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Abstract

Experiments and theory show that tokamak plasmas with strong toroidal rotation and
rotation shear can suppress turbulent energy transport as well as allow violation of the
Troyon 3 limit. However, using external neutral beams to inject toroidal momentum,
as is done in many current experiments, would require a prohibitive amount of energy
in larger, reactor-sized devices. The most promising alternative to achieve significant
mean plasma flow that scales to large devices is intrinsic rotation, the rotation that
is observed in the absence of external momentum injection. Intrinsic rotation is
observed in current experiments, but is generated by effects that are formally small
in p,, - pija, the ratio of the ion gyroradius to the tokamak minor radius. These
effects are insufficient in anticipated reactors because p, will be significantly smaller.

Recent theoretical work concludes that up-down asymmetry in the poloidal cross-
section of tokamaks can drive intrinsic rotation to lowest order in p, [1, 2]. In this
thesis, we extend GS2, a local 6f gyrokinetic code that self-consistently calculates
momentum transport, to permit up-down asymmetric configurations. MHD analysis
shows that ellipticity is most effective at introducing up-down asymmetry throughout
the plasma. Accordingly, tokamaks with tilted elliptical poloidal cross-sections were
simulated in GS2 to determine nonlinear momentum transport. The results suggest
that the current experimentally measured rotation levels can be generated in reactor-
sized devices using up-down asymmetry.

Surprisingly, linear and nonlinear gyrokinetic simulations also suggest that tilted
elliptical flux surfaces may naturally suppress turbulent energy transport. Using
cyclone base case parameters [3] (except for an elongation K = 2), a 40% reduction
in the linear turbulent growth rate was observed by tilting the flux surface 7r/4 from
vertical. However, this reduction of energy transport was not observed when the
background temperature gradient was increased by 50%.
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Title: Assistant Professor
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Chapter 1

Introduction

The nuclear fusion community is fairly unique in its possession of an idealistic and

unambiguous common goal: to produce an economical fusion power plant. A fusion

power plant generates base load electricity using virtually unlimited, cheap, and acces-

sible fuel. It cannot meltdown and, relative to fission power, creates little radioactive

waste or proliferation concerns. Fundamentally one must bring two light nuclei, gen-

erally deuterium and tritium, close enough for the strong nuclear force to overcome

Coulomb repulsion and bind them. This Coulomb barrier is measured in 10's of keV

whereas the strength of chemical bonds is measured in eV. This factor of 10' suggests

that relying on solid materials to confine/compress fuel, as is frequently the case in

cold fusion schemes, is unrealistic. Also, when two nuclei interact, a scattering colli-

sion is more than 10 times as likely as a fusion reaction [4]. This, for the most part,

makes particle accelerators infeasible as a means to generate net energy. The focus

of this work will be within the field of Magnetic Confinement Fusion (MCF), one of

two approaches that dominate fusion research.

In MCF, the fuel is confined and heated to the temperatures necessary to overcome

the Coulomb barrier, fuse nuclei, and produce energy. However, these temperatures

are around 20 keV or 100 Million C, which precludes any contact between the fuel

and solid material. This temperature also ionizes the fuel and creates a charged gas,

called a plasma. Since, ideally, the Lorentz force constrains charged particles to follow

a magnetic field, the plasma can be confined using magnetic field lines that do not

19



Figure 1-1: Outermost magnetic field lines of an example elliptical tokamak viewed
from (a) above and (b) the side with the axis of symmetry (red, dashed) and midplane
(red, dotted). Also shown are the major radial coordinate R, minor radial coordinate
p, poloidal coordinate 0, toroidal angle (, tokamak major radius Ro, tokamak minor
radius a, and the edge elongation r = b.

a

contact solid walls. This work focuses exclusively on a MCF device with such a closed

magnetic field geometry called the tokamak.

The first tokamak was built in 1956 and, ever since, has consistently produced

the best results of any MCF design. It keeps a toroidally symmetric plasma confined

using the magnetic field produced by the current in a complex web of coils and the

plasma itself. The toroidal symmetry guarantees that the magnetic field lines form

nested surfaces, called flux surfaces. Originally, tokamaks were constructed with flux

surfaces that had circular cross-sections, but quickly advanced to elliptical (see fig.

1-1) and then D-shaped.

However, despite the success of the tokamak, results have never been as good

as was initially hoped. Since particles are constrained to follow field lines it was

thought that the confinement losses may only be caused by collisions between parti-

cles. Collisions allow particles to change field lines and gradually diffuse out of the

machine. This is referred to as classical and neoclassical confinement and has turned

out to be too optimistic. What experiments have discovered is that plasma turbu-

lence dominates confinement losses. These electromagnetic fluctuations are driven

20
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by background gradients in plasma temperature and density and ultimately dictate

the minimum size, required heating power, and economic viability of a fusion power

plant.

This work is focused on the effects of the poloidal cross-section shape on the

turbulent transport of energy and momentum. Specifically, it investigates tokamaks

with poloidal cross-sections that are not symmetric about the midplane, referred

to as up-down asymmetric tokamaks. This chapter attempts to provide context by

describing both the work that enables this thesis and recent research that is important

in interpreting results. Since little work of any kind has been done for up-down

asymmetric tokamaks, Chapter 2 presents simple MHD analysis that helps to identify

feasible configurations. Chapter 3 provides a description of the turbulence analysis

code GS2 and how it was utilized in this work. A general investigation of energy

confinement properties is given in Chapter 4, whereas Chapter 5 presents a focused

discussion of GS2 momentum transport results and how they compare to experiment.

Lastly, Chapter 6 summarizes the most noteworthy points of this thesis.

1.1 Motivation

Fundamentally, the motivation for advocating a new tokamak configuration must be

economic. The ultimate goal of the field is to produce a fusion power plant with the

lowest possible cost of electricity and any new design must appeal to this.

1.1.1 Cost of fusion power

Because the fuel is expected to be relatively inexpensive, we are mostly seeking to

minimize the capital cost of the reactor. ITER [5] is the flagship fusion experiment,

currently under construction in France, which we will take to be indicative of the cost

breakdown of a future reactor. From table 1.1, we see that the magnets are the most

expensive component, the machine core dominates the total cost, and heating/current

drive is relatively inexpensive. Therefore, as a rough approximation, we can say that

cost is only dependent on the magnetic field produced and the plasma volume.

21



Component
Machine core

Magnet systems
Vacuum vessel

Blanket system
Divertor

Machine assembly
Cryostat

Thermal shields
Vacuum pumping & fueling system

Auxiliaries
Buildings

Power supplies & distribution
Cooling water systems

Cryoplant & distribution
Remote handling equipment

Tritium plant
Waste treatment & storage

Radiological protection
Heating and current drive

Electron cyclotron
Neutral beam
Ion cyclotron

Miscellaneous
Diagnostics

Control, data access, & communication
Other

Cost (% of total)
53
28
8
6
3
3
3
1
1

33
14
8
5
3
2
1
0
0
7
3
3
1
7
4
2
1

Table 1.1: ITER direct capital cost breakdown (table adapted from ref. [5]).
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This approximation clearly favors devices that can contain more and hotter plasma

at the same toroidal field. This confinement efficiency is quantified by the toroidal

plasma beta,

2puo(p)v

where (p)v is the volume-averaged plasma pressure, po is the vacuum magnetic per-

meability, and BO is the on-axis toroidal magnetic field. Furthermore, the cost approx-

imation straightforwardly motivates increasing the energy confinement time because

of its definition

w
TE Fls'(1.2)

PlOSS

where

W JdVp (1.3)

is the total plasma stored energy and Pos, is the power lost from the plasma. If we

hold p constant and increase -E, the power lost from the plasma decreases. This eases

the power handling requirements on the divertor and plasma-facing components, one

of the major engineering challenges in reactor design. Decreasing P10,, also minimizes

the required heating power to maintain a steady-state plasma. This means that less

of the fusion power is needed for plasma heating. In other words, the plant is able to

sell a higher fraction of the electricity it generates. This section will attempt to show

how plasma rotation, driven by up-down asymmetry, can allow reactors to operate at

both higher plasma beta and confinement times.

1.1.2 Benefits of vertical elongation

To preface the arguments of this thesis we will demonstrate the benefits of traditional

vertical elongation relative to circular flux surfaces. To this end we will attempt to

show that, at constant reactor cost, vertical elongation enables the production of

23



more fusion power and hence better economics. In this analysis we will assume that

the reactor volume and the magnitude of the toroidal magnetic field dominate cost.

Therefore, we can consider cost approximately fixed by fixing RO, BO, and the total

plasma volume V = (27rRo) (7ra 2 K).

We start with an expression for the 50-50 deuterium-tritium volumetric fusion

power density

n2

Pf = (c-V)DTQDT (1.4)

where ne is the electron density, QDT is the total energy yield per fusion reaction, and

(O-V)DT is the DT reaction rate constant, which only depends on ion temperature. In

the temperature range of interest to fusion, T E [5, 20] keV, the rate constant can

be approximated to within 10% as (UV)DT d covT 2, where cov is some constant of

proportionality [6]. This means that the fusion power density is roughly proportional

to p2, where the thermal pressure is p n ,T, = 2 neTe, which is constrained by

the Troyon limit.

The Troyon limit [7] is an estimate of the maximum /3 possible in a tokamak.

Increasing OT is a vital for power plants because it means more plasma pressure

can be confined with the same magnetic field. When the beta limit is exceeded the

plasma kinks and contacts the wall, which quenches the plasma and can damage the

surrounding reactor components. The Troyon limit is given by the normalized plasma

beta,

OiN =(a/m) (BO/T) fT < 0.03, (1.5)
(In/MA)

where I, is the plasma current. Importantly, the Troyon limit is only appropriate

in the absence of any conducting medium, such as a vacuum vessel, surrounding the

plasma. The value of 0.03 is not a universal constant and depends on geometry pa-

rameters such as elongation. However, it is a good estimate that has been extensively

verified for tokamaks with circular and vertically elongated poloidal cross-sections

[8]. Throughout this work, it is assumed that the Troyon limit is also valid for tilted
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elongation, though this has never been shown.

Using the Troyon limit, we find that the plasma current directly constrains the

pressure, which motivates increasing the plasma current. However, increasing the

plasma current to arbitrarily high values leads to violent disruptions that quench the

plasma and potentially destroy the machine. For vertically elongated flux surfaces,

in addition to the Troyon limit, the edge safety factor, qa, needs to be

q, > 2.2 (1.6)

to avoid major disruptions. Throughout this work, we will also assume this limit

applies to tilted elongation. To calculate q, we need to use an approximate form of

the safety factor, qa L~ , and Ampere's law, BpLp ~ poI,, where L( = 27rRo is

the toroidal circumference and L ~ 27ra (1+ - 2) is the poloidal circumference.

Eliminating a using V, we arrive at

5 VBo1+-h, 2  rM-T (1.7)
4w 2 I> 2.2 .(.A47r 2 IpR 2 KmA

This condition shows that increasing elongation permits more plasma current to

be driven without disruptions. This, in turn, allows more plasma pressure to be

confined, creating higher fusion power densities. Combining eqs. (1.4), (1.5), and

(1.7) we find the total Troyon-limited fusion power is

1 (0.03 2 5 2 B2 2 V2 (1 + 2) 2

8 2.2 472 Q 2/oJ R (18

We see that fusion power scales as K 3 at constant RO, BO, and V. There are

subtleties associated with our choice of constants. For example, we have entirely

ignored the effects of elongation on turbulence and confinement time. However we will

only argue that the i3 scaling is strong enough to merit ignoring these complications

and delay more detailed discussion until Chapter 4. In summary, vertically elongated

flux surfaces are preferable to circular because it allows more fusion power generation

at constant reactor cost. Also, in this calculation we see how critical the Troyon and
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major disruption limits are in determining the economic viability a tokamak.

1.1.3 Value of rotation

Due to the symmetry of a tokamak, the plasma flow, to lowest order in p., = p/a,

is constrained to be purely toroidal [9, 10]. This toroidal rotation has proven to be

beneficial in both reducing turbulence and improving MHD stability.

Turbulence suppression by rotation shear

Turbulence is characterized by fluctuations in electrostatic potential, plasma density,

plasma temperature, and magnetic field. These fluctuations are able to transport

particles, momentum, and energy by causing an $ x B drift as well as modifying

the background magnetic field to bridge flux surfaces. The size and strength of the

turbulent eddies observed in typical tokamaks is sufficient to dominate over other

transport mechanisms. Turbulence currently determines the confinement time of

devices, making it a major topic of research and a fundamental problem in plasma

physics. It has resisted the efforts of many, proving elusive to diagnose, expensive

to simulate, and tortuous to treat analytically. Within the last 10 years however,

through the use of nonlinear gyrokinetic simulations, the community has begun to

grasp the turbulent transport of energy [11, 12] and particles [13]. Only recently, has

significant effort been focused on turbulent momentum transport [14].

One of the most promising strategies to reduce turbulent energy transport and

increase energy confinement time relies on velocity shear. Experiments [15, 16] and

theory [17, 18, 19, 20] show that plasmas with a gradient in toroidal velocity uC, also

known as toroidal velocity shear, can exhibit a significant reduction in turbulence.

The competition of dissipative mechanisms (collisions, etc.) with turbulent drive

from background gradients sets a natural size for turbulent eddies, referred to as

the correlation length corr. At distances longer than a correlation length, dissipa-

tive mechanisms are able to randomize and destroy information, which prevents any

correlated structures from existing. Since turbulent transport in a tokamak can be
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P1

Figure 1-2: A cartoon showing a turbulent eddy with (solid) and without (dotted)
the effects of flow shear of the form u( (p) = _/EP (figure adapted from [21]).

understood as a diffusive process with the correlation length, 1 corr, as the character-

istic step size, we expect transport to increase with 1corr. A gradient in the fluid

velocity will stretch, deform, and ultimately break up turbulent eddies, as shown in

fig. 1-2. This leads to less cross-field energy transport and higher confinement times.

Relaxation of the Troyon limit

Additionally, toroidal velocity has been shown to stabilize MHD modes. In particular,

in the presence of a resistive vacuum vessel, rotation can stabilize the ideal kink and

resistive tearing instabilities. These modes are the reason for the Troyon limit (see eq.

(1.5)). The mechanism by which rotation stabilizes MHD modes can be understood

intuitively, by investigating how the magnetic field interacts with the vacuum vessel

as the instability grows.

If a perfectly conducting vacuum vessel surrounds the plasma, the external kink

mode, which leads to the Troyon limit, can be stabilized. This is because the magnetic

field cannot diffuse through the wall and instead is compressed by any instability,

providing stabilizing magnetic pressure. A resistive vacuum vessel does not completely

trap the magnetic field, but can still allow the Troyon limit to be relaxed considerably.

The resistive wall mode is constrained to grow no faster than

TW= fdv ,, (1.9)f dS. rB
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the magnetic field confinement time or the characteristic magnetic field vacuum vessel

diffusion time. Here rB refers to the flux of magnetic field. We can estimate this

resistive time by substituting Ohm's law, j = oE, into Ampere's law (ignoring the

displacement current) to get

V x B = pt,$,, (1.10)

where the vacuum vessel has magnetic permeability p and conductivity o. Then

we take the curl and substitute Faraday's equation to give

851 D2
- 1 u~~ &r2 (1.11)(9t pW0-W qr2

in slab geometry. This is a diffusion equation with a diffusion constant of Dw = 1Awc"w
Now we can calculate the outwards radial magnetic flux to be PB ~ D, ~ DW -,

where dw is the wall thickness. This means that, with f dS. FB 27rR027rawFB and

f dVB - 27rR 07ra 2B, we arrive at

1
~ a pw awd., (1.12)

2

in agreement with refs. [22] and [23].

If T, is longer than the duration of the plasma shot tshot, the magnetic field will

compress against the chamber wall and stabilize the plasma. Unfortunately, reactors

are expected to have shots that last days, if not months. Moreover designing a vacuum

vessel that can survive and function in a reactor environment is already at the limits

of feasibility. Requiring that it also be highly conducting is likely insurmountable. For

comparison, the DIII-D tokamak vacuum vessel has a resistive time of only rw - 5 ms

[24]. However, if the plasma is rotating fast enough and the instability rotates with

it, the situation is dramatically changed. As the perturbation rotates, the magnetic

field constantly has to diffuse through a new area of the vessel (see fig. 1-3). Then,

the magnetic diffusion time -r must only be long compared to the rotation frequency

Tw > 1, where Q( = u(/R and u( is the plasma toroidal fluid velocity. In other
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(a) (b)

UG U(G=0

Figure 1-3: A cartoon of the poloidal cross-section of a tokamak plasma (pink) with
an m = 2, n = 1 external kink mode (a) with and (b) without toroidal rotation. The
equilibrium plasma shape (dotted, gray), the vacuum vessel (thick, black), magnetic
surfaces (blue), and the velocity of points on the magnetic surfaces (arrows) are
indicated.

words, plasma rotation begins to allow violation of the Troyon limit when u( >
fto 2
aw ~wawdw'

This intuitive picture is too simple to capture the many subtleties and compli-

cations that arise in reality. The condition that Q(T. > 1 is necessary, but not

sufficient for complete stabilization. When this condition is satisfied resistive tearing

modes are stabilized [22, 25], but ideal modes may not be [26]. Ideal modes are sig-

nificantly more difficult to deal with. If an ideal instability is stable with a perfectly

conducting wall, but unstable without any wall, the presence of a resistive wall will

cause it to split into two modes. One is an external kink that can be stabilized with

rotation because it moves with the plasma. The other is stationary, grows at the Tw

timescale, and is labeled a "resistive wall" mode [23]. Early investigation using sim-

ple cylindrical models concluded that rotation speeds less than the Alfven speed are

unable to stabilize the resistive wall mode [27]. Recent, sophisticated models [28, 29]

include effects such as such as finite aspect ratio, finite pressure, and trapped particle

compressibility, which serve to increase plasma dissipation. They arrive at the more

optimistic conclusion that slow plasma rotation, just a fraction of the sound speed,

can fully suppress the resistive wall mode. However, this stabilization appears to be
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fairly nuanced and depends on the specific model used. Stabilization may only occur

when the wall is positioned within a particular range of distances from the plasma

and there may be a maximum value of rotation above which stability is impossible

[30, 31].

