
MIT Open Access Articles

Parallelized Model Predictive Control

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Soudbakhsh, Damoon and Anuradha M. Annaswamy. "Parallelized Model Predictive
Control." 2013 American Control Conference. IEEE, 2013.

As Published: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6580083

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/86999

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86999

Parallelized Model Predictive Control

Damoon Soudbakhsh and Anuradha M. Annaswamy

Abstract— Model predictive control (MPC) has been used
in many industrial applications because of its ability to pro-
duce optimal performance while accommodating constraints.
However, its application on plants with fast time constants is
difficult because of its computationally expensive algorithm.
In this research, we propose a parallelized MPC that makes
use of the structure of the computations and the matrices
in the MPC. We show that the computational time of MPC
with prediction horizon N can be reduced to O(log(N)) using
parallel computing, which is significantly less than that with
other available algorithms.

I. INTRODUCTION
Model Predictive Control (MPC) has been used in many

industrial applications successfully [1], since it can compute
optimal control inputs while accommodating constraints.
However, its implementation for plants with high bandwidths
is challenging because of its computationally expensive al-
gorithm. The problem of controlling multiple applications
using shared resources, which is typical in a distributed
embedded system, DES, can introduce large delays due to
arbitration in the network where other applications with
higher priority may need to be serviced. A part of these
delays may be known, as significant information is available
regarding the structure of the DES [2]. An MPC that incor-
porates this known information about the delay provides an
opportunity to realize improved control performance. This
however exacerbates the computational complexity further,
as the dimension of the underlying control problem increases
further. Therefore, development of a fast MPC algorithm
that can significantly reduce the overall computational lag
is highly attractive.

In recent years, significant amount of work has been
done on efficient implementations of MPC. One way to
implement MPC is to compute a piecewise affine control
law offline to reduce the online control computation to a
stored look up table [3]. A drawback of this method is
the exponential relation of the number of regions with the
size of the control problem [4], [5]. Another approach is
to obtain a compact form of the optimization problem by
substituting the predicted states by the planned inputs [6],
[3]. A common procedure that is adopted in the literature
to reduce computational complexity of this problem is the
use of any underlying sparsity in the matrices [7], [8] and
using primal-dual methods to solve MPC problem [7], [6],
[4]. The computational time of this type of formulation can
be reduced further by limiting the number of iterations and

This work was supported in part by the NSF Grant No. ECCS-1135815
via the CPS initiative.

D. Soudbakhsh and A. M. Annaswamy are with the Department of
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge
Ma 02139, email: {damoon, aanna} @mit.edu

using suboptimal solutions [4]. These approaches can reduce
the computational time of MPC to be linear with prediction
horizon at best. Although this is a huge improvement over
using the original form of MPC, it is an obstacle in extending
MPC applications.

In this paper, we propose a parallelized implementation
of the MPC in order to arrive at an efficient implementation
with reduced computational time. This is accomplished by
making use of the underlying sparsity in the MPC parameters
and suitable pipelining of the computations into more than
one processor. Similar concepts have been explored in [6],
[9]. Unlike [6], where a compact form of MPC with no delay
was implemented, in this paper we include a delay, and use a
sparse formulation of MPC to take advantage of its structure
and reduce the computational time. The MPC design of
[9] is based on a sparse formulation; however, the overall
computational time of MPC with prediction horizon N is
in order of O(N2). Here, we developed a parallelized MPC
algorithm whose computation is in the order of log(N). The
implications of these results on hardware implementations on
platforms such as Field Programmable Gate Arrays (FPGA)
are also briefly explored.

The paper is organized as follows. First the dynamics of
the plant is presented in §II. Then the design of MPC is
presented in §III. In this section, the stage cost, dynamics of
the system as well as input and state constraints are written
in sparse form to reveal some of structures within them.
The overall procedure to find the optimal input is given in
§III-D. In §IV, we exploit the structures within the MPC
matrices further and possibilities for parallelization to reduce
the computational time to O(logNd) are presented. Some
concluding remarks are given in §V.

II. NCS MODEL

The problem is to control a plant using a distributed
embedded architecture that is required to service multiple
applications. Due to such servicing, during the control of a
plant, the sensor signal, the computations of the controller
block, and actuator signal experience delays τs, τc, and τa
respectively (see Fig. 1). The problem is to co-design the
controller and the DES architecture so that the plant can be
controlled accurately with minimal computational time.
A. Problem Statement

The specific plant to be controlled is assumed to be linear
time-invariant and has the following state-space form:

ẋ(t) = Ax(t)+Bu(t− τ) (1)
where, x(t) ∈ ℜp and u(t) ∈ ℜq are states and inputs, re-
spectively. We assume that the plant is periodically sampled
with a fixed period T , and define τ = τa + τs + τc (Fig.

