
September 1978 LIDS-P-851i
Submitted to IEEE

Trans. on Communications

OPTIMAL DISTRIBUTED ROUTING FOR VIRTUAL LINE-SWITCHED

DATA NETWORKS

Adrian Segall

Department of Electrical Engineering

Technion - Israel Institute of Technology

Haifa, Israel.

Abstract

An algorithm that provides minimum delay routing in a data communica-

tion network using virtual line-switching is presented. The algorithm uses

distributed computation in the sense that the nodes of the network update

their information in an orderly fashion based on messages received from their

neighbors. Receipt of these messages also trigger the various steps of the

update and rerouting, so that these operations are performed in appropriate

sequencing. For stationary input requirements and fixed topology the algor-

ithm reduces network delay at each step and provides loop-free routing in

the network. The method also provides an algorithm for quasi-static routing,

when the input flows are slowly changing.

This research was supported by the Advanced Research Project Agency of the

US Department of Defence (monitored by ONR) under contract No. N00014-75-C-1183.

I. INTRODUCTION

In a recent paper [1], an algorithm for distributed adaptive

routing that achieves minimum average delay in a message (or packet)

switched data network was introduced. The essence of the algorithm

is to dynamically change the entries of the routing tables, consisting

of the fractions of incoming flow for each destination that a node

sends on each outgoing line. The sequencing of the changes is such

that the routing is always loop-free and converges to the minimum

delay routing.

The main purpose of this paper is to extend the algorithm of [l]

to networks using virtual Zine-switching namely store-and-forward

networks where a user calling into a particular node of the network is

assigned one or more virtual channels to that node, The capacity of

the channels is not preassigned, but rather the nodes use some kind of

statistical multiplexing to combine data belonging to the calls routed

through each link. During conversations, if the situation in the net-

work requires it, rerouting of virtual channels or portions thereof is

possible, and finally the channels are cancelled when the conversation is

over. Virtual line-switching is probably best suitable for networks

where the basic message is composed of a small number of characters and is

in fact already used in a number of terminal-oriented data networks, like

TYMNET [9] and networks projected to use the CODEX 6000 Intelligent

Network Processor [10].

Regarding analysis of distributed routing, there are two interrelated

2-

main differences between message (or packet) switching and line-

switching; in line-switching, the quantities to be controlled are

the flows themselves and not the fractions, and also, if a node

decides to initiate the rerouting of a channel passing through it,

the entire portion of the old channel from that node to the des-

tination will have to be cancelled and a new line established. The

first issue above makes the analysis of line switching somewhat easier

than for message switching, because under suitable assumptions the

functions involved are convex in the flows, but not in the fractions;

on the other hand, the second issue makes the implementation harder, since

rerouting for line-switching requires a certain sequencing from the

nodes to the destination, while in packet switching it suffices to

update routing tables locally at each node and to perform the rerouting

independently from node to node.

Finally, it is interesting to note that the algorithm of [1] as

well as the version in this paper are actually a combination of the

reduced gradient algorithm [7, p.262] and an algorithm proposed by

McCormick [8] modified for the purpose of data network optimization.

The resulting algorithms have the remarkable property of being imple-

mentable using distributed computation, when the nodes receive infor-

mation in an orderly fashion from their neighbors, update their own

information, and then perform the rerouting. The algorithms have the

further properties that, for fixed topology and stationary traffic

requirements, every single rerouting reduces the network delay and the

routings provided by the steps of the algorithm converge to the optimal

-3-

routing in the sense of minimum average delay. Because of the above

properties, the algorithms can be implemented on-line, while the net-

work is operating and thus provide what they are really intended for,

algorithms for quasi-static routing, when requirements are changing

slowly compared to the speed of convergence of the algorithm and links

or nodes occasionally fail or are added to the network. In the version

of this paper, the rerouting must be performed in an appropriate

sequencing, percolating from the initiating node down to the destination.

As an important byproduct, the algorithm insures that the destination

will know the time of completion of each update-rerouting cycle and

therefore will start a new cycle only after the previous one is completed.

- 4 -

II THE MODEL

Consider a data-communication network consisting of N nodes

{1,2,... N}. The directed link connecting nodes i and k will be

denoted by (i,k) and the collection of links by £. We shall assume

throughout the paper that all lines are byplex, namely if (i,k) e £,

then (k,i) E £ and for each node i, denote by Z(i) the collection of its

neighbors.

Let ri(j) > 0 be the average traffic entering the network at node i

and destined for node j, fik(j) be the flow in link (i,k) of messages

destined for node j and Cik be the capacity of link (i,k). Then the

flows f k(j) must satisfy

Z f. fik) i all ij i (1)
kEZ(i). EZ(i)

Qij

fik(j) a 0 all i,j,k, i j . (2)

zf f(j) < Ci all (i,k) E £ . (3)

The objective of the routing is to minimize the average delay in the

network. Let Dik be the total delay per unit time of all traffic passing

through link (i,k). Explicitly, Dik is the average delay per unit of traf-

fic multiplied by the amount of traffic per unit time transmitted over

link (i,k). We shall assume here that Dik is only a function of the total

traffic flow f ik fik (j) passing through link (i,k). Some of the

consequences of this assumption are indicated in [1]. Then the total delay

- 5 -

in the network per unit time is given by

DT(f) = Z Dik(fik) (4)
(i,k) EC

and since the total traffic in the network is independent of the routing

procedure, we can minimize the average delay in the network by minimizing

DT . The main purpose of the paper is to indicate an iterative algorithm

for performing this minimization.

