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ABSTRACT

Concentrations of blood constituents provide diagnostic information in clinical

procedures. Among the medical community, there is great interest in developing an

optical method of concentration measurements that eliminates reagents required in the

current clinical chemistry techniques and is non-invasive.

This thesis describes the methodology to develop a measurement technique of blood

component concentrations using Raman spectroscopy. The sources of prediction error

were identified. A Monte Carlo simulation model was developed to study the distribution

of the Raman signal from turbid biological samples. A high sensitivity system for Raman

spectroscopy of blood analytes was designed by optimizing the optical components. The

new system had higher collection efficiency than the previous state-of-the-art system.

Experiments were performed using the new system in order to collect Raman spectra of

human whole blood. The collected Raman spectra were analyzed with multivariate

calibration techniques, and compared with hospital measurements.

The analysis of the spectra of whole blood samples demonstrate that many chemical

components in ex vivo whole blood samples can be measured accurately with near-

infrared Raman spectroscopy. A preliminary analysis based on the results of this thesis

indicates that it is feasible to measure blood analytes non-invasively.

Thesis Supervisor: Michael S. Feld
Title: Professor of Physics
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Chapter 1

Introduction

This thesis describes development of an optical method of measuring concentration levels

of important blood constituents ("analytes") in whole blood using Raman spectroscopy.

Every chemical has its own unique Raman spectrum that can be used to distinguish

different chemicals. The intensity of the Raman signal bears a linear relationship to the

chemical concentration, and therefore, Raman spectroscopy can be used as a tool in

concentration measurements, as well. Since Raman spectroscopy is an optical technique, it

can collect signals without damaging samples. The ultimate application of this technique

will be noninvasive and continuous monitoring of clinically important substances in vivo.

Non-invasive measurements of this kind will be valuable in a wide variety of clinical

settings. The goals of this thesis are measurements of analytes in biological fluids,

development of a methodology for using spectroscopy techniques for extracting analyte

concentration information in the presence of turbidity, and better understanding of the

detection 'limits of spectroscopy techniques. This thesis will also serve as a resource for

other researchers who are interested in concentration measurements using optical

techniques.
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1.1 Objectives

Turbidity effect study

When this thesis research began, it had been demonstrated that chemicals in human serum

can be measured using Raman spectroscopy with clinical accuracy. However,

measurements in whole blood were not as accurate, and thus, the differences between

serum and whole blood had to be investigated. The major difference between serum and

whole blood is the presence of blood cells. The blood cells scatter and absorb light, and the

effect of such optical events on Raman scattering was studied. We needed a tool to study

scattering and absorption in whole blood. It was essential to validate the whole blood

model.

Multivariate analysis of Raman spectra

Multivariate techniques were used to analyze Raman spectral data and extract

concentrations. We wanted to confirm that Raman spectra of serum and whole blood are

linear superpositions of component spectra, which allowed the use of linear spectral

analysis techniques. To investigate the spectral differences between serum and whole

blood, we wanted to find out whether the same chemical has the identical Raman spectrum

in serum and whole blood. Component spectra extracted from serum and whole blood by a

multivariate technique were compared. Moreover, we wanted to have a better

understanding of prediction errors. An analytical equation derived for error in multivariate

analysis will indicate what factors are important in improving the prediction accuracy.
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Optical system development

In order to collect high signal-to-noise ratio Raman spectra rapidly, a spectroscopy system

with high throughput was required. The throughput of the system was optimized by

numerical simulations. Based on the distribution of the Raman signal in whole blood, a

collection geometry that allows for the maximum collection efficiency was designed.

Optical design software was used to select the optimal combination of optical components.

Measurements in whole blood

The principal objective of this research was to demonstrate that chemical concentrations

could be measured at physiological concentrations in whole blood. We performed

experiments on whole blood. The presence of scattering and absorbing particles, the

interference of multiple components, and the shot noise of the background were the

challenges in these measurements.

Preliminary estimation of prospects for transcutaneous measurements

We wanted to estimate the prospects for transcutaneous measurements of blood analytes

using near-infrared Raman spectroscopy. Raman spectra of various body parts were

collected and analyzed. With the analytical equation derived for error in multivariate

analysis, prediction accuracy in transcutaneous measurements was calculated.

18



1.2 Accomplishments

The results of the experiments described in the following chapters show that Raman

spectroscopy can be used to measure chemical concentrations with clinical accuracy from a

Raman spectrum of human whole blood. Our technique measured concentrations of eight

analytes: glucose, urea, cholesterol, triglyceride, albumin, total protein, hemoglobin, and

hematocrit, using a calibration data base of spectra from 31 human subjects.

In addition to demonstrating the ability to use Raman spectroscopy to measure

chemical concentrations, we have also developed important tools. First, we developed a

Monte Carlo simulation code that models light propagation and Raman scattering in turbid

samples. The code provides the distribution of Raman signals on the surface and inside the

medium. The code was designed with the capability of modeling various geometries. It

can be easily modified to add additional constraints or calculate new quantities of interest,

and it provided a clear picture of light propagation in whole blood.

Also, the methodology of designing a spectroscopy system by optimizing the

throughput was developed. Experimental measurements, statistical simulations, and optical

principlestand optical design software were used to design an optimal throughput system in

a step-by-step procedure. The methodology developed in this research can be applied to

the design of other optical components and systems.

Finally, we derived an analytical equation that estimates the error of multivariate

techniques in concentration measurements. The equation identified noise as the limiting

source of error, guiding the direction of research.

19



This equation was also used to estimate the prediction error in transcutaneous

measurements. Raman spectra of various body parts were collected and analyzed. The

preliminary calculation indicates that it is feasible to measure blood analytes

transcutaneously.

1.3 Outline

The work that has been performed is presented in the following sequence:

Chapter 2: Background

This chapter provides background information about both clinical chemistry and Raman

spectroscopy. A review of literature on optical measurement techniques is included, and

Raman spectroscopy and other non-invasive techniques are compared. Techniques that are

described are mid-infrared and near-infrared absorption spectroscopy, Raman spectroscopy,

other optical techniques, and minimally invasive techniques. Previous accomplishments in

this project are also summarized. Previous accomplishments include development of a

sensitive instrument for serum analysis, measurements of chemical concentrations in serum

and preliminary measurements in whole blood.

Chapter 3: Understanding turbidity using Monte Carlo simulations

The need for understanding turbidity is explained. The development and validation of the

Monte Carlo simulation for Raman scattering is presented. Then, experiments were

performed to measure the surface distribution of the Raman signal in whole blood. The

20



measurements and simulation results were compared, and they matched well. To show the

effect of turbidity on signal intensity, simulation results for various turbidity samples are

presented.

Chapter 4: Raman spectra of biological samples and multivariate analysis

Fundamentals of multivariate analysis and their applications are described. The whole

blood spectra are analyzed with multivariate techniques. The Raman spectra of chemicals

in serum and whole blood are compared. An analytical equation for estimating prediction

error was derived.

Chapter 5: Design of a high-sensitivity system for Raman spectroscopy

The need for a high-sensitivity spectroscopy system is presented. Basic principles- of

radiometry are explained. How an optimal design can be obtained using simulations,

measurements, optical design software, and optical principles is discussed. The

performance of the new system is also presented in terms of the increased sensitivity and

the reduced noise.

Chapter 6: Experiments to measure analvtes in whole blood using the high-sensitivity

system for Raman spectroscopy

This chapter reports measurements of multiple components in whole blood. These studies

comprise the core experimental work in this thesis. Preliminary experiments were

performed using samples prepared in the laboratory with whole blood from a single subject.

21



A large study was performed using blood samples from 31 subjects at the Beth Israel

Deaconess Medical Center (BIDMC). The results of the experiment demonstrate that

analytes can be measured with clinical accuracy in whole blood.

Chapter 7: Toward transcutaneous measurements

A non-invasive measurement of analytes in blood-tissue matrix is presented as the future

direction. Challenges in non-invasive measurements are discussed. Results from a

preliminary measurement of skin are presented. The analysis indicates that it is feasible to

measure blood analytes non-invasively.

Chapter 8: Conclusion

The accomplishments in this thesis research are summarized, and final statements are made.
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Chapter 2

Background

2.1 Overview

Blood analyte concentrations provide important clinical information in diagnostic

procedures. There is a great benefit in developing an optical method, which does not

require reagents for analysis and is non-invasive, of measuring clinically important

substances, as current clinical chemistry methods require blood withdrawal for determining

analyte concentrations.

This chapter explains basic concepts and terms in clinical chemistry, discusses some

analytes of interest and clinical chemistry techniques to determine their concentrations. In

addition, efforts made to develop non-invasive optical measurement techniques are

reviewed. Raman spectroscopy, a common tool in analytical chemistry, is found to have

advantages over other optical techniques. Prior accomplishments achieved using Raman

spectroscdpy are also summarized.

2.2 Clinical chemistry of blood analytes

Clinical chemistry is the field of chemistry related to medical science, and it provides

chemical information needed in medical diagnosis. Clinical chemistry analysis is

performed in many body fluids. Blood is the most frequently used medium. It has many
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components whose concentration levels provide essential clinical information. Among

them, this thesis research measured glucose, hematocrit, cholesterol, urea, albumin, total

protein, hemoglobin, and triglycerides. The following subsections review the significance

of these analytes, describe current measurement techniques, and discuss advantages offered

by an optical measurement.

2.2.1 Specimens for clinical chemistry

This thesis research mainly used whole blood as the specimen, as many analytes in whole

blood (anj its derivatives, plasma or serum) are frequently measured in diagnostic

procedures. However, other body fluids are also available and used as specimens in clinical

chemistry. This subsection discusses various specimens, their advantages and limits in

clinical chemistry.

Blood is the body fluid that is most frequently used for analytical purposes. Blood

is obtained by venipuncture (puncture of a vein), arterial puncture, and skin puncture. In

addition, indwelling catheters provide continuous access to venous blood. It is important to

use the same technique to obtain blood samples in order to compare concentrations in the

blood samples. Oxygen concentrations, pH, carbon dioxide concentration, hematocrit are

different in venous blood and arterial blood. Also, concentrations of glucose, lactic acid,

chloride, and ammonia may vary [Henry and Kurec 1996].

Obtained blood samples can be processed further, depending on the type of tests

required. Many analytes are determined in serum. Serum is obtained by allowing blood to

clot and centrifuging the clotted blood to remove fibrinogen as well as other blood cells
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[Miller 1996]. Plasma is the fluid component of blood. It is similar to serum, and many

chemicals are also determined in plasma. Plasma is obtained by centrifuging whole blood

to remove blood cells [Boral and Henry 1996]. Whole blood, with the addition of an

anticoagulant, is used for hematology studies, such as complete blood count and platelet

count. An anticoagulant, such as heparin, ethylenediaminetetraacetic acid (EDTA), sodium

fluoride oxalate, or sodium citrate, prevent coagulation. It may interfere with concentration

determinations, and therefore, extra care is needed in selecting anticoagulants.

Concentrations of analytes may vary in serum, plasma, and whole blood. Certain

analytes, such as glucose and urea, can be determined in both serum and plasma, and

concentrations in serum and plasma are similar. Concentrations of analytes can be lower in

whole blood due to the volume displaced by the solid content of blood cells. For example,

concentrations of glucose in whole blood are about 12 ~ 16% lower than concentrations in

serum or plasma [Fogh-Andersen et al. 2000]. Hematological analytes, such as hemoglobin

or hematocrit, can be only determined in whole blood due to the absence of red blood cells

or hemoglobin in serum and plasma.

Urine is another biological fluid frequently used in medical diagnosis. Generally,

urine is obtained without pain or danger. Analysis of urine provides diagnostic information

regarding kidney and urinary tract functions [Henry et al. 1996]. Cerebrospinal fluid (CSF)

is collected from spinal cord, and analysis of CSF may provide diagnostic information of

infection, hemorrhage, and multiple sclerosis. However, collection of CSF is painful and

may cause serious complications, such as paralysis, infection, and asphyxiation. CSF
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analysis is performed only when it is necessary, because of the chance of complications

[Henry and Kurec 1996].

Other biological fluids include sweat and interstitial fluid. Sweat is analyzed for

determination of electrolytes, but it is not suitable for other analytes as they are not present

in sweat. Interstitial fluid is present in the space between cells. It contains many blood

analytes (such as proteins, glucose, lactate), as it allows analytes to pass between capillaries

and cells. Determination of analytes in interstitial fluid could provide bloodless

measurements of blood analytes. However, invasive measurements in interstitial fluid are

challenging due to the lack of reliable sample extraction methods and the small volume of

interstitial fluid samples. A non-invasive measurement in interstitial fluid might be a

solution for the sample extraction issue.

The conventional methods most widely used to obtain concentration information

rely on removing samples of blood from patients and then subjecting these samples to many

chemical techniques. Many clinical chemistry techniques are performed in four steps:

withdrawing blood from patients, centrifuging blood, to obtain serum or plasma, adding

specific reagents for chemicals whose concentrations are of interest, and measuring

concentrations using optical techniques. Although these methods can be used to detect a

wide variety of substances and have evolved to the point where they can be done relatively

quickly and accurately on small quantities of blood, they usually require transport to a

laboratory and multiple processes before analysis can be initiated. Thus, from a practical

perspective, clinicians frequently have to wait hours to get results. Thus, if one could
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measure blood analytes non-invasively, it would be that much more convenient for

everyone involved.

Furthermore, the body of clinical knowledge about analytes focuses upon

monitoring their concentrations in biological fluids (mainly blood or its derivatives), rather

than in the blood-tissue matrix. This is because the regular withdrawal of certain biological

fluids is relatively harmless, whereas the repeated removal of tissue samples for-chemical

analysis is clearly unfeasible. For this reason, the clinical value of monitoring tissue

analyte concentrations has not been assessed. An optical technique, which probes tissue

directly, offers the opportunity to perform such measurements. Accurate monitoring of

tissue analyte concentrations would provide clinicians with new and potentially powerful-

diagnostic information. These concentrations would be useful not only in monitoring

overall health, but also in studying the viability of particular tissue regions, such as would

be necessary in choosing the proper site for an amputation.

2.2.2 Clinically important blood analytes

Blood has many components whose concentration levels provide essential clinical

information. These include blood gases, glucose, hematocrit, cholesterol, urea, albumin,

total protein, and many others that were not measured in this thesis research. The following

paragraphs review the significance 'of these quantities, describe current measurement

Glucose and insulin

Glucose is the carbohydrate essential to all body cells as an energy source (Figure 2.1). It

is introduced into the body by direct ingestion of glucose or ingestion of other
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carbohydrates. Large carbohydrate molecules are broken into smaller molecules, one of

which is glucose [Stryer 1995]. Its concentration is precisely regulated by a- variety of

hormones, the most important of which is insulin. When glucose levels in the blood stream

rise, insulin is secreted by the pancreas, which enables the glucose to move into cells. In

the absence, or lack, of insulin, the glucose cannot move into the cells and levels rise in the

bloodstream, and the cells begin to catabolize (break down) fat [Benett 1994]. Ketones are

products of fat metabolism, and many ketones are toxic. Accumulation of glucose and

ketones in the body can lead to a life-threatening syndrome called diabetic ketoacidosis, the

symptoms of which include frequent thirst, nausea, vomiting, excessive urination, tiredness,

and, eventually, diabetic coma. The therapy for diabetic ketoacidosis is administration of

insulin. However, the amount of insulin must be carefully titrated to the glucose

concentration, and a variety of other factors come into play as well [Govoni and Hayes

1985, Scipien and Barnard 1983]. Thus, the American Diabetes Association recommends

that glucose levels be measured frequently and accurately in all patients taking insulin.

The glucose concentration in a normal human subject typically ranges from 45 to

180 mg/dL (2.5 to 10.0 mM) in plasma [Threatte and Henry 1996]. Glucose concentration

is affected by the age and gender of the subject and the delay between a meal and the

measurement. Glucose concentrations higher than the normal range are classified as

hyperglycemia and glucose concentrations lower than the normal range are classified as

hypoglycemia. Extreme concentrations as high as 1000 mg/dL (56 mM) have been

observed. Glucose concentrations can be measured with many techniques, one of which is

spectrophotometry (Section2.2.4).
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Figure 2.1. Structure of glucose (left) (V Mountcollyer Technology Center) and insulin
(right) (0 D. S. Goodsell, Research Collaboratory for Structural Bioinformatics)

The insulin concentration is associated with the glucose concentration in normal

subjects, and it ranges between 79 and 1722 pM (11 to 240 pU/ml). Determinations of

insulin concentrations in addition to glucose concentrations may provide better control of

glucose concentrations. However, insulin concentrations are not measured often, probably

due to the high cost of insulin measurements and difficulties in data interpretation [Threatte

and Henry 1996]. Radioimmunoassay is the method commonly used to measure insulin

concentrations, but this, in general, cannot differentiate low insulin levels from normal

levels. An affordable and accurate technique to determine insulin concentration could

become an important tool in diabetes management.

Hemoglobin and hematocrit

Hemoglobin is the major component of red blood cells, and its main function is to transport

oxygen and carbon dioxide. In the pulmonary capillaries, more than 98% of the

hemoglobin is combined with oxygen. When red blood cells are transported near tissues,

the oxygen is dissociated from hemoglobin. The normal hemoglobin concentration is 14.0

29



~ 17.5 g/dL in males and 12.3 ~ 15.3 g/dL in females [Morris and Davey 1996]. In extreme

cases, concentrations ranging from 4 to 20 g/dL can be observed.

Another important factor in one's capacity to carry oxygen for body needs is

hematocrit. Technically, the hematocrit is the volume proportion of whole blood

represented by red blood cells. That is, if one centrifuges whole blood from a normal

individual, it will separate into two major components, plasma and red blood cells, and a

very small third component, which consists of other cellular components, such as white

blood cells and platelets. The normal hematocrit in adults is 41.5 ~ 50.4% in males and

35.9 ~ 44.6% in females [Morris and Davey 1996]. Extreme levels of hematocrit ranging

from 5% to 70% are sometimes found.

Figure 2.2. Structure of hemoglobin (left) (C A. M. Jarosz, Michigan State
University) and the image of red blood cells (C S. Berg, Winona State University)

A wide variety of patients have hemoglobin and hematocrit determinations. It is

used to check for anemia in patients who complain of fatigue, and in newborns to check for

nutritional deficiencies. More relevant to our technique is its use in monitoring patients

who are bleeding in emergency or operation and its use in following the adequacy of

transfusion to correct deficiencies [Treseler 1995].
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Although one can measure the hematocrit by centrifugation, it is most frequently

done in modem laboratories in an indirect but much more sophisticated way. Using a very

small amount of blood, modem Complete Blood Count (CBC) analyzers monitor individual

cells passing through an aperture. The instrument can count the number of cells per unit

volume as well as estimate the size of each cell. By multiplying the number of cells per

unit volume by their average size, the instrument calculates the hematocrit [Morris and

Davey 1996].

Cholesterol, trigjycerides, and lipoproteins

Coronary artery disease is the leading cause of death in this country [Murray and Lopez

1996], and the most important risk factors are cholesterol and triglycerides [Harvey et al.

1988]. The American Heart Association recommends that all adults get their cholesterol

levels measured regularly, and treated if appropriate.

Roughly 50% of the American population have cholesterol levels that are

considered abnormal (i.e., fasting levels greater than 200 mg/dL). While some people may

respond to diet and exercise regimens, many patients will be treated with a variety of drugs,

most commonly, inhibitors of the enzyme governing the rate-limiting step in cholesterol

synthesis [Sodeman and Sodeman 1982, Howard and Herbold 1982]. In either case,

periodic monitoring of such patients' cholesterol levels is required. There are near-patient

testing devices for measuring these parameters, but, again, these require withdrawing a

sample of blood from the patient.

Although cholesterol and triglycerides are related to cardiovascular disease, they are

important molecules in human body. Both cholesterol and triglycerides are introduced into
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the body through food ingestion and biosynthesis in the liver and intestines. Cholesterol

and triglyceride concentrations can be measured with many techniques, one of which is

spectrophotometry (Section 2.2.4).

Cholesterol (Figure 2.3) is a part of-cell membranes, and also a precursor for the

synthesis of steroid hormones and bile acids [Stryer 1995]. Typical total cholesterol

concentrations (without fasting) are between 150 and 250 mg/dL (3.88 to 6.47 mM) are

considered normal. A fasting cholesterol concentration higher than 200 mg/dL (5.18 mM)

may indicate higher risk of cardiovascular disease [Bachorik et al. 1996]. A high level of

cholesterol-may contribute to cardiovascular disease. A low level of cholesterol may not be

sufficient to promote growth in children. Extreme concentrations in the range between 50

mg/dL and 800 mg/dL are observed.

Triglycerides (Figure 2.3) are the storage form of energy, and also the largest

proportion of fat in blood and adipose tissue (connective tissue for fat storage) [NIH

Medline]. A typical concentration of triglycerides ranges from 10 to 190 mg/dL (0.11 to

2.15 mM). A greater than normal level of triglycerides may indicate cirrhosis,

hypothyroidism, high carbohydrate diet, poorly controlled diabetes, and pancreatitis. A

lower than normal level of triglycerides may indicate hyperthyroidism, malnutrition, and

low fat diet [Treseler 1995]. Extreme levels of triglycerides as high as 10,000 mg/dL are

infrequently found.

32



H 
H 

NCH3

Figure 2.3. Structure of a cholesterol molecule (left) (C 2000 McGraw-Hill) and a
triglyceride molecule (C 2000 Houghton Mifflin College) [Zumdahl and Zumdahl 2000]

Cholesterol and triglycerides are transported in body by lipoproteins. Lipoproteins

consist of proteins (called apolipoproteins), cholesterol, cholesterol esters, triglyceride, and

phospholipids (Figure 2.4). Four major lipoprotein classes are called chylomicrons, very

low density lipoproteins, low density lipoproteins (LDL), and high density lipoproteins

(HDL) [Bachorik et al. 1996]. The main function of HDL appears to carry excess

cholesterol to the liver for processing or excretion, while the main function of LDL appears

to carry cholesterol to various tissues. In general, cholesterol contents of lipoproteins are

reported rather than the actual concentration of lipoproteins. A typical concentration of

HDL cholesterol ranges from 29 to 62 mg/dL in males and from 34 to 82 mg/dL in females.

A typical concentration of LDL cholesterol is between 60 and 180 mg/dL [NIH Medline].

Decreased levels of HDL cholesterol and elevated levels of LDL cholesterol may indicate

the increased risk of cardiovascular disease.
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Figure 2.4. Structure of low density lipoprotein (C 1999 John Wiley and Sons)

Urea

Urea is synthesized in the liver during the deamination of protein (removal of nitrogen from

amino acids). Determination of plasma urea is used most frequently as a kidney function

test [Woo and Henry 1996]. This is because urea does not circulate for long in the

bloodstream but rather is filtered through the kidneys and excreted in the urine. With

deterioration of kidney function, the rate and effectiveness of filtration falls and the urea

concentration increases. Physicians use urea concentration to screen for renal problems and

to monitor their progression [Treseler 1995].

Urea concentrations can be measured with many techniques, one of which is

spectrophotometry (Section 2.2.4). Historically, the nitrogen content of urea has been

reported instead of the actual urea concentration. Due to this reason, urea concentrations in
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blood are reported in concentrations of "blood urea nitrogen" (BUN). To convert a blood

urea nitrogen concentration to a urea concentration, the conversion factor 2.14 is multiplied.

A typical concentration of urea nitrogen is 8 ~ 23 mg/dL (2.9 ~ 8.2 mM) in plasma and 60

~ 90 mg/dL (21.4 ~ 32.1 mM) in urine. Extreme levels in the range of 0 ~ 150 mg/dL in

plasma are rarely observed. Low levels of urea in urine may indicate malnutrition and

kidney dysfunction, whereas high levels may indicate excessive protein intake [NIH

Medline].

Figure 2.5. Structure of urea (C S. Fairall, DeMontfort University)

Bilirubin

Bilirubin is the major metabolic product of hemoglobin [NIH Medline]. Hemoglobin is

broken into heme and globin. Heme is converted to bilirubin, and albumin in blood

transports bilirubin to the liver. The liver conjugates most of bilirubin, and conjugated

bilirubin is stored in the gall bladder or transferred to intestines where the conjugated

bilirubin is metabolized and excreted. Determination of bilirubin is performed to test liver

or gall bladder dysfunction.

Bilirubin is measured by a spectrophotometry technique called the van den Bergh

method (section 2.2.4) [Pincus 1996a]. A typical concentration of conjugated (direct)
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bilirubin in serum is between 0 to 0.3 mg/dL (0 ~ 5 iM), and a concentration of total

bilirubin (conjugated and unconjugated) ranges from 0.1 to 1.2 mg/dL (2 ~ 17 pM).

Increased unconjugated or total bilirubin may indicate hemolytic (hemoglobin breakdown)

diseases and hematoma (formation of blood clot due to a broken blood vessel). Increased

direct bilirubin may indicate bile duct obstruction, hepatitis, and cirrhosis [NIH Medline].
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Figure 2.6. Structure of bilirubin (C G. P. Moss, Queen Mary, University of London)

Total protein, albumin, and globulin

Total protein is a measure of serum protein, and its concentration reflects liver state, kidney

state, nutritional state, and many other conditions. [Treseler 1995, McCance and Huether

1990, Sabiston 1981]. Many serum proteins can be measured individually, but frequently

physicians want to know the total protein concentration first.

Albumin is the principal protein (roughly 55%) found in plasma. It is synthesized

in the liver, and its concentration falls in liver disease or with poor nutrition. Albumin

carries many small molecules, and plays an important role in maintaining the oncotic

pressure of the blood (McPherson 1996].

The difference between the total protein and albumin is sometimes called

"globulin", because . the majority of the remaining protein is comprised of
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immunoglobulins. Immunoglobulins serve as antibodies in immune systems and target

antigens that stimulate immune systems.

Protein concentrations can be measured with many techniques, one of which is

spectrophotometry (Section 2.2.4). A typical concentration in serum is 6.0 ~ 8.3 g/dL for

total protein, 3.2 - 4.5 g/dL for albumin, and 2.3 ~ 3.5 g/dL for globulin. Extreme levels

are 3 - 12 g/dL for total protein and 1 ~ 5 g/dL for albumin. A greater than normal level of

total protein may indicate chronic inflammation or infection and multiple myeloma (a

cancer of bone marrow), while a lower than normal level may indicate extensive bums,

hemorrhage, liver disease, malnutrition, malabsorption, and glomerulonephritis (a type of

kidney disease) [NIH Medline]. A lower than normal level of albumin may indicate bums,

malnutrition, kidney diseases, and liver diseases, such as hepatitis, cirrhosis, and

hepatocellular necrosis (liver cell death). If the globulin concentration is abnormally high,

physicians may suspect active inflammation or even a malignant proliferation of

immunoglobulin-producing cells [McPherson 1996].

Figure 2.7. Structure of albumin (left) (C University of Aarhus) and IgG 1, a type of

immunoglobulin (right) (© M. Clark, University of Cambridge)
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Blood gases: PH, partial pressures of oxygen and carbon dioxide

Oxygen plays important roles in many physiological processes, including aerobic

generation of adenosine triphosphate (ATP) in muscles. Carbon dioxide is the product of

many aerobic processes. The respiratory system delivers oxygen to and removes carbon

dioxide from the blood through the gas exchange process in lungs. The interaction between

the lung and the kidney regulates the acid-base balance in body.

Partial pressures of blood gases are often determined by measuring volume,

pressure (in the manometer), or color of reagents, or by using electrodes [Pincus et al

1996]. A typical partial pressure of oxygen is 75 to 100 mm Hg (10 ~ 13 kPa), a typical

partial pressure of carbon dioxide is 35 to 45 mm Hg (4.7 - 6.0 kPa), and a typical pH is

7.35 to 7.45. The partial pressures of oxygen and carbon dioxide also vary in different

body locations. The oxygen pressure is higher in artery than in vein, and the carbon

dioxide pressure is higher in vein than in artery. Abnormal levels of blood gases may

indicate diseases in respiratory system, renal system, metabolic system, or trauma. A lower

than normal pressure of oxygen may lead to fatigue, dizziness, weakness, irritability, and

even heart failure in extreme cases.

2.2.3 Units in clinical chemistry

In this subsection, we would like to clarify the units used in clinical chemistry. Along the

advances in clinical chemistry, many conventional units were adopted or developed. These

conventional units are different from international standard (SI) units. For many analytes,

many units, such as mass-density (e.g. mg/dL), molar units (e.g. mole/L, or M), and other
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units (e.g. IU/L), have been used. Simple conversion factors can be often used to convert

one unit to the other. For example, the molar concentration of 18 mg/dL glucose is 1 mM.

Although efforts are being made to adopt SI units, many physicians are still more familiar

with conventional units. Due to this reason, both conventional units and SI units are

presented in this thesis. When either one is presented, Table 2.1 can be used to calculate

concentrations in the other unit.

Table 2.1. Conversion of analyte concentrations from conventional
units to international standard (SI) units

Analyte

glucose

insulin

hemoglobin

hematocrit

total cholesterol

triglycerides

urea nitrogen

bilirubin

proteins

gas pressure

Conventional Unit

18 mg/dL

1 pIU/mL

1 g/dL

1%

38.67 mg/dL

88.57 mg/dL

2.8 mg/dL

I mg/dL

1 g/dL

7.5 mm Hg

+ The conventional conversion factor is for triolein, a type of triglyceride.

International Unit (IU) is the unit of analytes for which functional activity is measured instead of
the molarity (e.g. enzymatic activity). I LU is the quantity of enzyme that will catalize the reaction
of one micromole of substrate per minute [Pincus 1996].
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SI Unit

1 mM

7.175 pM

10 g/dL

0.01

1 mM

1 mM

1 mM

17.1 pM

10 g/dL

I kPa



2.2.4 Clinical chemistry techniques

Many analytes discussed above can be measured using absorbance spectrophotometry. The

blood sample is centrifuged to separate the liquid phase (plasma) from the cellular

components (blood cells and platelets). The plasma is then treated with reagents (Table

2.2) that cause a change in absorbance at a specific wavelength proportional to the analyte

concentration in the sample [Nguyen et al. 1996]. By measuring absorbance using a

spectrophotometer, the analyte concentration can be determined.

Table 2.2. Reagents for absorbance spectrophotometry of some important blood analytes

Target Chemical Reagents

Glucose hexokinase, glucose-6-phosphate dehydrogenase, NADP

Cholesterol cholesterol esterase, cholesterol oxidase, phenol, peroxidase

Triglyceride lipase, glycerol kinase, glycerol phosphate oxidase, peroxidase

Urea urease, ketoglutarate, glutamate dehydrogenase, NADH

Bilirubin van den Bergh reagent (diazotized sulfanilic acid)

Albumin bromcresol green

Total Protein biuret reagent (copper ion at alkaline pH)

2.2.5 Accuracy, precision, and prediction error

There are multiple methods for quantifying the levels of analytes in body fluids, and levels

measured by two methods are often compared to determine how reliable and reproducible

the measurements are.
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In clinical chemistry, accuracy refers to the reliability of the method in determining

the actual or true value of the level of the analyte [Pincus 1996]. If there is a method that

serves as a standard for determining the, actual concentration, the levels determined by a

second method can be compared with the levels determined by the standard. The

correlation coefficient (also called Pearson product moment correlation [Sharma 1996]) is

often used to quantify the accuracy of the other method. Although the tolerable limits of

correlation are somewhat arbitrary, "correlation coefficients of over 0.9 are usually deemed

acceptable, and indicate that new method agrees satisfactorily with the reference method."

[Pincus 1996] This requirement of the correlation coefficient higher than 0.9 was used as a

test of accuracy.

In this thesis, we also use prediction error and prediction accuracy to quantify the

reliability of measurement techniques. The prediction error is calculated by comparing the

concentrations of an analyte in multiple samples determined by a reference technique (the

standard technique) and a new technique. The differences in analyte concentrations in

multiple samples can be calculated, and the standard deviation of the differences is called

the root mean standard error of prediction (RMSEP), or prediction error2 in this thesis. For

a single sample, the prediction error is simply the difference in concentrations of an analyte

determined by the two techniques. The prediction accuracy is closely associated with the

prediction error. For multiple samples, the prediction accuracy is the average concentration

divided by the prediction error. For each sample, the prediction accuracy is the reference

concentration divided by the prediction error.

The prediction error is discussed in detail in Chapter 4. Eq. (4.6) is the formula of prediction error.
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Precision refers to the reproducibility of the method. The reproducibility is often

expressed in the coefficient of variation, or CV. The coefficient of variation can be

calculated in the following way. The level of an analyte in the same sample is deternined

several times over a period. The standard deviation of the measurements is calculated, and

the standard deviation divided by the average of the measurements is the coefficient of

variation.

Method sensitivity refers to the lowest level of an analyte that can be detected by a

given method with a certain precision. The concentration ranges of analytes are

summarized in Table 2.3 in the order of decreasing average density. The table can be used

to estimate the method sensitivity of blood analyte measurement techniques. If we

hypothesize that the all analytes of unit density (1 mg/dL) can be measured with the same

precision using the same technique (which is not always the case, of course), the precision

of detecting an analyte would increase with its mean concentration. Although many other

factors, such as noise and interference, play a role in determination of the method

sensitivity in practice, the difficulty in determination of analytes can be roughly compared.

This table is used in Section 2.4, Chapter 6, and Chapter 7 to evaluate the sensitivity of

Raman spectroscopy instruments. The method sensitivity should be distinguished from the

sensitivity of an optical system, which is discussed in Chapter 5.
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Table 2.3. Normal range and mean of the normal range for blood analytes

Analyte

Hemoglobin

Total Protein

Albumin

Globulin

Cholesterol

LDL Cholesterol

Glucose,

Triglyceride

HDL Cholesterol

Ureab

Oxygen

Carbon Dioxide

Total Bilirubin

Direct Bilirubin

Insulin

Normal range (mg/dL)

14,00-17,500

6,000-8,300

3,200-4,500

2,300-3,500

150-250a

60-180

45-180

10-190

29-82

17-50

16-17c

8-11d

0.1-1.2

0-0.3

0.0005-0.01

Mean of normal range (mg/dL)

'16,250

7,150

4,350

2,900

200

120

117

100

56

34

~16

-10

0.7

0.15

0.005

a Random (non-fasting) normal range of cholesterol. Fasting normal values
are less than 200 mg/dL. For other analytes, fasting values are listed.

b The range for urea is listed instead of the range of urea nitrogen.

C The concentration of oxygen in artery is listed.

d Combined range of carbon dioxide concentration in artery and vein is listed.
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2.3 Optical techniques for clinical chemistry

A variety of optical techniques for measuring concentrations of blood analytes are being

developed. Since only light contacts the tissue and blood in optical measurements,

instrumental parts do not degrade with use and do not need to be cleaned or replaced

regularly. It is also easy to obtain multi-channel optical data simply by adding additional

wavelengths. Many analytes are present in biological samples, and they may interfere with

measurements of the analyte of interest, if they have spectral features similar to those of the

target analyte. Similarities in the spectral features are also called spectral overlap and can

be quantified (Chapter 4). A single-variable measurement is influenced by interferences

from other analytes, and multiple variables in which the contributions of interfering

analytes vary can be used to make accurate measurements in the presence of interfering

analytes. Also, many optical techniques do not require chemical reagents, and this would

make the measurement process simple and easy. Finally, optical techniques have the

potential of measuring analytes in blood-tissue matrix (either in whole blood or in

interstitial fluid) non-invasively, and the process of whole blood withdrawal can be

eliminated when such measurement techniques are developed.

Vibrational spectroscopy is a promising tool for blood analysis, because it uses

molecular vibrations that are unique for each chemical. All of the information is gathered

in a single spectral measurement, which can provide concentration information about

multiple analytes simultaneously. At least two vibrational spectroscopic techniques are of

interest, absorption and Raman scattering. Other optical phenomena, such as reflectance

spectroscopy and polarization spectroscopy, are also being studied.
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The optical techniques measure either transmitted light through or diffuse reflected

light from various parts of human body. These can be classified into three groups: thin

skin, such as arm, webbing of a hand, earlobe, and lip; thick skin, such as inside finger; and

the eye.

Thin skin parts have normal or thin epidermis (outer skin). Lip and ear may be

good candidates for non-invasive measurements. The epidermis is as thin as 40 pim in inner

lips, and capillary blood would seem to be easily accessible for optical measurements,

although interference from saliva is a potential concern. Blood is abundant and accessible

in the earlobe, which is one of the reasons the earlobe is for used for blood withdrawal.

Also, the blood flow in the earlobe can be easily increased by applying heat, chemicals, and

physical stimulations. The webbing of a hand has been studied in transmission geometry,

as it is the body part for which the transmission distance is the minimum, and thus, the

optical signal is the least attenuated. However, measurement in the webbing is not suitable

for every subject, as the webbing may be difficult to access for some people. Simultaneous

measurement in webbing in both transmission and reflectance geometries might provide

more information about analyte concentrations, but it has not bee reported yet to the best of

our knowledge.

Thick skin parts have a relatively thick epidermal layer. Due to the thickness of the

epidermis, capillary blood is less accessible in thick skins, and they are not ideal parts of

the body if analytes in blood are to be measured.

