
MIT Open Access Articles

Co-design of control and platform with dropped signals

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Soudbakhsh, Damoon, Linh T. X. Phan, Oleg Sokolsky, Insup Lee, and Anuradha
Annaswamy. “Co-Design of Control and Platform with Dropped Signals.” Proceedings of the
ACM/IEEE 4th International Conference on Cyber-Physical Systems - ICCPS’13 (2013), April
8-11, 2013, Philadelphia, PA, USA.

As Published: http://dx.doi.org/10.1145/2502524.2502542

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/86938

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86938

Co-design of Control and Platform with Dropped Signals∗

Damoon Soudbakhsh1 Linh T.X. Phan2 Oleg Sokolsky2

Insup Lee2 Anuradha Annaswamy1

1 Department of Mechanical Engineering, Massachusetts Institute of Technology
email: {damoon, aanna}@mit.edu

2 Department of Computer and Information Sciences, University of Pennsylvania
{linhphan,sokolsky,lee}@cis.upenn.edu

ABSTRACT
This paper examines a co-design of control and platform in
the presence of dropped signals. In a cyber-physical system,
due to increasing complexities such as the simultaneous con-
trol of several applications, limited resources, and complex
platform architectures, some of the signals transmitted may
often be dropped. In this paper, we address the challenges
that arise both from the control design and the platform de-
sign point of view. A dynamic model is proposed that ac-
commodates these drops, and a suitable switching control
design is proposed. A Multiple Lyapunov functions based
approach is used to guarantee the stability of the system with
the switching controller. We then present a method for op-
timizing the amount of platform resource required to ensure
stability of the control systems via a buffer control mecha-
nism that exploits the ability to drop signals of the control
system and an associated analysis of the drop bound. The
results are demonstrated using a case study of a co-designed
lane keeping control system in the presence of dropped sig-
nals.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]:

Real-time and embedded systems

General Terms
Algorithms, Design, Performance, Theory

Keywords
Co-design, maximum drops, Lyapunov function, Platform

∗This work was supported in part by the National Science Founda-
tion grants ECCS-1135815 and ECCS-1135630.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCPS ’13, April 8-11, 2013, Philadelphia, PA, USA
Copyright 2013 ACM 978-1-4503-1996-6/13/04 ...$15.00.

analysis, Buffer control, packet dropout, control design

1 Introduction
Implementation issues in controller design have lately re-
ceived a lot of attention in the context of cyber-physical sys-
tems design [28]. Embedded control systems typically con-
sist of several control loops, with different parts of each con-
trol application being mapped onto different processors that
communicate over one or more communication buses. With
increasing complexity in the embedded systems, the gap be-
tween high-level control models and their actual implemen-
tations inevitably widen. Control engineers are typically con-
cerned with analyzing and simulating controllers based on
well-defined models of both the plant and the controller be-
ing designed. During this process, the control design process
does not include implementation aspects such as the compu-
tational time or delays that enter the picture due to shared
resources and schedules with varying protocols. Once the
control design is complete, has been analyzed and simulated,
it is the task of the embedded systems engineer to come up
with software implementations (e.g., in C) of the different
control blocks (e.g., from MATLAB specifications) and im-
plement the software on a hardware architecture or platform.
Here too, the constraints and needs of the control systems
are often neglected while carrying out the software design
and implementations.

The main problem that can be attributed to the gap be-
tween the control models and their implication is the delay
between the signal sensed at the plant output and the sig-
nal sent to the control actuator. In many of the typical ap-
proaches used on the control side, a worst case of end-to-
end sample delays is assumed and suitable control laws are
designed based on statistical properties or upper-bounds of
delays. This assumption introduces a strict constraint on the
platform design, where the platform needs to guarantee that
all samples must meet the delay bounds. However, the actual
delay that a control system experiences on a platform varies
with time and can be significantly different from and smaller
than the worst-case delay. As a result, designing the plat-
form under the worst-case assumption often wastes a lot of
resource.

Soudbakhsh, D.; Phan, L.T.X.; Sokolsky, O.; Insup Lee; Annaswamy, A.M., “Co-design of control and
platform with dropped signals,” 2013 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS),

pp.129-140, 8-11 April 2013

In this paper, we propose a co-design of control and plat-
form that allows samples to be dropped if their end-to-end
delays are more than a delay threshold. Based on both matrix
analysis and multiple Lyapunov functions, the control algo-
rithm ensures stability in the presence of a certain number
of drops which may occur at any time within the time win-
dow. A platform analysis method based on a buffer control
mechanism is proposed that ensures that for a given plat-
form, the maximum number of dropped samples does not
exceed that is allowed by the control design. As validated
using academic examples and numerical studies of a lane-
keeping control system of an automotive system, this tight
coupling between the platform and control system not only
helps optimize the resource use efficiency but also enables
more flexibility in the system design.

Related Work: There exist several efforts that aim to close
the gap between control and platform in the embedded sys-
tem domain, for instance, the development of the synchronous
language paradigm [4], time-triggered languages like Giotto
[12] and other related formalisms such as PTIDES [32]. Ef-
forts in the control systems domain in this direction have
been the focus of Networked Control Systems (NCS) [14,
31], whose approach has been the study of distributed con-
trollers communicating over a network. Research in NCS
has addressed problems such as delays suffered by control
samples, dropped samples and jitter, and their impact on con-
trol design, stability, and performance. There have also been
attempts to close this gap through a systematic co-design of
controllers and the platform [7,15,16,19,23,26,27,29]. Quite
often some of these co-designs lead to an inherent switched
system whose stability is analyzed using tools such as Aver-
age Dwell time approach [13], and common quadratic Lya-
punov functions [1, 18]. Research in NCS in the context of
dropped signals has been carried out in [1, 15, 17, 30]. The
common approach is to use a sample and hold block and an-
alyze system stability [14, 17, 30]. Very few of these papers
however have dealt with co-designs. Using a drop frequency
metric based on maximum number of drops after each suc-
cessful signal was presented in [1, 15, 30]. However, these
studies result in conservative analysis since each successful
sample should compensate for a number of drops.

Several task models within the real-time systems commu-
nity have also been designed to enable data drops. For in-
stance, the (m;k)-firm task model in [11] enables up to k−m
jobs to miss their deadlines for any k consecutive jobs, which
is a form of dropping. Several analysis methods have been
proposed for the (m;k) task model (e.g., [20–22]); however,
they focus on the scheduling of a given set of (m;k) tasks
instead of analyzing the maximum bound on the number of
drops.

Computation of the maximum number of drops in the ab-
sence of buffer control was considered in [15]. In theory, the
approach in [15] can be extended to capture the buffer con-
trol mechanism. However, it may not scale for large systems,

since it is based on automata verification, which requires ex-
plorations of a complete state space. Our analysis provides
a closed-form solution based on a purely algebraic analysis,
which can be done efficiently. In addition, our buffer con-
trol mechanism can also enable more resource savings, es-
pecially for settings where the worst-case delays are much
larger than that of the threshold delay.

