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ABSTRACT
The use of natural language should be added to a robot sys-
tem without sacrificing responsiveness to the environment.
In this paper, we present a robot that manipulates objects
on a tabletop in response to verbal interaction. Reactivity is
maintained by using concurrent interaction processes, such
as visual trackers and collision detection processes. The in-
teraction processes and their associated data are organized
into object schemas, each representing a physical object in
the environment, based on the target of each process. The
object schemas then serve as discrete structures of coordina-
tion between reactivity, planning, and language use, permit-
ting rapid integration of information from multiple sources.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.7 [Artificial
Intelligence]: Natural Language Processing—Language
parsing and understanding

General Terms
algorithms, design

Keywords
robot, object schema, behavior-based, language grounding,
affordances

1. USING LANGUAGE RESPONSIVELY
Speech interaction allows humans to convey complex be-

liefs and desires efficiently. Thus, speech interfaces are a nat-
ural candidate for making robots useful to the general public
in a flexible and autonomous way. However, language use is
an inherently discrete, symbolic task, while robots exist in a
continuous world of noisy sensorimotor data. The problem
of language grounding, connecting words to the real world,
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has been addressed by a number of researchers (see [27, 28],
and Section 4 below). Most implemented approaches extract
discrete models and labels from sensor data as a foundation
for symbolic language use.

However, models and labels thus constructed run the risk
of falling out-of-sync with the immediate sensorimotor en-
vironment. A dynamic physical environment might change
while the robot is performing verbal or physical interactions
according to its internal model, leading to poor responsive-
ness. Our goal is to address language grounding in a robot,
such that the discrete structures used for language and plan-
ning stay as tightly bound as possible to the continuous sen-
sorimotor level, accomplishing the responsiveness typically
found in behavior-based robots (e.g., [7, 9], or other exam-
ples given in Section 4). We accomplish this by using an
object schema representation to coordinate between discrete
aspects such as language and planning and the continuous
aspects of responding to a dynamic sensorimotor environ-
ment.

1.1 Overview of the System
Our robot system is designed to handle natural language

requests while being responsive to, and even leveraging,
changes to its knowledge of the physical environment. The
central point of coordination is our object schema repre-
sentation, each of which represents information about one
physical object in the robot’s environment. Each object
schema consists of a bundle of multiple interaction processes
(or just “processes,” in this context), which are concurrently-
running execution loops that coordinate either sensorimotor
activity such as visual tracking, or internal state manage-
ment such as devising a plan for action. The processes
bundled in an object schema are the processes that are, or
could be, acting upon the represented object. For instance,
for a given physical object, the processes that visually track
it, attempt to grasp it, and coordinate plans to move it
are all linked together. Because the interaction processes
constitute actions that are or could be acting on an object,
each object schema can also be viewed as a representation of
affordances, the actions and results enabled by each object
[19].

The object schemas act as discrete entities for the purposes
of language and planning. Organizing continuous processes
into object schemas allows incoming sensory data to be read-
ily sorted for rapid interaction with language and planning,
and vice versa. It should be noted that the term “schema” is
used here in a psychological sense, as used by Piaget [25], or
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Figure 1: Simplified block diagram of the system,
showing data flow between the five parts of the sys-
tem. Note that most of the data flow occurs by
virtue of object schemas and plan trees being com-
posed of interaction processes, which is not depicted.

computationally by Drescher [14] or Roy [28], in that incom-
ing continuous sensory percepts are organized into discrete
structures. In this case, incoming sensory data is regarded
as being signs of objects in the environment. Our object
schemas are an implementation based on our interpretation
of the term in this context.

Our robot, named Trisk (Figure 2 shows the robot in ac-
tion), is a six-DOF (degree of freedom) robotic arm with a
four-DOF Barrett Hand as its end effector, situated in front
of a table on which manipulable objects are placed. Six-axis
force-torque sensors on each of the three fingers of the hand
enable sensing of forces and collisions, including awareness of
successful grasps. Two cameras (only one is currently active
for simplicity) sit in a head mounted on a four-DOF neck,
which allows the system to adjust its view of the environment
and look up at the human for interactivity purposes.

Some of the behaviors of the system include:

Responsive behaviors The system is capable of respond-
ing rapidly to certain sensory triggers, by moving away
from sensed collisions and also using knowledge of col-
lisions to adjust grasping targets. The object schemas
serve to coordinate visual, touch, and motor-related
data in such cases.