Before proceeding, we should point out that the algorithm requires

no explicit knowledge of the function Dik(fik). Formulas for this

function for various traffic models and assumptions have been previously

obtained [11], [12], but here we shall need to assume only the following

reasonable properties of the functions Dik(.) :

* Dik is a non negative continuous increasing function of fi
Afik'

with continuous first and second derivatives. (Sa)

* Di is convex U . (5b)

lim Dik(fik) = o (Sc)
f. 1tC

ik ik

* D(fik) > 0 for all f where D' is the derivative
ik ik) fik' ik

of Dik. (5d)

In addition, observe that the flows f are taken to be continuous

variables. From a practical point of view this means that the flow

for each connection is of small enough size, or that two or more

subpipes can be opened for each pair of source-destination devices

- 6 -

(i.e. N-plexing is allowed) and a continuous amount of flow can be

transferred from one subpipe to the other. This assumption will be

further discussed in Section V.

Theorem 1 Assume that the set of flows satisfying (1), (2), (3) is

nonempty. If the delay functions have properties given in (5), the flow

* *

f = {fik(j)} minimizes DT under constraints (1), (2), (3) if and

* *

only if there exists a set of numbers (Lagrange multipliers) X = {. (j)}

such that the Kuhn-Tucker conditions

* *

x. (j) if f (j) >
* *

Dk (fik) + Xk(j)

j > if) f fik(j) = 0

i Z j, k E Z(i) (6)

are satisfied. Here

l .(j) =0, (6a)

and Dik is the derivative of Dik(fik) .

- 7 -

The proof of this type of theorems is well-known (see e.g. [13]) and

therefore omitted. It is also well known [7, p. 231] that the Lagrange

multipliers X are the sensitivity coefficients of the optimal cost

with respect to the level of the constraint. In our situation, if the

flow ri (j) is increased by an incremental quantity r i (j) and

everything else is held fixed, then the incremental increase in minimum

delay will be X. (j) * 6ri (j). Consequently, the optimality conditions (6)

have an interesting interpretation: Consider a given destination j and

an arbitrary node i in the network. Look at all neighbours k of i

and calculate the sum of their incremental delay coefficient Xk(j) and

the incremental delay coefficient Dk on the line connecting i to k.ik

Optimality requires that for all neighbors to which i sends traffic

destined for j, this sum will be the same and no larger than the sum

corresponding to neighbors to which i sends no traffic with final destina-

tion j. If and only if this is the situation for all nodes and all

destinations in the network, the corresponding routing f is optimal.

Another fact to be noted before proceeding is that in the optimality

conditions (6), X's corresponding to different destinations are not

related. It is expected therefore that the rerouting algorithm will evolve

independently from one destination to another.

- 8 -

III. THE REROUTING ALGORITHM

Similar to [1], the optimality conditions (6) show that generally

speaking, the algorithm should be such that nodes will increase traffic

on links with small incremental delay D' + Xk(j) and decrease traffic
ik k

on those with large incremental delay. In order to perform these actions,

each node i will need the incremental delays D' over each outgoing
ik

link (i,k) and the incremental delay Sk(j) of each neighbor k.

The quantity D' can be obtained by node i by estimating fik
ik

and using one of the formulas for Dik(fik). Alternatively, and probably

preferably, node i can estimate Dik directly, thereby avoiding

assumptions on the flow that are not always reasonable. Clearly both

procedures will depend on the particular schemes for sending messages

through the lines. An algorithm for estimating D!k for a virtual line-

switched character multiplexing network was developed in [2, Eq.(30)-(33)].

The node incremental delays Xk(j) will have to be sent by the

neighbors. This immediately brings up the question of a potential dead-

lock: in order to calculate Xi(j), node i needs the numbers Xk(j)

from all the neighbors k, but to calculate its own Xk(j), a neighbor

k needs the numbers from all its own neighbors, i included, It is

therefore necessary to break this deadlock at the outset, and realize

that in each step of the algorithm, each node will have to use only a

subset of its neighbors to establish its number Xi(j). This is some-

what different from [1, Eq.(5)], where node i needs numbers only from

a subset of its neighbors to calculate its 3D/ar

- 9 -

We define a step of the algorithm to be a complete cycle

consisting of updating of X's and rerouting in the entire network.

We shall see later that the destination can start a new step only

after the previous one was completed, and although the algorithm is

distributed, it has the property that the destination will indeed

know when this completion occurs. In order to see how a step of

the algorithm progresses through the network, we need several

definitions. The discussion will refer to a given destination j.

