhibits growth of the characteristic length

scale A of the separated morphology. This growth due mainly to the reduction in the free

energycontributed by the interface energy. By merging and ripening, the growth of A drives the system

to have the minimum interface energy and reach thermodynamic equilibrium. To capture the critical

aspects of the phase separation dynamics, the time-dependent variation in the histogram of the

distribution of the A particle concentration over the system is also presented (see middle column in Figure

3.1). As expected from conventional thermodynamics, we can observe a bifurcation of the A particle

concentration governed by a bimodal curve, which produces two peaks in the histogram at later times.
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Figure 3.1. Computer simulation results of phase separation of a 50:50 A-B binary mixture based on the

kinetic Monte-Carlo (KMC) algorithm. For the simulation, 60x60 compartments which discretize a 2D

plane of 12x12 ptm 2 dimensions with periodic boundary condition examined under 2x 108 iterations were

employed. Sizes of the A- and B-particles were assumed to be 10 nm. Diffusivities of the two particles

were assumed to be identical as D = 10-12 m2/s. In the first column, temporal evolution of phase separation

via spinodal decomposition at y = 3 is provided. Statistically analyzed data of the temporal evolution are

shown in the second (histogram for the distribution of number of A-particles per compartment) and the

third columns (Pair-correlation function, g(r), both in the x- and y-directions).

Another method of quantitatively analyzing the separation dynamics is the pair-correlation function

g (r, t), which captures the long-range order and kinetic properties of the system

g(r,t)= I (0(r+r',t)0(r',t)), (3.15)
Nr

where the bracket denotes values averaged over the initial concentration condition, 4. The obtained

quantitative measure is 2, which corresponds to the smallest value satisfying g (r, t) = 0. A dynamic

system with infinite size maintaining isotropicity is expected to have identical functional behavior of

g (r, t) without respect to the orientation of r . In the third column in Figure 3.1, we show the temporal

evolution of g (r, t) in both the x - and y -directions. The growth of A is also identified from the

increase in the axial intercepts in both the x - and y -directions. Although slight discrepancies appear

between g (r, t) in the x - and y -directions, they exhibit similar functional behavior. The discrepancies

are due mainly to the finite size of the simulation system. Here, 2 is obtained by calculating the radial

intercept of g (r, t) by taking the circular average (average over angles). Similarly, we also analyzed the

spinodal decomposition dynamics of an A-B binary mixture with an asymmetric initial composition (i.e.,

40:60 mixture). In the first column of Figure 3.2, we can observe an island-like morphology of the

concentration distribution after the earlier stage of the separation. As the separation develops, features

representative of spinodal decomposition, such as bifurcation of the concentration governed by a bimodal

curve and the growth of 2, are also identified from the simulations (second and third columns).

According to a model of diffusion-limited coalescence [3,5-15], the dynamics of phase separation

driven by ordinary spinodal decomposition with a system dimensionality larger than two is known to be

governed by a power-law, 2 ~1/3
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Figure 3.2. Computer simulation results of phase separation of a 40:60 A-B binary mixture based on the

KMC algorithm. Simulations conditions were identical to those employed in Figure 3.1 except initial

concentration of A-particles. In the first column, temporal evolution of phase separation via spinodal

decomposition at X = 3 is provided. Statistically analyzed data of the temporal evolution are shown in the

second (histogram for the distribution of number of A-particles per compartment) and the third columns

(Pair-correlation function, g(r), both in the x- and y-directions).

Actually, this scaling law is modified slightly to consider incubation time tc for the emergence of a

diffuse interface between phases, A ~ (t - tc )1 . This scaling behavior of A has been observed in both

theoretical and experimental studies [3-14]. To examine the capability of the proposed algorithm to

describe the scaling law, we analyzed the growth of A during spinodal decomposition with both

symmetric and asymmetric initial compositions. For a comprehensive analysis, the simulation was

repeated with 160 trials. From Figure 3.3, we can identify scaling behavior in the growth dynamics of 2

after tc. Interestingly, it seems that there exists an intermediate stage in which A grows but its growth

dynamics is slower than that of the later stage. For the asymmetric binary mixture, we identified the

seemingly intermediate stage by isolating the scaling behavior such that A (t - tc .127±0.011, where tc

is measured to be around 0.002 s (see Figure 3.3(a)). Further, the intermediate and later stages are

observed to be separated at another critical time, t1 , which is around 0.278 s. After tj , the growth of A is

accelerated with an increase in the exponent while maintaining the power-law dependence. In contrast to

the conventional prediction, however, the observed value of the scaling exponent for the growth of 2 in

the later stage, 0.284±0.013, differs from the expected value (i.e., 1/3), for a discrepancy of about

11%. For the symmetric binary mixture, we also identified an intermediate stage with slower growth

dynamics of 2, in which 2~(t -0.032s).126±o017 . It is notable that the scaling exponents for the

intermediate stage are nearly the same for the asymmetric and symmetric cases, although tc differs by

one order of magnitude. The observed discrepancy in tc would be explained by difference in the initial

conditions at which the unstable states undergo phase separation. According to the thermodynamic

principles and the CH equation [5,7,17,18], tc increases with increasing the distance from the critical

point. At constant temperature, the symmetric composition initial condition is farer from the critical point

(i.e., spinodal boundary) than the asymmetric composition condition is.
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Therefore, it takes longer for the unstable mixture with the symmetric initial condition to initiate the

separation process than the case with asymmetric condition. Interestingly, we observed the scaling

0.1±.019
behavior of A in the later stage for the symmetric case to be A ~ (t - 0.254s) , where the scaling

exponent 0.315 ± 0.019 is considerably similar to the predicted behavior. Another notable finding is that

ti in the symmetric case (t, = 0.254s) is similar to that in the asymmetric case (t, = 0.278s ) [20].

The observed deviation of the scaling exponents of the dynamic evolution of the characteristic

length scales from the expected value, 1/3 , is strongly supported by several considerations. The

conventional mass transport model predicts that transport in a closed system occurs solely by bulk

diffusion, which results in 2 -~t 3 in the later stage of spinodal decomposition. As Zhu et. al. reported

[13], however, the composition-dependent mobility can interfere with the dominance of bulk diffusion in

mass transport by allowing an increase in the effect of interface-driven diffusion. This interference can

lower the scaling exponent value to 1/ 4. The exact value of the scaling exponent is therefore believed to

depend on the mobility function and interface diffusion effects, whereby the exponent varies between

1/3 and 1/4 [8,13]. In numerical studies using an advanced finite difference scheme with a spectral

method, Zhu et al. demonstrated that fully bulk or fully interface-driven diffusion gives rise to a scaling

exponent of 1/3 or 1/4, respectively. In our simulation, therefore, we can conclude that the KMC

algorithm incorporating composition-dependent mobility intrinsically describes a system under the

diffusion effect partially governed by interface diffusion. Further quantitative analytical studies are

necessary to determine how the partial portion of the interface-driven diffusion is represented by the

KMC algorithm during spinodal decomposition and is linked to the scaling property of the characteristic

length scale.

As another method of quantitative analysis, the time-dependence of the minimum and maximum

number of A-particles per compartment was examined during spinodal decomposition. These values

correspond directly to the bifurcated values of #, #a (i.e., A-particles dilute) and 1- , (i.e., A-particles

rich), described in eq.(3.2). At X = 3, #, = 0.071, and the simulation data shown in Figures 3.4(a) (for

the symmetric composition case) and (b) (for the asymmetric composition case) agree well with this value

at later times. In contrast to the difference in dynamic behaviors observed in Figure 3.3, the dynamic

behavior of the amplification of the composition (i.e., difference between maximum and minimum

number of A-particles per compartment) during bifurcation is nearly identical irrespective of the initial

conditions. In addition, the time-dependence of the total free energy shown in the insets of Figure 3.4 also

exhibits nearly the same functional behavior.
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These similar features of the separation dynamics (except for tc) observed in different cases with

different initial conditions indicate the universality of phase separation governed by ordinary spinodal

decomposition. Further, these findings from the simulations allow us to conclude that the KMC algorithm

presented in this chapter can capture most of the important aspects of spinodal decomposition.

To examine the physical validity of the proposed algorithm, we compared the calculated results

based on FENRM with those obtained from numerical experiments using a different method. Among

various types of numerical approaches, few methods can be applied to address the composition-dependent

mobility in the calculation. A finite-difference scheme in both the time and space domains is one of the

most effective and simplest methods of solving the partial differential CH equation that satisfies this

condition. For the time domain, we employed the forward Euler scheme with At =1 06 s, which ensures

the numerical stability of the computation. In particular, this differential time increase was carefully

examined and chosen mainly for the consideration of the composition-dependent mobility [14,15] and

mass conservation during a lengthy simulation. For the space domain, we used an semi-implicit and

explicit (semi-IMEX) method [14,15]. The explicit scheme was applied to address the nonlinear stiff

functions involving the composition-dependent mobility and free energy function, whereas the implicit

scheme was selectively applied to address linear part of the free energy function and the fourth-order

derivative term in the CH equation. The detailed numerical techniques, including the semi-IMEX

approach to the finite difference method for solving a binary mixture's spinodal decomposition, can be

found in the literature [14,15]. Figure 3.5 compare the results calculated by the proposed KMC algorithm

and by the finite difference method. The model systems were 50:50 A-B binary mixtures under the same

simulation conditions. As expected, the two approaches yield nearly identical temporal evolution of the

concentration field. This comparison ensures that the dynamic properties of the spinodal decomposition

described by the proposed KMC algorithm converge with those obtained by a deterministic analytical

method. The characteristic length evolution was also compared (results were not shown); the scaling

exponents for the symmetric and asymmetric cases were found to be 0.295 ±0.011 and 0.317 ±0.017,

respectively. Although these values are slightly larger than those found in the KMC simulations, they are

considerably similar and also range between 1/ 3 and 1/ 4. This comparison also supports the conclusion

that the proposed KMC algorithm is valid for describing the later-stage behavior and representing the

dynamic properties of spinodal decomposition.

3.4. Conclusion
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In Chapter 3, we present an efficient, effective kinetic Monte-Carlo (KMC) algorithm for spinodal

decomposition of an unstable binary mixture of CNPs. The algorithm considered a biased diffusion

process affected by the free energy of the non-uniform dynamic system. For the free energy calculation,

we employed the phase-field model (PFM) by calculating the interface energy. We also demonstrated

mathematical equivalence between the deterministic model described by the Cahn-Hilliard (CH) equation

and the probabilistic model framed by the diffusion master equation. On the basis of this demonstration

and an efficient KMC algorithm called the next reaction method (NRM), we developed an algorithm

namely the free energy biased NRM (FENRM). A computer simulation of the temporal evolution of

CNPs as an unstable A-B binary mixture with different initial conditions using the FENRM showed that

the proposed algorithm captured most of the spatio-temporal characteristics of spinodal decomposition,

such as bifurcation of the dilute/rich concentration morphology and the emergence and growth of an

isotropic characteristic length scale. These characteristics representing the temporal evolution of the

microstructures were also in quantitative agreement with the results of a conventional theoretical analysis

of spinodal decomposition. We also found that the growth of the characteristic length scale seems to have

two stages late in the later times of the decomposition. The stages were distinguished by different scaling

exponents, indicating the existence of an intermediate stage between the earlier and later stages of

decomposition. From the simulation results, we also identified the universality of the temporal evolution

of the microstructure, which indicates that the proposed KMC algorithm effectively describes spinodal

decomposition. A comparison with numerical experiments based on a finite difference method that also

considers the composition-dependent mobility adds additional support for the claim that the proposed

KMC algorithm can effectively describe the dynamic properties of spinodal decomposition. We expect

that the proposed algorithm can be applied to more complicated dynamic systems involving phase

separation of a metastable system governed by a nucleation/growth mechanism and temporal evolution of

the microstructures of a multi-phase, multi-component CNPs system. In particular, the proposed KMC

algorithm can be actively extended to simulate a phase-separated system of multiple-components that also

simultaneously and chemically react either in bulk or at the interface. The KMC algorithm's ability to

address this complicated problem is attributed to its intrinsic characteristics, which enable it to addess the

stochastic nature of the system. For example, deterministic approaches such as the finite difference

method or spectral method are not positively expected to effectively describe a dynamically and

stochastically unstable system undergoing phase separation in conjunction with chemical reactions, which

would result in bistable steady states. In the future, we plan to present computer simulations of these

complicated reaction-diffusion systems under phase separation using the KMC algorithm that we have

developed.
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Appendix for Chapter 3. Derivation of Equation (3.14)

To derive eqn.(3.14) , eq.(3.13) can be further simplified by a linear expansion

aA#(t)
at

= (I - 0,(t)) x

-2Cl2S (O (t)+#_,()) a2q(t) + (,(t) +# (t))

-6C; 2 (q_, (t) + ,(t)- 2, (t))

+(50 (#i (t) +#w' a(f_ (t)) I afo / kB T) 0 B8
(/ kBT) a(fo/kBT) (A(t) +wiB afT) (fo ) kBT)

/0o+ 1) " it a# Oi' o ' (t)/

-2C_#,r( a#(t) a3 t a
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W1Wa 20 (t)
6Cl2 2 x2#(t)

8x2)

+'50 (t2 - (t)2 a2 ( , kBT) 2 -i-1(t)2 a2 (fo/kBT)

1~2# (t) (I -#i(t)) -2Cl2 a4

194508 
aX

+ a2 (afo / kBT)

ax2 a 2 Oi

where we ignored second-order terms such as (#2, (#L
yax)

,and O .
ax a x3)

By setting D*= V/12

we find that the approximated master equation, eq.(3.14), is mathematically equivalent to the original CH

equation given in eq.(3.6).
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Chapter 4

A Self-Consistent Mean-Field Algorithm for Designing

Concentration Distribution of Colloidal Suspension of

Nanoparticles in Thin Films*

Abstract

Understanding and controlling colloidal dispersion of nanoparticles (CNPs) are essential for transforming

them into functional materials. When they are dispersed in thin films, it is also necessary to consider the

effects on external confinements by an external field or the chemical selectivity of the surface on the

phase separation of CNPs. For studies of molecular interaction, molecular dynamics (MD) or Monte

Carlo (MC) simulations can provide useful information about the equilibrium and non-equilibrium

properties of the phase separation, which is represented by the spatial distribution of the NP concentration

in the film. However, most of simulation approaches are limited, mainly because of the computational

demands of describing the dynamics of NPs in a liquid medium in both the spatial and temporal

dimensions. In this study, we provide a simple, efficient algorithm based on the self-consistent mean field

(SCMF) model for predicting the spatial distribution of the NP concentration in a thin film at equilibrium.

The algorithm employs discretized layers along the direction normal to the film and allows the calculation

of a thermodynamically optimized distribution of the concentrations of chemically different types of NPs

when the molecular interactions among the materials are known. To verify this algorithm, we examined

several different cases of CNPs confined in thin films with different externally confining environments

and compared the calculation results from the SCMF algorithm with those of 3D MC simulations.

Additionally, the algorithm's self-consistency is also supported by a mathematical proof. The comparison

revealed that the proposed algorithm provide predictions that showed considerable agreement with those

of the MC simulations while enhancing the computational efficiency greatly. We applied the algorithm to

*Parts of Chapter 4 will be submitted to a peer-reviewedjournal (Authored by S. Joon Kwon & T Alan Hatton).
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explore the effects of various combinations of parameters such as the film thickness, initial concentration

of NPs, and chemical selectivity of the confining walls on the spatial distribution of the NP concentations

inside a thin film. The results provided detailed information on the effects of these parameter

combinations on the phase separation of CNPs in thin films, which allows one to design functional thin

films composed of CNPs with desirable properties by controlling these parameter combinations. We also

describe how the present algorithm can be employed to design functional thin films such as a gradient

(refractive)-index (GRIN) lens. We expect that the present algorithm can be extended to describe the NP-

concentration-dependent material properties in more complicated and diverse environments to efficiently

design and control these properties.

4.1. Introduction

Colloidal dispersions of nanoparticles (NPs) have received increasing attention recently, with an emphasis

on both fundamental studies and practical applications [1], because of their broad applicability and

processability as functional materials in a wide range of disciplines. NP suspensions are tailored to ensure

phase and morphological stability in order to develop and discover colloidal suspension of NPs (CNPs)

having novel properties [2-17]. In particular, understanding the physical properties of CNPs is a critical

step in the further development and application of functional materials. This understanding requires

theoretical analysis combined with computational modeling such as molecular dynamics (MD), Brownian

dynamics (BD), and Monte Carlo (MC) simulations. A basic theoretical approach to CNPs is

thermodynamic analysis focusing on their phase stability, because it is important to control and regulate

the stability of the suspension. A thermodynamic understanding allows one to modify and predict the

physical properties of the colloidal suspension by controlling variables such as the temperature,

concentration, additional stabilizing components such as surfactants, and surface/interface treatments

[15,16].

A controllable and useful variable is the number of components in the system, such as the number

of chemically different NPs with stabilizers. This variable not only yields multiple-functionalites in the

composite materials themselves but also reveals potentially stable phases in which relatively particle-

concentrated CNPs do not lose colloidal stability. At a constant temperature, the chemical affinity among

the different NPs determines the phase stability of the colloidal suspension, and this affinity is affected by

molecular interactions among the NPs. Another variable controlling the phase stability of CNPs is the

external confinement, which gives rise to both geometrical and physical boundary conditions. In
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particular, confinement by chemical selectivity and/or electric/magnetic fields affects the phase stability

of CNPs. It can result in particle-depleted or -concentrated regions near the boundary or throughout the

system, depending on the spatial range of the confining effects. For example, CNPs dispersed in a thin

film can be selectively phase-separated near the confining substrate, yielding a high concentration

gradient in a thin film [18]. Additionally, a colloidal dispersion of charged NPs under a controlled electric

field enables the construction of a functional thin film with controllable optical properties [19]. To obtain

a thermodynamic understanding of how these variables act to control the phase stability and separation of

CNPs, a comprehensive study is required. At the molecular level, the study would need to focus on the

many-body properties of the interacting materials in the suspension. In contrast to conventional studies of

the phase separation of fluid mixtures in a continuum frame, the effect of the NPs' size and discreteness

on their physical properties should be taken into account in the analysis. For instance, particles with sizes

of a few tens of nanometers not only behave like hard-sphere particles but also exceed the feature size of

liquid molecules by two to four orders of magnitude.

That being said, computational studies based on MD, BD, or MC simulations have been used

extensively to understand the dynamics and equilibrium properties of CNPs [20-27]. Computer

simulations dealing with CNPs can provide detailed and more robust information about non-equilibrium

properties such as the phase separation dynamics [20-27]. These approaches excel when we have

information about the molecular interaction among materials rather than bulk-scale thermodynamic

information about the mixture. However, most computer simulations dealing with the dynamics of

thousands to millions of particles over a relatively long period (up to few milliseconds) require

considerable computational resources. For example, a simple 3D box simulating a 100-pm-thick film of

CNPs 10 nm in diameter with 10% volumetric fractions requires the tracking of at least 106 particles in

order to obtain appropriate statistical behaviors of the CNPs. In addition, when the molecular interactions

among the particles are relatively long-range such as the dipolar interaction among ionic or magnetic

particles, more intensive computational efforts are required. Therefore, it would be preferable to develop

and use a more efficient but still effective algorithm when one confine the goal of the study is limited to

the calculation of equilibrium properties such as the spatial distribution of the NP concentration in a thin

film after a long time. Further, it is preferable that the algorithm can be easily extended to systems with

more complicated environments, with variable sizes of NPs, and with larger scales.

In Chapter 4, we propose a simple, efficient algorithm based on the mean-field model to calculate

the equilibrium spatial distribution of CNPs in a thin film. By "thin film", we mean that its thickness

exceeds the size of the NPs by at least two orders of magnitude. The algorithm's computational scheme is

based on the probabilistic distribution of the differential particle concentration at every iteration step over
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the entire system along the primary axis (i.e., the direction normal to the film). The probability is

determined using the Boltzmann statistics by calculating the free energy of the system. A useful and

notable point of the proposed algorithm is that it considers the possibility that the system is saturated. The

possibility of saturation suggests that the NPs can build up multiple-layers of close-packed structure such

as face-centered cubic (FCC) or hexagonal close-packed (HCP) structures near the confining substrate.

The claim that the algorithm is consistent with a self-consistent thermodynamic model is supported by

both a mathematical proof and 3D MC simulations. By using the algorithm, we analyzed the phase

separation behavior of CNPs in which NPs interact with each other via the Lennard-Jones potential and

with the confining substrates via the van der Waals force. The calculation results revealed the effects of

the chemical affinity between NPs of two different types and the chemical selectivity against the

confining substrate on the spatial distribution of the NP concentration. Taking advantage of the

algorithm's computational efficiency, we present detailed simulation results on the effects of different

combinations of controllable parameters on the NP concentration profile a thin film. We expect that the

proposed algorithm can be widely applied to analysis and understanding of the thermodynamic properties

of various types of CNPs confined in thin films and their controllability.

4.2. Theoretical and Computational Framework

We assume a closed 3D system box with the primary axis (i.e., the z -direction) in the canonical

ensemble, in which are dispersed N chemically different but geometrically identical (i.e., same size and

shape) hard-sphere-like NPs. The primary axis is aligned in the direction of the external field(s) or normal

to the geometric confinement surfaces. We employ a discretization scheme to calculate the NP

concentration distribution. By using the mean-field approximation, we can estimate the free energy of an

individual discrete x - y plane over which the particles are randomly dispersed. For the n th discrete

layer, in the absence of external fields, this free energy is physically equivalent to the summation of the

potential energies for a single particle of the ith (i = 1, 2,---, N ) component when it is placed in the

layer, namely U ") . When particle placement is affected by external factors, the total free energy

includes the potential energy from the external field(s) or confinement, which is a function of the position

of the discrete layer, G(ex') (n,Lz) , where Lz denotes the system size along the primary axis. The

probability of a single particle being located in the n th discrete layer is determined thermodynamically

through the Boltzmann distribution.
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To calculate U , we need to consider the particle's interaction potential with other particles in

the entire system. For the sake of computational efficiency, however, it is relevant to consider interactions

only with other particles in layers that are within a cut-off distance rc of the layer of interest. In a

dimensionless framework, U" can be represented as

U 1  [ L= 2irrg") (r)p"(r)dr + 21rrgj (r) p(")1. (r)dr, (4.1)
j=1 L k ,

where g(f") (r) and pi (") denote the 2D (i.e., in the x - y plane) radial distribution function and number

density of the particles, respectively, of the j th component in the n th layer. The integer k in the second

summation term indicates the k th nearest discrete layer. F (r) describes the contributions from inter-

particle interactions between the ith and j th component particles to the total free energy. The quantity

lc is the distance to the farthest nearest discrete layers satisfying /c c . In eq.(4.1), the spatial

dimension is normalized with respect to the diameter of the NPs a. The continuum framework shown in

eq.(4. 1) requires the functional form of gj(f") (r) a priori; this requirement can be circumvented by using a

lattice-based model. For simplicity, the size of the lattice cell can be set to the size of the particles.

Discretization of the 2D layer in both the x - and y -directions transforms eq.(4.1) to the form

U" = M pJ)F (r) +Z Mp(nk)( j , r, rc , (q2+k rc , (4.2)

where M, and r, denote the number of and distance to the th-nearest-neighbor lattice cells,

respectively, and p and qk are the maximum values of the indices of neighboring lattice cells to which

the distance is not larger than rc . Specifically, the index q, is for the lattice cell in the k th-nearest

discrete layer. To calculate these indices, without loss of generality, we applied a 3D square lattice model

to eq.(4.2), from which we can calculate the distribution probability over the Lz discrete layers for each

of the different particles at constant temperature T,

Lz
p9")=exp(-(U"(n) + "'(e t) (n, Lz ))/kBT) / Z,, = I exp ((U(k) + G,("t) (k, Lz ))/kT), (4.3)

k=1
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where k is the Boltzmann constant. To solve the nonlinear equation sets of U ") (or p(n)) and p,(")

provided in eqs.(4.2) and (4.3), one can try to employ the self-consistent mean field (SCMF) algorithm.