Experimentally, the stabilization of resistive wall modes have been investigated on

DIII-D since 1995 [26] with ever improving results. Reproducible, sustained plasmas

have been created that exceed the Troyon limit by a factor of two [32]. Other ma-

chines, such as NSTX [33] and TEXTOR [34], have observed similar behavior. Even

a cross-machine comparison has been performed to determine scalings of the critical

level of rotation required for stabilization [24]. These robust experimental results

provide evidence that the nuanced conclusions obtained theoretically may be a conse-

quence of the simplified models used. It seems that, with the abundance of dissipative

mechanisms present in experiments, there is a broad stability window requiring only

modest rotation.

1.1.4 Value of intrinsic rotation

Toroidal rotation can be generated in a number of ways. Neutral particle beams

are frequently used to heat the plasma, but can also generate rotation if injected

toroidally [35]. Similarly lower hybrid waves, primarily used to noninductively drive

current, can induce rotation. Both of these methods represent an external injection of

momentum, however they do not scale well to large devices. There is concern in the

community that the external momentum injection on ITER will not induce enough

rotation to stabilize the resistive wall mode. The situation in a future power plant

would be even worse. An alternative is intrinsic rotation, which refers to rotation that

is observed in the absence of external injection of momentum. This rotation comes

for free, but it is poorly understood and experimental measurements reveal it to be

rather small, generally less than a tenth of the plasma sound speed [36].
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Figure 1-4: The ring average in gyrokinetics (figure adapted from ref. [37]).

1.2 Up-down asymmetry

Up-down asymmetry is essential to achieving fast rotation because, as will be dis-

cussed in Section 1.2.2, up-down symmetric tokamaks without external momentum

injection are constrained to have no rotation to lowest order in p,. Otherwise we

might expect sonic rotation profiles that vary on the same scale as temperature pro-

files. To understand this constraint we first need to introduce gyrokinetics, the model

for turbulent fluctuations.

1.2.1 Gyrokinetics

Gyrokinetics [38, 39, 40, 41] is a theoretical framework to study plasma behavior on

perpendicular spatial scales comparable to the gyroradius (kIpi ~ 1) and timescales

much slower than the particle cyclotron frequencies (w < Ri < Qe). These particular

scales have been experimentally shown to be appropriate for modeling turbulence [42].

Fundamentally, the gyrokinetic model assumes the plasma is strongly magnetized

(pi/l, = p. < 1, where l is the characteristic size of the plasma) and the behavior

of interest has low frequencies (w < Qi). Also, we must expand the distribution

function, fs = fso + fsi +..., and assume the perturbation is small compared to the

background (fs < fso) [37]. For tokamak plasmas, poloidal and toroidal periodicity

of particle orbits requires the lowest order distribution function to be a Maxwellian
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(fUo = FmS). Here

FmSm =_ n. (S -x M us)2113
Fu =n(27rT, 2Ts 1.3

is the Maxwellian distribution function, nr and T, are the density and temperature of

species s, and ms is the particle mass. In this thesis, we are interested in the momen-

tum redistribution that occurs in an initially stationary plasma. Consequently, we

will take Us, the mean plasma flow, to be small in order to determine the momentum

flux in the absence of rotation.

We will start with the electrostatic Fokker-Plank equation,

Of - Z'e v UxB
+ VfS + -V#+ - Vf 8 =Z CsS,, (1.14)

09t MS C S

and quasineutrality equation,

ZS d 3 Vf 8 =0, (1.15)

written assuming weak electromagnetic effects and background potential. Here ZS is

the charge number, e is the charge of the proton, # is the scalar electric potential, c

is the speed of light, and E Co, is the collision operator. Both equations can both

be expanded order by order in p, and simplified. In doing so, we change real-space

coordinates to the guiding center position

gc a, + -s ,(1.16)
QS

specified by the poloidal flux, V, a poloidal angle, 6, and

a . I(/) dO' (R2 B V < (1.17)
0 ,

which parameterizes the direction perpendicular to the magnetic field line, but still

within the flux surface. We also change velocity-space coordinates to the parallel
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velocity, w1j, the magnetic moment, [t ,BwI and the gyrophase angle,

c = arctan 'W . (1.18)

Here W' = V' - U, is the particle velocity in the frame rotating with the plasma, but

since we have taken U', = 0, w is the same as V'. We make use of the substitution

hs R9c, Wil, /, t fSi + Ze FMs (1.19)

and average over the gyrophase angle. Instead of gyrating charged particles, our

equations now govern the evolution of charged rings with a guiding position (see

fig. 1-4). Because of the strong anisotropy introduced by the magnetic field, the

perpendicular scale of the turbulence is much smaller than the parallel variation.

Furthermore, two of our previous assumptions, kpi - 1 and pi < lp, show that the

perpendicular turbulence length scale is smaller than any background radial gradients,

allowing us to Fourier analyze using

hS = S h, (kp, k,) exp (ikp 0 + ik,,a). (1.20)
k,,ka,

This produces the Fourier-analyzed gyrokinetic equation in P and w11 velocity vari-

ables, [1],

+'wib. -. 8h + i (kovdsV + kcvdsa) h,
at ao

+ hs 1C,,+{$, s (1.21)

ZseFMs a($b)I an, (mSw 2  3 1 &T1
T3 at IVn,.FS + 2T, 2 T ft

33



and the Fourier-analyzed quasineutrality equation,

dpJo k± 42pB)
=S

where Jo (...) is the zeroth order Bessel function of the first kind. The guiding center

particle drift velocity

Vds = -b x B+ -b
Q2SQ

x (b ib) (1.23)

is split up into

VdsO ds
I (W + pB)

QsB b- (1.24)
- B

VO a

Vdsce - Vs- Va'
W + pfB [DB
-- ~

B V x

ao B

4Bws gp
-BQ 8 D@

The acceleration parallel to the magnetic field line is given by

asl = -M (b (1.26)

(--. ), denotes an average over the gyromotion holding R fixed. Importantly,

{(#),, h8} mc (k'ck - kk') ($}, (k', k' ) hs (ko - k'p, ka - k') (1.2
k, k'

is the nonlinear term that represents the E x B motion of the fluctuations, where

(q)JO (ki V2p1B) (1.2
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(1.25)

7)
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is the gyroaveraged potential and the perpendicular wavenumber can be written as

kI =k '+ 2kg kaV a + kg a 2 (1.29)

Finally,

V08, = ikac(O), (1.30)

is the turbulent E x B drift normal to the flux surface.

Solving the gyrokinetic and quasineutrality equations, given in eqs. (1.21) and

(1.22), for h, and # allows us to calculate the turbulent fluxes of particles, momentum,

and energy given by

"tot = S$ -KVms hs (ko, ka, V), 01 (, k, ), , , ) 3V (1.31)
s kV,,k,

IQ(tot = 55 Rms Jw ( 4 -V4 ) h, (k,, ke , 6,0 wij , p) d , (1.32)
s kpka

QtOt = E E2 24 -V 9) hs (ko, ka, , 6, (, WIIp) dv (1.33)

respectively, where (.d. . ) d ( f d denotes the flux surface aver-

age and hAO 2 is the Fourier transformed turbulent Lx B velocity evaluated

at -kp and -ka. The momentum flux tells us how strongly a particular tokamak

configuration will redistribute momentum to create nonzero rotation from an initially

stationary plasma.

1.2.2 Symmetry argument

In 2011, Parra et al. [1] and Sugama et al. [43] demonstrated a symmetry in the gy-

rokinetic equation for up-down symmetric tokamaks that has important consequences

for momentum transport. Under the (kp , kQ, 0, wII, ) -+ (-k,, ka, -0, - w11, A) coor-

dinate system transformation, the gyrokinetic equation (see eq. (1.21)) is odd. This
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Figure 1-5: An up-down symmetric tokamak with the trajectories of two particles
(red, blue) traveling in opposite directions along magnetic field lines on the same flux
surface (yellow).

proves that for any set of solutions h, (kV, ka, I, , 1t) and # (ko , ka, 9), there exists

another set of solutions -h, (--ke, ka, -9, -w 1 , p) and -' (-ko, k, -9). However,
each of these solution sets is only valid for a particular initial condition. To de-

termine the contribution of these solutions to the flux of toroidal angular momen-

tum, we can inspect eq. (1.32). In addition to wg -+ -- w1 and h, -+ -h,, under

the transformation 64 -+ -v,, since # changes sign. Therefore, the second solu-

tion, -h,, (-kp, k, -, -w1 , P) and -# (-ko, k, -90), generates a momentum flux

which exactly cancels the flux from the original solution, h. (kv, ka, 9, W,, p) and

# (kv, ka, 9). Because the tokamak turbulence is chaotic, after a sufficiently long time

(called the turbulent decorrelation time), the system samples all possible initial condi-

tions. Hence, eventually, both solutions will arise and cancel any net momentum flux.

As a result, this symmetry implies a vanishing time-averaged momentum transport.

Intuitively, we can understand this using fig. 1-5. For every blue particle traveling

in one direction along a field line, there is a red particle traveling in the opposite

direction along its mirror symmetric field line that exactly cancels any contribution

the blue particle may have to the overall flux surface momentum flux. The two

particles do not necessarily travel synchronously, but will cause canceling momentum

fluxes within a turbulent decorrelation time.

Symmetry breaking mechanisms

To lowest order in p., there are three mechanisms that can break this symmetry of

the gyrokinetic equation [44]. First, significant preexisting average parallel velocity
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Figure 1-6: Particles traveling in opposite directions along a magnetic field line drift
in opposite directions due to magnetic drifts 'Vd.

invalidates the argument because there would be a different number of particles trav-

eling in each direction, so some would not have a canceling pair. Second, the presence

of large rotation shear changes the nature of the turbulence in the inner versus the

outer side of the flux surface of interest. This means that particles drifting off the

flux surface in opposing radial directions (as the blue and red particles do in fig. 1-5

due to magnetic drifts) will see different turbulence and their paths will be affected

asymmetrically. Third, up-down asymmetry in the tokamak will mean that, for exam-

ple, the red and blue particles in fig. 1-7 experience the magnetic field topology and,
hence, turbulent fluctuations in a different order as they travel in opposing directions.

There are also higher order effects in p,, like diamagnetic flows, poloidal variation of

turbulence, and radial profile variation that break the symmetry [45]. However, the

exclusive focus of this work will be the consequences of up-down asymmetry.

1.2.3 Previous work

The most relevant research into intrinsic rotation in up-down asymmetric devices was

published in 2009 by Camenen et al. [2, 46]. It investigates the turbulent momentum

flux distribution in a diverted plasma geometry using a quasilinear local turbulent

gyrokinetic code, GKW [47], to simulate a global equilibrium generated with the
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Figure 1-7: An up-down asymmetric tokamak with the trajectories of two particles
(red, blue) traveling in opposite directions along magnetic field lines on the same flux
surface (yellow).

0.8

0.7

0.6

0.5

Q0.2
0.1

0

Figure 1-8: A quasilinear estimate of the maximum sustainable value of - 2 aQr
Vthi a

The dashed lines indicate the flux surfaces labeled by p = 0.1 to 0.9, with steps of
0.1. Positive values indicate a radial outward flux of momentum in the direction of
B (figure from ref. [2]).
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Grad-Shafranov code CHEASE [48]. As expected, we see in fig. 1-8 that the more

asymmetric flux surfaces, located near the edge, are able to support a larger gradient

in rotation. This work will use nonlinear simulations to produce better estimates

of rotation and look at a wider range of geometries to achieve the highest levels of

rotation possible.
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Chapter 2

Up-down asymmetric MHD

equilibrium

Since we are ultimately interested in achieving high levels of intrinsic rotation in fusion

devices, we should start by identifying practical up-down asymmetric configurations.

To do this, we will use the ideal MHD model [49] to find stable geometries that max-

imize up-down asymmetry. Since external Poloidal Field (PF) coils set the shape of

the outermost closed flux surface, it is a free parameter. However, we must deter-

mine if up-down asymmetry introduced at the edge effectively propagates through

the plasma to the magnetic axis.

2.1 Radial penetration of up-down asymmetry

To determine how the flux surface shape changes within the tokamak, we begin by

writing the Grad-Shafranov equation

R 2V( ,2dP I d(2
R2,- - do 2 d4 (12) , (2.1)R2 MRdo 2 dO 21

where I = RB and p are free flux functions to be specified in this calculation. We note

that B = IV+B, where , = V( x VO is the poloidal magnetic field. Though there

has been much work on general analytic solutions to the Grad-Shafranov equation
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[50], we will only need approximate solutions to several specific cases to develop our

intuition. Thus, we take the orderings in the inverse aspect ratio, = < 1, typical

for an ohmically heated tokamak [51]

B 2pop 2(2.2)

B( B(

Next we must expand V = bO+Vi1+.. ., I = 10+11+12+13+. . ., and p = P2+P3+.. .,

where each subscript indicates the quantity's order in c. We also let 0 0 - aROBp and

R = RO + R 1, where R1 = rcos (0) and 0 is measured from the outboard midplane.

Consequently, to 0 (6 1 B0 ), eq. (2.1) becomes

d (I011) = 0. (2.3)
d4 0

Because 1o = ROBo, this shows that I1 is a constant. We are free to absorb it into 1o

and set 1 = 0. Using this fact, the 0 (B0 ) Grad-Shafranov equation is

!k (r + I8 20- 2dP2 dI2r + - =-poR - (2.4)
rr a (r ) r 2 o2 o0 d(2.4)

and the 0 (EBo) Grad-Shafranov equation is

ia (r a< 1 2 
1  d2 dP2 1- -

r + - = 4'i (-pioR p 2 - 1012) - 2puoR0 R 1  + -VR 1 -V'b.
rar ar r 2 a2 0 0 do0  Ro

(2.5)

We note that the absence of a factor of 2 in the numerator of the last term is a

consequence of the R contained within the cylindrical divergence.

2.1.1 Solutions to the 0 (Bo) Grad-Shafranov equation

The homogeneous portion of eq. (2.4) is solved by cylindrical harmonics. Further-

more, since p and I are free parameters, we can choose them to get simple forms

for the inhomogeneous part and still illuminate the physics of the problem. Us-

ing Ampere's law and B = IV( + V( x Vi, one can show that the right side
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-POR2 ) = tojR is related to the toroidal current. So we will choose

to study a constant toroidal current profile pojCRo = A, a linear hollow profile

poj(Ro = Ah + A'o, and a linear peaked profile puoj(Ro = A, - A' 0 , where A,

Ah, A' , Ac, and A' are positive constants of our choosing (see fig. 2-1). Then, eq.

(2.4) becomes

r ( r a0

a (r% o)
r r ro)

1 19 aPO
r Or ar

1 82~~o-A
+ =A,

r 2 802

+ - = A2o + A'Ao,
r 2 a92

1 - 2
0- = Ac - A'oo

r 2 8 02

(2.6)

(2.7)

(2.8)

for each case respectively. These equations are solved by

4r2 + rm (Cmcos (m.) + Dmsin (mO)), (2.9)
M=O

Ah Io ( Ar) - ) + Im ( Ar) (Chmcos (mO) + Dhmsin (mO)),
h =

(2.10)

-A (Jo (A1r) - ) + Jm ( Ar) (Cccos (mO) + Dcmsin (mO)),

(2.11)

respectively. Here m is the poloidal mode number, Jm is the mth Bessel function of

the first kind, Im is the mth modified Bessel function of the first kind. Cm, Di, Chm,

Dh,, Ccm, and Dcm are Fourier harmonic coefficients determined by the boundary

condition at the plasma edge.

From studying the plots in fig. 2-2 we can obtain the results of this calculation.

First of all, the m = 2 mode roughly corresponds to plasma elongation, the m = 3

mode to triangularity, the m = 4 mode to squareness, and so on. Also, we observe that

the flux surfaces near the magnetic axis in all the m = 3 cases are circular. This can be

confirmed by taking the limit of eqs. (2.9), (2.10), and (2.11) as r -+ 0. For example,

the constant current case becomes Ir 2 + r (C 3cos (36) + D 3sin (30)) -+ yr 2 , which
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Figure 2-1: Normalized radial profiles of the plasma current used to produce the
constant (black, solid), linear hollow (blue, dashed), and linear peaked (red, dotted)
flux surface shapes.

has no dependence on 0. In these cases, the tokamak is only up-down asymmetric

near the plasma edge. This effect only gets more pronounced with higher m modes.