For a node i that has any flow passing through it destined for j,

all neighbors k such that fik(j) > 0 are called its real sons

and node i is called their father (a node can have more than one

father). A node i such that f ik(j) = 0 for all neighbors k has

no real sons, but has exactly one adopted son; this is its prefered

neighbor to which it would send any traffic destined for j if such

traffic comes in. Observe that this is different from [1], where the

concept of adopted son is nonexistent and not necessary. A node k is

said to be a son of i, if it is either its real son or its adopted

son. We denote by Si (j) the list of sons of node i for destination

j at step n of the algorithm. The exact algorithm to choose adopted

sons will be presented shortly. Again similar to [1], if there is a

sequence of nodes il,i2,... im such that ir+ 1 is the son (real or

adopted, for destination j) of i r for r = 1,2,... (m-l), then we

say that i1 is upstream from i m (for destination j) and i m is

downstream from il. The network is said to be loop-free if there

are no two nodes that are each upstream from each other, and is said to

- 10 -

have ioops otherwise. If the network is loop-free for a given

destination, then the downstream relationship forms a partial ordering

of the nodes in the network.

A step of the algorithm will proceed such that the updating of

A's propagates from the destination upstream using the above mentioned

partial ordering and the rerouting proper will propagate downstream

from the peripheries towards the destination. We see therefore that

maintaining loop-freedom in the network at each step of the algorithm

is not only saving resources, but is also essential to provide a

natural sequencing in the network.

Before indicating the algorithm, it will be useful to discuss several

special points connected with updating, loop-freedom and rerouting.

The discussion will hopefully help in understanding the various parts

of the algorithm. We are still referring to a given destination j.

Regarding updating, in order to be sure to prevent loops, we shall need

the concept of blocking introduced in [1]. Briefly, if f ik(j) > 0

and Ai(j) < Xk(j), then there is danger of producing a loop in the

next step. Therefore if, because of the constraints on the step-size,

node i is not sure that in one step it can reroute all of fik(j), it

declares itself blocked and so do all nodes upstream from it. If a

node k was not the son of a node i at stage n and node k is

blocked, then k cannot become its son at stage (n+l). The exact

procedure and proof that blocking prevents looping appear in the algo-

rithm and the subsequent theorems.

Another issue to be raised is connected with routing. As said

before, since we are dealing with (virtual) line-switched networks,

if a node decides to initiate the rerouting of a line, the entire

portion of the old line from that node to the destination will have

to be cancelled and a new line established. This procedure will

be performed in a distributed fashion, but it requires that a node will

do its own rerouting only after all of its fathers - and in fact all

nodes upstream from it - have completed their rerouting. This is

because a node must know what connections passing through it have

been cancelled by nodes upstream, and only then it can adjust the

remaining connections. In fact, at each stage, the routing procedure

at each node will consist of three possible parts: cancel those out-

going lines corresponding to lines that were previously coming in, but

have been cancelled by fathers, initiate rerouting, and finally establish

outgoing lines corresponding to new incoming lines.

We are now ready to indicate the algorithm. It proceeds indepen-

dently for each destination, so that we shall describe it for a given

destination j. For the sake of clarity, we shall first describe an

arbitrary updating-rerouting step and then show how to initialize the

algorithm. A step of the algorithm is started by the destination that

sends Xj(j) = 0 to all its neighbors and it consists of taking the

flows fn = n . = {fnl(j) }Nodes
flows fn = {fink(j)} and obtaining a new flow f = {f } Nodes

that have at stage n any flow destined for j will proceed in a

slightly different way than nodes that have none. The algorithm has

a step-size n connected with it; this will be discussed later.

- 12 -

A. Algorithm for a node i with fik(j) > 0 for some k.

Updating

(i) Wait until receiving X's from all sons. If any of the sons is blocked,

node i declares itself blocked. Let Ci(j) be the set (at node i) consisting

of all sons and also those nodes that have sent their X by now and

are not blocked.

(ii) Let

i (j) = mA LAk(j) + D'kEC (j)k

(iii) If for any son k,

Xn(j) > Ai(j) and (8a)

Ti [4(j) < Dik) (8b)

then node i declares itself blocked.

(iv) Send Ani(j) and a special tag indicating blocking status to all

neighbors, except sons

Routing

(v) Wait until A's were received at node i from all neighbors, and

let Bn(j) be the set (at node i) of all neighbors k, except those that

are both blocked and nik(j) =o For all neighbors k, let

ank(j) = [A(j) + D - min (j) + D' (9)

i()im

Let kn(i,j) be any neighbor that achieves the minimum in (9).
0

- 13 -

(vi) Cancel all outgoing lines corresponding to incoming pipes that have

been cancelled by fathers. Let f' (j) be the remaining outgoingik

flows.

