
MIT Open Access Articles

Compressive sensing using locality-preserving matrices

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Elyot Grant and Piotr Indyk. 2013. Compressive sensing using locality-preserving 
matrices. In Proceedings of the twenty-ninth annual symposium on Computational geometry 
(SoCG '13). ACM, New York, NY, USA, 215-222.

As Published: http://dx.doi.org/10.1145/2462356.2462405

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/86998

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86998
http://creativecommons.org/licenses/by-nc-sa/4.0/


Compressive sensing using locality-preserving matrices

Elyot Grant∗ Piotr Indyk∗

December 4, 2012

Abstract

Compressive sensing is a method for acquiring high-dimensional signals (e.g., images) using a
small number of linear measurements. Consider an n-pixel image x ∈ Rn, where each pixel p has
value xp. The image is acquired by computing the measurement vector Ax, where A is an m×n
measurement matrix, for some m << n. The goal is to design the matrix A and the recovery
algorithm which, given Ax, returns an approximation to x. It is known that m = O(k log(n/k))
measurements suffices to recover the k-sparse approximation of x. Unfortunately, this result
uses matrices A that are random. Such matrices are difficult to implement in physical devices.

In this paper we propose compressive sensing schemes that use matrices A that achieve the
near-optimal bound of m = O(k log n), while being highly “local”. We also show impossibility
results for stronger notions of locality.

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, {elyot,indyk}@mit.edu



1 Introduction

In recent years, a new “linear” approach for acquiring digital images has been discovered [CRT06,
Don06]. Traditional approaches to image acquisition first capture an entire n-pixel image and then
process it for compression, transmission, or storage. In contrast, the new approach obtains a com-
pressed representation directly, by acquiring a small number of nonadaptive linear measurements
of the signal in hardware. Formally, for an image represented by a vector x, the representation
is equal to Ax, where A is an M × n matrix. The advantage of this architecture is that it can
use fewer sensors, and therefore can be cheaper and use less energy than a conventional cam-
era [DDT+08, FTF06, Rom09].

In order to reconstruct the image x from a lower-dimensional measurement vector (or sketch)
Ax, one needs to assume that the image x is k-sparse for some k (i.e., it has at most k non-zero
coordinates) or at least be “well-approximated” by a k-sparse vector1. Then, given Ax, one finds
(an approximation to) x by performing sparse recovery. The latter problem is typically defined as
follows: construct a matrix A such that, for any signal x, we can recover a vector x∗ from Ax that
is “close” to the best possible k-sparse approximation of x. The notion of closeness is typically
parametrized by 1 ≤ q ≤ p, and we require that

‖x− x∗‖p ≤ C · Errqk(x)/k1/q−1/p (1)

where Errqk(x) = mink-sparse x′ ‖x− x′‖q and C is the approximation factor. This is often
referred to as the `p/`q guarantee. Note that if x is k-sparse, then for any q we have Errqk(x) = 0,
and therefore x∗ = x. Although the main focus of this paper is signal acquisition, sparse recovery
has applications to other areas such as data stream computing [Mut05, Ind07].

In this paper, we focus on the `∞/`1 guarantee.2 For this case, it is known [CM04] (cf. [GI10])
that there exist random binary matrices A with M = O(k log n) rows, and associated recovery
algorithms that, with constant probability, produce approximations x∗ satisfying Equation (1)
with constant approximation factor C. The matrices are induced via a collection of random hash
functions h1 . . . hT where hi : [n]→ [m]. Each hash function h defines an m×n binary matrix that
contains a one in entry (i, j) if and only if the pixel corresponding to column j is mapped by h onto
the sensor corresponding to the row i. The final matrix is obtained via vertical concatenation of
the resulting matrices. As long as the hash functions hi are chosen independently from a universal
family, (where the probability of a collision between any pair of elements is O(1)/m), T = O(log n)
hash functions are sufficient to achieve the desired guarantee. See Section 2.1 for further details.

Unfortunately, random matrices are not easily implementable in optical or digital hardware,
requiring either a complex optical system or a complex network of wires. To circumvent this
issue, various structured matrix constructions were proposed. In particular, the papers [UGN+09,
TAN10, GIPR11] proposed a “geometric” construction of measurement matrices, in which the
image is partitioned into

√
m×
√
m squares, which are then superimposed onto a

√
m×
√
m sensor

array. This technique corresponds to a linear mapping from n dimensions to m dimensions, where
the identified pixels are added together. The process is repeated several times with different values
of m, and the resulting mappings are concatenated together.

1Often, to achieve sufficient sparsity, the signal needs to be first transformed by representing it in an appropriate
bases (e.g., wavelet or Fourier). We ignore this issue in this paper, since for the applications we focus on (star tracking
or muzzle flash detection), the signals are sparse in the standard (pixel) basis.

2The `1/`∞ guarantee discussed here is stronger than the more popular `1/`1 guarantee, see [GI10] for an overview.

1



The geometric approach has been shown to be useful for sparse recovery and processing of point
sources, such as stars [GIPR11], muzzle flashes [HPYI12] or tracked objects [TAN10]. However,
the theoretical guarantees for this method are not fully satisfactory. In particular, it is not known
whether the construction satisfies the `p/`q approximation guarantee of Equation 1. Instead, the
paper [GIPR11] showed a recovery guarantee for a class of images that possess additional geometric
structure, namely that contain a small number of distinguishable objects (e.g., stars) plus some
noise. Moreover, the proof applied only to a variation of the geometric construction where the
image was partitioned into pieces of constant size which were then pseudorandomly permuted. To
the best of our knowledge, no recovery guarantees are known for general images.