Soudbakhsh, D., Annaswamy, A.M., American Control Conference,
Washington, DC, 2013

Fig. 1. Schematic overview of the
control of a plant using a DES.

Fig. 2. Delay dependence of the
effective inputs.

1). We accommodate the possibility of τ > T and define
τ ′= τ−b τ

T cT , where byc denotes the floor(y), i.e., the largest
integer not greater than y and is illustrated in Fig. 2. We now
discretize (1) to obtain

x[k+1] = Adx[k]+Bd1u[k−d1]+Bd2u[k−d2] (2)
where Ad

def
= eAT , Bd1

def
= (

∫ T−τ ′
0 eAν dν)B , and Bd2

def
=

(
∫ T

T−τ ′ e
Aν dν)B. We note that τ ′ < T . In (2), d1

def
= b τ

T c,
d2

def
= d τ

T e, where dye denotes the ceiling(y), i.e. the smallest
integer not less than y. It is easy to see that d2 = d1 +1. We
also note that Bd2 = 0 if τ = mT , where m is an integer. For
ease of exposition, we denote the time instant tk as time k.

III. DESIGN OF MODEL PREDICTIVE CONTROL

The MPC is designed to control plant (1) with delay
τ seconds to track a desired path while minimizing the
control input and its rate. The states and inputs are limited
by linear inequalities. Toward finding the optimal input, the
controller estimates the future predicted outputs and applies
the first input. This procedure is repeated at every step and
a new input is applied at each step. In what follows, y[k]
denotes the actual value of y at time k, and y[k+ i|k] is the
predicted/planned value of y at time k+ i at the current time
k. For ease of exposition, we denote y[k+1|k] as yk+1.

We first define an extended state X [k] def
= [u[k− d2]

T ,xT
k]

T

using which we rewrite (2):

Xk+i+1
def
=

[
uk+i−d1
xk+i+1

]
=

[
0 0

Bd2 Ad

][
uk+i−d1−1

xk+i

]
+

[
I

Bd1

]
uk+i−d1 = FXk+i +Guk+i−d1 (3)

At i = d1, it follows that the control input uk will become
available and affect Xk+d1+1. Therefore at this instant, (3)
can be simplified as:

Xk+d1+1 =

[
uk

xk+d1+1

]
=

[
0 0

AdBd1 +Bd2 Ad1
d

][
u[k−1]

xk

]
+

[
0

∑
d1−1
j=1 A j

d (AdBd1 +Bd2)u[k− j−1]

]
+

[
0

Ad1−1
d Bd2u[k−d1−1]

]
+

[
I

Bd1

]
uk (4)

A. Stage cost
The objective of the controller is to minimize an objective

function while satisfying a set of constraints. We define the
cost function as:

Jk
def
=

∞

∑
i=0

1
2

{
e[k+ i+1|k]T Qe[k+ i+1|k]+

ur[k+ i|k]T R1ur[k+ i|k]+∆u[k+ i|k]T R2∆u[k+ i|k]
}

(5)

where ek+i
def
= xk+i− xre f [k+ i] is the tracking error, urk+i

def
=

uk+i−ure f [k+ i] is the input error, and ∆uk+i
def
= uk+i−uk+i−1.

The optimization problem in (5), which includes an infinite

cost can be recast as a finite horizon problem leading to:

min
u,x

. Jk =
N−1

∑
i=1

1
2

eT
k+iQek+i +

Nd−1

∑
i=0

1
2
{

urk+i
T R1urk+i+

∆uT
k+iR2∆uk+i

}
+

1
2

eT
k+NQ1tek+N (6)

where N is finite, Nd
def
= N−d1, and Qt is the terminal cost

that can be estimated by the solution of a Lyapunov discrete
equation. For regulator case, the terminal cost Qt is the
solution of the following Lyapunov equation:

Qt = (F +GK)T Q(F +GK)− (7)([R2 0
0 Q

]
+KT (R1 +R2)K +2KT [R2 0]

)
where K is the unconstrained optimal control law.