Contributions: We consider a dynamic model that not only
accommodates the underlying dynamics of the plant that is
being controlled, but also the possibility that the control in-
put used may be subjected to drops. Using this model, we
provide analytical bounds to guarantee the closed-loop sta-
bility in presence of multiple drops (§4). We then present a
multiple Lyapunov functions approach to prove the stabil-
ity of the resulting switching controller without and with
drops, which further improves the above analysis bounds
(§5). Based on the improved bounds, we propose a buffer
control mechanism and an associated platform analysis tech-
nique to improve the resource required by the control system
while ensuring the control stability (§7). Finally, we demon-
strate the utility of our co-design method using a case study
of a lane keeping system (§8). Our evaluation results show
that our method can help save the platform resource needs by
an order of magnitude, and it enables a larger design solution
space compared to a baseline approach.

2 Definitions
We define Lyapunov Like Functions (LLF), switching sys-
tems, and related stability properties, which are used through-
out this paper.

The system of interest in this study is a switching system
with n̄ modes

x[k+1] = fi(x[k]), i = 1,2, · · · , n̄ (1)

We denote the jth instant at which the system switches to
mode i as t j

i .Lyapunov Like Functions (LLF) and the stability
result of (1) using LLF are stated below [9]:

DEFINITION 1. Consider system (1) over the time inter-

val Ti = (t
j+i
i , t

j−`
`) over which fi is active. A positive definite

function Vi(x[t]), with Vi(x0) = 0 and Vi(x)� 0 for x 6= x0, is
called an LLF for system (1), equilibrium point x0, and Ti if
it remains bounded over Ti, i.e.,

Vi(x[t
j+i
i])≤ h(Vi(x[t

j−`
`])) (2)

with h being a continuous function, h(·) : ℜ+ → ℜ+ and
h(0) = 0.

THEOREM 1. If there exist (i) LLFs Vis for i = 1,2, · · · , n̄
of system (1) over all intervals Ti’s where fi is active, and
(ii) their corresponding starting values at active switching
times are monotonically non-increasing, i.e.,

Vi(x[t
(j+1)+
i])≤Vi(x[t

j+
i]), (3)

2

then the system is stable.

PROOF. The proof can be found in [6].

REMARK 1. We note that condition (i) is satisfied for h(x)
= x, when Vi is a Lyapunov function for system i. Hence
the switching system in (1) is stable if Lyapunov functions,
rather than LLFs, exist for subsets of the n̄ systems in (1),
and Theorem 1 is satisfied.

The following well known matrix inequality is useful:

LEMMA 2. Consider a linear map A with spectral radius
r(A) = sup |λ |,λ ∈ σ(A), where σ(A) is a set containing
eigenvalues of A. Then for any ρ > r(A), ∃a > 1 such that
‖Ak‖ ≤ aρk,∀k ≥ 1.

The following class of switched systems is of interest in this
paper:

x[k+1] =
{

A1x[k] k1 ≤ k ≤ k1 + i
A2x[k] k1 + i≤ k ≤ k1 + i+ j (4)

where A1 is stable and A1 and A2 satisfy the following in-
equalities:

||Ak
1|| ≤ a1λ

k
1 , a1 > 1, 0≤ λ1 < 1 (5)

||Ak
2|| ≤ a2λ

k
2 , a2 > 1, λ2 ≥ 0 (6)

Throughout this article, we adopt the following to show
symmetric matrices[

A ∗
B D

]
for

[
A BT

B D

]
(7)

3 Statement of the Problem
The specific plant to be controlled is assumed to be linear
time-invariant with the following state-space form:

Figure 1: Schematic overview of the control of a plant using a DES.

ẋ(t) = Acx(t)+Bcu(t) (8)

where, x(t) ∈ ℜp and u(t) ∈ ℜq are states and inputs, re-
spectively. The goal is to design u(t) so that x(t) tends to
zero asymptotically with the closed-loop system remaining
bounded. We assume that the plant is periodically sampled
with a fixed period T , and define τ = τa + τs + τc (Fig. 1),
where τs, τc, and τa are the processing times for the sen-
sor task, the control computation, and the computed out-
put to be communicated to the actuator. We define τth as

a threshold value for τ and assume that τth < T . If the de-
lay τ exceeds τth, we assume that the control computation
may arrive too late for it to be effective in controlling the
plant. If τ < τth, we deem the information useful and use

it at time τth. Denoting A def
= eAcT , B1

def
= (

∫ T−τth
0 eAcν dν)Bc,

and B2
def
= (

∫ T
T−τth

eAcν dν)Bc leads to the following discrete-
time plant-model [3]

x[k+1] = Ax[k]+B1u[k]+B2u[k−1] (9)

when τ < τth. This is assumed to be the nominal case, and
(9) can be used to design the requisite controller. Suppose a
controller of the form

u[k] = Kx[k] (10)

is used, we obtain the closed-loop system

X [k+1] =
[

A+B1K B2K
I 0

]
X [k] def

= AnX [k] (11)

where X [k] = [x[k]T ,x[k−1]T]T . In this paper, it is assumed
that a K exists such that An is stable. A less restrictive ap-
proach when this assumption does not hold can be found
in [2]. We refer to this case, when τ < τth, as the nominal
case. It is quite possible that τ > τth, which may be because
of the lack of availability of the processor or due to large
communication lag between processors, and is assumed to
occur infrequently. In such a case, as the information avail-
able to the controller is significantly delayed, we simply as-
sume that the message is dropped and use the previous input
u[k−1], i.e., employ the zero-order-hold algorithm. If start-
ing at any time k, for m consecutive instants, the delay τ

continues to be larger than τth with τ < τth at k− 1, then it
follows that

u[k+ j] = u[k−1], j = 0,1, . . . ,m−1 (12)

That is, the signal has m drops during which no new control
input is computed, but rather the old input is used.

In summary, if starting at time k1,{
i f τ < τth for k1 < k ≤ k1 + i (13a)
if τ > τth for k1 + i+1≤ k ≤ k1 + i+ j (13b)

then the corresponding control input is chosen as

u[k] =
{

Kx[k] for k1 ≤ k < k1 + i (14a)
u[k1 + i] for k1 + i+1≤ k ≤ k1 + i+ j (14b)

If (14a) is used, the closed-loop system corresponds to (11).
If (14b) is used, the closed-loop system becomes more com-
plex and is derived below.

Suppose the drops occur starting at k = k1 + i1. If j = 1 in
(14b), then

x[k+1] = Ax[k]+Bu[k−1] (15)

where B def
= B1 +B2, and from (14b),

u[k−1] = Kx[k−1]. (16)

3

Therefore, with X [k] = [x[k]T ,x[k− 1]T]T , the closed-loop
dynamics becomes

X [k+1] =
[

A2 +AB1K +BK AB2K
I 0

]
X [k−1] def

= A(1)
m X [k]

(17)
For a general j number of drops, we have that

u[k] = u[k− j] = Kx[k− j].

Therefore the underlying dynamics is given by

X [k+1] =

A j+1 +A jB1K +
j−1
∑

l=0
AlBK A jB2K

I 0

X [k− j]

def
= A(j)

m X [k− j] (18)

It is interesting to note that j = 0 corresponds to the nominal
case, with A(0)

m coinciding with An in (18).
In summary, suppose that starting at k, the signal was dropped

for the next j` instants, and i` instants where it was not dropped,
for ` = 1,2, . . . , p, over N = ∑

p
`=1(i`+ j`+ 1) samples. Let

m be defined as

m def
=

p

∑
`=1

j` n def
=

p

∑
`=1

(i`+1) (19)

Then the evolution of the switched system over a time win-
dow [k,k+N], N = m+n, is given by

X [k+N] = Aip
n A(jp)

m · · ·Ai2
n A(j2)

m Ai1
n A(j1)

m X [k] (20)

We note that (20) is a valid description of the underlying
system for all k≥ 0 that is subjected to m < m0 drops over N
samples.