The eye is quite different from the body parts discussed above. Through the iris and

inside, eyes are clear and do not attenuate light, which simplifies the optical collection.
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Furthermore, fewer analytes may be present in the eye. This may result in reduced

interference, which may make eye measurements more attractive, as long as the analyte of

interest is present. However, a more serious challenge is present in eye measurements. The

level of safe irradiance in the eye is much lower than for any other body part. This is

because the retina is very sensitive and vulnerable to excess exposure to light. According

to the ANSI standards, only a beam of 18 mJ/cm 2 at 830 nm wavelength is permissible for a

10 second exposure [ANSI Z136-1 2000, ANSI Z136-3 1996], which is probably too short

time and a low power to make any sensitive detection.

2.3.1 Mid-infrared (mid-IR) absorption spectroscopy

Excitation wavelength is critical in absorption spectroscopy. Mid-infrared absorption

spectroscopy (also called mid-infrared spectroscopy) measures the fundamental vibrations

of biological molecules. Mid-IR absorption spectra contain sharp peaks, and therefore

provide good contrast among chemicals. However, water strongly absorbs light in this

wavelength regime (Figure 2.8), and penetration depths are generally less 100 tm. Hence,

mid-IR penetration depths are too shallow to probe deep tissue. Mid-IR absorption

spectroscopy is not practical for measuring light transmitted through biological tissue, and

is often performed in diffuse reflectance geometry, in which the reflectivity is more

important than the penetration depth.
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Figure 2.8. Absorption spectrum of major absorbers in human body

[Hale and Querry 1973, Boulnois 1986, Itzkan and Izatt 1994]

In 1987, the correlation between the concentration of glucose and-the intensity of

the glucose absorption band at 1036 cm 1 in doped serum and spinal fluid samples Was

found [Bauer and Floyd 19871. Attenuated total reflection (ATR), which measures

absorption of the evanescent wave generated from total internal reflection of light in a

crystal (typically Zinc Selenide or Germanium), was used in the mid-infrared (1.5-6 [tm) to

measure concentrations of blood analytes in human blood plasma [Janatsch et al. 1989] and

glucose in whole blood [Heise et al. 1989]. The glucose peak around 1030 cm 4 in doped

pig blood was measured using a CO2 laser [Mendelson et al. 1990]. In 1995, a large scale

experiment was performed with plasma samples from 126 subjects, and a chemometric

technique was used to extract concentration information [Heise and Bittner 1995]. A direct

mid-IR transmission measurement was made on evaporated serum and whole blood

samples [Budinovi et al. 1997].
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Although mid-IR absorption spectroscopy can extract clinical information from

blood, its penetration depth is severely limited. Since mid-IR techniques cannot probe deep

into any biological sample, mid-IR absorption is restricted to near-surface measurements

[Heise et al. 1999].

2.3.2 Near-infrared (near-IR) absorption spectroscopy

Near-IR absorption has been studied by many researchers, because near-infrared light (770-

1500 nm [RCA 1974]) is optimal for probing human tissue. Near-IR light can penetrate

significant-distances without being absorbed (Figure 2.8). Near-IR spectra in general have

good signal-to-noise ratios. However, near-JR absorption measures only the weak overtone

and combination bands of the analytes of interest. Absorption bands are broad, with no

distinct peaks, and they can be easily confused by background or an overlapping band from

an interfering molecule. Features in the measured spectra are not well understood. This

can lead to severe calibratio difficulties. Stability of measuring instruments becomes

critical. Absorption is also temperature sensitive on the fine scale on which measurements

are made.

In 1987, one of the earliest papers measuring serum cholesterol using light from

1200-2400 nm was published [Peuchant et al. 1987]. In the following year, total serum

protein was measured by near-infrared spectroscopy [Toorenenbergen et al. 1988]. Glucose

concentrations in aqueous samples were also measured {Arnold and Small 1990]. Many

groups began to measure analytes in serum and whole blood using near-IR techniques [Hall

and Pollard 1992, 1993; Haaland et al. 1992]. Accurate measurements of analytes in
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human plasma were performed using a multivariate calibration technique [Bittner et al.

1995]. Non-invasive measurements of glucose in vivo were attempted by irradiating near-

IR on the finger [Robinson et al. 1992]. In 1999, blood pH was also measured [Alam et al.

1999].

Although near-IR spectroscopy is promising for non-invasive measurements of

blood analytes, the lack of sharp spectral features, the extreme sensitivity to temperature

fluctuation, and the drift of near-IR spectra remain as major challenges.

2.3.3 Other infrared absorption spectroscopy techniques

Other methods based on IR absorption have also been explored. The correlation between

the glucose concentration and the absorption spectrum of mid-infrared light radiated from

the human body was reported [Klonoff et al. 1998]. In this study, thermal radiation from

the body was used, and no external radiation source was necessary. However, due to the

strong absorption of MID-IR in body, the source of the spectral signal is generated within a

few hundred microns layer of skin, and again, precluding probing of deep tissue.

Recently, a method called Kromoscopy was used to measure concentrations of

glucose and urea in-aqueous samples [Helwig et al. 2000, Misner and Block 2000]. In

Kromoscopy, a "Kromoscope", a filter-based 4-channel detector, is used instead of a

conventional dispersive or interferometric spectrograph. The "Kromoscope" sacrifices

spectral resolution in order to obtain a high throughput. Kromoscopy has the potential to be

a useful tool for analyte measurements, if the enough number of filters (potentially more

than 4) are used and the transmittance of each filter is designed in the manner that
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interferences can be isolated and the signal intensity is optimized. The concept of

throughput and optimal system design is discussed in detail in Chapter 5.

While absorption is by far the most widely studied optical technique for blood

analysis, other methods have also shown promise. Fundamental mechanisms of light-

matter interaction have also been investigated, including Raman scattering, reflectance,

scattering, the rotation of polarization, and photoacoustic effect.

2.3.4 Raman spectroscopy

Raman spectroscopy'is another technique to measure molecular vibrations (Figure 2.9). In

Raman scattering, monochromatic excitation light is inelastically scattered from a

molecular sample, which means that the wavelength of the scattered light shifts to either

longer wavelengths (Stokes Raman) or shorter wavelengths (anti-Stokes Raman) (Figure

2.10). In Stokes Raman scattering, a portion of the excitation light's energy is transferred

to excite the molecule to a vibrational level. In anti-Stokes Raman scattering, energy is

transferred from the vibrating molecule to the Raman scattered light.

Raman shifts are independent of excitation wavelength. Therefore, one has the

freedom t6 choose an optimal excitation wavelength in the near IR for deep sampling, and

still observe the fundamental vibrations of analyte molecules. Raman spectra are sharp and

distinct for each molecule, so one analyte can be distinguished easily from another, and

from a broad fluorescence background, even if the Raman signal intensity is smaller than

the background. Since the major optical absorbers in the human body, melanin,

hemoglobin and water, absorb near-IR light the least (Figure 2.8), near-IR Raman
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spectroscopy can probe deeply into tissue. Also, the near-IR excitation reduces the

fluorescence the intensity of which is much higher than that of Raman scattered light.

Since shot noise of fluorescence is typically the dominating noise in Raman spectra, it is

desirable to minimize the fluorescence.

However, Raman scattering is a rare event, and the intensity of the Raman signals is

generally weak. This weak signal intensity is the challenge in Raman spectroscopy of

biological tissue.

In principle, the probability of certain Raman scattering events can be increased by

using resonance Raman techniques, stimulated Raman spectroscopy, or surface enhanced

Raman spectroscopy (SERS). Generally speaking, resonance Raman spectroscopy of

biological molecules requires short wavelength excitation, typically in ultra-violet (UV).

When the wavelength of the excitation beam is close to that of the electronic absorption

band, intensities of Raman signals can be increased by orders of magnitudes. However, the

use of UV excitation is not desirable in in vivo measurements, as UV radiation can damage

DNA molecules.

In contrast with ordinary (spontaneous) Raman scattering, stimulated Raman

spectroscopy employs a high power excitation beam. If the intensity of the Stokes Raman

scattered light becomes sufficiently large, it creates a strong Raman radiation field (i.e.

many photons in each mode of the radiation field), and mixing of the Raman radiation field

and the field of excitation light causes strong light emission at the Raman scattered

frequency [Diem 1993]. The conversion of the excitation light to the Raman scattered light
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is more efficient in stimulated Raman scattering. However, the use of high power laser

light can damage tissue.

SERS is a technique to enhance the intensity of Raman signals by using SERS

active particles, such as gold or silver colloids. The electromagnetic field near the surface

of SERS particles amplifies the probability of Raman scattering by several orders of

magnitude [Diem 1993]. However, not all Raman signals can be enhanced by SERS, and

certain analytes may not benefit from its use. Furthermore, it is not safe to inject the SERS

active particles into human subjects, and its application in in vivo measurements is limited.
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Figure 2.9. Comparison of (Stokes) Raman scattering (a) and absorption

(b). Both Raman spectroscopy and absorption spectroscopy provide

information about the same molecular vibration levels.
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Figure 2.10. Energy level diagram of Stokes (a) and anti-Stokes (b) Raman scattering
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The use of Raman spectroscopy for measuring blood analytes has been studied by

several investigators. The group at MIT has pioneered in using Raman spectroscopy for

analyte measurements, and our recent research is discussed in Section 2.4.

Raman spectroscopy has been suggested as a tool to measure glucose in aqueous

humor of the eye in 1993 [Tarr and Steffes 1993]. They proposed use of stimulated Raman

spectroscopy and suggested the aqueous humor in the eye as the location of measurements,

since eyes have fewer interfering chemicals than in blood or skin. Furthermore, optical

scattering and absorption are negligible in the visible and near-infrared wavelength range,

and difficulties related to measurements in turbid medium are not present in eye

measurements. However, the risk of damaging the retina during measurements remains as

a challenge [ANSI Z136-1 2000, ANSI Z136-3 1996], and no in vivo experiment using

stimulated Raman spectroscopy has been reported as of yet. In addition, the glucose

concentration in the eye follows that in the blood with some time lag, due to diffusion.

This delay may be a problem when accurate and rapid measurements are necessary, and it

needs to be understood better.

In 1996, it was demonstrated that anti-Stokes Raman spectroscopy (Raman shifts to

shorter wavelengths) is capable of quantitative analysis of glucose in blood plasma and

serum [Dou et al. 1996]. With anti-Stokes Raman the fluorescence background is

suppressed, but the signal intensity is weak. To obtain sufficient sigrnals, an integrating

sphere was employed. However, an integrating sphere, which only holds a small volume of

sample, is not suitable for in vivo measurements.

53



In 1999, two groups reported the measurements of multiple blood analytes in human

serum using Stokes Raman spectroscopy [Berger et al. 1999, Qu et al. 1999]. In addition,

Qu et al. mechanically filtered large molecules in their samples, such as proteins and lipids,

and demonstrated that fluorescence backgrounds in serum spectra are due to serum proteins

and lipids.

In the same year, glucose concentrations in rabbit eyes were measured using Stokes

Raman spectroscopy [Brochert et al. 1999]. Again, the risk associated with eye exposure to

laser radiation remains a challenge. In this study, safety issues need to be addressed.

2.3.5 Other optical techniques

Reflectance spectroscopy measures light reflected by sample. Both techniques often use a

broadband light source and collect reflected or back-scattered light. Chromopores in the

sample absorb the light, and changes in the index of refraction scatter light. Reflectance

spectroscopy measures mainly absorption and scattering rather than molecular vibrations.

Reflectance spectroscopy can measure specular reflected light and diffuse reflected light.

Diffuse reflectance spectroscopy can probe deep tissue, whereas specular reflectance

spectroscopy can only probe a near-surface region. Therefore, diffuse reflectance

spectroscopy is preferred to specular reflectance spectroscopy in biological studies.

In 1990, a non-invasive method of measuring bilirubin concentration in neonates

using diffuse reflectance was suggested [Saidi et al. 1990]. Non-invasive measurement of

glucose in vivo was attempted by employing diffuse reflectance spectroscopy from the

human inner lip [Marbach et al. 1993], but the accuracy was not applicable for clinical
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settings. Other groups also investigated the possibility of correlating optical properties and

glucose concentrations [Kohl et al. 1994, Maier et al. 1994]. In a stUdy of 41 diabetic

volunteers, a correlation between glucose concentrations and scattering properties

calculated from diffuse reflectance data was reported [Bruusema et al. 1996, 1997].

Diffuse reflectance spectroscopy in the near-infrared cannot measure fundamental

vibrational bands as in near-IR absorption spectroscopy. However, scattering and

absorption properties can be obtained from diffuse reflectance data, and it is a promising

technique to measure analytes which change scattering and absorption properties.

Polarimetry estimates the chemical concentration by measuring the rotation of

polarization. Since scattering depolarizes light and other analytes can rotate polarization,

polarimetry is also performed in the eye where scattering is low and fewer analytes are

present. It was demonstrated that the glucose concentration is proportional to the angle of

polarization rotation [Cot& et al. 1992]. However, other chemicals can also rotate

polarization, and single channel polarimetry is limited by this overlap. A multi-wavelength

polarimeter was designed to eliminate such overlap [King et al. 1994]. Also, in an attempt

to reduce the required laser power and increase the safety, a magnetic rotator scheme was

devised to double the signal intensity at the same laser power [Jang et al. 1998].

Photoacoustic spectroscopy measures the pressure wave that results from heat

expansion. A rapid pulse of excitation light is absorbed by tissue, and an acoustic pressure

wave is generated. The acoustic pressure wave may have correlations to analyte

concentrations. In a preliminary study, photoacoustic spectroscopy was used to measure
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glucose concentrations in vivo [Spanner and Niessner 1996], but the prediction accuracy

was not acceptable.

This wealth of research activity underscores the interest, promise and importance of

developing non-invasive techniques to measure concentrations of blood analytes.

2.3.6 Minimally invasive techniques

Minimally invasive techniques require some form of sample extraction, and are not

considered to be non-invasive. However, they differ from invasive techniques, since they

do not require punctbre of blood vessels to obtain samples.

Interstitial fluid (ISF) is the medium most extensively studied by minimally

invasive techniques, since ISF can be obtained relatively painlessly. Methods to extract

ISF include skin puncture, chemical enhancement, reverse iontophoresis, and sonophoresis

[Roe and Smoller 1998]. In skin puncture, a small hole is made in the skin to obtain ISF

without bleeding. Companies are developing micro-lancets and focused laser beams to

puncture such small holes. In other methods, chemicals, electricity (current), and

ultrasound extract ISF without puncture. Chemical enhancement patches are being

developed to enhance the transport of ISF through the skin and absorb the extracted ISF

from the surface of the skin. Reverse iontophoresis is also called electro-osmosis. Electric

current is applied on skin, and ISF is extracted from the skin. In sonophoresis, ultrasound

applied to the skin produces a local pressure gradient, and ISF is extracted. The extracted

ISF can be analyzed chemically, electrochemically, or optically. Another method

suggested to collect ISF is implanted sensors. Sensors implanted on or under the skin
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remains in contact with the ISF, and may be used for continuous measurement of analytes.

However, implanted foreign objects can cause undesired reactions in the body, and issues

related to the implantation need to be addressed.

Measurements of analytes in ISF need more investigation. Concentrations of

analytes in ISF and in blood are different, and many diagnostic criteria in conventional

clinical chemistry may have to be translated. Concentrations of analytes in ISF are also

affected by stress, exercise, diet, sweating, illness, and aging. A proper calibration is

needed to provide accurate analyte concentrations under such interferences. Furthermore,

concentrations of certain analytes in ISF, such as glucose, exhibit a time lag in following

the concentrations in blood, since many analytes diffuse from the blood to the ISF. An

average delay time of 20 minutes was reported for glucose [Tamada et al. 1995}.

Although there are many challenges in the interstitial fluid measurements, efforts

are being made by many researchers to develop an accurate ISF measurement technique.

The recent FDA approval of a minimally invasive technique for glucose measurements

(GlucoWatch, Cygnus) may be a result of such efforts. Measurements of glucose using this

technique are not as accurate as other clinical chemistry techniques, but further

development may improve its accuracy. Studies performed using minimally invasive

instruments will provide useful information in development of non-invasive techniques.

2.4 Prior research using Raman spectroscopy

The Stokes Raman spectroscopy of blood analytes has been studiedifor several years at the

MIT Spectroscopy Laboratory. Feasibility study demonstrated that it is possible to measure
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dissolved blood gases and biological analytes in aqueous samples [Berger et al. 1995,

1996]. Also, higher than physiological concentrations of glucose in whole blood were

measured [Berger et al. 1997], which demonstrated the feasibility of measuring glucose in

whole blood using Raman spectroscopy. A new method of spectral analysis was developed

[Berger et al. 1998]. A numerical simulation was performed to show how the prediction

error in chemometric algorithms is affected by signal-to-noise ratio (S/N) [Berger and Feld

1997].

2.4.1 Experimental setup

An experimental setup was developed for the study of biological fluids (Figure 2.11)

[Berger 1998]. The system specifications are summarized in Table 2.4. A compact,

portable CW gallium aluminum arsenide (GaAIAs) diode laser at 830 nm was the light

source. In multi-mode operation, the light from the source contained several frequencies.

To block frequencies other than 830 nm, a holographic notch filter was used. The light

passing through the filter was focused onto the sample, which is contained in a quartz

cuvette (10 mm x 10 mm x 20 mm). A magnetic stir-bar kept the sample uniform, and

preventedparticles from settling. Because of the size of the stir-bar, a sample-volume of

about 1 mL was used. However, this volume was not mandatory, and could be reduced by

using a smaller cuvette and a smaller stir-bar.

The sample generated Raman light, and the back-scattered light was collected by a

reflective microscope objective (a Cassegrain objective [Born and Wolf 1997]). It had a

high numerical aperture (NA 0.5), and it could collect light from a 0.7 mm spot at angles
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between 14 and 33 to the normal. A later analysis indicated that this objective could collect

about 11% of all photons emerging from whole blood (the method of collection efficiency

calculation is discussed in Chapter 5). However, it was not optimized for collecting spectra

from turbid biological samples. This led to the development of a spectroscopy system

optimized for whole blood, which is discussed in Chapter 5.

A holographic bandpass filter rejected 830 nm from the collected light to avoid

Raman scattering from the subsequent optical components. It was determined to use a fiber

bundle to deliver more light into the spectrograph. The light emerging from the filter was

focused to-a fiber bundle, which transferred the beam pattern from circular to linear to

match the geometry of the spectrograph entrance slit. The optical fiber bundle had 177

optical fibers, and the fibers were circularly packed on one side and linearly packed on the

other side. Each fiber had 100 pim diameter core and 110 pm diameter cladding. The

diameter of the circular end was 1.7 mm, and the height and width of the active area on the

linear end were 19.7 mm and 0.1 mm, respectively. The packing fraction was 0.6125 on

the circular side and 0.7057 on the linear side. The use of the fiber bundle enabled more

efficient collection of Raman signals, as the efficiency of light collection is low when a

circularly distributed light is passed through the linear slit inside the spectrograph.

The light coming out of the far end of the fiber was focused to the entrance slit of

the spectrometer by means of two lenses. The purpose of having these two lenses, called

connection optics, was to change the NA of the light (0.22) to match the NA of the

spectrograph (0.28). However, these lenses had aberrations, and half of the focused light

could not enter the slit according to a numerical calculation. By matching the NA of the

59



fiber bundle to the NA of the spectrograph, these connection optics could be eliminated and

the loss of light prevented, as discussed in Chapter 5.

The holographic grating inside the spectrometer dispersed the light horizontally, and

the front-illuminated, deep-depleted CCD camera collected the image of the light. The

spectrograph distorts the image of the optical slit inside the spectrograph to a curve, and a

curvature correction was needed to obtain the true spectrum. If there was no distortion, a

spectrum of a single wavelength band would appear like a line on the CCD camera (Figure

2.12), and the spectrograph distorts the image. The horizontal dimension on the CCD

displays the wavelength, and the vertical dimension represents the fiber height. To correct

for the curvature, the CCD output was broken into multiple horizontal strips, which were

read out separately and shifted in software to compensate for the curvature. All data points

in a strip were shifted by the same number of pixels (or wavelengths). Then, the shift-

corrected strips were summed to create a single spectrum.

The camera was connected to a computer by means of a controller. The collected

images were binned, and the spectra were analyzed by mathematical algorithms [Berger

1998]. The S/N of a 10 mM glucose spectrum in whole blood collected for 10 seconds

with this system was 1.1.
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Table 2.4. Summary of system specifications

Component specification

Laser 
wavelength * 830 nm

power output e 500 mW

volume * 2 ml

Sample excitation power on sample 9 300 mW

excitation beam diameter e 100 tm

magnificatione. 15x

NA e0.5

Cassegrain microscope minimum acceptance angle * 140

maximum acceptance ange * 330

obscuration * 19.5%

core diameter e 100 tm

cladding diameter e 110 pmr

number of optical fibers a 177

Fiber bundle NA e 0.22

packing fraction e 0.6125

circular enddiameter a 1.7 mm

linear end height a 19.7 mm

focal length * 82 mm

Cbupling lens I diameter * 105 mm

NA * 0.27
.Spectrograph

dispersion * 16.5 m/cm1

height * 17 mm

CCD detector pixel size '22 pm x 22 pm

quantum efficiency * 20% @ 900 nm
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2.4.2 Experiment and results

Using this system, multiple analytes including glucose, urea, cholesterol, triglyceride,

albumin, total protein and hematocrit were measured in serum and whole blood samples

from sixty-nine patients over a seven-week period. Measurements of analytes in serum

were clinically accurate or near-clinically accurate [Berger et al. 1999], as the correlation

coefficient r is higher than, or close to, 0.9 (thus r2 is higher than, or close to, 0.81).

However, analytes could not be measured accurately in whole blood, and prediction errors

were higher than those in serum.

The following describes the experimental procedure of this study. Approximately

ten blood samples were collected once each week at the Beth Israel Deaconess Medical

Center for a period of seven weeks, totaling sixty-nine samples from different individuals.

The blood drawn from each individual was divided into two samples. EDTA was added to

one sample to prevent clotting. This sample remained at room temperature before the

hematology analysis. The other was left to clot, and centrifuged to generate blood serum.

Chemical analyses were performed on the serum sample, and chemical concentrations were

measured- The whole blood sample and blood serum sample pairs were then stored in a

refrigerator at 4'C overnight. Because glucose can break downafter withdrawal from the

body, a portion of the whole blood sample was centrifuged, and the concentration of the

plasma glucose was also measured. The samples were brought to MIT in a refrigerated

state, and the samples were again stored at 4C before spectral measurement. Collected

Raman spectra were analyzed using a standard partial least squares algorithm.
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Table 2.5 lists the prediction errors of analyte concentration measurements obtained

in this experiment. The prediction errors in serum were accurate, but the prediction errors

in whole blood were larger. Using Table 2.3, we can also qualitatively discuss the method

sensitivity. This instrument could measure analytes of concentrations as low as that of

triglyceride in serum with r2=0.81. However, it could measure only analytes of high

concentrations, such as hematocrit and albumin, in whole blood with r2 higher than or near

0.81.

Table 2.5 Prediction errors and correlation coefficients from analyte
concentration measurements obtained in the previous experiment

Analyte (unit) In Whole Blood In Serum
(u) (r 2)

Glucose (mg/dL) 77(0.151) 26 (0.83)

BUN (mg/dL) 6.5 (0.59) 3.8 (0.74)

Cholesterol (mg/dL) 45 (0.12') 12 (0.83)

Triglyceride (mg/dL) 81(0.56) 29 (0.88)

Total Protein (g/dL) 0.38 (0.55) 0.19 (0.77)

Albumin (g/dL) 0.21 (0.76) 0.12 (0.86)

Hematocrit (%) 1.5 (0.92) N/A 2

No statistical significance was achieved.

Hematocrit, the volume fraction of red blood cells, is always zero in serum
samples, since red blood cells are not present in serum samples. Determination of
hematocrit in serum does not have any statistical or clinical significance.
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Importantly, the intensities of the Raman signals in whole blood were reduced by a

factor of four compared to those in serum [Berger 1998], while the background and noise

did not change much (Figure 2.13). This indicates that the major source of the fluorescence

background is not the sample medium (serum or whole blood). As a result, the S/N was

reduced by a factor of four, as well. This led to the study of the differences between serum

and whole blood (Chapter 3). The experimental results obtained by using a higher

sensitivity spectroscopy system are presented in Chapter 6 and 7.
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Figure 2.13 Raman spectra of serum (left) and whole blood (right) samples. The
backgrounds in the two types of media are similar. In addition, the background noise did
not change much.
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Chapter 3

Understanding the role of turbidity

in Raman scattering using Monte

Carlo simulations

3.1 Overview

The earlier experiments (Chapter 2) demonstrated that Raman spectroscopy can measure

concentrations of analytes in aqueous and serum samples. However, prediction accuracies

were reduced in whole blood. The difference between serum and whole blood is the

presence of blood cells and fibrinogen. The presence of red blood cells in whole blood

complicates optical measurements of blood analytes. In terms of the light propagation, the

blood cells make samples optically turbid. Scattering and absorption alter the propagation

of excitation and Raman light, and thus, a different optical collection scheme is required.

It is critical to understand the effect of scattering and absorption in whole blood to

study the generation of the Raman signal inside the sample and the distribution and

intensity of the Raman signal on the surface.

The research in this chapter was performed in collaboration with Dr. Annika M. K. Enejder, whose research

is funded by the Swedish Research Council.
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We, therefore, undertook to build a model of the light propagation in turbid

biological tissue. Such a model would allow us to study the differences in light

propagation and Raman scattering in clear media (e.g. serum and plasma) versus turbid

media (e.g. whole blood). It would also allow us to study the surface distribution of Raman

light and to determine if our measurements of surface distributions are reasonable. In

addition, the surface distribution would be critical in designing a new collection system

(Chapter 5) in order to optimize the light collection. Furthermore, the model could be

applied to the study of light propagation in blood-tissue matrix, which would lead to

transcutaneous measurements.

The propagation of light in turbid media has been studied extensively. Many

analytical formulae, numerical simulations, and experimental measurements were studied

in various geometries [Prahl et al. 1989, Wu et al. 1993, Fantini et al. 1997, Farrell etal.

1998, Venugopalan et al. 1998]. Their work provides fundamentals on which our model of

Raman scattering is based. In this chapter, we developed a steady-state Monte Carlo

simulation model for Raman scattering in turbid media.

By evaluating the Monte Carlo simulation results, we have developed a better

understanding of Raman scattering in turbid biological tissue. We have determined how

deeply we can probe into whole blood using Raman spectroscopy. We have also confirmed

the surface distribution of Raman scattered light in whole blood with simulation results.

The Monte Carlo simulation model was used to develop an insight into the angular and

spatial distributions, and it was found that the coupling of the two can be approximated in

certain ranges.
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The first part of this chapter describes conceptually how light propagates in

biological tissue and how it is studied. Physical phenomena, terminology, conventions, and

methods of other researchers are discussed. In the second part, the development and

validation of a Monte Carlo simulation model are described. Implementation of the

software code to model Raman scattering is presented. The final part of this chapter

discusses experimental measurements of surface distribution of Raman signal in whole

blood, and compares the measurements and Monte Carlo simulation results. Also,

simulation results are used to study the differences in light propagation between serum and

whole blood.

3.2 Background

3.2.1 Optical properties

Light propagation in tissue is governed mainly by the elastic scatteringi and absorption of

photons by the tissue. Elastic scattering is a phenomenon in which the direction of light is

changed without changes in its energy level when the light encounters discontinuities (e.g.

index of refraction changes) in the medium, and absorption is the conversion of light into

another form of energy (usually thermal energy). 'Mathematical models of the light

propagation process often use macroscopic optical properties, including the absorption

coefficient, A, the scattering coefficient, p, and the average cosine of single scattering

angle 0, g = <cost>. The absorption and scattering coefficients are the probability of

In this thesis, "scattering" generally refers to elastic scattering, in which incoming photons are redirected but

suffer no change in energy. Raman scattering, an inelastic process, is always called Raman scattering.
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absorption and scattering per unit pathlength. In a similar manner, the Raman scattering

coefficient, p, is the probability of Raman scattering per unit pathlength. The sum of pa

and pi is called the total attenuation coefficient, pa. In this thesis, we define the total

attenuation coefficient, ,, as the sum of the three coefficients, pa, ps, and pir 2 . The

reciprocal of these is the average distance that light will travel before being absorbed,

elastically scattered, or Raman scattered, respectively. The scattering angle is the angle by

which the direction of light changes at a scattering event. The reduced scattering

coefficient is defined as p' = pi(-g). The scattering angle in a single scattering event is

calculated by a phase fuhction. The phase function is a probability density function of the

scattering angle, describing the probability of a scattering angle at which scattering occurs.

Optical properties are functions of the wavelength.

3.2.2 Methods

When the wave properties of light are not relevant, light propagation can be described by

the radiative transport equation [Ishimaru 1997]. The radiative transport equation is an

integro-differential equation derived on the basis of the energy equilibrium in a scattering

and attenuating medium. The analytical solution to the transport equation is usually not

available, and the diffusion approximation is often used to study the light propagation in

turbid media [Ishimaru 1997].

2 When Raman scattering is not the phenomenon of interest, the Raman scattering coefficient is often

neglected, as it is much smaller than the absorption and scattering coefficients in biological tissue.

79



In the diffusion approximation, the phase function often is approximated by two

terms; one that accounts for the strong scattering in the forward direction and the other for

the diffuse scattering. In the near-infrared range (770~1500 nm), the absorption coefficient

is 0.01-1 mm4 [van Gamert et al. 1990, Cheong et al. 1990]. The absorption coefficient in

this wavelength range is very small compared to the tissue scattering coefficient, p, which

is on the order of 10 mm [Cheong et al. 1990]. Since g is -0.9 in many biological tissues,

in the wavelength range 770~1200 nm, the reduced scattering coefficient, ,' is still greater

than the absorption coefficient, which makes the diffusion theory an appropriate

approximation for many biomedical applications [Prahl 1995, Chance and Alfano 1995].

The steady-state diffusion theory has long been used in interpreting multiply-scattered light

from turbid media [Ishimaru 1997, Van de Hulst 1980]. Thereafter, numerous research

work, varying from basic theoretical analysis [Schotland et al. 1993] to more clinically

oriented applications [Peters et al. 1990, Sevick et al. 1991], has been reported to extract

spectroscopic information and to image inhomogeneities embedded in turbid media using

the diffusion approximation. As this approach has been extensively studied, its limitations

have also been noted. In particular, the diffusion approximation is inaccurate at positions

close to the source or boundary [Venugopalan et al. 1998], and for small inhomogeneities.

In addition, although the solution of the diffusion equation is well known in an infinite

medium, in many practical situations the physical boundary conditions often preclude a

simple determination of the solution.

The diffusion approximation was also used in modeling the propagation of Raman

scattered light in turbid tissue [Berger 1998]. The model consisted of two parts: calculation
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of the steady-state energy density of the excitation beam throughout the volume, and

propagation of Raman light radiated by from each small fraction of the volume. In the

study of light propagation in whole blood, the model was not accurate due to the us& of

diffusion approximation and a simple phase function (delta-Eddington [Ishimaru 1997]).

The calculation of the internal distribution of light showed discrepancies with a Monte

Carlo simulation model (Appendix A).

Probabilistic methods have also been explored as tools to study the light distribution

in tissue. One of the probabilistic methods is the photon migration model, introduced in

1987 [Bonner et al. 1987]. It models the light propagation in turbid media as the ensemble

average of the "probabilistic photon migration paths" distributed within the turbid media,

and the realization of the full path of each individual photon is governed by the scattering

and absorption properties [Wu 1992], as well as the boundary conditions of the medium. A

more traditional probabilistic model for photon propagation in general is the Monte Carlo

simulation method. The Monte Carlo simulation is a statistical approach used to study the

behavior of a complex system. In a Monte Carlo simulation of the radiative transfer

equation, the scattering, absorption, and propagation of each photon or each packet of

photons is determined by probability density functions. Each photon path is

computationally formed by a number of consecutive events from the launch of a photon

into the medium and the termination of the photon (either by absorption or exiting the

medium).

The accuracy of a Monte Carlo simulation result is often determined by the statistics

of its simulations. A large number of photons is necessary to obtain good statistics and
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accurately model the distribution of light [Enejder 1997]. Running a simulation with many

photons sometimes takes long run-time, and it is less of a problem as fast computers are

readily available.

Furthermore, the Monte Carlo simulation method is flexible, and it can be easily

adopted for the study of other optical phenomena, such as modeling of fluorescence light

[Wu 1992, Welch et al. 1997] and Raman light. Many additional constraints can be

implemented, and complex geometries can be used in simulations. As we aimed to develop

a tool to study various biological tissues in various geometries, this flexibility made the

Monte Carlo simulation method an attractive and powerful tool.

3.3 Monte Carlo simulation model for Raman scattering

In this section, a steady-state Monte Carlo simulation model for Raman scattering is

described. The model enabled the study of the surface and internal distributions of Raman

light. Computation results showed good agreement with experimental measurements.

Therefore, it could be relied upon the design of an optimal system for Raman signal

collection (Chapter 5).

3.3.1 Development of a Monte Carlo simulation model for Raman

scattering

Our Monte Carlo simulation algorithm takes the geometry and optical properties, such as

pa, as, g, and Pr, and calculates the surface and internal distribution of both excitation and

Raman scattered light. Additional information (e.g. the distribution of Raman scattering

events) can be obtained with a minor modification of the code.

. 82



This Monte Carlo simulation code consists of three parts: (i) the propagation of

photons in turbid media, (ii) the Raman scattering event (i.e. conversion of the excitation

photon to a Raman scattered photon), followed by (iii) the propagation of Raman scattered

photons in the media and re-emergence at the surface. Initially, a packet of excitation

photons enters the media. On average, photons travel a distance 1/ptexctation (Altexcitation is

the total attenuation coefficient at the excitation wavelength) in each step, hit a scatterer,

and change direction. In addition, some portion of the photon packet is absorbed. There is

also a chance of Raman scattering, the probability of which is based on the Raman

scattering poefficient, pr. The Raman scattered photons propagate inside the media with

the average travel distance of 1/pi Raman (A.Raman is the total attenuation coefficient for the

Raman scattered wavelength) in each step, and experience scattering and absorption events.

This is repeated until all the remaining excitation and Raman photons exit the media, or are

absorbed. A flow chart of the Monte Carlo simulation summarizes the sequence of events

the photons experience (Figure 3.1).

The probability density functions for the light propagation were adopted from

standard Monte Carlo simulation code [Keijzer et al. 1989, Prahl et al. 1989, Wang et al.

1995]. From the probability density functions, the step size was calculated:

ln() (3.1)

where is a random number in a uniform probability density function between 0 and 1.
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Each photon packet has a weight, which is proportional to the number of photons in

the packet. For each step, the absorption of the photon packets' weight was determined

from:

ATV - k__W (.2)
Al,

where Wis the weight of the photon packet and A W is the weight absorbed in each step.

A phase function was used to calculate scattering angles. The selection of the

proper phase function is important in Monte Carlo simulations of photon transport in turbid

media [Roggan et al. 1999]. We used the Reynolds-McCormick phase function (also called

Gegenbauer-Kemel phase function) [Reynolds and McCormick 1980, Yaroslavsky et al.

1996]:

P(O)=x a - g(1-g)"(
nrf(+g)f -(1- g)") (1+ g -2gcosO)"3

where cc is a free parameter. Due to this degree of freedom, the Reynolds-McCormick

phase function is sometimes more accurate in modeling scattering due to various scatterers

than Henyey-Greenstein phase function, which is a special case of the Reynolds-

McCormick phase function when aO0.5. The Henyey-Greenstein phase function is,

formulated as:

pQ9)= (l-g2(+ g2 - 2g cos ) , (3.4)

[Henyey and Greenstein 1941, van de Hulst 1980]. The Henyey-Greenstein phase function

is often used in biomedical optics because it matches well with goniophotometric

measurements of tissues for a limited range of angles [Prahl 1988, van Gemert et al. 1989].
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In modeling light propagation in whole blood (refractive index 1.333 for the surrounding

medium and 1.402 for the red blood cells), the Reynolds-McCormick phase function with

a-l and g=0.9924 approximates a Mie phase function for a 5.56 tm particle at 633 nm

[Roggan et al. 1999]. The Mie phase function is based on the calculation of

electromagnetic waves scattered and absorbed by a small particle. The Mie phase function

is usually difficult to calculate for non-spherical particles, and the solutions for spherical

and spheroidal particles are used as an approximation [Malfait 1999].