Verbal behaviors The system also handles straightfor-
ward verbal requests, such as “Touch the red ball,” or
“Move the block to the right.” The object schemas
provide a connection between discrete verbal refer-
ents and the resulting motor actions in the continuous
sensory world.

Responsive verbal behaviors The system can respon-
sively carry out verbal requests such as “Move the
block to the right... No, to the left.” The interac-
tion with this verbal input is “responsive” because it
requires immediate interruption and revision of the
current plan due to new input activity.

All of the interactions are the result of the interplay be-
tween five key parts of the system (also depicted in Figure
1), with the object schemas serving as the main point of
interconnection:

1. The robot platform and its sensorimotor modules,
which handle vision, touch, speech, and motor control.

a)

b)

c) d)

Figure 2: The robot is facing a scene that includes
a red apple and a green block. a) The robot is told,
“Group the green block and the red apple.” This re-
quest could be satisfied by moving the block towards
the apple, or vice versa. The robot decides to move
the apple. b) While the robot reaches for the apple,
the human adds, “The red apple is heavy.” Know-
ing that heavy objects are more difficult to lift, the
robot changes its plan and c) moves the green block
d) towards the apple instead.

2. The interaction processes, which run concurrently to
perform tasks like visual tracking and action monitor-
ing.

3. The belief context, which organizes interaction pro-
cesses and their related data into object schemas, each
representing one object, its attributes (such as color,
shape, and weight), and its affordances (such as lifta-
bility and graspability).

4. The planning system, which reads information from the
belief context, devises plans, and coordinates their ex-
ecution and revision.

5. The language system, which converts linguistic inputs
into plans and object-centered knowledge.

1.2 Sample Interaction
Figure 2 shows an example of an interaction with the

robot. In this section we briefly explain the mechanism un-
derlying the example given in the figure. The robot is facing
a scene in which a red apple and a green block, among other
objects, are on the table. The visual inputs coming from the
cameras are sent to a color-based segmenter, which extracts
regions of uniform color. Each of these regions leads to the
creation of an interaction process that monitors subsequent



visual frames for similar regions, i.e., the process“tracks” the
object from frame to frame.

These tracking processes are incorporated in separate ob-
ject schemas, denoting that they are targeting different ob-
jects. A series of translation processes are then created,
which acquire and categorize shape, size, and location in-
formation about the objects. One such translation process
converts the locations in 2-D camera space into locations in
3-D arm space, based on the assumption that objects are at
the hard-coded table height. The translated locations serve
as target locations for physically reaching towards the ob-
jects.

Next, the human says “Group the green block and the red
apple.” The verbal input is processed by a speech recognizer
and a parser, which outputs a structured parse tree for trans-
lation into the system. The two noun phrases, “green block”
and “red apple,” give rise to reference processes, which are
interaction processes that search the current set of object
schemas for matches based on category labels. The verb,
“group,” gives rise to a plan tree in the planning system that
takes the matches from the reference processes and searches
for a sequence of actions that will lead to the targeted objects
being grouped together.

There are two ways to satisfy “Group the green block and
the red apple”: either the robot can lift the red apple and
place it near the green block, or it can lift the green block
and place it near the red apple. The planning system se-
lects between these alternatives based on prior data about
objects with the given attributes (green, red, block, and ap-
ple). The plan tree is constructed using the choice with the
highest predicted success likelihood. The planning system’s
search will produce a series of action processes, which are in-
teraction processes that issue motor commands and monitor
their progress.

In this example, the robot opts to reach for the red apple.
At this point, the human says, “The red apple is heavy.” The
verbal input is processed such that the object schema for the
red apple takes on the additional attribute heavy. This at-
tribute is known to the planner (based on its data about
attributes) to result in a poor chance of success for manip-
ulation. The planner immediately revises its plan based on
the new information, and the robot lifts its hand and reaches
towards the green block instead. The robot lifts the green
block and places it next to the red apple.

Now, suppose the robot had failed to grasp and lift the
green block four times in a row. At this point, the collected
statistics for the liftability of the green block, accumulated
as part of its object schema, would outweigh the data about
heavy objects, and the planner would once again revise its
plan. The robot would then reach for the red apple again
instead, grasp it, and move it next to the green block.

2. IMPLEMENTATION
In this section we describe the parts of the system that

interact via the object schemas: the sensorimotor modules,
the interaction processes, the belief context, the planning
system, and the language system.