(vii) Let

n (j) = min [fk(j), la ((10)

Reroute as follows

A n Ak kj for k = ko(i,j)

(viii) Outgoing lines corresponding to new incoming lines are all opened1)

f ikn0) k n kkn(iij)A k0 '

fik (j) = (n

ik(J) + any new flow k = (i,j).Ik0 o

(viii) Outgoinghe list nes correspf sonsg to newill includeoming linesj) andre all openeds kon (ithat k(ij)) so that

(x)S(j) and blocking status to all ne (i j)

ik j= () '°(12)

(j) + any new flow k = k(ij)

z (j) of sons will include kn(i j) and all nodes k

such that fn+1() 0.ik

(x) Send An(j) and blocking status to all neighbors k for which

i~kl)

- 14 -

Note that step (x) allows the rerouting to percolate down,

from peripheries to the destination. Also observe that fn does

not uniquely define fn+1 both because the minimum in (9) may be

achieved by more than one neighbor, and because the cancellation in

(vi) depends on the paths of the individual lines and not only on

fn. However, we shall show in the next section that this is irrelevant

insofar as the properties of the algorithm are concerned.

B. Algorithm for a node i with ik(j) = 0 for all k.

The algorithm insures that at each step after the initial one,

each node has at least one son.

(i) Wait for X from the adopted son. If the adopted son is blocked,

node i declares itself blocked. Let C -(j) be the set (at node i) consisting

of the adopted son and those nodes that have sent their X by now

and are not blocked.

(ii) Same as in A. (ii)

(iii) Send A. (j) and a tag indicating blocking status to all neighbors1

except the adopted son.

(iv) Wait until X's were received at node i from all neighbors and

let Bn(j) be the set consisting of the adopted son and all other

non blocked neighbors. Let kn(i,j) be any node in B.(j) that
0 1

achieves

min n(j) + D (13)n immBn (j)

(v) Send XA(j) and blocked status to the adopted son, and let

n+1 n
S.n+l (j) consist of k (i,j) (i.e., this is the new adopted son).

i 0

(vi) If any new lines are opened to node i, continue them over the

link (i,kn(ij)). In this case, kn(i,j) becomes a real son.
0 0

We may note that although the concepts of real and adopted sons are

useful for analysis and descriptional purposes, the nodes do

not need to distinguish between them.

In order to complete the description of the algorithm, we need

only to indicate how to initialize it. Observe that when the network

starts operating, no blocking is present at the first stage and the list

of sons is empty at each node.

C. Initialization

(i) Let kl(i,j) be the first node from which i receives a number A

Let

A0 (i 0(j) + D!
1 1 (14)

(ii) Send X°(j) to all neighbors except kl(i,j).
1

(iii) By the time A's were received from all neighbors, let B° (j) be
1

the set consisting of all neighbors. Let k (i,j) be any neighbor
0

that achieves

mEBin (j)[+ DI] (15)
mEBO(j)-

- 16 -

(iv) Send Ao(j) to kl (i,j) and let the list of sons Si(j) consist
1 1

of k0 (i,j).

(v) Same as B. (vi).

In words, since nodes have no lists of sons, the role of a son is

played by the first node one hears from. This allows the nodes to

establish numbers A and later choose their adopted sons. The traffic

is routed then to the adopted sons (at which stage they become real sons).

Clearly this procedure may require flows that numerically exceed link

capacity, but a good end to end flow control can regulate the inputs until

enough routes to accommodate all requirements are found (clearly, such

flow control is needed during the operation of the network as well).

- 17-

IV PROPERTIES OF THE ALGORITHM

In this section we investigate the descent, convergence and loop-

freedom properties of our routing algorithm. Specifically, we shall

show that every step reduces the delay in the network, that the algo-

rithm converges to the minimum delay routing and that at each step the

network is loop-free. The latter also imples that, since the updating

propagates upstream and the rerouting action propagates downstream,

both operations are deadlock free, namely each node that is physically

connected to the destination will update and reroute exactly once at

each step.

As said before, another interesting property of the algorithm is

the fact that at each stage n, a node that has received numbers X

from all neighbors knows that all updating and rerouting has been com-

pleted at nodes that were upstream from it at stage n (the only further

action it may have to take after completing its own rerouting is to have

to open new lines corresponding to new incoming lines). This property

can be used by the destination to insure that it will not start a new

updating before the previous one is completedl

We remind the reader that we are working throughout under the

standing assumptions (5).

Definition A set of nodes 1' 2,... 2 '1 form a Zoop if i+l is

a son of i. for i = 1,2,... (m-l) and if h1 is a son of km

Theorem 2 For arbitrary step size n, there are no loops in the

- 18 -

network at each step of the algorithm.

Proof. The proof is similar in spirit to the proof of [1, Thm.4]

except that here we have to look separately at adopted and real sons

and also, because of the special rerouting sequence, the intermediate

flow values f' defined in A. (vi) in the Algorithm enter expli-

citly in the calculations.

We first show that if there are no loops at stage n > 1, then

the network has no loops at stage (n+l). Suppose there is a loop at

stage (n+l) for destination j. Then it must contain a link (Z,m)

such that Xng(j) < Am(j) But m cannot be the adopted son of Q,

since A, (ix) and B. (v) in the algorithm and the assumption (5d)

shows that this would require X (j) > X (j). Therefore m is a real
z m

son of 2 at stage (n+l), i.e. f l(j) > 0. Since the algorithm

increases flow only on links corresponding to neighbors with lower

numbers, we also have fm(j) > 0.

This implies that

na (<fin) nna (j) < fIm(j) f (m(J) (16)

But on the other hand from (13) and (11) we have

T na m(j) > [rn(j) + D - n((17)

so that

(j) + D n(j) < fn (18)

and therefore g is blocked at stage n.