For each photon at the excitation wavelength, a probabilistic test is performed to

decide whether the photon will experience Raman scattering or not. The probability for

Raman scattering is determined by the ratio of the Raman scattering coefficient and the

total attenuation coefficient:

PaRman = pr/ , (3.5),

where PRaman is the propability of Raman scattering. The Raman scattering coefficient, pr

is a function of the concentration and composition of the Raman scatterers and their Raman

cross-section. The Raman cross-section, cr, is associated with the probability of Raman

scattering for a unit concentration of Raman scatterers and a unit path length:

PR = Ca(36)

The Raman scattering coefficient, p,. is orders of magnitude smaller than ps or pa in most

biological samples. The Raman cross-section of biological molecules is typically on the

order of 10-29 -10-30 cm 2/mole [Schrttter and Kl6ckner 1979]. When the concentration of

the Raman scatter is 10 -mmole/L (which is within the physiological range of a blood
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analyte, glucose), the Raman scattering coefficient is on the order of 10 ~10-" cm. In

Monte Carlo simulations, p, values higher than physical levels are used to reduce the

computation time. As long as , is orders of magnitude smaller than p or /-, an increase in

p, does not affect the pattern of elastic scattering and absorption in the media.

From the comparison of Eq. (3.2) and Eq. (3.5), we find that the absorption of the

excitation light and the Raman scattering event are associated. For each incoming photon,

absorption and Raman scattering may occur with their given probabilities, respectively.

Thus, the ratio of absorption and Raman scattering events is determined by the ratio of the

absorption and Raman scattering coefficients, and the distribution of absorbed excitation

light and the distribution of Raman scattering events should match, on average. This

principle was used in the validation of the Monte Carlo simulation code.

The Raman scattering is assumed to be an isotropic event, and the direction of the

light is randomized after each.Raman scattering. This assumption is valid for non-polarized

excitation light [Schrdtter and Kltckner 1979]. It is also a good approximation for

polarized excitation light in turbid media, because polarized excitation light (e.g. laser

beam) becomes depolarized after multiple scattering events.

The Raman scattered light is then propagated in a similar manner in which the

excitation light is propagated. The Raman scattering shifts the wavelength of light, and

accordingly, the optical properties, since they are wavelength dependent.

Both excitation and Raman scattered photons can be terminated before they emerge

on the surface when their weights are small. This is to reduce the computation time by

discarding photons that do not contribute significantly to overall computation results.
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When the weight of a photon packet is lower than its initial weight by factor of 10, it was

subject to "roulette test [Wang et al. 1995]" which is a statistical test to determine the

termination of the packet. In the test, nine out of ten photon packets are randomly selected

and terminated. The weight of the remaining one photon packet is increased by ten times,

and the packet continues to propagate until its becomes subject to the test again.

When a photon packet strikes the boundary, another probabilistic test is performed

using Fresnel's formula [Born and Wolfe 1997] to determine whether the photon packet

passes the boundary or undergoes an internal reflection. The direction of the packet

traversing she boundary is calculated from the Snell's law, which 'determines the angle

changes of refracted light. The direction of the internally reflected light is determined in a

manner that the average of direction cosines before and after the internal reflection is

perpendicular to the boundary surface.

Typical simulations were performed with one million photon packets. The

computation time depends on optical properties of media, and it took about one hour to

calculate propagation of Raman light in whole blood with one million photon packets. The

internal and surface distribution of excitation and Raman scattered light was recorded. The

simulation results are shown in the following sections.
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Figure 3.1. Flow chart of a Monte Carlo simulation algorithm
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3.3.2 Validation of the Monte Carlo simulation model for Raman

scattering

This subsection describes how the Monte Carlo simulation code was validated. We used a

standard Monte Carlo simulation code [Wang et al. 1995] for comparison, as the standard

code has been tested by many researchers. Each part of the Monte Carlo simulation model

was validated separately. First, the propagation of excitation and Raman scattered light

was validated by comparing the results calculated by our Monte Carlo simulation code and

the standard Monte Carlo simulation code. The surface distribution of light calculated by

our Monte-Carlo simulation code was compared with that calculated by the standard Monte

Carlo simulation code. Second, the generation of Raman scattering was compared with the

energy distribution of excitation light. The internal distribution of absorbed excitation light

and the distribution of Raman scattering event were calculated by our Monte Carlo

simulation code, and the two were compared. Third, the propagation of Raman scattered

light and the propagation of light from an isotropic source was compared.

Figure 3.2 shows the surface distribution of excitation light emerging from turbid

media with various optical properties calculated by our Monte Carlo simulation code and

the standard Monte Carlo simulation code. The geometry of the sample was a semi-infinte

medium, and the excitation beam was an infinitely narrow and collimated (pencil) beam.

The properties used in this simulation were p,=0.5 mm, ps=100 mmf, and a=0.5, and g

values were 0.86, 0.93, and 0.995. Also tested were absorption coefficients (0.05 and 5

mm) and another scattering coefficient (300 mm'). In all cases, the reflectance and

transmittance curves calculated by the two Monte Carlo simulation codes matched well.
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This indicates that the light propagation part of the Monte Carlo simulation code for Raman

scattering works closely related to the standard Monte Carlo simulation code, and thus, is

validated, over the range of optical properties tested (p,=0. 0 5 ~0.5 mmi ps=100~300 mm1 ,

and g=0.86~0.995).
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Figure 3.2. Transmittance (left) and reflectance (right) of excitation light calculated for
various mean cosine scattering angles by the standard Monte Carlo simulation model
(SMC) and our Monte Carlo simulation model for Raman scattering (RMC).

Figure 3.3 shows the distribution of excitation light absorbed by the media and the

distribution of Raman scattering events. The distribution of excitation light absorbed by

the media was available as one of the standard outputs of the simulation code. The location

of Raman scattering events was obtained by modifying our Monte Carlo simulation code.

The geometry of the sample was a semi-infinite medium, and the excitation beam was an

infinitely narrow and collimated (pencil) beam. The properties used in this simulation were

pA=0.8 mm, t=172 mm-f, g=0.99, and ct=0.5. The distributions in Figure 3.3 show traces

of certain photons, which could be averaged by using more photons in the simulation.

Figure 3.3. was generated from the simulation result with one million photons, and the run-

time was approximately one hour. As discussed before, the distribution of absorbed
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excitation light and the distribution of Raman scattering events should match well as the

numbers of absorption and Raman scattering events are proportional to the number of

incoming photons. The two distributions matched well (Figure 3.3). This indicates that the

frequency of Raman scattering events is proportional to the energy of the incoming light,

and thus, the Raman scattering part of the Monte Carlo simulation code is validated.

22
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Figure 3.3. The distribution of excitation light absorbed by the media
(left) and the distribution of Raman scattering events in the media (right).

Finally, the propagation of Raman scattered light was tested. Since Raman

scattering is modeled as an isotropic process [Schr6tter and KUbckner 1979], we compared

the propagation of Raman scattered light and the propagation of light from an isotropic

source inside the medium. The comparison confirmed that the propagation of Raman

scattered light and light emerging from an isotropic source are identical, and the

propagation of Raman scattered light was validated.

In summary, we have validated our Monte Carlo simulation model by validating

each part (light propagation and Raman scattering). This validated model was used in

study of the surface distribution of Raman light and the radiant power of the Raman signal
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generated in media of various optical properties relevant for tissue. Further validation with

whole blood experiments is discussed in the next section.

3.4 Monte Carlo simulation results

3.4.1 Angular and spatial distribution of Raman signal in whole

blood

Experiments were performed to measure the surface distribution of Raman signals in whole

blood. The measurements were compared with Monte Carlo simulation results, and

show.d good agreement. Also, the measurements were used in the design of a high

sensitivity system for Raman spectroscopy (Chapter 5).

Measurements of the spatial distribution of the Raman signal in whole blood

The Raman spectroscopy system described in Chapter 2 was used to measure the spatial

distribution of Raman signal in whole blood. The system was used in a manner different

from the way Raman spectra are collected. Since the aim of this study was to measure the

Raman signal distribution with high spatial resolution, the Raman signal collected by a

single fiber in the fiber bundle was recorded. The core diameter of the collection fiber was

100 pm, and it imaged a 44 gm-diameter spot on the sample by means of the optical

components in the system. The reflective objective, the focusing lens, and the optical

components in the collection system, were used as imaging optics. They collect light

between 14 and 33 degrees, and image the distribution of the Raman signal from the whole

blood surface onto the front surface of the optical collection fiber bundle. By translating
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the fiber bundle along one axis while the sample was irradiated by the laser beam, Raman

spectra from various regions of the whole blood sample were collected. Each Raman

spectrum corresponded to a region of the sample with a certain distance from the laser

excitation beam. Since the geometry was considered to be independent on the azimuthal

angle, measuring the spatial distribution from a single scan was sufficient to describe the

distribution over the entire surface. For each spectrum, the position of the fiber bundle was

recorded from readings on the micrometer of the translation stage. The intensity of Raman

signal was measured by counting the intensity of a given Raman peak after fluorescence

background subtraction. The distribution of the Raman signal on the fiber bundle surface

was plotted. By scaling this distribution with the magnification ratio of the optical

components, the distribution of the Raman signal on whole blood was obtained (Figure

3.4).

0 Measuremrnts
400 - - Gaussian distrubtiUn

35M]

300 -

25oU

u 2030 -

1000-

o O 0

-1.5 -1 -0.5 a 0.5 1 1.5
radius (mm)

Figure 3.4. Spatial distribution of Raman signal emerging from the surface of whole blood.
The dots are experimental measurements, and the line is a Gaussian fit. Monte Carlo
simulation was not used.
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The Raman signal emerging from a whole blood sample is similar to a Gaussian

distribution. The full-width-at-half-maximum (FWHM) of the Raman signal is 0.8 mm.

The FWHM of the excitation beam was 100 pm, which is much narrower than the width of

the Raman distribution. The fact that the Raman distribution is wider than the excitation

beam indicates that multiple elastic scattering in whole blood spreads the photons, and

resulted in a broad distribution of light.

Measurements of angular distribution of Raman signals in whole blood

The experimental setup described in Chapter 2 was useful in measuring the spatial

distribution of the Raman signal. However, it was not suitable for measuring the angular

distribution of the Raman signal, because the umbra of the reflective objective blocked the

light emerging at an angle smaller than 17'. Thus, a different system was employed to

measure the angular distribution of the Raman signal emerging from a whole blood sample.

Figure 3.5 displays the schematic diagram of the system used for the angular

distribution measurement. The excitation beam was delivered to the sample at 300. By

employing an off-axis geometry, we avoided blocking the low angle beams. A camera lens

was used to collect the Raman signal from the sample, and two apertures were placed

between the sample and the camera lens. The first aperture was placed close to the sample,

and the "near sample" aperture set the size of the spot from which the Raman signal was

collected. The second aperture was placed close to the camera lens, and the size of this

aperture could be varied. Varying the size of this "near lens" aperture enabled collection of

Raman spectra with different collection angle limits. Photons emerging within the

94



collection angle limit were collected, and Raman spectra of the sample were collected with

incremental aperture sizes. The collection angle was calculated from the "near lens"

aperture size and the distance between the sample and the lens, which was the focal length

of the lens. Using this data, the angular distribution of the Raman signal emerging from the

whole blood sample was generated (Figure 3.6). The distribution in Figure 3.6 is the

cumulative angular distribution.

near lens
sample aperture

ap rt lens I lens 2
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near sample notch filter
aperture irror
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Figure 3.5. Schematic diagram of the experimental setup used for
distribution of the Raman signal emerging from the surface of whole

Xi 105
3

0 Measurements
- Lambertian distribution

a,2.5

05 -

0
0 5 10 15 20 25 30

measuring the angular
blood

collection angle (degree)

Figure 3.6. Cumulative angular distribution of Raman signal emerging from the surface of
whole blood. The dots are measurements, and the line is a Lambertian fit. In a Lambertian
distribution, the angular distribution function of light is cosine.
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3.4.2 Comparison of Monte Carlo simulation results and

experimental measurements

The experimental measurements Were compared with the Monte Carlo simulation results.

The Monte Carlo simulation code accepted scattering and absorption properties of a sample

as input variables and provided the angular and spatial distribution of the Raman light as

output variables. Many researchers have studied the optical properties of biological

samples, including whole blood [Cheong et al. 1990]. For instance, the absorption

coefficient of lysed blood samples was measured [Zijlstra et al. 1991], and the scattering

coefficient~of diluted blood samples was measured using.a laser Doppler technique [Kienle

et al. 1996]. Among many measurements, the optical properties of whole blood measured

by Roggan were most suitable for the Monte Carlo simulations, since these measurements

were performed on samples that were not manipulated (lysed or diluted) [Roggan et al.

1999]. The properties used in the Monte Carlo simulation are listed in Table 3.1.

Table 3.1. Input parameters used in the Monte Carlo simulation

wavelength [a s a n

Excitation wavelength 830 nm 1.04/mm 216/mm 0.990 1.37

Raman-scattered wavelength 910 nm 1.36/mm 192/mm 0.985 1.37

The optical properties of whole blood change monotonically over the wavelength

range of interest (830-1000 nm). Over this wavelength range, pa ranges from 0.8 to

1.6/mm, ps varies from 180 to 240/mm, and the range of g is from 0.98-0.99. The changes

in the optical properties were not significant, and a single Raman-scattered wavelength was
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assumed to be sufficient to study the effect of the turbidity using Monte Carlo simulations.

If needed, the Monte Carlo simulation model could be modified to model multiple Raman-

scattered wavelengths.

The spatial and angular distribution of the Raman signal emerging from whole

blood was computed in a simulation with 1,000,000 photons. The Raman scattering

coefficient, pR, used was 0.02 mm, whereas the physical range of pR for blood analytes is

typically on the order of io-34 ~10 -4 mm1 . Although this was higher than the Raman

scattering coefficient of blood analytes, it was still much smaller than the absorption and

scattering coefficients, and did not interfere with the elastic scattering and absorption in the

sample. Furthermore, a high PR enables a good statistics in a simulation with fewer

photons, which leads to shorter computation times.

The Monte Carlo simulation results indicated that the angular distribution was not

always Gaussian and Lambertian, respectively. For a small radius spot the angular

distribution was much narrower than the Lambertian distribution, and for a large radius spot

it was wider than the Lambertian distribution. However, on average over our region of

interest, the angular distribution was similar to the Lambertian distribution. The simulation

results and the experimental measurements are plotted together in Figure 3.7, and the

curves overlap well. This demonstrates that the Monte Carlo simulation code can be used

to model light propagation in whole blood. Thus, this information could be used in the

design of a high-sensitivity spectroscopy system (Chapter 5).

When a narrow input beam irradiated the medium, a broad surface distribution of

Raman scattered light is observed. The broad surface distribution of Raman scattered light
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is due to multiple scattering in whole blood. If the medium had a higher scattering

coefficient without a higher absorption coefficient, it could increase the width of the surface

distribution and the number of Raman scattered photons emerging from the whole blood

surface, whereas a higher absorption coefficient can decrease the width of distribution and

the number of photons.
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Figure 3.7. Comparison of Monte Carlo simulation results and experimental
measurements. The experimental measurements overlap with the simulation results both in
spatial distribution (left) and angular distribution (right).

3.5 Effect of scattering and absorption in Raman signal

intensity

The experimental results in Chapter 2 showed that the intensity of Raman signal was lower

in whole blood than in serum by factor of 4, and it was necessary to understand the

differences between serum and whole blood. The difference between serum and whole

blood is the presence of red blood cells and fibrinogen, in terms of their compositions.
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While serum has negligible absorption and scattering coefficients in the wavelength

range of our interest, the scattering and absorption in whole blood are significant (e.g. pa=

1.06 mm and ps = 216 mm at 900 nm for 45% hematocrit [Roggan 1999]). The

scattering and absorption coefficients in whole blood are associated with the hematocrit, the

volume fraction of red blood cells in whole blood. This is because the red blood cells are

the major source of scattering in whole blood, and hemoglobin within red blood cells is the

major source of absorption. Thus, in our studies, serum can be considered as whole blood

with zero hematocrit.

On-the positive side, for blood analyte measurements the scattering increases the

pathlength, which in turn increases the chance of Raman scattering. However, the

scattering spreads out the Raman photons, while the absorption attenuates the intensity of

Raman signal. Absorption and scattering affect the intensity of the emitted Raman signal in

a complex way. Thus, the effect of various hematocrit was studied using the Monte Carlo

simulation model, and the simulation results explained the difference in signal intensity

between serum and whole blood, as well as the effect of hematocrit changes in whole blood

samples. Due to the complex nature of competing but related processes, Monte Carlo

simulations were helpful in understanding the effect of turbidity on Raman signal intensity.

In a Monte Carlo simulation, the scattering and absorption properties were varied to

model different hematocrit values. The amount and the size of red blood cells determine

the scattering and absorption properties of whole blood. Although the physiological normal

range of hematocrit is 35 ~ 50%, simulations were performed to model the hematocrit

range between 1 - 50%. The simulation for 1% hematocrit was performed to approximate
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serum. Figure 3.8 shows the power (W) of the Raman scattered light emerging from the

sample surface for various hematocrit samples. It does not include extreme levels of

hematocrit, such as 70%. However, such extreme levels are rare, and also, Figure 3.8

indicates that the difference in power of the Raman scattered light at 50% and.70% can be

small.

Two facts are notable in Figure 3.8. First, the power of the Raman signal emerging

from the sample surface decreased with increasing hematocrit. In a turbid sample

absorption and scattering attenuated the Raman signal, and therefore, fewer Raman photons

emerged from the sample surface. The radiant power at a physiological hematocrit was

significantly reduced from the power in a clear sample. This indicates that the presence of

red blood cells reduced the intensity of Raman signal in whole blood. Also, this explains

the reduced signal intensity in whole blood versus serum. According to the Monte Carlo

simulations with consideration of the collection optics, the power of Raman scattered light

is reduced by a factor of 3 in whole blood (when light is collected by the previous system),

compared with the power in serum. This reduction factor is similar to the factor of 4

reduction observed using the previous experimental setup (Chapter 2). Second, the change

in radiantpower was not significant over a physiological range of hematocrit. The radiant

power varied by less than 30% over the hematocrit range between 35% and 50%, and the

effect of this variation on prediction error was less than 10% of the average concentration.

For extreme levels of hematocrit, such as 5% and 70%, the effect of the hematocrit

variation on prediction error would be greater, and it could be a significant part of the total
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prediction error. A calibration would be needed to deal with samples of extreme hematocrit

values. The prediction error is discussed in detail in Chapter 4.

In other biological tissue, absorption coefficient is not as strong as that in whole

blood and scattering coefficient is comparable (p, <0.1/mm, ps'~2/mm, and g - 0.9) and

[Cheong et al. 1990]. As the absorption is weaker, the intensity of Raman signal in such

tissue could be stronger than that in whole blood.
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Figure 3.8. The power of the emerging Raman signal in samples with various hematocrit
values. The Monte Carlo simulation model was used to compute the power.

3.6 Conclusion

To study the effect of turbidity on the Raman signal, a Monte Carlo simulation model was

developed. The simulation results and the experimental measurements matched well,

confirming the accuracy of the simulation in modeling whole blood. Both the simulation

and the experiment characterized the distribution of the Raman signal emerging from a

whole blood sample irradiated with a 100 pm excitation beam. The FWHM of the spatial
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distribution was 0.9 mm diameter, and the angular distribution was similar to the

Lambertian distribution. This information about the signal distribution was used to design

a system with optimal collection efficiency (see Chapter 5).

Furthermore, the Raman signal intensity in various hematocrit samples was

simulated. Samples with high hematocrit had high scattering and absorption properties,

reducing the radiant power of the Raman signal emerging from whole blood. The red blood

cells reduced the radiant power in whole blood significantly, when compared with the

radiant power in serum or aqueous samples. However, the variation of radiant power in

whole blood samples was small over a representative range of hematocrit, and such a

change in radiant power has little effect on the prediction error.
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Chapter 4

Raman spectra of biological samples

and linear multivariate analysis

4.1 Overview

As discussed previously, Raman spectroscopy provides quantitative spectral information

about sample composition. Intensities of spectral features, called bands, are due to specific

vibrations of molecules. Intensities of bands contain information about molecular

concentrations. However, it is often difficult to interpret Raman spectra of biological

samples due to the complexity of these samples. The presence of multiple components

results in many overlapping Raman bands. Severe background noise also complicates any

attempt to use Raman peak intensities for accurate quantitative analysis. Thus, more

sophisticated analysis techniques are required to extract the information contained in the

Raman spectra. Techniques to analyze multivariable data sets have been well studied by

statisticians and analytical chemists, and such techniques are known as multivariate

analysis methods [Sharma 1996] or chemometrics [Kramer 1998]. This chapter discusses

certain multivariate regression1 techniques. By using multivariate techniques, Raman

'Regression is a functional relationship among experimental data. Such relationship is

typically used t-predict quantities of interest when other quantities are known.
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spectra of human serum and whole blood were better understood. Also, the effect of

signal-to-noise ratio (S/N) on prediction accuracy was studied.

4.2 Background

Certain assumptions are necessary in order to use linear multivariate techniques in the

analysis of Raman spectra. First, a Raman spectrum is assumed to be a linear superposition

of the Raman spectra of the components. Thus, Raman spectrum of a mixture of chemicals

would be the weighted sum of each of the chemicals' Raman spectra. Also, the signal

intensity of a chemical's Raman bands are assumed to be linearly proportional to the

chemical concentration. The linearity of Raman spectra in biological issue was

experimentally established [Manoharan 1992]. In this study, mixtures of cholesterol

powder and barium sulfate powder were used for spectral collection. The intensity ratios of

the cholesterol peak at 1440 cm and the barium sulfate peak at 987 cm4 were plotted

against the weight percentage of cholesterol in the mixture. The intensity ratios and the

weight percentage were found to be linear, with a correlation coefficient of 0.997. This

implies that Raman spectra of tissue can be described as a linear superposition of individual

chemicals, as long as the scattering and absorption properties of tissue do not significantly

distort the signal.

Since changes in scattering and absorption properties are not significant in whole

blood (Chapter 3), Raman spectra can be modeled as a linear superposition of component

spectra, and linear techniques can be used to analyze Raman spectra. For whole blood, the

linear superposition can be formulated as
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S=C -P
whole blood albumin albumin

+ctriglycerides 'Ptriglycerides

+ C + C . P(4.1)
urea urea glucose glucose

where S'hole blood is the Raman spectrum of whole blood, c is the concentration of

component i, and Pi is the Raman spectrum of component i normalized by its concentration.

For a single Raman spectrum, Eq. (4.1) can be expressed in vector form:

S=C-P, (4.2)

where S is the Raman spectrum of the sample, C is the component concentrations in a row

vector, and P is the matrix of component spectra, with each spectrum occupying a row of

wavelengths. In matrix notion, Eq. (4.2) can be written, for a set of samples, as:

S = C -P , (4.3)

where S is the matrix of Raman spectra, C is the matrix of component concentrations in the

samples, and P is the matrix of component spectra. When the number of samples is n, the

number of components is p, and the number of wavelength points in each spectrum is m, S

is an nxnmatrix, C is an nxp matrix, and P is apxm matrix.

There are numerous multivariate analysis algorithms. This section discusses basic

regression techniques and multivariate analysis algorithms for concentration measurements:

ordinary least squares (OLS) regression, classical least squares (CLS) regression, principal

component regression (PCR), partial least squares (PLS) regression, and hybrid linear

110



analysis (HLA). In concentration measurements, the goal of these techniques is to find a

projection vector that extracts concentration information from spectra:

C=S-B, (4.4)

where B is the projection vector. For each analyte in every data set, there exists only one

ideal projection vector that models the data set most accurately. When the multivariate

techniques are carefully applied, the projection vectors (B's) obtained with different

multivariate techniques should all closely approximate the ideal projection vector.

4.2.1 Calibration, prediction and validation

Multivariate analysis for extracting concentrations is performed in two steps: calibration

and prediction. Calibration is the process of developing a mathematical relationship

between physical quantities (e.g. spectra and concentrations). Prediction is the process of

applying the mathematical model developed during calibration to extract concentration

information from spectra.

In calibration, a mathematical model is developed to describe the spectral

composition of a data set or the relationship between chemical concentrations and Raman

spectra. Various multivariate techniques require different information to build models. For

example, the ordinary least squares regression model is built by obtaining a complete set of

the component spectra. Principal component regression and partial least squares regression

require concentrations of the target chemical in all samples and spectra of all samples to

build a model that can extract concentration information.
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It is necessary to check the accuracy of a model after it is built. An independent

data set, which does not include the data used for the model building, is often used for

testing the robustness of a model. If the concentrations obtained by using a model and the

concentrations measured by an accurate and independent technique are statistically similar

(r > 0.9), the model is validated and considered clinically accurate [Pincus 1996]. This

process of testing a model is called validation.

Although it is desirable to use an independent data set for validation, this requires a

large number of samples. When the number of samples is not sufficient to perform an

independent validation, cross-validation can be performed. Cross-validation allows for the

efficient use of a data set, because only a small number of samples are reserved, and the

spectra of the remaining samples are used for calibration. The calibrated model is then

used to extract concentration information from the spectra of the reserved samples, and the

extracted concentrations are compared with reference measurements. Different groups of

spectra are then reserved, and the calibration-validation process is repeated until the

concentrations of all of the samples are predicted. Since the data set used for calibration

and the data set used for validation are independent, the validation is performed without

bias. When a statistically sufficient number of spectra are used for calibration, the models

obtained from different calibration data sets should be similar.

Different strategies can be employed to group spectra for calibration and validation.

For example, a single sample is spared from each calibration in a "leave-one-sample-out"

Z This is a schematic description of the validation process. Further details of the validation

process are discussed in Martens and Nes (1989).
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cross-validation, and the calibration and validation process is repeated as many times as the

number of samples in the data set. The predicted concentrations in the validation data set

are compared with the concentrations measured by an accurate and independent technique.

Other grouping strategies, such as "leave-one-subject-out" or "leave-half-out", are

available. In any form of calibration, efforts are made to separate the calibration data set

and the validation data set.

In calibration and validation, accurate and independent measurement techniques

play a critical role. Such techniques are called reference techniques, since they provide

concentration information that is used as a reference in validation. Concentration

information provided by a reference technique is used in two ways. First, concentrations

are used to build a model during calibration. Any error in reference information may lead

to inaccurate models, and thus erroneous predictions. Second, concentration information is

used in the validation process. Significant errors in reference information may result in

misleading prediction errors. This will be discussed in further detail below. Therefore, an

accurate reference technique is required to build a robust model and to precisely assess the

prediction error in a data set.

In concentration predictions, prediction errors indicate the quality of concentration

predictions. For each sample, the prediction error is the difference between the predicted

concentration and the concentration measured by a reference technique. This is formulated

as

Act -= Cpredictionj - Creferencei , (4.5)
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where Ac, is the prediction error for the i-th sample, Cprediction,i is the predicted concentration

for the i-th sample, and Creference., is the concentration measured by the reference technique

for the i-th sample. For a set of samples, the prediction error for a data set is the standard

deviation of the prediction errors for all samples:

i C predicrioni - Creferencej
Ac= ' N , (4.6)

where Ac is the predicted error for the data set and N is the number of samples in the data

set. Ac is also called the root mean standard error of prediction (RMSEP). The prediction

accuracy is defined as the ratio of the mean concentration to the prediction error (c/Ac).

Since the prediction error is defined as the difference between the predicted

concentration and the reference concentration, the prediction error is affected by the error in

the reference technique, as well as the error in the prediction technique. Had we known the

actual concentrations, we could precisely calculate the error in the reference technique.

Unless the reference technique is free from any error, the reference concentration and the

actual concentration are not identical. If we introduce the actual concentration terms into

Eq. (4.5),the effect of the error in the reference technique is accentuated:

C predictionj-- C acua )+ (cactual,i - C-reference,i 2

AC -] (P~dClI- culN(4.7)
Ac = N

where cactua! is the actual concentration in the i-th sample. When the error in the reference

measurements and the error in the predictions are statistically independent, Eq. (4.7) is

reduced to
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predictioni C actual I actuali- C reference(.
Ac = '+ ' . (4.8)

NN

In the case in which the prediction technique provides actual concentrations, the prediction

error may not be zero unless the reference technique also provides actual concentrations

without error. Thus, the prediction error of any prediction technique cannot be smaller than

the error of the reference technique, even when the prediction technique provides more

accurate information than the reference technique. This emphasizes the need for employing

an accurate reference technique.

4.2.2 Ordinary Least Squares (OLS) Regression

In some studies, it is necessary to find out the concentrations of all important components

present in the mixtures (samples). OLS regression can be used if the Raman spectra of all

important components are known, and Raman spectra of samples can be measured.

When the number of spectra and the number of variables in the spectra are equal

and the matrix P is invertible3, we can directly obtain concentration from C = S -P- '.

However, the number of spectra and the number of variables in the spectra are rarely equal.

To obtain the concentrations in this case, we multiply Eq. (4.3) by the transpose of P:

S.pT =C.p.PT. (4.9)

If (P . pT) is invertible, we can derive an equation for the concentration matrix, C:

3 When there are samples of identical composition in the same data set, P or (P pT) cannot

be inverted, or the inverted matrix may include significant numerical error.
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C= S -PT (P-PT)- 

From comparison of Eq. (4.4) and Eq. (4.10), we find that

(4.10)

B= PT .(P.P T )-. (4.11)

OLS is a simple, yet powerful technique in spectral analysis. However, it requires

the knowledge of the number of important components and the Raman spectra of all the

important components. In studies of biomedical samples, it may be difficult to ascertain the

number of components due to the complexity of many biomedical samples. An error in the

number of components can result in erroneous regression results. Additionally, spectra of

certain chemicals vary depending on environmental changes, and this can lead to inaccurate

OLS analysis.

4.2.3 Classical Least Squares (CLS) Regression

When it is necessary to find out the Raman spectra of all the components in the samples,

CLS regression can be used if the concentrations of all the components can be measured,

and the Raman spectra of samples are known.

By multiplying Eq. (4.3) by the transpose of C, we get

CT -S=CT CP. (4.12)

If (C-CT) is invertible, we can derive an equation for the component spectra matrix, P:

P=(CT .-C)(-CT, S. (4.13)

CLS can extract the Raman spectra of components when the concentrations of each

component in the spectral data set are known. In some samples, it may be difficult to

chemically separate individual components, but it may be possible to measure or estimate
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the concentration of all the components. Without single component samples, Raman

spectra of the individual components cannot be measured. CLS is useful when it is difficult

to measure the Raman spectra of all the individual components.

OLS and CLS are complementary techniques. OLS calculates concentrations from

a known set of component spectra, and CLS calculates component spectra from a known

set of component concentrations. The component spectra obtained by CLS can be used for

OLS analysis of a new data set, as long as the two data sets have the same component

spectra. In a similar manner, the component concentrations obtained by OLS can be used

for CLS analysis of a new data set.

However, performing a CLS analysis requires the knowledge of the number of

important components and the concentrations of each component. In biomedical studies, it

may be difficult to know the exact number of important components due to the complexity

of many biomedical samples. Furthermore, concentrations of certain chemicals are difficult

to measure accurately. These can all lead to additional error in CLS analysis.

4.2.4 Principal Component Regression (PCR)

When the Raman spectra of all the components are known, OLS can be employed for

spectral analysis. When the concentrations of all the samples are known, CLS can be

employed. However, both OLS and CLS require a priori knowledge of all concentrations

or all component spectra about the samples, and it is not always possible to use OLS or

CLS. By using PCR or PLS (which is discussed in the next section), it is possible to

analyze Raman spectra without demanding a complete set of information. PCR and PLS
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require Raman spectra of samples and concentrations of only the component of interest, to

calculate the projection vector, B. However, Raman spectra of individual components are

not provided by PCR or PLS.

The main advantage of principal component analysis is its ability to compress data

or extract key components. The eigenvectors represent spectral changes in the data set. If

spectra are plotted in a multi-dimensional space, each eigenvector represents each direction

of changes (variance) (Figure 4.1). For example, when two wavelengths are measured for

each sample, we can plot the first wavelength against the second wavelength and calculate

the eigenvectors. The first eigenvector, or the first principal component, is the direction of

the largest variance in the data set. The second eigenvector, or the second principal

component, is perpendicular to the first principal component. If the samples have two

chemical components and if the components can have different intensities of Raman

features at the two wavelengths, both principal components are necessary to explain various

composition of the samples. If the samples has one chemical component, only one

principal component is necessary to explain the spectral variance, and the other principal

component is probably due to noise or measurement error. In analysis of a large data set,

many principal components can be calculated. However, not all the components are

meaningful. Some are due to noise, and some may have insignificant meanings. There are

multiple methods to select the number of principal components [Malinoiski and Howery

1980], and the main concept behind these methods is to select statistically significant and

physically meaningful components. Since PCA can describe variations in a data set with
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principal components (hopefully) fewer than the number of variables, it is considered a data

compression technique.

00

00

-4 0 0

varabla 1

Figyure 4.1. Direction of principal components in 'a two-variable data set Mean-centered

data are plotted (circles). The two variables (intensities at two wavelengths) appear to be

correlated. The first principal component follows the direction of the largest variance

(largre arrow). The second principal component is perpendicular to the first component, and

follows the direction of the second-largest variance (small arrow). The lengths of arrows

indicate the variance of principal components. Note that the arrows are not prncipal

components,, as principal component vectors have unit length.

Building a PCR model is performed in three steps. First, the Raman spectra of

samples are preprocessed. Preprocessing may include mean centering, intensity correction,

background subtraction, normalization, scaling, smoothing, bi nning, cosmic-ray removal,

and artifact removal. The details of these preprocessing steps are discussed below.

Second, the component spectra are obtained by calculating the eigenvectors of the

SI-S, and the calculated eigenvectors are called principle components. This process alone

is called principal component analysis (PCA) [Joliffe 1986]. Two methods are often used

for the eigenvector calculation in PCR. The eigenvectors of the ST-S can be calculated

from the singular value decomposition (SVD) of the sample spectra, S. Singular value
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decomposition is robust and the numerical error in SVD is small. However, the singular

value decomposition process is time-consuming for large-size matrices. Instead, nonlinear

iterative partial least squares (NIPALS) can be used to obtain eigenvectors. NIPALS is an

iterative algorithm and is faster than many other algorithms for eigenvector computations.

NIPALS can compute only the desired number of principal components [Wold and

Sjostrom 1977]. However, due to the iterative nature, NIPALS results may not converge to

the principal components under certain numerical condition, and may not be able to

compute all principal components.

Singular-value-decomposition decomposes a given matrix S into three matrices U,

X, .and V so that S = U .X . VT. X is a diagonal matrix with non-negative elements, and

the dimensions of S and X are equal. The diagonal elements of the matrix X are the square-

root of the eigenvalues, and a large diagonal element implies that its corresponding

principal component is statistically significant. U and V are unitary matrices, and hence,

U U' = I and V - V' = I. The fit coefficients, which are also called scores, are U-X.

Each column of the matrix VT is the component spectra of the matrix S.

Once the data set is compressed into principal component scores, finally, an

ordinary least squares regression is performed between the scores and the concentrations,

so that

C = U -X -T , (4.14)

where C is the matrix of concentrations, and T is the matrix that projects the scores onto

concentration space (T = [(u X)'- (U.-X)- (U - X)T - C). For example, spectra of

serum protein samples may have two major principal components: albumin and globulin.
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Multi-wavelength data for each sample is compressed into two variables, scores for

albumin and globulin. If the concentration of total protein, which is the sum of the albumin

concentration and the globulin concentration4 , is of interest, the projection vector simply

adds two scores and scales to the total protein concentration.

For a new data set, predictions can be made by extracting scores (U - X = S - V)

and projecting the scores onto concentrations (C = U - X T). This is equivalent to using

the following equation:

C = S V-T. (4.15)

From comparison of Eq. (4.4) and Eq. (4.15), we find that

B =V- T. (4.16)

Again, the projection vector B's obtained from Eq. (4.11) and Eq. (4.16) are identical when

both OLS and PCA can model the data set accurately.

4.2.5 Partial Least Squares (PLS) Regression

Partial least squares regression is another technique for concentration analysis. It is similar

to PCR in that both techniques decompose the spectral data set and find the relationship

between ihe decomposed spectra and the concentrations. The difference appears from the

fact that PLS utilizes the concentration information in the decomposition process. The

decomposition is performed with the covariance matrix of spectra and concentrations, the

4 This example is only to illustrate the relation between scores and concentrations. In

human blood samples, total protein includes other proteins as well.
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benefit of which includes reducing the effect of noise and obtaining components that are

better correlated to the concentrations of the component of interest. The use of the

covariance matrix of spectra and concentrations allows the averaging of noise in spectral

measurements by concentration measurements, or the averaging of error in concentration

measurements by spectral measurements. PLS and PCR have similar performance if noise

in the spectral data and errors in the reference concentration measurements are negligible.

Otherwise, PLS generally provides better analysis than PCR [Thomas and Haaland 1990].

An important advantage of PLS and PCR over OLS or CLS is their ability to extract

spectral components (called loadings in PLS and principal components in PCA/PCR)

without knowledge of the actual number of components. OLS and CLS require knowledge

of the number of components and build models with the known number of component

spectra. In PLS and PCA, the number of spectral components is often determined during

the calibration. This degree of freedom can sometimes be a challenge in obtaining accurate

models, as both underfitting (calibrating with fewer components than necessary) and

overfitting (calibrating with more components than necessary) can result in erroneous

models [Kruse-Jarres 1990, Naees and Martens 1988]. However, this allows PLS and PCA

to be a powerful tool in modeling spectral changes due to sources other than the known

chemical components. Such sources include unknown chemical components, drift of the

background, and other interfering signals from the system or the environment, all of which

can be present in experimental data. While it is not impossible to model the non-chemical

spectral components with OLS and CLS, it is often difficult to obtain their component
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spectra and to quantify "concentrations" of such spectral components. This is why PLS and

PCR are used in concentration measurements more often than OLS and CLS.