However, it incurs a high computational cost to solve several thousand or several ten thousand unknown

variables numerically. For example, it is necessary to solve a set of 4x 103 nonlinear equations for an A-B

binary particle mixture dispersed over a thin film composed of 10 3-layers (which corresponds to 10-pm-

thick film for 10-nm-size NPs). Instead, we can use a more efficient solution method by introducing the

differential particle densities distributed over the entire layer in a thermodynamically self-consistent

manner. At every iteration step, the probability is determined on the basis of eq.(4.3). The updated

probability directs the spatial distribution of the particle concentrations along the primary direction at the

next iteration step, such that p ")(t+1)-p "(t) oc P ")(t). At each iteration, differential increments in

the particle concentrations, Ap, i = 1,2,..., N, are provided to the system simultaneously. Iteration stops

when the total number density of the particles reaches the objective, p, (, which is also equal to the

initial number densities, (0), i = 1, 2,.. -- , N . Note that the differential particle concentrations for each

component should be set to be Ap, - p(q) / Iter , where Iter denotes the total number of iterations, to

avoid computational artifacts such as asynchronous distribution of the concentrations of different types of

NPs at equilibrium.

The concentration of NPs in each discrete layer is limited. For close-packed hard spheres, the

maximum dimensionless number density is unity. When the updated number density of particles in the n

th discrete layer exceeds this limit, the n th layer is excluded in the next iteration step because it is

saturated. To justify the exclusion of the saturated discrete layers in the calculation algorithm, it is

necesary to prove that the particle concentrations in the saturated discrete layers do not change until the

unsaturated discrete layers reach equilibrium, i.e., when p "n = p "'e). In the appendix, this requirement is

proven mathematically in one of the simplest cases, dispersion of a single type of NP in a thin film in

which one of the confining walls in the primary direction is an attractive wall and the other is a free

surface. On the basis of the model and scheme shown above, the algorithm described below can be used

to compute the spatial distribution of the NP concentration in a system at equilibrium.
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Table 4.1. A summarized procedure for the self-consistent mean-field (SCMF) algorithm

A Self-Consistent Mean-Field (SCMF) Algorithm for Calculation of the Concentration Distribution

of Particles

Step 1. Discretize the system along the z-axis with Lz layers

Step 2. Set initial number densities of particles such that p") =0, n=1,2,- L, 1=1,2,. N

Step 3. Calculate the probability of distribution of particles in the unsaturated discrete layers, p(n)

Step 4. Distribute the differential concentration of particles, Ap,, over the unsaturated discrete layers

according to (")

Step 5. Update particles concentration in each of the discrete layers such that

p/") (t + 1) p/") (t) + Ap ").

Step 6. Update potentials for the unsaturated discrete layers U) (t + 1) using p(") (t + 1)

Step 7. Compare the total particles concentration in the layer, p ")(t+1), with the maximum limit of
i=1

the number concentration of particles in a single discrete layer.

N

If Vjp/")(t+1)> 1, exclude indices of the layers which are saturated in next iteration step

Step 8. For the saturated discrete layers satisfying a condition of V pifl) (t +1) 1,

fix p ("e') = (n) (t + 1).

Step 9. Update the number of unsaturated discrete layers in which particles are to be distributed such that

N (t + 1) = N (t)- (number of saturated discrete layers)

Step 10. Iterate by going back to the Step 3 until the total concentration of particles of

each type is reached.

Step 11. Obtain concentration distribution of particles in the system at equilibrium

End of Algorithm

In this study, we calculated the spatial distributions of chemically different NPs assuming a no-

flux boundary condition in the z -direction (i.e., the system was confined along the primary axis),

whereas periodic boundary conditions were applied in both the x - and y -directions. These latter
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boundary conditions apply to an infinite thin film confined at the top and bottom by substrates or free

surfaces.

4.3. Results and Discussion

4.3.1. Free Energy Model

One of the simplest and most physically relevant models is the Lennard-Jones potential between an

individual particle of the ith component in the n th layer and a particle of the j th component in the

(n ±k)th layer, (r,), where ry = r - r . J(r.) is given by

T _ 4-,j aii ). -(4.4)

In eq.(4.4), the effective potential parameters e.i and c- can be expressed using the Lifshitz

approximation of the non-retarded van der Waals interaction as follows [28]:

8.. = 2, (a (, , (4.5)

where 91 and 1, are the deviation factors from the ideal arithmetic and geometric averages for the

potential well depth e and particle size a-, respectively. These factors control the phase stability of a

mixture of chemically different particles at a given temperature. For the confining walls, we also assumed

that a particle of the ith component in the n th layer can interact via the van der Waals potential for a

dispersive interaction between a hard sphere and an infinite plane, as follows [28]:

G(t) (n, Lz) + A(t) (4.6)
(n -0.5)' (Lz -n+0.5)I

where A,(b) and A(1) are the interaction parameters for an individual particle of the ith component with

the bottom and top walls, respectively. For the calculations, we assumed that the two particles have the

same size but are not spontaneously mixed at room temperature. In particular, we used the following
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combination of the molecular interaction parameters for the A and B NPs: rc = 3 a-, 8A =2kBT,

,BB = 2.4kBT , = 0.75, and 5, =1.5 at T = 300K [29].

4.3.2. Comparison to 3D Monte-Carlo Calculations

In Figure 4.1, we compares the results of a 3D MC simulation and the results calculated using the SCMF

algorithm. We examined four different confinement cases of A- and B-type NPs of dilute and relatively

high concentrations such that (pAOo 3 , PBO0) =(0.02, 0.02) and (0.10, 0.10), confined in a thin film in the

z -direction with [AA(h), AA(t), AB(b), AB(t)] and; (1) kBT[-1, 0, 1, 0] for weak and (2) 1OkBT[-1, 0, 1, 0] for

strong attractive/repulsive confinements. These values of AA and AB are in the range of typical values

for inorganic substrates [29]. All the MC simulations were based on the Metropolis Monte Carlo (MMC)

algorithm for the random movements of A- and B-NPs in a simulation box with dimensions of

L., xL4 xL =50x50x50c, assuming that 2.5x103 + 2.5x10 3 (for the case of pod =0.02) or 1.25x10 4 +

1.25x10 4 (for the case of pd =0.10) particles move on a 3D square lattice. The MC simulations for each

case were ended after 9,500-13,400 iteration steps, when the total free energy of the system had settled to

a plateau with small fluctuations (not shown).

A comparison of the calculated number density distributions in the z -direction indicates that the

SCMF algorithm predicts the concentration distributions of the two different types of NPs for all four

cases considerably well. In particular, the distributions of NPs that are attracted by the confining walls

(i.e., A-NPs) show are nearly the same as those predicted by the MC simulations. The formation of build-

up layers composed of A-NPs near the bottom surface has been also expected and observed from theory

and experiments [30,31]. Cahn introduced the critical-wetting theory for the unstable binary mixture

under the surface-direction effects [30]. According to his first-order surface transition theory, unstable

phase will maintain its wetting property on the surface if the short-range surface interaction makes the

system minimize free energy. And the transition in the wetting is interfered with temperature under the

critical point when the composition is fixed. In our case, instead of the temperature, the composition is

observed to control the surface-wetting behavior when temperature is fixed. For example, the formation

of the build-up layer of A-NPs is observed to be affected by initial concentration (i.e., Figure 4.1(a) vs.

(b), (c) vs. (d)).
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Figure 4.1. Comparison between the calculation results using the self-consistent mean-field (SCMF)

algorithm and 3D Metropolis Monte Carlo (MC) simulations for the spatial distributions of A- (red solid

for the SCMF and dot lines for the 3D MC) and B-type colloidal NPs (green solid for the SCMF and dot

lines for the 3D MC) along the z -direction. Calculations are done with different conditions combined

with different strengths of the chemical selectivity (A (b) = 1 for the first and A(b) = 10 for the second

row, respectively.) and different initial densities (poo 3 = 0.02 for the first and poca = 0.10 for the second

column, respectively.). For the simulations, each of the NPs were assumed to interact via the Lennard-

Jones potential and move on the square lattice in a 3D box with the normalized dimensions of

LX = L= = 50a. For the confinements, the bottom surface was assumed to be attractive to A-NPs

while repulsive to B-NPs (i.e., AA () -- AB(b) ).
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Figure 4.2. Results from the SCMF simulation for the concentration distributions with different po and

film thickness (Lz). For the chemical selectivity of the bottom surface, A(') =1 for (a) and (b) and

'4b) =10 for (c) and (d).

For other type of particle, which feel a repulsive force from the confining walls (i.e., B-NPs), we also find

that the SCMF algorithm still captures the critical behavior of the concentration distribution, although

there are some discrepancies between the SCMF calculations and MC simulations. Those discrepancies

are due mainly to the nature of the repulsive force considered in the MC simulations and the nature of the

MC simulations. The particles feeling a repulsive force from the confining walls tend to move away from
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the walls and are more or less loosely packed over a wide range of space, whereas particles feeling an

attractive force tend to move toward the walls and are packed as closely as possible. An interesting

finding from the figure is the formation of built-up layers of NPs attracted by the bottom surface. For

instance, both the SCMF and 3D MC simulations show several built-up layers of A-NPs when the initial

concentration is relatively high (i.e., Figure 4.1(b) and (d)). We also applied the SCMF algorithm to

determine the effects of the initial concentration on the distributions of A- and B-NPs in thin films with

different film thickness and surface selectivity combinations. As Figure 4.2 shows, an increase in po

induces the formation of a built-up layer of A-NPs when pAO -3 0.05 . Further, the concentration

gradient of A-NPs becomes steeper with increasing chemical selectivity (i.e., Figure 4.2(a) verssus Figure

4.2(c)) as well as with increasing po . An increase in the film thickness flattens the slope of the

concentration distribution of B-NPs (i.e., Figure 4.2(a) versus Figure 4.2(b)).

It would be more interesting to investigate the effects of the compatibility of A- and B-NPs on the

NP concentrations distribution. Figure 4.3 compares two cases where A- and B-NPs are incompatible (see

Figure 4.3(a) and (b)) and they are relative compatible (see Figure 4.3(c) and (d)). In particular, the

compatibility among the A- and B-NPs is controlled mainly by 5, : 5, =1.15 for the relatively

compatible case, whereas 5, = 1.5 for the incompatible case. First, as expected, the incompatible

mixture shows greatly enhanced separation of the NPs near the bottom wall (see Figure 4.3.(a) and (b)),

and the enhancement is strong when the film is thicker (L =10 2 7 for figure 4.3(a) versus L. = 1030-

for figure 4.3(b)). This indicates that the gradient of concentration of NPs is more gradual for relatively

thin film. In addition, the separation is more distinctive across the entire thickness with increasing po. In

contrast, the compatible mixture shows relatively mild separation of the NPs; and the normalized

concentration of A-NPs near the bottom wall is smaller than that from the imcompatible case by one or

two orders of magnitude. Moreover, the effects of the film thickness is nearly negligible irrespective of

p . From the observations shown in Figure 4.3, the thermodynamic properties of the constituent NPs in

CNPs represented by (, can be strategically used for the practical applications in designing functional

thin film.
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Figure 4.3. Results from the SCMF simulation for the normalized concentration ( p / po ) distributions as

a function of normalized position (z / Lz) in the film with different po and film thicknesses (Lz) when

A- and B-NPs are either incompatible ((a) and (b)) or compatible ((c) and (d)) with the fixed selectivity

for the bottom surface at A (b) = 0.1. For (a) and (c), L, =1 20-, whereas L, = 103 a for (b) and (d).

The computational efficiency is enhanced dramatically (by three to four orders of magnitude) by using the

SCMF algorithm (i.e., takes 30-70 s per simulation run for ~ 105-6 iterations) rather than the

computationally-intensive MC simulations (i.e., 2.5x10 5-4.2x10 5 s) when using a commercially available

laptop (i.e., Intel® Core i7 TM-2820QM 2.30 GHz, 16 GB RAM). Moreover, it is possible to enhance the

computational efficiency by optimizing the number of iteration steps for the SCMF simulations. For

example, we employed an Iter of 5-10x 105 for the simulations, but this number can be adjusted

depending on the system size and initial NP concentrations. Although it is not shown here, we also found

that to obtain reliable and stable simulation results, it is best to set Iter to be proportional to Lzpo. The
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overall agreement between the spatial distributions of the NP concentrations using the two strategies,

along with the great increase in computational efficiency, indicates that the proposed SCMF algorithm

can be employed extensively in the design of functional materials composed of CNPs to examine a

multitude of experimentally controllable parameters in order to modify the properties of the materials. In

particular, when the dispersion media are curable materials, the mechanical or optoelectronic properties of

a thin film can be adjusted because those properties depend directly upon the spatial distribution of NPs

across the film. We provide examples later.

4.3.3. Applications to Controllable Parameters Exploration

One possible use of the proposed efficient algorithm, therefore, is the examination of a variety of

conditions that can affect the NP distribution in thin films. For simplicity and to consider the most likely

future applications, we can narrow down the experimentally controllable parameters into the following:

po, Lz, and intensity of the confining walls' chemical selectivity against specific NPs (A (b) and A(t) ).

Instead of the chemical selectivity, the external field strength or another type of measurable external

confinement can be used. To quantify the effects of these parameters on the distribution of CNPs in a thin

film at equilibrium, we can introduce several useful measurable quantities such as the number density of

NPs near the substrate and the free surface (i.e., pA (n=1) ) PA (n =Lz) , PB(n=Lz) , and

PB (n =z )). These quantities are directly measurable using methods such as dynamic secondary ion

mass spectroscopy, Auger electron spectroscopy, and ellipsometry. Figure 4.4 shows the dependences of

these quantities on pAO, pBO, and Lz simulated using the SCMF algorithm when the film is confined by

an attractive/repulsive bottom wall with a chemical selectivity of AA (b) = AB(b) = -1. As shown in

Figure 4.4(a), PA (n =1) is proportional to both pAO and pBO, and reaches the maximum value of unity

when pAo00 0.04 and PBOU 3 >0.04 when the film is relatively thin (i.e., Lz =50c). Interestingly, for a

relatively thick film (i.e., Lz = 500a in Figure 4.4(e)), it is nearly constant (PAU3 (n =1) = 1) except when

the initial concentration of B-NPs is very dilute (i.e., pBoO 3 = 0.01 ). In contrast to the results for

pA (n =1), those for PA (n = Lz) show different dependences on pAO and pBo; it is proportional to

PAO but inversely proportional to pBO when Lz = 50a (Figure 4.4(b)). When the film is thick,

PA (n = Lz ) approaches zero when pBOcr3 0.05 (Figure 4.4(f)).
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Figure 4.4. Simulation results of dependences of densities of A- and B-type colloidal NPs at the bottom

and the top surfaces of the thin film on the initial densities of the NPs (pAO and pBo) with different

values of film thickness (Lz = 50a and Lz = 500c for the 1 st and 2nd columns, respectively). For the

confinement, the selectivity of the bottom surface for A- and B-NPs was set to AA (b) = 1 and AB(b) =

respectively.

This is an interesting finding because we can control the film thickness to obtain a film with one surface

lacking A-NPs and the other surface composed nearly entirely of A-NPs. The particles that feel a

repulsive force from the bottom surface tend to be concentrated near the free surface. In particular,

PB (n = Lz ) increases with increasing pAO and pBO when pBO& 0.07, as expected (see Figures 4.4(c)

and (g)). If the film thickness is relatively thin (see Figure 4.4(c)), PB (n L) reaches the maximized

values when pBoo 3  0.06 at certain value of pAO . For instance, PB (n z ) is maximized at

PAO - 0.05 when pOcr =0.04. This can be understood in terms of the behavior of PA (n =1)

observed in Figure 4.4(a). For pBOG - =0.04, for example, A-NPs start to form a built-up layer when

PAOc 0.05. Before these built-up layers of A-NPs form, an increase in pAO would give rise to a

steeper gradient of pB and thus a higher value of PB (n L) . After the built-up layers of A-NPs form,

the number of A-NPs concentrated near the bottom surface increases with increasing pAO. This will cause

a flatter distribution of B-NPS, whereby PB (n = LZ ) decreases. In contrast to the case of a relatively

thin film, the thick film case shows a simpler dependence of PB (n = L7 ) on PAO and pBO : it is

proportional to both PAO and PBO except for three or four cases around pAO - 0.09 and pBO -0.035

(see Figure 4.4(g)). As shown in Figures 4.4(d) and (h), pB (n = 1) shows nearly identical dependences

on pAO and pBo; it increases with pBO but decreases with pAO. The findings from Figure 4.4 help us to

design thin films with the desired NP concentrations at each surface by selecting the inital concentrations

and film thickness.
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Figure 4.5 summarizes the dependence of p (n =1) PA (n = Lz) , PB (n = Lz) , and

pB (n = 1) on different values of A(b) and Lz when the initial concentrations of A- and B-NPs are

identical (pAO = pBO = po). Figure 4.5(a) shows the effect of the chemical selectivity on the formation of

the built-up layer of A-NPs when Lz = 200a-. Except when po0  = 0.01, a built-up layer of A-NPs (i.e.,

PA 0 3 (n = 1) =1) always exists regardless of the chemical selectivity. For po0 -3 =0.01, additionally,

increasing the chemical selectivity contributes to an increase in PA (n =1) . When the chemical

selectivity is fixed at A(b) =1 , the built-up layer of A-NPs forms more easily as the film thickness

increases (see Figure 4.5(e)). For PA (n = Lz), it is notable that the increase in the rate of PA (n = L, )

as a function of po grows with decreasing chemical selectivity when the film thickness is fixed (see

Figure 4.5(b)), whereas the rate is nearly identical for different values of Lz when Ab) is fixed (see

Figure 4.5(f)). Interestingly, the growth rate and the value of PB (n L) as a function of p0 reach

maximum values at an intermediate chemical selectivity (i.e., ACb) =1 in Figure 4.5(c)). This finding may

imply the existence of a critical chemical selectivity beyond which the chemical selectivity would

interfere with the concentration of B-NPs at the free surface. This can be explained by the fact that a too-

weak selectivity of the confining substrates is less affected by the effects of particle crowding at higher

concentrations. This will result in a proportional relationship between the chemical selectivity and

PB (n = Li). However, beyond the critical chemical selectivity, an increasing number of A-NPs will

join to form the built-up layer near the attractive bottom surface; therefore, the distribution profile of B-

NPs will be flatter, decreasing the value of PB (n = Lz ) . With increasing film thickness, PB (n LZ)

decreases (see Figure 4.5(g)) indicating that B-NPs are driven less intensively to the free surface as the

fiml thickness increases. Similar to the finding from the growth rate of PA (n = Lz ) as a function of po

for different values of the chemical selectivity, pB (n = 1) is less varied for a stronger chemical

selectivity and nearly zero when A(b) >5 (see Figure 4.5(d)). When we fix the chemical selectivity and

vary the film thickness, pB (n = 1) exhibits a nearly identical growth rate with respect to pO (see Figure

4.5(h)). Interestingly, pB (n = 1) is reduced with increasing film thickness, whereas PA (n = Lz ) shows

the opposite behavior with respect to the film thickness (see Figure 4.5(f)).
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Figure 4.5. Simulation results of dependences of densities of A- and B-type colloidal NPs at the bottom

and the top surfaces of the thin film as a function of the initial density (p = pAO =PBO). On the left

column, effects of different Ab) are shown with fixed film thickness of Lz = 200a-. On the right column,

effect of different LZ are shown with fixed chemical selectivity such that A (b) - I

4.3.4. Applications to Designing Optically Functional Thin Films

From the exploration of the different parameters that can control spatial distribution of CNPs illustrated in

Figures 4.4 and 4.5, we can obtain detailed information for designing a thin film composed of CNPs with

a desired concentration profile within a reasonable computation time. In particular, considering that the

proposede algorithm is based on information on the molecular interaction among NPs when they are

dispersed in a liquid medium, a promising application is the control of the concentration profiles of a

single type of NPs that have two or more different chemical groups on the surface. For example, it has

been experimentally reported that the surfaces of many metallic or metal-oxide NPs can be modified by

either hydrophobic, or hydrophilic, or amphiphilic organic compounds [2-17]. Detailed information on

the interactions among those organic compounds on the surfaces of NPs can be obtained by experiments

or computer simulations; therefore, it is possible to construct a thin film inside of which the concentration

profile of a single type of NPs can be varied by surface treatments. In addition, the effects of the external

field intensity on the variation in the concentration profile can be examined when one of the NPs is a

dipolar interacting type such as ionic or magnetic NPs. Further, we can easily extend the proposed

algorithm to efficient computational design of more complicated and advanced functional thin films with

NPs of three or more different types. For instance, a representative result for the concentration

distributions of A, B, and C-NPs in a ternary particle mixture dispersed in a liquid medium is shown in

Figure 4.6(a), assuming that those particles are spontaneously demixed and the film confinement is

symmetric (i.e., attractive for A-, repulsive for B-, and inert for C-NPs, respectively). As a practical

example of this NP mixture, we can consider a colloidal dispersion of Au, TiO2 , and Ag NPs confined

between two alkanethiol-coated surfaces.
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Figure 4.6. (a) Result obtained from the SCMF simulation for concentration distribution of A, B, and C-

NPs with pAo 3 = C pBOO- = poU3 =0.02 in thin film of thickness Lz = 500a. For the selectivity, the

ternary NPs mixture is assumed to be demixed and A feels an attractive ( A (b)=A(')=-1), B feels a

repulsive force (A(') - - =1) from the bottom surface, while C is inert. (b) Predicted profile of the

refractive index distribution inside the thin film (blue solid line) based on the concentration calculation in

(a) assuming that A is Au, B is TiO2, and C is Ag NPs dispersed in aqueous solution. For the comparison,

the distribution profile of the refractive index of the ideal radial type gradient refractive index (GRIN)

lens calculated by least square fit (fitting range: 0.1Lz z 0.9Lz) is provided (red dot line).