To develop the parallelized MPC, we start with the cost
function over the finite horizon (6). First we note that the
underlying plant is a delayed system, hence the input has no
effect from i = 0 to i = d1. Also, the quantities xre f and ure f
have no effect on the optimization. Using both these facts,
we can rewrite stage cost (6) as:

Jk =
Nd−1

∑
i=1

{
−
[

0
xre f [k+ i+d1]

]T

M2︷ ︸︸ ︷[
0 0
0 Q

]
Xk+i+d1−

ure f [k+ i]T R1uk+i

}
−
[

0
xre f [k+N]

]T [0 0
0 Qt

]
Xk+N+

1
2

Nd−1

∑
i=1

{[
Xk+i+d1

uk+i

]T

M1︷ ︸︸ ︷[R1 +R2 0
0 Q

] [
−R2

0

]
[−R2 0] R2

[Xk+i+d1
uk+i

]}

+
1
2

XT
k+N

M1t︷ ︸︸ ︷[
R1 0
0 Qt

]
Xk+N +uT

k

M0︷ ︸︸ ︷
(R1 +R2)uk

−ure f [k]T R1uk−uT
k R2u[k−1]. (8)

Using the new variables M1,M2, and M1t , we rewrite (8) as:

Jk =

uk

Xk+d1+1
...

uk+Nd−1
Xk+N

T

M1︷ ︸︸ ︷
M0 0 · · · 0 0
0 M1 · · · 0 0
...

...
. . .

...
...

0 0 · · · M1 0
0 0 · · · 0 M1t

Φ︷ ︸︸ ︷
uk

Xk+d1+1
...

uk+Nd−1
Xk+N

−

Xre f [d1 +1]
...

Xre f [N]

T

M2︷ ︸︸ ︷
M2 · · · 0 0
...

. . .
...

...
0 · · · M2 0
0 · · · 0 M1t

Xk+d1+1

...
Xk+N

−

 ure f [k]
...

ure f [k+Nd−1]

T R1 · · · 0
...

. . .
...

0 · · · R1

 uk
...

uk+Nd−1

(9)

Since xre f and ure f are independent variables, the last two
terms are essentially linear combinations of Φ. Hence (9)
can be expressed as

Jk = Φ
T M1Φ+ cT

Φ (10)

2

In a tracking problem, c should be suitably updated at each k.
It should be noted that both M1 and M2 are block-diagonal.
B. Inequality Constraints

We assume that the constraints on the state and control
input are present in the form Axx≤ ax, and Auu≤ au, where
Ax ∈ℜm1×p and Au ∈ℜm2×q. We rewrite the state constraints
in the forms of the extended states as:

AX
def
=

[
Au 0
0 Ax

]
Using the above definition for AX , the constraints can be
written as:

Au 0 0 · · · 0
0 AX 0 · · · 0
0 0 Au · · · 0
...

...
...

. . .
...

0 0 0 · · · AX

uk
Xk+d1+1

...
uk+Nd
Xk+N

4

au
aX
...

aX

 (11)

Denoting s def
= [s1

T · · · sNd
T]T ≥ 0 as the slack variable, and

defining matrices Ac and a, we rewrite (11) as
AcΦ+ s−a = 0 (12)

The equality constraints are given by the plant dynamics in
(3) and (4). Rewriting (4) as

Xk+d1+1 = F0Xk +G0 +Guk, (13)
with known Xk, all equality constraints can be written as

AeΦ−g = 0 (14)
where g, and Ae are defined as below:

g =

−F0X−G0

0
...
0

 , Ae =

G −I 0 0 0 · · · 0
0 F G −I 0 · · · 0
0 0 0 F G · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 · · · −I

 .
C. Primal-Dual Method

Combining the objective function (9), the inequality con-
straints (12), and the equality constraints (14), we obtain the
Lagrangian:

L (x,λ ,ν ,s) = Φ
T M1Φ+ cT

Φ+ν
T (AeΦ−g)

+λ
T (AcΦ+ s−a) (15)

where λ
def
= [λ1

T , · · · , λNd
T]T and ν

def
= [ν1

T , · · · , νNd
T]T are

the Lagrange multipliers. The KKT (Karush-Kuhn-Tucker)
conditions [10] of this quadratic problem are:

MlΦ+ c+AT
c λ +AT

e ν = 0,
AeΦ−g = 0
AcΦ+ s−a = 0
ΛS1 = 0,λ ≥ 0, s≥ 0

(16)

where Λ
def
= diag

(
λ1,λ2, · · · ,λNd

)
,S def

= diag(s1, ...,sNd), and 1
is a vector of ones. The solution of (16) provides an optimal
Φ, and in turn an optimal U(k). The actual control input u(k)
is then determined using this optimal U(k).