2.1 Sensorimotor Modules
Visual input from the active camera is sent through a

color-based segmentation algorithm (based on CMVision [8])
that groups contiguous regions by color. The current set of
objects used for robot interactions consists of simple objects

of uniform color, so color segmentation suffices for our pur-
poses. Visual input is also processed on demand by a mean-
shift tracker [13] based on edge and color profile, and a 2-
D shape recognition algorithm based on shape contexts [3],
when requested by vision-related interaction processes. Vi-
sual information thus derived includes the size, shape, color,
and location of each object, all of which can be matched with
verbal object descriptions.

The motor control modules for the robot’s arm and hand
compute forward and inverse kinematics, so the hand can
be brought via a smooth trajectory towards reachable 3-D
coordinates. The fingers can be spread to enable grasping,
or moved together to tap an object. Touch input from the
fingers is used along with arm kinematic information to pro-
vide the location, direction, and magnitude of contact forces
between the fingers and physical objects.

Speech input is collected by a microphone headset worn
by the human, and passed through the Sphinx 4 free speech
recognizer before being processed by downstream modules
in our system.

Vision, touch, speech, and motor control provide a rich
foundation for responsive verbal interaction. The rest of the
system is responsible for the necessary integration tasks to
make coherent behavior possible.

2.2 Interaction Processes
At the core of the system’s sensorimotor coordination are

concurrently-running interaction processes. An interaction
process writes data derived from its execution to an inter-
action history, which is kept in shared memory to be read
by related processes. During each cycle, an interaction pro-
cess reads from various interaction histories, performs some
processing, and writes to its own interaction history.

Most interaction processes are targeted towards one phys-
ical object. Data in an interaction history is thus generally
about one object, and both the interaction process and its
history are thus part of the object schema that represents
that physical object. An object schema consists of all the
processes, history data, and expectations associated with a
single object.

The specific processing performed by an interaction pro-
cess depends on the process class from which it is instanti-
ated. Upon instantiation, the interaction process is passed
some parameters indicating the object schemas, if any, that
it is to target. The top-level process classes:

Sensory processes monitor incoming sensory data and
write relevant data to their interaction histories. For
instance:

• A visual tracking process is assigned to a visual
region, checks subsequent visual frames for a re-
gion with similar properties, and writes new re-
gion data to its history.

• A grasp tracking process writes location data for
an object when the robot is believed to be grasp-
ing the object.

• A collision detection process determines when
force sensors encounter large forces, and writes
collision data to its history to trigger an action
that moves away from the collision.

Action processes read various interaction histories and,
when active, send motor commands to the robot. Ex-



amples include a process to move the robot away from
a collision, or to grasp the fingers around an object.

Condition processes repeatedly assess whether a condi-
tion is true or not, and when not true trigger the plan-
ning system to search for plan fragments that can ren-
der them true.

Plan fragment processes operate in the planning system
to coordinate a sequence of actions and conditions. For
instance, the plan fragment for grasping an object re-
quires conditions that the hand be open and moved to
the object’s location. Then, it triggers the action for
closing the fingers.

Translation processes convert interaction history data to
another form, such as a conversion from visual 2-D data
to 3-D coordinates for the arm to target, or from con-
tinuous color information to a discrete color category.

Coordination processes perform process-level coordina-
tion by instantiating and detaching other processes to
maintain the coherence of the object schema. For in-
stance, if visual and touch tracking disagree about an
object’s location, the coordination process may detach
one of the processes from the object schema. A de-
tached process will find a new target, either by match-
ing a pre-existing object schema or by triggering the
creation of a new, empty object schema.

Reference processes receive noun phrases from speech in-
put and attempt to connect the noun phrases to object
schemas with matching attributes. For instance, “the
green block” leads to a reference process that reads in-
teraction histories of each object schema to find one
that best fits the description.

After an interaction process is instantiated, it is ready to
become active and run its associated code. However, some
interaction processes are resource-bound, such as when mul-
tiple interaction processes want to control the arm or neck
motors. Resource-bound interaction processes are activated
by the planning system, based on their hand-coded priority.
For instance, an action tracking process for moving away
from a collision has a higher priority than any action track-
ing process that is addressing a verbal request.