In this case, the formation of a concentrated layer of Au NPs is preferable to the formation of other NP

layers near the confining surfaces. Ag NPs are attracted to the surfaces less than Au but more than TiO 2 ,

which will produce a repulsion effect on the TiO 2 NPs due to crowing. For simplicity, we assumed that

the A, B, and C NPs have identical initial sizes and densities (i.e., PAG 3 =pB 3= pc = 0.02) when

dispersed in a thin film of L7 = 500-, which corresponds to several tens of micrometers when the NPs

are several tens of nanometers in diameter. As the figure shows, the A-NPs form built-up layers near the

confining surfaces; however, the B- and C-NPs show continuous concentration distribution profiles. More

interestingly, we can apply the calculation of the concentration distributions of a ternary NP mixture to

the calculation and design of the optical properties of thin films. The densities can be converted into the

volume fraction, # , and, the effective refractive index neff can be calculated as:

140



2 2
n2 = ) dn,2 (4.7)

k=A,B,C,S

where nk denotes the refractive index of the k -NPs and the subscript S represents the dispersion

medium. In practical applications, nA =0.17, nB =2.57, n, =0.18, and ns =1.33, for incident light

with a wavelength of 540 nm when the dispersion medium is an aqueous solution. By using eq.(4.7), we

can convert the concentration distribution information in Figure 4.6(a) into the refractive index

distribution information, as shown in Figure 4.6(b). Interestingly, the concentration profile reaches the

maximum value at the center of the film, suggesting that thin films with a concentration gradient might be

employed as gradient (refractive) index (GRIN) lenses [30,31]. To construct a radial type GRIN (R-GRIN)

lens, the desired refractive index distribution profile is described as [31]

n".. (z)=qzk- =2+n, (4.8)

where nM is the maximumrefractive index, and q .is the gradient coefficient. As shown in Figure 4.6(b),

the distribution profile of neff over 80% of the entire thin film (i.e., 50 5 z / o-! 450 out of

0 ! z :- 500 ) can be effectively fitted with the desired profile function in eq.(4.8) for nm =1.38

and 77=1.38 x 10-6 with the least-square fitting method. For an ideal R-GRIN lens, the lens performance

is measured using the focal length of the lens, fL , which is predicted to be [31]

fL (nm1/2 sin (LPi,1 2 
))L ' , (4.9)

where L, denotes the distance of the incident light through the lens. In the present case of a ternary NP

mixture, fL ~1.4Lz, assuming L, 102 Lz . This focal length ranges from a few to a few tens of

micrometers depending on the size of the NP, and indicates that the incident light can be focused with

micrometer-scale resolution. This also indicates the potential application of a thin film with a

concentration gradient as an endoscope device, in which a R-GRIN lens without surface curvature can be

easily implemented. Because of the mathematical validity of the proposed SCMF algorithm, confirmation

by comparisons with 3D MC simulations, as well as its strongly enhanced computational efficiency and

potential applications in functional thin films, it can be employed for wider applications in functional

material design and combined with other types of numerical calculation or simulations to extract critical

material properties.
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4.4. Conclusions

In Chapter 4, we presented an efficient algorithm based on the self-consistent mean field (SCMF) model

for calculating the spatial distribution of the NP concentration. The algorithm includes an iterative update

of the NP concentrations in discrete layers along the thickness direction. It also considers the possibility

of saturation of the discrete layers with NPs; the algorithm excludes the saturated discrete layers during

the iterative updates. This exclusion is justified by a mathematical proof. For verification, we applied the

algorithm to calculate the spatial distribution of concentrations of spontaneously non-mixing (phase-

separating) A- and B-NPs dispersed in a thin liquid film confined in the thickness direction. The

simulations employed the Lennard-Jones potential among the NPs and the van der Waals force between

the NPs and the confining substrates. The calculated results were compared with those of 3D lattice-based

Metropolis Monte Carlo (MMC) simulations with different types of thin film confinement. The

comparison revealed that the results of the proposed algorithm agreed with those of the MMC simulations,

and the computational efficiency was greatly enhanced. The effects of controllable parameters, such as

the film thickness, initial NP concentration, and intensity of the chemical selectivity of the confining

substrates, on the variation in the NP concentration profile in the thin film were intensively analyzed

using the SCMF algorithm. The simulations demonstrated that NPs that feel an attractive force from the

bottom substrate are concentrated near the substrate, whereas those that feel a repulsive force form a

concentration gradient along the thickness direction. From the simulation results, we could conclude that

the proposed SCMF algorithm can be extensively applied to the design of functional thin films composed

of CNPs with desirable physical properties by computationally obtaining the relevant combination of

controllable parameters. To provide a sense of the practical application of the algorithm, we expanded the

study to the analysis of the concentration distributions of A, B, and C NPs in a ternary mixture dispersed

in a liquid medium and illustrated their possible applicability as optical devices such as a GRIN lens with

micrometer-scale focal length resolution for use in medical examinations. We expect that the proposed

algorithm could easily be extended to more complicated suspensions containing multiple types of NPs of

various sizes and to systems with different geometries as well as thin films.
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Appendix for Chapter 4. Mathematical proof for the exclusion of

particles-saturated discrete layers in the iterative update of particles

concentration

For simplicity, let us assume that the system is a dispersion of a single type of particles in a thin film that

is confined by walls along the primary direction (i.e., the z -direction) of which the bottom one is

attractive to the particles, whereas top one is a free surface. In this simple case, we can safely consider

that the first discrete layer right next to the bottom substrate is the first one which is saturated with the

particles. In other words, at time t, the first layer is a monolayer of close-packed particles satisfying

p(l) (t) = 1. Then the total free energy of the system, H, (t), can be written as:

H PW(t)= p") (t)( +G(ext) (n) + ()+G(ext) (1). (A4. 1)

Let us define two different scenarios: (1) scenario A where there is no flux of particles out of the saturated

discrete layer (the first layer) during differential time At, and (2) scenario B where the saturated discrete

layer loses differential amount of particle concentrations, Apc, during At.

First, the total free energy of the system at time t + At for scenario A, H,(A) (t + At), is

A U(f) (t +At)U(

H T(A) (t +At)= p(n) (t) + A (t) +G(ext) (n)+ + G(ext) ()

(n (t) - ApAtP (") (t), pf" (n)= ex (Uf") (t) + G("') (n)) / k B Z P C~(-U(k) (t) /kB )
k=2

U t= p(n+k) (t) f ("*k), f"(n) - 'f 2Tg (,) rdr. ( A4.2)

k=-lc

Then, by using notations in eq.(A4.2), U" (t + At) is written as:

I - A

U(n) (t + At) =U(n)(t) + Ap"(nk) tf(n+k) (A4.3)
k=-l
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We can simplify HT(') (t +At) by employing a linearized distribution of p(n+k) (t) around p(f) (t)

p"(n*k) () pf") (t) + ke (t), where c(t) denotes the discrete form of the slope of the particle concentration

along the primary axis, assuming that the cut-off distance is sufficiently short to make the value of lC

relatively small (i.e., Ic =3 when the molecular interaction among particles is described by the Lennard-

Jones potential). Therefore, U(nk) (t) is simplified as

IC
U(n+k) (~U(") (t) + ke(t), (D, =n1 f(n+p).

P=-1c

Without loss of generality we can employ an exponential decay model for the external potential from the

attractive bottom wall G(-') (n) - aexp(-bn) . Then, by using the simplified form of U(nk) ( ,

Ap(n+k) (t) in eq.(A4.3) is expressed as:

Ap"(nk) A - Ap "A (t)exp{
U(n+k) (t) -U"(t))

kBT
exp ((t) (n+k)- G(et)

kB

_ (n) ( xA k (t

kB

exp abkexp(-bn)
kBT

(n)^ - ke(t)I- + abkexp(-bn)
kBT kB T (A4.4)

In eq.(A4.4), the second-order difference term is ignored. Using eq.(A4.4), eq.(A4.3) can be further

simplified as follows

Uf")(t + At) = U) (t)+ A (t) k (t) abkexp(-bn) f(+k) ( A
kB BT))

where we used symmetric properties of the system along the primary axis f(n+k) = f(n-k)

eqs.(A4.3)-(A4.5), eq.(A4.2) can be further simplified as:

( ))(n) -+

(W (t) +Ap" (t) ("n+ G(ext) + U (t)+ G(ext) (1)

SH T() (t)j ZAp(n) W P") (t) D -+ U(")(t)+
n=2 ~ ~ J~2±

in which the term involving second-order difference is ignored.
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(A 4.5)

Using

G(ex') (n) , (A4.6)
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Similarly, we can find the total free energy of the system in scenario B at time t + At ,

HT(B) (t + At). From eq.(A4.2),

H ((B)

H T(B) (t +n At (()()+A

= (p(n) (t) + A p (nB)

n=1

U(")(t + At) + G(ext)

U(") (t) + Ap()B + G(ext) (n) 2 (A4.7)

-B

With an expression for A (t)

(n Bp (n) C njn (A

p n) (t) = exp () (+G(t) ())/ ZB (t),
kBT

LZ (
ZB (t)=Z exp~

k=1

U(k)T

kBT

eq.(A4.7) is further simplified into

HT (B) (t+A)H(A) ( I+At ( APp ( n) ()-ApAtp(l))) (t ' (t) + p(n) (t) s( + G(ext) (n)

> HT J(t + At) +(Ap,, - ApAt)ZP<" (t) )t) +p(l) (t) +G()n) , (A4.8)

where we used the fact that P") (t);P 1 (t); the lower the free energy the sooner the discrete layer is

saturated with particles. As eq.(A4.8) indicates, increasing Apc gives rise to an increase in the difference

between HT(B) (t +At) and HT (A) (t +At); therefore, the system in scenario B tries to minimize Apc so as

to minimize the total free energy. When ApC approaches zero, HT(B) (t + At) converges to HT(A) (t + At)

because PN')(t) also approaches zero. Therefore, scenario A is always energetically preferred to scenario

B. This indicates that once a discrete layer is saturated with particles, there is no fluctuation in the particle

concentrations in that saturated layer.

This scheme can easily be extended to other types of system including multi-component particles

and confinements with the different functional forms of G(ext) (n). For example, we can safely exclude

saturated discrete layers from the concentration update for a colloidal suspension of A and B NPs whether

they are chemically favored to each other or not. First, if they are compatible, a similar logic can show
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that the particles flux from the saturated layers (i.e., exchange of differential amount of A-particle

concentration with B-particle concentraiton or vice versa) is energetically less probable. Second, if A- and

B-particles are incompatible, it takes an additional energetic cost to make the flux of particles by

exchanging differential amounts of A- or B-particles in the saturated layers. This results in lower

probability of the particles flux from the saturated layers relative to the event without the particles flux.

Similarly, the exclusion principle of the saturated layers during the concentration update using the SCMF

algorithm in Chapther 4 can be applied to three or more different types of component mixture of CNPs in

a liquid dispersion medium. Therefore, we can verify that the saturated discrete layers can be excluded

from the calculation process to update the spatial distribution of particle concentrations along the primary

axis.
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Chapter 5

Fabrication of Functional Thin Films Comprised by

Gradually Concentrated Colloidal Nanoparticles Driven by

Magnetic Field*

Abstract

The preparation of CNPs in the form of thin films is a desirable method for applications that use CNPs as

functional materials. Further, it is more interesting when the film contains a heterogeneous mixture of two

or more different constituent CNPs to tailor concentration-dependent physical properties. To demonstrate

experimentally the computational and theoretical research described in the previous chapters, we provide

proof-of-concept experimental results on the control of the concentration distribution of a binary CNP

mixture in thin films. For the CNPs, we employed Fe 30 4 superparamagnetic NPs and non-magnetic SiO 2

NPs dispersed in UV-curable thin films such as acrylate monomers. To quantitatively measure the

concentration distribution along the thickness direction of a thin film, we used spectroscopic methods

such as microspectrophotometry, and compared the experimentally measured concentration profile to the

results of simulations based on the self-consistent mean field (SCMF) model. The profile is also verified

by spectroscopic analysis along different measurement directions. We observed good agreements between

the simulation results and the experimental measurements in terms of the verified data from a comparison

of two different spectroscopic measurement directions. We suggest that this research would be applicable

to the preparation of optically functional materials such as gradient (refractive) index (GRIN) lenses for

biomedical applications to replace the aging crystal lens in the eyes. The experimental ideas and

approaches in this chapter are easily extended to more complicated cases involving a ternary mixture of

CNPs in either a liquid or polymeric thin film, as demonstrated by calculations of the desired properties

based on the SCMF simulations.

*Parts of Chapter 5 will be submitted to a peer-reviewed journal (Authored by S. Joon Kwon & T. Alan Hatton).
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5.1. Introduction

In recent decades, research on nanoparticles (NPs), including both fundamental studies and practical

applications [1-3], has been extended to various fields. In particular, metallic or inorganic NPs have

attracted interests owing to their optical properties, such as relatively low refractive indices for transition

metal NPs (i.e., Au, Ag, Pt, etc.) and relatively high refractive indices for metal-oxide NPs (i.e., ITO,

silica, iron oxide, etc.) [4-13]. Regarding industrial applications, then, it is natural how to control and

process the NP-related optical properties. One answer to this question has two parts: 1) dispersion of the

NPs in desirable media and 2) processing the NP-dispersions in the form of thin films. These approaches

consider the processability associated with reliable controllability of the NP-dispersion-related physical

properties. In preparing well-dispersed NPs, one can use the NP concentration as one of the main control

parameters. Further, after preparing an NP-dispersed thin film, one can expect to apply the material in a

variety of useful cases such as micro-scale devices or parts for assembled structures. As we have explored

in the previous chapters, colloidal NPs (CNPs) are a promising form of dispersion meeting the

processability and controllability requirements for using NPs. In addition, they would show more

potential when we can control the assembly structure and dynamics of CNPs in thin films for further

applications.

Superparamagnetic magnetite iron oxide Fe 30 4 NPs are a type of inorganic CNPs [4-7,9,12-15].

Experimental reports have shown that control measures involving field-assisted methods [4,5,7,12,14-15]

and a micro-fluidic-assisted approach [9] are plausible and facile for manipulating the assembly structure

and dynamics of magnetic CNPs. Owing to their magnetic susceptibility, a variety of external magnetic

fields have been more aggressively considered as a reliable tool for controlling the assembly structure and

dynamics of magnetic CNPs [4,5,7,12,14,15]. However, most of the experimental realizations of the

controlled assembly and phase separation of Fe 30 4 NPs focused on a homogeneous mixture of CNPs: -a

binary mixture of NPs and a solvent. By introducing additional CNPs that are not miscible with Fe 304

CNPs, one can expect wider applications exploiting the controlled physical properties produced by

controlled assembly of heterogeneous CNPs. Therefore, it is highly desirable to discover whether the

external-stimuli-assisted assembly of a binary mixture of CNPs in a thin film is feasible by experimental

realization and quantitative analysis of of the assembly structure. For the realization, in particular, it

would be necessary to measure the concentrations distribution of the binary mixture of CNPs in the thin

film. This is because the concentration determines most of the physical properties of fluidic phase

mixtures.
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Kim et al. [8] recently reported the experimental realization of a controlled distribution of

metallic CNPs in a polymeric thin film by introducing the concept of tailoring the thin film into different

layers in which the spatial distribution of the CNPs is manipulated to be heterogeneous. They then

extended the work to controlling the refractive index of the thin film using a controlled spatial distribution

of the NP concentration. In a similar but more resourceful way, we propose experimental methods of

realizing controlled spatial distributions of the concentrations of a binary mixture of CNPs in thin films in

Chapter 5. Additionally, we propose that desirable physical properties based on the spatial distribution of

the NP concentrations, such as the refractive index of the thin film, can be predicted using the self-

consistent mean field (SCMF) algorithm suggested in Chapter 4. By combining experimental and

computational work, we present a possible and plausible application of the prepared thin films as optically

functional materials. We expect that this research in Chapter 5 would enable the use of a variety of

combinations of CNPs in thin films for other functional materials, such as materials with a mechanical

strength gradient or those composed of a set of layers with different conductivities.

5.2. Experimental Details

5.2.1. Preparation of NPs

To prepare two different NPs that will be separated asymmetrically by an external field, we employed

Fe 30 4 and SiO2 NPs. To synthesize Fe 30 4 CNPs, we first mixed 56 mmol FeCl2 4H2O (Sigma Aldrich) in

25 ml of deionized water (1.8 mS/m, Milipore) [6]. The aqueous solution was then heated to 80'C under a

N2 gas (99.99%, Air Gas) purge for 1-2 h. After heating, the solution was cooled to room temperature,

and the cooled solution was sonicated for 10 min to disperse the as-synthesized NPs. After sonication, 30

ml of 0.33 M of tetramethylamonium hydroxide (TMAOH, Sigma Aldrich) was added and the solution

was re-sonicated for 1 min. Second, to synthesize SiO 2 NPs, we employed the well-known St6ber method

[16,17]. Specifically, 2 ml of 28 wt% NH 40H (Sigma Aldrich) combined with 50 ml of ethanol (99.9%,

VWR) was dispersed in 6.76 g of deionized water (1.8 mS/m, Milipore) at room temperature. Using a

magnetic stirrer, the mixture was mixed for 2 hs at room temperature; 0.28 M of tetraethyl orthosilicate

(TEOS, Sigma Aldrich) was then added to the mixture, followed by magnetic stirring for 2 hs. Figures 5.1

and 5.2 show bright-field transmission electron microscopy (TEM, JEOL 200CX accelerated at 200 kV)

images of the as-prepared Fe 304 and SiO2 NPs.
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Figure 5.1. A TEM image of the synthesized Fe 30 4 NPs
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Figure 5.2. A TEM image of the synthesized SiO 2 NPs
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Their average sizes are 19.8 ± 1.3 nm and 248.9 ± 18.1 nm for the Fe 30 4 and SiO2 NPs, respectively. The

size was measured using an image analysis software (imaging software ImageJ*).

5.2.2. Preparation of a UV-Curable Thin Film

To prepare a thin film that can be cured by UV irradiation, we employed a monomer solution of

(Poly(ethylene glycol) diacrylate (PEGDA), Sigma Aldrich) and a curing agent (2-Hydroxy-2-

methylpropiophenone (2,2-HMPP), Sigma Aldrich) [11,14,15,18]. Figure 5.3. shows the molecular

structures of PEGDA and 2,2-HMPP.

0

H2C'0 CH2H2C' 0
0-

Poly(ethylene glycol) diacrylate
(PEGDA)

0

CH3

HO OH3

2-Hydroxy-2-methylpropiophenone
(2,2-HMPP)

Figure 5.3. Molecular structures of the dispersion media (Poly(ethylene glycol) diacrylate (PEGDA)) and

curing agent (2-Hydroxy-2-methylpropiophenone (2,2-HMPP))

The polymerization mechanism of PEGDA is essentially radical polymerization in which the curing agent

works as a photoinitiator to induce initiation, which is followed by propagation and termination. To

induce polymerization, we irradiated the solution with UV light at a wavelength of A = 280 - 310 nm for

0.5-5 hs. Figure 5.4 shows the curing dynamics of PEGDA-2,2-HMPP aqueous solutions at room
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temperature with different initial PEGDA concentrations and curing agent concentrations. As expected

from radical polymerization kinetics [14,15,18,19], increases in the acrylic monomer concentration and

curing agent ratio give rise to fast curing dynamics of the film (or a decrease in the curing time). Although

it is not reported here, we also found that above a certain threshold concentration of the acrylic oligomer

(i.e., 16 wt% of PEGDA monomer), the films showed wrinkles or other morphological deformations such

as rupturing. Therefore, we employed an aqueous solution of 12 wt% PEGDA monomer combined with 2

wt% of 2,2-HMPP to obtain fast curing dynamics of the dispersion medium. We also observed volumetric

shrinkage in the cured PEGDA thin films after UV-curing, with a 25-30 vol% reduction. For example,

there was 27.8 volumetric% reduction when we used the 12 wt% PEGDA monomer combined with 2 wt%

of 2,2-HMPP aqueous solution at A = 280 - 310 nm for I hs. Notably, the volumetric reduction after UV-

irradiation was isotropic (i.e., 10.19 vol%, 10.35 vol%, and 10.28 vol% reductions in the x -, y -, and, z -

direction respectively). The thickness of the cured thin film was measured by an optical microscope.

V O.Swt% of 2,2-HMPP

0.8 U lwt% of 2,2-HMPP

0 2wt%of2,2-HMPP

0.6 0 5
E

20. 4  o

H2C 
CH

0.2- 
1

Acrylate oligomer*
(i.e. Polyethylene glycol

diacrylate)

AO AO AO AO AO
Swt% lOwt% 12wt% 15wt% 18wt%

Figure 5.4. Curing dynamics of dispersion media (PEGDA) with different concentrations of the curing

agent (2,2-HMPP)

5.2.3. Preparation of Thin Films CNPs Forms Concentration Gradient Inside
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To form a concentration gradient of CNPs, we applied an external magnetic field of 0.018 T. A

commercially available lab-scale bar-type magnet (VWR) was employed to generate a gradient magnetic

field along the film thickness direction (i.e., the z -direction). To control the strength of the magnetic

field, we used a transparent slide cover glass 130 pm in thickness, under which the bar magnet is placed.

A specific number of glasses was vertically accumulated to increase the thickness of the substrate, Ls ,

and we examined the effect of the external magnetic field strength on the formation of the NP

concentration gradient in the film by controlling the screening effects of the substrate (i.e., done by

varying the Ls , Ls =130 pm and Ls =1.40 mm ). Before the UV-curing, we mixed Fe 30 4 CNPs and SiO2

CNPs prepared as a dispersion in an aqueous solution with a desirable initial concentration typically

smaller than 5 wt%. The mixture of the CNPs and the dispersion medium in the aqueous solution was

well dispersed in an ultrasonicator for 20 min. The mixed aqueous solution was then poured into a

polydimethylsiloxane (PDMS) well. The well was cylindrical with a diameter of 5 mm and a depth of 3-5

mm. To prepare the PDMS well, we mixed PDMS (Sylgard 184, Dow Chemical) monomers with a curing

agent, and the PDMS was cured on a Si substrate with a cylindrical protrusion for 24 h [20,21]. Before

providing UV irradiation, we allowed the CNPs and UV-curable dispersion medium to undergo phase

separation induced by an external magnetic field in the PDMS well by placing the bar magnet under the

substrate for 0.5-1 h. Next, we supplied UV irradiation and obtained a cured thin film 1-2 mm thick.

Figure 5.5 shows a schematic of the experimental setup.

Fe 304 + SiO 2 CNPs in
UV-curable media PDMS

3-5 mm

5 mm
substrate

(cover 9mof 130 pm1.4mm)

Cylindrical bar magnet (0.018 T)
(6 cm diameter with
thickness of 1.2 cm)

Step 1. Apply H-field Step 2. Curing for 0.5-5 hrs with
for 0.5-1 hrs before UV curing UV of X = 280-310 nm

1.08 mm - 2.24 mm
(25-30% isotropic shrinking after curing)

Cured thin film of CNPs withV*p
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Figure 5.5. A schematic diagram for the experimental setting for the fabrication of a thin film inside

which the concentration distribution of Fe 304 and SiO 2 CNPs is controlled

5.2.4. Analysis of NP Concentration Profile

To quantitatively measure the NP concentration profiles inside the cured thin films, several techniques

can be applied, such as dynamic secondary ion mass spectroscopy (D-SIMS), Auger electron

spectroscopy (AES), and ellipsometry [8]. The most significant problem with using these methods is that

they are typically limited to measuring the concentration over a spatial domain of at most 100 nm in a

batch analysis. The measurement domain scale can be extended to 10 pm when ellipsometry is used.

However, it is experimentally and practically nearly impossible to separate a thin film into unit thin films

with thicknesses of 100 nm to 10 tm; therefore, these techniques are not suitable for films with thickness

of a few millimeters in terms of practical application. In this study, instead, we employed a

microspectrophotometer (pUV-Vis, CRAIC 20VM), which combines an optical microscope and UV-Vis

spectrometer. By employing this device, it is possible to examine a local area with a maximum spatial

resolution of up to lOx10 pm 2 . In the actual examination, we employed a spatial resolution of 20x20 ptm 2

on the basis of the suggested optimized device set-up to maximize the signal-to-noise ratio of the UV-Vis

absorbance signal. The spatial resolution is determined by the resolution of the optical microscope and

condenser lens. Figure 5.6 shows a schematic and a picture of the ptUV-Vis spectrometer used in this

study.
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Figure 5.6. A schematic diagram of a microspectrophotometer (pUV-Vis) combined with an optical

microscope (left) and a picture of the employed model of a pUV-Vis (model: CRAIC 20VM) (right). The

original images are from http://www.microspectra.com/.

The other parts of the piUV-Vis spectrophotometer are similar to those of a typical UV-Vis spectrometer

such as the double-beam UV-Vis spectroscope, in which incident light at a specific wavelength is divided

into two sources, one for the sample and the other for the reference solvent (i.e., deionized water). The

transmitted light from the sample and the reference solvent is gathered and integrated to calculate the

calibrated transmittance and absorbance signals. In this UV-Vis spectroscopy scheme, the signal-to-noise

ratio is increased by canceling out the unknown or hidden systematic and experimental erroneous signals

or noise from the background. The absorbance of CNPs measured by UV-Vis spectroscopy at a specific

incident wavelength A, A(A), is defined as

(A =lg dj, A i = dj c,() jiA, 6i (A) =C'(A) / vA1  (5.1)

where I is the intensity of the light with an initial intensity of 10, d is the path length of the light, Nc

is the number of components in the dispersion, e is the molecular absorptivity, # is the nonlinear
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attenuation exponent, v is the molecular volume, and # is the volumetric fraction. Further, e and . are

proportional to the extinction cross-sectional area, o-(A) (i.e., o-(1) =c(A) log 10 ), which can be

expressed using the Mie scattering coefficients for scattering of an electromagnetic wave by a hard-

sphere-like particle as a function of the radius R and refractive index n of the particle [22,23]:

C-(A)=6 Re (aL + bL 21KD1/2

YIL (nkR)YL '(kR) -L '(nkR)YL (kR)
aL = - -

nqL (nkR)XL '(kR)-yL '(nkR )xL (kR)

bL=VL ( nkR ) V/L '(kR) - nqL '(nkR) VIL (kR) (52

qfL (nkR )XL '(kR) - nqL '(nkR )XL (kR )

where n = n / nD, and V/L and XL are the spherical Riccati-Bessel functions [24]. In addition, KD and

nD are the dielectric function and refractive index, respectively, of the dispersion medium. For eq.(5.2),

we used the first electric dipole term approximation (L = 1 ) considering R << A for typical NPs. For a

dilute solution, 8 is nearly unity (also known as the Beer-Lambert law), whereas it diverges from unity

as the solute concentration increases [25]. Because 8 depends on the particle aggregation and dispersion

properties, we can safely assume that it is constant with respect to A. For eq.(5.1), the absorbance is

assumed to be the collective (or additive) property consisting of contributions from the absorbance of

each component. This principle can be applied to double-beam UV-Vis spectroscopy as follows:

Am (A o _LO = d (5e5 ( A) 0,16s + E (A) OPs

AR (A) logI dj (: A ),

IM = IR exp (-d(6S (A)(0s8 - 1)+eP() iis))lS R exp (-dEp (A)#,/1s), (5.3)

where the subscripts M , P , and S indicate the mixture, particles, and reference solvent, respectively. In

eq.(5.3), we assumed that the sample is composed of homogeneous particles and a solvent for the

construction of the calibration curve. We also assumed that es (A) is negligible compared to e, (A).