1.1 Our Contribution

In this paper, we present two variants of the geometric construction, called wrapping and folding,
that both support the `∞/`1 guarantee. Our constructions are randomized, and the guarantee holds
with a constant probability. The key feature of our constructions is that they use only O(k log n)
measurements, matching the bounds previously known only for unstructured matrices.

In wrapping, the
√
m ×

√
m squares are superimposed directly. That is, all pixels with the

same coordinates modulo
√
m are added together. This is the construction used in [GIPR11]

and [HPYI12]. Note that the resulting mapping from the pixels onto the sensor array is discon-
tinuous, as e.g., the neighboring pixels (0,

√
m − 1) and (0,

√
m) are mapped to distant sensors.

This issue does not occur in folding, where we flip alternate squares before superimposing them,
as one does when folding a paper map. In order to achieve provable guarantees for these construc-
tions, we randomize them using discrete affine distortions, described formally in Section 2.2. The
distortions are very “local” (in particularly, they are Lipschitz), which ensures that they are easily
implementable in optical or digital hardware. Our constructions yield the following guarantees:

• For a randomized distortion followed by wrapping, we show that the resulting family of map-
pings from [

√
n]2 into [

√
m]2 is universal. This implies that O(log n) such mappings suffice to

achieve the `∞/`1 guarantee with constant probability, yielding the O(k log n) measurement
bound. Unfortunately, the wrapping operation is highly discontinuous.

• For a randomized distortion followed by folding, we show that O(log n) such mappings also
suffice to achieve the `∞/`1 guarantee with constant probability, despite the fact that the
resulting family of mappings is not universal. However, the mappings are Lipschitz.

Our first construction uses a family of mappings that is universal but not local (in particular, not
Lipschitz), while our second construction uses a family of mappings that is local but not universal.
Naturally, one might ask if there exists mappings that are both universal and local. In Section 3,
we show that, for natural definitions of ‘local’ and ‘universal’, such mappings do not exist.

1.2 Related work

In addition to the aforementioned work on compressive sensing and sparse recovery, our work is
related to the line of research on non-expansive and locality-preserving hashing [LS96, IMRV97].
The two aforementioned papers present constructions of hash functions that are both Lipschitz and
“induce few collisions”. Specifically, the construction of paper [LS96] is 1-Lipschitz and universal,
albeit it only works in one dimension. The construction of [IMRV97] is O(1)-Lipschitz, but not

2



universal: for some pairs of points the probability of collision is ω(1/m). Both constructions are
based on “non-uniform” overlapping, where the spacing between consecutive blocks is random (i.e.,
the superimposed parts of the grid [

√
n]2 have different sizes). The construction of [IMRV97] uses

an appropriately discretize random rotation before applying the non-uniform overlapping.
In connection to our work, we note that our proof in Section 2.4, which shows that random-

ized distortions followed by folding leads to sparse approximation guarantees, could be plausibly
applied to the construction of [IMRV97] as well. However, the non-uniform folding employed in
this construction increases its complexity, making it less appealing in applications.

1.3 Notation

We use [n] to denote the set {0 . . . n−1}, and use a mod b to denote the integer remainder obtained
when dividing a by b. We define d(x, y) to be the Euclidean distance between two points x, y. We
say that a function f is Lipschitz with constant c if d(f(x), f(y)) ≤ c · d(x, y).

2 Compressive sensing of arrays via local transformations

In this section, we describe our compressive sensing constructions. We shall consider an n-
dimensional positive-valued signal x ∈ R

n, and regard it as containing the intensity values of
an image consisting of n square pixels. For simplicity in our exposition, we shall restrict ourselves
to the case where the image itself is square, with dimensions

√
n by

√
n (where

√
n is an integer).

2.1 Sparse recovery and hashing

Our signal acquisition algorithms all employ hash functions h : [
√
n]2 → [

√
m]2 that map keys,

representing locations of pixels in the input image, to values, representing the locations of sensors
in a rectangular array. These hash functions each define an m× n binary matrix Ah that contains
a one in entry (i, j) if and only if the pixel corresponding to column j is mapped by h onto the
sensor corresponding to row i. The matrix Ah contains a single one in every column and provides
a complete representation of h. By randomly choosing T = O(log n) hash functions h1 . . . hT from
a carefully chosen distribution H, and then vertically concatenating the resulting Aht matrices, we
may obtain a matrix A such that, with high probability, we can reconstruct an approximation x∗

to x when given only Ax. The recovery is very simple: each coordinate xj is estimated as

x∗j = mediant=1...T (Ahtx)ht(j) (2)

For the purposes of accurate recovery of a sparse approximation to x, a sufficient condition for
the correctness of the above estimator is if the hash function distribution H is universal.

Definition 2.1. Let C ≥ 1 be a constant, and let H be a distribution over a family of hash
functions, each from some finite domain D of size n to any finite codomain R of size m. Then H
is called C-universal if, for all a, b ∈ D with a 6= b, we have Pr[h(a) = h(b)] ≤ C

m , where h is a hash
function randomly chosen according to the distribution H.

In this paper, we shall say that a hash function is universal whenever it is C-universal for some
fixed constant C. The constant C shall be called the universality constant.