- 19 -

Now move backwards around the assumed loop at stage (n+l) to the first

link (i,k) such that k is not a son of i for stage n. There must be

such a link if the network was loop-free at stage n. But since 9 is

blocked at stage n, so is k, since on the portion from k to Q, of the

assumed loop, each node is at stage n a son of the previous node. But

this says that k was not a son of i at stage n and became one at

stage (n+l), although it was blocked at stage n. The algorithm does not

allow this to happen and we therefore have a contradiction.

The proof is completed now if we observe that at stage 0 we have

only adopted sons, so that there cannot be loops at stage 1.

Theorem 3 Let D = DT(f) and let M be an upper bound to all

D" (fik) over the set
ik ik

F ={f DT(f) < D1}. (19)

If n = (2MN5)-1, any rerouting strictly decreases the total delay

in the network and

DT(fn+l) < DT(fn) - (MN5)i [Ak . (20)

The proof appears in the Appendix.

Note The asserted bound exists because the set (19) is compact

and D" is continuous.

- 20 -

The next theorem is interesting in its own and will also be used

to prove convergence properties of the algorithm. It shows that if any

flow is such that the algorithm requires no flow changes, then that

particular flow has no blocking. In particular, we shall show later

(see Appendix) that, as expected, no reroutings are produced if a flow

is optimal, i.e. satisfies (6), so that no blocking is present in optimal

flows, On the other hand it shows intuitively that blocking will not

occur very often near optimality. This statement is addressed more

precisely in the proof of Lemma 3 in the Appendix.

Theorem 4 If any blocking is present in an updating stage, then routing

changes definitely occur in the network in that stage.

Proof. Let i be any node that declared itself blocked for a destination

j in A. (iii) (rather than A. (i) or B. (i)) and let k be the son that

caused the blocking. Suppose this happened during updating stage n.

Then fik(j) > 0 from (8). Also ain (j) > O since

n n(j) + D ik(fik) > An (j) (j) > in + D f (21)

stream of i. If fin(j) fi() then

Aik() = min a (j) aik (j) (22)

so that a routing change occurs at i.

- 21 -

We are finally able to state the theorem describing the convergence

properties of the algorithm.

Theorem 5 Let D . be the value of the minimum delay in the network

and let F min be the set of optimal flows

Fmin = (fDT(f) = D C23)

Let d(f,F) be the Euclidean distance between a vector of flows f and

a set F, defined by

d2(f,F) = min Z (fik(j) - fik(J)) (24)

fO0 F i,k,j

Then for each initial flow fl, and for step size as in Theorem 3,

we have as n-+ :

(a) DT(fn) ~ Dmin (25)

T min~~~~~ n
This implies that any limit point f of fn is an optimal

flow. It also implies that if Dik(.) are all strictly convex, then

Fmin consists of a single point f and f + f .

The proof of the theorem appears in the Appendix.

- 22 -

V. DISCUSSION

In Section I we have indicated the main differences between the

algorithms for message (packet) switching (MS) of [1] and for virtual

line-switching (LS). After indicating the algorithm and its proper-

ties, we are now in a better position to elaborate on these differences

and on other points regarding the algorithms.

As already said, LS requires a particular sequencing for re-

routing, from nodes with no fathers, using the downstream relationship

for sequencing, down to the root (destination). This provides a natural

update-rerouting cycle, which, although using distributed computation,

allows the destination to know exactly the time of completion of each

cycle, and therefore makes it possible that no two cycles will simul-

taneously run in the network. Clearly, it requires only a simple change

in the algorithm of [1] to obtain a similar property for MS , but in

the context of MS networks with fixed topology this property is not

really essential. It becomes indispensable however when topological

changes have to be taken into account (see [14] - [16]).

The above mentioned ordering through the network also requires

that each node with real sons will use a careful sequencing for its

routing, namely first cancel, then reroute and then continue new incoming

lines. The concept of adopted son is necessary for nodes with no flow

to the destination, to designate the "best" neighbor to which it

would route traffic when it comes in. Also observe that in the LS

algorithm)the number X is defined by a minimizing operation (7), while
)

- 23 -

in the MS algorithm it is calculated by a weighted average [1, Eq. (5)].

While both are natural quantities for the corresponding algorithms, other

possibilities probably exist.

Regarding implementation of the LS algorithm, its use for quasi-

static routing should now be clear. Immediately or an arbitrary interval

of time after its previous update-rerouting cycle was completed, each

destination starts a new update that propagates upstream through the network;

then the rerouting propagates downstream. The nodes estimate the incremental

delay Dik and use them in the update. The destination node knows that the

cycle is completed as soon as it receives numbers X from all neighbors.