Figure 5.7 shows a schematic of double-beam UV-Vis spectroscopy.
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Figure 5.7. A schematic diagram for the double-beam UV-Vis spectroscopy

Eq.(5.3) indicates that the transmittance T, (A) can be described by an exponential function with

two fitting parameters. We applied eq.(5.3) to the measurement of C and 8 for NPs dispersed in aqueous

solutions with different volume fractions. Figure 5.8(a) shows the results of UV-Vis spectroscopy of

Fe 30 4 CNPs with volume fractions of NPs of ,= 6.20x 10- to 5.11x10-2 for a scanning incident

wavelength range of A = 300-800 nm . A shoulder peak appears around A = 386 nm , which can serve as

the standard wavelength 2m at which E and #8 for the Fe 30 4 NPs can be calculated. We converted the

absorbance data at . =386 nm into transmittance data, as shown in Figure 5.8(b), and then calculated

the least-square fitting curve based on the exponential dependence of T to determine the two fitting

parameters that correspond to . and #. We found that T, = exp(-27.54#, 0.14), which yields the

following relationship between A and O, for Fe30 4 NPs dispersed in the aqueous solution at

A. =386 nm

A (m = 386 nm) = 27.54 d ,0.84 for Fe3O4 NPs, (5.4)

where Lz denotes the thickness of the film. As expected, eq.(5.4) shows that 8 deviates from unity,

which leads to the nonlinear form of the Beer-Lambert law.
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Figure 5.8. UV-Vis Absorbance (a) and the calibrated Tr spectra at A,, = 386 nm (b) of Fe 30 4 NPs-

dispersed aqueous solution with different concentration of Fe30 4 NPs. Given in the inset of (b) is a

predicted relationship between Tr and #, when the light path (r ) is 2 mm.

Similarly, we measured A and T for SiO 2 CNPs with different #, (see Figure 5.9) and found the

following relationship between A and #, for SiO 2 NPs dispersed in the aqueous solution at

,, =507 nm:

A(2,, =507 nm) = 1.164 d f .97 for SiO2 NPs. (5.5)

Notably, the overall absorbance of SiO 2 NPs is smaller than that of Fe 30 4 NPs, whereas the nonlinearity

of SiO2 NPs is weaker. Comparable experimentally measured values of A for Fe 30 4 and SiO2 NPs can be

found in the literature [17,26]. Finally, we performed UV-Vis spectroscopy of PEGDA with 2,2-HMPP

after UV-curing, as shown in Figure 5.10.
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Figure 5.9. UV-Vis Absorbance (a) and the calibrated Tr spectra at A,,, = 507 nm (b) of SiO 2 NPs-

dispersed aqueous solution with different concentration of SiO 2 NPs. Given in the inset of (b) is a

predicted relationship between Tr and p, when the light path (r ) is 2 mm.
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The spectra exhibit no distinctive peak, mainly because the PEGDA or 2,2-HMPP will absorb the incident

light under 2 = 300 nm, which excitates the C-C double bonds. In fact, we can observe a the steeply

increasing slope as A decreases.

We can quantitatively measure the concentration as expressed by the volume fraction of NPs in

the local area of the thin film that was examined, on the basis of the UV-Vis measurement and calibration

relationships in eqs.(5.4) and (5.5). It is also known that UV-Vis spectroscopy can be applied for

quantitative measurement of the size, as well as the concentration, of NPs in a liquid medium [27]. In

particular, by measuring the total absorbance of the NP-dispersed UV-cured thin film at two specific

wavelengths (i.e., ,, = A, =386 nm and A, = /,,2 =507 nm), we can obtain the following relationships

with two unknown variables, ,1 and #P , where the subscripts PI and P2 indicate the two different

NP [25]

At A = 2 ,,'

A (A,,a = r (ep (A,, ) #'8 + -P2 (2I ) 0 P2#P 2 + CS (2, 0)(1 - - P2)) / d,

At A =A,a

A(A,, ) = r (ep, (A,2 )#PI' + P 2 (Z. 2 ),, P2 2 + ss (A.2 )(1 -PI -n 2 )) / d. (5.6)

The solutions of eq.(5.6) are #, and P2 given A (2,,) and A (2m2). To solve eq.(5.6), we assumed

that the nonlinear attenuation coefficient of the NPs, 8, is constant irrespective of A and of the UV-

cured media, the A value of which is also assumed to not deviate from a linear relationship, A oc #. As

illustrated in Figure 5.11, piUV-Vis spectroscopy can be used to measure (1) A (2A ) z, and A(m 2 ) z of

the film at specific location, which is denoted by the ith resolution area at z of the film along the

direction parallel to the film thickness (the z -direction defined as direction 1 (i.e., Dir 1)), and (2)

A, (,) and A, (A.2) along the direction perpendicular to the thickness (the x -direction defined as

direction 2 (i.e., Dir 2)), where the subscript I indicates the integrated absorbance signal. In particular,

the experimentally measured data for A, (2) can be compared to the calculated value from eqs.(5.4) and

(5.5) as follows:

LZ #,a ( z j e (A) A Z NR LA(d)=J8dz =(j, (A), NR = , (5.7)
j=1 i=AB,D
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where Az denotes the spatial resolution of the pUV-Vis spectroscopy, and NR is the total sampling

number used to measure the UV-Vis spectra along direction 1. From eqs.(5.6) and (5.7), we can

quantitatively determine the concentration gradient and distribution of NPs in the thin film.

- Primarv direction (Z)

Xm

Measurement
direction 1

ICRI

Figure 5.11. A schematic diagram of a thin film inside which a gradient of NPs concentration (#, )

formed. Two different directions (i.e., directions 1 and 2) to measure UV-Vis spectra using the ptUV-Vis

are provided. In lower panels provided are schematic plots for the absorbance (A) and reflectance (R)

spectra expected from the area under measurement.

5.3. Theoretical Framework

5.3.1. Self-Consistent Mean Field (SCMF) Algorithm for Binary CNPs

As analyzed and suggested in Chapter 4, a self-consistent mean field (SCMF) algorithm can be an

effective and efficient method of calculating the concentration distribution of discrete-sized hard-sphere-

like NPs in a thin film at equilibrium. In particular, it has also been suggested that the SCMF algorithm

can be extended to the calculation of the concentration distribution of multiple CNP-components, such as
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a binary or ternary mixture of NPs. In this chapter, we assume that one type of particles interacts via the

van der Waals and magnetic dipolar potentials (superparamagnetic Fe 30 4 NPs, denoted by A), and the

other type interacts via the Lennard-Jones potential (nonmagnetic SiO 2 NPs, denoted by B). Further, the

system is assumed to be confined in a thin film under an external magnetic field parallel to the z -axis. As

one of the models describing the molecular interaction potential denoted by F, (r) which is the inter-

particle interaction between the ith and j th component particles, and includes dipolar interactions, we

employed a Stockmayer pair potential model [28,29]:

12 162

FAB( i)- 4 CAB j) AB ) ) AB = (-A /' IAB CA ±0-B)

x12 x6

FBB(1') 4- BB B B ] (5.8)

where po is the vacuum permeability (p = 4;r x 10- NA-2). The other notation in eq.(5.8) was taken

from eqs.(4.1)-(4.5) in Chapter 4. The contribution from the external magnetic field is given as

[5,22,23,28-30]:

G;A("x' (n) =-ps (n) -B (n), GB(ex")(n) =0, (5.9)

where B (n) is the external magnetic field felt by a single A particle in the n th discrete layer. The

magnetic dipole moment of the ith superparamagnetic A particle in the n th discrete layer, si (n), is

written as

Pi (n) = MsjTV,,L (77, (n)), L (x) = coth (x) - x-1, ty, (n)=- M'i (n ' V, (5.10)
kBT

where Ms and V are the saturation magnetization and volume of the magnetic domain of the ith

superparamagnetic particle, respectively. The Langevin functional dependence based on the mean field

approximation of magnetization by the external magnetic field, L(q(n)) , is a function of the

dimensionless parameter 7 (n). To consider an external field with field strength gradient, we assumed
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that the external magnetic field is generated by a bar-magnet directly beneath the film. Then, B (n) can

be expressed as [31]:

B (n)= OH .), (5.11)
2za-B (1M + s + n -0.5

where H indicates the magnetic moment generated by the magnetic field. Further, lM and IS are the

normalized thicknesses of the bar magnet and bottom substrate with respect to the NP size (if two NPs

have different sizes, employ the smaller one), respectively. In eq.(5.8), FAA (r ) and GA(ex) (n) can be

further simplified into the following dimensionless form by assuming that the A particles are mono-

disperse in size and saturation magnetization (i.e., M = Ms, V = V=V, =crA 3 /6) and are aligned

along the primary axis (i.e., the z -direction parallel to the orientational direction of B(n)

FAr pL(q(n))L(q(n+k))(3cos2O1 1 -1) jF 1 1
)3 4AA '

kBT k. B i

GA (n) HL(q(n))

kBT (M +lS +n- 0.5) 3

_ PO0A 3Ms ,S2  H pO 3MsH (5.12)
144kB , s +n -0.5) 12-B3 B

where 0. is the angle between rj and B(n), and r,, is normalized relative to O . In this calculation,

we considered that the single magnet is a laboratory-scale cylindrical bar magnet 1 cm-thick with a field

strength of 10-2 NA-'m-1, which indicates that H 6 x 10-3 Am 2 .

For the molecular interaction parameters of the U potentials, we used the non-retarded Hamaker

constants [32] for Fe 30 4 ( A, ~ 2.1 x 10-19 J ) [33], SiO2 ( A2 ~ 6.7 x 10- 20 J ) [34], PEG (A 3 ~ 7.2 x 1 0
-40J )

[35], Fe 30 4-PEG-Fe 3O4  ( A131 (A,1/ 2 _A 31/2)2 ~ 3.6 x10- 20 J ) [32], and SiO 2 -PEG-SiO 2

(4232 (41/2 _ 41/2 )2 ~8.3 x 10-20 J) [32]. For the deviation factors of the effective interparticle-distance

(8, ) and short-range interaction (1, ) among Fe 30 4 and SiO 2 NPs, we started with the simulated data

from Monte Carlo (MC) simulations, 5, = 1.50 and 8, = 0.749 [36]. From the experimentally

measured concentration distribution profiles of the two CNPs, we fitted the SCMF simulation results
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using 5, and (5" as the fitting parameters and found that 8, =1.57 and 1, = 0.83, which are similar to

the starting values predicted by the MC simulation of the two-demixed (or phase separating) particles. For

superparamagnetic NPs, we assumed that the Fe30 4 CNPs have a single magnetic domain, whereby

Ms -5x 10 5 Am' when the NPs are dispersed in aqueous solution with a relatively dilute

concentration [5,37]. By using eq.(5.12), we calculated the concentration profiles of Fe 30 4 and SiO 2 CNPs

given the thicknesses of the film and the bottom substrate.

5.4. Results and Discussion

5.4.1. Measurement of CNP Concentration Distribution in the Thin Film

By using eqs.(5.1)-(5.7), we translated the UV-Vis absorbance taken in direction I to the volume fractions

of NPs at selected local positions along the z -direction. Given a pUV-Vis spatial resolution of 20x20

pm2 , data were obtained from 52-109 spatial points depending on the film thickness.
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Figure 5.12. Experimental results of concentration-gradient-derived UV-Vis (middle row) absorbance (A)

spectra taken at different positions (denoted by P1 -P6) of the thin film along the primary direction (Z)

accompanied by optical microscope images (top row with a 40 prm -scale bar is given in the first

microscope image) for the case of a thin film composed of Fe 30 4 , SiO 2 NPs dispersed in UV-cured

PEGDA media with Lz = 1.08 mm and L,, =130 pm under the normalized external magnetic field

H = 2.41. Given in the bottom row are a schematic diagram of the film structure (cf. the color gradient is

given for eye-guide) (left), UV-Vis absorbance of the film taken at two different wavelengths

(A = 386 nm for blue and A = 507 nm for red) as a function of the position normalized with respect to

the film thickness Lz (middle), and UV-Vis absorbance of the film taken at the 6 different positions as a

function of A which denotes the wavelength of incident light (right).
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Figure 5.13. Experimental results of concentration-gradient-derived UV-Vis (middle row) absorbance (A)

spectra taken at different positions (denoted by P1 -P6) of the thin film along the primary direction (Z)

accompanied by optical microscope images (top row with a 40 pm -scale bar is given in the first

microscope image) for the case of a thin film composed of Fe3O4, SiO 2 NPs dispersed in UV-cured

PEGDA media with Lz =1-08 mm and L,, =1.40 mm under the normalized external magnetic field

H =2.41. Given in the bottom row are a schematic diagram of the film structure (cf. the color gradient is

given for eye-guide) (left), UV-Vis absorbance of the film taken at two different wavelengths

(2 = 386 nm for blue and A =507 nm for red) as a function of the position normalized with respect to

the film thickness Lz (middle), and UV-Vis absorbance of the film taken at the 6 different positions as a

function of a which deeenoste wvength of incident light (right).
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Figure 5.14. Experimental results of concentration-gradient-derived UV-Vis (middle row) absorbance (A)

spectra taken at different positions (denoted by P1-P6) of the thin film along the primary direction (Z)

accompanied by optical microscope images (top row with a 40 um -scale bar is given in the first

microscope image) for the case of a thin film composed of Fe 30 4, SiO 2 NPs dispersed in UV-cured

PEGDA media with Lz = 2.24 mm and L, = 130 pm under the normalized external magnetic field

H = 2.41 . Given in the bottom row are a schematic diagram of the film structure (cf. the color gradient is

given for eye-guide) (left), UV-Vis absorbance of the film taken at two different wavelengths

(A = 386 nm for blue and A = 507 nm for red) as a function of the position normalized with respect to

the film thickness Lz (middle), and UV-Vis absorbance of the film taken at the 6 different positions as a

function of A which denotes the wavelength of incident light (right).
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Figure 5.15. Experimental results of concentration-gradient-derived UV-Vis (middle row) absorbance (A)

spectra taken at different positions (denoted by P1-P6) of the thin film along the primary direction (Z)

accompanied by optical microscope images (top row with a 40 pm -scale bar is given in the first

microscope image) for the case of a thin film composed of Fe 30 4 , SiO 2 NPs dispersed in UV-cured

PEGDA media with Lz = 2.24 mm and L, =1.40 mm under the normalized external magnetic field

H = 2.41. Given in the bottom row are a schematic diagram of the film structure (cf. the color gradient is

given for eye-guide) (left), UV-Vis absorbance of the film taken at two different wavelengths

(A = 386 nm for blue and 2 = 507 nm for red) as a function of the position normalized with respect to

the film thickness Lz (middle), and UV-Vis absorbance of the film taken at the 6 different positions as a

function of A which denotes the wavelength of incident light (right).

Figures 5.12-15 summarize the experimentally obtained UV-Vis spectra and present optical microscope

images for the cases with different film thicknesses Lz and substrate thicknesses Ls (i.e.,

[Lz Ls ]=[1.08 mm 130 pm], [1.08 mm 1.40 mm], [2.24 mm 130 gm], and [2.24 mm 1.40 mm] in
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order). The UV-Vis absorbance peak at A = 386 nm diminishes as the measurement point moves away

from the bottom (i.e., from P1 to P6 shown in the upper panel). This is easily explained by the fact that

Fe 30 4 CNPs will be more concentrated near the bottom substrate, where the magnetic field strength is

strongest. As the distance from the bottom substrate increases, fewer Fe 30 4 CNPs are concentrated,

whereas more SiO 2 appears. This explanation is supported by the observation that the UV-Vis absorbance

at A = 507 nm varies less than that at A =386 nm with increasing distance from the bottom substrate

(see the middle plot in the bottom panel). Optical microscope images also indicate that the concentration

distribution behaviors of Fe30 4 and SiO 2 CNPs will be opposite. This is also supported by visual

observation of the colors of each of the CNPs; Fe 30 4 CNPs are dark-brown, whereas SiO2 CNPs appear

white.

5.4.2. Comparison between Experimental Data and SCMF Calculations

We calculated the volume fractions of CNPs and compared the data with the calculation results from the

SCMF algorithm, on the basis of the experimental data. For the comparison, we employed three fitting

parameters, two of which, (e and (5, can be obtained from the molecular interaction parameters in

eq.(5.8). The other fitting parameter was the conversion factor from the number density to the volume

fraction (5, . For example, for a hard-sphere-like particle with a diameter of u- , the conversion

relationship between the volume fraction O, and the number density p, is given as , -= # 3 . By

using the least-square fitting, we found that [9, 8, ,] =[0.831 1.574 0.718] and used the obtained

fitting parameter combination for other settings with different film thicknesses and substrate thicknesses.

For computational efficiency, we limited one of the fitting parameters to a physically meaningful range,

0.65 3 , 0.73 [38], where the maximum limit originated in the maximum volume fraction of hard

spheres in the hexagonal close-packed (HCP) structure. From the calculated fitting parameter

combination, interestingly, we found that (5v is nearly equivalent to the ideal HCP conversion factor,

0.73 [38]. Other parameters responsible for deviations in the molecular interaction between two different

particles are also in the range of physically meaningful values [32-36].

171



a)

0.2 0.4 0.6
Normalized position (a.u.)

0.8

0.5

0.25

0.2 0.4 0.6
Normalized position (a.u.)

0.75

(d)
0.5

0.25

I NI _
W1 - _ _~~i

0 0.2 0.4 0.6
Normalized position (a.u.)

0.8 1 _0 0.2 0.4 0.6
Normalized position (a.u.)

Figure 5.16. Comparison between the calculated from experimental data (solid symbols with solid lines)

and simulated from the SCMF algorithm (dot lines) concentration profiles of CNPs in a thin film as a

function of the position in the film normalized with respect to the film thickness with different film and

substrate thicknesses (a) Lz = 1.08 mm and Ls =130 pm, (b) Lz = 1.08 mm and Ls = 1.40 mm, (c)

Lz = 2.24 mm and Ls =130 pm, and (d) Lz =2.24 mm and Ls =1.40 mm under the normalized

external magnetic field H = 2.41. Red and green colors denote Fe 30 4 and SiO2 CNPs, respectively.

However, considering that the potential model used in this chapter has one of the simplest forms, the

obtained molecular interaction parameters are not necessarily the most appropriate for real-world cases.

Figure 5.16 compares the experimental data for different film thicknesses and substrate thicknesses with

the results of simulations using the SCMF algorithm with the obtained combination of the fitting

parameters. The predictions of the SCMF calculation agree well with the experimental data irrespective of

the combination of film thickness and substrate thickness. This indicates that the SCMF algorithm can be

172

0.75

0.5

0.25

-4--: OA from experiment
- : 0, from experiment
- - "-: #Afrom simulation

: + from simulation

- - AO
+13mml:0

(b)

(c)
0.75

0.5

*mp
-- 2

0.25

0.8 1

0.8

0.75,

- -- -- - - - - -- --
M"

------- - ---- -------
O==

II



progressively and proactively employed to design the desired concentration distribution profiles of CNPs

in a thin film with a given film thickness and external magnetic field strength. One of the interesting

points here is that we can control the CNP concentration gradient by controlling the film thickness and

substrate thickness. For example, in Figure 5.16(c), where the film is relatively thick and the external

magnetic field is relatively strong, we see that the Fe 30 4 NPs are concentrated, forming nearly HCP

structure near the bottom substrate. In contrast, as shown in Figure 5.16(b), whiere the film is relatively

thin and the external magnetic field is relatively weak, the concentration of Fe 30 4 NPs near the bottom

substrate is about half of the value observed in Figure 5.16(c). Observations from other cases, shown in

Figures 5.16(a) and (d), also indicate that the concentration gradient of NPs that are attracted by the

external field can be controlled by varying the external field strength and film thickness. This finding

implies future applications of this experimental study in terms of reliable and experimentally controllable

factors that can be employed to design the desired concentration distribution. Interestingly, it appears that

the concentration profile of SiO 2 NPs does not vary as much as that of Fe30 4 NPs with the film thickness

and substrate thickness. This can be understood by considering that SiO 2 NPs are pushed away from the

bottom substrate, forming a region where Fe 30 4 NPs do not appear. In this region, the SiO 2 NPs feel

nearly no interaction potential from the Fe 30 4 NPs; therefore, only the molecular interactions among the

SiO 2 NPs will determine the concentration distribution of SiO 2 NPs. Thus, controlling the magnetic field

strength and film thickness will have no critical effect on the concentration distribution of SiO2 NPs.

To verify the methodologies for converting the UV-Vis absorbance signal to the volume fraction

shown in eqs.(5.1)-(5.6) and the SCMF calculation for quantitative measurement of the NP concentration,

we compared the total UV-Vis absorbance signal measured along direction 2 with (1) the re-constructed

UV-Vis absorbance signal obtained from the measurement along direction 1 based on eq.(5-7) and (2) the

simulated UV-Vis absorbance signal obtained by reverse calculating the UV-Vis absorbance using

eqs.(5.1)-(5.6) in the SCMF calculation (using the fitting parameters). As Figure 5.17 shows, the

agreement among the three UV-Vis absorbance signals is good overall considering the different

conditions. However, the absorbance value from the measurement along direction 2 is smaller than that

from the signals along direction 1 and the simulated signals from the SCMF calculation irrespective of the

incident wavelength. One possible reason for this discrepancy is scattering from the concentrated NPs.
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Figure 5.17. Comparison among the experimentally measured UV-Vis absorbance (A) along the direction

2 (see Figure 5.11) (blue symbol-line), re-constructed UV-Vis A spectra from experimental data obtained

from the scanning along direction 1 (red dot line), and simulated UV-Vis A spectra from the SCMF

algorithm (red dot line) with different film and substrate thicknesses (a) Lz = 1.08 mm and

Ls =130 pm, (b) Lz =1.08 mm and Ls =1.40 mm, (c) Lz = 2.24 mm and Ls =130 pm, and (d)

Lz = 2.24 mm and Ls = 1.40 mm under the normalized external magnetic field H 2.41.

This conjecture is supported by a comparison of the cases with relatively strong magnetic fields (see

Figures 5.17(a) and (c)) and relatively weak magnetic field (see Figures 5.17(b) and (d)). Indeed, the

cases with a stronger field show a more distinctive discrepancy in the UV-Vis absorbance signal, whereas

the others show a relatively small discrepancy. However, the overall behavior supports the calculation and

conversion methods for quantitative measurement of the CNP concentration distribution in the film. Table

5.1 summarizes the observed, re-constructed, and simulated absorbance observed at the two specific
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wavelengths. The data show overall agreement in the absorbance among the experimental measurements

along the two measuring directions and the theoretical prediction.

Table 5.1. Comparison of the UV-Vis absorbance (A) value at the two different wavelengths of the

incident light (A = 386 nm and A = 507 nm ) obtained from the SCMF simulation, re-constructed from

the experimental data along direction 1 (Dir 1), and experimentally measured along direction 2 (Dir 2)

for different cases with different film thickness and substrate thickness

Lz = 1.08 mm and Lz = 1.o8 mm and Lz = 2.24 mm and Lz = 2.24 mm and

Ls =130 pm Ls =1.40 mmI Ls =130 pm Ls =1.40 mm

X SCMF Dir 1 Dir 2 SCMF Dir 1 Dir 2 SCMF Dir 1 Dir 2 SCMF Dir 1 Dir 2

(nm)

386 0.042 0.042 0.037 0.042 0.042 0.038 0.084 0.085 0.068 0.084 0.084 0.075

507 0.018 0.018 0.016 0.018 0.018 0.017 0.036 0.036 0.029 0.036 0.036 0.032

5.4.3. Possible Applications of the Fabricated Thin Films as Functional Materials

The good agreement between the experimentally observed and calculated CNP concentration distributions

also allows us to extend this study to the exploration of future applications. As an example, the expected

distribution of the effective refractive index, nff (z), was calculated along direction 1 in the film using

the relationship [38]

(5.13)nff (z)= (n# (z)+nB2 B(z) +D2 ,(z)B (Z)))1/2 ,

where #, (z) and 'B (z) are obtained from the experimental data. Using the known values of the

refractive indices of the composite materials, nA 2.42, nB 1.54 , and nD = 1.31 in the visible

wavelength range, eq.(5.13) provides a continuous profile of nff (z) , as shown in Figure 5.18.