REMARK 2. We note that in (20), over any interval [k,k+
N], the sequence j1, i1, · · · , jp, ip can vary, with p varying as
well, with the only constraint that m ≤ m0 and the i’s such
that n = N−m≥ n0.

We analyze the stability of (20) in the next section.

4 Stability of the Switched System with a max-
imum of m0 Drops

We address the stability of (20) in this section using a com-
mon Lyapunov function and the matrix inequality in Lemma 2.

THEOREM 3. System (20) with finite drops m≤m0 is sta-
ble if there are n≥ n0 successful signals in any interval of N
samples.

PROOF. Noting ‖A1A2‖ ≤ ‖A1‖ ·‖A2‖, we get the follow-
ing

‖X [k+N]‖≤ ‖Aip
n ‖·‖A(jp)

m ‖· · ·‖Ai1
n ‖·‖A

(j1)
m ‖·‖X [k]‖ (21)

The system is stable if j1 6= 0 and
p

∑
`=1

log(
∥∥Ai`

n
∥∥)+ p

∑
`=1

log(‖A(j`)
m ‖)< 0 (22)

On the other hand, if j1 = 0, the system is stable if
p

∑
`=1

log(
∥∥Ai`

n
∥∥)+ p−1

∑
`=1

log(‖A(j`)
m ‖)< 0 (23)

Using ‖Ai
n‖ ≤ anλ i

n and ‖A(j)
m ‖ ≤ ‖Ā j‖ ≤ āλ̄ j, it follows

that the system is stable if

p logan +(n− p) logλn +(p−1) log ā+m log λ̄ < 0 (24)

That is, ‖X [k+N]‖ ≤ ‖X [k]‖ if

n≥ m0 log
(
āλ̄
)
+(m0 +1) log(an)

| logλn|
+m0. (25)

Since the above arguments hold for any k and N such that
over [k,k+N], a total of up to m0 signals are dropped and
n≥ n0 signals are not dropped, system (20) is stable.

EXAMPLE 1. To examine the validity of the Theorem 3,
we consider the following discrete time plant

A =

[
1 0.4
3 0.3

]
, B1 =

[
0.3
0.3

]
, B2 =

[
0.7
0.7

]
.

A control input as in (14) was used, with

K =
[
−0.7195 −0.2157

]
.

With this K, it was found that

An =

0.7842 0.3353 −0.5037 −0.1510
2.7841 0.2353 −0.5037 −0.1510

1 0 0 0
0 1 0 0

 .
Condition (24) for stability resulted in the dependence of n
on m illustrated in Fig. 2. The red line is found by using
(24) to find the required n after m consecutive dropped sig-
nals. The blue dashed line is derived by computing norms of
(21) iteratively until the product never becomes larger than
1. The results in Fig. 2 are with assumption that the packet
dropouts in in any interval m+n+1 consist of only up to m
messages that occur consecutively. It can be seen that (24)
provides a lower bound for n without the need for iterative
computation of the norms.

5 Stability Conditions Using a Multiple Lya-
punov Functions Approach

Although Theorem 3 provides an analytical guarantee for
stability of linear system (20), it is rather restrictive as it uses
Lemma 2. Therefore, in this section, we examine an alternate
approach for the stability of (20) using Multiple Lyapunov
Functions. We define Γ

(i j)
mn as

Γ
(i j)
mn

def
= Aip

n A(jp)
m · · ·Ai2

n A(j2)
m Ai1

n A(j1)
m (26)

4

Figure 2: Comparing the methods of Example 1.
so that the overall system with m drops and n nominal signals
with m≤ m0 and n≥ n0 can be written as

x[k+1] = Γ
(i j)
mn x[k]. (27)

Note that Γ
(i j)
mn is not constant and varies with the actual se-

quence of j1, i1, ..., jp, ip, and p.

ASSUMPTION 4. System (27) with Γ
(i j)
mn as defined in (26)

is stable for any combination of i` and j`, ` = 1, · · · , p, any
p, and m,n given by (19).

We note that the above assumption is not restrictive since ac-
cording to Theorem 3, for any m, there exists a large enough
n that makes Γ

(j)
mn stable.

We start with k = ki, and assume without loss of generality
that j1 drops occur starting at ki + 1 (see Fig. 3). System
(27) consists of two modes, the dropped mode, and the stable
mode, with the dropped mode occurs from ki to ki + j1 +
1 and the stable mode from ki + j1 + 1 to ki + i1 + j1 + 1.
Defining

k2i = k2i−1+ j1+1 and k2i+1 = k2i+N, i= 1,2, · · · (28)

it follows that the system dynamics is equivalent to the switched
system with two modes

Figure 3: Relation between sequence of (28) and ki.{
z[k2i] = A(j1)

m z[k2i−1] (Dropped Mode) (29a)

z[k2i+1] = Aip
n A(jp)

m · · ·Ai2
n A(j2)

m Ai1
n z[k2i] (Stable Mode) (29b)

We now state and prove the stability of the switched system
in (29) in Theorem (5).

THEOREM 5. The system in (27) is stable if there exist
symmetric matrix Pm� 0 and scalar γ such that the following
are satisfied:

(1) [−γPm ∗
PmA(j)

m −Pm

]
≺ 0, j = 0, . . . j∗, j∗ ∈ [0,m0] (30)

(2) Γ
(i j)
mn

T
PmΓ

(i j)
mn −Pm ≺ 0, where Γ

(i j)
mn is defined in (26).

PROOF. Theorem 5 is proved by showing that there is an
LLF for both modes (29a) and (29b) satisfying conditions (i)
and (ii) in Theorem 1 (see for example Fig. 4).

Step 1: Dropped mode (29a): We focus on the interval
[k2i−1, k2i−1 +N]. Defining Vm[k] = z[k]T Pmz[k], where Pm � 0
satisfies (30), we obtain that

(A(j1)
m

T
PmA(j1)

m)− γPm ≺ 0 for any j ∈ [0,m0]. (31)

Therefore for h(Vm) = γVm, we obtain that

Vm[k2i+1]≤ h(Vm[k2i−1]) i = 1,2, · · · (32)

Since k2i−1 and k2i+1 are two consecutive instants that the
dropped mode is active, it follows that conditions (i) and (ii)
of Theorem 1 are satisfied for the dropped mode.