Let x(k) be a closest k-sparse approximation to x, i.e., x(k) contains the k largest entries of x,
and is equal to 0 elsewhere. One can show the following [CM04] (cf. [GI10]):

3



Fact 2.2. Assume that H is a C-universal distribution of hash functions h : [n] → [m]. Let
T ≥ c log(n) and let m > c′k, where c, c′ are large enough constants depending on the universality
constant C. Then, for each j ∈ {1 . . . n}, the estimator in Equation 2 satisfies

Pr[|xj − x∗j | > ‖x− x(k)‖1/k] < 1/n (3)

Note that the number of rows of the sketch matrix A is mT = O(k log n).

Proof. We will briefly outline the argument of [CM04] (cf. [GI10]), as we will re-use it later. Let S
be the support of x(k), |S| = k. Then, for c′ > 10, one can observe that, for any j

Pr[h(j) ∈ h(S − {j})] ≤ 1/10 (4)

and

E

 ∑
j′ /∈S−{j}:h(j′)=h(j)

|xj |

 ≤ ‖x− x(k)‖1
10k

(5)

Applying Markov’s inequality to Equation 5 then yields

Pr

 ∑
j′ /∈S−{j}:h(j)=h(j′)

|xj | > ‖x− x(k)‖1/k

 ≤ 1/10.

The guarantee then follows from the standard properties of the median estimator, and the fact that
1/10 + 1/10 < 1/2.

A universal distribution H can easily be constructed by simply choosing a completely random
hash function each time. As we shall see, by employing a geometric approach based on randomized
affine distortions and wrapping, we can obtain the same result using far less randomness.

2.2 Hashing via affine transformations, folding, and wrapping

In this section, we shall define two randomized geometric hash functions—named Distort-and-Wrap
and Distort-and-Fold—that each facilitate sparse recovery. Both hash functions map integer lattice
points in [

√
n]2 to integer lattice points in [

√
m]2, and both require only Θ(log(n)) random bits.

The reason that we provide two distinct examples is that, as we shall show, there is a necessary
trade-off between locality properties and universality properties among such hash functions.

Both of the hash functions we introduce can be described as the composition of two maps:

• First, a distortion map, which randomly deforms the input array via a discretized affine
transformation. Using a relatively simple family of transformations, we can distribute hash
collisions sufficiently uniformly as to facilitate sparse recovery.

• Secondly, a dimension reduction map, which takes the distorted
√
n by

√
n array and maps

each location into some cell of the final
√
m by

√
m array.

We employ the same distortion map in defining both Distort-and-Wrap and Distort-and-Fold,
but the dimension reduction maps differ. The Distort-and-Wrap hash function achieves universality,

4



immediately implying that sparse recovery is possible for m = Θ(k log n) via Fact 2.2. The Distort-
and-Fold hash function is not universal, but exhibits stronger locality properties than the Distort-
and-Wrap hash function—it is Lipschitz and preserves distances and areas locally, up to a constant
factor. Despite not being universal, Distort-and-Fold still supports sparse recovery when m =
Θ(k log n) (though establishing this requires some additional work beyond applying Fact 2.2).

The randomized distortion map we use is defined as follows:

Definition 2.3. Define a DISTORT step to be a randomized mapping from Z
2 to Z2, taking

(x, y) 7→
(
x+

⌊
λxx√
n

⌋
+
⌊
λxy(x+ y)√

n

⌋
, y +

⌊
λyy√
n

⌋
+
⌊
λxy(x+ y)√

n

⌋)
,

where λx, λy, and λxy are three random integers, each uniformly and independently selected, with
replacement, from the set [

√
n].

The DISTORT mapping, roughly speaking, is a discretized version of the operation performed
via left multiplication by the following matrix:

M =
1√
n

( √
n+ λx + λxy λxy

λxy
√
n+ λy + λxy

)
In practice, a DISTORT step could be simulated by a device that implements (e.g. via optical
methods) the continuous linear transformation represented by M . Since λ√

n
∈ [0, 1) for each

randomly chosen λ in the expression above, we have 1 ≤ det(M) < 8. Consequently, multiplication
by M always preserves areas, up to a constant factor, without ever shrinking them. Moreover, the
DISTORT step satisfies the following properties, as we show in the appendix:

Lemma 2.4. The mapping produced by any DISTORT step is Lipschitz. In particular, its Lipschitz
constant is at most 4.

Lemma 2.5. The mapping produced by any DISTORT step is one-to-one.

After randomly distorting the input array, we perform an operation to reduce the size of the
input from n to m. Our two hash functions arise from two possible methods of doing this:

Definition 2.6. Define a WRAP step to be a mapping from Z
2 to [

√
m]2 that maps each point

(x, y) to (x mod
√
m, y mod

√
m).

Definition 2.7. Define a FOLD step to be a mapping from Z
2 to [

√
m]2, taking (x, y) to (fold(x+

ρx,
√
m), fold(y + ρy,

√
m)), where, for positive integers a and b, the expression fold(a, b) is defined

to equal a mod b whenever (a mod 2b) < b, and b − 1 − (a mod b) otherwise. Here, ρx and ρy
are random integers, uniformly and independently selected, with replacement, from the set [

√
m].

Observe that the WRAP step is a deterministic operation, but the FOLD step incorporates a
randomized shift, which shall be useful later for obtaining sparse recovery guarantees.

We note that wrapping produces “discontinuities” near locations mapped near the boundary
of [
√
m]2; for example, (

√
m − 1,

√
m − 1) and (

√
m,
√
m) get mapped to distant locations. How-

ever, folding is more “continuous” than wrapping in the sense that it is a discretized version of a
continuous mapping from [0,

√
n]2 to [0,

√
m]2. In particular, we observe the following:

5



Proposition 2.8. The mapping produced by any FOLD step is Lipschitz with constant 1.