2.3 The Belief Context and Object Schemas
The belief context consists of interaction processes, their

interaction histories, and associated expectation data (dis-
cussed further at the end of this section), organized into
object schemas. Each object schema’s contents represent a
set of beliefs that is probably about a real physical object.
For instance, a visual tracker and its history data manages
and contains a set of beliefs that include the location, color,
and shape of an object. Similarly, an inactive action process
for performing a grasp is associated with an expected success
likelihood, which constitutes a belief about the graspability
of the object.

The beliefs in an object schema are “probably about” a
real object because sensor noise can lead to spurious object
schemas, which sometimes is accounted for after repeated
failures to touch and grasp the spurious object, but in the
current implementation frequently leads to planning and lan-
guage failures (discussed further in Section 3.2).

2.3.1 Physical Objects from the Robot’s Perspective
In line with an affordance-based [19, 20] or schema-based

view of objects [14], a physical object can be viewed (from
the perspective of the robot) as nothing more than the pro-
cesses that target it and the expected results of those pro-
cesses. For example:

• As a visual tracking process checks subsequent frames
for its target region, there is an implicit expectation
that its target region will be found in similar form near
its previous location in each new frame. Such a process
thus sees only a target region and an expectation, and
needs no concept of an “object.”

• The visual location recorded by the visual tracking pro-
cess is translated into a location in the arm’s coordinate
space. An action process targeting this location can ex-
pect to encounter a certain set of forces when moving
near the location (i.e., when the hand bumps the object
upon moving there). Once again, rather than referring
to an “object,” the interaction process only monitors
and tracks a set of sensorimotor expectations.

Even though it may be convenient to speak of an object as
the target of a interaction process, from the perspective of
the interaction processes themselves, there exist only these
expected interactions, which happen to relate to each other
in such a predictable way that it is convenient to group them
together and declare them an “object.”

The notion of an object is thus initially constructed from
the processes, results, and desires of the system. From this
viewpoint, an object exists only in that a group of processes
have a related set of expected results. On the other hand,
having organized the processes into object schemas, it then
becomes possible to manipulate the object schemas as dis-
crete entities for the purpose of planning and communica-
tion. On one level of analysis, there are only interaction
processes and expected results, but on another level of anal-
ysis, it is important to be able to point to a single discrete
object. This premise sits at the core of our integration be-
tween the continuous sensorimotor world and discrete lan-
guage and planning.

This process-centered representation provides a conve-
nient means of organizing sensorimotor data and processes
such that changes in one active process can immediately
affect another process in that object schema. For instance,
a moving visual region can rapidly change the target loca-
tion for a grasp-related process. Likewise, a failed grasp
can lead to doubt that a physical object actually exists at
that location, leading in turn to reevaluation of the visual
regions. This representation also provides a single point of
connection for affordance-based terms, such as “liftable” or
“graspable.”

2.3.2 Outcome Statistics
Attributes of objects, such as color, shape, size, position,

and weight, are written by interaction processes to the inter-
action histories. These provide a basis for categories that can
be labeled with words. However, attributes can additionally
become associated with the likelihood of specific outcomes.
Each time an action-related interaction process succeeds or
fails, the attributes of the target object are recorded, over
time leading to statistics on the likelihood of success for fu-
ture actions. For instance, heavy objects may slip from the
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Figure 3: A plan tree. The “social” motivation (tri-
angle) is the root of the tree. The arrows denote
a parent/child relation in the plan tree. The plan
fragment to Group two objects has as its child the
condition that the two objects be Grouped. The plan
system selects between the options to Move one ob-
ject towards the other, or vice versa, and the chosen
action is executed.

robot’s fingers frequently, leading to a low success expecta-
tion for future lifting of heavy objects (sometimes we hand-
pick the instances to be stored by the system, to prevent
persistent sensorimotor failures from skewing success expec-
tations). These statistics in turn affect the planning system’s
decision-making, and allow attributes to be directly linked
to the affordances of each object, rather than merely be-
ing static data used for labeling purposes. Object schemas
provide a discrete organization scheme for these statistics,
which are then used by the planning system.

2.4 Planning System
The planning system governs which resource-bound in-

teraction processes receive the resources to be able to acti-
vate, which mostly means coordinating motor activity for the
robot. The planning system is built from, and makes deci-
sions based on, the interaction processes and object schemas.
This enables changes at the object schema level to rapidly
influence planning.