Old connections that are terminated are cancelled together with the rerout-

ing, while the algorithm propagates downstream. New connections can be

established at any time, but it may be preferable to wait for the next re-

routing stage. Observe that the algorithm creates situations in which the

new circuit is only partially established during rerouting, while the old

circuit is partially or totally destroyed, with no physical circuit connect-

ing the.source to the destination. This however does not mean that the call

must be suspended during this time. When a node initiates the rerouting of a

line, it stops sending data on the old line and at the same time it can start

sending it over the new one. This of course assumes that the protocols for

sending data over each link and for establishing new lines are such that either

both are processed on a common first-come-first-served basis or such that estab-

lishing lines takes priority. Since in a network with fixed topology every

newly initiated line will indeed reach the destination, there is no need to

- 24-

hold the data until the end-to-end protocol for establishing a line

is completed. Clearly, in actual implementation, more thought is

necessary to decide the final protocols best suited for the parti-

cular application.

Another issue regarding implementation is the step-size n, and

this is common to both line-switching and message switching, Our

assumption just before Theorem 1 means that the atomic size of flow

is much smaller than n · Dk. On the other hand, n is taken in

Theorem 3 to be very small, in order to prove convergence. It is of

course important to know that a certain n insures convergence to the

optimal routing, but practically speaking this may not be the best

step size. First, because much larger n's will probably still insure

convergence, while also allowing enough routing dynamics to follow

slowly changing traffic requirements and second, even if convergence

to the exact optimum does not occur, still we may be able to provide

bounds on the performance. In fact, an interesting future research

topic is to obtain such bounds for a given step size n. Other impor-

tant future research topics are to study the dynamics of the networks

using the algorithms of [1] and of this paper, as well as the stochastic

behavior due to stochastic requirements and errors in the estimation of

D!k' Finally, we may mention that although the algorithms have been

shown to be deadlock-free when the topology is fixed, they are clearly

not suitable in their present form to acommodate failures and recoveries

of links and nodes. Using those algorithms in a simpler form as a basis,

- 25 -

a distributed update algorithm has been developed in [14] having the

properties of i) loop freedom, and ii) deadlock freedom and recovery

in finite time under arbitrary sequence, location and quantity of

topological changes. The proofs of these properties appear in [15]

More recently, the algorithms of [1] and this paper have been completed

to acommodate topological changes, and the resulting algorithms [16]

provide optimal routing, while also retaining properties i) and ii)

above,

- 26 -

APPENDIX

Proof of Theorem 3 First recall that when a node i decides to

reroute a line passing through it and going to destination j, then

the entire portion of the line from i to the destination will be re-

routed. We call such rerouting of a single line an elementary rerouting.

Now using assumptions (5), the change in delay from stage n to stage

(n+l) is :

n~l ~~Dfnn~ ~D' (ffjffln+l fn () fn+lfnji
Tf Tt) ik ik(ik ik ik ik (27)k

i,k i,k

where f is some point on the segment connecting fn and fn+l

Lemma 1

iD' ffl) F?+l - 1 n 2
D'fik n Ln+ fknj -n A 2(j (28)
i~k ik i k ikj ik

Proof. Consider first an elementary rerouting of a line through which

the flow is A, transferred from a path (i,k,al,...Zm,j) to a path

(i, kn(i,j), rl,... r ,j). Its contribution to the left hand side of (28)

will be

A{ - D' + + + D')+ (D +D + +D (29)
{ Dik iko (Dkil D12 *.. Dmj) (+ + D + . D)} (29)

£k10 k1 £l 2 Rm ol 12 P

Now observe that rl is the best node out of ko in the sense that it

achieves the minimization in (9) for ko, node r2 is the best node out

n n
of r 1 and so on down the path, so that using the fact that C i (j) c Bi(j)

for any node i, we have :

- 27 -

An (j) > xn(j) + D' D'
r 3O rj
P p p

I n (j) Ž>n (j) + D' > D + D'
rpLr r r r r r j

rp-1 rp p p-lrp p-lrp p

and by induction

An (j) > DI + D' + + D' (30)
Ik ko rk rr rjo ol 12 p

On the other hand, before the rerouting, the line in question passed

through nodes kl, l, 2'... Pmj, so that each was a son of the previous

one and hence was included in its set Cn(j) appearing in (7).

Therefore,

Az (j) < A(j) + D DI
.j -' m m m

Ag (j) <AZ (j) + Dg •D + Dg +
m m m-1 m m-1 m m m

and by induction

< D' + + D' + .+ , (31)
kZ1 l 2 m

Equations (31) and (30) imply that expression (29) is

< iA D!+D!k i k + () - (j) = -an (j) (32)
o o

Since at step n a total flow of A k(j) was rerouted from paths startingik

-28

with link (i,k), their contribution to the left hand side of (28) is

n n 2
- aik(j) .1ik(j) < - - 2 (33)

Summing up over i,k,j gives (28).

Lemma 2 Let M be an upper bound on D" (fik) over all i,k, when
ik ik

f ranges over the segment connecting f and fn+l Then

D f(fi.)(f - < (MN5) n. (34)
i ik 1k ikk1j i kk -k

Proof. We have

), n+l n2 n+
Dik (f k) (f i k - fik) < M fik fik) (35)

i,k (35)

and since the largest change in flow in any given link cannot be larger

than the sum of all changes occuring in the network

ifn+l fn n n) (36)
ik ikI Am()

Now the sum in (36) has no more than N(N-1)(N-2) terms, so that applying

the Cauchy-Schwartz inequality gives

2 F n 2
(n+l _ fnk) < N 3 Z An (j (37)

Summing over (i,k) and using (35) gives (34).