We now define the two randomized hash functions we study herein, which are obtained by
combining our randomized DISTORT operation with wrapping and folding:

Definition 2.9. The Distort-and-Fold hash function consists of performing a DISTORT step fol-
lowed by a FOLD step. The Distort-and-Wrap hash function consists of performing a DISTORT
step followed by a WRAP step.

Since every possible DISTORT transformation is Lipschitz with constant at most 4, and the
FOLD step is Lipschitz with constant 1, we can immediately deduce the following:

Proposition 2.10. Any Distort-and-Fold transformation is Lipschitz with constant at most 4.

2.3 Sparse recovery guarantees for wrapping

In this section we show that the family of mappings obtained by composing randomized distortion
and wrapping is universal. This implies that O(log n) such mappings suffice to achieve the `∞/`1
guarantee with constant probability, yielding the O(k log n) measurement bound.

Theorem 2.11. Let H be the uniform distribution of all Distort-and-Wrap hash functions over all
choices of constants λx, λy, and λxy selected during the DISTORT step. Then H is universal. In
particular, H is C-universal for some universality constant3 C ≤ 91.

Proof. Let h ∈ H be randomly chosen, and let λx, λy, and λxy be the three independently chosen
parameters associated to h, each uniformly selected from [

√
n]. Let f be the underlying DISTORT

operation used by h. Consider two distinct integer lattice points P = (x, y) and Q = (x+ a, y+ b),
with 0 ≤ x, y, x+ a, y+ b <

√
n, and (a, b) 6= (0, 0). Our goal will be to show that Pr[h(P ) = h(Q)]

is at most C
m . This is equivalent to showing that, with probability at most C

m , we will have f(P )
and f(Q) congruent modulo

√
m in both their horizontal and vertical coordinates.

We begin by noting that if d(P,Q) <
√
m
4 , then we must have d(f(P ), f(Q)) <

√
m by

Lemma 2.4. However, since Lemma 2.5 implies that we cannot have f(P ) = f(Q), we must
then have h(P ) 6= h(Q) in such a case, because f(P ) and f(Q) can only be congruent modulo√
m in both their horizontal and vertical coordinates if f(P ) = f(Q), or d(f(P ), f(Q)) ≥

√
m.

Accordingly, we shall henceforth assume that d(P,Q) ≥
√
m
4 .

To proceed, we investigate the underlying structure of the DISTORT operation. Observe that,
using vector arithmetic, we can write

f((x, y)) = (x, y) +
⌊
λxx√
n

⌋
(1, 0) +

⌊
λyy√
n

⌋
(0, 1) +

⌊
λxy(x+ y)√

n

⌋
(1, 1)

and thus

f(Q)− f(P ) =(a, b) +
(⌊

λx(x+ a)√
n

⌋
−
⌊
λxx√
n

⌋)
(1, 0) +

(⌊
λy(y + b)√

n

⌋
−
⌊
λyy√
n

⌋)
(0, 1)

+
(⌊

λxy(x+ y + a+ b)√
n

⌋
−
⌊
λxy(x+ y)√

n

⌋)
(1, 1).

3In the proof of Theorem 2.11, we make little effort to optimize the universality constant C, instead opting for
the clearest possible exposition.

6



Let Zx be the integer-valued random variable equal to
⌊
λx(x+a)√

n

⌋
−
⌊
λxx√
n

⌋
, and consider its distri-

bution as λx varies. Let Sx = {0, . . . , a} if a ≥ 0, and let Sx = {−a, . . . , 0} otherwise. We observe
that the support of Zx is contained in the set Sx, and for each t ∈ Sx, we have

Pr[Zx = t] ≤

⌈√
n
|a|

⌉
√
n
≤ 1
|a|

+
1√
n
.

Analogously, we define Zy =
⌊
λy(y+b)√

n

⌋
−
⌊
λyy√
n

⌋
and Zxy =

⌊
λxy(x+y+a+b)√

n

⌋
−
⌊
λxy(x+y)√

n

⌋
, and note

that for any integer t, we have Pr[Zy = t] ≤ 1
|b| + 1√

n
, and Pr[Zxy = t] ≤ 1

|a+b| + 1√
n

. Observe that
Zx, Zy, and Zxy are all independent, as λx, λy, and λxy are.

To finish the proof, we must use the above bounds on the randomness of Zx, Zy, and Zxy to
prove that there is a very low probability that f(Q)−f(P ) is divisible by

√
m in both its horizontal

and vertical coordinates. To accomplish this, we use the assumption that d(P,Q) is large to show
that at least two of the three lengths {|a|, |b|, |a+ b|} must be large, which will imply that both the
horizontal and vertical coordinates of f(Q) − f(P ) are unlikely to be divisible by

√
m, given the

randomness introduced by our choice of values for Zx, Zy, and Zxy.
Since we assumed that d(P,Q) ≥

√
m
4 , we have

√
a2 + b2 ≥

√
m
4 , so one of |a| or |b| must be at

least
√
m

4
√

2
. Without loss of generality, we shall assume that |a| ≥

√
m

4
√

2
. We consider two cases:

Case 1: |a + b| ≥
√
m

8
√

2
. Fix Zy = t, and consider what happens to f(Q)− f(P ) = (a, b + t) +

Zx(1, 0) +Zxy(1, 1) as Zx and Zxy range over their respective distributions. To have h(P ) = h(Q),
we must have b+ t+Zxy and a+Zx +Zxy both divisible by

√
m, which occurs if and only if both

Zxy ≡ −b − t mod
√
m and Zx ≡ b + t − a mod

√
m. Since these events occur independently, it

suffices to bound their respective probabilities.
If |a| ≤

√
m, then there is only one value that Zx can take on so that Zx ≡ b+ t− a mod

√
m,

and our previous analysis of the distribution of Zx can then be used to deduce that

|a| ≤
√
m⇒ Pr[Zx ≡ b+ t− a mod

√
m] ≤ 1

|a|
+

1√
n
≤ 4
√

2√
m

+
1√
n
≤ 7√

m
.