Plan trees are hierarchical structures constructed starting
with the three primary motivations of the system as roots.
These primary motivations are: 1) to avoid damage (cur-
rently, just by avoiding collisions), 2) to address requests by
the human partner (the “social” motivation), and 3) to ex-
plore objects by attempting to grasp and lift them (the “cu-
riosity” motivation). Each of the primary motivations has a
hand-coded priority score that is passed down to its children
in the tree. The priority scores are set such that collisions
will always be avoided with high priority, and exploration of
objects only occurs when no requests or collisions need to be
addressed.

Each non-root node of a plan tree is an interaction pro-
cess, and thus the planning system is, like the belief context,
another way to organize and view the interaction processes.
Within a plan tree, plan fragment processes coordinate a
sequence of other interaction processes (e.g., grasping an ob-
ject by reaching for it and then closing the fingers). Con-
dition processes monitor a specific condition (e.g., that the
hand is holding a target object) and, when given priority, the
planning system will search known plan fragment classes to
instantiate an appropriate plan fragment process to satisfy a
condition. Action processes are leaf nodes of the plan trees,
and when active they send motor commands to the motor
systems. Figure 3 depicts a plan tree.

As mentioned in the previous section, prior experience
with objects and attributes enables the system to compile
statistics on the likelihood of success for a given plan frag-
ment or action process. When a condition process can be

satisfied via multiple paths (such as in “Group the green
block and the red apple”), the planning system selects the
path with the highest likelihood of success.

Because the planning system is also an organized set of
interaction processes, results and data from the interaction
processes that constitute a plan tree have immediate effects
on the plan tree. This can lead rapidly to interruption and
revision of the plan tree as new information is assimilated
into the object schemas.

2.5 Language System
Like the planning system, the language system is also built

upon interaction processes and object schemas, enabling in-
terpretations to shift with changes in sensorimotor context.

The system handles speech input in several stages. First,
the speech recognizer converts the audio stream into a lattice
of likely word tokens, which is then parsed by a probabilistic
Earley parser (from [20]) and used to instantiate plans and
actions in the main module of the system. Our system han-
dles three kinds of linguistic input: descriptive, directive,
and corrective. Descriptive inputs contain attribute infor-
mation, such as “The red ball is heavy.” Directive inputs
communicate a desire from the human, such as “Pick up the
red ball.” Corrective inputs make changes to the immedi-
ately preceding directive input, as in “No... the green ball.”
Corrective inputs are converted to a corrected directive input
and then treated as such.

In either type of verbal input, a phrase like “the red ball”
presumably refers to an object in the shared domain of the
human and robot. It must thus be matched to an object
schema in the belief context so the verb phrase (such as
“pick up” or “is heavy”) can be processed. The matching of
noun tokens to object schemas is handled by reference pro-
cesses, which search the belief context for object schemas
with corresponding attributes; “the red ball” leads to a ref-
erence process with the argument:

(refexpr (= function (lambda (x) (p_and

(red x) (circle x)))) (= definite "definite")

(= cardinality "1"))))

This indicates a search for an object schema whose interac-
tion history includes a color that matches the category for
“red”and a shape that matches the category for “ball.” Once
found, the reference process connects the structures resulting
from the verb phrase to its matching object schema.

In descriptive inputs, the verb phrase contains additional
attribute information for the object schema. In the exam-
ple “The red ball is heavy,” once the reference process has
matched an object schema for “the red ball,” the categorical
attribute corresponding to “heavy” is added to the interac-
tion history of the weight-measuring process for that object
schema.

In directive inputs, the verb phrase contains an action to
be taken towards the referent object. In the example, “Touch
the red ball,” once the reference process has matched an
object schema, a plan fragment process is added to a plan
tree under the primary motivation for human interaction, so
that the robot will move to and tap the appropriate object.
The planning system then searches and assigns priorities to
carry out the request.

Language output by the system currently consists of sim-
ple responses to identification questions such as “Describe
the green one,” to which it might say, “It is a small green



block.” Other output includes error responses such as“Sorry,
I can’t find it” and “Sorry, I can’t do that.”

3. RESULTS AND LIMITATIONS
Our intention is to build a system that demonstrates that

sensorimotor responsiveness can be integrated with planning
and language via interaction processes and object schemas.
In this section, we discuss the behaviors that result and some
of the limitations of the current implementation.

3.1 Resulting Behaviors
These are examples of the notable interactions that arise

from the use of the system.
Non-verbal responsive behaviors:

• If forces above a set threshold are encountered by any
of the finger sensors or the arm load cells, the robot
pulls away from the direction of collision.