Interestingly, the calculated profile of nff (z) varies between 1.42 and 1.73, which suggests that the

fabricated thin film might be employed to design optically functional materials such as a gradient

175



(refractive) index (GRIN) lens [39,40]. In particular, one of the most famous GRIN lenses is the human

eye [41-43], in which the refractive index varies from 1.37 to 1.42 (see Figure 5.19). Aging or diabetes

causes the refractive index distribution to deviate from the ideal distribution profile [41,43], reducing the

eye's power by causiung failure to maintain the appropriate focal length. Thus, the fabricated thin film

shown in this chapter can be actively employed to assist in modifying the refractive index distribution

when the dispersion media are transparent. Another promising possibility for the fabricated functional

thin film is that the dynamic controllability of the concentration distribution profiles of the CNPs can also

be strategically enhanced, provided that we do not apply UV-curing to the dispersion medium. For

example, by switching the external field on and off, the concentration distribution of CNPs can be

dynamically controlled in the desired manner. Considering the expanding market for optically functional

materials with biomedical applications [41-43], we can expect that the fabrication method, in conjunction

with theoretical/computational analysis of thin films in which the CNP concentration gradient can be

manipulated, will provide a substantial benefit for future application research.

1.8

1.7-

S1.6

1.5

1. 0.2 0.4 0.6 0.8 1
Normalized position (a.u.)

Figure 5.18. Calculated effective refractive index, nf (z), as a function of the normalized position from

the experimental data of the concentration gradient in the UV-cured thin film inside Fe 30 4 and SiO 2 CNPs

are dispersed. Film condition: Lz =1.08 mm and Ls =1.40 mm under the normalized external

magnetic field H = 2.41.
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Figure 5.19. (a) Shape changes of crystalline lens with age. (b) Relationship between the refractive index

of eye lens and the normalized distance from the lens center with different aging-related power law

exponents p . The original data in (b) are from Charman et al. [43].

5.5. Conclusions

In Chapter 5, we presented experimental results on the fabrication of a film in which binary CNPs form a

controlled concentration distribution. This experiment was intended to provide the proof-of-concept data

that is the goal of this thesis. Additionally, it was intended to show the application potential of the

suggested self-consistent mean-field (SCMF) computational algorithm and possible future applications in

areas using the optical properties and other physical-properties. For the dispersion medium, we employed

UV-curable monomers that can be cured within 1 h, and this curing dynamics also yields promising

properties when it is important to control the CNPs separation dynamics at the desired moment to obtain

the desired concentration distribution profile. By varying the film thickness and substrate thickness,

which can be considered as a method of controlling the external magnetic field strength, we examined the

variation in the concentration distribution of two different CNPs (i.e., Fe 30 4 and SiO 2 CNPs) in the thin
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film. For quantitative measurement of the concentration distribution, we used microspectrophotometery,

which allowed us to convert the UV-Vis absorbance signal to the volume fraction of NPs at a specific

point in the film. By using the SCMF algorithm, we compared the calculated concentration distribution

with experimental data using fitting parameters from the molecular interaction parameters and the volume

fraction-to-number density conversion factor. We found that the SCMF calculation can effectively and

successfully predict the CNP concentration profile. We also checked the possibility of controlling the

concentration distribution profiles by manipulating the film thickness and substrate thickness. We

extended the study to determine whether the formed thin film with a controlled gradient of the CNP

concentration can be used as a functional material such as a gradient refractive index (GRIN) lens. We

found that it is feasible to prepare an optically functional material using the controlled refractive index

distribution, which can be achieved by controlling the concentration distribution of multiple-CNP

components.
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Chapter 6

A Phase Field Model and Numerical Simulations for

Spinodal Decomposition of Binary Colloidal Nanoparticles*

Abstract

The phase field model (PFM) is an important theoretical model, that describes the phase equilibrium and

separation dynamics of mixtures. A PFM-based approach is suitable for studies of the assembly structure

and dynamics of colloidal dispersions of nanoparticles (CNPs) in spatially and temporally large-scale

systems. In the continuum framework for the NPs, a PFM-based simulation was applied to investigate the

assembly structure and dynamics governed by spinodal decomposition. In particular, we focused on a

ternary mixture in which a heterogeneous mixture of NPs was dispersed in a single liquid medium. For

effective and efficient computer simulations, we employed several advanced numerical algorithms,

including the spectral transform and semi-implicit-explicit separation (semi-IMEX) methods. We also

examined a ternary mixture of CNPs confined in a thin film with selective wall interactions to study the

surface-directed phase separation of the CNPs. A numerical simulation successfully described the large-

scale phase separation dynamics of the ternary mixture. The dynamics of the scaling behavior of the

characteristic length scale was slower than the conventional prediction. When the diffusivities and initial

concentrations of the two NPs differed, the temporal evolution of the phase separation exhibited three

stages. The confinement effect provided by the walls also resulted in three-stage temporal evolution of

spinodal decomposition in which each stage was distinguished by its scaling exponent. A decrease in the

scaling exponent in the later stage was caused by a geometric limit arising from the thickness of the thin

film. The numerical studies of the phase-equilibrium and separation dynamics of ternary mixture of CNPs

suggest a way to control the assembly structure and dynamics by controlling the film thickness and

surface-interaction strength.

*Parts of Chapter 6 will be submitted to a peer-reviewed journal (Authored by S. Joon Kwon & T. Alan Hatton).
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6.1. Introduction

An assembly of CNPs consisting of a homogeneous mixture of NPs in a single liquid dispersion medium

is a representative case of a binary mixture under phase instability. In terms of industrial applications,

however, it would be more desirable to employ heterogeneous CNPs in a single liquid dispersion medium;

one of the simplest cases of heterogeneous CNPs is a ternary mixture composed of A- and B-type NPs

dispersed in a liquid medium. We have already presented the results of calculations based on the self-

consistent mean field (SCMF) method for surface-selectivity-induced separation of ternary CNPs in

Chapters 4 and 5 and the external-field-directed separation of quaternary CNPs in Chapter 4. However,

even with the SCMF method, it would be a computationally expensive calculation for continuous phase

separation governed by spinodal decomposition of a ternary mixture over a wide range of spatial

dimensions. Additionally, as mentioned in Chapters 4 and 5, the SCMF method can be used only to

describe the equilibrium morphology of a CNP. Considering that the dynamic properties of the phase

separation would be important information for controlling the assembly of CNPs, a kinetic Monte Carlo

(KMC) algorithm or Brownian dynamics (BD) simulation would be considered to analyze the non-

equilibrium properties of phase separation of ternary CNPs. However, these methods are also

computationally expensive for the description of realistic spatio-temporal dimensions for larger system

sizes as mentioned in Chapter 1.

Therefore, we need a more computationally efficient method of solving the time-dependent phase

separation dynamics of a ternary mixture of CNPs. Moreover, without considering the discreteness of the

NPs, computational efficiency should require that the system dimensions are much larger than the feature

size of the NPs. For example, if one type of NPs is 100 nm in diameter, we need to consider a system with

x - y dimensions of at least 100 x 100 pm 2 . Provide we can neglect the effects of the discreteness of the

NPs, we can employ a continuum-based model such as the phase field model (PFM), in which the

concentrations of the NPs and the dispersion media are considered as continuum variables [1,2]. By using

advanced numerical algorithms to solve the continuum-based differential equation that describes the

temporal evolution of the concentration fields, we can efficiently and effectively analyze the problem of

assembly driven by spinodal decomposition of ternary mixture of CNPs in terms of both the equilibrium

and non-equilibrium properties.

In Chapter 6, we present computational studies using the PFM and the diffuse interface model of

spinodal decomposition of ternary mixture of CNPs assuming that the CNPs are confined in thin films.

We also apply the numerical method to extend the study to cover spinodal decomposition of ternary

mixture of CNPs when the CNPs are confined in a thin film with surfaces that are selective to specific
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NPs. On the basis of the studies, we calculate the time-dependence of the characteristic length scale such

as the spinodal wavelength and the concentration variance of each component as a function of time. The

dynamic properties of the assembled morphologies of ternary mixture of CNPs will provide a substantial

advantage in understanding and controlling CNP mixtures at the desired moments.

6.2. Theoretical Framework

6.2.1. Phase Field Model for CNPs

The phase is defined as a physical entity that represents a specific microstructure in which specific

thermodynamic properties are distinguished from others in other entities. Typically, the thermodynamic

state function, such as the free energy in combinbation with the seleceted ensemble, is used to define the

phase. The phase field model (PFM) was developed to describe the dynamics and equilibrium properties

of a system composed of two or more phases that normally contain two or more components. In addition,

it has been widely used in a continuum framework to analyze dynamic processes such as nucleation,

crystallization, and other diffusion-driven processes, as well as spinodal decomposition [1,2]. In particular,

it employs the diffuse interface model, which assumes a continuous variation in the order parameter at the

interface between two different microstructures considered as two phases. For a multi-component mixture,

the order parameter is typically set to the difference between the concentrations of the components, and

the PFM considers the local fluctuation in the order parameter in response to the spontaneous phase

separation of the mixture into multiple-phases at equilibrium. Before discussing complicated cases such

as a ternary mixture, it would be instructive to recap how the PFM addresses the interface energy and

thickness of a multi-phases system. For simplicity, we discuss a representative PFM of homogeneous

CNPs (i.e., a binary mixture of NPs and the dispersion medium) in this section. Using the regular solution

model [3-5], the free energy of the mixture at a temperature T with fixed number-temperature-volume

ensemble (i.e., canonical ensemble) and no spatial fluctuation in the concentration field, Af., can be

written as

Afo_ , O(1 -#,) 161
kBT h h # (6.1)

where kB is the Boltzmann constant, #, is the volume fraction of NPs, and X is the Flory-Huggins

interaction parameter [5]. In eq.(6.1), the size difference between NPs and the unit molecule of the
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dispersion medium is also considered by introducing the size ratio h. As shown by Cahn and Hilliard

[1,2], the interfacial free energy between two phases originates in the non-uniformity of the

thermodynamic intensive variables such as the concentration. This non-uniformity causes a phase

transition in a mixture. The local fluctuation in the concentration field, #, (r), can be expanded using a

Taylor series around the initial concentration #,(0

1 3 2 o (0 a203
5P (r) p(O)±iri2j+po -I~= + L x =X1( 2 j1 X 2 P ( 2 a 2 i 2

Considering the local concentration fluctuation, the Helmholtz free energy for the non-uniform mixture,

AfN, is given by

AfN - 2, hX(6
kBT kBT - 8X2 2

where K denotes the phenomenological gradient energy coefficient in the PFM based on the diffuse

interface model [1,2] and can be approximated as a quantity proportional to Y when the molecular

interaction among the components is effective only at short-range. In eq.(6.2), we transformed the spatial

unit by normalization with respect to the size of the NP (i.e., x -> X ). According to the original

definition in the Cahn-Hilliard equation [1,2], the specific interfacial free energy per unit, F, is expressed

by considering AfN - Af("), which is the Helmholtz mixing free energy per unit volume for CNPs with a

uniform and continuous concentration distribution, as follows:

F AJN f dX,
kBT kB

Af8A (,)(P OPPAfe)+ IO 'U O(

pp = Afo +(I -O) rAfO , pf = 0 - , (6.3)

where p. is the chemical potential (i.e., j=1 for solvent and j = p for the NPs) and $ "e) is the

equilibrium volume fraction of NPs such that (eq) = Oi"), satisfying the bimodal phase boundary. The

superscript a denotes the separated phase in which the NP-concentration is dilute. The bimodal

boundary is given as
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1 = h2Y(20(a) -1) /In I P

From eq.(6.3), we can obtain the following relationship:

k B h0' ( P _ P , + # , PIn P + 1 - # , P n -2 o il d X ,
kBT =f P()IO a CPax 2

1/21 2 (a) )2 (2 (") - 1)(P(# ) -In # )"
= 2/ 2 _(o a )2 d# ,

P P n ( "I / ( - " )-

P - O log#, +(1-#,P)log (I-#,), (6.4)

where we used the Euler equation to transform the integrand in the first row with a boundary condition

such that the infinitesimal variance in F with respect to O, is zero. This boundary condition is equivalent

to the condition that is used to obtain the stationary (minimum) value of F in the context of the least

action principle derived from the Euler-Lagrange equation. From eq.(6.4), we can find an asymptotic

value of F near the zero-temperature:

F(O) n F=M 21/2 1, ( 1  =2-3/2 , (6.5)

(or #P' -->O)

Notably, F(O) shows no dependence on the NP size and increases with X . To analyze the behavior of F

near the critical point (or spinodal point), F(C), at , =1/2 when T = Tc , where Tc is the upper critical

solution temperature (or the consolute temperature), AfN - 0(af+6) (where 8 denotes the separated

phase in which NPs concentration is rich) can be expanded as follows:

) (O 2 
)

AJ Af(a+fi) 3(t~ -1)2 2(tc1)±j 4(OI-
kBT 40C+ h+ 3h 3

h 3 t 2  3 - t, = 2 (6.6)

From eqs.(6.5) and (6.6), F(C) can be calculated as
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1/2 2tc #32
-- _ ) 3 -" 2 d# 2 (tc -1) (6.7)

kB h 2tC f 2 h tc

where we used the relationship 1-2# " (3(tc -1)/ c)12 to calculate 1-2#") near the critical point.

Eq.(6.7) indicates that F(C) is inversely proportional to the NP size. The temperature dependence of F(C)

exhibits scaling behavior predicted by the mean-field approximation for a phase transforms in conjunction

with a conserved order-parameter [1,2], as shown in Figure 6.1. In the figure, we show the relationship

between F and the temperature for different Z ; F increases with increasing X . To analyze the

systematic temperature-dependence of F , we collapsed all the data by normalization F / F(O) and T / Tc.

From the normalized plot, we can identify a single functional relationship between F / F(O) and T / Tc.

Not surprisingly, this single dependence is due to a functional form of T / Tc,

T / Tc = 2(2# - 1) /ln /(i- 5()), which does not contain information on the physical properties of the

NP represented by , .
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Figure 6.1. Relationship the specific interfacial energy, F, and the normalized temperature, kB pp 

where c,, denotes the molecular interaction among the NPs with different Flory-Huggins interaction

parameters (v ). Inset is for the normalized F with respect to the zero-temperature interfacial energy,

F / F(0), as a function of the normalized deviation from the critical temperature (Tc ).

In addition, the NP size and long-range interactions have no effect on the temperature dependence of

F / F(O) . The temperature dependence of F / F(O) can be fitted with a power function proposed by van der

Waals (called the vdW function), which is given by

F Ti

(0) TC

According to the Cahn-Hilliard theoretical analysis based on the lattice model and Guggenheim's

research on liquid phase Ne, Ar, N2, and 02, the best-fit scaling exponent for the vdW function is

n = 1.21 ~ 1.22 [6,7]. We applied the vdW fitting for F / F(O) and found an optimal fitting exponent of

n =1. 10 8 ± 0.0 56 , which is in good agreement with the prediciton; but is slightly smaller.

The interface profile of CNPs is continuous from the NP-dilute to the NP-rich phase at

equilibrium. This is mainly because the composition is a conserved order-parameter in the PFM. As

illustrated in Figure 6.2(a), the concentration variation over the interface is continuous; therefore, it is

possible to describe the interface thickness as a functional of b, (r). To perform a systematic analysis, we

can adapt a definition of the interface thickness LI using the diffuse interface method as suggested by

Cahn and Hilliard [1,2]:

-1/2

L, - =q AO f +8) (6.8)

max 1 2max(AfN 0(a+f)

where the volume fraction difference between the NP-rich and NP-dilute phases at equilibrium, AOPe"), is

equal to 1-2A (a) .
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Figure 6.2. (a) A schematic diagram showing the concentration (#O, ) profile (red solid line) in the

interface area with depicted interface thickness ( L, ) based on the diffuse interface model. (b) A

relationship between the normalized interface thickness form by the phase separation of CNPs with size

factor h = 20 , Li / L1 (0 ) , where L) is for the interface thickness at zero temperature, and the

normalized temperature, T / Tc. Given in the inset are the relationship between L, and the normalized

temperature with different values of X . As T -+ Tc, L, shows a diverging behavior which indicates that

the two phases become homogeneous to form one phase.

In eq.(6.8), max (aOP / X) is obtained at , =1 / 2; therefore, it is straightforward to find 4 as follows:
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(l-24 "a)h
LI =I-2Pa / (6.9)

_-4 (1-$ " 2 2In (2 P "a))

2 h 2

Further, from eqs.(6.8) and (6.9), we can also find the interface thickness near zero temperature, LJ(,O,

and the critical points LI(c) as follows:

1/2

L1> = 21/2 h, LI(C) = 2 ( 2 (6.10)
(Tc /IT) -I

From eq.(6.10), we can observe that LI e, is linearly proportional to the NP size, whereas LI(C) has a

quadratic proportionality to the NP size. From these size dependences at two extreme temperatures, we

can conjecture that the NP size dependence of the interface thickness would be LI oc h' , where

1 v 2. As eq.(6.10) shows, LI diverges as T -> Tc, as predicted by van der Waals and Cahn-Hilliard

[1,2,7]. In Figure 6.2(b), we see the divergent behavior of the normalized interface thickness L, / L) as

T -> Tc irrespective of the values of X .

6.2.2. Model of Spinodal Decomposition of a Ternary Mixture

To develop a computational framework for the ternary mixture, let us model the system as non-uniform in

terms of the spatial distribution of the concentrations of the species. For the model mixture of the

materials, we consider a ternary mixture of A- and B-NPs dispersed in a medium denoted by S. Therefore,

we need to employ two independent variables describing the free energy of the system at constant

temperature, OA and #, , where #, denotes the volume fraction of the ith species. For this model, we

assumed that voids in the system can be included in S. When two or more different chemical species are

mixed and are energetically favorable to each other, the distribution of the materials is completely random,

and the system has free energy per unit volume, fo (# ,B ). In the spirit of the regular solution model

based on the discrete lattice-type system [3,4], fo (0,, zB) is written as:
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fo(A'B _XABAB + AS + BS B A A B Ins (6.11)
kBT h2 h h h3  h )

where Xj represents the Flory-Huggins interaction parameters for the molecular interaction between the

ith and j th species. The therrmodynamic stability criteria for the temperature T and pressure P at

which a ternary mixture is unstable should be given by [4]

2

P .P > (6.12)
Ojs,T,P a a T, ,P

The condition in eq.(6.12) is associated with unrestricted instability of the phase, which leads to spinodal

decomposition of a ternary mixture.

When the ternary mixture exhibits a non-uniform distribution of the components (only two

compositions of the ternary mixtures are independent), we should consider the variance in the free energy

produced by the gradient effects of the distributions. In the spirit of Cahn and Hilliard's original concept

[1,2], we can identify the driving force for phase separation as the difference in the chemical potential in

two coexisting phases. For a homogeneous system with a spatially non-uniform distribution of NPs

deviating from their initial conditions, q#, 0 and #B,O we can express the Helmholtz free energies per unit

lattice as a functional of 0A(r) and 0B(r) , A ( N A B A B2 2B

where the subscript N denotes the non-uniform case. The spatial non-uniformity of the composition

across the system is derived mainly from local fluctuations in # and #, which can be expressed as a

function of the distance vector r ,

(r. -V) 2 ¢# (r) =# 4+ (r -V)#+ 2 +.--,j= A orB,

where the superscript (0) denotes the initial volume fraction. Considering the inversion operation for

symmetry and neglecting the fourth- and higher-order derivative terms, A (r) and #B(r) are

approximated as

#. (r)~ +0 - x , j= A or B,
2 ax2 =
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assuming an isotropic lattice system. Therefore, fN on the continuum basis can be written as an

expanded function around fo as

kB B 2,

a2 (f BT)

v ,=v =o

F, fNdV,
V

(6.13)

where V is the total volume of the system and FN is the total free energy of the system. In eq.(6.13), the

second-order terms K . are defined as the phenomenological gradient energy coefficients, which

determine the energy cost to form the diffuse interface among phases [1,2].

To find the phase separation kinetics, we can express the fluxes of A- and B-NPs in a closed

system, JA and JB, as [8]:

JA =jA-A( A +UBjB +SS IJB jB -CB( A jAB B SjS),

jA = -CALAh VJLA, jB = -CBLBh 3VpB IS = cSLSVtSi

LA I =LAA LAS L AB I, LB LBB LBS LBAL = - - LB

CA = , COA =OB CS = AS_, VA = B= h313 , vS - 1

LSC

LSB

CBJ

(6.14)

where c , cB, and cs are the number densities of A- and B-NPs and the solvent, respectively, and L is

the Onsager coefficient for ternary mixture inter-diffusion [2]. Further, 13 denotes the unit molecular

volume of the solvent molecules. According to Manning [9], we can ignore the cross Onsager coefficients

such as LsA(= LAs), LBA(= LAB), and LsB(= LBS) for isotropic transport with a negligible vacancy fraction.

A,B,S

From the Gibbs-Duhem relationship, # OVp, = 0 [2], and a zero-lattice flux

#ALAhV[ tABLBh 3 VPB+ sLsV ps = 0, we can also find that h3LA =h 3LB = Ls. From this fact and by

using eq.(6.14), we can simplify JA as follows:

_-Av
2
oA _- 2B Bra

/CV - OBV #B T,PO

ICBBV20B _KN2A]
S(BA AB ,( 6 .1 5 )
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and JB can be found in a similar form. By inserting eq.(6.15) into the continuity equation for mass

conservation, we can obtain the governing partial differential equation describing the phase separation

dynamics of a ternary mixture by spinodal decomposition

MA af

a# T,P,#b

-AAV2oA ,KV2Bj MAB 0
#B TPA#

IBBV 2
B _KV20A

" kBT ' kBT

KAA = KBB = 2XBS, I AB BA = = 212 (2As +XBS - AB (6.16)

where the spatial dimension was normalized with respect to the NP size. In addition, the relationships

between K.. and Zik are obtained using a regular solution model considering only nearest-neighbor

interactions with constant ZXk [4]. To analyze the characteristic length scale, we first calculate the critical

wave vector qc, which dominates the growth of the decomposed domain in the earlier stage of phase

separation. For this analysis, eq.(6.16) is further simplified around the initial condition 0, = as follows:

a2fM fiiO a 2
T,P, v#A

a2

K M1 ,0  2, a4f0 .~ - K V 40. - KYv I,

j ~~ T,P,,,#1 =#b, 0 )

From the Fourier-transformed form of eq.(6.17), qc is found as

~O~ -qc 0, MOfoiat q 2 [ ( 1 f,
q=qc

a2f

A i a~i2T,P,#j,#,=#, o

"+ q4 12Mi,0K, - qc2M, 0 K) - ( M "+ qC2MU0 K 1 1 - qMiK)] = 0,

(6.18)

From eq.(6.18), the fastest growing mode qm governing fluctuations of both #A and #B can be obtained

a(a- / at)by calculating a = 0.-
aq2

q =m
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6.3. Numerical Methods

6.3.1. Transformation by Spectral Methods

Depending on the boundary condition, a spectral method such as the fast Fourier transform (FFT) can be

employed for the periodic boundary condition or the discrete cosine transform (DCT) for the non-flux

boundary condition (or Neumann condition) [10-12]. For example, the DCT for the concentration variable

for spinodal decomposition in three spatial dimensions can be expressed as:

L, (i -1) L, (j -1) Lz (k - 1) IN N N

N 2, -I NY -I N, A-21 )CS7r 2 ) OS7p(k+1

A(i,,k,n) - EY aNaa cos OA r jsn cos ,
r=O s=0 P=O 2N 2N, 2N

1 1 1
where ar = 1

/
2 as= 1 , a = for r =s p =0,

N., N, N

2 2 2
a, =N 2' a, 1/2' as = for I r N -1, 1 s NY-, 1 l5 p NA -1, (6.19)

r , N, /2 N,/

where N , NY, and N, are the numbers of finite difference points on each axis in 3D, and L,, L,, and

L_ , are the lengths of the 3D system. In eq.(6.19), #A denotes the transformed concentration of /A in the

reciprocal space. On the basis of the eigenvalues for each of the points, 2 (rsp)

A, F=2 rcos(2r +cos +cos 2p -6 /(AX2,_X _L

A(r,s,p) 2 LNX r) +CS21rs + _OS __p A ) 2 AX Lx
NL, IVY N ) -I

V
2  
P(ijkfl) ('P,±1,,kn) ± p(ij1,kn) + -6 + + p(ij1,kn) + Op(jk1,n) (6.20)

(AX)

Then, we can express the transformed governing partial differential equation as:

O M(t[1 )-A (t- ]
n+ t n , ~ ky Af (tj - 2 c 2 ~(t n+1 - KAB +VBA ) ' B(n+l

- M AB nBf BB) 2 n+1 (AB BA 2 n+j
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where 8 ABf (tn) denotes the transformed functional of 2 at time t, . Similarly, the

transformed relationship for ( A (t+1 ) -# (t)) / At can be found. In eq.(6.2 1), we employed the forward

Euler scheme to describe the temporal evolution. The meaning of eq.(6.21) is that we can transform the

original partial differential equation into an ordinary differential equation only with respect to the

temporal dimension. Therefore, the computational cost should decrease significantly if we numerically

simulate a dynamic process governed by spinodal decomposition using a spectral transform. Similarly,

the FFT, which describes the problem using a periodic boundary condition, will also greatly enhance the

computational efficiency; however, it takes about twice the computational time of a DCT-based

calculation, because the FFT considers both the sine and cosine terms for the transformation step, whereas

the DCT considers only the cosine terms.