Step 2: Stable mode (29b): Here, we focus on the interval
[k2i, k2i +N]. It can be seen that over this interval, there
are i1 nominal signals, followed by j2 drops, then i2 nominal
signals, and so on until ip nominal signals ending at k2i+1,
followed by the sequence { j′1, i

′
1, · · · , j′q, i

′
q}with the property

p

∑
`=2

j`+
q

∑
`=1

j′` ≤ m0. (33)

The underlying dynamics is then given by{
z[k2i +1] = A(0)

m z[k2i] (34a)

z[k2i+2] = A
i′q
n A

(j′q)
m · · ·A(j′1)

m Aip
n · · ·Ai2

n A(j2)
m Ai1

n z[k1
2i] (34b)

where A(0)
m = An. It therefore follows from (34a) that

Vm[k2i +1]≤ h(Vm[k2i]) (35)

for h(Vm)
def
= Vm. We note that since there are at most m0

drops from k2i−1 to k2i+1 as well as from k2i to k2i+2, and
since (33) holds (34b) can be written as

z[k2i+2] = Γmnz[k2i], (36)

where Γmn satisfies Assumption 4. Therefore, we obtain
from condition (2) of Theorem 5 that

Vm[k2i+2]<Vm[k2i] (37)

We note that conditions (i) and (ii) of Theorem 1 are satisfied
for the stable mode. This proves Theorem 5.

Theorem 5 suggests the following procedure for determining
a stable switching system (27):

1. Find symmetric positive definite matrix Pm and con-
stant γ such that the following LMI are satisfied:[−γPm ∗

PmA(j)
m −Pm

]
≺ 0 for j = 0, · · · ,m (38)

2. Evaluate Q(i j)
mn =Γ

(i j)
mn

T
PmΓ

(i j)
mn −Pm for m drops. If Q(i j)

mn
is not negative definite, increase n.

5

REMARK 3. A less restrictive but computationally more
expensive approach than Theorem 5 is to find a common
quadratic Lyapunov function (CQLF) for all possible Γ

(i j)
mn .

We note that existence of such CQLF is guaranteed follow-
ing Theorem 3.

V

k1 k1 + j∗ k1 +N

Vn

Vm

Vn

Vm

Figure 4: Multiple Lyapunov Functions: Dashed red lines show the
Lyapunov-Like Function Vm, when the system is in unstable mode, and solid
blue lines show LLF of the stable mode, Vn.

EXAMPLE 2. We consider the discrete time system of ex-
ample 1. Figure 5 shows the maximum number of drops in
the window of size N using the results of Theorem 5. Figure 6
compares the results of Theorem 5 with those of Theorem 3,
illustrating that the former are much less restrictive com-
pared to the matrix inequalities in Lemma 2. We note that
the difference between the results of Theorem 3 presented in
Fig. 6 and those presented in Fig. 2 come from the possibility
that m drops can occur at any time over an interval N.

Figure 5: Number of allowed
dropped samples in interval N.

Figure 6: Comparison of Theorem 5
versus Theorem 3.

6 Lane Keeping System
The control task is to keep a vehicle in its lane with radius R
(Fig. 7). A one track model of a Ford Taurus was used for
this purpose [25]. Dynamics of the vehicle can be described
by [24].

d
dt

e1
ė1
e2
ė2

= Ac

e1
ė1
e2
ė2

+Bcδ +Gψ̇des (39)

where, e1 is the position error, e2 is the yaw angle error, and
the control input δ is the steering angle at the wheels. We
assume the vehicle is traveling on a straight road for which
the desired yaw rate ψ̇des = V/R is zero. This continuous
time model was discretized with a sampling period T = 50ms

Figure 7: Vehicle model.

and delay threshold of τth = 35ms, resulting in

A =

1.0000 0.0447 0.1319 0.0027

0 0.7969 5.0769 0.1425
0 0.0003 0.9932 0.0450
0 0.0102 −0.2538 0.8063

B1 =

0.0403
2.2593
0.0203
1.1344

 , B2 =

0.0407
0.9065
0.0204
0.4415

 .
where A, B1, and B2 are the discrete time delayed matrices as
defined in (9). The switching control strategy described in §3
was implemented, with K =−[1.6258 0.2695 4.0015 0.0454].
Values m and the corresponding n were computed so that Γmn
satisfied conditions (1) and (2) of Theorem 5. The variations
in m with n are plotted in Fig. 8. These results show that
as n and therefore N increases, m changes. This informa-
tion directly provides guidance to the platform designer as
it indicates the allowable number of drops over a given time
interval.

Figure 9 shows resulting closed-loop system performance
of e1 and e2 for the case of N = 6 and m= 1, which illustrates
a satisfactory quality of control performance. We note that
although MLF resulted in 17 nominal samples for 1 drop,
increasing the window size revealed that in the window size
of 40 samples, the system can tolerate even the worst case
combination of up to 7 drops.

Figure 8: n versus m in the lane keep-
ing system.

Figure 9: Response of the vehicle
with m = 1 and N = 6.

6

7 Optimizing Resource via Platform Control
In this section, we describe our approach to optimize plat-
form resource while ensuring the stability of the control sys-
tem designed in §5. In particular, we will design the platform
so that we can guarantee an upper bound m0 for the number
of drops in any interval of N samples for which stability is
guaranteed as in Theorem 5. We assume that the system has
been partitioned into a set of tasks that are mapped onto dif-
ferent processing elements (PEs) of a fixed platform archi-
tecture (c.f. Fig. 10), which is given a priori. Our goal is to
minimize the amount of resource (expressed in terms of pro-
cessor frequency or communication bandwidth) that the PEs
must provide to ensure the control stability.

We say that a sample is stale if its current delay is more
than τth. In the traditional resource dimensioning, the PEs
must provide enough resource to ensure there are no stale
data. However, such guarantee is not needed for our design,
because our control algorithm allows up to m0 dropped sam-
ples over a sliding window of N samples (c.f. Theorem 5).
Our Approach. To optimize the platform resource, we em-
ploy a buffer control mechanism that drops samples as soon
as they become stale. The resource dimensioning can then
be done by selecting the smallest processor frequencies (net-
work bandwidths) for the PEs, such that the maximum num-
ber of samples that are dropped by the platform over any N
input samples satisfies the maximum bound m0. This can be
done in an iterative manner: we start with a chosen minimum
frequency (bandwidth) for each PE and increase it until the
computed drop bound is less than m0.

Before discussing the buffer control mechanism and the
drop bound analysis in detail, we first describe the platform
architecture.

7.1 System architecture
Fig. 10 shows a typical platform architecture for the con-
trol system. It consists of multiple PEs connected via FIFO
buffers, where each PE represents a processor (e.g., ECU) or
a network (e.g., CAN bus).

System Model

sensor data actuator
data

…

PE1 PE2 PEn

end-to-end delay

β1 β2 βn

T1 T2 Tn

(period T)

buffer

P
abstract PE

task

!
 sensor data

item

actuator data
item

Figure 10: A platform architecture for a control system.

The sensor input data samples, upon arriving at the system,
will be processed by the sequence of control tasks running
on the PEs. The delay from the instant a sample enters the
platform until it is fully processed is called the end-to-end
delay. The sensor data are sampled at a sampling period of
T , and all tasks are data-driven.

We assume that the input buffer of each PE is sufficiently
large to avoid buffer overflows.1 The resource available to
1The maximum buffer size can be computed using the method

the control task at each PEi is modeled by a pair of service
functions, βi = (β u

i ,β
l
i), where β u

i (∆) and β l
i (∆) denote the

maximum and minimum number of samples that can be pro-
cessed by the PE over any time interval of length ∆ time
units, respectively, for all ∆ ≥ 0. These functions can be
computed based on the PE’s operating frequency (network
bandwidth) and the worst-case and best-case execution de-
mands of each sample [8].