• If during a grasp action, the fingers encounter forces
indicative of a successfully grasped object, then the
targeted object is flagged as being grasped by the hand.
For the duration of the grasp, the robot hand’s position
is then used to determine the location of the object.

• If the robot detects a successful grasp and moves the
object, but then visually confirms (based on a distance
metric in color, shape, and size) that contrary to ex-
pectations its targeted object is not moving, the object
schema corrects its state to disregard the grasp-based
location.

• When the robot has nothing to do, it will randomly
grasp, lift, and put down objects on the table. As it
does so, it observes their attributes and collects suc-
cess statistics on each action relative to the object’s
attributes.

Verbal requests that the robot obeys:

• “Touch the green block.”

• “Touch the red apple and the blue block.”

• “Before touching the green block, touch the red ball.”

• “Pick up the red ball.”

• “Move the yellow block to the left.”

• “Move the green block behind the yellow ball.”

• “Group the green block and the red apple.”

Responsive verbal behaviors:

• If the robot is responding to“Pick up the red ball,” and
the arm collides with the ball while reaching towards
it, the system will detect the collision, pull the arm
back, and revise its target location for the ball in order
to make use of the collision information.

• If the robot is responding to “Move the yellow block
to the left,” and as the robot is lifting the block the
human says, “No, to the right,” the robot can interrupt
its plan and move the block to a point to the right
instead.

• If the robot is responding to“Touch the red block,” and
as the robot starts to move the human says, “No... the
blue block,” the robot can interrupt its plan and move
towards the blue block instead.

• If the robot is responding to “Group the green block
and the red apple” by moving the red apple, and the
human mentions that “The red apple is heavy,” the

robot will interrupt the plan and move the green block
instead.

• If the robot is responding to “Group the green block
and the red apple,” and after multiple attempts it fails
to lift the red apple, it will move the green block to-
wards the red apple instead.

3.2 Limitations
The design of the system enables a certain amount of ro-

bustness to sensorimotor noise and failure. The use of dis-
tance metric-based visual tracking enables the system to fol-
low visual regions from frame to frame, despite occasional
shadows and occlusion. Also, the compilation of success
statistics allows the system to form and alter its plans based
on its past experiences. Thus, if an object is consistently
difficult to grasp, the system can choose alternative plans,
as seen in the response to “Group the green block and the
red apple.”

However, sensorimotor noise still presents considerable dif-
ficulties for the system. Occasionally, an object’s visual re-
gion looks different from its original form, or visual regions
will split and merge briefly. Sometimes this leads to the cre-
ation of spurious object schemas, which can cause reference
processes to match objects that seem to immediately vanish.
At other times, the visual region of an object changes and the
system believes the initial object has disappeared, leading to
failure of all associated plans and actions. Also, shape and
color recognition are often fragile to lighting conditions, and
misrecognition frequently leads to poor matching for noun
phrases.

Given our focus on building responsive linguistic behav-
iors, adding sensorimotor robustness is important but does
not significantly detract from our primary intent to demon-
strate the value of using an object schema-based model. Fu-
ture work may include the further use of object schemas to
add error-correction to the system amid noise in the senso-
rimotor modules. One key improvement would be to add
conditions to the planner to take actions or revise beliefs
based on the state of reference processes, which could permit
retrying of reference matching and actions appropriately.

4. RELATED WORK
Our system is an effort to bring aspects of 1) behavior-

based robotics into 2) language grounding systems by coor-
dinating via 3) an affordance-centered, schema-based object
representation. To our knowledge, the integration of facets
from all three of these directions is novel. In this section
we survey some of the relevant related work in the specific
fields.

4.1 Behavior-Based Robotics
The importance of designing robots to react rapidly to

their environment, with minimal modeling and internal
state, is advocated in behavior-based robotics, notably
Brooks’ subsumption architecture [6, 7], which emphasizes
the use of complete behavioral loops from inputs to outputs.
Each of our interaction processes is designed in a similar
fashion, by taking inputs, providing outputs, and looping
constantly.

The integration of behavior-based reactivity with planning
and action selection has been accomplished in models such
as the three-layer architectures of Gat [17, 18] and Bryson
[9, 10]. Like the three-layer architectures, our system could



be viewed as a multi-layer model with reactive components
at the bottom, a planning layer at the top, and an object
schema layer that mediates between them. The specific use
of object schemas to coordinate between reactivity and plan-
ning is novel, and allows for our system’s unique language
and representational capabilities.