However, if |a| ≥
√
m, then there could be up to

⌈
|a|√
m

⌉
distinct values of Zx for which Zx ≡ b+t−a

mod
√
m. In this case, we instead obtain the bound

|a| >
√
m⇒ Pr[Zx ≡ b+ t− a mod

√
m] ≤

⌈
|a|√
m

⌉(
1
|a|

+
1√
n

)
≤ 2√

m
+

2|a|√
n
√
m
≤ 4√

m
,

where in the final inequality, we used the fact that |a| ≤
√
n. Combining both subcases, we obtain

Pr[Zx ≡ b+ t− a mod
√
m] ≤ 7√

m
.

For Zxy, our analysis is similar, and we obtain

|a+ b| ≤
√
m⇒ Pr[Zxy ≡ −b− t mod

√
m] ≤ 1

|a+ b|
+

1√
n
≤ 8
√

2√
m

+
1√
n
≤ 13√

m

and

|a+b| >
√
m⇒ Pr[Zxy ≡ −b−t mod

√
m] ≤

⌈
|a+ b|√

m

⌉(
1

|a+ b|
+

1√
n

)
≤ 2√

m
+

2|a+ b|√
n
√
m
≤ 6√

m
,

7



using the fact that |a+ b| ≤ 2
√
n. Therefore, we conclude that Pr[Zxy ≡ −b− t mod

√
m] ≤ 13√

m
,

and hence Pr[h(P ) = h(Q)] ≤ 91
m .

Case 2: |a + b| <
√
m

8
√

2
. Then since we assumed that |a| ≥

√
m

4
√

2
, we must have |b| ≥

√
m

8
√

2
by

the triangle inequality, and we can proceed similarly to how we did in Case 1. We fix Zxy = t,
and observe that h(P ) = h(Q) if and only if Zx ≡ −a − t mod

√
m and Zy ≡ −b − t mod

√
m.

By a similar argument to that used in Case 1, we have Pr[Zx ≡ −a − t mod
√
m] ≤ 7√

m
, and

Pr[Zy ≡ −b− t mod
√
m] ≤ 13√

m
, from which it follows that Pr[h(P ) = h(Q)] ≤ 91

m .

2.4 Sparse recovery guarantees for folding

When wrapping is replaced by folding, our hash function no longer has the universality property.
Specifically, for any two adjacent points P = (x, y) and Q = (x, y + 1), it is not difficult to see
that the probability of their collision under the Distort-and-Fold hash function is Ω(1/

√
m), not

O(1/m). This is because the first coordinates of P and Q remain equal with constant probability
during the DISTORT operation, in which case they collide during folding with probability 1/

√
m.

However, the folding construction still satisfies the following weaker properties, which are sufficient
to guarantee sparse recovery:

Lemma 2.12. Fix n, let k be an integer with 0 < k ≤ n, and let m be a perfect square of size
roughly c′k, where c′ is a sufficiently large constant. Let h be a randomly chosen Distort-and-Fold
transformation mapping into [

√
m]2, and let h consist of a DISTORT function f followed by a

FOLD function g, (i.e., h(P ) = g(f(P ))). Write f = (fx, fy). Then there exist absolute positive
constants C, C ′ such that:

(1) For any two distinct points P,Q ∈ [
√
n]2, we have

Pr[fx(P ) = fx(Q)] ≤ C

‖P −Q‖∞
, (6)

and the same statement holds for fy.

(2) For any two points P,Q ∈ [
√
n]2 with ‖P −Q‖∞ > C ′

√
k,

Pr[h(P ) = h(Q)] ≤ 1
20k

. (7)

Lemma 2.12 can easily be proven using the same techniques as those used in the proof of
Theorem 2.11. See the appendix for a full proof.

Using Lemma 2.12, we can obtain the following sparse recovery guarantee for Distort-and-Fold:

Theorem 2.13. Let T ≥ c log(n) and let m > c′k, where c, c′ are sufficiently large constants. Let h
be a composition of a DISTORT function g and a FOLD function f , i.e., h(P ) = f(g(P )). Then,
for each p ∈ {1 . . . n}, the estimator in Equation 2 satisfies

Pr[|xp − x∗p| > ‖x− x(k)‖1/k] < 1/n (8)

8



Proof. Let P be the point in [
√
n]2 corresponding to the index p. Let S′ be the support of x(k) and

S” be the set of points Q ∈ [
√
n]2 such that ‖P −Q‖∞ ≤ C ′

√
k; let S = S′∪S”. By the arguments

outlined in the proof of Fact 2.2, it suffices to show that Equations 4 and 5 hold.
We will first show that Equation 4 holds. Let S”x = {Q : gx(Q) = gx(P )} and S”y = {Q :

gy(Q) = gy(P )}. Note that both S”x and S”y are random variables defined by g.

Lemma 2.14. E[|S”x|] ≤ c′′′
√
k for some absolute constant c′′′.