For further information, tutorial articles for PLS are available [Geladi and Kowalski

1986, Haaland and Thomas 1988].

4.2.6 Hybrid Linear Analysis (HLA)

Although PCR and PLS are powerful algorithms in spectral analysis, the accuracy of a

model built by either technique depends on the quality of the spectral data set and the

reference measurements. When the noise in the spectra reduces the accuracy of the model,

the model can be improved by utilizing the accurate spectrum of the target chemical, if the

spectrum of the target chemical can be measured accurately with high S/N. Hybrid linear

analysis (HLA) combines OLS and PCA techniques, and employs the spectrum of the

target chemical in the model building process.

HLA requires a spectral data set, knowledge of the concentrations of the target

chemical, and the accurate spectrum of the target chemical. The S/N of the target chemical

spectrum should be better than the S/N of each spectrum in the spectral data set. An HLA

model istbuilt in two steps. First, the- spectral contribution of the target chemical is

removed from the spectral data set. This can be formulated:

S'= S-c -a , (4.14)

where S' is the matrix of spectra which do not include any contribution of the target

chemical, c are the concentrations of the target chemical, and a is the accurate spectrum of

the target chemical at unit concentration. Second, the matrix of spectra S' is decomposed
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by PCA, and the matrix of component spectra P' is obtained. The spectra in the matrix P'

explain the changes in the spectral data set other than the change due to the target chemical.

By combining the vector a as the first row and P', we obtain the matrix of all component

spectra P, which includes the spectrum of the target chemical. The rest of the model

building process is similar to that in OLS, and the projection vector B is

B=PT .(P.PT)-. (4.15)

After the model is built, the concentrations can be predicted by performing an OLS fit. The

fit coefficient for the target chemical is the concentration of the target chemical.

HLA requires a priori knowledge of the target chemical spectrum. Thus, HLA

cannot be applied when an accurate spectrum of the target chemical is not available. When

the target chemical spectrum is available, HLA provides a more accurate and robust model

than PLS or PCR [Koo et al. 1998]. The superiority of HLA over PLS and PCR is more

apparent when the S/N of the spectral data set is relatively low. In a low S/N data set, the

prediction error obtained by using HLA is smaller than the prediction error obtained by

using PLS [Koo 1998]. This follows from the fact that the accurate spectrum of the target

chemical improved the accuracy of the model. When the S/N of the data set is sufficiently

high, both HLA and PLS provide similar projection vector B's and, therefore, similar

results.
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4.2.7 Preprocessing data

Spectral range selection

Multivariate methods attempt to find the spectral components with large variance. With the

presence of a strong signal that is not associated with chemical concentrations, the

algorithm may try to fit this strong signal, neglecting the variance in other regions. In

addition, it is not helpful to use a spectral range that does not contain the spectrum of the

specific chemical component.

In our studies, the spectral range, where the spectral features of the target analyte

and no. other dominating spectral features of oher chemicals are present, was chosen and

analyzed by the multivariate calibration algorithm. No special algorithm was devised for

selecting the optimal spectral range other than thorough trials. The prediction errors were

not significantly affected by varying the spectral range as long as the range included the

key features of important component spectra.

Cosmic ray removal

A problem with CCD cameras is that cosmic ray signals degrade data (Figure 4,2)

[Landsman 1997]. Cosmic rays hit random pixels of the CCD array at random times with

arbitrary intensity. As a result, sharp spectral features of arbitrary intensities appear on top

of Raman spectra. Since cosmic rays distort the intensity of the Raman bands, quantitative

analysis of spectra may provide inaccurate results unless cosmic rays are removed.

Our solution for cosmic ray removal was to acquire spectral signals frame by frame

and compare. When 300-second integration time was desired for a spectrum, 30 spectra of

10-second integration time each were collected. Each spectrum integrated over 10 seconds
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was called a frame. A statistical algorithm was used to identify cosmic rays. The main

assumption of this cosmic ray filtering method was that the spectrum does not change its

intensity from frame to frame other than due to noise and cosmic rays, and a sudden change

in the spectrum beyond typical noise is due to a cosmic ray.

Using a statistically significant number of frames, we calculated the median and the

standard deviation of the set of pixel intensities in the frames. The median was close to the

actual intensity, and the standard deviation was mainly due to noise and cosmic rays. The

threshold for cosmic rays was the sum of the median and the standard deviation multiplied

by a constant, which we call the weight factor. The weight factor determined what

percentile of the pixels should be considered 'normal,' under the assumption that the noise

in the data is random Gaussian noise. If there is no cosmic ray, only 0.1% of pixels are

misclassified as cosmic rays, when the weight factor is 3. We varied the weight factor, but

mostly used three standard deviations as the filtering criterion. Any pixel whose intensity

is larger than this threshold was replaced with the median of the normal pixels in the

remaining frames.

4M2 4CO2zX

RamnO0 Rirn I
Parrma ab tt Prutn n i

Figure 4.2 A set of raw spectra of a biological sample before cosmic ray
filtering (left) and after (right). Spike shaped peaks are due to cosmic rays.
A statistical algorithm was used to remove them.
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Cosmic ray filtering ha one weakness in its assumption. The variation of the signal

in each pixel increases when there is an intensity change of the spectrum over the whole

collection time due to physical or chemical changes in the sample. This increased variance

may sometimes make it difficult to detect cosmic rays by employing this simple algorithm.

Background subtraction

Raman spectra of biological samples are often accompanies by strong fluorescence or other

background. The fluorescence background is generated by optical components in the

system, the quartz cuvette containing samples, and proteins and lipids in whole blood. The

optical, components and cuvettes are the dominant source of background fluorescence.

Macromolecules, such as proteins and lipids, also contribute to the fluorescence

background [Qu et al. 1999]. The strong fluorescence provides shot noise, and variation in

the background interferes with multivariate analysis. While PLS and PCR can remove such

backgrounds during calibration to some extent, they are not efficient in extracting

concentrations in the presence of these backgrounds. Thus, it is desirable to remove this

background before multivariate analysis when the background does not provide relevant

information.

Since the fluorescence background has broader features than the Raman bands, it

has been demonstrated that polynomial fits can sufficiently model fluorescence

backgrounds [Baraga 1992, Brennan 1995]. The polynomial subtraction removed

fluorescence backgrounds in Raman spectra of whole blood samples, and the background-

subtracted spectra exhibit sharp Raman features (Figure 4.3). Some spectral bands have

negative intensities as a result of the polynomial subtraction, but it does not affect data
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analysis as it is the intensity relative to the baseline that is important in the data analysis.

Both spectra before and after background subtraction were analyzed and better predictions

were achieved by subtracting the backgrounds.

Mean centerin2

It is useful to mean-center the data before using many analytical algorithms other than OLS

and CLS. Mean centering refers to subtracting the mean spectrum of the data set from each

spectrum in the data set. Conceptually, mean centering accentuates the differences among

spectra. Mathematically, it reduces the complexity of the data by one degree of freedom,

and prevents certain spectra in the data set from being weighed more than other spectra.

Statistically, it maps the data onto an abstract space where the mean of the mean centered

data does not have any directionality [Kramer 1998]. For certain techniques, such as PCR

and PLS, mean centering is recommended. Without mean centering, the first spectral

component is the statistical mean of the data set, which is often not the information that is

needed. In our studies, PLS was always performed after mean centering.

Noise suppression

Noise in the spectra can be filtered or reduced with mathematical tools or enhanced

experimental setups. If the noise has a specific profile in the time domain (for example,

flicker noise has a 1/f amplitude in the frequency domain) and if the frequencies of the

noise and the signal are different, Fourier filters can be used to remove noise. Otherwise,

experimental setup can be improved to reduce such noise or to increase the frequency of the

signal to the level higher than the frequency of the noise. If the amplitude of the noise does

not vary over the frequency domain, Fourier filters may be able to remove noise when the
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spatial frequencies of the noise and the signal are different. However, many Raman spectra

have sharp features, and both Raman features and high frequency noise appear in the same

region in the spatial-domain Fourier space. It is difficult for Fourier filters to selectively

remove noise without affecting the Raman signal. In practiQe, Fourier filters worsen

prediction accuracy.

A moving average is a method essentially equivalent to Fourier filtering Qf high

frequency noise. In a moving average, a spectral range called a "window" is selected. An

average of the signal intensity at every data point in the window replaces the signal

intensity at a data point in the center of the window. Then, a new window is selected by

shifting the window by only one data point, and the averaging is again performed. This

iterative process is repeated until the whole spectral range is covered. However, the

moving average reduces the resolution of data, which can adversely affect prediction error.

Binning is a similar method of reducing noise. In binning, the window is shifted by

the size of the window instead by one data point. As a result, the number of data points and

the spectral resolution are reduced. Binning provides higher S/N data with fewer degrees

of freedom, which can simplify the model and increase the robustness of multivariate

analysis. Furthermore, binning can effectively compensate for spectral shifts, which is an

artifact due to spectrograph drift. Thus, binning was selected as a method of noise

reduction in our studies.
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White light correction and wavenumber calibration

Additionally, white light correction is required to compare the spectral intensities collected

with different systems. Various optical systems can have different spectral sensitivities,

and it is difficult to compare intensities of spectra collected with different optical systems

without correction. A white light spectrum can be used to correct for such variations.

White light correction is performed by collecting a spectrum of a standard white light, and

dividing spectra of samples with the white light spectrum.

Wavenumber calibration is also required to compare the frequencies of Raman

bands collected with different systems, as various spectroscopy systems have different

resolutions and dispersions. A well defined calibration light source (e.g. neon lamp or

mercury lamp) is used to obtain accurate wavenumber information.

In analysis of data presented in this dissertation, spectral range selection, cosmic ray

removal, and background subtraction were performed. For PLS analysis, mean centering

was also performed. All spectra were wavenumber calibrated, and spectra are presented in

wavenumbers. Since it was not intended to compare spectra collected with our system and

spectra collected with other systems, white light correction was not performed.
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Figure 4.3. Raman spectrum of whole blood samples before background subtraction (left)
and after (right). The background subtraction removed variations in fluorescence signals.

Raman bands are more prominent after background subtraction.

4.3 Raman spectra of biological samples and components

Raman spectra provide information about molecular concentrations, but it is often difficult

to interpret Raman spectra of biological samples, due to the complexity of these samples.

The many overlapping Raman bands and the severe background noise complicates analysis

of Raman spectra. Thus, more sophisticated analysis techniques are required to extract all

the inforfhation contained in Raman spectra. In this section, multivariate techniques are

used to analyze component spectra, and the findings from the spectral analysis of serum

and whole blood spectra are discussed. The Raman spectra of 69 serum samples and 68

whole blood samples were obtained with the previous system in the manner described in

Chapter 2.
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First, a linear superposition of pure component spectra was calculated using OLS.

The superposed spectra were obtained by multiplying the Raman spectra of important

components by the physiological range of concentrations (total protein 6-7.8 g/dL,

cholesterol 150-250 mg/dL, and triglycerides 10~190 mg/dL)and summing these weighted

spectra. The superposed spectra and the Raman spectra of serum samples are similar

(Figure 4.4). Most bands in the Raman spectra of serum samples are represented in the

reconstructed spectra. Thus, we confirmed that the background subtracted Raman spectra

are due to the Raman spectra of components and furthermore, are linear superpositions of

the component spectra. In addition, we noticed that the contributions from simple

molecules, such as glucose and urea, are small, and visual comparison in this scale cannot

provide any information about the concentration of such molecules.
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Figure 4.4. Raman spectra of 69 serum samples (left) and the superposed spectra of
weighted components (right). The three superposed spectra represent physiological
variations of chemical concentrations.

Second, we employed CLS to analyze the spectra of serum samples. Although CLS

requires complete concentration information about a data set, the component spectra
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obtained by CLS are closely related to the spectra of pure components. This is an

advantage of CLS in spectral analysis. In contrast, the component spectra obtained by PCA

or PLS do not require complete concentration information, but they are orthogonal to one

another and often do not look similar to the spectra of pure components.

We used the concentrations of six chemical components in CLS analysis of 69

serum spectra. It was nearly impossible to know the exact number of chemicals present in

each sample, so the concentrations of chemicals whose Raman signal intensities were

larger than the noise were used. Those six chemicals were glucose, urea, cholesterol,

triglyceride, total protein, and albumin5 . The extracted spectrum of glucose and the

measured Raman spectrum of pure glucose are similar (Figure 4.5), as are the spectra of

urea (Figure 4.6). Also, the Raman spectra of glucose and urea match well with the

published Raman spectra [Schrader 1989]. Several spectral features should be noted. The

Raman band at 1011 cm1 is the most significant band in the Raman spectrum of urea.

However, the extracted Raman spectra are not identical to the pure component spectra. The

dip in the extracted glucose spectrum at 1021 cm 1 is not seen in the Raman spectrum of

pure glucose (Figure 4.5). A Raman band at 1177 cm 1 is not prominent in the extracted

spectrum of urea (Figure 4.6). Furthermore, noise is present over the whole range of the

extracted spectra. These differences are due to the presence of noise in the data set, the use

5 The total protein concentration includes the concentration of albumin. Thus, when CLS
was performed to obtain the spectrum of total protein, concentrations of albumin were not
included. When the spectrum of albumin was to be obtained, the concentration of albumin
was subtracted from the concentration of total protein.
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of an incomplete set of concentrations, and the incapability of CLS in modeling spectral

changes due to sources other than chemical components.

Figure 4.5. Raman spectrum of
glucose experimentally measured
(top) and Raman spectrum of

glucose extracted by CLS from
69 serum samples (bottom).
The . spectra are offset for

comparison.
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Figure 4.6. Raman spectrum of
urea experimentally measured
(top) and Raman spectrum of urea
extracted by CLS from 69 serum
samples (bottom). The spectra
are offset for comparison.
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Although the extracted Raman spectra and the measured Raman spectra of pure

components are not completely identical, the extracted spectra contain the major spectral

features of the pure chemicals. Moreover, CLS extracted spectral contributions of the six

analytes, even when it was difficult to visually extract any information about glucose or

urea at physiological concentrations. This demonstrates the capability of multivariate

techniques in spectral analysis.

Finally, the Raman spectra of components in serum and whole blood were

compared to confirm that the Raman spectrum of a given component remains the same in
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serum and whole blood. The component spectra in serum were extracted from the Raman

spectra of 69 serum samples, as described above. The component spectra in whole blood

were extracted from the Raman spectra of 68 whole blood samples. The concentrations of

glucose, urea, cholesterol, triglyceride, total protein, albumin, and hematocrit6 were used.

Raman spectra of glucose and urea extracted by CLS in whole blood did not have

distinctive spectral features of pure glucose and urea. This is probably due to the small

intensity of glucose and urea signals compared to the background noise and the presence of

additional components in whole blood. For larger molecules, such as total protein,

albumin, cholesterol, and triglyceride, Raman spectra extracted by CLS in serum and whole

blood have similar spectral features (Figure 4.7). However, not all the extracted bands are

identical. The Raman band at 1240 cm 4 in serum was shifted by 14 cm 1 in whole blood,

and new bands around between 1340 cm i and 1390 cmI were seen in whole blood but are

not present in serum. The incomplete concentration information about additional chemicals

present in whole blood, the noise, and the signal changes, which are not modeled by CLS,

may have induced these changes. Also, it can be noted that the signal intensity is lower by

a factor of four in whole blood, which matches well with the decrease of glucose signal

intensity in whole blood (see Chapter 2).

In summary, Raman spectra of serum and whole blood were analyzed. We

confirmed that the Raman spectra of serum and whole blood are a linear superposition of

component spectra. Although the spectral contributions of simple molecules were small,

6 As discussed earlier, hematocrit is the volume fraction of red blood cells. The component

spectrum extracted for hematocrit is related to the Raman spectrum of red blood cells.
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CLS extracted their spectra. Also, many of the Raman spectra of components were closely

related in serum and whole blood, and the signal intensity was smaller in whole blood. The

effect of the intensity decrease is discussed in Section 4.4.

Figure 4.7. Raman spectra. of
total protein extracted by CLS
in serum (top) and whole blood
(bottom).

1000 1100 1200 13e 1400 1s

Raman shift (cm)

4.4 Estimation of prediction error

Section 4.2 discusses multivariate techniques and their application in concentration

measurements. Furthermore, the mathematical definition of the prediction error (RMSEP)

of a data set in concentration measurements was presented. In this section, we derive an

analytical equation for prediction accuracy. The analytical equation explains which factors

determine prediction error. By understanding prediction error better, efforts can be made to

reduce prediction error systematically and scientifically, rather than using a trial-based

approach. The importance of an analytical equation for prediction accuracy or prediction

error has also been emphasized by other researchers [Kleinknecht 1996].
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4.4.1 Derivation of the prediction error equation for a noise-limited

data set

Assume that the noise in the spectral data set is the only source of error. The shot noise

resulting from the fluorescence background is the dominant source of noise in the Raman

spectrum of biological tissue, and the shot noise is the major source of error in studies of

biological samples. We can use Eq. (4.4) to predict concentrations. In matrix notion, Eq.

(4.4) can be written as

C =S-B,(4.15)

where C is the matrix of concentrations of components and B is the matrix of projection

vectors. If we have an accurate B matrix, the noise in the matrix S induces error in

concentrations:

C + ACn, 5 e = (S + SN )-B, (4.16)

where ACnoise is the matrix of error in concentration and SN is the matrix of noise in the

spectrum matrix S. The ratio of C and AC is the prediction accuracy. By subtracting Eq.

(4.15) fromEq. (4.16), we get

ACnoise =SA -B (4.17)

Since the projection vector B is universal, we can insert the projection vector for OLS, Eq.

(4.11), into Eq., (4.17):

ACnoise= S N ' PT T (.8)
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As discussed in Section 4.2, the prediction error of a data set is a standard deviation of the

prediction error for each sample. By using the definition of standard deviation, the

prediction error of the k-th element due to noise, ACnoise,, is

Ac =diag(AC T AC N
noise,k - ykd \ noise n or sll ,(4.19)

where diagk(X) is the diagonal k-th element of a matrix X. Each diagonal element of the

ACnoise T -ACnoise is related to the error in the concentration measurements of each

component. Inserting Eq. (4.18) into Eq. (4.19), we obtain

AcnoseOk= diag [P-P T> P -sj S -*SN -PT  .(P -PTi N (4.20)

In the covariance matrix of shot noise, the diagonal elements are dominant. By using an

approximation, T ' 5:~~n 2. N- I where n is the amplitude of the noise7 and I is the N-

by-N identity matrix, Eq. (4.20) can be greatly simplified.

Ac n(diag4 p. . 21)

The matrix of spectral components, P, contains spectra of pure components at unit

concentrations. We can expand the matrix P so that

Q=ck -P/s, (4.22)

where Q is the matrix of generalized component spectra, s is the signal intensity, and ck is

the average concentration of the k-th component. The signal intensity s is the Euclidean

7 Although this approximation is best in modeling white noise, it can also be used to model shot noise. If the

noise is random white noise, n is the standard deviation of the noise.
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norm [Strang 1988] of the spectrum of the k-th pure component, and s = Vdiagp. PT

Becausing of dividing by s, P/s is purely lineshape without intensity information. By

inserting Eq. (4.22) into Eq. (4.21), we obtain

Ck S(

Acnoisek n diag Q - QT (4.23)

The ratio of concentration Ck and error Ack is the prediction accuracy, and Eq. (4.23)

indicates that there are two significant factors that determine the prediction accuracy: S/N

and spectral overlaps The first term (s/n) is the S/N of the target chemical spectrum. The

prediction accuracy increases linearly with the S/N, which was confirmed in simulations

[Berger and Feld 1997]. The second term, 1 diag Q - Q , describes the effect of the

overlap in component spectra, and is called "overlap factor". When the covariance matrix

of Q has dominant diagonal elements, the spectral overlap is small and the spectral overlap

factor is close to I, its maximum possible value. When the non-diagonal elements are

comparable in magnitude to the diagonal elements, the spectral overlap is significant and

the spectral overlap factor is close to 0. The spectral overlap is affected by the number of

components present in the samples, the resolution of spectral data, and the spectral range of

the data. When the overlap factors were calculated with the component spectra discussed

in Section 4.3, the overlap factors were similar for all analytes. Thus, S/N was the major

factor in concentration measurements in serum and whole blood.

One thing to note is that the prediction error equation (Eq. (4.21) and the prediction

accuracy equation (Eq. (4.23)) are derived for OLS. If it is used to estimate the prediction
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error in other multivariate techniques, such as PLS or PCR, the projection vectors for OLS

and the other technique should be similar. If there are differences between the projection

vectors, Eq. (4.21) and Eq. (4.23) will not provide accurate estimations. Eq. (4.23) was

compared with prediction errors and prediction accuracies of OLS and PLS, and was

validated in a numerical simulation (Appendix B).

4.42 Generalized equation of prediction error

In Eq. (4.23), which was derived on the assumption that the shot noise is the only source of

error, the prediction'error depends on the S/N and the spectral overlap of the spectral data

set. In practice, other error sources contribute to the prediction error, as well. As discussed

in Section 4.2, the error in reference measurements increases the total error. Changes in the

optical system, such as laser power fluctuations and spectrograph drift, may also increase

the prediction error. When concentration errors are due to error sources that are statistically

independent, the errors can be added quadratically, as demonstrated in Eq. (4.8). Thus, the

concentration error observed in an experiment is

ACobserved = ACnoise2 + Acreference + ACothers 2 (4.24)

where ACobseved is the concentration error observed in an experiment, Aciorse is the error due

to noise in the spectra, ACreference is the error in reference measurements, and ACothers is the

error due to other error sources. ACnoise is calculated from Eq. (4.23).

In our studies, only the error due to noise is strongly dependent upon the data

collection time, out of all error sources. The reference error is independent of the data

collection time.. Other error sources, such as the system drift and the laser power
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fluctuation, have different time constants. In our system, the system drift occurs over days

or weeks, and its effect can be considered as a constant during a few hours of an

experiment. Laser power fluctuation occurs on a period of up to a few seconds, and their

effect is averaged over more than a minute data collection time. In Eq. (4.23), the S/N term

is a function of the data collection time and the system sensitivity, while the overlap factor

does not change over time. In our studies, Raman signals and backgrounds increased

linearly with the data collection time, which are formulated as

S=Ss , t and (4.25)

B = Bo t , (4.26)

where s is the intensity of the collected Raman signal, so is the intensity of the Raman

signal collected for one second, B is the intensity of the background, and BO is the intensity

of the background collected for one second, and t is the data collection time in seconds. 'In

our data, s << B, since fluorescence backgrounds are much stronger than Raman signals.

Thus, the shot noise of the background is larger than the shot noise of the Raman signal.

From the statistics of shot noise, we know that the amplitude of the shot noise in the

background is the squake-root of the background. If we assume that the shot noise of the

background is the major noise, we obtain

n = JJ, (4.27)

where n is the amplitude of noise. By inserting Eq. (4.26) into Eq. (4.27), we find

n 7= tB, - (4.28)
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By dividing Eq. (4.25) by Eq. (4.28), we find that the S/N is also dependent upon the data

collection time:

s/ n = So t/BO . (4.29)

In Eq (4.23), the prediction accuracy is linearly proportional to the S/N. The mean

concentration of the component of interest does not change over time. From Eq (4.23), we

find

ACk s/nCk diag Q -QT) (4.30)

and by inserting Eq. (4.29) into Eq. (4.30), we get

Ack CkB s -diagk QQ (4.31

The error due to noise in predicting the concentrations of the k-th component is inversely

proportional to the square-root of the data collection time.

For simplicity, let's introduce two constants, a and b, so that

a= ck B32) diag - (4.32)

and

b = ACreference2 + Co(hers2.4.33)

Then, Eq. (4.24) is reduced to

Acbd a2 /t + b .(4.34)

This equation predicts how prediction errors improve with longer data collection times. It

shows what data collection time is required to obtain what level of prediction error. From
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Eq. (4.34), we can find to which satisfies ato =b , or to = a2 /b 2. When the collection time

is to, the error due to the shot noise equals the error from other sources. The benefit of

increasing the integration time beyond to is small. At 2to the prediction error decreases by

13% from the prediction error at to, and at 4to the prediction error decreases by 21%. Eq.

(4.34) also indicates that prediction errors cannot be zero, even with a very long data

collection time, unless b is zero, as the prediction error cannot be lower than half of the

prediction error at to. Thus, this equation explains the detection limit, how we can approach

the detection limit, and what prediction error can be obtained with a practical data

collection time. Eq. (4.34) is validated with experimental data in Chapter 6.

4.5 Discussion

Multivariate techniques are powerful tools in spectral analysis. The derivation of

prediction error equations provides an insight into how to obtain further improvements.

Noise was found to be the most significant source of error. The prediction error can be

reduced by increasing the S/N of the data. The S/N can be improved by increasing the data

collectiod time or employing a more sensitive collection system. Often, sensitivity and

resolution of a system are associated, and a systematic approach is required to design an

optimal system. The design of an optimal collection system is discussed in Chapter 5.

In Chapter 3, we discussed that light scattering and absorption in human blood

reduce the intensity of the Raman signal. Since the S/N of the Raman signal was reduced

by a factor of four in whole blood and the overlap factors in serum and wvhole blood are
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similar, it was necessary to increase the S/N by factor of four to achieve prediction errors

similar to those obtained in serum samples; which was the goal of the system design

(Chapter 5). The new system achieved the design goal, and the prediction errors obtained

with the new system in whole blood were comparable to the prediction errors obtained with

the previous system in serum (Chapter 6).
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Chapter 5

Design of a high-sensitivity system for

Raman spectroscopy

One of the goals of this research was to develop a Raman technique to measure analyte

concentrations in whole blood. Prior chapters discussed the challenges in making accurate

measurements. Chapter 3 describes how turbidity reduces the intensity of the Raman signal

in whole blood. Monte Carlo simulations were used to explain the mechanism of turbidity

in signal reduction, and experiments were performed to confirm the turbidity effects.

Overall, the intensity of the Raman signal was reduced by a factor of four, while the

background noise did not decrease in whole blood, compared to the intensity in serum.

Chapter 4 presents the effect of reduced intensities on prediction errors. Since a low signal-

to-noise ratio (S/N) was the major source of prediction error, it was necessary to increase

the S/N of Raman signals emerging from whole blood by a factor of four. This chapter

describes in detail how a higher sensitivity system for Raman spectroscopy was developed

and more than a factor of four improvement was made.

Sensitivity is the ratio of the electrical output to the optical input in a system [Federal Standard 1037C]. In

our studies, sensitivity is the ratio of the CCD counts to the excitation power for a specific analyte of unit

concentration.
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5.1 Overview

In the following subsections, the necessity of a high-sensitivity system is explained, and the

design goal of four times higher signal-to-noise ratio (S/N) is presented. Fundamental

concepts in radiometry, the study of radiation measurement, are described, and the

methodology of the system design is discussed. Design of the new system required

optimization of many optical components. Principles of optics and an optical design

software used in the design process are also presented- After the new system was designed

and built, its performance was demonstrated in an experiment. Finally, future directions are

discussed.

Table 5.1. SI units employed for physical quantities in radiometry
[Nicodemus 1963, Boyd 1983, Holmes 1984, McCluney 1994, FS 1037C]

Quantity

Radiant energy

Radiant power (Radiant flux, Energy flow rate)

Plane angle

Solid angle

Radiant intensity.2

Irradiance
(Radiant emittance, Radiant exitance, Energy fluence rate)

Radiant exposure (Energy fluence)

Radiance

Radiant energy density

Unit

Joule

Watt

Radian

Steradian

Watt/sr

Watt/in2

Joule/m 2

Watt/m 2sr

Joule/m3

2This is not the "intensity of light," which is the amount of energy that crosses per second a unit area
perpendicular to the direction of the flow [Born and Wolf 1980].
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Physical quantities in radiometry have been named in different ways [Steel 1974,

1975]. For clarity, Table 5.1 summarizes key physical quantities in radiometry.

5.2 Background

As discussed earlier, the intensity of the Raman signals in whole blood was reduced by a

factor of four, because hemoglobin absorbs photons and the system was not optimized to

collect Raman signals emerging from a turbid medium. However, we did not see much

change in background between serum and whole blood measurements. The major sources

of the background fluorescence were optical components in the optical system, as many

optical components, especially holographic filters, fluoresce strongly. A typical

fluorescence background was much stronger than any Raman signal of blood analytes at

physiological range. As the shot noise of the background was the dominant source of noise

in spectra of serum and whole blood, noise levels were not much different in serum and

whole blood. Accordingly, the signal to noise ratio (S/N) was also reduced by a factor of

four in whole blood, and our immediate goal was to increase the S/N by a factor of four.

We aimed to accomplish this goal by designing a new system for Raman spectroscopy of

blood analytes. The sensitivity had to be enhanced, and perhaps the noise could be reduced

as well. Another consideration in the system design was to make it modular so that any

future improvements can be easily accommodated. Especially for future measurements in

blood-tissue matrix, different light collection optics might be necessary, and the new

collection optics can simply replace the current collection optics.

149



In addition to making a more sensitive instrument, there are other methods to

increase the signal intensity and reduce the noise, such as increasing the excitation power,

increasing the probability of the Raman scattering for each excitation photon, and filtering

noise. These methods were carefully analyzed with considerations for safety, efficiency,

and practicality.

Increasing the excitation power guarantees a signal increase. This is because more

excitation photons are available for Raman scattering with increased excitation power.

When more excitation photons impinge on the sample, more Raman-scattered-photons

emerge. However, high excitation power can damage the sample. In biological samples,

photobleaching, protein denaturation, and photocoagulation are caused by high power laser

excitation, and collected data cannot be trusted when samples are damaged. Therefore, it is

not desirable to increase the excitation power beyond a certain level, since it increases the

risk of photodamage. Considerations of excitation power are discussed further in Chapter

7.

The probability of Raman scattering for each excitation photon is a function of two

parameters: concentrations of the molecules and Raman cross-sections. The probability can

be enhanded by increasing any of these two terms. However, it may not be practical or

feasible to increase these terms in vivo. The concentrations are the quantities to be

measured, and they cannot be changed. In principle, surface enhanced Raman scattering

(SERS) can increase the intensity of Raman signals [], but it requires SERS active particles,

such as gold or silver colloids, making SERS measurements in vivo potentially unsafe.
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In addition, there are other methods to improve S/N. Fourier filters may be

employed to remove noise when the frequencies of the noise and the signal are different.

However, Fouriet- filters worsened prediction accuracies in our studies, since it was difficult

for Fourier filters to selectively remove noise without affecting the Raman signals (Chapter

4). Another method is to collect spectra for a longer period of time. Since the signal

increases linearly with the collection time and the shot noise increases as the square root of

the collection time, S/N improves with longer collection time.

However, other types of error sources, such as flicker noise, which has a strong low-

frequency .omponent, will become a dominant noise and reduce S/N if collection time is

extended beyond a certain level. The flicker noise has strong noise at low frequencies

[Yariv 1997], and its effect is more significant for long collection time. The flicker noise is

due to instability in the system. It was observed in the previous system vhen the laser

became unstable after its lifetime, but was eliminated by replacing the laser. The effect of

flicker noise could be also reduced by frequency modulation [Haykin and Veen 1998].

Even if there were no flicker noise, it would be necessary to collect spectra for 80

minutes to increase S/N in whole blood by a factor of 4 from five-minute data, and 80-

minute data collection is not practical in clinical settings.

Without severe flicker noise, the fluorescence background generates the dominant

shot noise, and the fluorescence background is mainly generated by optical components and

the quartz cuvette. In order to reduce the fluorescence generated by the 'quartz cuvette,

several materials were tested to substitute quartz. It was found that certain types of

magnesium fluoride (MgF2) crystals (MooseHill, NJ) are optically clear for the wavelength
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range of interest, and does not generate fluorescence. A cuvette was manufactured out of

MgF2. A regular cuvette was drilled, and a MgF 2 flat was attached by a soft glue. After

each measurement, the MgF 2 flat was disassembled from the cuvette for cleaning and

decontamination (of biohazard materials). However, a substantial background due to other

optical components was still collected with the MgF2 cuvette, and the difficulty of

manufacturing the cuvette during clinical experiments discouraged further use of MgF2

cuvettes.

Thus, we found that increasing the sensitivity of the system and reducing

fluorescence background is a good method to increase the signals. This approach is

independent of laser excitation power, and it does not require any manipulation of samples

or introduction of additional chemicals to the samples. The collection efficiency is

determined by the instrument, and advanced optical technologies can improve the

collection efficiency.

As a result, developing a high sensitivity system is the most practical method to

increase S/N and the best method to improve the prediction accuracy in whole blood. The

following subsections discuss how such a system was designed and what performance the

new system delivers.

5.3 Methodology

To develop a system with high sensitivity, we employed the following approach. First, we

identified the efficiency of each component in the instrument. Second, a delivery geometry

of excitation beam was selected which would confine the radiance distribution of Raman
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signal to a small area at the sample surface. Although the sensitivity would increase with

the confined radiance distribution, focused excitation radiance damages samples, and the

sample damage threshold was also considered. Sample geometry was also considered.

Since our samples consisted of whole blood contained in a cuvette, the sample geometry

was simple and easily amenable to calculations. The surface distribution of Raman signals

in whole blood was characterized. The radiance distribution measured in Chapter 4 was

used. Third, the detector and spectrograph were analyzed. Both throughput and efficiency

were considered. Fourth, an optical component was selected to transform the collected

circular light to a linear beam. Fifth, an optimal collection geometry was calculated for the

known radiance distribution of Raman signals. The optimal collection spot size and

collection angle were the factors determining the collection geometry, based on the

conservation of radiance. The calculation optimized the collection spot size and the

optimal collection angle for the surface distribution of Raman signals in whole blood.

Sixth, the optical components to collect signal within the given optimal collection geometry

were selected. Many imaging optical components cannot collect light in the optimal

collection geometry. The designed collection geometry was implemented by using non-

imaging collection optics. The non-imaging optics that delivers the best collection

efficiency was selected by using optical design software. Many commercially available

non-imaging components were tested numerically, and we chose the component that

provides the optimal collection efficiency and also collimates the collected light. Seventh,

the collimated light was passed through a notch filter to block the excitation light, and the
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filtered light was focused onto the fiber bundle. The new system was designed to be four

times more sensitive than the previous system.

5.3.1 Conservation of radiance

The conservation of radiance is the main optical principle used in design of the new system.

Two quantities, brightness and throughput, are defined in this discussion of conservation of

radiance.

The conservation of radiance theorem is based on Abbe's sine condition in optical

systems. For a well-'corrected optical system Abbe states that

nsinO1,h, =nsinO02h, (5.1)

where n is the index of refraction, 0 is the ray angle from the optical akis, and h is the

height of the source or the image (Figure 5.1). The subscript 1 is for the source plane, and

the subscript 2 is for the image plane. Abbe's theory can be derived via geometric optics

[Klein 1986].

1n

01 
h2

Figure 5.1. Diagram of Abbe's sine condition

From Eq. (5.1), we can take the squares of the both sides of the equation, and get
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n2 h2sin 0, = n 2 h2 sin0 2..

For circular sources with axial symmetry (i.e. without dependence on the azimuthal angle)

with radii h, and h2 , we can show that

A, = rh and A, = rh2, (5.3)

where A1 and A- are the areas of the circular sources. By inserting Eq. (5.3) into Eq. (5.2),

we derive the throughput theorem,

n2 A sin2 01 = n2 A2 sin0 2 , (5.4)

where each side of Eq. (5.4) is the throughput, T, of the system at each plane [Boyd 1983],

and the throughput is sometimes called 6tendue or luminosity [Steel 1974, 1975]. The

throughput at the source plane and the image plane are equal. Additionally, the throughput

theorem can be derived by using a Hamiltonian [Born and Wolf 1980], and can..be

explained as an analogy of the Liouville theorem in statistical mechanics [Welford and

Winston 1989].

In practice, a system is said to conserve throughput when there is no vignetting, or

blocking of light, between the source plane and the image plane. In a system that conserves

the throughput from the source plane to the image plane, the throughput should also be

conserved at any plane between the source plane and the image plane along the optical axis.

Thus, Eq. (5.4) is true for any two planes in a throughput conserving system.

Furthermore, we can consider the throughput theorem in terms of the energy of the

light transmitted. Radiance (also called brightness) is the power of light transmitted

through a unit area per unit solid angle. When all light is transmitted through the optical
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system, the radiance is also conserved along the optical path, and this theorem is called the

conservation of radiance. The throughput theorem and the conservation of radiance

describe two different aspects of the same principle in terms of the instrument and the

energy.