Therefore, if we want to make the tokamak as asymmetric as possible, we should use

low m modes. However, for all three cases, the m = 1 mode does not introduce any

asymmetry into the flux surface shape, it is purely a translation. This means the

m = 2 mode, which introduces elongation, is the optimal choice.

For the constant current pure m = 2 mode case, one can use trigonometric iden-

tities and rearrange the solution

A 27Po (r, 0) = -r2 + r2 (C2 cos (20) + D2 sin (20)) (2.12)
4

to show that the flux surfaces are exactly elliptical. Furthermore, one can translate

the Fourier coefficients to the elongation,

K Kb 4_ (2.13)

the tilt angle of the elongation (see fig. 3-2a),

or, (V)O) = Orb = -- arctan D2) (2.14)
2 C2
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(a)

(b)

(c)

Figure 2-2: Example 0 contours with pure m = 2, m = 3, and m = 4 outer
boundary conditions respectively for the (a) constant (black, solid), (b) linear hollow
(blue, dashed), and (c) linear peaked (red, dotted) current profiles shown in fig. 2-1.
Circular (gray, solid) and constant current (black, solid) flux surfaces are shown for
comparison.
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and the minor radius of the flux surface,

r,0 (VO) -- ap (00) =0 2" . (2.15)
F'T4+ 2/C +2D

It should be mentioned that the tilt angle of the ellipse, 0,, is defined to be a left-

handed rotation with respect to ( (see fig. 3-2a), whereas 60 is in the right-handed

direction (see fig. 1-1). These definitions give rise to the negative sign appearing in

eq. (2.14). We can invert these relationships to find

pojg Ro Ki 2
Oo (rV) = b r (2.16)

2 +1

A = poj(Ro, (2.17)

po j gRo Kb-
C2 = K+1 cos (26 ,b), (2.18)

poj(Ro K --_1
D2 = - I R b sin ( 2 06 b) (2.19)

4 K 2 +1

Crucially, we see in eqs. (2.13) and (2.14) that the elongation and elongation

tilt angle are independent of the radial coordinate. This means that, for a constant

current profile, the elongation and elongation tilt at the plasma boundary, Kb and 6 ,b,

will uniformly penetrate throughout the plasma. We can also numerically calculate

elongation at different flux surfaces for the two other current distributions to produce

fig. 2-3. The important trend to notice is that hollow current profiles exaggerate

elongation for flux surfaces near the magnetic axis, while peaked profiles tend to limit

elongation to the plasma edge. In order to demonstrate this point, the hollow current

flux surface boundary condition for fig. 2-2b was chosen to be more circular than

the constant current flux surfaces at the edge. Nevertheless, we see that it is more

strongly shaped than the constant current surfaces near the magnetic axis. On the

other hand, the peaked flux surface boundary condition in fig. 2-2c was chosen to be

more shaped at the edge and we see the opposite trend. The flux surfaces become

more circular than in the constant current case near the axis.

There are three general points that are illuminated by the specific cases in this
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Figure 2-3: Plasma elongation from fig. 2-2b (dashed) for the constant (black) and
linear hollow (blue) current profiles as well as fig. 2-2c (dotted) for the constant
(black) and linear peaked (red) current profiles.

calculation. First, external PF coils only exert direct control over the flux surface

shape at the plasma-vacuum boundary. Second, low order Fourier harmonics, specif-

ically elongation, penetrate to the core most effectively. Higher order modes will only

cause up-down asymmetry near the plasma edge. Lastly, a hollow toroidal current

profile will more readily permit asymmetry to penetrate into the plasma core and can

even amplify the asymmetry applied to the boundary. From this analysis, we identify

tilted elliptical flux surfaces as the most promising geometry to create a significantly

up-down asymmetric tokamak and maximize intrinsic rotation.

2.1.2 Solutions to the 0 (cBo) Grad-Shafranov equation

Again, we will choose simple forms for the free parameters to simplify the problem.

We will solve the constant toroidal current profile case from the previous section to

the next order. Specifically -pOR = A, and - d (12) = Am, where A, and Am

are positive constants and AP + Am = A. Substituting these forms, eq. (2.5), the

o (cBo) Grad-Shafranov equation, becomes

1 ( ap 1  1 a2_ _ r cos (0) &/O sin (6) 18b0
2Ar + - =2A -cos (6) + ob ( (2.20)r ar ar r2 a022 ROb ROb Or ROb r ao
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where Rob is a free parameter which indicates the major radial location of the center of

the boundary flux surface. After substituting eq. (2.9), we can be verify the solution

to be

_ _4P 1 00

'01 (r, 0) = cos (0) + Yrm+ (Cmcos ((m - 1) 0) + Dmsin ((m - 1) 0))l6Rob 4~

+ S r m (C' cos (mO) + D' sin (mO)), (2.21)
m=0

where C' and D' are determined by the boundary conditions. For the pure m = 2,

elliptical boundary condition studied in the previous section, the solution is given by

A1 (r, 0) = 4 r3 cos (0) + 1 r3 (C2cos (0) + D2sin (0)) (2.22)
16Rob 4Rob

+ r3 (C~cos (30) + D'sin (30)) + r (C'cos (0) + D'sin (0)).

We have determined these coefficients by applying the condition that b1 (r, 0) is con-

stant along the boundary flux surface. Using eq. (2.16), this is specified by

00A -=Vo()= b2 =Ar+A_ A a2 _ _r2 4,2 (C2cos (20) + D 2sin (20)). (2.23)
2 2a + 1 4

Next, we transform the coordinate system from polar to Cartesian using X = rcos (0)

and Y = rsin (0). Then, we rotate the system by Ob using X = X'cos (O.b) +

Y'sin (Ob) and Y = -X'sin (Ob) + Y'cos (Ob). This aligns the axes with the major

and minor radii of the elliptical boundary flux surface. Next, we substitute in the

formula for the elliptical boundary (X'/a)2 + (Y'/b)2 = 1 to eliminate all instances of

X'2 and Y' 2 . This allows everything to be expressed in m = 1 and m = 3 harmonics.
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After transforming back into polar coordinates and rotating the system back we find

x2_

C'= -1

bRo
C3 4Ro6

K 2

D'= -

Rob

2 a2

Rob

(Cunrcos (30,)+ D' notsin (30,b),

(C' sin ( 3 6 ,b) + D' cos(3,5b)),

(CU' nocos (Otb)+ D'nrotsin (Ob)),

( C'not sin (0 Kb) + D'notcos (6 rb)),

(2.24)

(2.25)

(2.26)

(2.27)

+ C2 + Ap) cos (Ob) - D2sin (Ob)

1 + 3K

Ap) sin ( 6 Ob)

3+ K

+ D 2cos (Ob)

Here the boundary parameters are tied to the Fourier coefficients by eqs.

through (2.15). The location of the magnetic axis can be found by solving

(2.28)

(2.29)

(2.13)

a0
ax Xaxis,Y=Yaxis

N0

OYX=XaXiSY=Yaxis

+0 X=0,Y=O

+ Oi
X=O,Y=O

Xaxis -
2

1
Yaxis -

(2.32)

(2.33)

(A) - C22- D 2

D2 CI - (+ C2) D'
2 C2D2
(g) -C -D

Examining the complete solution, plotted in fig. 2-4, we see finite aspect ratio

effects. Specifically, the inner flux surfaces are pushed outwards by the plasma pres-

sure, which is referred to as the Shafranov shift. This shift is contained within the
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(2.30)
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Figure 2-4: Contours of Oo (gray, solid) together with their first order corrected con-
tours, ?Po + V1 (black, solid) for an elliptical boundary condition with 0, = {0, E, }

cos (0) and sin (0) terms and does not necessarily occur at the same angle as the
elongation. The cos (30) and sin (30) terms introduce triangularity with an angle of
6 = -larctan (), which becomes negligible in the limit that r -+ 0. However, due

to the Shafranov shift, in this coordinate system the magnetic axis is not located at
r = 0. As the magnetic axis becomes closer to the plasma boundary, the effects of
triangularity penetrate to the inner flux surfaces more effectively.

To get an idea of how the flux surfaces change from lowest to next order, we
parameterize a flux surface as ? (r (0) , 0) = V-val. Expanding both b (r, 0) = V$o (r, 0)+

1 (r, 0) + . . . and r (0) = ro (0) + ri (0) + . . ., the lowest order equation becomes

Oo (ro (0) , 0) = Ovali, which we can solve for ro (0) using eq. (2.12). To next order we
find b1 (ro (0) , 0) + ri (0) 9,_ = 0, which leads to

&r r=r0 (0)

r1 (0) = r1 (ro (0) , ) . (2.34)
9rr=ro(O))-

This function gives the separation between the lowest and next order flux surfaces

in the er direction and is shown in fig. 2-5. The average offset shows that each of
the flux surfaces contract, relative to lowest order. The distinctive m = 1 component

demonstrates that the Shafranov shift dominates the higher order, flux surface shap-

ing effects. We see the finite aspect ratio effects do not strongly affect asymmetry

propagation to the core.
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Figure 2-5: The displacement r1 (see eq. (2.34)) between lowest order and next order
flux surfaces at constant '/ for 6, = 0 (black), 6, = E (blue), and 6, = E (red).

2.2 Creation and stability of elongated flux sur-

faces

In this section, we will first look at how PF coils are used to create a shaping field

that gives the plasma elongation. Following fig. 2-6, we will find that a vertical field

is necessary for equilibrium and a quadrupole field is needed for shaping. We will first

calculate the strengths of the required fields and then investigate the consequences

the shaping field has on plasma stability.

2.2.1 Creation of elongated flux surfaces

To produce fig. 2-6, we use a cylindrical model, ignoring the effects of toroidicity

and representing the plasma current as an ideal wire. Without any external poloidal

magnetic fields, the flux surfaces will be circular and the poloidal field will be a flux

function. To create vertically elongated flux surfaces with say r = 2, we must apply

an external field that makes the poloidal field on the midplane a factor of 2 stronger

than the poloidal field on the R = RO surface. This will stretch the flux surfaces in

the vertical direction and compress them horizontally. Practically, this can be done

by using PF coils to add the quadrupole magnetic field shown. The orientation of the

quadrupole field determines if the plasma will be elongated vertically, horizontally, or
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Figure 2-6: Illustrations of how vertically elongated, horizontally elongated, and tilted
elongated flux surfaces (far right term) are created by the superposition of the fields
generated by the plasma (far left term) and external coils (middle term). Here the
plasma current is shown in red, blue represents magnetic field lines, and green shows
the direction of the resulting j x B forces.
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at an intermediate tilted angle. However, the quadrupole field introduces a curvature

when combined with the vertical field. The J x B forces that arise from the curved

external magnetic field have very different implications for plasma stability, depending

on the tilt angle of the quadrupole field.

2.2.2 Equilibrium of elongated flux surfaces

The toroidal plasma geometry is fundamentally unstable to expansion in the major

radial direction due to the so called tire tube, hoop, and 1/R forces [52]. To remedy

this, vertical field coils must be added around the plasma. The plasma current, when

crossed with this vertical field, produces a j x B force that counters the proclivity of

the plasma to expand. In addition to the vertical field, a quadrupole field is needed

to elongate the flux surfaces.

The necessary vertical and quadrupole fields can be calculated by generalizing a

calculation done by Hakkarainen et al. [53] to treat tilted elliptical plasma cross-

sections with a constant current distribution. The calculation takes as an input

the total magnetic field within the plasma, Btat, obtainable from eqs. (2.12) and

(2.22). We can then enforce that i - Btot = 0 and t - Btot = t - Btot at the plasma

boundary to determine the external field required to maintain the configuration in

equilibrium. Here A is the surface normal unit vector, t is the surface tangent unit

vector in the poloidal plane, and the tilde indicates a quantity outside the plasma,

whereas quantities without a tilde are defined only inside the plasma. To make

the mathematics tractable we will model the plasma as having a large aspect ratio

(e < 1). We will also order the elongation as small (rb - 1 ~ E) to let the quadrupole

and vertical fields compete.

Already having complete knowledge of the magnetic field inside the plasma from

eqs. (2.12), (2.22), and

-tot = (2.35)

we will begin calculating the total magnetic field outside the plasma, 5tot. First, we
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will write the field as

Btot = Bext + Bw + V, (2.36)

where Bext is the contribution from the external coils, B, is the contribution from

the plasma if it were a wire with current I8c located at (Rob, 0), and Vq is the cor-

rection that arises from plasma shaping and pressure effects. Making this distinction

separates three different behaviors. The external flux is generated by coils at infin-

ity and does not decay far from the tokamak. Its form is simple to guess from our

understanding of the vertical and shaping fields. The wire flux is a standard result

in electromagnetism and contains the divergent portion of the flux produced by the

plasma current. After removing it, we can expect the error field decay to zero far

from the tokamak. The magnetic fields Bext and B, are related to the poloidal fluxes

through

Rext R , 2.37)

BR (2.38)

In order to match the normal and tangential fields we must calculate the derivatives

of the flux in both directions on the boundary.

Since we will eventually be matching to eqs. (2.12) and (2.22), we will parame-

terize the boundary in terms of the traditional r and 0 coordinates as

Rb (0) = Rob + rb (0) cos (9) , (2.39)

Zb (0) = rb (0) sin (), (2.40)

where

aInb
rb (0) = (2.41)

,bcos2 (0 + Orb) + sin2 (0 + Orb)
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We will immediately expand rb (0) in 6 < 1 as

rb () = a (1 + 2 (1- cos (2 (6 + Ob)))) + 0 (E2).

for future use.

Calculation of N from plasma parameters

The contribution to the poloidal flux from the wire, <e, is already known [54, 55] to

be

pol R (2-
27r

where K, (k) 0 o" dat (I ke~s (aet)

Ke (keO) - 2Ee (keo)
(2.43)

keo

)-1/2 and Ee (ke) = f0 dat V1 - k2sin 2 (at)

are the complete elliptic integrals of the first and second kinds, respectively. The ar-

gument of the elliptic integrals is defined to be keo (R, Z) = ke (R, Z, Rob, 0), where

ke (R, Z, Rt, Zt) =
4RRt

(R + Rt) 2 + (Z - Zt)2

We will now expand eq. (2.43) in c < 1 by first expanding

ko (r, 0) = 1 8 2

We will define the next order k,0 as k N -

elliptic integrals as

+ IbCOS (0) + O (64). (2.45)

cos (0), so we can expand the

1 8\
Ke (keo) = Iln 8k) + O (k N)2 kN

E, (kg0 ) = I1+±0(k N)e

(2.46)

(2.47)
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We choose to write V, on the plasma boundary as a Fourier series of the form

0L (9) = Wco (2.48)
00

-N (9) = Nbf0 + CmCOS (mO) + N smsin (mO), (2.49)
m=1

where the superscripts indicate lowest, L, or next, N, order and the subscripts indicate

the Fourier harmonic type (sine, S, or cosine, C) and the number. We have neglected

all lowest order terms apart from m = 0 because we can see from eq. (2.45) that W

will be independent of 9. Finally, we can directly expand eq. (2.43) to lowest and

next order in E to find the nonzero coefficients of

'co =2 - In , (2.50)
afRobBpa

_ CO Kb -i (2.51)
aRobBpa 2

c - 1 -- In (2.52)
aRObBpa 2 E

_C2 _ _ - cos ( 2 0,rb), (2.53)
aRobBpa 2

s2 _b - 1bsin (20,b), (2.54)
aRobBa 2

where Bpa =0P is the lowest order edge poloidal magnetic field. Here we see2-Ka

a nonzero m = 1 cosine term, which will eventually contribute to the Shafranov

shift and the required vertical magnetic field for equilibrium. Similarly the m = 2

terms give the elongation and shaping magnetic field. These coefficients give all the

necessary information to calculate the tangential derivative on the boundary, but not

the normal derivative.
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Calculation of V'W from plasma parameters

Repeating the same method, the normal derivative of N on the plasma boundary

can be constructed as

rb - (0) = CO (2.55)

rb ~ ~( +
r-b ' - VV 6 (0 wco + +' wSmsin (mO).

0N
N mCos (M )

M=1

Calculating these coefficients requires the unit normal vector, which can be derived

from the flux surface parameterization using

dZb" dRb "
djeR -dO e

dRb )2 4db
r-C 1 drb

rb dO
(2.57)

This, together with eq. (2.41), can be used to expand the gradient of eq. (2.43) to

find the nonzero coefficients to be

~L

aRobBa
~ N

aRObBra

1,

2

(2.58)

(2.59)

This entirely specifies the contributions from the wire magnetic field.