6.3.2. Separation of the Implicit and Explicit Parts

To enhance the numerical simulation efficiency and stability without divergence, we can employ

advanced numerical techniques such as the semi-Implicit-Explicit parts separation (semi-IMEX) method.

Considering the log-function in the expression of the free energy, we can apply the IMEX method as

follows [8,10]:

In$(ij~k)(".,I In 1(i,.k)(r, ) + -1, /= A and B. (6.22)
01(i,j,k,) n1'

Furhter, eq.(6.22) can be inserted into eq.(6.21). From a calculation, we found that the IMEX method,

combined with a spectral transform, allows us to increase the computational efficiency while maintaining

numerical stability by increasing the integration time from St =2 3 x10- 6s to St~2x10-s ,

assuming a diffusivity of A- and B-NPs of DA = DB o-12 m 2S . Although it is not shown in this chapter,

we also found that a stable differential integration time should be set considering the relationship

tD ~10" M2 . For further computational enhancement in solving the differential equation in eq.(6.21)

with the semi-IMEX method, one can also adopt an advanced numerical technique such as the adaptive

time-step spectral transform [8,10].
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6.4. Results and Discussion

6.4.1. Spinodal Decomposition of Binary Mixture of CNPs

As the simplest case of phase separation of A-B binary CNPs, an unstable mixture was investigated with

the initial condition [#AO OBO # SO ] = [0.25 0.25 0.50] and the molecular interaction parameter

[ZAB ZAS %BS] = [6 3 3]. To initiate the decomposition, we applied a random fluctuation concentration

field at the initial stage and numerically iterated the governing equation with a periodic boundary

condition, assuming that h = 20 and the diffusivities of A- and B-NPs are both 10-12 m2 s-. For numerical

stability, a differential time of 10- 5s was employed. Considering that the typical unit molecular size of the

solvent molecule is about 0.5 nm , the condition h = 20 indicates that the size of NPs studied in the

present simulation is about 10 nm . For the simulation box, we applied a 2D plane, which can be

considered as a model for a thin film when the film thickness is comparable to the size of an NP or at

most a few NPs. As Figure 6.3 shows, the phase separation is a continuous process initiated by a wavy

concentration fluctuation followed by growth of the characteristic length scale of the system. For example,

relatively small droplet-like concentrated regions of CNPs appear at earlier times (i.e., t = 10 s), and these

concentrated regions merge to form larger concentrated areas. This process is similar to the well-known

Ostwald ripening; however, spinodal decomposition is a continuous phase separation process, whereas the

Ostwald ripening includes discontinuities in the concentration gradient near the boundaries of the

concentrated droplets [13].
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Figure 6.3. Time dependent concentration distributions of A- and B-NPs and the solvent S by spinodal

decomposition when [#AO !B0 SO ]=[0.25 0.25 0.50] and [ZAB X AS ZBS] = [6 3 3] with

DA= DB =o-2 -1 . The dimensions for the 2D simulation box is 24 x 24 pM2 incorporated with

finite points of 120 x 120 with 10 nm-diameter both for A- and B-NPs.

To facilitate comprephension, we visualized the concentrated regions observed in Figure 6.3 using

different colors to indicate the governing species in Figure 6.4. For example, in the red region in Figure

6.4, #, (r) 0,, whereas #B (r) < SBO and Os (r) < qs. In the accompanying phase diagram, we also

see that the concentration distribution will approach the spinodal and bimodal boundaries in the ternary

phase diagram with time.
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Figure 6.4. Visualized concentration distributions taken at different times of A- and B-NPs and the

solvent S by spinodal decomposition with the identical condition in Figure 6.3 (left). Corresponding

ternary phase diagrams showing the concentration distributions of the different species are shown on right

side. In the images, different colors denote regions occupied by different governing species with identical

color information in the visualized concentration distributions.
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To analyze the characteristic wavelength A,, we applied a structure factor followed by the characteristic

length scale of the decomposed patterns. In two dimension, the structure factor for the reciprocal space,

S (rsn) is defined as [12,13,16]:

S = NN Pe O)exp 2r r + . (6.23)

Considering two independent concentration variables in the ternary mixture, we should calculate S(rsn)

on the basis of both #,4 and #B , i.e., S(A) and S(B) From the structure factor, we can calculate the
(r,s~n) (r~sn)*

autocorrelation functions for the real space on the basis of both #A and #bB, G(.) , as [12,13,16]:

1 (N -2)/2(N,-2)/2 ^ L +1) sL (j - 1)

G N(N1 exp 2'/ ) ( 12 + =2 A and B, (6.24)
Nyr=-N,/2 s=-N,12 N- N-1

A

where i is an imaginary constant. The 2D characteristic wavelength ; given by the pair-correlations of

the order parameters is defined as the shortest length at which G =0. As Figure 6.5 shows, ;, from

the pair-correlation function based on either #A or #B indicates linearity at the later stages of phase

separation. This implies a power-law dependence, A, - (t - t, )", after the induction time td . This scaling

behavior of A has been observed in both theoretical and experimental studies under a variety of

experimental and computational conditions [17-26]. The conventional prediction for the scaling exponent

of the growth rate of A,2 is a ~1 / 3 [1,14,15,17,19,22-26]; interestingly, the numerical simulation results

shows that a is smaller than expected (i.e., a - 0.26). We have already observed a similar discrepancy

in Chapter 3 for a binary mixture of homogeneous CNPs. In Chapter 3, we explained the discrepancy by

considering the composition-dependent mobility [26], which would interfere with the interface-diffusion-

driven phase separation. The discrepancy observed in the simulation of the ternary mixture of CNPs by

the PFM modeling in this study suggests another explanation. For example, the scaling exponent would

decrease owing to the size difference between the NPs and the solvent. The conventional prediction does

not consider the size differences among the components, which results in the ideal behavior of the

Onsager coefficient [2,9] and the physically relevant assumption that the concentration field can replace

the activity as the order parameter. In contrast, when the components differ considerably in size such that

h = 20 , there is a deviation in the Onsager coefficient and non-unity activity coefficients for each
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component. Another possible reason for the decrease in the scaling exponent would be the screening

effect between a specific type of NP and the solvent by the other type of NP.
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Figure 6.5. Characteristic wavelength, 2,, measured by pair correlation function based on #A (a) and on

#B (b). for the ternary mixture analyzed in Figures 6.3 and 6.4. In the plots, the slopes for the linear

fitting curves (only for the later stage) are provided.
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Figure 6.6. Time dependent concentration distribution of A- and B-NPs and the solvent S by spinodal

decomposition when [#AO BO 0 ]=[0.12 0.34 0.54] and [ZAB ZAS %BS] =[6 3 3]

D, = 5 x 10~" m2s-1 while DA = 10-12 m2 s-I . The dimension for the 2D simulation box is 24 x 24 pM2

incorporated with finite points of 120 x 120 with 10 nm-diameter both for A- and B-NPs.

To examine the effects of the asymmetric diffusivity and initial concentrations among the NPs on phase

separation, we also simulated spinodal decomposition of ternary mixture of CNPs under the condition that

[$AO OBO #B 50 ] = [0.12 0.34 0.54] and [ZAB ZAS BS ][6 3 3] with DB=5x10-" m 2s-1 and

DA =10 12 ms- . As shown in Figures 6.6 and 6.7, droplet-like concentrated regions of CNPs appear, as

observed in Figures 6.3 and 6.4; however, the main difference is that the shape of the droplets is less
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isotropic. This difference is attributed to the considerably large difference in the diffusivities of the two

NPs.
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Figure 6.7. Visualized concentration distribution as a function of time of A- and B-NPs and the solvent S

by spinodal decomposition with the identical condition in Figure 6.6 (left). Corresponding ternary phase

diagram showing the distribution of concentration combination of the different species are shown in right

side. In the images, different colors denote regions occupied by different governing species with identical

color information in the visualized concentration distribution.
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Another interesting observation from Figure 6.7 is the appearance of a wide range of areas in which A-

NPs form nearly homogeneous CNPs (i.e., pink-colored region) that surround the droplet-like

concentrated regions of B-CNPs. In particular, compared to Figure 6.5, the area occupied by A-NPs and

the solvent is much larger. This finding implies that phase separation by spinodal decomposition of

ternary mixture of CNPs with different diffusivities of NPs will produce a more complicated micro-phase

mixture after a sufficiently long time.

Figure 6.8 shows are the temporal evolution of Z measured from the pair-correlation functions

based on either #,4 (a) or #B (b). Notably, spinodal decomposition occurs in at least three stages, earlier,

intermediate, and later stages, which can be distinguished by their scaling exponents. For example, the

earlier stage has a slightly smaller scaling exponent than the intermediate stage, and both exponents are

smaller than the conventional prediction of 1/3. In the later stage, Am decreases, and the absolute value of

the scaling exponent is much larger than the conventional prediction, like those in the earlier and

intermediate stages. The observed decrease in 2 in the later stage does not necessarily indicate a

canceling-out mechanism for spinodal decomposition; rather, it originates from the considerably large

difference in the diffusivities of A- and B-NPs, which results in a local drag effect for the formation of

large droplet-like areas occupied by B-CNPs. Indeed, we can observe a number of smaller droplet-like

areas in Figure 6.6; these areas will contribute to the decrease in 2m in the later stage. From the numerical

simulations of spinodal decomposition of the mixture of A- and B-CNPs, we can observe that the scaling

behavior and phase separation morphologies are strongly affected by the given conditions; this findings

suggests the possibility of future applications of control of the phase separation behaviors, represented by

the characteristic length scale and separation time scale. In the next section, we discuss a method of

controlling the assembly of a ternary mixture of CNPs by surface-directed spinodal decomposition in thin

films.

6.4.2. Surface-Directed Spinodal Decomposition of Ternary Mixture of CNPs.

Considering a ternary mixture of CNPs confined in a thin film, it is natural to try incorporate chemical

selectivity in the confining substrate (either top or bottom substrate) that will direct the overall phase

separation governed by spinodal decomposition. This idea is called the surface-directed spinodal

decomposition and has been a subject of intensive research interest [27-36] for more than two decades in

both experimental and computational studies. The chemical selectivity of the confining walls can be
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realized by surface treatment of the substrate using specific functional groups such as polar groups, amine

groups, or hydrogen-bonding groups [27,29]. To add the chemical selectivity effect, we can modify

eq.(6.16) by adding the surface interaction terms governed by the interface energy between A- and B-NPs

against the confining surfaces, as follows:

For bottom layer:

aj{ +_(____bot) (bot) __

_ _ _ _ - , 0foi g n l - a f ± ( B ( b o t) _ 7 S ( b o t ) )

TP,sO P,+B,original B T,P,# a B T,P,$A original

For top layer:

___ - afo, + (V(top) -{7(1op) ) f0  - +(yB(top) 7 (toP)

aA T ,P,1 B aAA TPB,original a0B TP,$A a0B T,P,,original

where 7y() denotes the interface energy between the i th species and the k th confining wall. We

examined the surface-directed spinodal decomposition of a ternary mixture of CNPs with

[0AO OB SO I= [0.25 0.25 0.50] , %BS] [6 3 3] , [ A(bot) B(bot) S(bot)] kBT [0.1 0.5 0.3] ,

L 'o) Y B (top) 7 S(top)] = kBT[0.5 0.1 0.3], and D A DB = 112 m 2 S-1. In particular, the surface-interaction

parameters were designed to provide a symmetrical contrast bewteen A- and B-NPs against the bottom

and top confining walls. As Figure 6.9 shows, concentrated regions of A- and B-NPs appear near the top

and bottom confining walls, respectively, at later stages of spinodal decomposition. This is easily

predicted from the thermodynamics, which drives the system to minimize the total free energy, providing

attraction and repulsion for specific components. Although the confining walls produce neither an actual

attractive potential nor an actual repulsive potential, it is interesting that the relative surface interaction

strength can draw particular NPs toward the corresponding surface. As Figure 6.10 shows, an undulation

in the concentration appears along the direction normal to the confining walls (i.e., the z -direction). We

can conjecture from the simulation results that the undulation will be damped out with time, nearly

flatteninig the distribution of the concentrated regions of A- and B-CNPs parallel to the confining walls

after a long time. Note also that the overall phase diagram at later times is nearly identical to that

observed in spinodal decomposition without directing effects provided by the confining surfaces (i.e.,

Figure 6.4).

Figure 6.11 shows an additional analysis in terms of the correlation length. In surface-directed

spinodal decomposition, it is important to analyze the characteristic length along the thickness direction

(i.e., thye z -direction); therefore, we need to employ Os as the driving variable to calculate the pair-
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correlation function instead of A or OB . The main reason is that the concentration distribution over the

thickness direction is biased (i.e., asymmetric surface interaction from the bottom and top confining walls)

for A- and B-NPs, whereas the solvent feels a relatively neutral interaction against both the top and

bottom confining walls. As shown in the figure, the phase separation exhibits three distinctive stages in

terms of the scaling exponent of A,, earlier, intermediate, and later stages. Notably, the scaling exponents

for the first two stages are similar to the conventionally predicted value of 1/3 and are nearly identical to

each other. However, in the later stage, the exponent decreases significantly. Interestingly, a significant

decrease in the scaling exponent was also observed in a computational study of surface-directed

nucleation [30]. This can be understood by considering whether the characteristic length scale is

comparable to the thickness of the film. For example, the film thickness exceeds the characteristic length

scale for the separate domains of the concentrated regions by one or two orders of magnitude. In contrast,

in the later stage, the length scale is comparable to the film thickness, indicating that the growth of AM

along the film thickness direction will be geometrically limited, which results in slower growth of , in

the later stage of phase separation.

The possibility of controlling the phase separation morphology and dynamic properties using

surface-directed spinodal decomposition of a binary mixture of CNPs in a thin film suggests the use of a

designated confining substrate designed to have desirable chemical selectivity and a filme of the desired

film thickness. In terms of applications, we can consider the controlled morphology as a functional thin

film in which the distribution of the CNP concentration exhibits interesting periodicity and geometry

when patterned substrates are used.
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Figure 6.9. Time dependence concentration distribution of A- and B-NPs and the solvent S by the surface-

directed spinodal decomposition (i.e., top wall: A-selective, bottom-wall: B-selective) when

[#Ao #BO o ] =[0.25 0.25 0.50] and [AB ZAS BS] -[6 3 3] with DA =DB =1- 2 s'

surface interaction condition for A- and B-NPs and the solvent molecule was assumed to

[ (bo') 7B (bot) (bot) = kBT[0.1 0.5 0.3] and y (tOP) 7B(Iop) (top)] =kBT[0.5 0.1 0.3]. The dimension for

the 2D simulation box is 20 x 10 pm 2 incorporated with finite points of 200 x 100 with 10 nm-diameter

both for A- and B-NPs.
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Figure 6.10. (Top row) Concentration profile of A- and B-NPs, and solvent (red, green, and blue solid

lines, respectively) along the direction normal to the confining substrate (i.e., the z -direction) measured

at different moments of the surface-directed spinodal decomposition of the binary mixture of CNPs.

(Middle row) Visualized concentration distribution as a function of time of A- and B-NPs and the solvent

S by the surface directed spinodal decomposition with the identical condition in Figure 6.9. In the images,

different colors denote regions occupied by different governing species. (Bottom row) Corresponding

ternary phase diagram showing the distribution of concentration combination of the different governing

species with identical color information in the visualized concentration distribution.
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Figure 6.11. Characteristic wavelength, AMI along the direction normal to the confining walls measured

by a pair correlation function based on s for the ternary mixture analyzed in Figures 6.9 and 6.10. In the

plots, the slopes for the linear fitting curves (for 1) the earlier, 2) intermediate, and 3) later stages) are

provided.

6.5. Conclusions

In Chapter 6, we constructed a theoretical framework for a continuum-based numerical simulation of a

ternary mixutre of CNPs in a thin film. Because of the computational cost, the use of previous

methogologies and algorithms to describe phase-separation-driven assembly of multi-component CNPs

would be a time-limited approach. Instead, we used the phase field model (PFM), which assumes that the

system size is much larger than the NP size, in conjunction with the diffuse interface model. Considering

a continuous phase separation mechanism such as spinodal decomposition, we explored several different

phase separation scenarios with different concentration and molecular interaction conditions. For the

study, an advanced numerical algorithm was used to solve the master partial differential equation by

employing the spectral method such as fast Fourier transform or discrete cosine transform. By employing

the spectral method in conjunction with an additional numerical technique, the semi-IMEX method, we

could simulate the phase separation of a ternary mixture of CNPs governed by spinodal decomposition in
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a large-scale system for considerably a long time while maintaining computational efficiency and

numerical stability. We observed that the dynamics of the scaling behavior of the characteristic length

scale, which represents the size of the areas occupied by specific CNPs, is slower than the conventional

prediction; this confirms the effect of the size difference between the NPs and the solvent molecules. We

examined asymmetric diffusivities and initial concentrations of the two NPs and identified three stages of

spinodal decomposition. We extended the study to cover the more interesting situation of surface-directed

spinodal decomposition of a ternary mixture of CNPs confined between upper and lower walls when the

mixture is confined in thin films. We incorporated the effects of the surface by considering asymmetric

surface interaction strengths between specific NPs against the confining walls. A numerical simulation

showed that the confinement effect gives rise to three different phase separation stages distinguished by

different scaling exponents. We also found a decrease in the scaling exponent in the later stage, which

was attributed to a geometric limit imposed by the thickness of the thin film. We confirmed that when the

characteristic size of the concentrated domain of the CNPs is comparable to the thickness, the growth rate

of the characteristic length scale decreases. On the basis of the simulation results and discussion, we

suggest that spinodal-decomposition-driven assembly of multi-component CNPs dispersed in a liquid

medium, followed by thin film formation, will provide a useful route to controlling the assembly

morphology and dynamic properties by controlling the film thickness and surface-interaction strength.
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Chapter 7

Conclusion

In this thesis, we explored a variety of computational methodologies and theoretical models for analyzing

and understanding phase-equilibrium behavior and phase-separation-driven assembly of colloidal

dispersion of nanoparticles (CNPs). The main reason to use these computational and theoretical

approaches is the need to cover the wide range of spatial and temporal dimensions of systems in which

NPs are applied and to consider them as either a continuum variable, a coarse-grained field, or discrete

particles. The wider we extrend the range of our understanding, the more we can elucidate the unknown

equilibrium and non-equilibrium properties of CNPs; consequently, more fruitful application possibilities

and deeper insights can be identified. The preliminary study described in the Introduction revealed that

the phase equilibrium of CNPs can be considerably complicated compared to that of a conventional

mixture because of the high-surface energy of NPs, size difference between NPs and solvent molecule,

the stochasticity for the motion of NPs, and the possibility of longer-range interaction among NPs.

To examine the smallest spatio-temporal dimension for the system in which NPs are dispersed, in

Chapter 2 we studied the formation of NP clusters as a method of phase separation of CNPs. To take

advantage of the colloidal environments of the NPs, we employed a mechanism based on NP motion

driven by configuration-dependent diffusion, considering a single NP as a discrete particle. To describe

the dynamics, a kinetic Monte Carlo (KMC) simulation based on an advanced stochastic algorithm was

employed. Further, the simulation results were compared to a theoretical analysis based on rate theory

(RT). From the KMC simulation and RT calculation, we identified the scaling behaviors of the cluster,

namely, the power-law dependence of the average cluster size/weight and its distribution. Because of the

good agreement between the KMC simulation and the RT calculation, we concluded that the cluster

formation dynamics is scale-invariant irrespective of the NP materials and dispersion medium, although

the kinetics is slower than that of conventional diffusion-limited aggregation dynamics. Our observation

and analysis of cluster formation in CNPs are expected to provide several important implications and
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guidance for both for fundamental materials science focusing on understanding the dynamic properties of

CNPs and industrial applications concentrating on the control of CNP clustering to prepare functional

materials.

In Chapter 3, we described a comprehensive study of spinodal decomposition of CNPs by

introducing a computational method based on a KMC simulation. For the KMC simulation, we developed

an advanced stochastic algorithm, such as a free-energy next reaction method (FENRM), that considers

the interface energy variance, such as the phase field model (PFM). Unlike conventional computational

studies based on the PFM employed in the continuum framework, we suggest that the FENRM algorithm

can address discreteness of the NPs while maintaining computational efficiency for relatively large

spatio-temporal dimensions. This gives the FENRM several advantages: 1) it combines the hard-sphere-

like characteristics of NPs with the continuum field of the medimum in which they are disperse, 2) it

describes the dynamics in considerably larger system dimensions than conventional Monte Carlo (MC) or

molecular dynamics (MD) simulations, and 3) it provides greater computational exactness by addressing

the composition-dependent mobility of NPs. In this study, we observed that the scaling exponent of the

characteristic wavelength for each domain size is smaller than the conventional prediction, which reveals

the importance of the interface-driven diffusion of NPs during spinodal decomposition. The

computational results were also compared to a continuum-based numerical simulation, which also

confirmed the validity of the stochastic algorithm we developed. The FENRM algorithm can easily be

extended to more complicated cases involving multi-component, multi-phase phase transitions where

several different types of NPs are dispersed in solvent mixtures. Another promising point from the study

is that the method can be made more efficient by incorporating a parallelizable computation approach

such as a GUGPU-based parallel-data-distribution method.

In Chapter 4, we introduced another efficient computational algorithm based on the self-

consistent mean-field (SCMF) model to describe the phase equilibrium properties in

mesoscopic/macroscopic dimensions, particularly in the spatial dimension. In practical terms, it is

possible to extend the system's spatial dimensions up to even the millimeter scale. Focusing on the

application of CNPs as functional materials, we studied a distribution of A- and B-NPs in a thin film at

equilibrium. To analyze the separation morphology, we also introduced asymmetric selectivity effects

provided by the confining walls. From the simulation results, we could observe and identify the effects of

different combinations of the initial NP concentration, film thickness, chemical selectivity strength of the

confining walls, and molecular interaction among the NPs. To validate the SCMF-based algorithm, we

compared the simulation results with 3D Monte Carlo (MC) simulations and found good agreement

between the calculated distribution profiles of A- and B-NPs over the entire film and 3D MC simulations
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under different conditions. Additionally, we also found that the computational efficiency is greatly

enhanced. The simulations revealed that the NPs attracted to the bottom substrate are concentrated and

even form built-up layers near the substrate, whereas those repelled from the substrate form a gradual

concentration distribution profile along the thickness direction. By using the SCMF algorithm, we found

that it can be extensively applied to the design of CNP-based functional thin films with desirable physical

properties by computationally predicting a suitable combination of controllable parameters. As a proof-

of-concept demonstration, we illustrated the feasibility of fabricating functional optical materials

composed of three types of NPs in a liquid medium, such as a gradient (refractive) index (GRIN) lens

with micrometer-scale focal length resolution. This algorithm could easily be extended to more

complicated suspensions of multiple NP of various sizes and systems with different geometries, as well as

thin films.