Proof. Let S” = {Q1 . . . Qr}, and assume that Q1, Q2 . . . Qr are sorted in the order of increasing
distance from P . By Lemma 2.12, we have

E[|S”x|] ≤
r∑
i=1

Pr[gx(P ) = gx(Qi)] ≤
r∑
i=1

C

‖P −Qi‖∞
=

C′
√
k∑

`=1

8`C/` = 8CC ′
√
k,

where we used the fact that there are at most 8` distinct points Q with ‖P −Q‖∞ = `.

The lemma for S”y is similar. By Markov’s inequality, it follows that Pr[|S”x| + |S”y| >
160c′′′

√
k] ≤ 1/80. For sufficiently large m, each Q ∈ S”x ∪ S”y can collide with P under f

with probability at most 1/
√
m (due to the random translation applied during the FOLD step).

This collision probability is at most 1/80 · 1
160c′′′

√
k

for c′ large enough. Thus, conditioned on

|S”x|+ |S”y| ≤ 160c′′′
√
k, we have Pr[h(P ) ∈ h(S”x ∪ S”y − {P})] ≤ 1/80. It follows that

Pr[h(P ) ∈ h(S”x ∪ S”y − {P})] ≤ Pr
[
h(P ) ∈ h(S”x ∪ S”y − {P}) : |S”x|+ |S”y| ≤ 160c′′′

√
k
]

+ Pr
[
|S”x|+ |S”y| > 160c′′′

√
k
]

≤ 1/40.

Moreover, all other points in S” collide with P under f with probability at most 1/m, so

Pr [h(P ) ∈ h(S”− (S”x ∪ S”y ∪ {P}))] ≤
|S”|
m
≤ (C ′)2k

m
,

which is less than 1
40 for c′ large enough. It follows that Pr[h(P ) ∈ h(S”− {P})] ≤ 1

40 + 1
40 = 1

20 .
Finally, by Lemma 2.12, for any Q /∈ S” we have Pr[h(P ) = h(Q)] ≤ 1

20k . Therefore, we have
Pr[h(P ) ∈ h(S′ − S” − {P})] ≤ k

20k = 1
20 and thus Pr[h(P ) ∈ h(S − {P})] ≤ 1

20 + 1
20 = 1

10 , so
Equation 4 holds.

From this, Equation 5 by applying linearity of expectations, and the theorem follows.

3 Impossibility of Universality for Local Hash Functions

In this section, we prove an impossibility result that effectively rules out the construction of universal
hash functions for images, if it is required that those functions are sufficiently “local”. Here, our
notions of locality and universality are continuous: we consider functions that map the vertices of
each pixel of a large image to locations in the continuous square region [0,

√
m]2, so that each pixel

is effectively mapped to a polygon in [0,
√
m]2. We show that if such a mapping is appropriately

“local”, then some pair of pixels must collide (i.e., overlap) with substantial probability.
In the following, we formalize these notions. Let H be a distribution over a family of functions

from the domain D = [
√
n]2 to the continuous region R = [0,

√
m]2.

9



Definition 3.1. For h ∈ H and a point P = (x, y) ∈ [
√
n]2, define the pixel Rh(P ) to be the

convex hull of the four points {h(x − 1, y − 1), h(x − 1, y), h(x, y − 1), h(x, y)}. We say that two
pixels Rh(P ) and Rh(Q) collide whenever their interiors intersect.

Since our notion of collision is continuous, we need to redefine universality for this setting:

Definition 3.2. For any C ≥ 1, we say that H is continuously C-universal if, for all points
P,Q ∈ D with P 6= Q, we have Pr[Rh(P ) collides with Rh(Q)] ≤ C

m , where h is a function randomly
chosen according to the distribution H.

Our notion of “locality” of a mapping is formalized as follows:

Definition 3.3. Let h be a function from [
√
n]2 to [0,

√
m]2. For C ≥ 1, we define h to be C-

approximately locally isometric whenever the following hold:

(1) The function h is Lipschitz with constant at most C.

(2) Each pixel Rh(P ) has area at least 1
C .

The first condition is a prerequisite of any local mapping (the distances cannot expand too
much). The second condition essentially states that, locally, the distances cannot shrink too much
either. In particular, this rules out the possibility of projecting a “large” image into a “small” image
by simply scaling it down. Note that the continuous version of our Distort-and-Fold mapping from
Section 2.4 satisfies both conditions for a small value of C.

With the notions of locality and universality formalized, we now state our impossibility result:

Theorem 3.4. Let C1 ≥ 1 and C2 ≥ 1 be any constants. Then there exist sufficiently large values of
m and n, dependent only on C1 and C2, such no distribution H over a family of C1-approximately
locally isometric hash functions from D = [

√
n]2 to R = [0,

√
m]2 is continuously C2-universal.

Proof. We define two points P and Q to be adjacent whenever d(P,Q) = 1, and say that two pixels
are adjacent whenever the corresponding points are. Intuitively, the general idea behind our proof
is that any C-approximately locally isometric mapping from D to R must create a large number of
“creases” (or fold lines) in order to continuously embed the large n-pixel input region D into the
small range R, which has area only m. These creases create collisions among adjacent pixels, and,
as it turns out, create sufficiently many collisions that H cannot be continuously universal.

In the appendix, we prove the following using an elementary geometric argument:

Lemma 3.5. Let h be a C1-approximately locally isometric hash function from D = [
√
n]2 to

R = [0,
√
m]2. Then the number of adjacent pairs of pixels that collide under h is at least c n√

m
for

some absolute constant c > 0 that depends only on C1.