Calculation of q (q')

We now focus on V , the magnetic field that corrects the errors from modeling the

plasma as a wire. We can relate q and its normal derivatives using Green's theorem

dOt [G (0, Ot) rbRbri f (0t) - 5 (at) rb (0t) Rb (at) h (0t) -VtG (0, Ot)

(2.60)
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evaluated on the boundary. The free-space Green's function [56] in our coordinates

is given by

G (R, Z, R', Z')
= 1 keKe (ke)

2-F VR RI

where ke is defined in eq. (2.44). Again, we will construct Fourier-analyzed forms for

(o) = L (2.62)

N (o) = + N mCOS (MO) + Nmsin (mO)
M=1

(2.63)

rbRbrln Vq5 (0) =

TbRbh - VON (0) =

ROb (q C

Rob ('/ co +ZE b'jmCos (nO)
M=1

+ N'smsin (mO))

After inserting eqs. (2.61) through (2.65) into eq. (2.60), expanding in c, and equating

the different harmonics in 6 we find

C = -ln (4) 'L (2.66)

to lowest order. To next order we find

N = -E N ( ) ILC2

cN In (4) CO + 6-+ In (2))cl

= 2E- + In (2) 'co - + 2

N N E-L

C2 C1 + C2 31

S2 1 - S2 + S3'2 2~- 1
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and

(2.64)

(2.65)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)



Calculation of q' ( w, bext)

Finally we have sufficient information to make use of the condition h. -5tt = 0 at the

plasma boundary. In our notation this condition is given by

rbRb -t = (ii - 6r)
40

('ext + (2.72)

The form of rbR b -Vq has already been specified by eqs. (2.64) and (2.65), as has

,, (0) by eqs. (2.48) and (2.49). The external field will be written everywhere outside

the plasma using a multipole expansion as

ext (r 0)= 0, (2.73)

eXt (r, 6) = R~b
m(1 (L)

(etCmCos (mO) +
3extmsin (mO))

To lowest order in aspect ratio the external field is zero, because we assumed weak

plasma shaping and we expect the necessary vertical field to be small.

For convenience we can rewrite the unit normal vector from eq. (2.57) as

i = ((h - 6R) COS (0) + (h - 6z) sin (0)) er +(-~ (ii 6R) sin (0) + (h ' 6Z) cOS (0)) 60 -

(2.75)

Expanding eq. (2.72) in powers of e and equating harmonics we find

'Co = 0 (2.76)

to lowest order in E. The next order is more meaningful, giving nonzero coefficients
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of

N #1 (= 1 + 2 RbNtCl) (2.77)

N 2'2 b (wNs2 + e3R NS 2  (2.78)

2 = -2 (c2 + ERO(b7extC2
Rob

Calculation of 1ext , 's, )

Lastly, we will match B - Bot = t- Btot across the plasma boundary. This condition is

given by

rnh -VO = rni -VV)ext + rh - Vo,, + (n -8 R ,0 (2.80)

where the second and last terms can be directly differentiated using eqs. (2.62),

(2.63), (2.73), and (2.74). We have already prescribed a form for the third term in

eqs. (2.55) and (2.56). The first term is the contribution from inside the plasma.

We will use our solution for the constant current case, calculated to lowest order in

Section 2.1.1 and next order in Section 2.1.2. In the lowest order solution we assumed

that the toroidal current density, j(, was constant. Additionally, in the next order

derivation we assumed that the pressure gradient, g, was constant. The gradient

we require for this derivation can be directly calculated from eqs. (2.12) and (2.22).

However, we must remember to substitute the coefficients appearing in eqs. (2.17)

through (2.19) and (2.24) through (2.29) to capture the proper dependencies on Kb.

Additionally, we must expand the toroidal current density, j( = jL +jN in e to cancel

the contribution from eq. (2.58) that enters the next order m = 0 equation. After all

the substitutions are made, we can expand eq. (2.80) in 6. The lowest order m = 0

equation determines the lowest order toroidal current density to be

jL = 2Bp (2.81)
( /toa
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This is consistent with Ip = 7a2j( and Bpa = 2ia, which are accurate for the lowest

order, circular flux surfaces. The next order m = 0 equation gives that

2B
jcN - b- pa

- bo a
(2.82)

The m = 1 and m = 2 harmonics show the coefficients of the external magnetic field

are

extC -
2ROb +

1
ZextS1 2 bC

1
= E Rob '

1
SextS2 = CN2Ro

wCl e 3 3 dP (2.83)

(2.84)

(2.85)

(2.86)

Calculation of Bext from plasma parameters

Putting together all of these results we can calculate Bext (), 'w, e (sii

which only includes Bext and plasma parameters. Solving for Bext, we find the external

field necessary for equilibrium. These coefficients are

~ N -o
exts1 =

apoROb dp
2 Bpa do/

5
4

(2.87)

(2.88)

(2-89)

(2.90)

BfxtC2 - pa (Kb - 1) Cos (20,b)

B B
eCxtS 2 - ('b - 1) sin (20,b)-

We clearly can see the expected m = 1 cosine term, which represents the required

vertical field for equilibrium, as well as the m = 2 elongation shaping terms.

Using eqs. (2.37) and (2.74) the required externally applied vertical field can be
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shown to be

ftop ( apoROb dp 5 ZB 4o = + In (2.91)
41rRo 2Bpa do 4 e

The usual required vertical field [57] is given by

Bo = 4 " Op + - -+ In( z, (2.92)

where 1i = (B4 ) is the dimensionless internal inductance per unit length and O,
2o, (p is the poloidal beta. We can resolve the apparent discrepancies by taking into

account the assumptions that went into our calculation. First of all, we assumed

a constant toroidal current profile, which implies 1i = 1/2. We also assumed that

the pressure gradient, P, was constant. After direct integration (with the boundary

condition that p (a) = 0), we can use eq. (2.12) (with C2 = D2 = 0 because Kb = 1 to

lowest order). Then, substituting eq. (2.17), we arrive at a pressure distribution of

P (r) = p2Oj Rob 2 dp (2.93)
4 dO'

Using eq. (2.81) with the definition of the poloidal beta we see that

OP = atoRObdP. (2.94)2 Bpa d(9

Hence, we are in perfect agreement with the accepted value for the required vertical

field for plasma equilibrium in the major radial direction.

Lastly, again using eqs. (2.37) and (2.74) with our external field coefficients, we

see that the shaping field needed to create a weak elongation K is

Bshape 4 a2 (Kb - 1) (((fR - Rob) sin (20,b) + Zcos (20,,b)) 8R

+ ((R - Rob) cos (20,b) - Zsin (20,b)) 8z) (2.95)
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and the total external field is given by

Bext = Bvo + Bshape. (2.96)

2.2.3 Stability of elongated flux surfaces to axisymmetric

modes

The addition of the quadrupole magnetic field has an unintended effect on plasma

stability. The net external field, which previously was straight and vertical, becomes

curved as shown in the first set of curly braces in fig. 2-6. For the case of vertical

elongation, when the plasma is perturbed vertically the external field curvature will

lead to a j x B force that drives further displacement.

Vertical elongation is common in current experiments. This instability is addressed

using active feedback coil systems. However these feedback coils must be placed close

to the plasma to achieve the necessary response time and the instability still ulti-

mately limits the maximum vertical elongation. In fact, these vertical displacement

events (VDEs) are intimately linked with disruptions [58] and have the potential to

destroy the machine [59, 60]. This suggests that pushing vertical elongation may be

a significant source of risk for disruption-intolerant devices such as ITER and future

power plant reactors.

While horizontally elongated flux surfaces are vertically stable, they become less

stable horizontally. This is because the strength of the vertical field applied must

necessarily decrease with major radius in order to create horizontal elongation. How-

ever, we see in eq. (2.92) that a modest amount of horizontal elongation can still be

stable because the required vertical field for equilibrium also decreases with major

radius. A horizontally elongated flux surface is stable as long as the local slope of

the required vertical field is more negative than the slope of the actual external field

used to create the elongation. This requirement for stability can be expressed as

6Z -BO. < ( Z - Aext . (2.97)aROb ( R
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However, to calculate these derivatives we must know how the plasma parameters

in eq. (2.92) respond to plasma displacement. In this derivation we will assume the

plasma responds adiabatically and that the poloidal and toroidal fluxes are conserved.

Additionally, we will assume that the plasma current profile shape (but not necessarily

Ip) stays constant. Furthermore, we will assume that the external coils that generate

the field in eq. (2.96) are unaffected by the plasma motion. This is not entirely

true, especially if the tokamak has an iron core. Tilted flux surfaces are less intuitive

than the case of vertical elongation and must be treated formally. We will estimate

stability for the constant toroidal current density case by using the external magnetic

field calculated in the previous section.

Fundamentally, just as equilibrium is given by

Fot , =Fp + Fext = Fp + Ip X Bext 0, (2.98)

stability is governed by

# = -F = F + t= F + - x Bext) < 0, (2.99)

evaluated at R = Rob and Z = 0. Here

-. - p B- . PO~P 1i 3 8R)

F=Ix = + I +2 2 + In - e R (2.100)
4R \22a

is the force the plasma exerts in the major radial direction due to the tire tube, hoop,

and 1/R forces, which can be inferred from eq. (2.92). If any of the eigenvalues of

the matrix appearing in eq. (2.99) are positive the system is unstable. In our two

dimensional system the determinant of this matrix can be calculated to give the two

eigenvalues,

1 8FotR 8FtOtz (FR 8Ftz 2 OFtR8Ftotz . (2101
2+=-tz + 4 . (2.101)2 aR aZ aR ~ Z Z aR
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We will select the positive sign, since it will always be the more limiting case for

stability. By nondimensionalizing the eigenvalue, we can define the decay index (also

called the marginal force index for stability),

1 Rob ( RFtotR + FtotZ z F 0tR &FtOtZ ) 2 + F4 t tR &Ftotz
ncI--- + + ~ - +4

2F,0 ( R aZ aR aZ aZ R

(2.102)

where Fp0 - F, R=Rb,Z=o and all derivatives are evaluated at the equilibrium position.

The condition for stability to displacements in all directions becomes

nc > 0. (2.103)

We note that, in the limit that r, -+ 1, we find i = 0 and Bext = BO. Then, the two

eigenvalues become 0 (indicating neutral vertical stability) and the familiar major

radial decay index [61] of - aB-z =where B x , Note that

is the required vertical field at the perturbed position, whereas Bo is the physical

field that exists to maintain the plasma when it is at its equilibrium position.

We need to calculate all of the forces on the plasma and how they vary in the

R and Z directions. We need the form of the external magnetic field, which was

calculated in the previous section and is given by eqs. (2.92), (2.95), and (2.96). This

field is appropriate to tilted elliptical flux surfaces in a plasma with constant pressure

and current profiles (see the left plot of fig. 2-2a). Therefore the total external force

field, Fet = x Bext, is given by

Fext = Ip x Bvo + 4 2 (Kb - 1) (- ((R - Ro) cos (20,b) - Zsin (20,b)) CR
47ras

+ ((R - Ro) sin (20nb) + Zcos (20,b)) 8Z) ,(2.104)
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where I = 4p8(. We can calculate all of the required normalized derivatives to be

3 ii
3 +i +P (Kb -1) cos (20,b)2 2

2 - (

Ro aop

1 In (8) 3

e2 (n 6 2

I /I (8) 3

I2 in (8 _ 3 2

E2 6 2

Ro OFextR

Fpo R

Ro F9Fext

Fo Oz

Ro &Fextz

Fpo aR

Ro aFextz

Fo az

(Kb - 1) sin (20,b) ,

(Kb - 1) sin (20,b) ,

(Kb - 1) cos (20,b)

evaluated at (Rob, 0). This assumes that the external fields are constant

perturbation of the plasma.

(2.105)

(2.106)

(2.107)

(2.108)

during the

We also need the contributions from the plasma forces. However, since Fp does

not depend on Z and has no Z component we find that

Ro aFpR Ro Fpz _Ro aFz 0
Fp0 Z F R F aZ

(2.109)

To calculate 'FPR we follow an unpublished calculation by I.H. Hutchinson. First

we will write FpR in terms of the plasma inductance L = Li + Le, distinguishing

the contributions from inside and outside the plasma. By using Em = 1LI2 and

integrating for the stored magnetic energy, Em = f dV ( ), over the plasma region,

the internal inductance can be calculated to be Li = [oR. Repeating the process

for Le over the vacuum region, the external inductance can be calculated to be Le =

pOR (in (ef) - 2). The total inductance is then

(2.110)

We would now like to find the derivative of L, but we do not know how the mi-

nor radius changes as the plasma is perturbed about the equilibrium in the ma-

jor radial direction. To calculate this we will assume conservation of toroidal flux
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X = dO f" dr (rB (R)) = j B( (R) to lowest order in aspect ratio. Since

B( (R) oc 1/R, we find that a2 oc R. Assuming that the current profile (and therefore

1j) does not change with the perturbation we find

DL
OR =1o In 8R)

((a

3
2

(2.111)

This means, referring to eq. (2.100), we can write the radial force as

F =47r R
( L
OR

(2.112)

Taking the derivative we find

DFpR

DR
1 DI
Ip DR ,

+ ( + 1ko3p
d2 L DA3%

dR 2 +k OR V JFDI+

+ 0BDR vO
(2.113)

The second derivative of the inductance can be calculated directly from eq. (2.111)

(remembering that a2 oc R) as

( 2L P0
2R*

(2.114)

Earlier we assumed that the external fields are constant during the plasma perturba-

tion, so we may say Bext (R, R') = Bext (R'), where R is the location of the plasma

and R' is an integration variable. Using conservation of poloidal flux, remembering

to factor in the effect of the external field, we can write

dR' (R'Bext (R'))

-- = --- L Ip - 27r
OR OR ( 1

dR'(R'Bext (R'))) = 0.
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Rearranging, we find that

aI 1
=L (27rRBext - .) (2.117)

To determine how the perturbation modifies , we will assume the plasma is an

ideal gas undergoing an adiabatic change, meaning pV~c is constant, where -y is the

ratio of specific heats. Taking -yc = 5/3 and remembering that a2 oc R, we deduce

that p oc R--2, = R-i0/3 [62]. Since Op = "2a2 (p V we arrive atA0 I72

+2 R
+POR~

Combining eqs. (2.110), (2.111), (2.113) (2.114), (2.117), and (2.118) yields

B -o - 1 - 2 +
In ()- 2 +2 +#

(2.119)
(In () - + _ -P)2

2 (In ()- + - + #p) (InE() - 2 + ).

The final form of the decay index, using eqs. (2.105) through (2.108) and (2.119),

is given by eq. (2.102) and

3

2
+i
2 (rob - 1) cos (20,b)

-21
In (- + L + ,

(In 9 - ,0)2

2 (In (8- + 'a+ Op) (InE() - 2 + (

(in (-
(In(

(ln(

3 + i+ o

3 ii

3 i
2 2

+ 1

+"3o2>

(b - 1) sin (20b) ,

(Kb - 1) sin (20,b) ,

(ti - 1) cos (20,b) .

(2.120)

(2.121)

(2.122)

(2.123)
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Figure 2-7: Contours of the decay index, nc, (which must be greater than 0 for
stability) at E = 1/3, 1i = 1/2, and Op = 1, with the elongation of ITER [5] (thick,
black) indicated for reference.

We note that in the large aspect ratio limit with Kb = 1, this solution produces

the traditionally accepted decay index for radial stability, A+ = [61]. It only

depends on Kb, 6 ,b, c, /,, and 1i and is plotted for example parameters in fig. 2-7.

We see that, for horizontal elongation, the plasma will encounter a restoring force

with vertical displacement, but be less stable horizontally. However, this opens up a

stability window because tokamaks have some natural stability to radial displacements

because the tire tube and hoop forces weaken with major radius. Nevertheless, for

strong horizontal elongation this natural stability can be overwhelmed. We also see

that vertically elongated flux surfaces are inherently unstable. This is due to the

curvature of the external magnetic field shown in fig. 2-6. Importantly, tilted flux

surfaces are simply intermediates between these two extreme cases.
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Chapter 3

GS2 [63]

GS2 is a local 6f gyrokinetic code that self-consistently calculates turbulent transport

in tokamak or stellarator geometries. First we will present a brief overview of GS2

and detail how we specify the geometry for a local equilibrium. Then we will de-

scribe the modifications that were necessary to properly model up-down asymmetric

configurations. Lastly, we will recount the test cases that were used to confirm the

functionality of the modified code.

3.1 Code overview

Fundamentally GS2 solves the gyrokinetic and quasineutrality equations in a domain

following a single field line on a single flux surface. Along the field line the domain

extends along the scale of the machine, while in the perpendicular directions it only

spans several ion gyroradii (see fig. 3-1). GS2 can be run either linearly or nonlin-

early for a single or many modes. It is appropriate for determining transport due

to turbulent instabilities, such as the ion temperature gradient and trapped electron

modes. The effects of finite beta, flow, and flow shear may be included, but were

ignored in this work. It can also include collisional effects, but collisions were only

used to verify they had little effect on the results.
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(a) (b)

Figure 3-1: Magnetic field lines (blue) from the q 2 flux surface of an example
tilted elliptical tokamak with a GS2 flux tube simulation domain (red) viewed from
(a) above and (b) the side.

3.1.1 Miller geometry [64]

GS2 allows several different ways of specifying the physical geometry of the simulation.

It is able to import numerically generated output from many equilibrium codes such as

EFIT [65], TOQ [66, 67], and JSOLVER [68]. The user also has the option of directly

specifying the geometry in the input file using either the s-a model [69] or the Miller

equilibrium model. This work exclusively uses Miller equilibrium for specifying the

simulation geometry (a sample nonlinear input file is included in Appendix C). Many

of the conventions and definitions GS2 employs depend on the method of geometry

specification. Thus, significant portions of this chapter may only be valid when using

Miller geometry.