In Chapter 5, we provided a proof-of-concept experimental demonstration of a functional thin

film composed of CNPs. As the model materials, we employed Fe 30 4 and SiO2 NPs dispersed in UV-

curable monomers. In particular, we found that it is experimentally possible to control the phase

separation of the two NPs by driving the superparamagnetic Fe 30 4 CNPs toward the bottom substrate,

under which we applied a relatively weak external magnetic field. For the colloidal dispersion,

dispersions of the two NPs in aqueous solution were mixed with an acrylate-oligomer followed by curing

in a well with a designed geometry. To quantitatively measure the concentration distribution of the CNPs,

we used a microspectrophotometer, which combines an optical microscope with a UV-Vis spectrometer.

The measured concentration distribution profiles of the two NPs were compared to the calculation results

of the SCMF algorithm provided in Chapter 4. The comparison revealed that the experimental data agree

with the calculation results when several fitting parameters are introduced for different combinations of

film thickness and magnetic field strength. The possibility of controlling the concentration distribution

profiles of multi-component CNPs in a thin film, as we observed, suggests further applications such as the

preparation of a GRIN lens in which the concentration gradient of CNPs will generate a gradient in the

refractive index along the direction normal to the film. We suggested that this scheme and the

controllability of the concentration distribution of a ternary mixture of CNPs in a thin film can be

progressively extended to design a GRIN lens for biomedical applications; for example, to replace the

lens in the eye, which loses focusing performance with aging.

Finally, in Chapter 6, we presented theoretical and numerical studies of phase separation

governed by spinodal decomposition of a ternary mixture of CNPs, assuming that the system's

dimensions are sufficiently large to be treated as a continuum framework. The analysis was based on the

phase field model (PFM), which employs a continuum order parameter and a diffuse interface between
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phases. Essentially, the mixture of CNPs is a ternary mixture (A- and B-NPs dispersed in solvent S), and

it is computationally challenging to describe the phase separation dynamics governed by two order

parameters on a large scale in both the spatial and temporal domains by employing discrete-particle-based

methods such as MD, MC, or KMC. Instead, we suggested the of a PFM-based numerical simulation that

employs two advanced numerical techniques: the spectral transform and the semi-IMEX methods. The

continuum-based partial differential equation set governing the spatio-temporal evolution of the two order

parameters during spinodal decomposition was effectively described by the numerical simulation. The

results of simulations under different condition, demonstrated the evolution of the phase-separation

morphology as a function of time; in particular, we measured the time-dependent behavior of the

characteristic length scale, which corresponds to the separate domains. The characteristic length scale

analysis revealed several interesting features: 1) smaller scaling exponents than those found in

conventional spinodal decomposition studies and 2) three-stage phase separation dynamics for the scaling

behavior when the two NPs have very different diffusivities. We also extended the study to surface-

directed spinodal decomposition of a ternary mixture of CNPs in which the CNPs are confined in a thin

film with upper and lower surfaces having asymmetric chemical selectivity for specific NPs. The

simulation results also exhibited three-stage phase separation dynamics even with equivalent diffusivities

and initial concentrations: in addition, they revealed the time-dependent evolution of an undulation in the

concentration field along the direction normal to the film. On the basis of the simulation results and

discussion, we suggest that spinodal-decomposition-driven assembly of multi-component CNPs dispersed

in a liquid medium, followed by thin film formation, will provide a useful route to controlling the

assembly morphology and dynamic properties of thin films by controlling the film thickness and surface-

interaction strength.

In conclusion, this thesis tried to address problems regarding the equilibrium and non-equilibrium

properties of an assembly of CNPs by employing several types of computational approaches to cover a

wide range of spatio-temporal dimensions. Additionally, it provided several novel and efficient

computational algorithms to solve complicated problems concerning the phase equilibrium and separation

dynamics of CNPs. The computational studies and developed algorithm were compared to mathematical

proofs and theoretical analysis as well as other types of computational approaches to check their validity.

Further, this thesis presented proof-of-concept experimental data regarding the application of CNPs to the

fabrication of functional thin films in which the concentration distribution of CNPs can be controlled with

proven agreement between the experimental observations and computational or theoretical predictions.

The original works presented in this thesis can be progressively applied to both industrial applications,

such as the preparation of functional materials or devices composed of CNPs with a desiged shape, scale,
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and geometry, and fundamental understanding of the dynamics of the assembly and structural

andstatistical properties of CNPs under various conditions.
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Chapter 8

Future Works

8.1. Cluster Formation of Colloidal Dispersion of Janus NPs

8.1.1. Introduction

As development of experimental techniques to synthesize colloidal NPs progresses, there have been

notable advances in preparation of NPs that have anisotropic features [1-4]. The "anisotropicity" of the

particle would originate from a variety of physico-chemical properties, such as anisotropic geometry or

shape, multi-facet crystalline particle with different surface energies, asymmetric interaction strength or

range, asymmetric elastic properties of the coating ligand molecules, asymmetric patchy molecule

distribution over the surface [5]. One notable example of the anisotropic NP is a Janus NP which has the

binary properties in terms of the molecular interaction with neighboring particle [1,5]. As its nickname

indicates, the asymmetry in the molecular interaction is provided by two chemically different functional

groups (compared to the 'two faces' of Janus) on the particle surfaces. For example, let us imagine a

Janus NP partially covered by hydrophobic functional group including oligomers and by hydrophilic

groups including hydroxyl groups. The asymmetry in the molecular interaction mainly concerns the

rotation of the particles. In other words, the alignment of the orientation between the neighboring particles

governs the particle assembly; therefore, phase separation morphologies such as cluster formation,

spinodal decomposition, and nucleation at equilibrium are determined accordingly. The cluster formation

of Janus NPs would be distinguishable from other conventional cases of molecular self-assembly, such as

assembled structure of micelles in that micelles are chain-like molecules in which functional group

distribution is aligned along the direction parallel to the chain. In Janus NPs, the particle's shape is

considered as spherical (3D) or circular (2D) which does not reflect on the shape anisotropy. This

difference between micelles and Janus NPs is expected to produce the different assembly morphologies.

In particular, we can expect that Janus NPs will produce dendrite-like self-assembled structures while
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micelles will produce sphere-like assembled structures to minimize the interfacial free energy between the

two different chemical groups. In this section, we provide some results under on-going research of the

cluster formation of colloidal dispersion of Janus NPs using two different interaction models to explorer

the dynamics on cluster formation focusing on the scaling behavior of cluster size and weight as well as

anlaysis of fractal dimension. For the study, we extended and modified the kinetic Monte Carlo (KMC)

algorithm used in Chapters 2 and 3.

8.1.2. Models for Molecular Interaction in Janus NPs

To consider anisotropicity in the molecular interaction, we considered two models. First, as illustrated in

Figure 8.1, we assumes that the interaction is a linear combination of the isotropic and anisotropic parts as:

U,,U U. A
aso s/ - s

iso iso iso aniso

iSO12

Ais r r '

Uso 
21-

-I r2 +- ±rcos (0i +0) , (8.1)
Aniso i=AB 4

where the Lennard-Jones potential was employed for the isotropic part (Ujso) and van der Waals attractive

interaction was used for the anisotropic part (Uniso). In eq.(8.1), the spatial unit was normalized with

respect to the particle size, o-. In particular, for Uo1 50, we also considered the orientational angle of the

particle with respect to the pre-determined primary system direction, 0, as well as the orientation angle

of a certain particle relative to other particles, 05. The degree of the anisotropy is controlled quantitatively

by the ratio between interaction energy density of A-SO and Aaniso, namely fis . Figure 8.2 shows some

examples of the total interaction energy as a function of the orientational angles and the interdistance

among NPs. From the figure, as expected, we can find that U,, is minimized when the orientational axis

is aligned and orientational angles are identical.
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Figure 8.1. A schematic of the isotropic and anisotropic interaction between two Janus NPs

The second model was adapted from the original model suggested by Kern and Frenkel [6] recently. As

illustrated in Figure 8.3, this model assumes that the molecular interaction is the Lennard-Jones type and

acts like a switch whether the neighboring particles face to each to other (On) or not (Off). The

anisotropicity can be controlled by the 'On' range of the alignment of the orientations of neighboring

particles. For controlling the interaction range, the model introduces the polar angle 5 that works as a

parameter manipulating the potential as

If n, -r, 2 > cos d & n2 -r 2 > -cos5

U 1 (r) = 4c (r-2 -r-6)

Else

U2 (r) = 0, (8.2)

where r,2 denotes the unit vector of particle 1 relative to particle 2 and n denotes the orientational

vector of the ith particle.
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Figure 8.2. (a) A 2D map for the total interaction energy (U,,,) between two (A and B) Janus NPs as a

function of the relative orientational angle ( # ) and the difference between the orientational angle

(I0A - OB ) when the inter-distance ( r ) is 2c. (b) A 2D map for U,,, as a function of rAB and

OA - OBI when =0 . (c) A 2D map for Uot as a function of rAB and # when IOA -OBIO

r12

ni

n2

Figure 8.3. A schematic of the model for Janus NPs suggested by Kern-Frenkel model [6] (The original

image was taken from [7]). Different colors indicate different surface properties which generate

anisotropic interaction potential between the two Janus NPs.

The particles illustrated in Figure 8.3 are for a specific case where 5 = ;r / 2, that indicates that the 'face'

of a particle is a half and half mixture like the two heads of Janus. Compared to the first model, the Kern-

Frenkel model produce less close-packed assembly structures due to its discrete nature in the interaction

potential. This difference is due mainly to the fact that the first model allows the particles to have more

attempts to match the alignments, whereas the second model attempts is limited to more robustly

restricted manner. This is similar to the difference in observed morphology of the assembled structures of

particles governed by either diffusion-limited aggregation (DLA) or reaction-limited aggregation (RLA),

whereby RLA drives the particle to form more compact morphology, whereas DLA is less robust to form

the close-packed structures.
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8.1.3. Results and Discussion

By employing the KMC algorithm, we simulated how the cluster formation is affected by the introduction

of the anisotropic part in the molecular interaction. For the simulations, we examined a 2D case. In terms

of the computational cost, it takes normally double amount of computational time compared to isotropic

NPs, since the simulation of Janus NPs requires updating the heapsort data structure of the waiting times

of NPs' rotational diffusions as well as translation diffusions. In a 3D case, further increase in the

computational cost is expected when addressing two independent angles for the rotational degrees of

freedom. We examined the models 1 and 2, respectively. For the simulation, the NVT ensemble with

noo2 = 0.174 , f = 10-2 was assumed when the diffusivity of a NP as D = 10-12 m 2 s-' at

kBT / c = 0.5. Quantitative measurements of the average cluster size and weight were performed by

using the ACCA as used in Chapter 2. Figure 8.4 shows clusters of Janus NPs according to model 1. The

clusters appear to be close-packed structures with increasing. This is more clearly demonstrated by the

temporal evolution of the radial distribution function, g(r). However, note that the formed cluster

shapes are asymmetric rather isotropic as was observed in the case of isotropic CNPs in Chapter 2. For

example, the average aspect ratio (not shown in this chapter), which can be defined as the longest to

shortest interdistance ratio between particles on the perimeter of the cluster, of clusters was measured to

1.97 , and this is considerably larger than the observed value 1.14 in the case of isotropic CNPs.

Therefore, we can find that the anisotropic nature in the molecular interaction affects the shape of the

clusters. Additionally, we can also observe that the distribution of the orientation angle (0) becomes a

binary distribution; in particular, the distance between the peaks in the binary distribution of 0 becomes

z with increasing time. This result is easily expected from the eq.(8. 1), which indicates the total system

free energy is minimized at (IO -01) =0 or z .
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Figure 8.4. Temporal evolution of cluster morphology of Janus CNPs according to model 1. The first row

denotes cluster morphology accompanied by illustration with the orientation angle ( 0 / 2T) with different

colors (in second row). On the third row, distribution of 0 is given, and on the fourth row, radial

distribution function (g (r)) is provided.
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Figure 8.5. (a) Scaling behavior of the average size of the clusters of Janus NPs according to model I

(green and red lines are for (R,) and (R,) with linear fitting slopes). (b) Scaling behavior of the

average weight of clusters (blue and red lines are for MW and MN with linear fitting slopes).

Figure 8.5 shows scaling behaviors of clusters represented by power-law dependences of the

average cluster size (measured by RM or Rg ) and weight (measured by MN or Mw ). Interestingly and

qualitatively, it is notable that the growth rates of the size and weight are not much different from those

from the case of isotropic CNPs clusters in Chapter 2. However, it is also notable that the growth rate of

size measured by R9 is greater than the one by Rm. Note that there is a considerably large difference in

the growth rates of weight between MW and MN. This indicates that the anisotropic nature of the

molecular interaction gives rise to the greater polydispersity of the clusters, which results in more non-

universal distribution of the weight and size. For future works, quantitative analysis of the size/weight

distribution with appropriate physical model based on rate theory is required. From the least-square fitting,

we can also calculate the fractal dimension of clusters d ; df ~1.67-1.88 based on RM and

df ~1.52-1.71 based on Rg . This is a striking in that df is considerably smaller than the one observed

from isotropic CNP clusters. The less the value of d , the more the shape of cluster appeared dendrite-

or chain-like. From the simulation results based on the first model, we can conclude that the anisotropic
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feature in the molecular interaction leads to a decrease in the fractal dimension, non-universal distribution

of weight/size, and high aspect ratio of the cluster shape.

From the simulation results based on the second model, we can observe more interesting

properties of Janus CPN clusters. First, as Figure 8.6 shows, as expected, they form less-compact clusters.

This is distinctively represented in the analysis of g (r), whereby intensities of peaks corresponding to

the nearest neighboring shells are weak as well as low signal-to-noise ratios. Further, the orientation-

orientation correlation among Janus NPs represented by the distribution of ni -n indicates that there are

two major orientational configurations of the nearest pair of the Janus NPs such that (1) the parallel

orientational directions which are normal to the inter-distance vector corresponding to the relationship of

n on, =1 and (2) the opposite orientational directions which are parallel to the inter-distance vector

corresponding to the relationship of n on = -1 at later times [7]. Considering that the intensities of the

two peaks found from the distribution of n-n, are considerably greater than those measured at other

positions, it can be conjectured that the cluster formation of the Janus NPs under the second interaction

model is mainly driven by interaction between nearest neighboring NP pair. This will result in the less

compact cluster structure, and may give rise to non-fractal relationship for the cluster formation. This

finding also implies that the power-law dependences of the growth of cluster size and weight would be

deviating either from the typical behavior or observation from model 1 and the case of isotropic CNPs.

Indeed, more interestingly, the cluster growth appears to be relatively slow and even stalled after certain

time as shown in Figure 8.7. In particular, the growth rate of the average cluster size measured either by

(R ) or (R shows the scaling exponents which are about half the values observed from model 1 or

from isotropic CNP clusters, whereas the exponents for the growth of the average weight of clusters are

similar to the previous analysis. This results in unphysical measurement of the fractal dimension

df ~ 2.67 -3.39 on the basis of RM and df ~ 2.27-2.88 on the basis of Rg . Considering the

simulation is done in a 2D system, this observation of fractal dimensions indicates the morphology of the

cluster might not be a fractal entity. Notably, increasing fluctuations in the size and weight are observable

with increasing time. It appears that the cluster virtually stops growing after a certain time (i.e., around

4x 10-4 s). This stalling in the growth is also observed in Figure 8.6, where the cluster morphology of

Janus CNPs does not change much between t = 3.381x 10 4 s and t =1.238x 10 2 s. Moreover, the

functional forms of g (r) between the two times are also considerably identical.

227



t =9.747x10-6S

* .4

% 6..ab.% f.to o0 ba..

*04.44

So *0 000 0 0 so 0

t. -0 0t 0.0

t = 3.381x10-4 s

..to

06A 41~ .4d > 10..4

q 4 % A* got-.4* ,,'~ Eb toot1 o

0 % &0 of'

Ib iW 1*~ - 4 44.55

4 -, # .4 'is '.~

0.06

t =1.238x10-2

0 10

0.05.

10

5

0o s5

0.04

0.03

2 0.02

0.01

-0.s 0 0.5 1 1
n,.n2

40

30

-0.5 0 0. 1
nl-n2

20

0
0o 2 4 6 6 10
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This finding indicates that Janus NPs according to model 2 would not form the 'real' cluster in

terms of fractal properties measurement. For future work, detailed and more fundamental studies on the

basis of equation of state for the phase diagram and transition [7-9] for more realistically-modeled Janus

NPs would be necessary.
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Figure 8.7. (a) Scaling behavior of the average size of the clusters composed of the Janus NPs according

to model 2 (green and red lines are for (R, ) and (Rg) with linear fitting slopes). (b) Scaling behavior of

the average weight of the clusters (blue and red lines are for MW and MN with linear fitting slopes).

8.2. Cluster Formation of CNPs in Polymer Gel Mesh

8.2.1. Introduction

We have provided theoretical, computational, and experimental results on the use of an external field for

controlling the phase-equilibrium-mediated assembly of CNPs in this thesis. Another method of

controlling the phase separation of CNPs without using of external fields or stimuli, phase stabilizers or

surfactants can be employed. Further, preparation of additional components in more functionally

organized forms would be more useful for this purpose. Recently, controlled nucleation of precursor

pharmaceutical molecules using a polymer gel mesh, whereby the pore size distribution is uniform around
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few nanometer-scale [10]. What we can observe from the reported experimental results is that the gel

mesh can work as a frame in which the cluster formation is physically controlled. In this section, the

concept of employing the polymer gel mesh is applied for the simulation on the basis of the KMC

algorithm with preliminary simulation results for the controlled cluster formation of CNPs. With different

gel mesh sizes and initial concentrations, cluster formation can be controlled in terms of the average

cluster size/weight as well as scaling behaviors.

8.2.2. Model for Polymer Gel Mesh

To model the effects of the polymer gel mesh, NPs are assumed to interact with the gel mesh via the

attractive van der Waals potential, UGP(r),as[11,12]

UGpr)- 16AGP(r 2 +3r±6) (8.3.)

9r(r+2)3 (r+4)

where AGP denotes the interaction parameter. Eq.(8.3) is based on the van der Waals interaction between

a hard-sphere and an infinite cylinder as illustrated in Figure 8.8. The mesh structure of the gel is also

described as a 2D square lattice-type structure accompanied by the periodicity of , which is comparable

to NP size. More realistic description of the mesh structure, such as a model based on the percolation

theory, would be more appropriate for future work,. In this section, it would be sufficient to assume that

the mesh has the network structure with a characteristic periodicity.
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Figure 8.8. A schematic for the interaction between a single NP and the polymer gel mesh (left). The gel

mesh modele as network structure with a 2D square lattice periodicity of (right).

8.2.3. Results and Discussion

Using the model shown in the above section and the KMC algorithm, we simulated cluster formation of

CNPs when they are dispersed in a thin film in which the polymer gel mesh is implanted. To examine the

effects given by the periodicity of the polymer gel mesh, we introduced five different periodicities such

that / o =2, 5, 10, 20, and 40. Figure 8.9 shows the cluster morphologies of CNPs at long times

with different values of and different initial concentrations O . As the figure shows, we can observe

an increasing behavior of cluster size with increasing and O, . However, a close look reveals more

interesting dependence of the cluster size and weight on . For example, there is the optimized gel

spacing for achieving the maximum cluster size when the initial concentration is high (see Figure 8.10).

In particular, 5~ 20o- is observed to be the optimal gel spacing when O > 0.09. Interestingly, this

finding is also observable from the experimental results on the controlled nucleation of precursor particles

in the polymer gel mesh [10] reported by Ying et al., who suggested that it would be critical to control the

nuclei size by balancing the solute-solute (i.e., Aspirin precursor particles) interaction relative to solute-
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polymer interaction, and the balance is mainly governed by the mesh spacing [10]. As apparent from the

results in this ssection, we also suggest that the interaction among NPs will be screened by the discrete

but periodic field of the gel mesh; therefore, the effective gel mesh size optimized by balancing the

distance between NPs will be the critical factor in controlling the cluster size and weight (or to maximize

the average cluster size). Although it is not shown here, it is also notable from the simulations that the

polydispersity given by Mw / MN, which represents the uniformity of the cluster morphology, reaches

the maximum at a certain gel spacing; and this spacing decreases with increasing #P . However, this

spacing is not equivalent to the spacing for determination of the optimal cluster formation reported in

Figure 8.10. This finding implies that the control of the cluster size and morphology by controlling the gel

mesh spacing should also consider the variation in the cluster polydispersity as well as the change in the

maximum nuclei size and compactness. For future work, a 3D simulation considering more realistic

decription of the gel mesh structure with a balancing factor among the NPs with respect to the polymer

gel mesh would be necessary. The on-going research in this section is expected to provide a substantial

advantage for controlling phase-equilibrium/separation-mediated-assembly of colloidal quantum dots and

atomic-level solutes as well as NPs.
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Figure 8.10. A 2D maps for the dependences of (R, ) (a), (R, (b), MN (c), and Mw (d), on and

OO . The examined combinations of and OP are taken from Figure 8.9. The values of the average

cluster size and weights denoted by different colors indicate log-scale values.

8.3. Physical Assembly of CNPs by Controlled Spinodal Decomposition

8.3.1. Introduction

As presented in Chapters 4, 5, and 6, it is strategically possible to employ the external stimulation, such as

an external field to drive and control the assembly structure of CNPs by controlled phase-separation and -

equilibrium. However, this approach would be limited to practical applications owing to additional

process costs, unknown correlations in the phase equilibrium arising from long-range interaction between

NPs and the external stimuli, and designing preferable structure of the assembly with desirable patterns

and periodicity. Here, we present some results obtained from another strategy of controlling the phase

separation of CNPs: physically controlled spinodal decomposition. By the physical control, we mean the
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technique on the basis of control of fluctuations in the initial concentration. This technique is

distinguishable from the chemical control, i.e., functional-group treatment of the confining substrate

surfaces. Rather, as mentioned in Chapters 3 and 6, the technique aims manipuatling the spontaneous

phase separation by controlling spinodal decomposition. This fluctuation is actively initiated by thermal

or background white noise. If we ever can control this initial noise by certain methods, it would be

interesting because we can control the initial instability to give designated morphologies or patterned

assembly structures. This approach is also expected to enable easier but more complicated patterning of

3D sturctures. In this section, we present numerical simulation results for the physically controlled

spinodal decomposition of CNPs in which homogeneous NPs are dispersed and under phase. For the

computational method, we used similar approaches provided in Chapter 6 on the basis of the continuum

framework assuming that the dimensions of the system under consideration is sufficiently greater than the

NP size. From the simulation results, we found that it is possible to control the phase separation

morphology of CNPs and the characteristic wavelength in both periodicity and domain size, at least

theoretically and computationally.

8.3.2. Theoretical and Experimentally Applicable Model

One possible method of controlling the initial concentration fluctuation is to employ laser interferometry,

whereby either NP or dispersion medium is sensitive to a wavelength in specific range of incident light.

As Figure 8.11 shows, it is advantageous to control the interference intensity and time-drag to produce

various interference patterns by using a beam splitter and reflection mirror sets. Among the representative

interference patterns are the Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) patterns [13-15].

Detailed information on the formation of these patterns is beyond this thesis; however, note that these

patterns are on the basis of the controlled transverse modes of electromagnetic wave in either Cartesian

(for the HG patterns) or cylindrical coordinates (for the LG patterns). By controlling the interference path

and diffraction angle, as shown in Figure 8.12, various patterns are obtained. If these interference patterns

are directly mapped onto the surface of a thin film of the CNPs and can be translated into the information

on the initial concentration fluctuation by the proportional relationship between the concentration

fluctuation and intensity of the interference pattern felt by either by NP or dispersion medium, it can be

conjectured that the initial random noise would be under control to be transformed into the non-random

one. The obstacles among the theory and practical applications, such as a relationship between the

concentration fluctuation and light intensity are still under question for realistic implementation; however,

the idea would be the first step.
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Figure 8.11. A schematic illustration of the laser interferometry. The original image was taken from [14].
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Figure 8.12. Interference patterns which can be produced by the laser interferometry and diffraction. (a)

The Laguerre-Gaussian (LG) and (b) Hermite-Gaussian (HG) patterns. In the pattern images, two-digit

numbers are for the radial-angular group number for the symmetry nodes (for (a)) and horizontal-vertical

group number for the symmetry nodes (for (b)). The original images were taken from [14].

C

LM

0.