When the two planes are in the same medium (typically in air), the indices of

refraction n, and n2 are equal, and Eq. (5.4) is reduced to

r=A1 sin2 01 = A 2 sin2 02, (5.5)

where r T/n 2 and n = n, = n,. Eq. (5.5) shows the relationship between the collection

area and the collection angle in an optical system that conserves the throughput. To

simplify the equation, we can define the projected solid angle as Q = sin2 0.3 Inserting

this definition into Eq. (5.5), we get

r=A1 Q 1 =A 2 Q 2  (5.6)

The throughput of an optical system is determined by the optical element with the

lowest throughput. In a spectroscopy system, the spectrograph is often the element of the

lowest throughput, and we wanted to use the spectrograph with the highest throughput.

5.3.2 Delivery of excitation beam

In highly turbid samples, such as whole blood, most Raman-scattered photons cannot

penetrate more than a few millimeters, and they are strongly attenuated after transmitted

through an optically thick sample. In such geometry, the most efficient method to collect
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Raman-scattered photons in the optically thick sample is to collect photons from the same

side on which the excitation photons impinge. When excitation and collection are

performed on the same side of the sample, the geometry is called "single-ended". This

single-ended geometry is also applicable to friture in vivo studies, as Raman scattered

photons rarely traverse through optically thick medium.

Delivery geometry plays an important role in determining the radiance distribution

of excitation light and Raman signals. A narrow and focused beam can be used to obtain a

confined distribution of Raman signals, while a broad and diverging beam can be used to

obtain broadly distributed Raman signals. in order to collect light efficiently, it is desirable

to confine the radiance distribution of Raman signals to a small region, as it is difficult to

collect light efficiently with broadly distributed Raman signals, due to the limited

throughput of the optical system. However, the number of Raman-scattered photons cannot

be increased without affecting the number of absorbed photons in a given geometry. As

Raman scattering is focused into a smaller region, thermal energy is deposited into a more

focused region. In prior studies, thermal damage to whole blood samples was frequently

observed with a 100 tm excitation spot at 300 mW. Thus, we decided to increase the

excitation spot size to prevent sample damage. As a result, the collection efficiency was

not as high as with a narrow beam excitation, but more reliable measurements were

performed without damaging the samples. Collection efficiencies of narrow beam

excitation and broad beam excitation are compared in Section 5.3.4.

3 Q* is often mistaken for the geometric solid angle, Q = 2rc(1 - cos 0). For small angles, the projected solid

angle and the geometric solid angle converge. For larger collection angles, the projected solid angle should
be used for accurate'throughput calculations.
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5.3.3 Selection of spectrograph and detector

In a spectroscopy system, the spectrograph and the detector often play an important role in

determining system throughput and the efficiency. Since we wanted to develop a high

sensitivity spectroscopy system, a combination of a spectrograph and a detector that

delivers the good throughput and efficiency was preferred.

We considered three types of spectrometers: dispersive, interferometric, and filter-

based. In a dispersive spectrograph, the throughput is often determined by the slit width,

the height of the active area in the detector (e.g. charge-coupled-device (CCD) array

camera), and the acceptance angle of the optics. The advancement of volume holographic

components made high throughput dispersive spectrographs available [Tedesco et al. 1993].

When combined with a large CCD camera, this type of spectrograph provides the highest

throughput among the commercially available spectrographs, to the best of our knowledge.

Holographic gratings also have a comparable efficiency (the ratio between incoming and

emitted photons) to conventional gratings (up to ~80%). One issue in using a dispersive

spectrograph is the collection of light emerging from a circular area with a narrow and long

slit. Without proper transformation of light, a portion of the emitting light is blocked by the

slit. The use of transforming optics can resolve this issue, and bring the efficiency of light

transmission in a dispersive spectrograph to a value comparable to that in an interferometric

spectrometer.

A typical interferometric spectrometer [Wilson 1995] has a throughput comparable

to that of a dispersive spectrograph. The major benefit of employing an interferometric

spectrometer is that a single channel detector, which is cheaper and enables faster data
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reading than a multi-channel detector (e.g. a CCD camera), can be used. However,

interferometric spectrometers often have moving components, which often require frequent

alignment and raise difficulties in positioning the moving components with good reliability

(the precision has to be well under the wavelength scale). Accordingly, interferometric

spectrometers are more often used in wavelengths longer than the wavelength of our

interest.

Filter-based instruments can deliver the highest throughput, since large size optical

filters are available and filters can provide reasonable performance even for non-collimated

light [Dou, 1997]. The challenge in developing filter-based spectrometers is to provide high

resolution multi-channel information to distinguish chemicals. The spectrograph in the

current system provides 25 cm resolution over the wavelength range between 830 nm and

1000 nm, and this would require at least 80 optical filters. Employing so many optical

filters would be unwieldily expensive, and losses would greatly decrease the efficiency of

such a system.

Thus, we chose to use a dispersive spectrograph with holographic components

(Kaiser Optical). The spectrograph used in the previous experiment (Chapter 2) still

remains as the state-of-the-art spectrograph. In our spectroscopy system, the throughput of

the spectrograph limits the throughput of the system. The collection angel (15.50) was

limited by the optics in the spectrograph (f/1 .8), and its corresponding 0f was 0.07 (Eq.

5.5). The limiting collection area was the product of the width and height of the optical slit.

The slit height was limited to 15 mm by the optics and the grating in the spectrograph. As

the magnification of the spectrograph was 1.13, the height of the slit corresponded with the
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CCD detector height, 17 mm. We employed the largest CCD camera (25 mm x 17 mm) at

a good efficiency (- 25%). Although smaller CCD cameras with higher efficiency ( as high

as - 80% for the wavelength region of our interest) could be used with cylindrical lenses,

aberrations and losses due to the use of such lenses would reduce the efficiency of the

system.

The slit width determines the spectral resolution and the system throughput (Eq.

5.4). A too-wide slit results in a high-throughput low-resolution system. A high

throughput system can collect signals more efficiently. The low-resolution spectra have

many overlapping spectral features. While a lower S/N works favorably with respect to

prediction accuracy, prediction accuracy can be adversely influenced due to spectral

overlap (see Chapter 4), and the spectral overlap may become the dominant factor in

prediction error. A too-narrow slit results in a high-resolution, low-throughput system.

The high-resolution spectra have sharp, distinct spectral features. However, the S/N of

spectra collected by a low throughput system is low. While the spectral features can be

separated easily, low S/N may become the dominant error source (see Chapter 4). The

optimal system can be found somewhere in between these two extremes.

In order to approximately determine the optimal slit width, a numerical simulation

was performed. Instead of using optical slits of various widths, the Raman spectra of

human serum samples were numerically binned with a range of bin sizes, and spectral data

sets of various resolutions were obtained. PLS analysis (Chapter 4) was performed, and

glucose concentrations in the spectral data sets were predicted.
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Figure 5.2 shows the prediction error for various bin sizes. For the small bin size

range, the prediction error decreases as the bin size increases, because increasing the bin

size effectively reduces the influence of spectrograph drift and increases S/N of each data

point. For the large bin size range, the prediction error increases as the bin size increases,

because the spectral overlap becomes more significant with larger bin sizes. The previous

system had an 8 cm 1 resolution with a 100 pLm slit. While prediction error was the

minimum with the eight pixel bin size, which corresponds to 16 cm 4 resolution, the

prediction error increased by 10% from the minimum when the bin size was increased to 12

pixels, which corresponds to 25 cm 1 resolution. Instead of using a 100 ptm slit and

binning, the same 25 cm 4 resolution was achieved by using a 300 pim slit without binning.

This increased the system throughput by factor of three, which can potentially improve the

prediction accuracy by 73% (Chapter 4). Including the 10% prediction error increase due

to the lower resolution, the net increase of the prediction accuracy was predicted to be 63%.
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Based on this calculation, the slit width was determined to be 300 pm. The limiting

collection area is then 4.5 mm2 , and the limiting collection angle is 15.50 for the f/1.8

spectrograph. The corresponding projected solid angle is 0.07. For an optical system

whose throughput is limited by this spectrograph, Eq. (5.6) is reduced to

rAiQ1I=A 2 Q,

= 4.5 mm2 x 0.07 (5.7)

= 0.32 mm,

5.3.4 Collection of Raman scattered light

For a given spectrograph throughput, the task was to design optics that collects Raman

scattered light from whole blood. As the dispersive spectrograph was employed, we

needed optics to transform the light emerging from a circular source to a line. An optical

fiber bundle was used to serve as the transforming optics, and it was designed to conserve

the throughput of the spectrograph. Within the limitation of the given spectrograph, the

collection geometry was optimized. In the calculation of the optimized collection

geometry the surface distribution of Raman light obtained from an experiment and a Monte

Carlo simulation (Chapter 3) was used.

Optical fiber bundle

The shape of the optimized slit did not match the shape of the spatial distribution of Raman

signals. The shape of the new entrance slit was a narrow and tall rectangle (0.3 mm x 15
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mm), whereas the spatial distribution of the Raman signal was axially symmetric (Chapter

3).

The rectangular slit is not an ideal aperture for transmitting light emerging from a

circle, since it blocks most of light. If the new slit is used, 58% of light emerging from a

circle of 0.9 mm diameter, which is the full-width-at-half-maximum (FWHM) of the

Raman signals emerging from whole blood (Chapter 3), is blocked by the slit.

Therefore, as with the past system, an optical fiber bundle was used to covert the

light emerging from a circular source into the narrow and tall image of the slit. The fiber

bundle hadthe same collection area (4.5 mm2 less the packing loss) and the same collection

angle (15.5 0) as the spectrograph, and hence maintained the throughput of the system.

Furthermore, the fiber bundle can be flexible, which is a desirable feature in future in vivo

measurements.

The fiber bundle was custom made by Romack with 61 optical fibers in a five-layer

structure (Figure 5.3). The core diameter of each optical fiber was 300 tm to match the slit

width, the outside diameter of the cladding was 330 pm, and the outside diameter of the

buffer (protective layer) was 360 pam. The fibers on the entrance side of the bundle were

packed in a near-circle, and the fibers on the emitting side of the bundle were packed

linearly. On the entrance side, the inner three layers were hexagonally packed to ensure the

highest packing fraction (the ratio of the fiber core area to the total area), and the outer two

layers were roundly packed to facilitate the assembly process. To increase the packing

fraction, the buffer of each fiber was stripped. On the entrance side, the packing fraction of

the fiber bundle without the buffer was 0.6224. The packing fraction would be 0.5230 if
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the fibers were not stripped. On the emission side, the packing fraction of the stripped fiber

bundle was 0.7151. If the fibers were not stripped, it would be 0.6545. As a result of

stripping the buffer, optical fibers became fragile, and three optical fibers were damaged

during the assembly of the bundle. However, the damaged optical fibers did not affect the

collection efficiency in this system, since the current CCD detector can image only 45

fibers. Although the current CCD camera can image a vertical bundle of 45 33 0-tm fibers,

the fiber bundle was made with 61 optical fibers for future employment of a taller CCD

camera. The diameter of the entrance side of the fiber bundle was 3 mm, and the height

and width-of the output side of the bundle were 21 mm and 0.3 mm, for the active area.

The NA of the fiber was 0.28, selected to match the NA of the spectrograph. This

eliminated the need for any connection optics, and any optical loss associated with the

connection optics was also eliminated.

Figure 5.3. The input end (left) and output end (right) configuration of 61
fibers in the fiber bundle. The inner three layers are hexagonally packed
(honeycomb packing), and the outer two layers are roundly packed in the
input end. 61 fibers are arranged linearly in the output end.

Calculation to optimize the collection efficiency
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In order to calculate and optimize collection efficiency, we had to know the radiance

distribution on the sample surface of whole blood samples. However, radiance is a function

of angle and position on the surface, and it was difficult to measure radiance at all angles

and positions. In Chapter 3, we measured the radiance distribution of whole blood at

certain angles and positions, and the Monte Carlo simulation results matched well with the

radiance distribution. With an approximation in the coupling of the spatial and angular

radiance distribution, collection efficiencies can be calculated from the limited

measurement data. The collection efficiencies calculated with the measurement data and

the simulation results provided similar collection efficiency curves.

With the system throughput determined, the optimal collection geometry can be

calculated by trading off the collection spot size and the collection angle so that the

throughput is conserved. The radiant power of Raman signals collected from the sample

can be formulated as

S = P J JR(r,O)dAdQ, (5.8)

where S is the radiant power of the Raman signal (W), P is the radiant power of the

excitation light (W), R is the radiance (1/m2s) distribution function of the Raman signal.at

the surface of the cuvette containing whole blood sample for 1 W excitation radiant power,

r is the radial position on the surface (pm), and 0 is the collection angle (degrees). The

radiance of the Raman signal, R, is a function of r and . While R is also a function of the

geometry and optical properties, for simplicity, it is assumed that the geometry is a single-

ended semi-infinite medium and that the optical properties are fixed.
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By replacing A and D with functions of r and 0, Eq (5.8) becomes:

S = PJJ21rrr-27rsino0-R(r,0)-drdO. (5.9)

The excitation radiant power is independent of the collection optics, and we can

define a new variable, collection efficiency, E, as S/4rP. By inserting Eq. (5.9) into this

definition, we derive:

8= Jr sinO0 -R(r,0) -drdO. (5.10)
c 

8
c

If we assume that t~le Raman energy distribution function R can be expressed as a product

of two, separate terms, R, and R2 , Eq. (5.10) can be expressed as:

E = fr sin o- R,(r)R,(0) - drdO, (5.11)
rc

where R1 is the normalized irradiance distribution function (1/m 2 ), or spatial distribution

function, and R2 is the normalized radiant intensity (1/sr), or angular distribution function,

of Raman signal on the whole blood surface. Since R, is independent of 0 and R2 is

independent of r, Eq. (5.11) can be rearranged into:

8= JrR(r)-drjsinO -R,(0)-dO. (5.12)
rc O

The spatial and angular distributions of Raman signal on the whole blood surface

were measured in Chapter 3. If we aim to use a 100 ±m diameter excitation beam, we can

use the measured distribution functions as R, and R2 in designing the collection optics for

whole blood samples. The beam size affects the irradiance and the radiant exposure, which

are related to sample damage. This is discussed further in a later part of this section.
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As discussed earlier, the throughput is determined by the spectrograph, and the

maximum signal intensity can be obtained by trading off the collection area and the

collection angle. For a given radius of a spot, its area is defined as

A = 7r 2 . (5.12)

The corresponding collection angle within the system throughput can be calculated from

Eq. (5.7):

90.32
. = 2(5.13)
Y'4C

Figure 5.4 shows Ac'and the collection angle calculated from k* as functions of the radius

of the collection spot r in an optical system whose throughput is limited by the throughput

of the spectrograph. In single-end light delivery-collection geometry, the collection angle

cannot be greater than 900. The throughput is not conserved when a collection spot radius

is less than 0.3 mm due to this geometrical constraint.

(a) (b)
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Figure 5.4. The area A, (a) and the collection angle QC (b) are functions of the radius of
the collection spot, r, in an optical system whose throughput is limited by the throughput of

2the spectrograph. The throughput is 0-.32 mm.
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The area integration and the angular integration of the distribution of Raman signal

on whole blood surface can be performed using the distribution functions measured in

Chapter 3. Figure 5.5 displays the calculation of the area integral, rR1 (r) -drand the

angular integral, Jsin 0 -R, (0) - dO. Since ! is always 1 when the spot radius r is less
Oc

than 0.3 mm, the angular integral is also constant for the region where the radius is less

than 0.3 mm.
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Figure 5.5. The area integral (a) and the angular integral (b) for Raman signals emerging
from whole blood in an optical system whose throughput is limited by the throughput of the
spectrograph.

As shown in Eq. (5.12), the collection efficiency e is the product of the area integral

and the angular integral; using the results of Figure 5.5, we obtain the collection efficiency

curve of Figure 5.6. The maximum collection efficiency can be achieved by collecting

signals from a 0.31 mm radius spot and its corresponding collection angle, 90 . This is

due to the fact that Raman light emerges from the whole blood surface at wide angles, the
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maximum collection efficiency is available by collecting light from all angles and a small

region of high radiance rather than from a spatially spread distribution and a narrow angle

range. This optimal collection geometry collects 34% of the total Raman photons emerging

from the whole blood surface. In a similar manner, the maximum collection efficiency of

the previous system (throughput 0.11) was calculated to be 12% (Figure 5.7). However, the

previous system was not operating with the maximum collection efficiency, and its

collection efficiency was slightly lower, 11%. The maximum collection efficiency of the

new system is a factor of 3 greater than the efficiency of the previous system.
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In this calculation, we assumed that the spatial-angular distribution of Raman

signals is the product of the spatial distribution and the angular distribution, and that the

spatial distribution and the angular distribution are independent of each other. This

assumption was made to simplify the calculation. However, the spatial distribution and the

angular distribution are slightly coupled in turbid samples. The angular distribution of

Raman signals near the excitation spot is narrower than the angular distribution at a point

distant from the excitation spot. To test the accuracy of this simplified calculation, the

collection efficiency curve was generated using Monte Carlo simulation results and

compared.. Since Monte Carlo simulations provided angular and spatial distributions of

Raman signals for each angle and radius, the collection efficiency was calculated using Eq.

(5.9), instead of using its approximate form, Eq. (5.12). Figure 5.8 shows the collection

efficiency curve generated by using Monte Carlo simulation results. The 33% collection

efficiency can be achieved by collecting signals from a 0.35 mm radius spot. This

collection geometry is similar to the calculation results in Figure 5.6 obtained by using Eq.

(5.12). Discontinuities in the large radius region (> 0.35 mm) are due to the discrete

manner in which Monte Carlo simulation results are reported. At a larger radius (- mm),

the collection efficiency obtained by the approximate calculation is about half of the

collection efficiency obtained with the Monte Carlo simulation results. This indicates that

the approximation does not hold for data points at large radii, as the angular distribution

becomes dependent on the spatial distribution in such regions.
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Optimization of the collection efficiency with consideration for sample damage issues

The calculation above assumed a 100 pmx 100 tm square excitation beam geometry. The

diode laser delivers a-280 mW excitation beam to the sample, and the irradiance can be as

high as 2.8 kW/cm2 when the excitation beam is focused onto a 100 pmxlOOtm square

region. In prior studies, this high irradiance beam easily damaged whole blood samples

even at short exposure times (<10 second), and it was difficult to perform reliable

measurements. Since we wanted to collect Raman signals for up to the same data

collection time as in the previous experiment (300 seconds), we chose to increase the

excitationbeam spot size in the experimental setup to reduce the irradiance of the excitation

beam on the sample surface close to the level (40 W/cm2 ) tested for laser safety in in vivo

applications at a similar near-infrared wavelength (785 nm) [Shim and Wilson 1996]. We

could obtain a 28 W/cm2 irradiance by expanding the excitation beam in the experimental

setup to a I mmx 1 mm spot. With this reduced irradiance, no visible damage was observed

in whole blood samples. However, the excitation energy was distributed over a larger area,
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and the Raman signal distribution was broader. Since the system could not collect photons

from a larger area and at the same angle with the same efficiency, the broader distribution

of Raman signals reduced the collection efficiency.

The collection efficiency was calculated for the 1 mm excitation beam. The spatial

distribution of Raman signal RI, measured for a narrow 100 jim excitation beam (Chapter

3), was numerically convoluted over a I mmxl mm square area, and we obtained a new

distribution function of Raman signal, R'. The computation of the area integral and the

collection efficiency was performed using R,' in the same manner as described above.

Figure 5.9-shows the collection efficiency as a function of the collection spot radius.

The maximum collection efficiency was achieved by collecting the photons from a

0.31 mm radius spot and its corresponding collection angle, 90'. The maximum collection

efficiency with a 1 mm excitation spot (21%) was reduced by 36%, compared to -the

collection efficiency with a narrow excitation beam (33%), but was still higher than the

collection efficiency of the previous system (11%) (Chapter 2). However, the irradiance on

the sample was lower, and the risk of sample damage was reduced. Further investigation of

the safe level of irradiance and radiant exposure may reveal that an excitation spot smaller

than 1 mm diameter at a higher irradiance could be applicable without sample damages,

and it may lead to a large signal.
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5.3.5 Selection of optical components

Figure 5.15 shows the schematic diagram of the new experimental system. This section

discusses selection of optical components based on the design specifications determined in

the previous section.

Paraboloidal Sample
MirrorI

Laser -W

Holographic
Bandpass Filter

Holo graphic
Notch Filter

Optical Fiber
Bundle

Spectroqraph

Figure 5.10. Schematic diagram of a new system employing a
paraboloidal mirror for efficient light collection. The coupling optics
between the optical fiber bundle and the spectrograph is also optimized.

From the collection efficiency calculations, it was concluded that the collection

efficiency can be maximized by collecting Raman signal emerging from 0.31 mm radius

spot with 900 collection angle. Although collection of light at 900 angle is not feasible in

practice, the design goal was to find optical components that collect light in a manner close

to the given geometry. This performance is not commonly available with many imaging
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optical components. Single lenses can typically collect light up to 300. Also, dry reflective

objectives cannot collect light at a collection angle wider than 30 [Born and Wolf 1980].

Typical dry microscope objectives have a numerical aperture (NA) up to 0.7, which

corresponds to a 450 collection angle. Many water-immersion or oil-immersion objectives

can collect light up to a wider collection angle. However, such high angle collection optics

have a limited field of view, and they cannot collect light from a spot with a diameter as

large as 0.62 mm. A typical water-immersion microscope objective can collect light from a

200-jam diameter spot at 650 collection angle.

There are optical components that pmovide higher collection efficiencies. Those

optics cannot deliver images, and thus, are called non-imaging optics [Welford and

Winston 1989]. Among those, paraboloidal and ellipsoidal mirrors are commonly used in

lighting instruments, as these can be manufactured easily. Paraboloidal mirrors collimfate

light emerging from a focal point, as in a searchlight, and focus collimated light onto a

spot, as in certain types of telescopes. Ellipsoidal mirrors collect light emerging from a

focal point and focus the collected light onto another focus. Compound parabolic

concentrators (CPC's) are also powerful elements in radiometry. CPC's are designed to

collect light at any desired collection geometry, and are often used as solar energy

concentrators [Welford and Winston 1989]. They can, theoretically, collect light from a

large area and at a wider angle. However, CPC's need to be manufactured with tight

tolerance, and it is difficult and costly to make such a small precision optics [Tanaka 1996].

For our high-sensitivity system, a paraboloidal mirror was selected as the collection

optics, since paraboloidal mirrors can collect light from a large angle and collimate the
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collected light, as the collected light has to be collimated before being filtered by a

holographic notch filter. Furthermore, paraboloidal mirrors are commercially available and

easy to purchase To place the sample at the focal point, one half of a paraboloidal mirror

was used in an off-axis paraboloidal configuration (Figure 511).

Figure 5.11. The diagram of one half of a paraboloidal mirror (left). The diagram of off-
axis configuration of a paraboloidal mirror (right). The mirror (thickline) collimates rays
(thin line) emerging from its focal point (dot).

An optical design software, Zemax (New-Focus Software, AZ), was used to select

the optimal combination of a parboloidal mirror and a lens. The model of the optical

system in Zemax included a light source (a spot of a given radiance distribution function), a

paraboloidal mirror, a focusing lens, and a fiber bundle (Figure 5.12). We used the light

source mimicking the measured surface distribution of the Raman scattered light emerging

from the source (Chapter 3). The size of the detector was chosen to match the size of the

fiber bundle for the new system. We varied the size and curvature of the paraboloidal

mirror, and the size and power of the focusing lens. The size and curvature of

commercially available paraboloidal mirrors were obtained from product catalogues. The

size of the lens was varied between 1" to 3", and the NA of the lens was matched to the NA
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of the fiber bundle (and the spectrograph), 0.28, in order to put limitations on the

acceptance angle. Collection efficiencies were calculated by Zemax for a various

combination of the variables.

rays of Raman light
emerging f h dlens

2 mm
diameter tip
of the fiber

bundle
paraboloidal

mirror

Figure 5.12. Zemax model of the collection optics. The optimal combination
of a paraboloidal mirror and a lens was selected by Zemax calculations. See
Figure 5.13 for the image of light collected on the tip of the fiber bundle.

Figure 5.13 shows some images of light collected on the entrance end of fiber

bundle. When the generation of Raman scattered light is confined and the source is small

(0.3 mm diameter circle), the collection optics can collect up to 54% of Raman scattered

light emerging from the whole blood surface. When the source is broader and the surface

distribution is close to that measured in blood (a 1.0 mm diameter circle), the collection

optics can collect up to 36% of Raman scattered light, which matches well with the

maximum collection efficiency calculated by the numerical approximation and the Monte

Carlo simulation results (Figure 5.6 and Figure 5.8).
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Figure 5.13. The image of light collected on the fiber bundle, from a 0.3 mm diameter
source (left) and from a 1.0 mm diameter source (right) obtained by Zemax calculations.

The final design from the Zemax calculation included a paraboloidal mirror with its

focal point-placed 0.625" from the vertex, and the length of the mirror was 2.8" (3.01" from

the vertex to the end) (Figure 5.14). The paraboloidal mirror (manufactured by

ORC/PerkinElmer) was electroformed, and cut 0.5" inside the optical axis to facilitate

placing a sample at the focal point of the mirror. As a result, the paraboloidal mirror could

collect light from a 1 mm spot at up to 800 collection angle on the vertex side and up to 450

on the opposite side. The working NA of this paraboloidal mirror was 0.9 (Born and Wolf

1980]. The inside surface of the paraboloidal mirror was coated with gold to maintain high

reflectivity for the target wavelength region between 830 nm and 1000 nm, and 85%

reflectivity was obtained.
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2.74"

.3.01"

Figure 5.14. Zemax model of the paraboloidal mirror design

To block photons at the excitation wavelength in the collected light, a 2" diameter

holographic notch filter (Kaiser Optical Systems) was placed. The light, nearly collimated

by the paraboloidal mirror, was filtered the notch filter. A 2" aspheric lens (Melles-Griot)

was used to focused filtered light onto the fiber bundle (Figure 5.15). The combination of

the selected paraboloidal mirror and lens can deliver 36% collection efficiency for Raman

signal from whole blood irradiated by a focused beam.

2"
2 mm diameter

tip of the
fiber bundle

3.5"

Figure 5.15. Zemax model of a typical focusing lens
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5.3.6 System specifications

In the new system, the diode laser generates the excitation beam at 830 nm. The laser

operates in multi-mode, and the beam is filtered to remove wavelengths other than 830 nm.

A 100 mm focal length lens focuses the beam onto a prism. A small 1 mmx 1 mmxl mm

prism was selected to minimize the shadowing of the collected Raman signals. Less than

3% of the collected Raman signals were blocked by the prism and its holder. The prism

was located so that the excitation beam reflected by the prism was again focused by the

paraboloidal mirror. and the beam size was 1 rnmx 1 mm at the focal plane of the mirror.

The laser beam intensity was 280 mW at the sample plane. A sample was placed

perpendicular to the optical axis, and the mirror collected Raman signals from the sample.

A notch filter removed the excitation light, and the Raman photons were focused onto the

optical fiber bundle. On the entrance side, the fibers were grouped in a hexagonal array to

maximize the packing fraction (0.6224), and arranged in a line shape on the other side to

match the shape of the slit of the spectrograph. The Raman signals were delivered to the

spectrograph, and the grating dispersed light as a function of wavelength. The CCD camera

converted.the Raman photons to electrons and counted the number of electrons. The CCD

counts were converted to spectra, which were analyzed with multivariate techniques,

discussed in Chapter 4.
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Table 5.2. Summary of system specifications

Component SpecificationJ New system Previous system

Laser Wavelength 830 nm

power output 480 mW 500 mW

Volume 1 ml

Sample Excitation power on sample 280 mW 300 mW

Excitation beam size I mmxl mm 100 pimx100 [pm

Paraboloidal Reflective

mirror objective

Focal length 15.9 mm 13.4 mm

Collection optics acceptance angle 80r (max on 33 (maximum)
vertex side)
450 (max on

acceptance angle I open end side) 170 (minimum)

NA 0.9 0.5

core diameter 300 ptm 100pm

cladding diameter 330[tm 110vm

number of optical fibers 61 177

Fiber bundle packing fraction 0.6224 0.6125

NA 0.28 0.22

circular end diameter 3.0 mm 1.7 mm

linear end height 20.1 mm 19.5 mm

(Effective) focal length 90 mm 100 nmm
Focusing lens

Diameter 51 mm 105nmm

NA 0.27
Spectrograph JDispersion 16.5 rn/cm4

Height 17 mm

CCD detector pixel size 22 am x 22 um

quantum efficiency 20% @ 900 nm
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5.4 Result and discussion

The new spectroscopy system was optimized for collecting signals from whole blood in a

single-ended geometry. Increase in the system throughput, use of non-imaging optics for

optimal collection, and elimination of the connection optics improved the sensitivity. Table

5.3 summarizes the factors contributing to the increased sensitivity. Using the high

sensitivity spectroscopy system (Figure 5.16), the Raman signal in whole blood was

increased by a factor of four in the new system (Figure 5.17).

Factors

Collection
efficiency

Packing fraction

Connection
efficitncy

AR coating

CCD detector

Total

Table 5.3 Factors contributing to the sensitivity

New Previous Gain in
system system signal

21% 11% x1.9 For alI

62%

-100%

64%

20%

~1.7%

61%

-50%

64%

20%

-0.4%

x1.0

x 2.0

xl

xl

x 3.9

/iscellaneous

mm excitation beam

Due to the use of an optical
fiber bundle

Due to elimination of
connection optics

11 optical surfaces

quantum efficiency at 900 nm
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Figure 5.16. Photograph of the experimental setup

To quantify the sensitivity increase, we took the spectrum of glucose, as glucose is

among our analytes of interest, and is a simple molecule. Furthermore, its signal at a

physiological concentration (45~180 mg/dL or 2.5 to 10.0 mM) is relatively weak, and it

serves as a good test case for demonstrating the high sensitivity of the new system. The

Raman spectrum of glucose was obtained by subtracting a spectrum of whole blood (blank)

from the spectrum of whole blood spiked with a unit concentration of glucose. The

difference spectrum was normalized by the glucose concentration, and the normalized

spectrum was compared with the spectrum of glucose obtained with the previous system in

a similar manner (Figure 5.17). The Raman spectrum of 1 mM (18 mg/dL) glucose
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obtained with the new system has 6 counts of peak intensity around 1117 cm at 280 mW

excitation for 10 seconds, whereas that obtained with the previous system has 1.7 counts of

the peak intensity at 300 mW excitation for 10 seconds. Except for the intensity, all the

Raman peaks of glucose are identically present for both systems with slightly different

resolutions. These glucose spectra also match well with the published Raman spectrum of

glucose [Vasko 1972, Schrader 1989].
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Figure 5.17. Raman spectra of glucose at unit concentration collected by
the new system (thick line) and the previous system (thin line) for 10
seconds (left). The current system has four times higher sensitivity. The
same spectra are normalized by their peak intensities around 1117 cm 4

(right). The current system has lower resolution than the previous system.
Average spectra of 30 frames are presented.

Whereas the signal increased almost by a factor of four, the background decreased

by half (Figure 5.18). This is because the optical components were the major sources of the

fluorescence background (Figure 5.19), and the number of optical components were

reduced in the new system. The fluorescence background generated by .each optical

element was measured from the spectra collected by placing a notch filter before and after

the element. The spectral difference was assumed to be the fluorescence generated by the

184



optical element. As the fluorescence background decreased, the shot noise from the

background also decreased by a factor of 1.4. The background fluorescence could be

reduced further by using optical elements made out of a fluorescence-free material, such as

MgF 2.
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Figure 5.18. Raman spectra of whole blood samples collected with the
previous system (left) and the new system (right).
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Figure 5.19. Sources of background fluorescence.
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As the noise decreased, both the signal intensity and S/N in whole blood were

improved by factor of five in the new system. For a spectrum of 10 mM glucose in whole

blood collected for 10 seconds, the S/N increased from -1 in the previous system to -5 in

the new system. To obtain data of a five times higher S/N with the previous system, 25

times longer collection time is required. We obtained higher S/N without increasing the

collection time, and this is a major improvement for experiments in clinical settings.

5.5 Future directions

Increasing the system throughput, using optimal collection optics, and eliminating--the

connection optics increased the system sensitivity. Additional improvements can be made

to further increase the system sensitivity. Table 5.4 summarizes the potential sensitivity

increase in the future system.

The potential improvement in the immediate future is using a larger and more

efficient CCD detector. The current CCD detector employs a front-illuminated CCD array

chip. The quantum efficiency of the front-illuminated chip is less than 25% for the target

wavelength region, between 830 nm and 1000 nm. CCD technology has advanced while

this research was performed, and the state-of-the-art CCD camera with higher quantum

efficiency and comparable size is now available. Such a CCD chip has up to 70% quantum

efficiency for the target wavelength region. Employing such a CCD detector can increase

the system sensitivity by additional factor of two or three. Also, micro-optic lenses focus

light onto the active area of the CCD chip, and theoretically, can increase the sensitivity by
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up to factor of two. Although such micro-lens arrays are not commercially available yet,

they may become available in the future.

Near-term improvements can be also made with the reflection losses and packing

loss. The current instrument has many optical components that are not anti-reflection (AR)

coated. Each surface without AR coating reflects about 4% of incoming photons, and there

were 11 optical surfaces that were not AR coated in the new system. As a result, 36% (=Il-

0.96") of the collected light was lost. By coating optical surfaces with anti-reflection

layers (e.g. magnesium fluoride at 12 thickness), the reflectivity the system sensitivity can

increase by another factor of 1.4.

The packing loss is due to the fiber bundle area that do not transmit light. The new

system loses about 38% of the collected light due to the packing loss. A transforming

optics with less packing loss will increase the sensitivity. Theoretically, a CPC can

function as a transforming optics without any packing loss.

Also, efforts can be made to reduce the background fluorescence and noise in the

system. The prism, which generated 30% of the background fluorescence, can be

eliminated in different delivery schemes. For transcutaneous measurement, the cuvette,

which also generated more than 30% of the background fluorescence, is not used.

However, for transcutaneous measurements, the fluorescence from the skin layer is much

stronger than the fluorescence from the system (Chapter 7), and the reduction of

fluorescence and noise in the system would not be as important as the increase of the

sensitivity.
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Further improvements are expected as optical technologies advance and many

components become more affordable. Continued improvements will enable faster

collection of good S/N data, leading to more accurate blood analyte concentration

measurements.

Table 5.4 Factors of the potential sensitivity increase in the future system

Factors Future Current Gain in Miscellaneous
system system signal

Collection Better collection optics for a
efficiency' >21% 21% >x 11 mm excitation beam

Packing fraction 62~100% 62% xl.0~1.6 New transforming optics

Connection Due to elimination of
efficiency' 100% 00% X 1.0 connection optics

Ag4Reduced reflection loss onAR coatings 90% 64% x 1.4 11 optical surfaces

CCD detector 100% 20% x 5.0 Increased efficiency and
throughput

Total > 12-19% ~0.4% > x 7~11

These are already accomplished in the new system.
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Chapter 6

Experiments to measure analytes in

whole blood using the high-sensitivity

system for Raman spectroscopy

6.1 Overview

One of the goals of this thesis research was to develop a Raman technique to measure

analyte concentrations in whole blood. Chapter 4 discusses the key factors that determine

the prediction accuracy and the necessity to improve the signal-to-noise ratio (S/N). In

Chapter 5, a methodology to design a sensitive spectroscopy system is presented. This

chapter describes experiments performed with the high-sensitivity system to measure

analyte concentrations in whole blood samples.

Two experiments were performed with human whole blood samples. The first

experiment demonstrated that the high sensitivity of the new system improved the signal

collection efficiency for whole blood and, hence, the prediction accuracy in whole blood

samples from a single donor. The second experiment verified that the new system also

provides improved prediction accuracy for whole blood samples from multiple donors.
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Analyte concentrations were measured with prediction accuracies comparable to the

prediction accuracies achieved in human serum samples (Chapter 2).

6.2 Measurement of glucose in whole blood from a single

donor

To demonstrate the performance of the new system, the first experiment was performed

with whole blood from a single donor. The goal was to measure various concentrations of

glucose in the presence of a constant background. Glucose was selected as the target

analyte mainly because measurement of glucose is an indication of a good prediction

capability. The signal intensity of glucose is strong enough to be detected. However,

physiological concentration of glucose is low (45~180 mg/dL, or 2.5~10 mM) compared

with the concentration of major blood constituents, and an accurate determination -of

glucose concentration is not trivial. In addition, glucose is a simple molecule, and its

Raman spectrum is well defined and distinct. Finally, glucose is commercially available.

6.2.1 Experimental procedures

The samples were prepared in the following way. A uniform batch of whole blood was

withdrawn from a single donor, and ethylenediaminetetraacetic acid (EDTA) was added.

EDTA prevents the coagulation of whole blood, and was necessary for the storage of whole

blood until measurements. Although EDTA interferes vith determination of electrolytes, it

does not significantly affect determination of our target analytes (glucose, urea, cholesterol,

triglycierde, albumin, total protein, hemoglobin, and hematocrit) [Henry and Kurec 1996].
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The batch was split into two equal volumes, and one part was spiked with a calculated

amount of glucose. As a result, the glucose concentration in the spiked volume was 20 mM

(360 mg/dL) higher than the other. Before measurement, each sample was prepared by

mixing calculated amounts of the two volumes. All samples were identical, except for the

different concentrations of glucose. The glucose concentrations were calculated from the

volume ratios of whole blood from the spiked batch and the other batch. The

concentrations ranged from 2 mM (36 mg/dL) to 18 mM (324 mg/dL). The reference error

was set by the errors in pipetting the two volumes. Based on the pipetting precision and

accuracy tested by the pipette manufacturer (Eppendorf), the standard deviation of the

pipetting errors for all the samples was 2 mg/dL.