The traditional Miller equilibrium model is specified by the seven parameters and

two normalization parameters listed in table 3.1. Normalization parameters are not

specified to the model, but they must be kept consistent between input parameters

and when connecting output back to reality. The GS2 implementation of Miller

geometry, on the other hand, is specified by nine parameters and two normalization

parameters. The extra parameters, Rgeo and 4., are redundant and are only present

for convenience [70]. The major radial location Rgeo allows the user to specify the
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Quantity Miller Parameter GS2 Parameter GS2 Variable
Minor radius* p rpN r r rhoc

Ref. magnetic field*t B0  Br
Major radius Ro/p RON=- Rol/r Rmaj

Shafranov shift 1 dRO dRON shif tp dp dr pN

Safety factor q q qinp
Magnetic shear dq r N dq s-hat-inputdp q drVpN

Elongation K K akappa

Elongation derivative drrLN akappridp dp

Triangularity 6M 6 sin 1 (M) tri

Triangularity derivative dNm d6dp drpN tir
Pressure derivative dp /

3
T dp betaprime-nputdp p drVpN

Magnetic field ref. point Rgeo R-geo
Ref. macroscopic lengtht 1r

Table 3.1: Miller and GS2 geometry input parameters, where * denotes a Miller
normalization parameter and t denotes a GS2 normalization parameter.

reference magnetic field at any major radial position, instead of forcing the reference

magnetic field to be at RO. The reference length 1r allows the user to use any arbitrary

length, such as a meter, to normalize the macroscopic lengths in the simulation, rather

than forcing the reference length to be the minor radius. Also, note the quantity rv,

is a flux function and is used to specify the flux surface, not the traditional radius of

circular flux surfaces.

These input parameters are used to create the flux surface of interest and two

additional flux surfaces on either side. From this GS2 constructs radial gradients

that are used to calculate the poloidal magnetic field. Then, the two additional

flux surfaces and all information about the flux surface radial variation is discarded.

Finally, using the poloidal field, all radial variation is calculated by ensuring that the

Grad-Shafranov equation is locally satisfied [64].

3.1.2 Normalizations

A common source of confusion regarding GS2 arises from the conventions it uses to

normalize quantities (see table 3.2). The number of quantities that GS2 accepts as

input and prints to output is enormous. This section will primarily discuss those
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pertinent to this work.

The reference temperature, used to normalize all temperatures, and the reference

thermal velocity are related by Vthr a . This means the process of normalizing

equations frequently creates factors of v/Z that other normalizations do not have.

Also, since the velocity space coordinate normalizations are species dependent, factors

of and ms can be created. The x and y wavenumbers used in GS2 are related

to the b and a wavenumbers appearing the gyrokinetic equation as

k q k, (3.1)
rPN rBr

d~N
kir d Iky. (3.2)

drV)N

Generally, parameters are normalized to be roughly 0 (1), so many must be scaled

up by pr ,hr where Qr =zeI. The reference temperature, density, and massO
2

r 1mr

are completely arbitrary and left to the user. When using adiabatic electrons, the

reference charge is taken to be the elementary charge, otherwise Z, is also left to the

user. The reference magnetic field magnitude is defined as Br = R' on the flux

surface of interest. The reference macroscopic length, 1r, is not necessarily the minor

radius, but is any arbitrary length, similar to Tr, nr, and mr. Lastly, all fluxes are

normalized to their gyroBohm values (FgBr , gBr,, and QgBr), as detailed in Appendix

B.

3.2 Code modifications

GS2 needed to be modified to simulate the up-down asymmetric configurations that

were investigated in this work. First of all, new input parameters had to be added to

the Miller geometry package to allow for a more general geometry specification. Also,

for reasons of computation efficiency, several numerical derivatives assumed the up-

down symmetry of flux surfaces and the calculation of these numerical derivatives had

to be modified. Lastly, in its treatment of trapped particles, GS2 assumed that the

poloidal location of the maximum magnetic field was at ±7r, which is not necessarily

74



Table 3.2: GS2 normalized quantities and their corresponding variable names within
the code (table adapted from ref. [20]).
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Name
Mass

Temperature
Charge

Thermal velocity
Equilibrium dist. fn.

Nonadiabatic dist. fn.
Complementary dist. fn.

Perturbed electric potential
Time

Parallel velocity
Perp. velocity squared

Radial perp. coordinate
Poloidal perp. coordinate

Parallel wavenumber
Major radial coordinate

Vertical coordinate
Radial perp. wavenumber

Poloidal perp. wavenumber
Magnetic field magnitude

Magnetic flux
Current

Flow
Angular flow

Angular flow shear
Energy

Magnetic moment
Lambda
Density

Temperature gradient

Density gradient

Mode angular frequency
Mode growth rate

Particle flux
Angular momentum flux

Heat flux

Definition
MNs ms/mr
TNs = s/Tr

ZNs - Zs/Zr

VthNs Vths/Vthr - VTNs/mNs

FMNs (vthsns) FMs
hNs (lr/Pr) (1/FIs) h8

Ns -(lr/Pr) (1/FMs) gS
ON (rlPr) (elr) 0
tN (Vthr/lr) t

WIlN WII/Vths

WIN I ths
XN X/Pr

YN Y/Pr
k1IN irkI1
RN R/lr

ZN Z/lr
kxN Prkx

kyN pr y
BN B/Br

'N 1/ (lr Br)
IN - l(rBr)

U N
Vthr Vthr

((N lr/Vtthr) Q( U(N/RN

7EN (a/Vthr) 7E = rNN

&N ls
PN 2(Br/Ts) p
AN N N

hNs fls1 r

l/LTNs 1r/LTs -- -

1/LnNs r Lns = -- a

WN (r/Vthr) Real [w]

rYN (lr/Vthr) Imag [w]
FNs Fs/FgBr

fINs r7s/IgBr

QNs Qs/QgBr

GS2 Variable
mass

temp
z
stm

g
phi
time
vpa

vperp2

Rpos

Zpos
akx

aky
bmag

mach

g-exb

energy

1
dens

tprim

fprim

omega

omega

part-fluxes

mom-fluxes

heat-fluxes
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Figure 3-2: Definition of the (a) elongation tilt
angle, 06, parameters.

Name De
Elongation tilt angle

Elongation tilt angle derivative

Triangularity tilt angle
Triangularity tilt angle derivative

Table 3.3: New GS2 input quantities and their

- ~

4%

4%
4% 4%

I 44

1

I

angle, 0K, and (b) triangularity tilt

finition GS2 Variable
Or, thetak

dO. thetakp

03 thetad
dO6  thetadp

drpdN

corresponding variable names.

the case for up-down asymmetric flux surfaces.

3.2.1 Geometry specification

Originally, GS2 Miller geometry input allowed for flux surface elongation and trian-

gularity, but was not general enough to allow for tilted shapes. To support modeling

up-down asymmetry four additional input parameters were added, given in table 3.3.

The elongation tilt angle and the triangularity tilt angle, shown in fig. 3-2, both have

intuitively obvious definitions and can be varied independently. This allows significant

additional flexibility in modeling unusual geometries, such as tilted comet-shaped flux

surfaces [71].

The Miller equilibrium flux surface shape specification is given in the source file
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leq. f 90. Formerly, the flux surfaces were defined by

RNd (r7PN, '0) =RON (rN) + TrNCOS ( + 6 (rTN) sin - (asym .3)

Zkd (rPN, 0) =-T NK (rPN) sin (V). (3.4)

Note the appearance of the parameter asym, which has not yet been mentioned. The

actual GS2 implementation includes two parameters, asym and asympri, which ap-

pear in the equations and create a divertor-like up-down asymmetric geometry. How-

ever, because of issues concerning numerical differentiation (see Section 3.2.2) and the

location of the maximum magnetic field (see Section 3.2.3), simulations including a

nonzero asym never functioned properly. The angle 9 is distinguished from the angle

0, used in Chapter 2, because it is not the usual cylindrical poloidal angle. From

eqs. (3.3) and (3.4), the two neighboring flux surfaces were created using a Taylor

expansion about the flux surface of interest rPN. The definition of the neighboring

flux surfaces is what necessitates providing input for the Shafranov shift, elongation

derivative, and triangularity derivative.

The new, more general specification is done by adding each of the shaping effects

in and rotating the appropriate angle. The new definition is

'~ - 19 + shift, (3.5)

R, (rPN, 0) = r4 NcOS ('0' + 0, (TpN) - 06 (rPN)), (3.6)

Z, (rgN,'0) _rNsin (1'+ 0, (rN) - 06 ('rN)), (3.7)

R, (TrN, 0) Z Rc (TV N9) -(1 (3-)

Z, (TON, 1) - Ze (rON 1 9 (r rN ) -~ 1) rNsin (W + 0rN) ~- 06 (TN) 1 3.9)
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Rt" (TrN, 1)= R. (rPN, V) Cos (O; (rTpN) -- O (TpN))

+ Z (rN, 79) sin (Or, (riPN) -- 6 (rVN)), (3.10)

Z'i (T1N,1) Z; (rPN, V) Cos (O, (TrN) - 66 (rPN))

- R (rpN,1 ) sin (Or, (rTpN) - 06 (rN)), (3.11)

R6 (rT0N, 1) RtIt (T0Ni13) + rON [cos (13' + 6sin (79')) - cos (3.12)

Z6 (TON, 79), Ztil ,' (3.13)

Rt"t (rPN,1) Rj (rON, 1) cOS (6 (TrN)) + Z6 (rPN,1) Sin (06 (rN)), (3.14)

Z" t (rPN, 7)) Z 6 (rPN, 13) cOS (96 (rPN)) - R6 (riN, V) sin (96 (r7PN)), (3.15)

R7nw (rN, 1)= RON (rN) + Rt"t (TrN 1), (3.16)

Zpw (rTN 79) = Ztlt (rV)N, 19). (3.17)

Fig. 3-3 shows each step of this geometry specification process. Note that 6 E

(-i, ), as indicated by the definition in table 3.1. If 6 is specified outside this range

the flux surface cross-section can develop singular points. As before, calculating the

poloidal magnetic field still requires the radial derivatives of the input parameters

appearing in the flux surface specification. The translation of V by 0,, (rN) -06 (rON)

only serves to get the proper phase between the effects of elongation and triangularity.

The 3shift parameter ultimately determines the location of d = 0 and will be discussed

in Section 3.2.3. In this thesis, all radial derivatives appearing in tables 3.1 and 3.3,

excepting the magnetic shear, are set to zero.

3.2.2 Numerical differentiation

Within the leq. f 90 source file there are several numerical derivatives taken using the

parameterized flux surfaces. Originally, these derivatives were taken over the 13 E [0, 7r]

domain and later copied, with the proper symmetry, to the 13 E (0, -7r] domain. For
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Figure 3-3: Demonstration of each stage of the iterative method (eqs. (3.6) through
(3.17)) to specify geometry with RON =3 N 2,6=0.7, O = , and

17r.

modeling up-down asymmetric geometries, these subroutines were converted to use

the P E [-7r, 7r] domain throughout the entire algorithm.

3.2.3 Treatment of bounce points

A more subtle issue stems from GS2's treatment of trapped particles. The gridder

is a particularly dense and unintelligible portion of the code that is contained in

gridgen4mod. f 90. It is responsible for taking the input geometry and discretizing

the spatial and velocity dimensions. The poloidal and velocity grids are structured

so that particles have velocities such that they only ever bounce at grid points and

not between grid points. To do this, the gridder assumes that the location of the

maximum total magnetic field is at V = ±r. However, this is not automatically the

case for up-down asymmetric configurations.

Rather than attempt to understand and modify the inner workings of the gridder,

the definition of V was translated by the quantity dshift -- - VBm., where oBma

is the location of the maximum of B in the flux surface. Therefore, the assumption

is always satisfied. However, the location of the maximum magnetic field, VBm,., in a

general flux surface with separately tilted elongation and triangularity is not analytic.

So, for the sake of convenience, this was implemented in GS2 as a two step process.

First, the geometry is discretized and B (t9) is calculated with Os9hift = 0, as was

already the case. Then the code searches through all the values of V and finds 79a..

If dBmax = ±r, the code moves forwards. Otherwise, 19shift is set accordingly and the

initialization routine is started from the beginning a second time.
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3.3 Code benchmarking

Several different tests were used to verify that the modifications to GS2 introduced

no errors and that no further modifications were necessary to properly treat up-

down asymmetry. First, a collisionless linear analytic solution to the gyrokinetic

equation (with k. = 0) was found and compared to GS2 output. Also, the new

input parameters added to the code allow a physical geometry to be specified in

different ways. These different specifications were tested to ensure that they produced

equivalent results. Lastly, all effects of the system geometry appear in the gyrokinetic

as eight individual coefficients. Several of these were calculated independently and

compared against those calculated within GS2.

3.3.1 Stationary mode test

The stationary mode test case is a comparison between the conclusions of an analytic

calculation and GS2 results. The analytic calculation starts with the Fourier analyzed

gyrokinetic equation (see eq. (1.21)). Now we choose to focus on modes with k, = 0

and ignore collisions. These two conditions can be enforced in GS2 by setting aky = 0

and collision-model = 'none'. Next, we postulate that time-independent solutions

for h, and 4 exist and seek them by letting A = 0. These simplifications, along with

changing velocity space variables (w 1 , p, o) - (&,,, p), gives

W as (W + pB) B hs. (3.18)

Solving for the nonadiabatic distribution function we find that

hs (k4,, o, &, IL) = hso (kp, 6, y) exp ( _k wII ,) (3.19)

where we choose the integration constant to be h5o = ZPFms. The factor of Zs

is added for numerical reasons that will be discussed later and P FM, is chosen for

proper normalization according to table 3.2. Now we substitute this result into the

quasineutrality equation, given by eq. (1.22). Solving for the perturbed electric
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potential, using the identity

Jo (z) = 12r depexp (izsinWp) (3.20)

and the change of integration variables (w11, P, W) -+ (wi), wI , wy), we find

nsZs2exp -
1 r

1k, 2B2T- V)R 2 2 (3.21)

Now we can use the normalizations of table 3.2 and the definition of the complemen-

tary distribution function

Zee (k 1__2pB
g= h 8 - TsJo ( JqFMs,QS~

(3.22)

the distribution function that GS2 actually manipulates internally, to find

q 'MNsTNs
9Ns = ZNsexp (--kxNWIINRgeoN ZNsTN

ZNs M / N NsNs N
TNSJ KkINW±N ZNsBN ON

(3.23)

Z2nNj)
nNkZNkeXp

k
q xN

Therefore if we initialize the distribution function to eq.

2n mNkTNkRN 2. ) . (3.24)

(3.23), we expect the

calculated potential at every grid point in 19 to match eq. (3.24) and neither quantity

to change in time. To quantify the time independence, at each poloidal grid point,

we first calculate the fractional error between eq. (3.24) and the calculated potential

distribution after 500 GS2 time steps of 0.1 -i-. From the fractional error at every
Vth~r

V grid point, the standard deviation, Uerr, is calculated, producing a single number

that indicates if a given GS2 run is treating geometrical effects correctly.

Initially, the factor of Z, was not included in the integration constant of eq. (3.19),
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causing the summations over species in eq. (3.24) to become a differences between

the ion and electron terms. Depending on the argument of the exponent, this caused

numerical errors to dominate and prevented all distribution functions from maintain-

ing a stationary state. Introducing the factor of Z, into the integration constant

of eq. (3.19) keeps this cancellation from occurring and makes the problem better

conditioned.

A total of 70 simulations were run for the test, consisting of five groups of

seven simulations for both the original and updated versions of the code. All sim-

ulations were performed at very high spatial (ntheta = 128) and velocity space

(negrid = 32, ngauss = 10) resolution and were shaped variants of the Cyclone

base case geometry given in table 4.1. The Cyclone base case is the standard ge-

ometry used in tokamak simulations [3] and is modeled after a particular DIII-D

shot. The asym parameter (discussed in Section 3.2.1) was used to create improperly

treated up-down asymmetry in the original code as a control for the test. Within

each group of seven simulations, the only difference was the radial wavenumber,

kxN E {0.1, 0.3, 0.5,0.7,0.9,1.1, 1.3}.

The five groups of simulations performed with the original source code consisted

of a circular cross-section and four triangular shapes with 6 = 0.7 and asym E

{0.0, 0.4, 0.7, 1.0}. Therefore, three of these groups are up-down asymmetric and

should fail to maintain the stationary state.

The five groups of simulations performed with the updated source code include

a circular cross-section and four elongated shapes with K = 2 and 0, E f 0, El E, 

Therefore, two of these groups are up-down asymmetric, but, because of the updates,

all should still maintain the stationary state.

The results, summarized in fig. 3-4, were as expected. Fig. 3-4a shows that the

two codes produce nearly identical results for identical circular flux surfaces. Fig.

3-4b shows a clear separation between the results of improperly treated up-down

asymmetric runs using the original source code and all other runs. The up-down

asymmetric runs using the updated version of the code have very similar error to the

up-down symmetric runs. Furthermore, fig. 3-5 shows that the improperly treated
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Figure 3-4: Stationary state test case error for both up-down symmetric (black) and

up-down asymmetric (red) configurations performed using the original source code

(circles) and the updated source code (crosses) for (a) circular flux surfaces or (b)

shaped flux surfaces.

CJ_z
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0
0 10 20 30 40 50

tN

Figure 3-5: The potential amplitude with time for both up-down symmetric (black)

and up-down asymmetric (red) configurations performed using the original source

code (solid) and the updated source code (dotted). Only the test cases with k.N = 0.7

are shown.
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K=2 OK =0 K=/2K=1 /2W A
Figure 3-6: An example of two different GS2 specifications of the same physical
geometry.

up-down asymmetric cases converge to different steady-state solutions than all of the

other cases.