Note that the architecture shown in Fig. 10 shows only the
execution flow of the control system. In a complete setting
(e.g., Fig. 14), the system may share the platform resource
with other applications; hence, we first compute the service
functions, βi, of the resource available to the control task at
each PE (e.g., using the Real-Time Calculus (RTC) [8]) and
then apply them to the architecture.

7.2 Buffer control mechanism
Observe that partially processed samples at intermediate PEs
may already become stale, i.e., their delays exceed the thresh-
old τth. Therefore, it is safe to drop these samples at the in-
termediate PEs instead of continuing processing them until
they are fully processed.

The buffer control mechanism works during run-time at
each buffer in the system (see Fig. 11) as follows. When sen-
sor samples enter the first PE, we record their arrival times
and use these timestamps to determine their current delays.
When a sample arrives at or while waiting in a buffer, if its
current delay is more than or equal to the threshold τth, it will
be dropped from the buffer.

System Model

sensor data actuator
data

…

PE1 PE2 PEn

end-to-end delay

T1 T2 Tn

(period T) data
drop

data
drop

data
drop shaper

sensor-to-actuator delay = !th

data
drop

β1 β2 βn

Figure 11: Buffer control mechanism for the platform.

Recall that our control algorithm assumes a delay of τth for
non-drop samples; to enforce this, we implement a shaper at
the last PE to shape the output samples (see Fig. 11). This
shaper reads the fully processed samples, and it holds every
sample for exactly τth− d time units before sending to the
actuator, where d ≤ τth is the end-to-end delay of the sample.
Thus, the sensor-to-actuator delay of each sample is always
τth.

The use of buffer mechanism helps improve the resource
use efficiency in two ways. First, since some dropped stale
samples are permissible, the amount of computation (band-
width) resource required by the control system is less than
that is required to guarantee that the absence of stale data.
Second, the amount of resource needed to further process
these stale samples can now be saved or used to process other
applications.

in [8].

7

We note that our choice of the buffer control mechanism is
based on its run-time efficiency. However, our analysis can
be extended to consider more complex mechanisms, such
as one that drops a sample if the sample is predicted to be
stale. We assume that the resource overhead required for the
buffer control mechanism is negligible (or has already been
accounted for when computing the service functions βi).

7.3 Drop bound analysis under buffer control
We now present a method for computing the maximum num-
ber of samples that are dropped under the proposed buffer
mechanism (see Fig. 11). Specifically, for any given N ≥ 1,
we will compute m0, the maximum number of samples that
are dropped over a sliding window of N samples.

We first recall the minimum convolution operator and an
existing result from [5]. Let f ,g ∈ R→ R. The minimum
convolution of f and g, denoted by f ⊗g, is given by

(f ⊗g)(∆) = inf
0≤δ≤∆

{
f (δ)+g(∆−δ)

}
, ∀ ∆≥ 0.

THEOREM 6. Consider a data stream being processed by
a platform that consists of a sequence of n PEs, where each
PEi offers a pair of service functions, βi = (β u

i ,β
l
i), to the

stream. Then, the overall resource given by the platform
to the stream is given by a pair of service functions, β =
(β u,β l), where β u = β u

1 ⊗β u
2 ⊗·· ·⊗β u

n and β l = β l
1⊗β l

2⊗
·· ·⊗β l

n.

Based on the above result, we will transform the original
platform (see Fig. 11) into an equivalent new platform con-
sisting of a single PE, which offers a pair of service functions
equal to β (c.f. Theorem 6). As is shown in Fig. 12, this plat-
form employs the proposed buffer control mechanism, where
the buffers of the PE implement the data drop mechanism
and the output data are passed through a shaper before being
sent to the actuator (c.f. §7.2). Since the transformed plat-
form offers the same amount of resource to the sensor data
stream and it uses the same data drop mechanism as the orig-
inal platform does, the maximum number of samples that are
dropped and the maximum end-to-end delay of samples that
are not dropped in both systems are the same.

T

PE

!

sensor
data item

actuator
 data item

task

data
drop

data
drop shaper

 T

end-to-end delay

sensor-to-actuator delay = !th

Figure 12: The transformed system that is used for the analysis.

From the above observation, we can compute the drop
bound by analyzing the transformed system shown in Fig. 12.
Since the shaper does not drop any samples, we only need to
consider the parts of the system before the shaper. Without
loss of generality, we assume β u is sub-additive and β l is

super-additive.2 We first verify a special case in which no
samples are dropped, i.e., m = 0.

LEMMA 7. No samples are dropped by the system iff

∀∆≥ 0, α
u(∆)≤ β

l(∆+ τth), (40)

where αu(∆) = d∆/Te for all ∆≥ 0.

PROOF. Since input samples arrive at the system every T
time units, the maximum number of samples that arrive over
any interval of length ∆ is αu(∆) = d∆/Te, for all ∆ ≥ 0.
In addition, the minimum number of samples that can be
processed by the PE over any interval of length ∆ is β l(∆).
From [8], the maximum delay experienced by the input sam-
ples is given by

d = sup
{

inf
{

δ | δ ≥ 0 ∧ α
u(∆)≤ β

l(∆+δ)
}
| ∆≥ 0

}
.

Hence, d ≤ τth iff (40) holds. In other words, no samples are
dropped iff (40) holds. This proves the lemma.

We next outline the analysis for m > 0.
We denote by ei the ith input sensor sample for all i ≥

1, and by e0 a dummy initial data sample that has a worst-
case execution demand of 0 (hence it will not be dropped).
Further, drop(S) denotes the number of samples in S that are
dropped, where S is any set of consecutive input samples.
Lemma 8 identifies a characteristic of the N samples with
the highest number of samples being dropped.

LEMMA 8. Suppose S is a set with the highest number
of dropped samples among all sets of N consecutive input
samples. Then, there exists a set S∗ of N consecutive samples
such that drop(S∗) = drop(S), where (i) the first sample of S∗

is dropped, and (ii) the sample immediately before the first
sample of S∗ (if any) is not dropped.

PROOF. Suppose S = [ek ek+1 · · · ek+N−1], where k≥ 1. If
S satisfies the conditions (i) and (ii), then the lemma trivially
holds. Otherwise, there are two cases:

Case 1: ek is not dropped. Then, there exists a subsequent
sample in S that is dropped (since drop(S)> 0). Let ek+ j be
the first sample in S that is dropped, where 1 ≤ j ≤ N− 1.
Then, all the samples from ek to ek+ j−1 are not dropped.
This implies drop(S1) = 0, where S1 = [ek · · · ek+ j−1]. Let
S∗ = [ek+ j · · · ek+N−1+ j]; S2 = [ek+ j · · · ek+N−1]; and S3 =
[ek+N · · · ek+N−1+ j]. Then, S = S1 ∪ S2 and S∗ = S2 ∪ S3.
Thus,

drop(S∗) = drop(S2)+drop(S3)

≥ drop(S2) = drop(S2)+drop(S1) = drop(S).

The Definition of S implies drop(S∗) = drop(S). Further, by
construction, S∗ satisfies both conditions (i) and (ii).
2 A function f is sub-additive iff f (∆)≤ f (δ)+ f (∆−δ) for all 0≤
δ ≤ ∆. By contrast, f is super-additive iff f (∆)≥ f (δ)+ f (∆−δ)
for all 0≤ δ ≤ ∆.