O

0 0

237



Figure 8.13. Temporal evolution of the physically-controlled spinodal decomposition of CNPs initiated

with different controlled patterns; the first column for the case with the LG [3 4] pattern, the second

column for the case with the HG [3 3] pattern, and the third column for the case with the designated

theoretical pattern with the MIT logo. Initial condition was commonly examined at OO = 0.5 with

= 0.29, h = 20 , D = 10-11 m 2 s, and non-flux boundary condition.

Shown in Figure 8.13 are the images obtained from the 2D numerical simulations of the exemplary

temporal evolution of the assembly structure of the CNPs by the physically controlled spinodal

decomposition with different initial patterns. As apparent from the simulation results, we can observe that

the initial control of the fluctuation in the concentration field would result in symmetric and anisotropic

separation domains of CNPs directed by the initial patterns throughout the phase separation. However, the

direction effects would be diminished as time goes by, which shall give rise to the separation domain

morphology similar to the one predicted and observed in the case of intrinsic spinodal decomposition.

We extended the idea to examine the effects given by the different periodicities (AE) of the

initially controlled concentration fluctuation as provided in Figure 8.14. As the model initially controlled

concentration fluctuation, we tried a sinusoidal profile of O, (r) such that

P b(X,Y, Z) = 11 (#, + aj#po cos (q, ,t j ), (8.4)
j=X,YZ

where q,,tj is the wave vector for the periodicity (i.e., q,, 2 / 2 E 1 ) and aj is the amplitude of the

initial fluctuation in j th dimension. From the simulation results in 2D where 2 EX = 2
E,Y, we could also

observe that the initial periodicity will direct the spinodal decomposition morphology with directed

periodicities and symmetries; however there is a converging behavior of the phase separation which is

similar to the one observed in the case of intrinsic spinodal decomposition at long times. This converging

behavior is also observable from the time-dependence of the characteristic wavelength of the phase

separation of CNPs, Ac , with different periodicities at the initial stage (see Figure 8.15). From the

temporal evolution of Ac, we can find that will converge into the one predicted by the intrinsic spinodal

decomposition. This finding is interesting in that one can utilize the possibility of controlling the

symmetry of the separated domain with predictable domain size.
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Figure 8.14. Temporal evolution of the phase separation in 2D governed by the physically controlled

spinodal decomposition with different periodicities of the initial pattern for the fluctuation control (2AE).

Initial condition was commonly examined at #O = 0.5 with X = 0.29, h = 20 , D = 10-1 m2s1, and

non-flux boundary condition.
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Figure 8.15. Temporal evolution of the characteristic wavelength of the phase-separated domains (Ac)

from the physically controlled spinodal decomposition with different AE. AC was analyzed from the

images in Figure 8.14.

The other way for the physical controlling is to employ photo-sensitive dispersion materials such

as photoresist monomers. These materials react under the specific range of the incident light to produce

polymerized or cross-linked structure. Interestingly this approach will result in change in the chemical

properties of the materials as well as in the initial concentration fluctuation. We applied the same

numerical methods to examine this way of physical control in 3D case as shown in Figure 8.16. From the

simulation results, we can find that the controlling strategy will be sustained at the long time of the

spinodal decomposition both in periodicity and symmetry of the separated domain. For the future work,

240

)E= 80000 2

....... ...... ....... 9

~=4000O

. 0

7= 200W

I



more practical ideas and procedures are required to implement the present strategy for the physical

control for the spinodal decomposition.

0.05 S t = 3000 s

t = 400 s t =4000 s

t = 750 s t =5000 s

t = 1500 S t =7000 s

Figure 8.16. Temporal evolution of the phase separation in 3D governed by physically controlled spinodal

decomposition. Initial condition was commonly examined at $, = 0.5 with , 0.29 , h = 20

D = 10~1 m 2 s-1, and periodic boundary condition.
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Appendices

Appendix A. Kinetic Monte Carlo Algorithm on the Basis of Next

Reaction Method

A.A. 1. A Kinetic Monte Carlo Algorithm on the Basis of First Reaction Method

The fundamental idea about the stochastic simulation algorithm (SSA) suggested by Gillespie [1] was to

find the minimum waiting time among all the reaction propensities followed by to update the reaction

configuration. This method is also called the first reaction method (FRM) because it finds the first

reaction which is on the top of the list for the fastest reaction. Although this method is stochastically exact

and relatively easy to implement, it is computationally expensive; from the generation of random numbers

at every iteration step. This gives rise to computational cost proportional to the number of reactions

(0 (N,,)). Additionally it is inefficient for diffusion-related problems including spinodal decomposition.

A.A.2. A Kinetic Monte Carlo Algorithm on the Basis of Next Reaction Method

Instead of the FRM, Gibson and Bruck [2] suggested much more computationally efficient algorithm

based on the reusing of the random numbers and maintaining the data structure on the order of the waiting

time of the reactions. A detailed mathematical proof and the principle showing how it can enhance the

computational efficiency from 0 (N,,) to 0 (log (N,,)) can be found in the original paper of Gibson

and Bruck. In this part, we showed how it can work for the diffusion-related problem. The first step to

solve the diffusion-related problem is to set the diffusivity as a quantity which is equivalent to the

'reaction kinetic constant' such that

D
d = 2

h2
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where h denotes the size of compartment. The unit of d is equal to (Number of Events/Unit Time).

h

Unit
compartment

cell

[Alk-1

[Alk-L

[Alk

[Alk+L

[Alk+l

Figure A.A. 1. A schematic diagram for the diffusion process of A-type particles among compartments in

2D.

As shown in Figure A.A.1, the diffusion of matter among the compartments can be described as the

effective chemical reaction among neighboring cells such that

At t, [A]kI (t) d ) [Ak (), (A.A. 1)

where [A], (t) is for the number of A-type particles in the k th compartment at time t. The mean

waiting time for the diffusion of a single particle in eq.(A.A.1), id, can be written as [1]

1 (1
d = [Alog ( )

d d[A ],_, (t ) rand
(A.A.2)

where rand is for the random number which is uniformly distributed from zero and unity. Then after 'd,

there will be change in the number of A-type particles such as
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[A k-(+ - rd k=[A k-1 ,

[A]k(t +r ) = [A (t) ± 1. (A.3)

This can be applied in the ID diffusion case with a periodic boundary condition for instruction as

presented in Figure A.A.2.

dl

d d d d

d 9 10 d11 d12

d7

Figure A.A.2. A schematic diagram of the ID diffusion with periodic boundary condition

In this diffusion case, we can start with an exemplary

( N, ) in each of the boxes such that

initial configuration with the number of particles

N 8 6 9 4 3 5

Next, we calculate the propensity, Pr. , and subsequent average waiting time, ri , i= 1, 2,, 12, of the

diffusion of a particle in each of the boxes such that

0.0395 0.0963 0.1844 0.4204 0.6905 0.0161 0.047 0.1294 0.0371 0.1054 0.7250 0.0957

Based on the calculated rv, we can apply a sorting method such as the heapsort which utilizes the binary

tree structure to find out which box has the shortest average diffusion waiting time. In this case, the

heapsort makes following binary structure;
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A

*rt
Fastest

diffusiont

and on top of the tree structure, the diffusion process d6 is located because it has the shortest waiting

time. By letting the diffusion process d6 occur, and update the system time as

new = old + 6'

By the diffusion process d6, we can update the number of particles in each of the boxes as

And this gives rise to the updated diffusion propensities followed by update of the average waiting time

for the diffusion as

In this updated waiting time list, it should be noted that the update was done only for the diffusion

processes which were affected by the diffusion process d6. (i.e., the diffusion processes dl, d6, d0,

and dl 1). Then, we again apply the heapsort to construct the binary structure and find the fastest

diffusion in the updated system configuration as follows:

246

........... ..... ...... . ......... ............ -.- I . .. ........... . . . .......... .. .. . . .....

p1

O.06 0.A84 O.4204 0.690S 0.0473 0.129 0.0371 - t0957



S

0

*4 0.

On top of the updated binary structure is located the diffusion process

the system time as

dl, and therefore, we can update

new = old +'

The simple illustrated 1D diffusion tells us about the importance of maintaining the binary

structure of the average waiting time of the diffusion propensities as well as finding diffusion propensities

which affected by the fastest diffusion process. In order to effectively and efficiently find the affected

processes, we need to construct an additional data structure such as dependency graph which how the

different diffusion or reaction processes are dependent of each other. This is a necessary condition to

reduce computational load for the generation of random numbers as well as finding the fastest diffusion

which results in the reduction in the computational cost from O(N.,) to O(log(N )). In Figure A.A.3,

we presented a time-dependent 2D diffusion based on the NRM assuming non-flux boundary condition

with diffusivity of 1011 m 2s'. From the figure, we can find that the NRM can exactly describe the 2D

diffusion process.
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Diffusion
directions

Iteration = 103, Iteration = 5x103,
time = 0.23 sec time = 1.03 sec

Iteration =5x104, Iteration = 10-5,
time = 10.3 sec time = 20.7 sec

-

Iteration = 104, iteration = 2x10 4,
time = 2.07 sec time = 4.12 sec

I

I
Iteration = 2x105,
time = 41.2 sec

I
I

Figure A.A.3. A temporal evolution of concentration distribution over the 2D box by diffusion simulated

by kinetic Monte Carlo method based on the NRM.
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Appendix B. An Algorithm for Cluster Configuration Analysis

A.B. 1. Structural Analysis of Clusters by the Radial Distribution Function

The first method to analyze the structure and geometry of the clusters composed of particles is radial

distribution function (also known as pair-distribution function), g (r). This function provides how much

the cluster is similar to the ideal close-packed structure (i.e., hexagonal close-packed (HCP) structure in

2D) and how many neighboring shells a single particle in the cluster has in average. It also helps one to

determine the boundary of the clusters based on the peak positions.

In Figure A.B. 1, we provided an image of exemplary clusters accompanied by the resulting g (r).

From the figure, we can find that the clusters try to maintain the structures similar to the HCP structure;

each of the peaks in g (r) is matched with different numbers of neighboring shells. Another information

obtained from g (r) is the critical inter-distance among particles such that r = 1.58o-= =, which is

responsible for the distance at which g (r) has the local minimum value between the first two peaks. r'

can be employed to determine an independent cluster from others. For example, we can assume that two

particles with inter-distance over r; are not in the same cluster.
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Figure A.B. 1. An exemplary simulated image of clusters by KMC algorithm (left) and the resulting radial

distribution function, g (r) (right). For g (r), the distance was normalized with respect to the particle

diameter o. Given in the insets of the right plot are illustrated hexagon-shaped clusters with increasing

number of shells. Each of the peaks in g (r) was matched with the expected cluster structures to

demonstrate how the peak positions in correspond to the number of shells.

A.B.2. Configuration of Cluster: Size Measurement

Although the information from g (r) is substantial to analyze the structure and crystallinity of clusters, it

cannot provide information about the shape and size of clusters and volume occupied by clusters. To

quantitatively analyze the nucleation/growth process, I also developed an algorithm which analyzes

statistical, geometrical, and topological information of formed nuclei and its growth termed as algorithm

for cluster configuration analysis (ACCA). The detailed procedure to run the ACCA is provided in Table

A.B. 1. By using the ACCA, we can quantitatively define the clusters as well as determine whether a

certain particle is a monomer or not.

Provided coordinates information of particles in a certain cluster, we can also determine the size

of clusters by employing following size definitions:

(1) The radius of gyration, R9

250

*,j* *.~j** f~~'



1/2

R, = r -ro 12

where ro is the position of the particle which has the minimum total inter-distance among other

particles at the position r in the cluster.

(2) Maximum distance from ro to the farthest position of particle in the cluster, RM

RM maxOr -r).

(3) Radius from the random walk model, RR

This quantity is calculated as follows:

Find the shortest inter-distance of each of the particles from its neighboring particles in the cluster

(d, =min (r -r(" ),) and calculate root of the sum of d.

R R = di )112 , d,. = min (r . - r "(

Table A.B. 1. A summarized computational procedure to quantitatively measure the cluster size based on

the algorithm for cluster configuration analysis (ACCA)

Algorithm for Cluster Configuration Analysis (ACCA) for Cluster Formation Simulation

Step 1. Set initial positions (considering self-exclusion effects) of NPs

Step 2. Find a list of nearest neighbors (nns) for each of the NPs within the cutoff distance r =1.58c-

Step 3. Find monomers (particles with no nns)

Step 4. For the remaining particles (not monomers) accompanied by respective nns

Step 4.1. Find a list of nns of the 1" particle (= {NN 1}), and make a set for particles indices

involved in the Ist cluster (= {CLUS1 }) including the Ist particle itself and its nns

Step 4.2. For the ith nn particle of the Ist particle (nI ), find a list of nns of the Ith nn particles

({NNni}) and update {CLUS 1} such that {CLUS 1 new} = {CLUS1_old} U {NNfij}

Step 4.3. Repeat Step 4.2 until {CLUS1 new} = {CLUSOId}

Step 4.4. If {CLUS1 new} = {CLUS1_old}, set {CLUSI} = {CLUS 1 new} and exclude particle indices
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in {CLUS 1} from entire particles' indices and repeat Step 4 to construct {CLUS 2}

by repeating Steps 4.1-4.3.

Step 4.5. Repeat Step 4 until there are no particles to be included in clusters.

End of Algorithm

The three quantities are not necessarily equivalent to each other, but are strongly correlated. Figure A.B.2

compares the size measurement of clusters by Rg , RM, and RR . From the figure, we can find the size

measurement increases in order of Rg , RM, and RR . However, note that the order of size measured

between RM and RR is not necessarily fixed, since it depends on the cluster anisotropy or symmetry of

shape. For example, we compared the size measurement of clusters between RM and RR with different

shapes, anisotropy, and configuration of particles as shown in Figure A.B.3.

From the figure, we can observe following properties;

(1) RM < RR for an isotropic and symmetric clusters.

(2) RM > RR for an anisotropic but symmetric clusters.

(3) RM ~ RR for a randomly-shaped and asymmetric clusters, especeially, they get closer to

each other when the number of shells in a cluster increases

(4) An inner cavity in the cluster produces an error in the size measurement by RR compared to

the measurement by RM.
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Figure A.B.2. Size measurements of clusters by Rg (maroon dash lined circle), RM (red dot lined circle),

and RR (green dash-do lined circle). Red circular close symbols s denote the center of the clusters and

black circular close symbols denote the monomers
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Figure A.B.3. Size measurements of clusters by RM (red dot line) and RR (green dash-do line) with

different shape and configurations of the particles which compose clusters.
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A.B.3. Configuration of Cluster: Topological Analysis

Although size measurement of the clusters provides useful information about the geometric properties of

clusters, we may need additional information such as topological properties of clusters including shape,

average inter-distance among clusters, average volume occupied by clusters, and so on. These properties

can be quantitatively analyzed by employing the Voronoi tessellation, the deLaunay triangulation which

gives reciprocal property of the Voronoi tessellation, and the convex hull measurement. In Figure A.B.4.,

we provided a comparison the three measurements for the topological property of the clusters. From the

figure, we can find that the convex hull gives shape information, while the Voronoi tessellation and

deLaunay triangulation give information on how the particles or clusters are topologically distributed. In

particular, the Voronoi tessellation provides information on the free space independently occupied by

particles or clusters, the deLaunay triangulation provides information on the topological space

independently occupied by particles or clusters (i.e., information on the nearest neighbors), and the

convex hull makes an envelope which defines the realistic shape of the clusters by calculating the

minimal area occupied by the cluster. The envelope area can also be calculated by the coordinate of the

vertices of the envelope.

-- Voronol tessellation

-- Delaunay triangulation

-- Convex hull

Figure A.B.4. Comparison of the topological measurements of a cluster by the Voronoi tessellation,

deLaunay triangulation, and the application of the convex hull.
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In Figures A.B.5, 6, and 7, we provided an image of exemplary clusters analyzed by the Voronoi

tessellation, the deLaunay triangulation, and the convex hull construction, respectively. From figures, we

can find that each of the methods of analysis provides distinct topological information about the clusters.

Particles in clusters

Cores of the clusters

Monomers

- Boundary for the
free spaces of particles

Figure A.B.5. Clusters analyzed by the Voronoi tessellation

Particles in clusters

O Cores of the clusters

Monomers

- Relationships for the
nearest neighbors

Figure A.B.6. Clusters analyzed by the deLaunay triangulation

255



Particles in clusters

* Cores of the clusters

Monomers

O Boundary of clusters

Figure A.B.7. Clusters analyzed by the construction of the convex hull
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Appendix C. An Algorithm for Configuration Entropy Analysis of 2D

Nanoparticles Superlattice

A.C. 1. Configuration Entropy

The algorithm provided in Appendix C was not directly employed in the present thesis. This part is for the

future work and further application for quantitative analysis of 2D structures composed of NPs. One of

the direct ways of examining whether the phase transition is first- or second-order one is to calculate the

entropy of the system, S. In a computer simulation, this can be done by tracing and calculating the

variation of the total system free energy, E, as a function of a thermodynamic variable such as the system

temperature T given as

S(7;)-S(TO)= ', 1 aE dT. (A.C.1)
T' T aT

If S discontinuously changes around the transition point, then the phase transition is first-order while

second order transition requires continuity in the profile of S.

At fixed finite temperature, a 2D system can suffer a disorder-induced phase transition. In a case

in which the time-dependence trajectory of the system energy is not available, we can calculate the degree

of randomness of the system, which can be translated into S. From the relationship between the disorder

strength and S, one can determine whether the phase transition is first or second-order. In order to

calculate S , we considered topological properties of the 2D NPSCs from which we extracted

configuration entropy. As one of the methods to calculate the configuration entropy, one can count the

frequency of different kinds of cells constructed by Voronoi tessellation. Given the maximum nearest

neighbors (i.e., by threshold inter-distance), one can construct Voronoi tessellation for each of the

particles, and count the frequency of tessellation cells with different nearest neighbors. In the crystal-like

2D NPs superlattice, most of the tessellation cells belong to 6-membered polygon, while melting

decreases the 6-membered polygon cells frequency. Because every particle can be involved in different

tessellation cells, the occurrence frequency of the tessellation cells is averaged over the participating

particles. This scheme can be summarized as follows:

N, N N,

S =T-B p, log pi, p, - ' , N7, N, (A.C.2)
i=1 NT
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where NT is the total number of tessellation cells, N is the number of different kinds of tessellation

cells, and N is the number of the i th kind of tessellation cells. Although this method can be easily

implemented to calculate the configuration entropy, it is less exact than the method based on the graph

isomorphism and Shannon's information theory. This is mainly because the latter takes more diverse and

potential arrangement of 2D NPSC into account of both geometrical and topological analysis. The graph

isomorphism considers two graphs are essentially equal if their topological structures are equivalent. This

indicates that the shape or size of the graph composed of identical number of nearest neighbor particles

does not affect the graph isomorphism as long as the bond connectivity among the particles in the graph

does not vary. According to the Shannon's information theory, the configuration entropy is expresses as

follows [1]:

S (m, ns )= -kB Ng (m s plg i (ms ), pi (u s - -3

where f, (ns ) is the frequency of the i th graph isomorphism composed of ns nearest neighbors

involving oneself when m different random position coordinates of particles are chosen among entire

system. In Figure A.C.1, we provided an exemplary coordinates of NPs in 2D NPSCs accompanied by the

Voronoi tessellation when ns = 8 . In order to compensate dimensionality of the system, d , and

crystallinity, Vink and Barkema [2] proposed a correction term for the entropy in eq.(A.C.3) such that

Sc (m,ns) =S(m,ns)-kB(d -1)log ns. (A.C.4)

Given that the structure to be analyzed has a finite dimension (i.e. no periodic boundary condition), one

can expect that Sc (m, ns ) will converge into Sc* (ns ) as m increases, and there exists a threshold

value of m, m ,which makes Iim Sc (m, ns Sc* (ns Sc (mns).
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Voronoi Polygons around NPs Coords. Graphs composed of 8 NNs Voronoi Vertices

* * 0 Randomly picked positions
1 * :Vertices of Graph

==:Edges of Bonds In Graph
: Edges of Voronoi Polygons

0

* 0 NPs Coords.
* *-:Edges of Voronol *

* Polygons

S 0

Figure A.C. 1. A reconstructed coordinates of NPs (denoted by red circular close symbols) from TEM

images (not shown due to copyright) with boundaries for the Voronoi tessellation (blue solid edges) (left)

and several different graphs composed of 8 nearest neighbors (NNs denoted by green circular close

symbols) found on the Voronoi tessellation of the NPs (right) given randomly picked positions (denoted

by red points). The NNs are considered as vertices in the graphs and the edges in each of the graphs are

represented by bold blue lines.

Given in Figure A.C.2 is the compilation of different graphs with respective occurrence frequency

(probability) when ns -- 8. Information in Figure A.C.2 is translated into histogram as given in Figure

A.C.3. Although not provided here, we found that m* -8, 000 for network structures composed of

Voronoi polygons encompassing 2D NPSCs of 7,800-8,100 NPs. In order to compare specific

configuration entropy, Sc (ns ) is normalized by introducing the configuration entropy per NP, Sc

S= lim [Sc (n 5 )-Sc (ns - 1)] A (n) ,(A.C.5)

ns -+0 An 8  s

where ns* denotes a threshold value of n over which a deviation from a linear proportion relationship

between ns and Sc (ns ) increases. This deviation is mainly due to the finite number of NPs and

dimension of the samples to be analyzed.
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Figure A.C.2. Compilation of different graphs composed of 8 NNs (green vertices for NNs with bold blue

lines for the edges with red points as the randomly picked point) with the normalized occurring frequency

(or probability), p . In each of the panel, expanded pictures of the graph are provided.

A.C.2. A Graph Isomorphism Algorithm for Configuration Entropy

In the calculation process, we set a range of ns according to ns* for each of the different samples while

optimizing the linearity by maximizing the correlation coefficient. For the counting the occurrence

frequency of different kinds of graph isomorphism, we can propose an algorithm as provided in Table

A.C.1.
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Figure A.C.3. A histogram for the occurrence frequency of the graphs composed of 8 NNs. Inset is for the

exemplary graphs composed of 8 NNs.

Table A.C. 1. A summarized algorithm to calculate the configuration entropy of 2D NPSCs

Algorithm to Calculate Configuration Entropy of 2D NPSCs

Step 1. Initialize coordinates of NPs

Step 2. Construct Voronoi tessellation around the NPs

Step 3. Construct an adjacency matrix for the vertices created in the Voronoi tessellation

to find out nearest vertices to each other

Step 4. For given number of randomly picked positions (in), find out n nearest neighboring vertices.

Step 5. For the found vertices, construct a partial adjacency matrix to construct a graph which indicates

whether each of the vertices are connected or not.

Step 6. Construct graphs composed of vertices for each of the random positions.

Step 7. Sort the graphs using graph isomorphism (topological point of view)

Step 8. Find out distribution of the topologically different graphs and make a group for identical graphs

Step 9. Calculate configuration entropy based on Shannon's information theory
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Step 10. Correct the configuration entropy considering finite dimension and number of NPs

in the 2D NPSC

Step 11. Repeat Steps 4-10 for different values of n, and linear fitting for the relationship

between the configuration entropy and n (should be less than the threshold value of n)

Step 12. Calculate configuration entropy per an individual NP

End of Algorithm

As an exemplary and practical application, we analyzed the configuration entropy of 2D NPSC in which

Au NPs are coated by dodecylthiol (C16H28S, DDT) ligand molecules. The 2D NPSCs were formed by the

Langmuir-Blogett pressure device. Starting with the reconstructed NPs coordinates information from

TEM image [3] (the original image was not presented due to copyright), we can construct the Voronoi

tessellation as shown in Figure A.C.4(a) and from which, we can calculate SC as a function of n as

shown in Figure A.C.4(b) by applying the algorithm in Table A.C. 1. From the plot, we can find the

linearity between SC and n , and from the slope of the fitting line, we can obtain sc = 0. 16 4 0k.

4

3[*

w-w2
U

10 14 18 22 26n

Figure A.C.4. (a) A Voronoi tessellated image from the coordinate information of Au NPs in 2D NPSCs

[3] (c.f., constructed from an original TEM image, where the original image was not provided due to

copyright.). Circular close symbols are for the NPs and blue edges are for the tessellated boundary. (b) A
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relationship between SC and n . The simulation to calculate SC was repeated 160 times to obtain the

statistically meaningful data.
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