3.3.2 Duplicate geometry test

As illustrated in fig. 3-6 , the addition of the tilt parameters allows for multiple ways

to specify the same physical geometry. Both these manners of specification should

produce the same results. However, getting this test to work requires a comprehensive

understanding of GS2's normalizations of input and output parameters. Given an

arbitrary elongated configuration with no triangularity (indicated by a subscript 1),
we can produce a physically identical configuration (indicated by a subscript 2) with

a different GS2 specification using

1
akappa 2 = , (3.25)

akappa
7F

thetak2 = thetaki + -, (3.26)
2

tprim2 = tprimp, (3.27)
akappal

1
f prim2 = f prim, (3.28)

akappal

akx2 = akappajakx1 , (3.29)

aky2 = akappalakyl, (3.30)

gds22 2 = (akappa1 )2 gds221 , (3.31)

gds2l 2 = (akappa1 )2 gds211, (3.32)

gds2 2 = (akappa) 2 gds21 (3.33)
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where gds22 = N gds2l dq 8N dN VN4N Na, and gds2
/ \2 2 N)

drN VN O are GS2 outputs. The factors of akappal arise in eqs. (3.27) through

(3.33) because GS2 chooses VV) at the midplane of the ellipse before rotation to

normalize quantities such as kg and k,. The value ofI V'OI used for normalizations is

different for the two configurations. An analogous transformation exists for triangular

flux surfaces with no elongation, given by

tri 2 = -tri, (3.34)

thetad2 = thetadi + 7r, (3.35)

tprim2 = tpriml, (3.36)

fprim2 = f prim,, (3.37)

akx 2 = akx1 , (3.38)

aky2 = akyl, (3.39)

gds222 = gds221 , (3.40)

gds2l 2 = gds21 1, (3.41)

gds2 2 = gds21 . (3.42)

Two elongated cases, one unrotated and one rotated, were run linearly for k, = 0

and k, / 0 in order to test a parameter space missed by the stationary state test

(where ky = 0). As expected, fig. 3-7 shows that these two configurations both

produce identical geometric coefficients as well as converge to the same linear growth

rate and mode shape.

Also, elongated test cases were run for a large number of nonlinearly interacting

modes. Because of the fluctuating nature of nonlinear runs we only expect the two

results to behave identically in the statistical sense. We can see in fig. 3-8 that the

heat fluxes are identical through the linear growth phase (up to tN , 20). Afterwards,

during the nonlinear saturation, we see the results diverge, but still saturate at the

same level, when averaged in time.
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Figure 3-7: Comparison of (a) geometric coefficients and (b) potential for the two
geometric specifications withWN= 0.2727 + 0.2907i for 6, = 0 and WN = 0.2727 +
0.2908i for 0, = r/2.
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Figure 3-8: Comparison of total heat flux for the two geometric specifications.
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3.3.3 Geometric coefficient test

Lastly, all effects of the system geometry appear in the equations governing gyroki-

netics (eqs. (1.21) through (1.30)) as eight individual coefficients: B, }9, 2B,
- 2 2

b. -Vo x Va), V , VO - Va, and Va . The final test performed was to verify

that the geometric coefficients were correct for up-down asymmetric configurations.

A numerical calculation, completely independent of GS2, was performed which found

the coefficients using the Miller equilibrium model. Fig. 3-9 shows excellent agree-

ment between the four coefficients that were compared.
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Figure 3-9: Geometrical coefficients output by GS2 (solid) and an independent nu-
merical calculation (dotted) for elongated flux surfaces with 0 . = .

88



Chapter 4

Energy transport

Modifying the poloidal cross-section affects nearly every aspect of tokamak perfor-

mance, not just the level of intrinsic rotation. In fact, the viability of a tilted elliptical

tokamak as a reactor ultimately depends on energy confinement properties. For this

reason, we will investigate how turbulent energy transport and reactor design limits

are affected by elongation tilt in several different geometries, which are all variants

of the Cyclone base case. Furthermore, we will see that the precise manner by which

the flux surfaces are rotated is important. The different elliptical shapes and plasma

parameters (geometries) used are given in table 4.1 and the different ways to rotate

these elliptical flux surfaces (transformations) used are given in table 4.2.

First we will describe the GS2 simulations performed and present the results.

Importantly we will see that in some cases elongation tilt can dramatically reduce

turbulent energy transport. Then we will look at how several different local parame-

Cyclone case name rPN RON q 3 1/LTNs IlLnNs ' 6
Base [3] 0.54 3 1.4 0.8 2.3 0.733 1 0

Elongated 0.54 3 1.4 0.8 2.3 0.733 2 0
Elongated Extreme 0.54 3 1.4 0.8 3.45 0.733 2 0

Optimized Elongated 1 3 1.4 0.8 2.5 0.733 2 0
Triangular Extreme 1 3 1.4 0.8 3.5 1 1 0.7

Table 4.1: Normalized unrotated input parameters for the geometry of each Cyclone
base case variant, all with mNi = 1, mN,= 2.7 x 10 , TNs = 1 and TNs = 1, where
s G {i, e}.
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Transformation name R B LTs Lns Size
Simplistic

Sophisticated
Realistic

Constant-cost

Table 4.2: Summary
tions used to compare
21rRONwr N K.

RON BON LTNs (rmin)

RminN BCN (RminN) LTN s (RmaxN)

RminN BCN (RminN) LTNs (rmin)
RminN B(N (RminN) LTNs (rmin)

of the parameters kept fixed during
tilted elliptical configurations, where

LnNs (rmin) rON
LnNs (RmaxN) ripN

LnN s (rmin) ripN
LnNs (Tmin) VN

different transforma-
s E {i, e} and VN =

1 2 RON
RN

Figure 4-1: Elongated Cyclone base
mation.

case at 0, = {0, }} with the Simplistic transfor-

ters change with elongation tilt to see if any have a clear connection with the observed

suppression of turbulence. Finally we will evaluate the implications for the reactor

viability of tilted elliptical tokamaks.

4.1 Nonlinear simulations

In this section we will discuss three sets of nonlinear simulations: the Elongated

geometry with the Simplistic transformation (see fig. 4-1), the Elongated Extreme

geometry with the Simplistic transformation (see fig. 4-3), and the Optimized Elon-
gated geometry with the Sophisticated transformation (see fig. 4-6).
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Figure 4-2: Total nonlinear heat flux time trace for the Elongated Cyclone base case
with the Simplistic transformation.

4.1.1 Elongated geometry with the Simplistic transformation

Fundamentally, when we compare the relative merits of different tokamak configu-

rations, we want cost to be invariant. However, it is unclear how to translate cost

into the global parameters appearing in tokamak design limits, let alone the local flux

surface parameters that GS2 requires. If we take the GS2 input file for the Elongated

cyclone base case geometry and change only the parameter thetak from 0 to 2 we

produce the two configurations appearing in fig. 4-1. This transformation implicitly

holds the major radius, the on-axis magnetic field, and the background gradients at

the pre-rotation midplane (i.e. the location of the minimum minor radial position,

rmin) constant as the ellipse is rotated. This seems to be a fairly good method be-

cause it keeps the total plasma volume constant as well as the peak temperatures and

densities (if we extrapolate the gradients to the magnetic axis). However it alters the

amount of available space on the inboard side for structure and increases the required

on-coil magnetic field. The required on-coil magnetic field increases because BO is

fixed and the distance between RO and Rmin increases with elongation rotation.

The transformation also has an unexpected and fairly drastic effect on turbulence.

Fig. 4-2 shows that rotation by E suppresses the turbulent transport of energy by a

factor of 10! We suspect this may be because, near the regions of high poloidal curva-
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Figure 4-3: Elongated Extreme Cyclone base case at 0,, = { 0, 3, T, j, } with the
Simplistic transformation.

ture, the poloidal magnetic field weakens and the flux surfaces become spaced further

apart. Tilting the elongation weakens the background gradients near the location of

the strongest turbulence drive (near the point of maximum R). Additionally, tilting

the flux surfaces has stabilizing consequences that arise from the value of the mag-

netic field curvature at the location of the mode. These influences will be discussed

in more depth later in this chapter.

4.1.2 Elongated Extreme geometry with the Simplistic trans-

formation

We suspected the apparent stabilization in fig. 4-2 might skew momentum flux results,

so the geometry was repeated with a 50% increase in the background temperature

gradient. This produced the Elongated Extreme geometry in fig. 4-3. We see from

fig. 4-4 these simulations did not display turbulent stabilization with elongation

rotation. It seems that this stabilizing effect vanishes with stronger gradients. Linear

simulations, shown in fig. 4-5, agree with this result. However, at this point it

is unclear whether typical experimental values for the temperature gradient lie in

the parameter space that sees turbulent stabilization from tilt and how this effect

changes with elongation. Nevertheless, the factor of 10 reduction in energy transport
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Figure 4-4: Total nonlinear heat flux time trace for the Elongated Extreme Cyclone
base case with the Simplistic transformation.

demonstrated in the two simulations in fig. 4-1 compels confirmation and further

investigation.

4.1.3 Optimized Elongated geometry with the Sophisticated

transformation

To reduce the reactor volume (which reduces cost) and achieve higher Troyon-limited

power (see eq. (1.8)) it is generally desirable to minimize Ro. However, the amount

of necessary inboard space is dictated by technological limits, such as the required

volumes of coil support structure, breeding blanket, and neutron shielding. Therefore

Rmin, the minimum distance of the flux surface from the axis of symmetry, should

be considered the fixed parameter, not Ro. Also, the maximum allowable on-coil

magnetic field is a material property of the magnet conductor and directly influences

the magnet stresses. The choice of conductor material and amount of necessary

magnet structure dramatically affects cost, which should stay fixed between designs.

For this reason BC (Rmin), the maximum on-coil magnetic field, should be fixed.

Therefore, in order to more closely approximate constant cost, a more realistic

comparison fixes Rmin and B( (Rmin). In order to fix B( (Rmin), the reference mag-

netic field B, was adjusted for each rotated simulation such that B( (R = 3) = 1.
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Figure 4-5: Largest turbulent mode linear growth rate for the elongated Cyclone base
case parameters with the Simplistic transformation, where the vertical lines indicate
an approximate midplane-averaged value for ITER [5] and Alcator C-Mod [72] (solid,
black), plus the DIII-D Cyclone base case value (dotted, black).

Previously, the geometry of fig. 4-1 kept the global gradients constant, such that

in a full reactor the peak temperature and density would be fixed. Instead we will

attempt to keep the local turbulent drive constant by fixing the temperature gradient

at the point we expect the mode to live, specifically Rmax. Fixing Rmin, BC (Rmin),

and the gradients at Rmax between different rotated geometries defines the Sophisti-

cated transformation. Also, in these simulations (see fig. 4-6), we chose an outer flux

surface in order to increase the effective aspect ratio and try to optimize for stronger

momentum flux.

Fig. 4-7 calculates the time-averaged heat flux results for all of the above ge-

ometries. The time-average is given by t.. .) = ;tO-tcor dt (. . .), where t.orr is

the turbulent correlation time. We see from the blue markers that fixing the local

gradients at Rmax to keep the turbulent drive constant was inappropriate because the

heat flux now increases very strongly with tilt angle. In hindsight, this is unsurpris-

ing because the tokamak simulated in the 0,K= case would have twice the on-axis2

temperature of the unrotated case.
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Figure 4-6: Optimized Elongated Cyclone base
Sophisticated transformation.
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Figure 4-7: Time-averaged total nonlinear heat flux for the Elongated geometry with
Simplistic transformation (red, squares), Elongated Extreme geometry with Simplis-
tic transformation (black, circles), and Optimized Elongated geometry with Sophis-
ticated transformation (blue, triangles).
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dq-oc

drq/N K c V NIN
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2NN
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Figure 4-8: (a) the radial gradient in the flux surface label r1pN, (b) the local value of
the safety factor, (c) the derivative of the local safety factor in the direction normal to
the flux surface, and (d) the magnitude of the good magnetic field curvature for the
elongated Cyclone base case geometry with the Simplistic transformation and 0, = 0
(black, solid), 0, = E (blue, dashed), and 0,, = 1 (red, dotted), where V has been
translated such that BamaX = ±ir. The filled curves are identical between the four
plots (except for a scaling factor) and show the shape and location of ION 12 obtained
from linear simulations performed for each of the three values of 6 .

4.2 Local quantities

Fig. 4-8 shows four local parameters, calculated using the Miller equilibrium model,

that could be responsible for the trends in figs. 4-2, 4-5, and 4-7. For now we focus

on the linear results in fig. 4-5. An explanation for the nonlinear results, shown in

figs. 4-2 and 4-7, is left for future work. In all plots, because of the 'd translation

discussed in Section 3.2.3, we expect that the mode will live near V = 0. From fig.

4-8a we see that the flux surface spacing is dominated by the effects of flux surface

shaping. A vertically elongated flux surface positions the mode exactly where the flux
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surfaces are most compressed and, hence, the gradients are steepest. We see that, in

the 0,, = r/4 case, the mode seems drawn to the region of steeper gradients. This

suggests that that the local flux surface spacing may be partially responsible for the

observed stabilizing effect.

Fig. 4-8b shows that the local safety factor, qj0c , which we define
R2 fl.to9I

analogously to the global safety factor, q f 1 d( V). It is dominated by

the 1/R dependence of the toroidal magnetic field. Hence, since the vertical ellipse

minimizes the range of a given flux surface in R, it has the least variation. On the

other hand, the behavior of the local magnetic shear, shown in fig. 4-8c, is dominated

by shaping effects. We see that the shear sharply peaks in the regions of high poloidal

curvature and that elongation tilt locates this peak closer to the mode location.

Lastly fig. 4-8d shows that the magnetic curvature is good on the inboard side of

the tokamak and bad on the outboard as expected. However, the rotated configura-

tions have weaker bad curvature around V = 0, where we expect the mode to live.

In the 0, = 7r/4 case, we see the mode is drawn towards the region of bad curvature.

In the 6, = wr/2 case, we see the mode spreads out further in response to the wider

and shallower bad curvature well. The response of the mode to magnetic curvature

suggests that it causes the observed turbulence suppression, however it still does not

explain why elongation tilt is destabilizing at higher temperature gradients (see fig.

4-4).

4.3 Reactor prospects

From this analysis, it is not clear that the traditional upright, vertically elongated

tokamak cross-section is necessarily optimal. However, it does makes sense why,

before the advent of kinetic simulations, vertical elongation would be found to be the

most promising.

As shown in Section 1.1.2, the circular cross-section is the shape that, at con-

stant cross-sectional area, minimizes the safety factor. This is the worst case from

the perspective of maximizing the efficiency of plasma confinement, according to
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the Troyon limit (see eq. (1.5)). To determine the exact fusion power scalings for

the constant-cost transformation (see table 4.2), we solve for Pf, 0 min, RON, RON,

and a in VN = 27rRON7ra2 K, B(N (RminN) = BON RminN RminN = RN (a min),
9R7Iw = 0, and eq. (1.8), where RnW (rp, 6) is given by eq. (3.16) anda r0 a,%-'OminN

79min is the location of the minimum major radial position. Fig. 4-9 shows that verti-

cal and horizontal elongation have very different effects on the safety factor and the

maximum, Troyon-limited fusion power (assuming that the Troyon limit applies to

horizontal and tilted elongation).

Taking the limit of K -+ 00, we see that fusion power only scales with horizontal

elongation as , 2/3 , whereas it scales with vertical elongation as K . When vertical

elongation is increased, both BO and RO stay fixed. However, when horizontal elonga-

tion is changed, in order to maintain constant on-coil magnetic field the device major

radius must increase, which decreases the on-axis magnetic field. Both these effects

cause the scaling of safety factor q ~ - with K to weaken. At constant Rmin, asIo BP

K -+ oc, we know that RO oc an. For constant volume, a oc (Ro)-1/2 meaning that

RO c KI/ 3 . Since, at constant Rmin and B (Rmin), Bo cx RO-1 , eq. (1.8) implies that

Pf c K2 / 3 . This is a compelling argument for choosing vertically elongated tokamak

flux surfaces over horizontal.

However, in Section 2.2.3, we showed that it is reasonable to think tilted flux

surfaces can support higher elongations than vertically elongated surfaces. This can

be estimated by numerically inverting the function n, (r,, O,), which appears in fig.

2-7. This gives , (nc, 0,), which can be substituted into the function displayed in

fig. 4-9 to find Pf (/ (nc, 0), 0,). The result, given in fig. 4-10, shows that, at the

stability index of ITER, n, = -2.3, a tilt of 7r/8 only decreases the Troyon-limited

fusion power by 20%. However, this is admittedly a crude estimation as the analysis

of fig. 4-9 was done with the Constant-cost transformation whereas fig. 2-7 used

the Simplistic transformation. We also see that the ITER operating point (K =1.75,

0K = 0) has a Troyon-limited fusion power of only 400 MW, instead of the nominal

500 MW. This apparent shortfall is because we are not using the proper major/minor

radius or magnetic field for ITER.
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Figure 4-9: Contours of the total Troyon-limited fusion power (in MW) at fixed

Rmin = 2 m, B( (Rmn) = 9 T, and V = 127 2 m3 assuming flat density and tempera-

ture profiles, with the elongation of ITER [5] (thick, black) indicated for reference.
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Figure 4-10: Contours of the total Troyon-limited fusion power (in MW) at for a

tokamak with Ro ~ 3 m, a ~ 1 m, BO ~ 6 T, assuming flat density and temperature

profiles, with the stability index of ITER [5] (thick, black) indicated for reference.
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Also, as we will see in Chapter 5, a tilt of ! seems optimal for maximizing core

rotation, which is expected to both allow for violation of the Troyon limit and suppress

turbulent transport. Lastly, figs. 4-2 and 4-5 give nonlinear and linear evidence

suggesting that configurations with a tilt may have less inherent turbulent energy

transport, independently of the effects of rotation.