8

Case 2: Both ek and ek−1 are dropped, and k > 1. Let
ek− j−1 be the last sample before ek that is not dropped, where
1 ≤ j ≤ k−2, or j = k−1 if no such sample exists. Define
S∗ = [ek− j · · · ek− j+N−1]. Based on a similar argument as
above, we can derive drop(S∗)≥ drop(S), and thus drop(S∗)
≥ drop(S).

Since S∗ exists in both cases, the lemma holds.

Based on Lemma 8, we only need to consider sets of N
consecutive samples that begin with a sample that will be
dropped and that immediately follow a sample that will not
be dropped. Let S = [ek ek+1 · · · ek+N−1], where k≥ 1, be any
such set. Fig. 13 illustrates the arrival and drop patterns of
the samples in S for the two cases, τth ≤ T and τth > T .

Ik+3 Ik+2

time

T K k+1 k+2 k+3 k+4

 T

tk tk+1 tk+2 tk+3

✗
Ik Ik+1

τth

(a) Critical intervals when τth ≤ T .

time

T

τth

k k+1 k+2 k+3 k+4

T

tk tk+1 tk+2 tk+3

✗
Ik+1 Ik+2 Ik+3 Ik

(b) Critical intervals when τth > T .
Figure 13: The arrival and drop patterns of the samples in S.

In the figure, each up-arrow labeled by k+ j represents the
arrival of the input sample ek+ j, for all j ≥ 0. Each down-
arrow at time tk+ j represents the latest instant by which ek+ j
must be fully processed, which is also the instant when ek+ j
is dropped if it has not yet been fully processed. Observe
also that ek is dropped at tk, i.e., exactly τth time units after
its arrival. Each following sample, ek+ j, will be dropped at
time tk+ j, if it has not been fully processed by the time in-
stant tk+ j, where tk+ j = tk+ j−1 +T for all j ≥ 1.
Definitions. For each sample ei, the time interval over which
either ei must be fully processed or it will be dropped at the
end of the interval is called the critical interval of ei, denoted
by Ii. As is shown in Fig. 13, Ii = (ti− τth, ti], if τth ≤ T , and
Ii = (ti, ti+1], otherwise.

A service pattern of the PE is captured by an accumulative
function C(t), where C(t) gives the number of samples that
can be processed by the PE over the time interval (0, t]. By
definition, we imply that C(t) is a valid service pattern of the
PE iff ∀ t ≥ 0,∀∆≥ 0, β l(∆)≤C(t +∆)−C(t)≤ β u(∆).

Under a valid service pattern C(t) of the PE, the total num-
ber of samples that can be processed over the critical interval
Ii is then Ci = C(ti)−C(ti− τth). We call Ii a zero-service
interval under this service pattern iff Ci = 0.

LEMMA 9. Given any service pattern C(t) of the PE. Let
s be the number of zero-service intervals in N critical inter-
vals from Ik to Ik+N−1 (see Fig. 13) under the service pattern
C(t). Then, drop(S) = s, if τth ≤ T , and drop(S) ≤ s, other-
wise.

PROOF. Case τth ≤ T : As is shown in Fig. 13(a), each
sample ei (i ≥ k) arrives at the beginning of Ii and must be
processed by the end of Ik so as not to be dropped. Further,
the last sample before ei has either been finished or dropped

at time ti−1, i.e., before Ii begins. Thus, the resource given to
ei is exactly the resource available over the interval Ii. Hence,
ei is dropped iff the number of samples that can be processed
over Ii is zero, i.e., Ii is a zero-service interval under the ser-
vice pattern C(t). Hence, the number of dropped samples in
S is the number of zero-service intervals.

Case τth > T : First, since ek is dropped at the end of Ik, the
number of samples that can be processed over the interval Ik
is zero. Thus, Ik is a zero-service interval under C(t).

Next, observe that if a critical interval is not a zero-service
interval, then no samples are dropped over the interval. This
is because at most one sample is required to be fully pro-
cessed over each l Ii (since only ei is required to finish by
the end of Ii but this sample may have been finished before Ii
begins).

Further, any sample ei−1, with i > k, is either finished or
dropped before Ii begins. Hence, all the resource available
over Ii will be given to ei first and only the remaining re-
source (if any) is given to the subsequent samples. As a re-
sult, ei is dropped only if the number of samples that can be
processed by the PE over Ii is zero, or in other words, Ik+ j is
a zero-service interval under C(t).

From the above, the number of samples in S\{ek} that are
dropped is no more than the number of zero-service intervals
from Ik+1 to Ik+N−1 under the service pattern C(t). Since ek
is dropped and Ik is a zero-service interval, the number of
samples in S that are dropped is no more than the number
of zero-service intervals from Ik to Ik+N−1 under the given
service pattern. This proves the lemma.

Based on lemma 9, we can compute an upper bound on
the number of dropped samples in S by first constructing a
worst-case service pattern, Ĉ(t), that results in the maximum
number of zero-service intervals; the maximum bound m0 is
the number of zero service intervals in N consecutive inter-
vals of Ĉ(t). The idea is to have the PE provide resource over
as minimal critical intervals as possible without violating its
lower service function β l , and within each such interval pro-
vide as much resource as possible without violating the up-
per service function β u. This service pattern confirms to β

while resulting in minimum zero-service intervals.
The next lemma gives a formula for a worst-case service

pattern Ĉ(t) of the PE for the case τth ≤ T . A worst-case
service pattern for the case τth > T can be constructed in a
similar manner; we omit this case due to space constraints.

LEMMA 10. Suppose τth ≤ T . Let Ĉ(t) be a service pat-
tern such that Ĉ(0) = 0 and for all i ∈ N:

• For all 0 < δ ≤ τth,

Ĉ(iT +δ)=

{
Ĉ(iT), if Ĉ(iT)≥ β l(iT + τth);
min
{

β u(iT +δ),Ĉ(iT)+β u(δ)
}
, otherwise.

• For all τth < δ ≤ T ,

Ĉ(iT +δ) = min
{

β
u(iT +δ),Ĉ(iT + τth)+β

u(δ − τth)
}
.

9

Then, Ĉ is a worst-case service pattern of the PE, i.e., Ĉ
results in the maximum number of dropped samples over any
N consecutive samples, for any N ≥ 1. Further, the number
of zero-service intervals of Ĉ(t) for any given N is ∑

N
i=1
{

1 |
Ĉ(iT)≥ β l(iT + τth)

}
.

PROOF SKETCH. Consider the zero-offset arrival pattern
of the input data stream, i.e., each sample ei arrives at the
time instant (i−1)T , for all i≥ 1. Then, Ii = (iT, iT +τth] is
the critical interval of ei, during which ei must be fully pro-
cessed so as not to be dropped. Further, I′i = (iT + τth,(i+
1)T] is an interval during which the buffer is always empty,
because at the time instant iT +τth, either ei has already been
fully processed or ei is dropped. Hence, the amount of re-
source that is available for the critical intervals is minimum
if the amount of resource allocated to all the I′i is maximum.