During the experiment, the whole blood samples were kept at room temperature

until measurement to slow down metabolism of blood cells, since the blood cells in whole

blood metabolize glucose into lactate at a rate of 0.4 mM/dL per hour (7 mg/dL per hour) at

room temperature [Threatte and Henry 1996]. The reference concentrations were corrected

with the known consumption rate and the time between the sample preparation and

measurements.

6.2.2 Analysis

Raw spectra from whole blood samples were collected and preprocessed, as explained in

Chapter 4. For each sample, 30 frames of 10-second spectra were taken, and the total

collection time was 300 seconds. The excitation beam power was 280 mW on the sample,

and the beam was 1 mm x 1 mm square. The spectra were cosmic ray filtered and
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fluorescence background subtracted in the manner described in Chapter 4. Multiple frames

were averaged to improve the S/N of the spectral data.

As mentioned in Section 4.2, the unprocessed spectra from whole blood samples

have a strong fluorescence background. The raw data from this experiment is shown in

Figure 6.1, and the preprocess data is shown in Figure 6.2. The spectral changes due to

different glucose concentrations are not obvious to visual inspection, because Raman

spectra of proteins dominate the whole spectra.

After the preprocessing, the partial least squares (PLS) regression was performed

with "leave-one-sample-out" calibration (see Chapter 4). The concentrations predicted with

PLS are discussed below.

X0 02-

05 -

700 900 110 1300 1500 1700
Raman shift (cm )

Figure 6.1. Raman spectra of nine whole blood samples. The
overall slope is fluorescence backgrounds.
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Figure 6.2. Raman spectra of nine whole blood samples after
preprOcessing (a). For comparison, Raman spectra of glucose at
(b) 10 times higher than physiological normal concentration, 50
mM (900 mg/dL), and (c) physiological normal concentration, 5
mM (90 mg/dL), are shown. Most Raman features are due to
proteins.

6.2.3 Results

Concentrations of glucose in the nine samples were predicted using the PLS regression

method. The prediction error was 2 mg/dL (0.12 mM) for 300 second data and 4 mg/dL

(0.22 mM) for 120 second data. Accurate measurements were performed with only 120

second data collection. For 300 second data collection, the prediction error and the

reference error are equivalent. This indicates that the prediction error is limited by the

reference error (see Chapter 4), and the prediction accuracy can improve by employing a

more accurate reference technique. The prediction plot (Figure 6.3) shows that all the

predictions are located near the zero-prediction-error line. When we compare this

prediction plot and the prediction plot of glucose in the single donor whole blood made for

the same collection time (300 seconds) by using the previous system (Chapter 2), the
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current system provides better prediction accuracy, both quantitatively and qualitatively

(Figure 6.4). The root-mean-squared prediction (RMSEP) error was 34 mg/dL (1.9 mM).
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Figure 6.3. Prediction plot of glucose
in whole blood samples from a single
donor. Each data point was collected
for 300 seconds at 280 mW
excitation. Predictions are near the
"zero-prediction-error" line. The
root-mean-squared prediction error
was 2 mg/dL (0.12 mM).

Figure 6.4. Prediction plot of
glucose in whole blood samples
from a single donor, obtained by
using the previous system. Each
data point was collected for 300
seconds at 300 mW excitation. The
root-mean-squared prediction error
was 34 mg/dL (1.9 mM).
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Table 6.1 compares the prediction errors in the previous system and the new system.

The S/N of glucose in single-donor serum measured with the previous system was lower by

factor of 1.4 than that in single-donor whole blood measured with the new system, for the

same concentration and collection time. Thus, the 300 second spectra of serum collected

with the previous system.had a S/N similar to that in 150 second data of whole blood
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collected with the new system, which can be calculated using Eq. (4.29). The prediction

error for glucose in serum collected for 300 seconds with the previous system was 5 mg/dL

[Berger 1998] and the prediction error for glucose in whole blood collected for 150 seconds

with the new system was also 5 mg/dL (Figure 6.5). Furthermore, the coefficient a in a fit

to Eq. (4.34) was 46 sec1/2 mg/dL, which is close to a-69 sec'/ 2 mg/dL obtained from Eq.

(4.32). to was 1,200 seconds, which indicates that we can benefit from a longer collection

time.

Table 6.1. Comparison of prediction errors in the previous system and the new system

prediction prediction

S/N error with integration error with integration

@ 10 mM medium previous time medium new time
system (seconds) system (seconds)

(mg/dL) (mg/dL)

16 serum 5 mg/dL 300 whole blood 5 mg/dL 150

4.4 whole blood 34 mg/dL 300 whole blood 15 mg/dL 10

0
0 00

0
0

_ 0

0 0 0 0
00

0 500 1Ws IS1O0 200 250 300
integration time (second)

Figrure 6.5. Prediction errors of glucose in single-donor whole blood for various
integration time. The circles are the empirical results and the line is a fit to Eq.
(4.34). The prediction error of glucose in single-donor xvhole blood at 150 seconds
is comparable to the prediction error of glucose in single-donor serum collected for
300 seconds (the triangle)..
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However, the prediction error in single-donor whole blood obtained with the

previous system and that with the new system do not match well. Since the new system has

five higher S/N than the previous system for analytes in whole blood, 12 second data

obtained with the new system had a S/N comparable to that in 300 second data obtained

with the previous system, which can be calculated using Eq. (4.29). The prediction error

for glucose in 10 second whole blood data obtained with the new system was 15 mg/dL,

while the prediction error obtained with the previous system for 300 seconds was 34

mg/dL. This indicates that there were additional sources of error in the single donor whole

blood experiment with the previous system. In fact, whole blood samples were frequently

damaged by the focused excitation beam in the single-donor experiment with the previous

system, and that was probably the source of additional error.

6.2.4 Summary

The new Raman spectroscopy system can measure concentrations of blood analytes in

whole blood samples from single subject with better accuracy (2 mg/dL) than the previous

system (34 mg/dL). At 300 second, the prediction error in whole blood with the new

system is limited by the reference error. Accurate measurements were made at a shorter

collection time, 60 seconds. The prediction error improvement is comparable to the

improvement expected from the signal-to-noise theory.
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6.3 Measurement of analytes in whole blood from multiple

donors

To demonstrate the performance of the new system in clinical settings, the experiment was

performed with whole blood from multiple donors. The goal was to measure various

concentrations of multiple analytes. The overlap of the target chemical spectrum and the

spectra of other analytes of various concentrations adds more challenges. Nine analytes

were selected as the target analytes: glucose, urea, bilirubin, total protein, cholesterol,

triglycerides, hematocrit, and hemoglobin. Some analytes, such as total protein and

albumin, have higher signal intensities than glucose in whole blood, and it would be

expected that such analytes can be measured with high prediction accuracy. In contrast, the

physiological concentration of bilirubin is orders of magnitude lower than the physiological

concentration of glucose in whole blood, and it would be expected that the prediction

accuracy for measuring bilirubin would be lower.

6.3.1 Experimental procedures

Figure 6.5 is the diagram of the experimental procedure. The whole blood samples were

withdrawn at the Beth Israel Deaconess Medical Center (BIDMC). The samples were

delivered to the MIT, and Raman spectra of the samples were collected. Plasma was

extracted from each sample after measurement, and plasma samples were sent to BIDMC

for reference measurements. The reference concentrations and the Raman spectra were

analyzed with multivariate techniques. The details are described below.

200



blood withdrawal
process

clotting and centrifuge material

whole blood

serum material

sample selection concentration nformation

measurement

spectral
measurement

centrifuge plasma

spectral analysis -(reference
measurement

Figure 6.5. Experimental procedure

The multiple donor experiment was performed over two days with thirty one human

whole blood samples, as it was demonstrated that a good calibration was achieved with

thirty samples from multiple donors [Berger et al. 1999]. Three days before the

experiment, whole blood samples were wAihdrawn from subjects at Beth Israel Deaconess

Medical Center (BIDMC). As whole blood samples were withdrawn for clinical diagnosis

purposes, not for our studies, samples had to be retained in the hospital clinical laboratory
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for three days. This was because some clinical diagnoses were repeated to check for

accuracy, and sometimes additional analytes needed to be measured in the same sample.

Samples that were relevant to our studies were whole blood samples, which were

mixed with EDTA as an anticoagulant, and matching (withdrawn from the same subject at

the same time) serum samples, which were obtained from whole blood samples without

anticoagulants. Since no blood cells were present in serum, analytes in serum were stable

and their concentrations did not change significantly over time. However, anticoagulants

added to whole blood samples did not prevent cell metabolism, and therefore, many

analytes were metabolized by blood cells. It was expected that concentrations of certain

analytes (e.g. glucose) in whole blood would be change over the three days.

In a preliminary study, it was found that many whole blood samples did not have

any glucose in them after three days. This is because glucose was broken down due to cell

metabolism, which is called glycolysis. The glycolysis in whole blood is the reason we

obtained low glucose concentration samples. Blood cells consume glucose at the rate of 0.4

mM/hour (7 mg/dL per hour) at room temperature, and 0.1 mM/hour (2 mg/dL per hour) at

40 C [Threatte and Henry 1996]. Glucose must have been digested by blood cells during the

three days the samples were retained at the BIDMC. This emphasizes the need for a better

experimental protocol to control the glucose concentrations better. To deal with glucose

consumption in whole blood, a strict rule in sample selection was implemented in this

experiment. Samples with high (>200 mg/dL, or >11 mM) serum glucose concentrations

were selected to insure that a physiological concentration of glucose would remain in whole

blood after three days' glycolysis. Furthermore, plasma were extracted immediately before
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and after spectral data collection at MIT, in order to obtain accurate reference

concentrations.

On each days of the experiment, fifteen or sixteen samples were selected to

represent a range of glucose concentrations, based on the glucose concentrations in

matching serum samples. Hemoglobin concentrations and hematocrit, the volume fraction

of red blood cells, were first measured at BIDMC using a hematology analyzer.

Samples were delivered to MIT and stored at 4C to slow down blood cell

metabolism. One hour before spectral collection, each sample was placed at room

temperature to facilitate plasma separation in centrifugation. 2 cc of the same whole blood

sample was placed in a cuvette. Thirty frames of Raman spectra were taken from each

sample at 280 mW excitation, and each frame was collected for 10 seconds. The actual

run-time was seven minutes per sample (five minutes for spectrum integration and two

minutes for CCD readout). This process allowed us to remove the cosmic rays by using a

statistical filter, and to obtain spectra of various integration times. Ten-second spectra were

obtained by simply using one-frame spectra, and 300-second spectra were obtained by

summing all 30 frames of spectra. During the measurements, a stirring magnet inside the

cuvette prevented blood cells from settling and kept the sample homogenous throughout the

measurements.

Immediately after spectral collection, I cc of whole blood was taken out of the

cuvette and placed into a centrifuge tube. The centrifuge tube was spun at 3,000 g in an

Eppendorf Centrifuge 5415 for five minutes, to separate plasma and blood cells. A

nomogram was used to determine the speed of the centrifuge [Henry and Kurec 1996] to
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achieve the proper centrifugal force. The plasma was extracted using a Pasteur pipette and

stored in a plasma tube.

The plasma samples were sent to BIDMC after the two-day experiment for

reference measurements. Concentrations of glucose, urea, bilirubin, total protein, albumin,

cholesterol, and triglycerides were measured using a spectrophotometer.

6.3.2 Analysis

Findings from refei-ence measurements

Concentrations of analytes in plasma samples were obtained from the Hitachi blood

analyzer at BIDMC. The reference measurements were used to quantify the damage to

samples and the distribution of analyte concentrations. The details of the findings are

discussed below.

First, there was insignificant damage to the red blood cells. Hemoglobin

concentrations in plasma samples were 30 mg/dL, on average. Hemoglobin is normally

present inside erythrocytes (red blood cells). When the cell membranes of erythrocytes are

damagedhemoglobin is released into the plasma. The non-zero hemoglobin concentration

in plasma indicates that the red blood cells were damaged during the measurements.

However, the normal concentration of hemoglobin in whole blood is 15 g/dL, and it can be

estimated that about 0.2 % of red blood cells were damaged during the measurements. The

effect of this small blood cell damage on multivariate calibration was insignificant.
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In a separate study, the mechanism of red blood cell damage was investigated. Two

potential causes of damage, stirring and laser heating, were suggested. To identify the

cause, whole blood samples were tested under two conditions. In one case, the whole blood

sample was exposed to laser excitation, without any stirring mechanism, for 7 minutes. In

the other test, the remaining whole blood sample was put into a cuvette with a stirring

magnet for 7 minutes, and there was no laser exposure. Plasma was extracted from both

samples. By comparing the hemoglobin concentrations in plasma tubes from both samples,

it was indicated that the magnet stirring is the major cause of damage to red blood cells.

This indicates that a better stirring mechanism can be employed, if necessary, in future

studies to minimize the damage to red blood cells, and that the damage due to laser

exposure was insignificant.

Second, many samples had good ranges of analyte concentrations. Especially,. all

samples had a good range of glucose concentrations, spanning from normal (45 ~ 180

mg/dL or 2.5 ~ 10 mM) samples to hyperglycemic, higher than normal glucose level,

samples. This demonstrates that the new protocol, selecting samples with serum glucose

concentrations higher than 200 mg/dL, solved the problem of zero glucose samples.

Preprocessing spectra

Raw spectra from whole blood samples were preprocessed, as discussed in Section 6.2.

The unprocessed spectra from whole blood samples have a strong fluorescence background

(Figure 6.6). Figure 6.6 also shows that spectra have different fluorescence backgrounds.

This is due to changes in collection geometry, especially due to the use of different
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cuvettes, and the different compositions of proteins and lipids in samples. The difference in

the fluorescence background can be subtracted. The preprocessing removed cosmic rays

and subtracted fluorescence backgrounds in the standard manner. As before, after the

preprocessing, the Raman features are more prominent (Figure 6.7). The preprocessed

spectra were analyzed with the PLS algorithm.

Figure 6.6. Raman spectra of 31

whole blood samples from 31 human

4 subjects. The major difference

among the spectra is the background

fluorescence only, and is mainly due

to the different compositions of

proteins and lipids in samples.

700 800 900 1000 1100 1200 1300 1400 1500 1900

naman shifA (cm )

Figure 6.7. Raman spectra of 31

4M - whole blood samples from 31
3000

human subjects after

S lo preprocessing. After fluorescence
0

- background subtraction, the

-2000 -spectra display similar Raman

features.
-4000

7 600 900 1000 1100 1202 1300 1400 1500 1600

Raman shift (cm
1)
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6.3.3 Results

Prediction accuracy

By performing PLS analysis with a "leave-one-sample-out" cross-validation method,

concentration predictions were calculated for all the analytes. The predictions have better

prediction accuracies than the previous experiment, discussed in Chapter 2. In addition, all

the predictions are insensitive to minor changes in the analysis parameters, such as bin size,

number ofloading vectors, and integration time.

Table 6.2 summarizes the prediction results for nine analytes in whole blood. The

collection time was 300 seconds for all the analytes. The prediction errors obtained with

the new system in whole blood are close to the prediction errors obtained with the previous

system for serum, and thus we have achieved the design goal. For total protein and

albumin the prediction errors and reference errors are comparable, and the errors due to

sources other than the reference errors are small. This indicates that the Raman technique

may provide more accurate concentration information than the reference technique (see

Chapter 4). The comparison of the prediction errors in whole blood with the new system

and the prediction errors in whole blood with the previous system also shows that all the

prediction errors are reduced with the new system.

The correlation coefficient, r, indicates how two variables are correlated. A

correlation coefficient close to 1 indicates close correlation between the variables, r close to

0 indicates little correlation, and r close to -1 indicates inverse correlation. In Figure 6.8

207



and Figure 6.9, r is the correlation coefficient between the reference concentrations and the

predicted concentrations. r2 values are presented to show how close correlation coefficients

are to 1, the maximum value. Since the correlation coefficients are higher than 0.9 for all

analytes except for cholesterol, these are considered to be clinically accurate or near-

clinically accurate [Pincus 1996].

In addition to prediction errors, it is helpful to use prediction plots in evaluating the

quality of predictions. The prediction plots for the seven analytes are presented in Figure

6.8 and Figure 6.9. The x-axis of each plot represents concentrations of each analyte

measured by the reference technique. The y-axis of each plot represents concentrations of

each analyte predicted by the Raman technique. The dashed lines are for "zero-prediction-

error" data points, and the magnitude of the vertical distance from each data point to the

line is the prediction error for that data point. Thus, a perfect prediction plot with zero

prediction-error would have all the data points on the dashed line. All the prediction plots

indicate that there are good correlations between the reference concentrations and the

predicted concentrations.
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Table 6.2. Prediction errors of analyte concentration measurements

Whole blood Whole blood with Serum with
Analyte (unit) with the new the previous system the previous

system (r) (r2) system (r2)

Glucose (mg/dL) 19 (0.95) 77 (0.15) 26 (0.83)

Urea (mg/dL) 4.9 (0.94) 6.5 (0.59) 3.8 (0.74)

Bilirubin (mg/dL) N/A 1 2  N/A' N/A 3

Cholesterol (mg/dL) 30 (0.66) 45 (0.12)2 12 (0.83)

Triglyceride (mg/dL) 39 (0.93) 81 (0.56) 29 (0.88)

Total Protein (g/dL) 0.26 (0.95) 0.38 (0.55) 0.19 (0.77)

Albumin (g/dL) 0.10 (0.99) 0.21 (0.76) 0.12 (0.86)

Hemoglobin (g/dL) 0.41 (0.94) N/A 3  N/A 4

Hematocrit (%) 1.3 (0.96) 1.5 (0.92) N/A 5

1 Samples did not have a representative range of analyte concentrations.

2 No predictability was achieved due to low S/N.

3 This analyte was not measured in the previous measurements.

4 Hemoglobin is not present in serum samples.

5 Hematocrit, the volume fraction of red blood cells, is always zero in serum

samples, since red blood cells are not present in serum samples. Determination of

hematocrit in serum does not have any statistical or clinical significance.

Serum results are from 60 second data obtained with the previous system [Berger

1999]. The prediction errors from 300 second data are similar.
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To evaluate the clinical 'accuracy of glucose monitoring syste ms, Clarke et al

developed a method called error grid analysis (EGA) [Clarke 1987]. EGA divides glucose

prediction plots into five regions, and each region has a different clinical meaning. Zone A

represents "clinically accurate" data; zone B covers "benign" values; zone C includes

"overcorrection" results; any data point in zone D indicates dangerous failure to detect and

treat;" and data points in zone E can lead to "erroneous treatment." A clinical glucose

monitoring system should not have any data point in zone C, D, or E [Cox 1997]. When

our glucose predictions are plotted on the error grids, 27 out of 31 samples from the Raman

experiment fall only in zones A, and the remaining 4 are in zone B (Figure 6.10). This

implies that the Raman technique can provide clinically accurate information.
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Analysis of 51 samples

The number of 31 samples was chosen, because an accurate calibration could be performed

with 30 samples from multiple donors [Berger et al. 1999]. To test if this was an

acceptable number of samples, Raman spectra of 20 additional samples were taken in a

manner similar to that described above. However, the samples were randomly selected, and

their serum glucose concentrations were not used. As a result, many of these samples did

not have enough glucose concentrations.

All 51 Raman spectra and analyte concentrations in 51 samples were analyzed with

the standard PLS algorithm. The prediction errors are summarized in Table 6.3. The

prediction errors were comparable when the number of samples was either 31 or 51. For

most analytes, the prediction errors slightly increased with 51 samples, and it is probably
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due to long term system drifts, as the spectra of 20 samples and 31 samples were taken

three weeks apart.

Table 6.3. Prediction errors of analyte concentrations for various sample sizes

Analyte (unit) Whole blood with 31 samples Whole blood with 51 samples

Glucose (mg/dL) 19 26

Urea (mg/dL) 4.9 5.4

Bilirubin (mg/dL) N/A N/A

Cholesterol (mg/dL) 30 32

Triglyceride (mg/dL) 39 43

Total Protein (g/dL) 0.26 0.36

Albumin (g/dL) 0.10 0.21

Hemoglobin (g/dL) 0.41 0.69

Hematocrit (%) 1.3 2.4

Prediction errors for various integration times

Throughout this research, the S/N is assumed to be the dominant factor in determining the

prediction errors. This assumption was tested by calculating the prediction errors for

various S/N. Thirty frames of spectra were taken from each sample, and each frame was

coflected for 10 seconds. By adding various numbers of frames, spectra of a range of

integration time were obtained. The signal increases linearly with the integration time, and

the noise increases as the square root of the integration time, as discussed in Chapter 4.

Based on the relationship between the integration time and S/N, Eq. (4.34) described the

prediction error as a function of the integration time:
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Ac a + b2,(4.34)

where Ac is the prediction error, t is the integration time, and a and b are fit coefficients.

When the prediction errors for various integration times are plotted along with their

fit to this equation, the prediction errors improved following Eq. (4.24). Figure 6.11 and

Figure 6.12 show the prediction errors as functions of integration time, and fits to Eq.

(4.31).

For glucose and urea, the prediction errors do not follow the fit for short

integrations times (< 70 seconds). Due to the nature of the PLS algorithm, the predictions

cannot be worse than a random guess. The prediction errors of glucose do not exceed 90

mg/dL and those of urea do not exceed 9 mg/dL. Again, the prediction errors of glucose

cannot be reduced below 11 mg/dL and those of urea cannot be reduced below 1.1 mg/dL

simply by improving S/N.

Fitting data to Eq. (4.31) showed that the prediction errors improve with longer

integration times, as suggested by the signal-to-noise theory in Chapter 4. The fits in

Figure 6.11 and 6.12 also show what prediction errors can be achieved by improving S/N.

Furthermore, prediction errors for 60 second data collection were comparable to prediction

errors for 300 second data for many analytes (Table 6.4), which indicates that for clinical

applications, 60 second data collection provides adequate accuracy.
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Table 6.4. Prediction errors of analyte concentrations for various integration time

Analyte (unit) Whole blood at 300 seconds Whole blood at 60 seconds

Glucose (mg/dL) 19 75*

Urea (mg/dL) 4.9 9.1*

Cholesterol (mg/dL) 30 38

Triglyceride (mg/dL) 39 60

Total Protein (g/dL) 0.26 0.25

Albumin (g/dL) 0.10 0.18

Hemoglobin (g/dL) 0.41 0.41.

Hernatocrit(%) 1.9 2.0

* For these analytes, prediction errors at 60 second do not

predictability. Prediction errors for 90 second data are presented.

have

The fit coefficient a in Eq. (4.34) is the rate at which the prediction error is reduced

with time. a can be directly obtained from using Eq. (4.32) by calculating S/N and overlap
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factors. Table 6.5 compares the fit coefficient a obtained by fitting data with Eq. (4.34) and

calculated by using Eq. (4.32). It indicates that the two a values are closely related.

Table 6.5. Comparison of the fit coefficient a and Eq. (4.32)

Analyte a from fitting a from Eq. (4.32) difference

Glucose 147 205 -58

Urea 87 93 -6

Cholesterol 124 85 39

Triglyceride 188 162 26

Total protein 1.2 0.5 0.7

Albumin 0.95 0.4 0.55

The fit coefficient b in Eq. (4.34) is the prediction error that is not dependent upon

integration time or SNR, and the prediction error cannot be improved below the fit

coeffibient b simply by improving S/N. Table 6.6 compares the fit coefficient b and the

reference error for each analyte.

Table 6.6 indicates that the fit coefficient b and the reference error are similar for

many analytes except for cholesterol and triglyceride. The difference between the fit

coefficient b and the reference error is due to other sources of errors discussed in Chapter 4.

In addition, it can be noted that the fit coefficient b is much larger than the reference error

for predictions of cholesterol and triglycerides. This is probably due to the fact that the

reference concentrations were measured in plasma, while the analytes were measured in

whole blood using Raman spectroscopy. Our reference techniques could measure

cholesterol and triglyceride concentrations only in serum or plasma. In the process of
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converting whole blood to serum or plasma, blood cells were centrifuged and removed.

The plasma membrane of blood cells contain high concentrations of cholesterol [Segal et al.

1984] and triglycerides [Stryer 1995]. The presence of additional cholesterol and

triglycerides could increase prediction errors. An employment of reference techniques that

measure cholesterol and triglyceride concentrations in whole blood can eliminate this

discrepancy and reduce prediction errors.

Table 6.6. Comparison of the fit coefficient b and the reference error

- Analyte. b reference error b - (reference error)

Glucose

Urea

Cholesterol

Triglyceride

Total protein

Albumin

Hemoglobin

Hematocrit

6 mg/dL

1.1 mg/dL

34 mg/dL

55 mg/dL

0.23 g/dL

0.16 g/dL

0.38 g/dL

1.5 %

3 mg/dL

0.9 mg/dL

4 mg/dL

3 mg/dL

0.1 g/dL

0.09 g/dL

0.17 g/dL

0.4 %

3 mg/dL

0.2 mg/dL

30 mg/dL

52 mg/dL

0.13 g/dL

0.07 g/dL

0.21 g/dL

1.1 %

Additionally, we calculated the time constant to from the fit coefficients (Table 6.7).

Again, the benefit of increasing the collection time beyond to is often small. The prediction

error cannot be lower than half of the prediction error with collection time to. The time

constants for many analytes indicate that good prediction accuracy can be achieved with

The reference errors are obtained from day-to-day errors in reference techniques. Since our prediction errors
includes day-to-day errors and sample-to-sample errors, the reference errors are underestimated. The sample-
to-sample errors in the reference techniques were not available.
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less than 1 minute collection time. For glucose and urea, longer collection time could

reduce the prediction error further.

Table 6.7. Time constant to for analytes in whole blood

Analyte a b to (seconds)

Glucose 147 6 600

Urea 87 1.1 6000

Cholesterol 124 34 13

Triglyceride 188 55 12

Total protein 1.2 0.23 27

Albumin 0.95 0.16 35

6.3.4 Summary

Near-infrared Raman spectroscopy can measure concentrations of many blood analytes in

whole blood samples from multiple subjects, most in 60 seconds. With the improved

sensitivity, the new system determined concentrations more accurately than the previous

system. The whole blood predictions with the new system are comparable to the serum

predictions with the previous system.

6.4 Conclusion

A series of experiments was performed to demonstrate that blood analyte concentrations

can be determined by using Raman spectroscopy. For many analytes, clinical accuracy was

achieved with data collection for 60 seconds. For other analytes, the prediction errors

improved with longer integration times, and followed the prediction error equation
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discussed in Chapter 4. According to the prediction error equation, a more sensitive system

will enable accurate measurements in less collection time.

Whole blood measurements can be improved in the following ways:

1. Better reference techniques

2. Better S/N for analytes having small signals

As discussed in Section 6.3, the predictions errors of total protein and albumin were

comparable to the reference errors. Although it is possible that the Raman spectroscopy

technique is more accurate than the reference technique, this cannot be demonstrated. A

more accurate reference technique may show that prediction errors of the Raman

spectroscopy technique are lower than the values listed in Section 6.3 and 6.4.

Furthermore, there were discrepancies between the samples analyzed by the Raman

spectroscopy technique and the samples measured by the reference techniques. The

reference techniques employed in this study could measure analytes in serum or plasma

only, while the Raman spectroscopy measured analytes in whole blood. Although plasma

concentrations and whole blood concentrations are similar for many analytes, plasma

concentrations of cholesterol and triglycerides deviate from their whole blood

concentrations. A reference technique that measures concentrations in whole blood is more

desirable in assessing prediction errors of the Raman spectroscopy technique in whole

blood.

Furthermore, there are other analytes that provide diagnostic information, in

addition to the analytes discussed in this chapter. For example, concentrations of HDL and

LDL determine the risk of cardiovascular diseases. While HDL and LDL concentrations
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could not be measured with the previous system, it may be feasible to measure theirs

concentrations with the new system, as we find that concentrations of LDL and HDL

cholesterols are comparable to those of analytes that we measured according to Table 2.3.

Bilirubin provides the diagnostic information about the liver function [Pincus and Schaffner

1996]. It has weaker signals than the analytes already measured. A development of a more

sensitive system or an increase in the collection time will enable concentration

measurements of these analytes, and expand the horizon of Raman spectroscopy

applications.
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Chapter 7

Toward transcutaneous measurements

We hope that the technique discussed in this thesis can be applied to non-invasive

measurements. In this chapter, we aim to provide groundwork and suggestions for future

research in non-invasive measurements.

The target of measurement is now the blood-tissue matrix, which is a medium quite

different from serum or whole blood, and there are issues to be considered in non-invasive

measurements. The first part of this chapter discusses these issues. The second part of this

chapter discusses preliminary results of a transcutaneous experiment. Raman spectra of

typical body parts were collected and analyzed. The third part of this chapter discusses the

predictions based on the analysis of the preliminary data and provides guidelines for the

future directions of this research.

7.1 Considerations

Differences between the blood-tissue matrix and previously studied media raise issues for

non-invasive measurements. The complex nature of the blood-tissue matrix composition is

described. Due to the structural and chemical differences, the blood-tissue matrix has

various optical properties, and the effect of the changes in the optical properties is

discussed. Several methods of measuring reference concentration for transcutaneous

studies are presented. Finally, the safe level of laser radiation is discussed.
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7.1.1 Structural and chemical composition of a blood-tissue

matrix

While whole blood samples are uniform mixtures of blood cells and plasma, the structural

and chemical composition of blood-tissue matrix is inhomogeneous and varies from body

part to body part. The structural composition of the blood-tissue matrix affects the

scattering patterns, and also determines the distribution of certain analytes. Since there will

be favorable regions and non-favorable regions for transcutaneous measurement, the

selection of the body part is an important task in transcutaneous measurements.

The skin is a multi-layered system, and largely consists of two layers: epidermis and

dermis (Figure 7.1). The epidermis has multiple layers: stratum corneum, stratum lucidum,

stratum granulosum, stratum malpighii (also called stratum spinosum), and stratum

germinativum (or stratum basale) [Gray 1977]. The thickness of the epidermis varies. The

thickness normally range from 40 to 150 p m (thin in lips) and is greater in palms of hands

and soles of feet (800 ~ 1400 pim). Keratin is the major protein in human epidermis, hair,

and nail [Williams et al. 1994]. For example, the stratum corneum, the outer layer of the

epidermi% mainly consists of keratin (ca. 65%) and some lipids (ca. 10%), such as

sphingolipids, ceramides, cholsterol sulphate, neutral lipids, and polar lipids [Barry et al.

1992]. Water, salts, and lipids are also found in epidermis [Kardong 1998].
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The dermis also has multiple layers: reticular layer and papillary layer. The dermis

varies in thickness. The thickness typically ranges from 1 to 2 mm. It is very thick in the
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palms and heels (3 mm or more), and thin in the eyelids and scrotum (0.6 mm) [Gray

1977]. The dermis consists of connective tissue, elastic fibers, blood vessels, lymphatics,

and nerves. Collagen is the major constituent of dermis (70%), followed by elastin.

Interstitial fluid is another component in the blood-tissue matrix. Interstitial fluids

fills the space between cells in epidermis and dermis, while whole blood is present in blood

vessels in dermis which is located deeper than epidermis. Thus, measurements of analytes

in interstitial fluids may be easier than measurements of analytes in whole blood. Certain

analytes are diffused into interstitial fluids, and glucose is one of them.

There has been an extensive study of glucose in interstitial fluid, and in this chapter,

we will use glucose as an example of analytes in the blood-tissue matrix. The

concentration of glucose in whole blood and that in the blood-tissue matrix are not identical

[Roe and Smoller 1998, Waynant and Chenault 1998]. Table 7.1 presents the relative

concentrations and volume fraction of three types of fluids in the blood-tissue matrix. The

glucose concentration in the interstitial fluid is lower than the glucose concentration in

plasma by factor of 0.82. The glucose concentration in the intracellular fluid is only 10%

of the glucose concentration in plasma. The glucose concentration in the blood-tissue

matrix is the volume-weighted-average of the glucose concentrations in three types of

biological fluids, and the glucose concentration in the blood-tissue matrix is 23% of the

glucose concentration in plasma. Furthermore, if we aim to measure concentrations of

whole blood glucose (or plasma glucose), the Raman signal of the whole bood glucose

would be much smaller than that of the plasma glucose, since only 6% of the blood-tissue

matrix is occupied by plasma.
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Table 7.1. Concentrations and volume fractions of biological fluids in the blood-tissue
matrix

- volume fraction typical glucose typical amount of

(L/L) concentration (mM) glucose (Kmmole)

Intracellular fluid 37% 0.5 0.19

Interstitial fluid 16% 4.1 0.66

Plasma 6% 5,0 0.30

Non-liquid 41% 0 0
component

Blood-tissue matrix 100% 1.15 1.15

* The relative volume fractions are given by Roe and Smoller (1998). The

absolute volume fraction was obtained from Guyton (1997).

The best strategy for the maximum signal collection might be to collect the glucose

signal in a relatively large area of blood tissue matrix with a high numerical aperture (NA)

objective. If we collect the glucose signal from interstitial fluid only, the glucose

concentration is not much reduced, but interstitial fluid exists in the space between cells,

and it would be a challenge to collect signal only from interstitial fluid. Typically, the

interstitial fluid occupies less than 16% of the blood-tissue matrix [Guyton 1997].

Although the relative concentration of glucose in the blood-tissue matrix is lower than that

in plasma, the overall the ratio between the signal and the shot noise would be higher when

a spectrum is collected from a large area of the blood-tissue matrix. Furthermore, this

would reduce the effect of local variations of the blood-tissue structure, and provide more

reliable measurements.
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7.1.2 Turbidity in blood-tissue matrix

The optical properties of the blood-tissue matrix are quite different from those of serum or

whole blood. The surface distribution of Raman scattered light in the blood-tissue matrix

will be also different from that in serum or whole blood. Also, the penetration depth is

important in the blood-tissue matrix. Since whole blood is a relatively uniform mixture of

plasma and blood, the penetration depth is normally not as important in whole blood

measurements. In the blood-tissue matrix, it is important to probe the region in which

analytes are present, and the penetration depth should be carefully examined.

In Chapter 3, it was demonstrated that an increase in both absorption and scattering

properties reduced the fluence of the Raman signal. At 830 nm excitation, we expect that

absorption in the blood-tissue matrix is, in fact, smaller than the absorption property in

whole blood, since the volume fraction of plasma (and whole blood) is small. This implies

that the Raman signal intensity of glucose may be larger in the blood-tissue matrix than that

in whole blood, due to the lower absorption.

A Monte Carlo simulation was performed to calculate the intensity of Raman. signal

in the blood-tissue matrix. The optical properties of a typical skin were used to model

human skin [Cheong et al. 19901. The model predicts that the intensity of the Raman signal

in skin is three times higher than that in whole blood, which promises a potentially more

accurate measurements in skin. In the future, the optical properties of various body

locations can be tested with detailed chemical and structural compositions.
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7.1.3 Reference measurements

Another issue of consideration is the method of reference concentration measurements.

When a multivariate analysis is performed for concentration measurements, the predicted

concentrations are often compared with the .reference concentrations to calculate the

prediction error. Also, the reference measurement is necessary with certain multivariate

analysis techniques (e.g. PLS or PCR).

The things to consider for reference measurement in the blood-tissue matrix are the

selection of medium, or tissue, in which the reference concentrations are determined.

Reference -measurements are commonly performed with serum or plasma obtained from

whole blood in vein, artery, and capillary. Measurements in interstitial fluid are also

possible.

Whole blood can be collected by puncture of vein, artery, and skin. Certain

analytes have comparable concentrations in these media, but there are analytes (e.g. blood

gases) whose concentrations vary drastically. While whole blood obtained from venous

puncture or arterial puncture needs to be analyzed with a hospital blood analyzers, certain

analytes, such as glucose and cholesterol, in whole blood obtained from a finger prick can

be analyzed with portable blood analyzers. Although hospital instruments are more

accurate and capable of measuring more analytes than the portable analyzers, the

convenience of measuring analytes on-site makes the portable blood analyzers a useful tool

for reference measurements. Determination of analytes in blood.provides concentrations in

the manner common among the medical community. However, analytes in the blood-tissue

matrix and in whole blood may have different scales of concentrations. Concentrations in
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the blood-tissue matrix may also have delayed readings. Thus, concentrations in whole

blood may need corrections to serve as reference in the blood-tissue matrix.

Interstitial fluid is already present in the blood-tissue matrix, and concentrations in

the interstitial fluid may not need such correction when they are compared with those in the

blood-tissue matrix. However, if the concentrations in interstitial fluid is to be compared

with concentrations in whole blood, which is what the medical community is more familiar

with, proper conversion may be necessary. For glucose, its concentration in interstitial

fluid is about 82% of the concentration in plasma (Table 7.1). Again, analyte

concentrations in interstitial fluids are expected to have a time lag over the analyte

concentrations in whole blood. This lag may present a problem when rapid and accurate

measurements of analyte concentrations are needed.