From a practical standpoint, a tilted elliptical tokamak eases many of the most

limiting tokamak design problems. First of all, having tilted TF coils allows for more

space in the inboard side of the machine, which is the most space-constrained region

of any design. It also reduces the length of superconducting tape that must operate

at the maximum on-coil magnetic field. In fact, at constant peak on-coil magnetic

field, the average on-coil magnetic field is lower because the average R position of the

coil decreases, likely easing stress limits. However, the stress limits may prove more

challenging because the forces on the magnets are now asymmetric. Furthermore, we

now have the added option of placing the divertor near the outboard tip of the ellipse.

This increases its major radial position and, hence, the surface area which reduces

power handling requirements. However, this may be undesirable, because placing the

x-point on the outboard side can lead to stronger ballooning modes [73].
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Chapter 5

Momentum transport

GS2 only simulates a field line on a single flux surface and outputs turbulent fluxes.

Without a transport solver, such as TRINITY [70], and many GS2 runs it is impossible

to construct a rotation profile. However, we can use the GS2 turbulent fluxes to

estimate the velocity gradients that would be possible in our geometries. We find

that, with steeper temperature gradients, an initially stationary plasma can reorganize

more momentum and achieve faster rotation. Also, these velocity gradients, estimated

from GS2 output, can be compared with an experimental study that looked at the

connection between up-down asymmetry and intrinsic rotation.

5.1 Velocity gradient estimation from GS2 output

0.8
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0.5
0 0.5 1

7EN
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RON/LTNi
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9.0
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Figure 5-1: The insensitivity of the Prandtl number to the background flow shear
and ion temperature gradient (figure from ref. [20]).
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To estimate the velocity gradient we assume that Fick's first law of diffusion

applies to the radial transport of rotation and temperature, to write

(S)t -Dr-1 Ron s m s  aQ" + (r,), (5.1)

and

(Qs)t -DQsns KT . (5.2)

Here u" is the momentum flux due to the symmetry breaking of up-down asymmetry.

This quantity is what we have calculated with GS2 by setting Q( = 0 and choosing

up-down asymmetric configurations. In order to set the total momentum flux to zero,

we have assumed that, after averaging over the turbulent timescale, the profile is in

steady-state and there is no external momentum input. Crucially, we note from fig.

5-1 that the turbulent Prandtl number Pr _ 1 0.55 is approximately constants DQ,

across tokamak parameters [20]. This can be used to relate eqs. (5.1) and (5.2) giving

the nondimensionalized form

R 2NnNsmnNs aQNs iu,)~arVN Pr (N (5.3)
nNs K4TNs

which can be approximated as

a U N s )( u d t

\r7 N |t Ns t 54

a r ~? 7 N S R N ~ 8  ( Q N s ) t ( 5 .4 )(aTNs MNs RON Ers /) N

Since, to lowest order in , the electrons carry no momentum, the ion term,

(K u"Ns~ / (QNs)t, is the relevant parameter for our analysis. This means that for all

simulations performed in this work (see table 4.1), the estimated ratio of velocity and
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temperature gradients is given by

K 8CN)

8rTN t

0.61
(QNs t

5.2 Elliptical geometry

0 n/8 n/4

SK

Figure 5-2: Time-averaged ratio of ion
geometries and transformations of figs.
4-6 (blue, triangles).

angular momentum and heat fluxes for the
4-1 (red, squares), 4-3 (black, circles), and

Fig. 5-2 shows the nonlinear momentum flux results for the three geometries and

transformations detailed in Chapter 5. Quantitatively, we see very similar behavior

despite the differences in input parameters. This suggests that (flu ), / (QNi)t is

relatively insensitive to the background gradients and aspect ratio. We know that

the momentum flux must eventually go to zero as 6 -+ 0 because the geometry loses

any reference by which to define up-down asymmetry, but the simulations do not

seem to be close to this limit.

We see that the up-down symmetric cases at 0,, e- {0, 1 } have a vanishing mo-

mentum to heat flux ratio, while the peak of the curve is around 0.08 and occurs at

Or = E. This implies that the normalized velocity gradient would be about 5% the

normalized temperature gradient (see eq. (5.5)). It may seem intuitive that the peak

should occur at ', halfway between the two up-down symmetric cases. However, since
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vertical and horizontal elongation have very different effects on plasma turbulence,

there is no reason to expect the curve to be symmetric about !.
4.

5.3 Triangular geometry

2

Z0
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RN

Figure 5-3: Triangular Extreme Cyclone base case (see table 4.1) at O, = (0, } with
the Simplistic transformation.

Since the elliptical geometry showed such consistent momentum flux results across

a range of input parameters, a triangular geometry was also simulated (see fig. 5-3).

As shown in Chapter 2, triangularity has trouble penetrating to the magnetic axis in

order to achieve up-down asymmetric flux surfaces throughout the plasma. As such,

these simulations were not about advocating triangularity as a practical means to

achieve high levels of intrinsic rotation. Rather, they were about showing that the

magnitude momentum fluxes observed are characteristic of up-down asymmetry in

general and are not a consequence of some peculiarity of elongated flux surfaces.

We see in fig. 5-4 that the triangular flux surfaces caused even less momentum

transport than the elongated surfaces. It is important to note that the 08 = 0 simu-

lation is up-down symmetric, while the 6 = ' simulation is asymmetric yet still has

near zero momentum transport. A conceptual understanding of this is left for future

work.
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Figure 5-5: The a+ (left, blue) and a- (right,
TCV experiment (figure from ref. [74]).

red) magnetic flux surfaces from the

5.4 TCV up-down asymmetry experiment [74, 75]

The Tokamak a Configuration Variable (TCV) [76, 77] is a Swiss experiment devoted

to studying strongly shaped plasmas. It has a particularly large vacuum vessel and

powerful PF coils that make it ideal for studying up-down asymmetric configurations.

5.4.1 Experimental overview

In 2010, Camenen et al. published the results of a TCV experimental study of the

effects of up-down asymmetry on intrinsic rotation. In order to isolate the effect of
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Figure 5-6: The measured temperature and density profiles from the a+ (blue) and
a- (red) configurations with the sawtooth inversion radius indicated by the vertical
dashed line (figure from ref. [74]).

up-down asymmetry, the study used multiple shots to look for a differential effect
on the rotation profile between two asymmetric magnetic configurations (see fig. 5-
5). The shots were made to be as identical as possible (see fig. 5-6) except for key
changes in the sign of three quantities: the equilibrium flux surface asymmetry, the
toroidal magnetic field, and the plasma current. In each shot, the toroidal rotation

of the carbon impurity species was measured from Doppler shift of charge exchange

radiation. The rotation of the main ion species, deuterium, is then calculated from
the carbon rotation using a neoclassical physics code.

We choose to identify the two magnetic configurations by a+ and a-, indicating
the sign of the asymmetry with the sign of the elongation tilt angle of the flux surfaces

(see fig. 5-5). The direction of the toroidal magnetic field is signified by b+ and b,
where positive is defined to be in the e( direction, clockwise when viewed from above
the machine. The direction of the plasma current is similarly defined and signified by
j+ or j-. Theoretically, one of these parameters could have been removed by using
it to define the signs of the other two. However, it was desirable to vary all three to
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Figure 5-7: The measured rotation profiles for deuterium (solid) and the carbon
impurity (dashed) from the a+ (blue) and a- (red) configurations with the sawtooth
inversion radius indicated in each case by the vertical dashed lines (figure from ref.
[74]).

check for any unexpected symmetry breaking from the practicalities of the machine.

Lastly, we define the sign of any quantity Q to be sQ = sign (Q).

According to theory, the sign of the intrinsic momentum flux is given by sr,- =

SaSbSj, where positive indicates an outwards flux of momentum in the 8^ direction. A

positive momentum flux will expel momentum from the core of the plasma, creating a

more hollow rotation profile and a more positive rotation gradient. This is definitively

confirmed by the experimental results outside the sawtooth inversion radius, where

the asymmetry is the strongest. We can see in the upper-right and lower-left plots

of fig. 5-7 (where SbSj > 0) that the a+ has a more hollow rotation profile and more

positive rotation gradients. The other two plots (where sboj < 0) see the opposite

trend as expected.

Camenen et al. define a parameter Auc = u( IP= 065 - UC, P- 0 which indicates the

average toroidal velocity gradient over a 5.55 cm radial region near the plasma edge.

However, even within a given a+bj± configuration, both co-current and counter-
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a+ -18.0 -19.4 - a+ -6.9 -11 5.8 8.4
- -1.9* -0.1 -1.1* -3.4

a~ -10.1 -12.4 - a- -15.8 -18.6 18.7 18.4
-1.1* -1.3 -5.9* -4.9 -

Table 5.1: Au( in km/s where bold font indicates deuterium, regular font indicates
carbon, an asterisk denotes co-current central rotation cases, and the gray background
denotes that sasbsj > 0 (table adapted from ref. [74]).

current rotation profiles were experimentally observed. Those shots with co-current

rotation had non-monotonic rotation profiles near the edge that obscured the effects

of up-down asymmetry and led to smaller average gradients. As a result, co-current

and counter-current cases are listed separately in table 5.1 and should be compared

separately. Nevertheless, in all cases we still expect that Sassj > 0 will lead to a

more negative Au(. We see that there are a total of 11 valid comparisons and 9 match

up as expected. No satisfying explanation for the two disagreeing comparisons has

been determined, other than suggesting that the a+b-j- case is perhaps errant.

5.4.2 Comparison to GS2 results

Ref. [74] provides exactly enough information to allow comparison with our results

for (ki )t / (QNi)t from Section 5.2. Here, in order to compare with experiment, we

will interpret the reference macroscopic length, 1r, as the tokamak minor radius, a,

implying that rN = p. We can then invert eq. (5.4) to get

1nud ~ K atlCN

Q ' mNiRONPrh Op It (5.6)
(QNi) ~K.tN

Using the normalizations of table 3.2 we find that

(QNi)t mKRO r ) t (5.7)
(QMi)t2a 

a )I T
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However, the TCV experiment measured a differential effect between two mirror

opposite up-down asymmetric equilibrium. From inspection of fig. 5-5 we see that,

primarily, the flux surfaces were elongated with 0 , = 1 for the a+ configuration and8

7r- for a-. That means we will recast eq. (5.7) asOK 8

MiROPrj (K .
2a K

'Ti t a+ (Ti5.8
(5.8)

Also, the averages over the turbulence time scale are already inherent in the

experimental techniques used to measure the flow and temperature gradients, so they

may be dropped. We also observe from fig. 5-6 that the temperature profiles for a+

and a- are more or less identical. Since the paper provides the difference in velocity

Auc, we must discretize the derivatives about p = 0.75 to get

(QNiltQM=t (QNi \(Q t01 =- 7

DD.. thr (AUJ±a - A~"

2a A Tj
(5.9)

where T=T -- T is defined analogously to AuC. Using the upper left

plot of fig. 5-6 we can estimate both Tl,_ 0 .7 5 = 400 eV and zAT = 400 eV. Also, we

approximate the difference in Auc between a+ and a- by averaging over the three

sets of counter-current measurements listed in table 5.1 to get Aucia+ - 'AUda- = 8

km/s. Now we use that mi= mD = 2 amu, RO = 0.88 m, 1r = a = 0.25 m, and that

Pri = 0.55 is roughly constant to find the experimental value to be

(Nie

-- ) exp

- 0.08. (5.10)(QNit t

By using fig. 5-2, GS2 simulations give

(Nilt

(QNi)t o _ 8
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which only differs from the experimental value by a factor of two. In fact, it would

be unreasonable to expect more than an order of magnitude agreement considering

we took the large aspect ratio limit and averaged over the entire outer region of

the plasma. Furthermore, the elongated Cyclone base case geometry used for the

simulations is considerably different than the geometry of TCV. Still, this comparison

shows that neither the simulations nor the experimental results appear unreasonable.

In TCV, the introduction of up-down asymmetry was able to increase the up-

down symmetric rotation profiles by roughly 50%. The rotation present in the up-

down symmetric case was due to effects that are formally small in p, (see Section

1.2). However, in larger machines, p, is smaller and external momentum injection is

less feasible. This means that the effect of up-down asymmetry will be much more

significant in these larger devices. It may not be possible to access new regimes of

rotation using intrinsic rotation, but it does seem that the level of rotation seen in

current machines can be generated in future, reactor-sized devices by using up-down

asymmetry.
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Chapter 6

Conclusions

This thesis analyzed the equilibrium, stability, and transport characteristics of toka-

maks with up-down asymmetric poloidal cross-sections.

The results of MHD equilibrium analysis (Section 2.1) demonstrated that exter-

nal PF coils only have direct control over the outermost flux surface. Inside the

plasma the toroidal current distribution has a significant effect on modifying the flux

surface shape. It was shown that hollow current profiles are optimal for supporting

up-down asymmetry to the magnetic axis. Furthermore, ellipticity, the lowest har-

monic shaping effect, penetrated to the magnetic axis most effectively. The effect

of the Shafranov shift was studied and found not to significantly affect asymmetry

penetration. We then looked at the stability of tilted elliptical flux surfaces to ax-

isymmetric modes and found that is was better than traditional vertically elongated

flux surfaces (see fig. 2-7).

Chapter 3 detailed the modification and testing of GS2 to support the modeling

of up-down asymmetric tokamak configurations.

This newly modified code was applied to model the turbulent energy transport in

tilted elliptical tokamaks. Figs. 4-2 and 4-5 show linear and nonlinear evidence that

elliptical flux surfaces with a tilt may experience significantly reduced turbulent en-

ergy transport, particularly below some currently unknown values of the background

gradients.

Furthermore, the results of nonlinear momentum flux simulations, shown in fig.
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Advantages

- Possible inherent reduction in turbulent energy transport (figs. 4-2 and 4-5)

- Increased toroidal rotation (fig. 5-2), likely dominating in a reactor

+ Allows violation of the Troyon limit (Section 1.1.3)

+ Suppresses turbulent energy transport (Section 1.1.3)

- Possibility of increasing divertor surface area, due to increased major radial
position (Section 4.3)

- More inboard space and shorter magnet length at peak on-coil field (fig. 4-6)

Disadvantages

- Estimated 20% decrease in the Troyon-limited fusion power at constant sta-
bility to axisymmetric modes (fig. 4-10)

- Asymmetric toroidal field magnet stresses (Section 4.3)

Table 6.1: Summary of the tradeoffs of a elongated tokamak with a tilt of r/8 relative
to a traditional vertically elongated tokamak.

5-2 agree with TCV experimental results. They both predict 1 d' to be approx-
Vthi dp

imately 5% of 1- dT for elliptical flux surfaces with a ir/8 tilt. The introduction ofTi dp

this tilt in TCV was enough to change to core rotation by over 50% [74]. However,

in larger tokamaks p, is smaller, so all sources of intrinsic rotation except up-down

asymmetry are reduced. This means, in a reactor with a fr/8 tilt, we would still ex-

pect -- to be approximately 5% of 1 , but the effects of up-down asymmetryVthi dp Ti dp

would dominate the rotation profile.

These results are summarized in table 6.1 and merit further investigation into the

viability of a tilted elliptical tokamak as a reactor. This includes determining the

operating space that sees a turbulent energy transport reduction from elongation tilt

and the stability properties to nonaxisymmetric MHD.
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Appendix A

Symbol Glossary

Miscellaneous

0,1,2,...

II

I

K. . )

(...)t

( -- e()v

{. .. ,. .. } eq. (1.27)

Number subscript, indicates the order of the quantity in the expan-

sion parameter order the poloidal mode number.

Parallel subscript, indicating the vector component in the direction

of B.

Perpendicular subscript, indicating the vector components perpen-

dicular to B.

Average over gyromotion, .. 7 . .- dc (. . .).

Flux surface average, .. . ) f d fd d( .

Time average over the turbulent time scale, (...)t

1-tr I~O+tcorr dt (

Volume average, (.. .)v = f dV ... .) / f dV.

Poisson bracket.

Tilde, indicates a quantity defined outside the plasma region.

Greek letters

a eq. (1.17) Tokamak coordinate in the direction perpendicular to the magnetic

field within the flux surface.
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eq. (1.5)

eq. (1.1)

eq. (1.31)

table 3.1,

eq. (3.3)

af

Miller equilibrium flux surface triangularity, 6 M = sin (6).

Average toroidal velocity gradient in the outer part of the tokamak

plasma, Au( - ujlp=0.65 - U(CIp= 0.85-

Species average temperature gradient in the outer part of the toka-

mak plasma, AT, T, p=O 65 -T|, 0 8 5 .

Tokamak inverse aspect ratio, 6 = a/Ro.

fig. 1-1 Tokamak toroidal angle.