Further, recall that the upper service function β u is sub-
additive and the lower service function β I is super-additive.
Hence, we imply from the construction of Ĉ(t) that for each
critical interval Ii, either (i) Ii is a zero-service interval, if
providing no resource during this interval does not violate
the lower service function β l , or (ii) the maximum amount of
resource permissible by the upper service function β u is allo-
cated to Ii. In addition, the amount of resource provided to all
the intervals I′i according to Ĉ(t) is the maximum amount that
is permissible by β u during these intervals, and this amount
of resource is wasted (since the buffer is always empty dur-
ing these intervals).

Based on the above, we can derive that Ĉ(t) results in
the maximum number of zero-service intervals for the zero-
offset arrival pattern. In addition, it can be shown that the
zero-offset arrival pattern is a pattern that incurs the high-
est number of samples being dropped among all the arrival
patterns of the input data stream, for all N ≥ 1. Also, the
formula for computing the number of zero-service intervals
of Ĉ(t) can be derived directly from the construction of Ĉ(t).
This proves the lemma. Due to space constraints, we omit
the details.

The next corollary follows directly from the above lemma.

COROLLARY 11. Suppose τth ≤ T . The maximum num-
ber of samples that are dropped over any N consecutive sam-
ples, for any N ≥ 1, is the number of zero-service intervals
of Ĉ(t) for the given N (defined in Lemma 10).

Finally, as a result of Lemma 9, the drop bound given by
Corollary 11 is a tight bound.

8 Case Study
This section presents a case study of the lane keeping system
in §6 to demonstrate the utility of our co-design method and
its benefits against a baseline method (described in §8.1).

T1 , T2 : control tasks
 m1 : control message

CAN Bus

T1

T3

Fixed Priority

T2
T4

Fixed Priority
sensor actuator

Tn T5

Earliest Deadline First

ECU1 ECU2

ECU3

m1

…

… m2 m3 m4

Figure 14: System architecture for the lane keeping system.

8.1 Experimental setup
Fig. 14 shows a lane keeping system that is mapped onto a

CAN architecture. Each sensor value that arrives from the
sensor cluster is first processed by the control task T1 on
ECU1. The processed slip value is then sent to ECU2 via the
message m1. Upon arriving at ECU2, the slip value is used
by T2 to compute the steering angle, which is required by the
wheel brake actuator for the wheel steering thus keeping the
vehicle in lane. In addition, the platform also executes other
applications (tasks T3 to Tn, and messages mi, i≥ 2).

In our evaluation, the sampling period of the input sensor
data is T = 50ms. ECU1 and ECU2 employ the preemptive
fixed-priority (FP) scheduling policy, where T3 (resp. T4) has
a higher-priority than that of T1 (resp. T2). The message m1
shares the bus with other higher-priority messages under the
non-preemptive FP scheduling. We assumed a fixed frame
length for every CAN frame in the system and a fixed fre-
quency for ECU3.

Given the above setting, we applied our control design al-
gorithm to compute the drop bound that the lane keeping sys-
tem can accommodate in §6. For the platform analysis, we
used the RTC analysis methods [8,10] to compute the service
functions, βT1 , βT2 , βm1 , that capture the resource available
to T1, T2, and m1, respectively. These values were used as
inputs to our method and the baseline method.

Our evaluation focuses on the minimum frequency that
ECU1 must operate at to guarantee the stability of the lane
keeping system. For this, we considered different frequen-
cies of ECU2 and different bus speed values. For each fre-
quency of ECU2, we varied the delay threshold τth within
the feasible control design range (τth ≤ T = 50ms) and de-
termined the minimum frequency of ECU1.

Our method selects the frequency using the approach in
§7. The baseline method does not employ buffer control,
and it selects the smallest processor frequency such that the
maximum end-to-end delay of the sensor data, computed us-
ing the conventional RTC analysis [8], is no more than the
delay threshold τth.

8.2 Evaluation results
Resource savings. Fig. 15 shows the minimum frequency
of ECU1 computed using the two methods for three differ-
ent frequencies of ECU2 (30MHz, 60MHz, and 90MHz) and
a medium-speed CAN bus (250 kBits/s). We observe that
the co-design method consistently outperforms the baseline

10

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

E
C

U
1

 p
ro

ce
ss

o
r

fr
e

q
u

e
n

cy
 (

M
H

z)

Delay threshold (ms)

Baseline
Co-design

(a) ECU2 frequency = 30 MHz

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

Baseline
Co-design

E
C

U
1

 p
ro

ce
ss

o
r

fr
e

q
u

e
n

cy
 (

M
H

z)

Delay threshold (ms)

(b) ECU2 frequency = 60 MHz

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

Baseline
Co-design

E
C

U
1

 p
ro

ce
ss

o
r

fr
e

q
u

e
n

cy
 (

M
H

z)

Delay threshold (ms)

(c) ECU2 frequency = 90 MHz

Figure 15: ECU1 processor frequency for different delay thresholds.

Co-design

20

15

10

 5

10 20 30 40 50 60 70 80 90 100

40

35

30

25

45

50

ECU2 processor frequency (MHz)

D
e

la
y

 t
h

re
sh

o
ld

 (
m

s)

Baseline

CAN Bus: 125 kBits /sec

(a) Low speed bus (125 kBits/s)

20

15

10

 5

10 20 30 40 50 60 70 80 90 100

Baseline

Co-design

40

35

30

25

45

50

ECU2 processor frequency (MHz)

D
e

la
y

 t
h

re
sh

o
ld

 (
m

s)

CAN Bus: 250kBits /sec

(b) Medium speed bus (250 kBits/s)

20

15

10

 5

10 20 30 40 50 60 70 80 90 100

Co-design

40

35

30

25

45

50

ECU2 processor frequency (MHz)

D
e

la
y

 t
h

re
sh

o
ld

 (
m

s)

Baseline

CAN Bus: 500kBits /sec

(c) High speed bus (500 kBits/s)
Figure 16: ECU1 design feasibility regions with respect to different bus speed values.

method. For example, compared to the baseline method, our
method reduces the frequency by 50% when τth = 35ms, and
it improves over 4 times when τth = 50ms. Further, when the
delay threshold falls within the shaded area, no solutions ex-
ist under the baseline method, whereas it is possible to design
ECU1 using our co-design. For instance, when τth = 20ms
and ECU2 operates at 30MHz, a frequency of 30MHz for
ECU1 is sufficient to guarantee the control quality using the
co-design method. On the contrary, the baseline method re-
quires an infinite-valued frequency, which is infeasible.

Impact of delay threshold. It can be observed from Fig. 15
that smaller threshold values require higher processor fre-
quencies. This is expected because the resource demands of
the control tasks increase as the threshold decreases. Since
smaller delay threshold typically results in better control qual-
ity, the obtained results can be used to find a threshold value
that balances the tradeoff between control quality and plat-
form resource.

Design space exploration. The obtained results also help
guide the platform design exploration. For instance, for τth =
15ms, ECU1 requires an unbounded frequency under both
methods if ECU2 operates at 30MHz, based on the results
shown in Fig. 15(a). Then, a feasible solution only exists if
we increase the frequency of ECU2 or the bus bandwidth.
This is validated by the results in Fig. 15(b): when the fre-
quency of ECU2 is increased to 60 MHz, a minimum of

40MHz for ECU1 becomes sufficient to meet the control ob-
jective under the co-design method. Note, however, that un-
der the baseline method, we need to increase the frequency
of ECU2 further, since the computed frequency for ECU1 is
still unbounded.