7.1.4 Allowable radiant energy to patient

Finally, the determination of the excitation laser power is an important issue in terms of the

patient safety. A high energy excitation beam is desired for high signal intensity, but it

increases the risk of tissue damage. It is needless to say that it is necessary to keep the

power below the level of damage in measurements in vivo. The safe level of excitation

power also varies for different body parts. It is crucial to have a good understanding of the

laser excitation power in order to prevent any damage in subjects and increase the signal by

using the maximum allowable power.

The safe levels of irradiation are expressed in terms of radiant exposure (J/cm 2) or

irradiance (W/cm 2). If the irradiance of an excitation beam is high and the irradiated body
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part cannot quickly transport the energy away from the irradiated body part, a damage will

occur in a short period of time. As the energy deposited into the body part remains in the

irradiated location on the time scale of damage, the radiant exposure would be a good

measure of the damage risk. If the irradiance of the excitation beam is not high enough to

cause immediate damage, the energy deposited into the body part will be partially

transported via heat transfer mechanisms. As the energy level in the irradiated body part

will increase over time, the irradiance and the exposure time would determine the risk of

tissue damage.

We aim to use around 300 mW irradiance in a 1 mm x 1 mm square beam geometry

for measurements in skin (30 W/cm2 irradiance). This is the level comparable to what was

used in other in vivo tissue studies. This power can be obtained from a compact diode laser

and the collection efficiency for this excitation geometry is acceptable (21% in whole

blood).

The American National Standards Institute (ANSI) set a guideline for safe use of

lasers and laser systems [ANSI.Z136-1, ANSI Z136-3]. For an exposure to an 830 nm

excitation beam for longer than 10 seconds, the ANSI standard recommends less than 0.4

W/cm2 irradiance on skin as a level of "comfort". Our design goal is above the ANSI

guideline.

However, the irradiance levels in the ANSI standard are not the levels of skin

damage. The ANSI standard does not address the absorption parameters of various tissues

or the blood perfusion in a blood-tissue matrix. For therapeutic purpose, irradiance higher

than the ANSI standard is often used. In a diagnostic study, there are reports of skin
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exposure for 30 seconds to a 40 W/cm2 irradiance beam (760 im diamter) at 785 nm,

which is higher than the ANSI standard, and it was reported that no sensible damage was

observed [Shim and Wilson 1997]. These led us to investigate the safe level of irradiance.

The mechanism of the laser damage for various excitation wavelengths is well

known (University of Waterloo Laser Safety Manual, International Commission on

Illumination). The laser damage due to a continuous excitation beam at 830 nm is thermal

damage. An excitation beam at the wavelength between the 200 to 280 nm range produce

sunburn (erythema), skin cancer, and accelerated skin aging. An excitation beam in the

range of 280 to 400 nm can result in increased pigmentation. Photosensitization and

thermal damage to skin can result from the exposure to light from 310 to.700 nm. The

severity of thermal damage ranges from a mild reddening, which is normally healed within

hours, to blisters and charring. An extremely high powered laser may result-in

depigmentation, ulceration, and scarring of the skin, and damage to underlying organs.

Mild to severe thermal damage can be observed in histology.

In a preliminary experiment (Motz and Sasic at MIT), parts on an artery tissue type

were exposed to a focused beam (200 km diameter) of 280 mW radiant power for up to 600

seconds. When the histology of the tissue samples were studied, no thermal damage was

found. Our desired irradiance and radiant energy were lower than the irradiance and

radiant energy used in this experiment and those used by Shim and Wilson, and thus, our

irradiance might be safe for skin exposure. Although we cannot directly compare this

experiment with in vivo measurements, the experimental data seems to indicate that a

higher level of irradiation may be safe.
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The future refinement of this artery experiment may address the following issues.

The temperature in the tissue samples was lower than the body temperature If a thermal

damage occurs when a small part of the tissue sample reaches a certain temperature, the

samples should be initially kept at the body temperature to study the damage threshold.

Then, a higher level of the safe may be established.

7.2 Measurement of tissue spectra

This section discusses measurements of Raman spectra of various body parts and its

preliminary analysis The new system developed for whole blood measurements (Chapter

5) was used. Although it was optimized for collecting Raman scattered light emerging

from whole blood, it could collect Raman scattered light efficiently from other turbid

biological tissues. The collected spectra were analyzed with an ordinary least squares

regression method.

7.2.1 Preliminary experiment

As a preliminary study of the blood-tissue matrix, Raman spectra of various body parts

were collected using the new system. The body parts were chosen to represent various

body parts. The fingers were chosen, because they are easy to access and are the regions of

finger prick blood withdrawal. The spectrum of a fingernail was collected to approximate

keratin, because pure keratin was not easy to obtain. Epidermis of a lip is relatively thin

and thus, it would be easier to probe blood by using the lip. The earlobe also has thin skin

layer and a good supply of arterial blood. Table 7.2 lists the body parts whose Raman

233



spectra were collected. In each measurement, the selected body part was placed at the focal

plane of the collection optics, and the spectrum was integrated for 10 seconds.

Table 7.2. List of body parts whose Raman spectra were collected

sample number body part

1 ventral (inside) thumb

2 dorsal (outside) thumb

3 dorsal (outside) index finger

4 nail + dorsal (outside) index finger

5 ventral (inside) palm

6 ventral (inside) w6bbing

7 dorsal (outside) hand

8 ventral (front) earlobe

9 inside lower lip

7.2.2 Preliminary tissue model and fit

As a preliminary step toward transcutaneous measurements, the Raman spectra of typical

body parts were collected and analyzed with OLS. Raman spectra of nine chemicals were

used as component spectra. Those analytes were whole blood, water, fat, cholesterol,

collagen, elastin, and keratin. The Raman spectrum of the whole blood was obtained from

the whole blood experiment of multi-donors (Chapter 6). The Raman spectrum of the

keratin was obtained by subtracting the spectrum of a finger from the spectrum of a

fingernail where keratin is abundant, because pure keratin was not commercially available.
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However, this is probably not pure keratin, and it does not match well with the published

spectrum of keratin [Williams 1994]. This can be further investigated. The other

component spectra were obtained from chemical models of human breasts [Shafer 20011.

The chemical models of breast were developed to distinguish the chemical composition of

normal, benign, and malignant breast tissue, and included Raman spectra of many

chemicals: calcium oxalate, calcium hydroxyapatite, carbonate, phospatidyl choline,

myosin, tropomyosine, actin, and beta-carotene, in addition to the chemical listed above.

However, many of these chemicals are not present in the blood-tissue matrix, and thus,

were not used in the chemical model of the blood-tissue matrix.

The Raman spectrum of the inside thumb (Figure 7.3) matches well with the

published Raman spectrum of human skin [Caspers et al. 1998]. We fit the measured

spectrum with the Raman spectra of the chemical components in our model. The fit

coefficients were related to the concentration of the chemicals. However, the chemical

model was not calibrated for concentrations, and we could not obtain absolute

concentrations of components, nor could we compare concentrations of one chemical and

another on the absolute scale. Instead, the fit coefficients of each chemical were

normalized by the maximum fit coefficient of that chemical observed in our experiment,

and we could compare the relative abundance of each chemical in different body parts.
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Figure 7.3. Raman spectrum of the inside thumb and the model fit. The line is the
spectrum, and the dots are the fit. The residual is plotted offset. Water, fat, cell nucleus
and cytoplasm, collagen. elastin, and "keratin" are the constituents.

Table 7.3. Coefficients for the model fit of the inside finger (Figure 7.3)

component Water Fat Cholesterol Collagen Elastin Keratin

concentration 59.0 47.4 10.8 13.8 60.2 34.6

The Raman spectrum of the fingernail (Figure 7.4) had a strong peak at 968 cm-.

The normalized fit coefficients indicated that the fingernail had the highest concentration of

keratin an"iong the body parts measured, which corresponded well with the known chemical

composition of fingernails [Burkitt et al. 1996]. The fit coefficients for collagen, elastin,

cholesterol, and fat were non-zero, and this seemed to indicate that we were probing skin

under the fingernail.
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Figure 7.4. Raman spectrum of the fingernail and the model fit. The line is the spectrum,
and the dots are the fit. The residual is plotted offset. Water, fat, cell nucleus and
cytoplasm, collagen' elastin, and "keratin" are the constituents. The Raman band at 968
cm' is strong.

Table 7.4. Coefficients for the model fit of the fingernail (Figure 7.4)

component Water Fat Cholesterol Collagen Elastin Keratin

concentration 50.9 34.5 9.0 18.8 58.1 100

The Raman spectrum of the earlobe (Figure 7.5) was quite different from the

spectrum of the skin. The fit coefficient for keratin was much small compared to that for

the skin, and this may be an indication of thinner epidermis in the earlobe. Also, it was the

only body part the spectrum of which had any contribution from whole blood. Thus, the

earlobe may be the best body part for in vivo measurements of analytes in blood. The

maximum fit coefficients of cholesterol and fat were observed in the earlobe. The earlobe

might be an ideal body part for tissue cholesterol measurements.
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Figure 7.5. Raman spectrum of the earlobe and the model fit. The line is the spectrum, and
the dots are the fit. The residual is plotted offset. Whole blood, water, fat, cell nucleus and
cytoplasm, collagen, elastin, and "keratin" are the constituents. It is notable that the
contribution of whole blood was only observed in the earlobe.

Table 7.5. Coefficients for the model fit of the earlobe (Figure 7.5)

component Whole Water Fat Cholesterol Collagen Elastin Keratincompnent Blood

concentration 100 74.1 100 100 10.7 93.9 22.8

The Raman spectrum of the inner lip (Figure 7.6) had the least concentration of

keratin. This seemed to be related to the fact that lips have thin epidermal layer. In

addition, the keratin concentrations seem to be related to the known thickness of epidermis

in various body parts. The keratin concentration was the highest in the fingernail, followed

by the finger, earlobe, and the lip. If this observation is true, the lip may be an ideal body

part for measurements of dermal interstitial fluid, as the interference of the epidermis on

dermis measurements will be the minimum in lips.
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Figure 7.6. Raman spectrum of the inner lip and the model fit. The line is the spectrum,
and the dots are t'e fit. The residual is plotted offset. Water, fat, cell nucleus and
cytoplasm, collagen, elastin, and "keratin" are the constituents,. There are peaks that cannot
be fit with the model components between 940 and 1040 cm-.

Table 7.6. Coefficients for the model fit of the inner lip (Figure 7.6)

component Water Fat Cholesterol Collagen Elastin Keratin

concentration 48.4 11.8 28.1 16.6 43.1 13.1

However, we did not observe any contribution from whole blood, and this may be

investigated further. The Raman peaks between 940 and 1040 cm 4 were not fit well with

the model components. This seemed to indicate that additional components were necessary

to completely model the Raman spectrum of the human inner lip. Although this chemical

model has not been validated yet for the blood tissue matrix, some findings match well with

the known compositions of various body parts. Further investigation will provide more

insight into non-invasive transcutaneous measurements.
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7.2.3 Summary

Raman spectra of various body parts were collected and analyzed. The Raman spectra of

many chemical components were used in the analysis. The analysis seems to indicate that

the earlobe may be the best body part for in vivo whole blood measurements, and the lip

may the best body part for interstitial fluid measurements. This has to be validated with

further investigation.

7.3 Predictions for transcutaneous measurement of blood

analytes

In Chapter 4, we derived Eq (4.23) that estimates the prediction accuracies with the signal-

to-noise ratios (S/N) and the line shapes of the constituent spectra:

c, s 1
Ac n diag. (4.23)

With experimental data and our knowledge about blood-tissue matrix, we can estimate the

prediction accuracy of analyte concentration measurements in the blood-tissue matrix.

Althoughvour measurements are not limited to glucose, we continue to use glucose as an

example of a target molecule.

In general, we expect that more Raman scattered light emerges from the blood-

tissue matrix than from whole blood, because the blood-tissue matrix has much lower

absorption than whole blood [Cheong et al. 1990]. In a recent experiment (Enejder, Sasic,

and Oh at MIT), three times more Raman scattered light was collected from a medium

240



whose optical properties are similar to those of skin, than from whole blood. This also

matched with a Monte Carlo simulation model of skin (Enejder). As we discussed in the

previous section, concentrations of glucose in the blood-tissue matrix are only 23% of those

in whole blood. Thus, the intensity of light Raman-scattered by glucose in the blood-tissue

matrix is 70% of that in whole blood.

The fluorescence background and its shot noise is stronger in the blood-tissue

matrix than in whole blood (Figure 7.7). The fluorescence background increased by factor

of 8 in lip and 17 in finger. If we eliminate the fluorescence generated by optical

components (Figure 5.19), the fluorescence background increase would be 7 times in lip

and 16 times in finger. The shot noise would increase by factor of 2.6 in lip and a factor of

4 in the finger. This fluorescence background originates from the body and would be

difficult to eliminate in CW measurements.
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Figure 7.7 Fluorescence background in Raman spectra of finger and lip
(left). Raman spectra of body parts have the background at least ten times
stronger than that of whole blood (right).
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The signal intensityin the blood-tissue matrix was 70% of that in whole blood. The

noise increased at least by factor of 2.6. Accordingly, the S/N in the blood-tissue matrix is

3.7 times smaller than that in whole blood. The overlap factor was also reduced in the

blood-tissue matrix. It was 0.69 in whole blood and 0.64 in the blood-tissue matrix. As a

result, the prediction accuracy is expected to be 4 times lower in the blood-tissue matrix

according to Eq. (4.23), predicting 4 mM prediction error for glucose.

To enhance the prediction accuracy, the system sensitivity needs to be improved

further. As the fluorescence background originates from the body part, the fluorescence

background will also increase in a more sensitive system. Thus, an improvement of the

system sensitivity by factor of 16 is needed to achieve the prediction accuracy obtained in

the whole blood measurement. In Chapter 5, potential enhancement in the system

sensitivity was discussed (Table 5.4), and up to factor of 11 enhancement can be made.

Although this is short of the required factor of 16, glucose can be measured with slightly

reduced prediction accuracy. Thus, transcutaneous measurements of blood analytes appear

to be feasible.

7.4 Future directions

The future work for the transcutaneous measurement may include the following. The

Monte Carlo simulation model for the blood-tissue matrix will provide information about

light propagation in the blood-tissue matrix. The instruments can be improved for faster

and more accurate measurements. Since the surface distribution of light is different in the

blood-tissue matrix from the whole blood, an optimization of the collection optics may
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further increase the sensitivity in measurements of the blood-tissue matrix. The installation

of a larger and more efficient detector will also increase the sensitivity of the instrument.

Further study of the blood-tissue matrix may find skin analytes, which cannot be measured

easily with conventional techniques, and may provide important clinical information. All

this work will lead to the non-invasive transcutaneous measurements of blood analytes.
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Chapter 8

Conclusion

8.1 Review of goals and accomplishments

As discussed in Chapter 1, the principal goal of this thesis research was to measure blood

analytes in whole blood with clinical accuracy. The results presented in Chapter 6

demonstrate that this goal has been achieved. From a Raman spectrum of whole blood, the

concentrations of eight analytes (glucose, urea, cholesterol, triglyceride, albumin, total

protein, hemoglobin, and hematocrit) can be extracted with clinical accuracy.

We also wanted to derive an analytical equation for prediction error. The analytical

equation derived in Chapter 4 provides a better understanding of the prediction error. The

equation indicated that noise is the'major source of error, and efforts were made to design a

spectroscopy system with a maximum sensitivity. Based on the prediction error equation,

we assume that as the S/N in the spectrum increases, the number of analytes that can be

ptedictedwill increase (e.g. bilirubin).

We needed a high-throughput spectroscopy system to achieve high S/N data rapidly.

The new system designed in Chapter 5 had a five times higher S/N than the previous state-

of-the-art system. An optimization of system resolution and throughput, Monte Carlo

simulation results, calculation of the collection geometry, and optimal component selection

by an optical design software were performed to design the new system.
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Another goal was to develop a tool to study Raman scattering and light propagation

in turbid biological media. A Monte Carlo simulation model was developed and validated,

and the model provided important parameters in designing the new optical system. The

application of the simulation model is not limited to whole blood. Given proper optical

properties, it can model various parts of skin in different geometry. Thus, we developed a

versatile tool for studying Raman scattering in turbid media.

These studies have been the first of their kind. No other group, to our knowledge,

has presented research in which the study of Raman scattering in turbid media, the study of

prediction error, and the design of a new Raman spectroscopy system were all combined to

improve prediction accuracy in whole blood.

8.2 Final statement

In conclusion, this thesis research has shown the accuracy of Raman spectroscopy as a

technique for monitoring blood analytes. Multiple analyte concentrations have been

measured, and more analytes will be measured as instrumentation continues to improve.

Practical applications of this methodology would include whole blood analyzer clinical

laboratorids, indwelling catheter for online measurements in intensive-care-unit,

noninvasive blood analyte monitors for in-patient units, physicians' offices, and patients'

home. Furthermore, accurate measurements of skin analytes in vivo-may have the potential

for expanding the horizon of medicine.
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Appendix A

Light propagation in whole blood

calculated by Monte Carlo simulation

and diffusion approximation with

delta-Eddington phase function

Light propagation in turbid media can be described by many mathematical tools. This

section compares the light propagation in whole blood calculated by two methods: Monte

Carlo simulation and diffusion approximation with delta-Eddington phase function.

The Monte Carlo simulation model is a statistical approach to model radiative

transfer equation. There are many Monte Carlo simulations models develop to study

light propagation in turbid media, including the one described in Chapter 3. We used our

Monte Qarlo simulation model for the study in this section. Monte Carlo simulation

models can model various optical properties in different geometries, and calculate many

physical quantities of interest.

The use of diffusion approximation with delta-Eddington phase function was

suggested to better describe forward scattering photons [Groenhuis et al. 1983] than the

use of diffusion approximation alone. The delta-Eddington phase function has two terms:

forward scattered light and diffused light. For highly forward scattering media (high
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anisotropy, g), the intensity of the diffused light is negligible to that of the forward

scattered light. This method was used to describe propagation of elastically-scattered and

Raman-scattered light in whole blood [Berger 1998]. It found that the intensity of the

diffused light was negligible when compared with that of the forward scattered light, and

suggested an interesting model for light propagation in whole blood: excitation light is

exponentially attenuated without spreading in whole blood and Raman-scattered light

emerges ballistically, which is not an accurate description of light propagation in whole

blood.

The light propagation calculated by the Monte Carlo simulation differs from that

calculateda by the delta-Eddington diffusion approximation (Figure B.1). The Monte

Carlo simulation used Reynolds-McCormick phase function (Chapter 3). Both were

computed using the same optical properties of whole blood (pa 1.04/mm, p, 216/mm, and

g 0.990 [Roggan et al. 1999]).
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Figure A.1. The distribution of excitation light absorbed by the media, calculated

by the Monte Carlo simulation model (left) and the delta-Eddington diffusion

approximation (right).

Also, the surface distribution of Raman scattered light calculated by the Monte

Carlo simulation model differs from that calculated by the delta-Eddington diffusion
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approximation. The full-width at half-maximum (FWHM) of the Raman scattered light

from a pencil beam excitation was 0.9 mm according to the Monte Carlo simulation

(Figure 3.7) and 0.04 mm according to the delta-Eddington diffusion approximation

[Berger 1998]. This is probably because the delta-Eddington phase function

overestimates the forward scattered light for values of g close to 1.

The delta-Eddington diffusion approximation is not accurate in modeling light

propagation in whole blood. Although the accuracy of such an approximation method

could be improved by employing an accurate phase function, they are often limited to

specific geometries (e.g. semi-infinite medium). A Monte Carlo simulation model would

be a better tool to study light propagation in a turbid medium, in general.

Reference

A. J. Berger, "Measurement of analytes in human serum and whole blood

samples by near-infrared Raman spectroscopy" (Cambridge: Massachusetts

Institute of Technology, doctoral thesis, 1998).

R. A. J. Groenhuis, J. J. Ten Bosch, and H. A. Ferwerda, "Scattering and

absorption of turbid materials determined from reflection measurements. 1:

Theory," Applied Optics, volume 22, 16 1983, pp. 2456-2462.

A. Roggan, M. Friebel, K. D6rschel, A. Hahn, and G. Muller, "Optical properties

of circulating human blood in the wavelength range 400-2500 hm," Joumal of

Biomedical Optics, volume 4, 1 1999, pp. 36 -46.
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Appendix B

Numerical validation of the prediction

accuracy equation

The prediction error equation and the prediction accuracy equation derived in Chapter 4

can be numerically tested. The prediction accuracy equation was:

C4  1

Ac n diag, (Q -0'42

We wrote a code for Matlab (Mathworks, MA) in order to numerically simulate

Raman spectra and various mixture of chemicals. For each trial, one hundred sampes

were numerically prepared, and each sample was considered as a mixture of ten

chemicals. Spectra of the ten chemicals (Figure B.1) and their concentrations in 100

samples were randomly generated assuming a Gasussian distribution. Then, the spectra

of all the samples can be computed as linear superpositions. The known amplitude of

noise was added to model the noise in the real system. Ordinary least squares (OLS) and

partial least squares (PLS) were used to analyze each set of spectra. The prediction

accuracy was calculated from the prediction accuracy equation and was compared with

those obtained by OLS and PLS. The prediction accuracy of100 samples in 10 trials,

calculated by three methods, are listed in Table B.1.
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Figure B.2. demonstrates that the prediction accuracy of a chemical, present in

100 samples with other nine chemicals, obtained by Eq. (4.23) (line), OLS analysis

(circle), and PLS analysis (triangle). The prediction accuracy calculated by the three

methods match well with one another. Furthermore, the prediction accuracy increases as

the signal-to-noise-ratio (S/N) of the spectra. The small deviation for OLS and PLS from

the prediction accuracy equations is due to the statistical nature of OLS and PLS.
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Figure B.1. A typical set of ten randomly generated spectra (left). The s
displayed offset. The spectra of 100 mixture samples with noise.
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Figure B.2. Prediction accuracy increases as a function of the signal-to-noise-ratio.

However, the prediction accuracy of PLS does not always follow the prediction

accuracy equation. The prediction accuracy equation indicates that the prediction error is

large when the S/N is low and the overlap factor (OLF) is large. Thus, when the
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amplitude of noise increases, the prediction error will increase accordingly, according to

the prediction accuracy equation. On the other hand, the prediction error of PLS does not

follow the prediction accuracy equation when the error becomes large. Due to the nature

of PLS, its maximum prediction error is the standard deviation of the concentrations,

which is the prediction error when all predictions are the average concentrations. Since

the prediction accuracy is inversely proportional to the prediction error, the minimum

prediction accuracy can be also calculated. In one set of simulation data, the mean

concentration of analytes was 5 mM and the standard deviation of analyte concentrations

was 1 mM. Thus, the prediction error of PLS could not exceed 1 mM, and the prediction

accuracy could not be less than 5. This explains why the prediction accuracy deviates

from the prediction accuracy equation sometimes (Figure B.3). The prediction accuracy

plateaus around 5. As the prediction accuracy was always higher than 5 in Figure B.L.,

we did not observe such deviations.
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Figure B.3. Prediction accuracy of partial least squares does not always follow the
prediction accuracy equation when the signal-to-noise-ratio is low. The dashed line is
drawn at 5.3 prediction accuracy.
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The analysis of this simulation result demonstrates that the prediction accuracy

equation is accurate for OLS analysis. For PLS analysis, the prediction accuracy

equation can be fairly accurate, but it would be prudent to compare the calculated

prediction accuracy with the standard deviation of concentrations.

The following is the Matlab code to test the prediction accuracy equation.

C=random('norm', 10,2,100,10);
P2=zeros(10,100,10);
for i=1:10, % i is related to the degree of overlap

fprintf(1, 'processing %d out of I0\n', i);
P=zeros(1 0,100);
for j=1:10, %j is the index of components

n-mnidrnd(i); % n is the number of peaks
for k=i:n, % k is the index of peaks

r-unidrnd(1 00);
wv=normrnd(4,1);

Ped,:)=P,:)+normpdf([1:100],m,w);
end;

end;

S=C*P;
P2(:,: , )=P;

B=P'*inv(P* P');
OLF=sqrt(diag(inv(P*P')));

for j=1:10; % j is related to the degree of noise
S2=S+random('norm',0,j/50,1 00,100); % noise = j/50
for k=1 :10, % k is the index of components

R=candpquiet(S2,C(:,k),10,1,100,1,[,[1: 100]);
for 1=1:11,

tnp(l)=rmsep(C(:,k),R(:,I));
end;
error_pls(i,j,k)=min(tmp);

errorols(i,j,k)=rmsep(C(:,k),S2*B(:,k));
error-est(i,j,k)j/50*OLF(k);

end;
end;

end;
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Table B.A. Prediction accuracy calculated from the prediction accuracy estimation
equation, ordinary least squares analysis, and partial least squares analysis.

S/N OLF EST OLS PLS S/N OLF EST OLS PLS S/N OLF EST OLS PLS
0.87 0.72 0.63 0.62 0.96 3.42 0.29 0.99 0.96 1.66 7.24 0.63 4.53 4.47 4.30
0.97 0.72 0.70. 0.76 1.04 3.42 0.26 0.88 0.84 1.87 7.24 0.41 2.99 3.02 2.90
1.08 0.43 0.46 0.48 1.25 3.43 0.68 2.34 2.17 2.13 7.27 0.65 4.69 4.97 4.55
1.09 0.72 0.79 0.81 1.02 3.45 0.51 1.77 1.73 1.85 7.29 0.42 3.03 3.51 3.30
1.11 0.46 0.51 0.54 1.13 .3.46 0.48 1.66 1.92 1.59 7.30 0.58 4.27 3.89 4.01
1.12 0.19 0.21 0.22 1.05 3.47 0.61 2.12 2.21 2.15 7.31 0.79 5.75 5.99 5.82
1.14 0.70 0.80 0.75 1.14 3.48 0.41 1.41 1.39 1.49 7.31 0.32 2.34 2.27 2.52
1.14 0.46 0.53 0.54 1.15 3.48 0.60 2.09 1.95 1.86 7.34 0.29 2.13 2.22 2.28
1.14 0.52 0.60 0.54 1.01 3.49 0.32 1.11 1.15 1.50 7.35 0.53 3.90 3.92 3.33
1.17 0.35 0.41 0.37 1.00 3.49 0.29 1.00 0.88 1.44 7.37 0.34 2.47 2.39 2.56
1.17 0.94 1.09 1.24 1.13 3.50 0.56 1.95 1.98 1.86 7.37 0.47 3.45 3.26 4.37
1.20 0.43 0.51 0.53 1.03 3.50 0.45 1.57 1.52 1.91 7.38 0.43 3.17 3.09 3.07
1.21 0.63 0.76 0.73 1.11 3.50 0.66 2.32 2.23 2.69 7.40 0.66 4.89 4.73 4.50
1.21 0.63 0.76 0.94 1.22 3.51 0.40 1.41 1.45 2.01 7.40 0.59 4.37 4.50 4.08
1.23 0.58 0.71 077 1.04 3.54 0.54 1.92 1.88 2.41 7.43 0.43 3.17 2.66 3.02
1.23 0.4Q 0.56 0.62 1.22 3.56 0.59 2.09 2.17 2.16 7.46 0.41 3.02 3.05 2.84
1.24 0.19 0.24 0.26 1.05 3.57 0.60 2.13 2.13 2.03 7.46 0.39 2.91 3.10 2.71
1.24 0.72 0.90 0.87 1.20 3.59 0.43 1.54 1.61 2.03 7.48 0.59 4.39 3.83 3.63
1.26 0.70 0.88 0.78 1.11 3.60 0.57 2.06 1.80 2.00 7.48 0.57 4.28 4.57 4.78
1.26 0.34 0.43 0.44 1.08 3.62 0.63 2.26 2.15 2.39 7.57 0.65 4.94 4.88 4.61
1.27 0.46 0.59 0.58 1.10 3.62 0.41 1.49 1.35 1.50 7.61 0.32 2.42 2.26 2.20
1.27 0.52 0.66 0.64 1.01 3.63 0.31 1.12 1.15 1.21 7.65 0.34 2.62 2.56 2.81
1.28 1.00 1.28 1.16 1.37 3.63 0.65 2.35 2.58 2.21 7.67 0.45 3.43 3.45 3.24
1.29 0.91 1.18 1.23 1.24 3.63 0.45 1.62 1.69 2.22 7.68 0.48 3.71 3.86 3.63
1.30 0.35 0.46 0.43 1.01 3.64 0.42 1.52 1.66 1.90 7.69 0.41 3.16 3.31 3.78
1.30 0.94 1.22 1.15 1.19 3.64 0.98 3.58 3.39 3.53 7.69 0.12 0.92 1.11 1.28
1.30 0.82 1.07 1.19 1.68 3.65 0.32 1.17 1.26 1.52 7.74 0.51 3.92 4.30 4.14
1.31 0.59 0.78 0.85 1.37 3.68 0.53 1.95 1.96 2.08 7.77 0.65 5.05 5.13 4.70
1.32 0.95 1.26 1.32 1.21 3.69 0.72 2.67 2.95 3.00 7.78 0.23 1.77 1.77 2.34
1.32 0.87 1.16 1.10 1.25 3.70 0.66 2.45 2.56 2.17 7.80 0.19 1.51 1.52 1.99
1.33 0.44 0.58 0.60 1.08 3.70 0.59 2.18 2.35 2.21 7.81 0.51 3.96 4.03 3.73
1.34 0.63 0.85 0.97 1.22 3.70 0.46 1.69 1.78 2.01 7.83 0.33 2.55 2.57 2.68
1.34 0.63 0.85 0.80 1.12 3.70 0.32 1.18 1.29 1.57 7.90 0.20 1.61 1.62 1.99
1.35 0.43 0.58 0.61 1.11 3.72 0.43 1.58 1.64 1.98 7.94 0.56 4.48 4.05 3.74
1.36 0.29 0.39 0.40 1.28 3.72 0.23 0.87 1.08 1.42 7.96 0.62 4.93 4.53 4.23
1.36 0.58 0.79 0.81 1.24 3.73 0.19 0.71 0.66 1.12 7.98 0.26 2.04 1.91 2.35
1.39 0.46 0.63 0.65 1.18 3.74 0.59 2.20 2.29 2.08 8.01 0.31 2.49 2.54 2.40
1.39 0.41 0.56 0.57 1.00 3.74 0.57 2.14 2.04 2.34 8.02 0.48 3.86 3.87 4.11
1.40 0.32 0.45 0.45 1.11 3.74 0.56 2.09 2.00 2.24 8.03 0.60 4.80 4.40 4.28
1.40 0.29 0.40 0.44 1.06 3.75 0.48 1.78 1.69 1.93 8.10 0.61 4.96 5.41 4.91
1.40 0.19 0.27 0.26 1.05 3.78 0.53 1.99 1.92 2.17 8.10 0.34 2.72 2.72 2.36
1.41 0.34 0.48 0.46 1.17 3.78 0.65 2.47 2.50 2.04 8.11 0.62 5.03 4.57 4.42
1.42 0.70 1.00 1.12 1.22 3.78 0.24 0.92 0.92 1.87 8.13 0.60 4.88 4.76 4.20
1.42 1.00 1.42 1.38 1.44 3.79 0.70 2.65 2.65 2.46 8.13 0.43 3.52 4.00 4.56
1.43 0.46 0.66 0.66 1.13 3.79 0.52 1.95 2.00 2.47 8.17 0.31 2.51 2.39 2.30
1.43 0.52 0.75 0.72 1.06 3.80 0.32 1.21 1.07 1.33 8.18 0.66 5.40 5.01 4.55
1.43 0.91 1.31 1.33 1.20 3.81 0.46 1.77 1.86 1.83 8.18 0.45 3.65 3.42 3.34
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S/N OLF EST OLS PLS S/N OLF EST OLS PLS S/N OLF EST OLS PLS
1.44 0.57 0.82 0.77 1.20 3.81 0.52 1.99 1.90 1.89 8.20 0.98 8.06 7.89 7.70
1.44 0.82 1.19 1.15 1.49 3.82 0.34 1.31 1.33 1.76 8.22 0.58 4.81 5.13 4.79
1.45 0.41 0.60 0.64 1.03 3.84 0.48 1.86 1.81 2.07 8.25 0.20 1.63 1.62 1.75
1.45 0.72 1.05 1.04 1.19 3.84 0.41 1.58 1.57 2.22 8.30 0.47 3.89 3.97 4.35
1.46 0.35 0.52 0.55 1.08 3.85 0.12 0.46 0.41 1.04 8.34 0.40 3.31 3.43 3.04
1.46 0.59 0.86 0.82 1.26 3.87 0.51 1.96 1.77 1.87 8.37 0.23 1.96 1.77 1.95
1.46 0.94 1.37 1.45 1.60 3.87 0.42 1.65 1.55 1.99 8.40 0.38 3.15 3.41 2.91
1.47 0.95 1.40 1.31 1.38 3.88 0.59 2.27 2.35 2.75 8.41 0.39 3.28 3.71 3.45
1.47 0.53 0.78 0.76 1.33 3.88 0.61 2.36 2.39 2.67 8.43 0.64 5.39 5.70 5.06
1.47 0.87 1.28 1.37 1.40 3.89 0.35 1.38 1.47 1.83 8.44 0.11 0.94 1.11 1.27
1.47 0.44 0.65 0.70 1.17 3.90 0.94 3.65 3.43 3.08 8.45 0.48 4.01 4.17 3.54
1.51 0,29 0.44 0.53 1.11 3.90 0.19 0.75 0.80 1.60 8.51 0.53 4.48 4.85 4.79
1.51 0.63 0.96 1.10 1.30 3.93 0.68 2.67 2.57 2.62 8.51 0.24 2.07 1.83 2.29
1.51 0.63 0.96 0.93 1.32 3.94 0.51 2.02 2.11 2.36 8.52 0.52 4.39 4.09 3.53
1.53 0.58 0.88 0.89 1.03 3.94 0.65 2.58 2.54 2.39 8.54 0.29 2.49 2.83 2.64
1.54 0.12 0.18 0.18 1.03 3.95 0.48 1.90 1.87 1.79 8.57 0.29 2.48 2.70 2.68
1.54 0.43 0.66 0.65 1.36 3.95 0.20 0.81 0.87 1.69 8.71 0.72 6.29 7.29 6.85
1.55 0.41 0.63 0.56 1.01 3.96 0.59 2.32 2.51 2.22 8.73 0.56 4.87 5.62 5.03
1.55 0.51 0.78 C.80 1.10 3.97 0.56 2.24 2.22 2.01 8.77 0.79 6.90 7.71 7.03
1.55 0.32 0.50 0.51 1.20 3.99 0.26 1.02 0.93 2.11 8.84 0.34 2.97 2.78 2.84
1.55 0.29 0.44 0.46 1.18 4.00 0.56 2.23 2.06 2.14 8.85 0.43 3.80 3.68 3.62
1.58 0.34 0.54 0.61 1.17 4.00 0.31 1.25 1.06 1.53 8.86 0.54 4.81 5.54 5.18
1.59 0.46 0.72 0.63 1.35 4.00 0.45 1.80 1.75 2.16 8.89 0.23 2.02 1.97 2.84
1.60 0.19 0.31 0.29 1.16 4.01 0.40 1.61 1.70 1.81 8.90 0.59 5.23 5.45 4.89
1.60 0.57 0.92 0.90 1.30 4.02 0.60 2.40 2.39 2.30 8.95 0.41 3.63 3.57 3.39
1.60 1.00 1.60 1.66 1.70 4.02 0.63 2.55 2.61 2.40 8.96 0.39 3.49 3.04 2.83
1.61 -0.41 0.66 0.64 1.17 4.03 0.63 2.55 2.21 2.25 9.02 0.48 4.34 5.00 4.6
1.61 0.91 1.47 1.57 1.53 4.04 0.65 2.61 2.58 2.64 9.06 0.61 5.50 4.82 4.90
1.62 0.62 1.01 0.92 1.37 4.05 0.42 1.68 1.54 1.97 9.09 0.65 5.87 5.84 5.49
1.62 0.70 1.14 1.15 1.40 4.05 0.61 2.48 2.49 2.74 9.11 0.42 3.79 3.69 3.62
1.62 0.82 1.34 1.32 1.61 4.05 0.34 1.36 1.24 1.60 9.13 0.33 2.97 3.14 2.90
1.63 0.46 0.76 0.75 1.27 4.05 0.62 2.52 2.18 2.23 9.16 0.68 6.24 6.22 5.78
1.63 0.52 0.85 0.77 1.08 4.07 0.60 2.44 2.42 2.11 9.19 0.51 4.71 4.89 5.07
1.63 0.53. 0.87 0.96 1.45 4.09 0.58 2.36 2.54 2.27 9.20 0.45 4.11 4.13 4.46
1.64 0.59 0.97 1.09 1.53 4.09 0.31 1.26 1.29 1.62 9.21 0.48 4.43 4.47 3.88
1.65 0.20 0.33 0.34 1.20 4.09 0.66 2.70 2.69 2.77 9.22 0.72 6.66 6.37 6.23
1.65 0.95 1.57 1.62 1.58 4.09 0.45 1.82 1.81 2.73 9.26 0.32 2.96 3.31 3.13
1.65 0.87 1.45 1.47 1.42 4.10 0.98 4.03 4.48 4.17 9.29 0.62 5.76 6.16 5.69
1.66 0.44 0.73 0.72 1.29 4.12 0.20 0.81 0.86 1.37 9.29 0.43 3.96 3.71 3.46
1.67 0.35 0.59 0.52 1.28 4.13 0.43 1.76 1.80 2.19 9.29 0.43 4.02 3.68 4.48
1.67 0.94 1.56 1.84 1.73 4.15 0.59 2.44 2.57 2.41 9.32 0.65 6.05 6.94 5.85
1.68 0.38 0.63 0.71 1.18 4.17 0.40 1.65 1.62 1.79 9.33 0.56 5.20 4.64 4.40
1.69 0.11 0.19 0.17 1.02 4.18 0.32 1.33 1.28 1.75 9.34 0.59 5.49 6.06 5.63
1.69 0.29 0.49 0.45 1.23 4.19 0.23 0.98 1.18 1.37 9.34 0.45 4.19 4.36 4.43
1.71 0.29 0.50 0.58 1.30 4.20 0.38 1.58 1.51 1.52 9.37 0.40 3.76 3.65 4.04
1.71 0.12 0.21 0.20 1.03 4.20 0.39 1.64 1.83 1.86 9.37 0.51 4.76 4.44 4.23
1.72 0.51 0.87 0.99 1.18 4.22 0.34 1.45 1.41 1.60 9.39 0.58 5.49 6.01 5.41
1.72 0.63 1.09 1.01 1.06 4.22 0.64 2.69 2.62 2.70 9.48 0.47 4.44 4.10 4.68
1.73 0.63 1.09 1.11 1.23 4.22 0.11 0.47 0.43 1.09 9.68 0.42 4.11 3.64 3.72
1.74 0.41 0.70 0.69 1.07 4.22 0.48 2.01 2.20 2.34 9.69 0.59 5.68 5.39 5.21
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S/N OLF
1.74 0.72
1.74 0.32
1.75 0.29
1.75 0.58
1.77 0.54
1.80 0.43
1.80 0.57
1.80 0.62
1.81 0.34
1.81 0.41
1.83 1.00
1.83 020
1.84 0.53
1.84 0.72
1.84 0.91
1.85 0.46
1.85 0.32
1.86 0.82
1.86 0.19
1.87 '0.38
1.87 0.59
1.88 0.11
1.89 0.95
1.89 0.87
1.89 0.70
1.89 0.44
1.90 0.29
1.90 0.46
1.91 0.52
1.92 0.12
1.94 0.51
1.94 0.29
1.94 0.42
1.94 0.59
1.94 0.35
1.95 0.94
1.97 0.54
1.97 0.65
1.99 0.41
1.99 0.32
2.00 0.29
2.01 0.63
2.02 0.63
2.03 0.62
2.04 0.58
2.05 0.72
2.06 0.57
2.06 0.32
2.06 0.20
2.07 0.41