( subscript, indicating the vector component in the direction of (.

fig. 1-1 Poloidal angle, 0 = arctan (RR)

fig. 3-2b Tokamak triangularity tilt angle.

fig. 3-2a Tokamak elongation tilt angle.

The poloidal location of the maximum magnetic field in GS2.

eq. (3.16) Poloidal coordinate.

The value of V which minimizes R on a given flux surface.

Constant used to translate the GS2 definition of V such that 19BmaX

±1r, I shif t k7r -- Bmax
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Dummy integration variable.

a subscript, indicating the vector component in the direction of o.

Poloidal beta, ratio of plasma to poloidal magnetic field pressure,
2 po(p)v

OP ~~ 2 Ba

Normalized plasma beta.

Toroidal beta, ratio of plasma to magnetic field pressure.

Mode growth rate, y - Imag [W].

Ratio of specific heats, also called the adiabatic index.

Tokamak flow shear, 7E -q dp

Magnetic field flux.

Species flux surface averaged total particle flux.

Flux surface triangularity.

/NT

YE

IPB

FS

j

A TS

6

6

66,

VBmax

7)

Imin

Ishift



K
KC

AN

As

p
PS

yerr

7r

rIud

p ex

Ps

Uerr

or

(07V DT

TE

Oext
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Tokamak flux surface elongation, , b/a.

Magnetic field curvature, r = 6 - Vb.

Velocity space coordinate, AN = Pl-

eq. (2.101) Eigenvalues of a two dimensional matrix.

Magnetic moment, p = ?ft-

Permeability of the vacuum vessel wall.

Permeability of free space.

Ratio of a circle's circumference to its diameter, ir = 3.14159....

Species up-down asymmetric contribution to the flux surface aver-

aged total flux of toroidal angular momentum.

eq. (1.32) Species flux surface averaged total momentum flux.

fig. 1-1 Tokamak normalized flux surface label, p = / /b

Particle gyroradius, PS Q .

Rho-star, p* pi/a.

The standard deviation of the fractional error at each d grid point

of #N in the stationary mode test case.

Conductivity of the vacuum vessel wall.

DT fusion reaction rate constant.

eq. (1.2) Energy confinement time.

eq. (1.9) Magnetic field energy confinement time by a vacuum vessel wall.

Turbulent electrostatic potential.

Error magnetic field that arises from corrections that are necessary

to the pure wire field.

Background electrostatic potential.

eq. (1.18) Particle gyroangle.

Tokamak toroidal flux, y 27r f 7 dO fo dre (reBC (R)).

Tokamak poloidal magnetic field flux coordinate, 0 f d§ - Pi.

Poloidal flux from all external coils acting on the plasma.



Ow
Oval

QCs

Roman letters

a fig. 1-1

a± fig. 5-5

asym

aw

axis

A

AP

Am

Ah

Poloidal flux from a wire carrying current Ipd( placed at (Rob, 0).

A given, specific value of the tokamak poloidal magnetic field flux

coordinate.

b subscript, indicating the vector component in the direction of 0.

Mode angular frequency.

Particle angular gyrofrequency, Q, = Zs.Tgy c

Tokamak angular rotation frequency, Q( = u//R.

Species tokamak angular rotation frequency Q~s= usf

Tokamak minor radius.

The direction of the TCV up-down asymmetry, given by the sign of

on.

Outdated GS2 parameter used to create divertor-like geometries.

Vacuum vessel wall minor radius.

axis subscript, indicating the location of the magnetic axis.

Positive constant form for constant current profile, A = poj(Ro.

Positive constant for pressure contribution to constant current pro-

file, A, = -poR2.

Positive constant for magnetic contribution to constant current pro-

file, Am 1 (2).

Positive constant for on-axis poj(Ro in the linear, hollow current

profile.

Positive constant for on-axis poj(Ro in the linear, peaked current

profile.

Positive constant for slope of paoj(Ro in the linear, hollow current

profile.

Positive constant for slope of ptoj(Ro in the linear, peaked current

profile.
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as

b

b

eq. (1.26)

fig. 1-1

eq. (2.37),

eq. (2.96)

BP Tokamak poloidal magnetic field, Bp - V( x V0.

Bpa Edge value of the tokamak poloidal magnetic field, Bp, a Bp (a).

Bshape External magnetic field used to create the desired flux surface shape.

Btot The total magnetic field.

B. eq. (2.38) The magnetic field from a wire carrying current Ip4 placed at

(Rob, 0).

Bv Tokamak required vertical field for major radial equilibrium, Bv =

TIx Fp.

Bo eq. (2.91) Tokamak required vertical field for major radial equilibrium at the

equilibrium position.

Bo Tokamak on-axis magnetic field, BO - B (Ro).

c Speed of light.

cOI (O-V)DT reaction rate constant of proportionality, (OUV)DT covi 2

and cev = 1.1 x 10-24 m 3/(keV 2-s).

C Subscript c, indicating the carbon impurity species.

c Subscript C, indicating the cosine coefficient in a Fourier series.

Ccm Lowest order Fourier cosine coefficient, where m > 0 is an integer.

Chm Lowest order Fourier cosine coefficient, where m > 0 is an integer.
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Particle acceleration.

Tokamak ellipse major radius.

Magnetic field unit vector, 6 = f.

Boundary subscript, indicating the value is evaluated at the outer-

most flux surface with plasma.

The direction of the TCV toroidal magnetic field, positive is defined

to be clockwise viewed from above the machine.

Magnetic field.

Magnetic field from external coils acting on the plasma.Bext



Cm

C,

Cunrot

oss'

dw

Dns

Dcm

Dhm

Dm

D,'m

DQs

Dw

e

e

E

Ee (ke)

Em

f.

Fext

Fm

No
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Lowest order Fourier cosine coefficient, where m > 0 is an integer.

Next order Fourier cosine coefficient, where m > 0 is an integer.

eq. (2.28) Next order Fourier cosine coefficient when 0 ,b = 0.

Collision operator.

Linearized collision operator.

Vacuum vessel wall thickness.

Species momentum diffusion constant.

Lowest order Fourier sine coefficient, where m > 0 is an integer.

Lowest order Fourier sine coefficient, where m > 0 is an integer.

Lowest order Fourier sine coefficient, where m > 0 is an integer.

Next order Fourier sine coefficient, where m > 0 is an integer.

Species heat diffusion constant.

eq. (2.29) Next order Fourier sine coefficient when 0 ,b = 0.

Diffusion constant of the vacuum vessel wall.

Proton charge.

Unit vector in the 1 direction, il/ Vil.

Electron subscript, indicating the electron species.

Electric field.

Particle energy, & = msw 2/2.

The complete elliptic integral of the second kind, Ee (ke)

f/ 2 dat 1 - k2sin 2 (at).

Stored magnetic field energy.

Distribution function.

External force acting on the plasma, Fext = Ip x Bext.

eq. (1.13) Maxwellian distribution function.

eq. (2.100) Total self-force acting on the plasma from the tire tube and hoop

forces.



Fpo Total self-force acting on the plasma from the tire tube and hoop

forces at the equilibrium position, Fpo F I R=ROb,Z=O'

Ft,0  eq. (2.98) Sum of all forces acting on the plasma.

gB App. B GyroBohm subscript, indicating gyroBohm estimates for a given

quantity.

9s eq. (3.22) Complementary distribution function.

G eq. (2.61) Free space Green's function.

hs eq. (1.19) Nonadiabatic portion of the distribution function.

hs eq. (1.20) Fourier-analyzed nonadiabatic portion of the distribution function.

The imaginary unit, i - V/-1.

Ion subscript, indicating the ion species.

Flux function related to the poloidal current, I RBc

Po f1 0  dR (Riz (R, Z = 0)).

Im (x) mth order modified Bessel function of the first kind.

IP Tokamak plasma current.

Current density.

j+ The direction of the TCV plasma current, positive is defined to be

clockwise viewed from above the machine.

Jm (x) mth order Bessel function of the first kind.

k Mode angular wavenumber.

ke eq. (2.44) Argument of the elliptic integrals.

keo Argument of the elliptic integrals at the flux surface center,

keO(R,Z) = k (RZ, Rob,0).

Ke (ke) The complete elliptic integral of the first kind, Ke (ke)

fo"/ dat (1 - k'sin2 (at)) 1 / 2

Length.

i Dimensionless internal inductance per unit length, 1i B2
pa

,corr Turbulence correlation length.
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IP

L

L

Lc

Le

Li

Lns

LP

LTs

m

ms

n

N

n.

n.

N

table 3.2

Indicates the order of terms that have been neglected.

Plasma thermal pressure, p = E nsT.

Volumetric fusion power density.

Total fusion power.

Power lost out of the plasma boundaries.

Species Prandtl number, Pr
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Characteristic size of the plasma.

Inductance.

L superscript , indicates a lowest order quantity in the expansion

parameter.

Tokamak toroidal circumference.

Contribution to the total inductance from outside the plasma.

Contribution to the total inductance from inside the plasma.

Temperature scale length, L_, = -n, (}In .

Tokamak poloidal circumference.

Temperature scale length, LT,-= -T, .

Poloidal mode number.

Particle mass.

Toroidal mode number.

eq. (2.57) The surface normal unit vector, pointing outwards from the plasma

region.

eq. (2.102) Decay index (also called the marginal index for stability).

Species density, n, = f d v (fs).

N superscript, indicates a next order quantity in the expansion pa-

rameter.

table 3.1, N subscript, indicating a GS2 normalized quantity.N

0 (...)

p
Pf
Pf

Pf

Pross

Pr5



q Tokamak safety factor, q f 1, d7 (0 .

qa Tokamak edge safety factor, qa - q (a).

qioc Tokamak local safety factor, q10C = 2 
th *

QDT Total fusion energy yield per D-T reaction, QDT = 17.6 MeV.

Q, eq. (1.33) Species flux surface averaged total heat flux.

r Cylindrical radius, r - (R - Ro) 2 + Z 2 .

,. r subscript, indicating a GS2 reference quantity.

rgp eq. (2.15) Tokamak radius flux surface label, rp - ap = aV/ e.

ri fig. 1-4 Particle position coordinate.

R fig. 1-1 Tokamak major radial coordinate.

Rnew eq. (3.16) Modified GS2 major radial flux surface parameterization.

Rold eq. (3.3) Original GS2 major radial flux surface parameterization.

R R subscript, indicating the vector component in the direction of 8R.

Rgc fig. 1-4, Particle guiding center position.

eq. (1.16)

Rgeo GS2 magnetic field reference point.

Rmax The maximum value of R on a given flux surface.

Rmin The minimum value of R on a given flux surface.

Ro fig. 1-1 Tokamak major radius.

s table 3.1 Tokamak magnetic shear.

S Species subscript, where s E {i, e, r, tot, C} indicating either ion,

electron, reference, total, or carbon quantities respectively.

s Subscript S, indicating the sine coefficient in a Fourier series.

sf9lin The direction of the TCV intrinsic momentum flux, positive is will

expel momentum from the tokamak core creating a more hollow

rotation profile.
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sa fig. 5-5 The sign of the TCV up-down asymmetry, given by the sign of 0,.

Sb The direction of the TCV toroidal magnetic field, positive is defined

to be clockwise viewed from above the machine.

sy The direction of the TCV plasma current, positive is defined to be

clockwise viewed from above the machine.

SQ The sign of a given quantity, sQ = sign (Q).
S Vector normal to a surface.

t Time coordinate.

t The surface tangent unit vector in the poloidal plane.

tcorr Turbulence correlation time.

tshot Duration of tokamak plasma shot.

TS Species temperature, T, = ' f d3V (mv 2f)

tot Total subscript, indicating the quantity is summed over all species.

6 Bulk plasma flow velocity, U = ES nsmsus/ ES nsms.

us Species flow velocity, ' , - f d= v (&f).

V Velocity coordinate.

VO Fourier transformed turbulent E x B drift velocity, 'U , -ik# x

N/B2.

v$S eq. (1.30) Species turbulent E x B drift velocity.

Vds eq. (1.24), Species guiding center particle drift velocity, Vds

eq. (1.25) ( x (x -b b).

Vths Thermal velocity, Vths Vf2Ts/ms.

V Volume.

VN Normalized volume, VN = 3

' Velocity coordinate in the frame rotating with the bulk plasma flow,

w V -U.

W eq. (1.3) Plasma total stored energy.

x Turbulence scale radial coordinate, 8 & el.
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X

X'/

y

Y

Y'/

123

Tokamak Coordinate, X - R - RO = rcos (0).

Tokamak Coordinate X in the coordinate system aligned with the

ellipse axes.

Turbulence scale poloidal coordinate, 6Y b x 8.

Tokamak Coordinate, Y - Z = rsin (0).

Tokamak Coordinate Y in the coordinate system aligned with the

ellipse axes.

Axial coordinate.

Modified GS2 axial flux surface parameterization.

Original GS2 axial flux surface parameterization.

Z subscript, indicating the vector component in the direction of z.

Particle charge number.

Z

Z new

Zold

eq. (3.17)

eq. (3.4)

z

Zs
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Appendix B

Gyrobohm units

GyroBohm diffusion is closely related to Bohm diffusion, which are both orderings

of the cross-field diffusion coefficient. Bohm diffusion orders DB, - PsVths, whereas

gyroBohm is defined by the more optimistic ordering DgBs, ~ DBs. The gyroBohm

ordering has been found to be appropriate for turbulent transport and produces an

ordering for the radial fluxes given by GS2 through Fick's first law of diffusion

FS = -Drs a, (B.1)
Or

rics = -D 8 sR 2 nsm 'r (B.2)

aTS
QS = -DQsns &r (B.3)

Or

Introducing the gyroBohm diffusion coefficient ordering we obtain

2 1
FgBs P ths (n.) (B.4)

1r ir

HgBs PVths (lrnssths), (B.5)

QgBs P th (nsTs) (B.6)
r r

Therefore, the gyroBohm reference units are defined to be
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2gI'gr 
Vlruthr'

F13 er 1- n rirri

r

2
gBr = nrlrrthr

2Pr nTTVthr-QgBr 12
r

gyroBohm values.
All fluxes output by GS2 are normalized by these
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Appendix C

GS2 Sample Input File

I CYCLONE BASE CASE ----------------------------------------

&collisionsknobs

collisionmodel='none'

&hyper-knobs ! appropriate for nonlinear runs only

hyper-option = 'visc-only'

const-amp = .false.

isotropic-shear = .false.

D_hypervisc = 0.1

&theta-grid-parameters

ntheta= 32

nperiod= 1

rhoc = 0.54
qinp = 1.4

Rmaj = 3.0
R-geo = 3.0

shift = 0.0

akappa = 1.0

akappri = 0.0

tri = 0.0
tripri = 0.0
thetak = 0.0 ! parameter not included in standard GS2 distribution

thetakp = 0.0 ! parameter not included in standard GS2 distribution

thetad = 0.0 ! parameter not included in standard GS2 distribution

thetadp = 0.0 ! parameter not included in standard GS2 distribution
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&parameters
beta = 0.0
zeff = 1.0

&theta-grideikknobs

itor = 1

iflux = 0

irho = 2
ppl-eq = F
gen-eq = F
efit-eq = F
localeq = T
eqfile = 'dskeq.cdf'
equal-arc = T
bishop = 4
s_hatinput = 0.8

beta-prime-input = 0.0
delrho = 1.e-3
isym = 0

writelots = F

&fieldsknobs
fieldoption='implicit'

&gs2_diagnostics-knobs
printjfluxline = T
writenlflux = T

print-line = F
writeline = F
write-omega = F ! appropriate for linear runs only
writeascii = F
writefinalfields = T
write-symmetry = T
write-eigenfunc = T
write-g = F
writeverr = F
nwrite= 100
navg= 50
omegatinst = 500.0
saveforrestart = .true.
omegatol = -1.0e-3

&le.gridsknobs
ngauss = 5
negrid = 12
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vcut= 2.5

&distfnknobs

adiabatic-option="iphi0O=2"

gridfac= 1.0

boundary-option="linked"

&kt-grids-knobs
grid-option='box'

&kt-grids-box-parameters

I naky = (ny-1)/3 + 1
ny = 64
1 nakx = 2*(nx-1)/3 + 1

nx = 192

1 ky-min = 1/yO

yO = 10.0

jtwist = 5

&init-g-knobs

chop-side = F
phiinit= 1.e-3
restartfile = "nonlinearRun.nc"
ginitoption= "noise"

&knobs

fphi = 1.0

fapar = 0.0

faperp = 0.0

delt = 0.05

nstep = 100000

&species-knobs

nspec= 2

&species.parameters 1

z= 1.0

mass= 1.0

dens= 1.0

temp= 1.0
tprim= 2.300

fprim= 0.733
uprim= 0.0

vnewk= 0.0
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type= 'ion'

&distfn-speciesknobs_1
fexpr= 0.45
bakdif= 0.05

&species-parameters_2

Z= -1.0
mass= 2.7e-4
dens= 1.0
temp= 1.0
tprim= 2.300
fprim= 0.733
uprim= 0.0
vnewk= 0.0
type='electron'

&distfn-speciesknobs_2
fexpr= 0.45
bakdif= 0.05

&theta-gridknobs
equilibrium-option='eik'

&nonlinearterms-knobs

nonlinearmode='on'

cfl = 0.25

&reinitknobs

deltadj = 2.0
deltminimum = 1.e-4

&layouts-knobs

layout = 'lxyes'
localfieldsolve = F
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