Now, combining the results of the lemmas 1,2 we have for M as in

lemma 2

n+1... , (f) + MNn 2

-29 -

If we choose n = (2MN5) 1, then DT(f l) < DT(f) and by induction

DT(f n +l) < DT(' DT(f l) so that both fn and fn+l, as well as the

entire segment connecting them is in the set F of (19). Consequently

M can be taken as in the statement of Theorem 3. Also the above choice

of n gives (20) which completes the proof of the theorem.

Proof of Theorem 5 Since DT(fn) is bounded from below by zero and

is a decreasing sequence, it has a limit D . Since {fn} belong to

the compact set F of (19), it has a limit point f (i.e. a subsequence

converging to f) and continuity of DT implies that

DT(fn) \ DT(f*) = D* (39)

For simplicity, we denote this subsequence also by {fn}

We shall now continue the proof with a series of lemmas: Lemmas 3

and 4 show that f is an optimal flow, namely it satisfies the

Kuhn-Tucker conditions. This implies that D = Dmin, which proves

part a) of the Theorem. Part b) will be covered in Lemma 5.

Lemma 3. No routing changes occur when applying the algorithm to f

Proof. Suppose the contrary. In any flow pattern f that has routing

changes (for destination j) there must exist a node i such that

* * * * *

ik(j) and ft (j) = f (j) for some k. (If f (j) f (j)
at a node i withk (> 0 for some k, keep moving upstream ink

at a node i with A ik(J) > 0 for some k, keep moving upstream in

all paths until you find a node such that none of its fathers has a

routing change or until a node i with Aik(j) > 0 for some k with no

fathers). The triplet i,k,j will remain fixed for the rest of the proof

of Lemma 3.

-30 -

Now observe that all A's as generated by the algorithm are

positive and bounded by

max I Dm (fm) <m (40)
fEF Z,m M m

so that both {fn} and { n} belong to compact sets. Also observe that

the sets Ci(j), B.(j) as generated by the algorithm are drawn from a
i i

finite set (the power of the set of all neighbors of i). Therefore,

there must exist a subsequence, which we again denote by {n} for

simplicity, such that n-*, f + f , An converges to some X, and

the sets Cn (j) and Bi(j) are nonvarying along the mentioned sub-

sequence and are identical to the corresponding sets generated by the
* * *

algorithm when applied to f . Let us denote them by Ci (j) and Bi (j)

respectively, and then we have :

Xn , n
i (j) min .((j) + Di(f)) (41)

£ECi (j)

aik (j) = A(j) + Dik(fik) - mn + D!(A() (42)

kEBi(j)

Aik(j) =min Inak(j, fk(j)] (43)

implying that

aik(j) + aik(j) (44)

a ik(j) tik(j) 45)1k ik

* *

where aik(), ik() are generated by applying the algorithm
* *

to f , namely from (41)-(43) with f replacing f.

-31

**

Now let f be the flow obtained after applying the algorithm to

f . From Theorem 3 follows that

** * * 2 "
DT(f) - DT(f) < -(MN5) ik(i (46a)

and for any n along the subsequence in consideration

DT(fn) DT(fn) < -(MN5) An i (46b)

But (45) and the fact that Aik(j) is assumed to be strictly positive

(at the beginning of this proof) , imply that there exists an N 1 such

that, for n > N1 we have

D T(fn+l) - DT(fn) < -(MN 5) k(i)]/2 . (47)

Moreover since DT(fn) L DT(f*), we can choose N2 such that for n > N2

we have

DT(fn) - DT(f) < (MN5) Ak(/2 . (48)

But (47) and (48) imply that for n > max(N1,N 2) we have

DT(f) < DT(f*) (49)

which contradicts (39).

Note. Lemma 3 implies that if the algorithm is applied to f an

arbitrary number of times, still f remains unchanged. Observe however

that the Lagrange multiplies A are not necessarily identical to A of

Theorem 1. The next lemma settles this question.

- 32 -

Lemma 4. The flow f satisfies the Kuhn-Tucker conditions (6) for

some Lagrange multipliers. After application of the algorithm to f

at most N times, the A's generated by the algorithm which we call A,

* *

are such that f , A satisfy the Kuhn-Tucker conditions (6).