EST OLS
1.26 1.15
0.56 0.64
0.50 0.57
1.01 0.94
0.96 1.08
0.77 0.79
1.03 1.04
1.12 1.16
0.62 0.64
0.75 0.71
1.83 1.81
0.36 0.39
0.98 1.05
1.33 1.34
1.68 1.85
0.85 0.84
0.59 0.58
1.53 1.61
0.36 0.37
0.70 0.73
1.11 1.15
0.21 0.20
1.79 1.76
1.65 1.86
1.33 1.13
0.84 0.71
0.55 0.59
0.88 0.84
1.00 1.02
0.23 0.23
0.98 1.03
0.56 0.49
0.82 0.80
1.14 1.22
0.69 0.67
1.82 1.78
1.07 1.18
1.29 1.42
0.81 0.84
0.64 0.64
0.57 0.50
1.27 1.30
1.27 1.31
1.26 1.29
1.18 1.23
1.48 1.36
1.18 1.23
0.66 0.64
0.41 0.40
0.85 0.90

PLS
1.31
1.23
1.05
1.11
1.45
1.22
1.52
1.63
1.31
1.19
1.60
1.28
1.58
1.66
1.61
1.33
1.25
1.87
1.16
1.221
1.63
1.18
1.70
1.74
1.23
1.25.
1.34
1.30
1.23
1.03
1.21
1.25
1.35
1.69
1.24
1.75
1.63
1.35
1.15
1.22
1.10
1.59
1.47
1.72
1.66
1.51
1.53
1.33
1.22
1.20

S/N OLF
4.23 0.66
4.25 0.53
4.26 0.24
4.26 0.52
4.27 1.00
4.27 0.29
4.27 0.57
4.30 0.91
4.32 0.65
4.33 0.82
4.34 0.63
4.36 0.72
4.36 0.56
4.37 0.34
4.37 0.59
4.38 0,79
4.39 0.48
4.40 0.95
4.41 0.87
4.42 0.44
4.42 0.34
4.43 0.43
4.43 0.54
4.44 0.59
4.45 0.31
4.45 0.59
4.48 0.41
4.48 0.39
4.50 0.34
4.52 0.29
4.53 0.61
4.54 0.65
4.55 0.42
4.57 0.32
4.58 0.68
4.59 0.60
4.59 0.51
4.60 0.45
4.61 0.48
4.61 0.72
4.61 0.41
4.63 0.32
4.63 0.40
4.64 0.41
4.64 0.43
4.65 0.32
4.66 0.29
4.66 0.65
4.67 0.56
4.67 0.39

EST
2.80
2.24
1.04
2.20
4.27
1.24
2.45
3.92
2.82
3.56
2.72
3.15
2.44
1.50
2.59
3.45
2.12
4.19
3.85
1.95
1.48
1.90
2.40
2.62
1.39
2.62
1.81
1.75
1.51
1.31
2.75
2.93
1.89
1.45
3.12
2.74
2.36
2.06
2.22
3.33
1.90
1.48
1.84
1.88
1.98
1.49
1.33
3.03
2.60
1.82

OLS PLS
2.68 2.49
2.39 2.51
1.07 1.79
2.14 2.05
4.59 4.55
1.30 1.68
2.26 2.14
4.36 4.41
2.81 2.46
4.00 3.84
2.87 2.70
3.13 2.95
2.44 2.31
1.41 1.96
2.47 2.42
3.58 3.20
2.20 2.22
3.98 3.72
3.89 3.94
2.15 2.13
1.51 1.83
1.82 2.20
2.22 2.43
2.78 2.56
1.56 1.97'
2.59 2.70
2.02 2.02
1.82 1.91
1.50 1.78
1.30 1.59
2.89 2.68
2.87 2.45
1.91 2.10
1.58 1.55
2.76 2.58
2.69 2.77'
2.39 2.36
2.15 2.50,
2.25 2.18
3.06 3.01
1.85 2.42
1.56 1.61
1.98 2.07
1.82 1.67
2.03 2.31
1.44 1.531
1.44 1.66
3.31 2.79
2.71 2.56
1.81 1.67

S/N OLF
9.75 0.32
9.85 0.65
9.86 0.66
9.97 0.57
10.01 0.31
10.09 0.65
10.13 0.34
10.20 0.34
10.24 0.48
10.28 0.29
10.31 0.48
10.37 0.23
10.43 0.40
10.51 0.39
10.54 0.64
10.71 0.60
10.77 0.43
10.84 0.43
10.85 0.63
10.90 0.31
10.90 0.45
10.93 0.98
10.96 0.33
10.96 0.58
10.96 0.79
11.06 0.34
11.06 0.47
11.07 0.43
11.10 0.59
11.10 0.46
11.14 0.62
11.16 0.23
11.19 0.19
11.19 0.41
11.20 0.39
11.26 0.48
11.35 0.53
11.35 0.24
11.36 0.70
11.37 0.52
11.41 0.32
11.42 0.46
11.43 0.52
11.50 0.45
11.53 0.41
11.65 0.65
11.67 0.35
11.69 0.94
11.70 0.19
11.72 0.51-

EST
3.11
6.44
6.52
5.71
3.12
6.59
3.40
3.49
4.95
2.98
4.97
2.36
4.13
4.10
6.73
6.40
4.62
4.69
6.79
3.35
4.86
10.75
3.57
6.41
8.62
3.71
5.18
4.75
6.55
5.07
6.91
2.61
2.14
4.54
4.36
5.35
5.97
2.76
7.96
5.85
3.63
5.30
5.97
5.14
4.74
7.57
4.13
10.94
2.26
5.95
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OLS
2.77
6.72
5.90
6.44
3.18
6.29
3.43
3.41
5.68
3.13
5.34
2.23
4.44
4.03
6.21
6.99
4.94
4.66
7.10
3.14
5.44
9.82
3.64
6.34
8.69
4.33
5.25
4.85
6.97
5.01
6.53
2.67
1.83
4.15
4.49
5.20
6.62
2.69
8.52
5.36
3.48
6.28
6.29
5.77
5.34
7.46
4.18
11.92
2.68
6.24

PLS
2.40
5.95
5.50
5.88
3.17
6.00
3.33
3.18
5.31
2.90
5.04
2.96
4.37
4.02
6.29
6.13
4.19
4.65
5.81
2.94
5.10
9.58
3.44
5.69
7.88
3.80
5.26
4.55
6.36
4.94
6.22
2.31
1.76
3.92
3.60
4.62
5.69
3.28
8.20
5.08
3.45
5.66
5.53
5.58
4.96
7.03
3.61
10.87
2.72
5.18



S/N OLF EST
2.10 0.38 0.791
2.10 0.53 1.12
2.11 0.34 0.72
2.11 0.11 0.23
2.14 1.00 2.13
2.14 0.29 0.62
2.15 0.91 1.96
2.15 0.42 0.91
2.15 0.43 0.92
2.15 0.59 1.26
2.17 0.82 1.78
2.17 0.63 1.36
2.18 0.72 1.57
2.19 0.59 1.30
2.19 0.65 1.43
2.20 0.12 0.26
2.20 0.95 2.09
2.21 0.87 1.93
2.21 0.44 0.97
2.21 0.51 1.12
2.21 0.54 1.20
2.22 0.59 1.31
2.22 0.46 1.01
2.24 0.19 0.43
2.26 0.29 0.66
2.27 0.70 1.59
2.28 0.32 0.73
2.28 0.46 1.06
2.29 0.52 1.19
2.30 0.72 1.67
2.31 0.41 0.95
2.32 0.32 0.74
2.32 0.62 1.44
2.32 0.41 0.94
2.33 0.32 0.74
2.33 0.2.9 0.67
2.33 0.35 0.83
2.34 0.94 2.19
2.34 0.19 0.45
2.36 0.20 0.47
2.37 0.20 0.48
2.38 0.56 1.34
2.40 0.26 0.61
2.40 0.57 1.37
2.40 0.38 0.90
2.41 0.11 0.27
2.41 0.63 1.51
2.41 0.41 1.00
2.41 0.63 1.53
2.42 0.63 1.53

OLS PLS
0.82 1.19
1.16 1.66
0.82 1.21
0.24 1.13
1.90 1.89
0.66 1.32
2.28 2.17
0.91 1.64
0.83 1.45
1.20 1.70
1.75 1.84
1.28 1.90
1.55 1.40
1.29 1.64
1.50 1.53
0.31 1.03
1.90 1.95
2.25 2.22
0.87 1.36
0.97 1.27
1.23 1.77
1.29 1.69
0.94 1.54
0.41 1.08
0.65 1.36
1.60 1.72
0.71 1.38
1.05 1.31
1.19 1.36
1.65 1.70
1.04 1.47
0.79 1.26
1.45 1.81
0.90 1.14
0.84 1.31
0.63 1.26
0.91 1.16
2.23 2.13
0.49 1.49
0.44 1.32
0.55 1.45
1.36 1.26
0.63 1.82
1.39 1.61
0.88 1.36
0.31 1.12
1.47 1.79
0.98 1.32
1.6.9 1.74
1.49 1.50

S/N OLF
4.67 0.31
4.67 0.59
4.67 0.45
4.67 0.45
4.68 0.19
4.68 0.40
4.68 0.64
4.69 0.98
4.69 0.51
4.74 0.20
4.76 0.56
4.78 0.23
4.79 0.26
4.80 0.57
4.83 0.48
4.83 0.41
4.84 0.42
4.85 0.59
4.86 0.61
4.86 0.53
4.86 0.24
4.87 0.79
4.87 0.52
4.87 0.32
4.88 0.60
4.90 0.53
4.91 0.66
4.91 0.34
4.92 0.43
4.93 0.65
4.93 0.66
4.97 0.41
4.98 0.39
4.99 0.57
5.00 0.31
5.04 0.65
5.06 0.34
5.09 0.59
5.10 0.34
5.11 0.45
5.12 0.48
5.13 0.12
5.14 0.29
5.16 0.51
5.18 0.65
5.19 0.65
5.21 0.42
5.21 0.51
5.21 0.40
5.24 0.56

EST
1.44
2.74
2.10
2.08
0.90
1.88
2.99
4.61
2.38
0.97
2.69
1.12
1.23
2.75
2.29
1.99
2.06
2.84
2.97
2.56
1.18
3.83
2.51
1.56
2.93
2.60
3.24
1.65
2.11
3.22
3.26
2.02
1.94
2.85
1.56
3.29
1.70
2.99
1.75
2.29
2.47
0.62
1.49
2.62
3.36
3.35
2.16
2.64
2.07
2.92

H

OLS PLS
1.76 1.67
3.06 3.02
2.01 1.95
1.90 2.48
0.83 1.69
2.00 1.90
3.21 3.12
4.53 4.07
2.33 2.43
0.86 1.64
3.18 2.66
1.10 1.50
1.25 2.19
2.46 2.66
2.25 2.28
1.85 1.94
1.84 2.33
2.88 3.47
2.99 2.84
2.65 2.79
1.25 1.65
4.37 4.36
2.54 2.39
1.65 1.87
2.93 2.86
3.03 3.11
3.18 3.21
1.65 1.84
2.11 2.10
3.17 3.06
3.41 2.86
2.20 2.05
1.87 1.89
2.99 3.31
1.83 1.78
3.16 2.97
1.82 1.85
2.61 2.59
1.65 1.88
2.39 2.77
2.60 2.58
0.77 1.23
1.51 1.67
2.60 2.27
3.27 2.72
3.57 3.23
2.11 2.28
2.37 2.57
2.20 2.39
2.82 2.80

S/N OLF
11.85 0.20
11.87 0.59
11.91 0.56
11.98 0.26
12.02 0.48
12.07 0.63
12.09 0.63
12.12 0.65
12.15 0.42
12.15 0.61
12.20 0.60
12.26 0.58
12.27 0.66
12.39 0.43
12.45 0.23
12.46 0.59
12.65 0.34
12.81 1.00
12.85 0.29
12.91 0.91
13.00 0.82
13.01 0.43
13.09 0.56
13.12 0.59
13.15 0.58
13.21 0.95
13.24 0.87
13.26 0.44
13.27 0.47
13.34 0.31
13.50 0.34
13.55 0.29
13.59 0.61
13.69 0.33
13.74 0.68
13.78 0.51
13.82 0.48
13.90 0.40
13.91 0.41
13.93 0.62
13.96 0.32
13.97 0.29
14.00 0.56
14.01 0.39
14.02 0.45
14.05 0.40
14.05 0.64
14.39 0.57
14.43 0.48
14.49 0.41

EST
2.42
6.97
6.72
3.06
5.79
7.65
7.65
7.82
5.05
7.44
7.33
7.08
8.11
5.28
2.83
7.32
4.35
12.80
3.72

11.77
10.69
5.63
7.31
7.78
7.69
12.56
11.56
5.85
6.22
4.16
4.53
3.94
8.26
4.46
9.36
7.07
6.65
5.51
5.64
8.63
4.46
3.99
7.80
5.46
6.29
5.65
8.98
8.24
6.95
5.97

OLS
2.81
7.34
7.98
2.84
5.81
8.89
7.66
7.79
5.32
7.03
7.72
7.24
8.56
5.55
3.08
7.51
4.09
12.67
3.82
12.69
10.62
6.08
7.85
9.48
8.05
11.93
11.67
6.51
6.79
4.05
4.43
3.72
8.30
4.34
9.09
7.04
6.66
5.20
5.89
9.77
4.13
4.26
7.85
5.23
5.73
5.66
8.90
8.84
6.73
6.58
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PLS
2.82
6.73
7.48
3.19
5.85
8.44
7.49
7.29
4.93
6.61
7.23
6.74
7.78
5.60
2.95
6.58
4.09
12.13
3.34
11.70
9.03
5.62
7.11
8.35
7.64

10.84
10.08
5.93
6.15
3.43
3.93
3.21
7.55
3.88
8.56
6.38
6.07
5.21
5.60
8.58
3.91
3.64
7.32
4.48
5.06
5.26
7.68
8.54
6.26
6.37



S/N OLF EST
2.42 0.42 1.03
2.42 0.59 1.42
2.43 0.61 1.49
2.44 0.60 1.47
2.44 0.29 0.71
2.45 0.53 1.30
2.45 0.58 1.42
2.45 0.66 1.62
2.46 0.65 1.61
2.47 0.59 1.46
2.53 0.34 0.87
2.53 0.54 1.37
2.54 0.32 0.81
2.56 1.00 2.56
2.56 0.41 1.05
2.56 0.12 0.31
2.58 0.51 1.31
2.58 0.91 2.35
2.60 0.19 0.50
2.60 0.82 2.14
2.62 0.56 1.46
2.62 0.59 1.56
2.63 0.72 1.90
2.63 0.20 0.54
2.64 0.95 2.51
2.65 0.32 0.84
2.65 0.56 1.49
2.65 0.87 2.31
2.65 0.44 1.17
2.66 0.26 0.68
2.69 0.43 1.16
2.70 0.61 1.65
2.70 0.62 1.68
2.71 0.60. 1.63
2.71 0.29 0.79
2.71 0.63 1.70
2.72 0.61 1.65
2.73 0.66 1.80
2.75 0.68 1.87
2.75 0.20 0.54
2.76 0.51 1.41
2.76 0.48 1.33
2.77 0.42 1.18
2.77 0.59 1.62
2.77 0.59 1.64
2.78 0.46 1.27
2.78 0.41 1.13
2.79 0.32 0.89
2.79 0.29 0.80
2.80 019 054

OLS PLS
1.11 1.60
1.30 1.69
1.40 1.41
1.28 1.57
0.66 1.29
1.24 1.66
1.41 1.49
1.73 2.02
1.72 1.68
1.49 1.63
0.90 1.50
1.34 1.94
0.85 1.41
2.29 2.27
1.19 1.50
0.28 1.03
1.22 1.47
2.74 2.42
0.52 1.51
2.00 2.10
1.70 1.98
1.52 1.81
2.00 1.88
0.55 1.44
2.31 2.10
0.92 1.25
1.59 1.60
2.00 1.94
1.16 1.53
0.73 1.96
1.09 1.72
1.61 1.70
1.67 2.08
1.69 1.53
0.81 1.46
1.66 1.97
1.69 1.71
1.63 1.89
1.99 2.05
0.52 1.19
1.35 1.74
1.40 1.36
1.18 1.51
1.65 1.71
1 79 2.13
1.30 1.66
1.18 1.49
0.99 1.51
0.78 1.29
0.51 1.11

S/N OLF
5.25 0.39
5.27 0.64
5.31 0.43
5.34 0.59
5.36 0.60
5.39 0.43
5.40 0.62
5.43 0.63
5.44 0.61
5.45 0.31
5.45 0.45
5.47 0.98
5.48 0.33
5.48 0.79
5.50 0.68
5.50 0.20
5.51 0.51
5.53 0.34
5.53 0.48
5.53 0.43
5.55 0.59
5.55 0.46
5.57 0.62
5.58 0.23
5.59 0.19
5.60 0.41
5.60 0.39
5.60 0.56
5.60 0.38
5.61 0.45
5.62 0.40
5.63 0.11
5.63 0.48
5.67 0.53
5.68 0.24
5.68 0.70
5.68 0.52
5.70 0.29
5.71 0.32
5.71 0.46
5.71 0.29
5.72 0.52
5.72 0.31
5.75 0.45
5.76 0.41
5.79 0.34
5.83 0.65
5.83 0.35
5.84 0.94
5.85 0.32

EST
2.05
3.37
2.26
3.14
3.20
2.31
3.36
3.40
3.30
1.68
2.43
5.37
1.78
4.31
3.74
1.09
2.83
1.85
2.66
2.38
3.27
2.54
3.45
1.30
1.07
2.27
2.18
3.12
2.10
2.52
2.26
0.63
2.67
2.99
1.38
3.98
2.93
1.66
1.82
2.65
1.65
2.99
1.78
2.57
2.37
1.94
3.78
2.07
5.47
1.87

OLS PLS
2.20 1.95
3.42 3.56
2.24 2.23
3.33 3.41
3.17 2.88
2.47 2.38
3.37 3.33
3.34 3.34
3.15 3.23
1.87 2.13
2.34 2.87
4.90 4.65
2.00 2.37
4.91 4.10
3.67 3.94
1.06 1.37
2.67 2.82
1.67 1.78
3.13 2.74
2.57 2.61
3.34 3.47
2.84 2.69
3.54 3.20
1.29 1.49
1.12 1.34
2.25 2.49
2.08 2.23
3.20 2.98
1.93 2.03
2.73 2.87
2.07 2.38
0.72 1.20
2.57 2.81
3.10 3.21
1.40 1.671
4.08 3.72
3.11 2.96
1.74 2.08
1.73 1.74
2.43 2.33
1.72 1.95
3.22 2.78
1.62 1.93
2.59 3.04
2.58 2.84
1.94 2.14
3.97 3.49
1.88 1.83
5.19 4.71
2.12 2.05

S/N OLF
14.61 0.79
14.62 0.32
14.70 0.53
14.74 0.34
14.75 0.43
14.79 0.66
14.92 0.41
14.93 0.39
14.96 0.57
15.13 0.65
15.30 0.34
15.33 0.45
15.36 0.48
15.38 0.12
15.49 0.51
15.53 0.65
15.56 0.23
15.62 0.51
16.07 0.60
16.21 0.62
16.26 0.43
16.35 0.31
16.36 0.45
16.40 0.98
16.44 0.58
16.49 0.20
16.59 0.47
16.74 0.23
16.80 0.38
16.88 0.11
16.89 0.48
17.02 0.53
17.03 0.24
17.05 0.52
17.09 0.29
17.14 0.29
17.72 0.54
17.81 0.59
18.04 0.48
18.17 0.65
18.22 0.42
18.26 0.33
18.43 0.72
18.52 0.32
18.57 0.62
18.58 0.43
18.69 0.59
19.37 0.42
19.39 0.59
19.70 0.65

EST
11.50
4.67
7.81
4.95
6.34
9.79
6.05
5.82
8.56
9.88
5.24
6.86
7.42
1.85
7.85
10.09
3.54
7.93
9.60
10.07
7.04
5.03
7.30
16.12
9,61
3.26
7.77
3.91
6.31
1.88
8.02
8.96
4.14
8.78
4.97
4.96
9.62
10.46
8.69
11.74
7.58
5.95
13.33
5.91
11.51
7.92
10.98
8.23
11.35
12.89

OLS
10.92
5.03
7.73
5.19
6.50
11.28
5.72
6.08
9.83
8.95
4.66
7.06
6.63
1.89
8.12
10.82
3.55
9.09
10.27
11.28
6.97
4.94
8.34

16.02
10.56
3.34
9.10
4.13
6.43
1.84
7.56
8.73
3.59
8.56
5.19
4.74
10.62
10.22
8.66
11.29
6.74
6.03
13.86
5.55
11.90
7.75

13.12
9.39
11.44
13.41

PLS
9.49
4.87
7.07
5.37
6.31
10.10
5.10
5.80
8.44
8.53
4.68
6.37
6.57
2.06
7.20

10.20
3.69
8.61
9.59
10.48
7.39
4.48
7.38

15.02
9.91
3.49
8.38
3.77
6.20
1.99
6.86
7.99
3.77
8.04
4.93
4.46
8.74
8.81
7.73

11.19
6.86
5.87

13.02
5.25

11.32
7.25

11.53
9.09

10.27
13.03
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S/N OLF
2.80 0.56
2.80 0.38
2.80 0.45
2.81 0.40
2.81 0.11
2.81 0.65
2.84 0.70
2.85 0.29
2.85 0.32
2.85 0.46
2.86 0.52
2.88 0.57
2.88 0.41
2.90 0.41
2.90 0.72
2.91 0.56
2.92 0.35
2.92 0.94
2.92 0.32
2.92 .0.19
2.94 0.53
2.95 0.54
2.96 0.66
2.96 0.20
2.98 0.56
2.99 0.57
2.99 0.26
3.02 0.63
3.02 0.61
3.02 0.63
3.03 0.65
3.04 0.61
3.05 0.60
3.05 0.68
3.06 0.34
3.06 0.51
3.06 0.58
3.07 0.66
3.07 0.48
3.07 0.48
3.07 0.72
3.08 0.12
3.09 0.32
3.10 0.51
3.10 0.63
3.11 0.56
3.11 0.45
3.12 0.40
3.16 0.34
3.17 0.59

EST
1.56
1.05
1.26
1.13
0.31
1.84
1.99
0.83
0.91
1.33
1.49
1.65
1.19
1.19
2.10
1.62
1.03
2.74
0.93
0.56
1.56
1.60
1.96
0.60
1.68
1.71
0.77
1.91
1.83
1.91
1.98
1.86
1.83
2.08
1.05
1.57
1.77
2.03
1.48
1.48
2.22
0.37
0.99
1.57
1.94
1.73
1.40
1.25
1.0C
1.87

OLS
1.45
1.02
1.30
1.24
0.27
1.88
1.93
0.81
0.95
1.14
1.49
1.41
1.34
1.14
2.44
1.75
0.95
245
0.98
0.57
1.64
1.52
1.84
0.60
1.51
1.68
0.73
1.75
1.94
1.86
1.82
2.07
1.83
2.16
1.02
1.49
1.68
2.09
1.70
1.46
2.25
0.35
0.90
1.68
1.69
1.84
1.54
1.26
1.12
1.71

-F
PLS
1.58
1.28
1.61
1.54
1.12
1.88
1.95
1.50
1.38
1.54
1.49
1.77
1.78
1.50
2.43
1.75
1.39
2.55
1.34
1.57
1.59
1.93,
1.901
1.731
1.63
2.01
1.99
1.73
2.08
1.84
1.95
2.14
2.04
2.23
1.77
1.66
1.69
2.29
1.66
1.65
2.01
1.03
1.39
1.49
1.90
1.73
1.89
1.52
1.45
1.84

S/N OLF
5.85 0.19
5.86 0.51
5.91 0.54
5.92 0.66
5.93 0.20
5.94 0.59
5.95 0.56
5.96 0.40
5.98 0.57
5.99 0.26
6.01 0.39
6.02 0.64
6.04 0.63
6.05 0.63
6.05 0.65
6.06 0.65
6.07 0.42
6.08 0.61
6.09 0.33
6.10 0.60
6.12 0.34
6.13 0.58
6.13 0.66
6.14 0.48
6.14 0.72
6.17 0.32
6.19 0.62
6.19 0.43
6.22 0.23
6.23 0.59
6.26 0.79
6.32 0.34
6.32 0.43
6.32 0.34
6.39 0.41
6.40 0.39
6.41 1.00
6.43 0.29
6.43 0.60
6.45 0.91
6.46 0.42
6.46 0.59
6.50 0.82
6.51 0.43
6.54 0.31
6.54 0.45
6.55 0.56
6.56 0.98
6.56 0.59
6.57 0.65

EST
1.13
2.97
3.21
3.91
1.21
3.49
3.36
2.36
3.42
1.53
2.34
3.85
3.82
3.82
3.95
3.91
2.53
3.72
1.98
3.66
2.10
3.54
4.05
2.97
4.44
1.97
3.84
2.64
1.42
3.66
4.93
2.12
2.72
2.17
2.59
2.49
6.40
1.86
3.84
5.89
2.74
3.78
5.34
2.82
2.01
2.92
3.65
6.45
3.89
4.30

OLS PLS
1.09 1.93
3.14 3.08
3.73 3.18
4.12 4.02
1.14 2.06
4.42 3.80
3.13 2.64
2.43 2.54
3.41 3.38
1.59 2.29
2.50 2.40
4.06 4.20
4.06 3.34
3.65 3.76
3.96 3.98
4.42 3.97
2.43 2.62
3.70 3.80
2.21 2.34
3.47 3.05
2.18 2.16
3.73 3.32
3.69 3.68
2.78 2.85
4.69 4.14
1.97 2.02
3.24 3.23
2.59 2.71
1.49 2.30
3.59 3.44
4.80 4.29
2.03 2.32
2.58 2.46
2.32 2.12
3.01 2.87
2.35 2.27
6.76 6.08
2.13 2.29
4.09 3.65
6.11 5.74
2.51 3.11
3.60 3.90
5.14 4.66
2.77 3.48
2.03 1.84
2.72 3.21
3.83 3.36
7.16 6.65
3.50 3.53
4.58 4.56

S/N OLF
20.01 0.31
20.25 0.34
20.75 0.23
20.85 0.40
21.02 0.39
21.08 0.64
21.69 0.43
21.71 0.63
21.91 0.58
21.92 0.79
22.11 0.34
22.12 0.47
22.13 0.43
22.20 0.59
22.38 0.41
22.39 0.39
22.83 0.32
23.00 0.45
23.06 0.41
23.30 0.65
23.39 0.19
23.44 0.51
23.71 0.20
23,82 0.56
23.95 0.26
24.05 0.48
24.30 0.61
24.39 0.60
24.53 0.66
25.71 0.29
26.18 0.56
27.18 0.61
27.39 0.33
27.48 0.68
27.57 0.51
27.64 0.48
27.86 0.62
27.99 0.56
28.03 0.45
28.10 0.40
29.24 0.32
29.58 0.66
29.92 0.57
30.26 0.65
30.60 0.34
30.72 0.48
31.12 0.23
32.13 0.60
32.53 0.43
32.70 0.31

EST
6.23
6.80
4.72
8.27
8.20
13.47
9.39
13.58
12.82
17.25
7.42
10.36
9.51
13.10
9.07
8.73
7.27
10.29
9.49
15.14
4.52
11.89
4.83
13.44
6.13
11.59
14.87
14.65
16.21
7.44
14.61
16.51
8.92

18.71
14.13
13.30
17.27
15.61
12.58
11.29
9.34
19.57
17.12
19.76
10.48
14.85
7.08
19.21
14.08
10.05
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OLS
6.04
6.36
4.57
8.95
8.39
17.26
8.70
13.78
11.45
17.53
8.04
9.00
10.18
12.12
9.83
8.35
8.41
9.70
9.58
15.99
4.51
11.21
5.01
13.52
6.30
11.55
15.59
13.85
16.14
7.53
15.86
17.75
9.81
19.12
15.65
14.44
15.89
17.17
13.72
11.91
10.88
19.43
19.03
17.85
12.21
16.64
6.57
19.61
13.14
12.16

PLS
5.30
5.68
4.59
8.67
7.95
15.96
7.78

12.49
10.41
16.33
7.78
8.77
9.31

1125
9.16
7.63
7.98
9.15
9.22

15.03
3.82

10.19
4.25
12.50
6.53
10.03
14.42
12.14
15.24
7.20
14.78
16.20
9.25

18.20
14.64
13.30
14.65
16.23
12.49
10.71
9.60
17.96
17.79
16.90
11.40
17.03
6.63
18.29
14.14
11.12- - t - -- - - - -- -



S/N
3.20
3.21
3.23
3.23
3.23
3.24
3.25
3.25
3.26
3.27
3.27
3.27
3.28
3.28
3.28
3.29
3.29
3.30
3.30
3.31
3.31
3.32
3.34
3-35
3.36
3.36
3.38
3.38
3.39
3.39
3.40
3.40
3.40
3.40
3.41
3.41

OLF
1.00
0.60
0.91
0.42
0.59
0.62
0.32
0.82
0.32
0.31
0.45
0.56
0.98
0.59
0.65
0.66
0.41
0.20
0.95
-0.8T
0.44
0.57
0.19
0.23
0.38
0.65
0.11
0.48
0.20
0.29
0.61
0.34
0.56
0.53
0.24
0.52

EST
3.20
1.92
2.94
1.37
1.89
2.01
1.04
2.67
1.04
1.01
1.46
1.83
3.22
1.95
2.15
2.17
1.36
0.65
3.14
2.89
1.46
1.90
0.65
0.78
1.26
2.20
0.38
1.60
0.69
0.99
2.06
1.16
1.92
1.79
0.83
1.76

-r
OLS
3.33
1.86
2.74
1.35
1.79
1.90
1.21
2.84
1.04
1.13
1.45
1.76
3.28
1.75
2.33
2.11
1.35
0.65
3.22
3.06
1.38
2.06
0.59
0.78
1.33
2.11
0.34
1.68
0,63
0.87
2.13
1.09
2.00
1.62
0.80
1.71

PLS
3.10
2.16
2.49
1.86
2.37
2.16
1.38
2.60
1.37
1.26
2.17
1.79
2.87
2.16
2.18
2.20
1.93
1.29
3.21
3.22
1.57
1.77
1.46
1.37
1.52
2.09
1.08.
1.75
1.51
1.43
2.34
1.75
1.91
2.12
1.46
1.60

S/N
6.57
6.57
6.60
6.62
6.63.
6.64
6.66
6.67
6.70
6.70
6.75
6.76
6.78
6.80
6.81
6.81
6.82
6.85
6.87
6.89
6.91
6.92
6.95
6.95
6.96
6.98
6.98
7.00
7.01
7.01
7.03
7.03
7.12
7.20
7.21
7.23

OLF
0.45
0.58
0.95
0.87
0.44
0.47
0.65
0.31
0.51
0.23
0.34
0.48
0.29
0.61
0.53
0.24
0.52
0.33
0.68
0.51
0.48
0.23
0.40
0.41
0.62
0.32
0.29
0.56
0.39
0.45
0.40
0.64
0.59
0.57
0.48
0.43

EST
2.94
3.85
6.28
5.78
2.92
3.11
4.32
2.08
3.40
1.56
2.27
3.21
1.97
4.13
3.58
1.66
3.51
2.23
4.68
3.53
3.33
1.57
2.76
2.82
4.32
2.23
2.00
3.90
2.73
3.15
2.82
4.49
4.18
4.12
3.48
3.13.

OLS
2.89
3.72
5.49
5.86
3.19
2.85
4.25
1.92
3.02
1.73
2.25
3.10
2.37
3.24
3.48
1.44
3.52
2.34
4.67
3.73
3.34
1.55
3.09
2.64
4.55
2.27
1.96
3.92
3.08
3.00
2.30
4.33
4.92
3.72
3.45
3.15

PLS
3.15
3.72
5.17
4.91
3.01
3.53
3.85
2.21
3.07
1.69
2.28
2.64
2.36
3.48
3.25
1.95
3.39
2.65
4.25
3.82
2.97
2.64
2.93
2.37
4.05
2.04
2.07
3 48
2.96
3.08
2.54
4.62
4.27
3.71
3.71
4.54

S/N
32.71
32.80
32.87
33.19
33.49
33.78
34.04
34.05
34.10
35.61
36.07
36.35
36.44
37.16
37.38
40.03
40.51
41.70
42.04
42.16
43.83
44.22
44.26
44.76
44.78.
46.00
46.60
46.87
51.41
54.78
55.71
62.24
65.06
65.74
66.37
72.15
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OLF
0.45
0.98
0.58
0.47
0.23
0.48
0.53
0.24
0.52
0.59
0.48
0.65
0.42
0.43
0.59
0.31
0.34
0.40
0.39
0.64
0.79
0.34
0.43
0.41
0.39
0.45
0.65
0.51
0.29
0.33
0.62
0.23
0.43
0.58
0.47
0.48

EST
14.59
32.25
19.23
15.54
7.82
16.05
17.91
8.29
17.56
20.92
17.38
23.47
15,15
15.84
21.95
12.47
13.59
16.53
16.39
26.93
34.50
14.84
19.01
18.14
17.45
20.57
30.27
23.78
14.89
17.84
34.54
14.16
28.16
38.45
31.08
34.76

OLS
14.51
33.24
20.65
15.51
9.68
17.98
21.76
9.36
18.51
20.85
16.59
24.65
17.99
16.86
21.75
13.00
15.11
14.20
17.62
28.78
32.41
14.23
17.73
18.87
16.77
20.22
29.25
22.53
16.21
19.27
34.25
16.60
28.39
38.33
30.58
38.09

PLS
13.08
31.80
18.76
15.63
8.74

16.97
21.39
8.95

17.62
20.26
14.42
22.83
16.88
15.27
20.32
11.88
13.94
13.69
16.34
26.03
30.11
14.23
15.69
16.81
15.49
18.51
27.64
20.72
14.02
16.92
32.26
15.74
26.75
35.67
30.45
36.89