Using Lemma 3.5, it is easy to show that H cannot be continuously universal. We define S to
be the set of all unordered pairs {P,Q} of adjacent points in D, noting that |S| ≤ 2n. Lemma 3.5
implies that, for each h in the support of H, there are at least c n√

m
pairs {P,Q} ∈ S such that

Rh(P ) and Rh(Q) collide. Therefore, by the pigeonhole principle, there must exist some pair of
adjacent points {P,Q} ∈ S such that, if h is randomly selected according to the distribution H, the
probability that Rh(P ) and Rh(Q) collide is at least c/2√

m
. By selecting m to be sufficiently large, it

then follows that H cannot be continuously C2-universal.

10



References

[CM04] G. Cormode and S. Muthukrishnan. Improved data stream summaries: The count-min
sketch and its applications. Latin, 2004.

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

[DDT+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk.
Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008.

[Don06] D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–1306, 2006.

[FTF06] R. Fergus, A. Torralba, and W. T. Freeman. Random lens imaging. MIT CSAIL-TR-
2006-058, 2006.

[GI10] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of IEEE,
2010.

[GIPR11] R. Gupta, P. Indyk, E. Price, and Y. Rachlin. Compressive sensing with local geometric
features. SOCG, 2011.

[HPYI12] L. Hamilton, D. Parker, C. Yu, and P. Indyk. Focal plane array folding for efficient
information extraction and tracking. AIPR, 2012.

[IMRV97] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala. Locality-preserving hashing in
multidimensional spaces. STOC, 1997.

[Ind07] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course notes,
available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[LS96] N. Linial and O. Sasson. Non-expansive hashing. STOC, 1996.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications). Foundations and
Trends in Theoretical Computer Science, 2005.

[Rom09] J. Romberg. Compressive sampling by random convolution. SIAM Journal on Imaging
Science, 2009.

[TAN10] V. Treeaporn, A. Ashok, and M. A. Neifeld. Increased field of view through optical
multiplexing. Optics Express, 18(21), 2010.

[UGN+09] S. Uttam, A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady.
Optically multiplexed imaging with superposition space tracking. Optics Express, 17(3),
2009.

11



A Appendix

A.1 Proof of Lemma 2.4

Lemma 2.4 The mapping produced by any DISTORT step is Lipschitz. In particular, its Lipschitz
constant is at most 4.

Proof. Consider two integer lattice points P = (x, y) and Q = (x + a, y + b), and let f be any
DISTORT step with parameters λx, λy, and λxy. Since λ√

n
∈ [0, 1) for any 0 ≤ λ < n, we have⌊

λx(x+ a)√
n

⌋
−
⌊
λxx√
n

⌋
≤ a

and similarly for expressions involving λy and λxy. Consequently,

d(f(P ), f(Q)) ≤
√

(3a+ b)2 + (3b+ a)2 ≤
√

16a2 + 16b2 = 4d(P,Q),

where, for the second inequality, we used the fact that 2ab ≤ a2 + b2.

A.2 Proof of Lemma 2.5

Lemma 2.5 The mapping produced by any DISTORT step is one-to-one.

Proof. Again, we consider two integer lattice points P = (x, y) and Q = (x + a, y + b), and let f
be any DISTORT step with parameters λx, λy, and λxy. We assume that f(P ) = f(Q), with the
goal of showing that a = 0 and b = 0, hence proving that P = Q. The assumption f(P ) = f(Q)
implies that ⌊

λxx√
n

⌋
+
⌊
λxy(x+ y)√

n

⌋
= a+

⌊
λx(x+ a)√

n

⌋
+
⌊
λxy(x+ a+ y + b)√

n

⌋
(9)

and ⌊
λyy√
n

⌋
+
⌊
λxy(x+ y)√

n

⌋
= b+

⌊
λy(y + b)√

n

⌋
+
⌊
λxy(x+ a+ y + b)√

n

⌋
. (10)

We note that if a+ b = 0, then equations (9) and (10) can only be satisfied if a = b = 0. Consider
instead the case where a + b > 0. In this case, at least one of a or b must be positive, so we may
assume, without loss of generality, that a > 0. However, if both a + b and a are positive, then
equation (9) cannot be satisfied, as its left side would be strictly less than its right side. A similar
contradiction occurs in the case where a + b < 0, so we must have a = b = 0, completing the
proof.

A.3 Proof of Lemma 2.12

Lemma 2.12 Fix n, let k be an integer with 0 < k ≤ n, and let m be a perfect square of size
roughly c′k, where c′ is a sufficiently large constant. Let h be a randomly chosen Distort-and-Fold
transformation mapping into [

√
m]2, and let h consist of a DISTORT function f followed by a

FOLD function g, (i.e., h(P ) = g(f(P ))). Write f = (fx, fy). Then there exist absolute positive
constants C, C ′ such that:

12



(1) For any two distinct points P,Q ∈ [
√
n]2, we have

Pr[fx(P ) = fx(Q)] ≤ C

‖P −Q‖∞
, (11)

and the same statement holds for fy.

(2) For any two points P,Q ∈ [
√
n]2 with ‖P −Q‖∞ > C ′

√
k,

Pr[h(P ) = h(Q)] ≤ 1
20k

. (12)

Proof. Both parts of this proof employ techniques similar to those used in the proof of Theorem 2.11.
As we did there, we write P = (x, y) and Q = (x + a, y + b) with (a, b) 6= (0, 0), and define the
same independent random variables Zx, Zy, and Zxy. We observe that at least two of the values
in the set {|a|, |b|, |a + b|} must be at least ‖P−Q‖∞2 , and thus at least two of the three random
variables in {Zx, Zy, Zxy} must have a large support. This forms the basis for the arguments we
use to establish the lemma.