Projects done by Blumberg et al. [11, 22] and later
Breazeal et al. [4, 5] are fairly reactive while using dis-
tance metrics to compile object beliefs over time and later
using hierarchical plan representations as well. However, the
usage of speech, while sometimes present, is very limited,
and much of the object processing is decoupled from the
object representations themselves, making it inconvenient
to represent object-directed affordances such as “liftable”
and “graspable.”

4.2 Language Grounding Systems
Numerous projects exist which ground language to the

real world, via vision, simulation, and robots (see [27] or
[28] for surveys of these). Notably, Winograd’s SHRDLU
[35] carried out natural language commands in a symbolic
“simulator” of a blocks-world manipulation robot, but which
ignored the complexity of connecting to the real sensorimotor
world. The richness of the sensorimotor connection, and the
need for responsiveness in a real environment, is a key feature
of our system, and necessary for compelling language use in
a real-world robot.

Language-grounding systems such as [1, 26, 30] typically
connect aspects of language to features in a single frame of
input, or assume that objects are reasonably static and can
be identified from frame to frame. In contrast, our system
assigns dynamic tracking processes to objects and explicitly
handles changing information about objects.

In works such as [2, 23, 31], language is used to give com-
mands to mobile robots, typically in the form of actions rela-
tive to landmarks. Due to our focus on manipulation rather
than navigation, our emphasis is on the structure of interac-
tions with objects and associated language.

Several other researchers pairing language and robotics
[12, 32, 34] focus on evolving novel languages between agents
or robots trying to communicate. Our focus is on represen-
tations specifically appropriate to pre-existing human lan-
guages.

In our group’s Ripley robot system [21, 29], language was
used to issue commands such as“Hand me the blue one,” but
action failures had no impact on decision-making beyond a
simple retry mechanism. Our new system specifically uses a
planner with statistics on action successes to make decisions
and replan dynamically.

An additional novel benefit of our approach is that it pro-
vides a clear foundation for grounding words like “liftable”
or “graspable,” because it organizes actions into sets of af-
fordances centered on objects.

4.3 Affordance-Centered and Object Schema
Models

A number of systems learn about object affordances [15,
16, 24, 33]. Learning is a vital future direction for our work,
but our current emphasis is on connecting an affordance-
centered representation to the responsiveness necessary for
performing tasks at the human’s request.

An addition that our system makes to the affordance-
centered view is the use of seemingly-static attributes, such

as color, shape, and weight, as a source of information
for affordance expectations. For instance, heavy objects
(“heavy” being an attribute) are generally more difficult to
lift (“liftable” being an affordance), and the system will no-
tice this over multiple experiences, leading the robot to seek
an alternative to lifting a heavy object.

Other models focus on objects modeled as schemas in
terms of actions and perceptions: Drescher [14] with a mi-
croworld implementation, Roy [28] in his theoretical schema
framework, and Gorniak and Roy [20] in a video game envi-
ronment. In treating objects as nothing more than the sum
of their affordances, this approach is also in line with the
schema models.

Like object schema models or affordance-based approaches,
our approach treats objects as a set of actions and expecta-
tions, at the level of the interaction processes. The object
schemas then act as discrete entities for language and plan-
ning. This allows our system to operate in a continuous
sensorimotor environment while using language and plan-
ning, a combination not present in the other works.

5. SUMMARY AND FUTURE DIRECTIONS
We have implemented a robot system that uses object

schemas to combine aspects of behavior-based robotics and
language-grounding systems. The use of concurrent inter-
action processes at all levels of the system enables respon-
siveness to environmental changes and new verbal inputs.
The organization of interaction processes and their histories
into object schemas provides a convenient affordance-based
representation for sharing information between related pro-
cesses. The object schemas also provide discrete entities for
use in the planning and language systems.

Brooks’ work on the subsumption architecture [6, 7] em-
phasized the need for robot systems to be designed around
complete behavioral loops, treating responsiveness to the en-
vironment as a key element of robot design. As interactive
robots increasingly make use of natural language, we simi-
larly believe that language use should also be tightly coupled
to the sensorimotor environment. By building our object
schemas out of interaction processes, we believe our system
incorporates that premise while allowing for planning and
language use.
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