Fig. 16 illustrates the feasibility design regions for ECU1
under three different bus speeds: low (125 kBits/s), medium
(250 kBits/s) and high (500 kBits/s). The areas under the
baseline and co-design curves in each figure correspond to
the regions for which a feasible frequency exists for ECU1
under our co-design method and the baseline method, re-
spectively. We observe that as the frequency of ECU2 in-
creases, the feasible range of the delay threshold is also widen,
enabling smaller delay thresholds and thus better control qual-
ity. Similarly, as the bus data rate increases, the feasible re-
gion is also enlarged for both methods. This is expected,
since the bus bandwidth is the constraint factor of these fea-
sible regions. These feasible regions can be used to optimize
the platform resource under a given resource constraint.

We also observe from Fig. 16 that the feasible region of
the baseline method consistently falls strictly inside that of
the co-design method. Further, when ECU2 operates at 10
MHz, no solution exists for the baseline method, regardless
of the threshold delay and bus speed values. Thus, our co-
design method not only enables resource savings but also
provides more flexibility for the platform design.

11

9 Conclusion
We have presented a control and platform co-design method
for cyber-physical systems, which allows dropped samples
to optimize resource while guaranteeing the control quality.
We have developed a dynamic model including delay and
analyzed its stability switching theory criteria. First using
matrix inequalities, an upper bound for the maximum num-
ber of packet dropouts in any interval was derived to guar-
antee stability. Then a more practical approach using a mul-
tiple Lyapunov functions was developed and proved. The
latter allowed more freedom in the platform design. A buffer
control mechanism was introduced that utilizes the control
design capability in accommodating dropped samples to re-
duce the resource requirements of the system. We have also
presented a technique for computing the drop bounds under
the proposed mechanism, and demonstrated how they can
be used for dimensioning the platform resource. Our eval-
uation results of a lane keeping control system case study
shows that our co-design method not only helps improves
the resource use efficiency by an order of magnitude but also
enables design solutions that are infeasible under the con-
ventional baseline design approach.

10 References

[1] A. Annaswamy, S. Chakraborty, D. Soudbakhsh,
D. Goswami, and H. Voit. The arbitrated networked control
systems approach to designing cyber-physical systems. In
NecSys, 2012.

[2] A. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami,
and S. Chakraborty. Arbitrated network control systems: A
co-design of control and platform for cyber-physical systems.
In Workshop on Control of Cyber Physical Systems, 2013
(submitted).

[3] K. J. Aström and B. Wittenmark. Computer-controlled
systems (3rd ed.). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1997.

[4] G. Berry and G. Gonthier. The esterel synchronous
programming language: design, semantics, implementation.
Science of Computer Programming, 19(2):87 – 152, 1992.

[5] J.-Y. L. Boudec and P. Thiran. Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet. Springer,
2001.

[6] M. S. Branicky. Multiple Lyapunov functions and other
analysis tools for switched and hybrid systems. IEEE
Transactions on Automatic Control, 43(4):475 – 482, 1998.

[7] A. Cervin and J. Eker. The control server: a computational
model for real-time control tasks. In ECRTS, 2003.

[8] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in platform-based
embedded system designs. In DATE, 2003.

[9] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson.
Perspectives and results on the stability and stabilizability of
hybrid systems. Proceedings of the IEEE, 88(7):1069–1082,
2000.

[10] W. Haid and L. Thiele. Complex task activation schemes in
system level performance analysis. In CODES+ISSS, 2007.

[11] M. Hamdaoui and P. Ramanathan. A dynamic priority
assignment technique for streams with (m, k)-firm deadlines.
Computers, IEEE Transactions on, 44(12):1443–1451, 1995.

[12] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: a
time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84 – 99, jan 2003.

[13] J. Hespanha and A. Morse. Stability of switched systems
with average dwell-time. In CDC, 1999.

[14] J. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent
results in networked control systems. Proceedings of the
IEEE, 95(1):138–162, 2007.

[15] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy,
K. Lampka, and L. Thiele. A hybrid approach to
cyber-physical systems verification. In DAC, 2012.

[16] M. Lemmon and X. S. Hu. Almost sure stability of
networked control systems under exponentially bounded
bursts of dropouts. In HSCC, 2011.

[17] Q. Ling and M. Lemmon. Robust performance of soft
real-time networked control systems with data dropouts. In
CDC, 2002.

[18] O. Mason and R. Shorten. On common quadratic Lyapunov
functions for stable discrete-time LTI systems. IMA Journal
of Applied Mathematics, 69(3):271–283, 2004.

[19] P. Naghshtabrizi and J. Hespanha. Analysis of distributed
control systems with shared communication and computation
resources. In ACC, 2009.

[20] E. Poggi, Y. Song, A. Koubaa, Z. Wang, et al. Matrix-dbp for
(m, k)-firm real-time guarantee. RTSS, 2003.

[21] G. Quan and X. Hu. Enhanced fixed-priority scheduling with
(m, k)-firm guarantee. In RTSS, 2000.

[22] P. Ramanathan. Overload management in real-time control
applications using (m, k)-firm guarantee. IEEE Transactions
on Parallel and Distributed Systems, 10(6):549–559, 1999.

[23] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated
scheduling and synthesis of control applications on
distributed embedded systems. In DATE, 2009.

[24] D. Soudbakhsh and A. Eskandarian. Vehicle lateral and
steering control. In A. Eskandarian, editor, Handbook of
Intelligent Vehicles, pages 209–232. Springer London, 2012.

[25] D. Soudbakhsh, A. Eskandarian, and D. Chichka. Vehicle
collision avoidance maneuvers with limited lateral
acceleration using optimal trajectory control. ASME Journal
of Dynamic Systems, Measurement, and Control, In Press,
2013.

[26] P. Tabuada. Event-triggered real-time scheduling of
stabilizing control tasks. IEEE Transactions on Automatic
Control, 52(9):1680 –1685, sept. 2007.

[27] H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and
S. Chakraborty. Optimizing hierarchical schedules for
improved control performance. In SIES, 2010.

[28] W. Wolf. Cyber-physical systems. Computer, 42(3):88 –89,
march 2009.

[29] F. Xia and Y. Sun. Control-scheduling codesign: A
perspective on integrating control and computing. Dynamics
of Continuous, Discrete and Impulsive Systems - Series B,
13(S1):1352–1358, 2006.

[30] M. Yu, L. Wang, T. Chu, and G. Xie. Stabilization of
networked control systems with data packet dropout and
network delays via switching system approach. In CDC,
2004.

[31] W. Zhang, M. Branicky, and S. Phillips. Stability of
networked control systems. IEEE Control Systems,
21(1):84–99, 2001.

[32] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler.
Execution strategies for ptides, a programming model for
distributed embedded systems. RTAS, 2009.

12

	Introduction
	Definitions
	Statement of the Problem
	Stability of the Switched System with a maximum of m0 Drops
	Stability Conditions Using a Multiple Lyapunov Functions Approach
	Lane Keeping System
	Optimizing Resource via Platform Control
	System architecture
	Buffer control mechanism
	Drop bound analysis under buffer control

	Case Study
	Experimental setup
	Evaluation results

	Conclusion
	References