In proving (1), we must use the fact that at least one of {|a|, |a + b|} is at least ‖P−Q‖∞2 . We
consider the case where |a| ≥ ‖P−Q‖∞2 ; the case where |a+ b| ≥ ‖P−Q‖∞2 is similar. Fixing Zy and
Zxy, we observe that there is at most one value that the random variable Zx can attain that will
cause fx(P ) and fx(Q) to be equal. Since for any integer t, we have Pr[Zx = t] ≤ 1

|a| + 1√
n

, it
follows that

Pr[fx(P ) = fx(Q)] ≤ 1
|a|

+
1√
n
≤ 3
‖P −Q‖∞

,

which establishes the result. For fy, we proceed similarly.
We prove (2) for the case where c′ = 1280 and C ′ = 144, making little effort to optimize the

constants. If ‖P − Q‖∞ > C ′
√
k ≈ 144√

1280

√
m > 4

√
m, then ‖P − Q‖∞ > 4

√
m and thus at least

two of {|a|, |b|, |a + b|} are greater than 2
√
m. We shall complete the proof assuming that both

|a| and |b| are greater than 2
√
m, but the other cases are similar. Fix Zxy = t, and fix the two

horizontal and vertical shift parameters so that ρx = tx and ρy = tx. By the nature of the FOLD
operation, as Zx is allowed to vary, the horizontal coordinates hx(P ) and hx(Q) of h(P ) and h(Q)
will be equal if and only if Zx ≡ −a− t mod 2

√
m or Zx + tx ≡ a+ t− tx mod 2

√
m. Therefore,

Pr[hx(P ) = hx(Q)] ≤ 2
⌈
|a|√
m

⌉(
1
|a|

+
1√
n

)
≤ 8√

m
.

The vertical coordinates of h(P ) and h(Q) will be equal with the same probability. Since these
events are independent, we have Pr[h(P ) = h(Q)] ≤ 64

m ≤
1

20k , completing the proof.

A.4 Proof of Lemma 3.5

Lemma 3.5 Let h be a C1-approximately locally isometric hash function from D = [
√
n]2 to

R = [0,
√
m]2. Then the number of adjacent pairs of pixels that collide under h is at least c n√

m
for

some absolute constant c > 0 that depends only on C1.

13



Proof. Each of the (
√
n − 1)2 pixels Rh(P ) is a convex polygon in [0,

√
m]2 having three or four

edges (fewer edges are not possible since each pixel has positive area). We give special names to
some of these edges: define a crease edge to be an edge that is the boundary between two adjacent
colliding pixels, and define a boundary edge to be any of the 4(

√
n − 1) edges that are not the

border between two adjacent pixels. Let C be the set of all crease edges, and let B be the set of
all boundary edges.

Next, we shall define a function α, taking point-pixel pairs of the form (p,Rh(P )), where p is a
point in Rh(P ), to edges in B ∪ C. We define α(p,Rh(P )) algorithmically as follows: let `p be the
horizontal line passing through p. Consider the process of moving rightward along `p until an edge
e0 of Rh(P ) is encountered. If e0 is a crease or boundary edge, we set α(p,Rh(P )) = e0. If not,
we let Rh(P1) be the pixel neighbouring Rh(P ) that also has e0 as one of its edges, and continue
moving rightward along `p, through the interior of Rh(P1), until a second edge e1 of Rh(P1) is
encountered. Again, if e1 is a crease or boundary edge, we set α(p,Rh(P )) = e1, and if not, we
continue through further pixels to the right of P1. This process must terminate, because some
boundary or fold edge must be encountered before `p exits the square [0,

√
m]2. We can ignore the

points p for which this process is not well defined due to `p intersecting a vertex of one of the pixels,
or colliding with a horizontal edge; such points comprise a set of measure zero, which will not be
relevant during our analysis.

Given a boundary or crease edge e ∈ B ∪ C and a point p ∈ [0,
√
m]2, we let U(p, e) be the set

of all pixels Rh(P ) with p ∈ Rh(P ) and α(p,Rh(P )) = e. We claim that |U(p, e)| ≤ 2. To see this,
observe that the algorithm used to generate α(p,Rh(P )) can be run in reverse, starting from `p ∩ e
and moving leftwards instead of rightwards. The only decision to be made is which pixel, of the
two having e as an edge, to begin moving leftward in initially.

For e ∈ B∪C, we define µe as a measure of the total area of all the point-pixel pairs (p,Rh(P ))
with α(p,Rh(P )) = e. Formally, we let

µe =
∑
P

µ{p ∈ Rh(P ) : α(p,Rh(P )) = e},

where µ is the standard (e.g. Lebesgue) measure in R2. Using the previous claim that |U(p, e)| ≤ 2,
we can see that µe ≤ 2

√
m ‖e‖2, since the area of all points p ∈ [0,

√
m]2 with `p ∩ e 6= ∅ is at most√

m ‖e‖2. It follows that µe ≤ 2C1
√
m, since h is C1-approximately locally isometric.

We note that
∑

e∈B∪C µe is simply the sum of the areas of all the pixels, which is at least
Θ(n)
C1

, since h is C1-approximately locally isometric. It follows that |B ∪ C| ≥ Θ(n)
2C2

1

√
m

. Since

|B| = 4(
√
n− 1), it follows that |C| ≥ Θ(n)√

m
, which yields the result.

14