Proof. From Lemma 3 and Theorem 4 follows that no blocking occurs when

the algorithm is applied to f . This implies that for every node i, the

* *

set Bi(j) as generated by the algorithm applied to f is the set of

*' *

all neighbors of i. In addition f. (j) = fik (j), so that
ik ik

0 = Aik(j) = min fik() naik (50)

Now, if a node i has nonzero flow destined for j, then all its neighbors

k such that f. k(j) > 0 have aikj)= O. This implies that for suchn'!ighbors k

Ak(j) + D!k(fik) = min m(j) + D!m(fim Ai(j) (51)

where, X are the AX's generated by the algorithm applied of f and the

minimum is taken over aZZll neighbors of i. In words, the first

equality in (51) says that all neighbors k such that fik(j) > 0 have

the same Xk + Dik and this number is less than or equal to this sum comp-

uted for neighbors with fik(j) = 0. The second equality in (51) follows if

we observe that the set Ci(j) of (7) contains at least one neighbor

* *

with fik(j) > 0. Therefore, for nodes i with nonzero flow, f satisfies

the Kuhn-Tucker conditions with X = A . It is also easy to see that at

these nodes not only f , but also A do not change, no matter how many

times the algorithm is applied to f

- 33 -

The situation is different at nodes i such that f ik(j) = 0

for all k. There the X's may still change, but the following shows

that after at most N steps they will remain fixed and will satisfy

the Kuhn-Tucker conditions. Consider a group of connected nodes with

no flow to destination j. Consider the link with minimum

Ak(j) + D' (fik) where the minimum is calculated over all links
ik ik

such that i is in this group and k is outside. Then in the next

iteration i will choose k as its adopted son and in the iteration

after that it will definitely define Xi(j) to be

* * *

i Ak(j) + D!ik(fik (52)

It will not change its decisions for all coming iterations. Clearly

Xi(j) satisfies the Kuhn-Tucker conditions. Continuing in a similar

manner for all nodes with no flow to j, we obtain that in not more than

N iterations, all nodes will arrive to X's that satisfy the Kuhn-Tucker

conditions.

Lemmas 3 and 4 show that f is an optimal flow, so that D(f)

= D.. This completes the proof of part a) of Theorem 5 because of
min

(39) and the sentences preceding it.

Lemma 5. The sequence of flows {fn} obtained by repetitive

application of the algorithm converges to the set of minimum flows in the

sense of (26).

Proof. We first note here that fn denotes again the original sequence

(and not all subsequences considered in Lemmas 3 and 4). Now suppose (26)
n

is not true. Then there is an £ > o and a subsequence {f m} with

- 34 -

n + co such that
m

n
d(f m, F (53)

min

n
Since {f m} belongs to a compact set, it has a converging sub-

n
mk A

sequence, {f } such that n - , and let f be the limit.
mk

Then (57) shows that

d(f, F in) (54)min

n
mk

which implies that (f) L Lmin But f + f and continuity of

Q imply

n
mk mm(5)

which contradicts part a) of the theorem.

ACKNOWLEDGEMENT

The author would like to thank R.G. Gallager for interesting

discussions related to the first stages of this research and F.H. Moss

for comments related to its later stages.

- 35 -

REFERENCES

[1] R.G. Gallager: "A minimLm delay routing algorithm using
distributed computation", IEEE Trans. on Comm., Vol.
COM-25, pp. 73-85, January 1977.

[2] A. Segall: "The modelling of adaptive routing in data-
communication networks", IEEE Trans, on Comm., Vol.
COM-25, pp. 85-95, January 1977.

[3] J.M. McQuillan: Adaptive routing algorithms for distributed
networks, Bolt, Beranek & Newman, Inc., Rep,2831, May 1974.

[4] H. Frank & W. Chou: "Routing in computer networks," Networks,
Vol.l, pp. 99-122, 1971.

[5] G.L. Fultz: Adaptive routing techniques for message switching
computer-communication networks, Report UCLA-ENG-7252, July 1972.

[6] D.G. Cantor & M. Gerla; "Optimal routing in a packet-switched
computer network':, IEEE Trans. Comput., Vol. C-23,
pp. 1062-1069, October 1974.

[7] D.G. Luenberger: Introduction to linear and nonlinear programming,
Addison Wtsley, 1973.

[8] G.P. McCormick: "Anti-zig-zagging by bending", Management Science
(Theory), Vol. 15, pp. 315-320, January 1969.

[9] M. Schwartz, R.R. Boorstyn and R.L. Pickholtz; "Terminal-oriented
computer-communication networks", Proc. IEEE, Vol. 60,
pp. 1408-1423, November 1972.

[10] G.D. Forney & J.E. Vander Mey: "The Codex 6000 series of Intelligent
Network Processors", Computer Communication Review, Vol. 6
pp. 7-13, April 1976.

[11] L.Kleinrock: Communication Nets: Stochastic message flow and delay,
McGraw Hill, 1964.

[12] L. Kleinrock: "Analytic and simulation methods in computer network
design," in 1970 Spring Joint Computer Conference, AFIPS
Conf. Proc., Vol.36, AFIPS Press, pp. 569-579, 1970.

[13] P.P. Varaiya: Notes on Optimization, Van Nostrand Reinhold, 1972.

[14] A. Segall, P.M. Merlin & R.G. Gallager: "A recoverable protocol
for loop-free distributed routing", submitted to ICC 78,
Toronto, Canada, June 1978.

[15] P.M. Merlin & A. Segall: "A failsafe algorithm for loop-free distributed
routing in data-communication networks' submitted to IEEE Trans.
on Comm.

[16] M. Sidi & A. Segall:"Optimal failsafe distributed routing in data
networks'" in preparation.

FOOTNOTES

1. Algorithms having this property were first indicated to the author

by R.G. Gallager o