The solution of (16) is typically arrived at by minimizing
the vector of residuals r = (rX ,rν ,rλ .rs) over y= (Φ,ν ,λ ,s),
with the following components:

rX = −M1Φ− c−AT
c λ −AT

e ν ,
rν = −AeΦ+g
rλ = −AcΦ− s+a
rs = −ΛS1+σ µ1

(17)

where µ = λ T s
Ndm1+Ndm2

is a measure of duality; and

m1 and m2 are number of inequality constraints on states and
inputs, respectively. σ ∈ [0,1] is the centering parameter [11].
Residual minimization of r in (17) over y is typically carried
out by finding the optimal changes to y = y0. This is done
by first solving the following linear equations for the primal
and dual step search directionsM1 AT

e AT
c 0

Ae 0 0 0
Ac 0 0 I
0 0 S Λ

∆Φ

∆ν

∆λ

∆s

=

rX
rν

rλ

rs

 (18)

and then iterating yk+1 = yk + η∆y, using a line-search
method to find the optimal step size η [10]. The iteration is
completed when ‖r‖2 < ε , an arbitrarily small constant. To
find the primal and dual step search directions in (18), we
simplify the problem by block elimination and get:

∆s = −s+Λ
−1(σ µ1−S∆λ) (19)

∆λ = −S−1
Λ(Ac∆Φ+ s+ rλ)+S−1

σ µ1 (20)

∆ν = Γ
−1
(
−rν +AeZ−1Rν1

)
def
= Γ

−1Rν2 (21)

∆Φ = Z−1(Rν1−AT
e ∆ν) (22)

where
Rν1

def
= rX +AT

c S−1
Λ(s+ rλ)−AT

c S−1
σ µ1 (23)

we also note that matrices Z and Γ defined as
Z def

= LzLT
z

def
= M1 +AT

c S−1
ΛAc (24)

Γ
def
=

(
AeZ−1AT

e
)

(25)
where, Lz is the Cholesky decomposition matrices of Z. It
can be observed that Z is block diagonal and Γ is tridiagonal.
Each block Zi,i = LziLT

zi of Z can be derived to be

Zi,i
def
=

M0 +AT
u Eu1Au i = 1

M1 +

AT
u EuiAu 0 0

0 AT
x ExiAx 0

0 0 AT
u EuxiAu

 , i = 2 : Nd−1

M1t +

[
AT

u EuxNAu 0
0 AT

x ExNAx

]
i = Nd

(26)

where Eui, Euxi, and Exi are the associated blocks of the
matrix E def

= S−1Λ, and i = 1 : Nd . From (26), one can
compute Z−1 in a straight forward manner using Cholesky
factorization. We then repartition Z−1 using matrices ZQi ∈
ℜ(p+q)×(p+q), ZRi ∈ ℜq×q, and ZSi ∈ ℜq×(p+q), we get the
following form for Z−1:

Z−1 =

ZR1 0 0 0 · · · 0 0
0 ZQ2 Zs2 0 · · · 0 0
0 ZT

s2 ZR2 0 · · · 0 0
0 0 0 ZQ3 · · · 0 0
...

...
...

...
.

...
ZsNd ZRNd 0

0 0 0 · · · 0 ZQt

(27)

We also note that the blocks in the tridiagonal matrix Γ can
be derived to be:
Γ1,1 = GZR1GT +ZQ2

Γi,i = GZRiG
T +FZQiF

T +ZQi+1 +(GZT
Si

FT +FZSiG
T),

i = 2 : Nd

Γi,i+1 = ΓT
i+1,i =−ZQi+1FT −ZSi+1GT , i = 1 : Nd−1

(28)
The solution of (21) can be found efficiently using a recursive
algorithm by computing the first block of ∆ν and use it to

3

compute the second block and so forth. However, the sequen-
tial nature of such algorithm results in linear dependency
on prediction horizon. In §IV we will show an alternative
method to reduce the computational time of solving (21).
D. Numerical procedure to find the Newton step

In §II, a design procedure to compute optimal input using
MPC approach was presented. In this design an extended
state was defined and structures of MPC matrices were
exploited to reduce asymptotic complexity of computations.
The procedure is summarized below:

The MPC control input u[k] is determined by solving the
minimization problem in (8) which in turn is solved through a
primal-dual method. The latter is solved by finding a solution
∆y in (18), using a numerically efficient procedure that takes
advantage of the sparsity of the underlying matrices. Key
steps of this numerical procedure are:

1) Set Φ = Φ0,s = s0, and λ = λ0, with all elements of
the vectors s0 and λ0 being positive. Set E = E0 where
E0 = S−1

0 Λ0.
2) Compute residuals r = (rX ,rν ,rλ ,rs) from (17)
3) Solve for ∆ν in (21) . The determination of ∆ν can be

further subdivided into the following tasks:
a) Find inverse of Z (by decomposition)
b) Compute Rν1 and Rν2 using (23) and (21)
c) Compute Γ = AeZ−1AT

e
d) Solve Γ∆ν = Rν2 for ∆ν

4) Compute ∆Φ,∆λ , and ∆s using (22), (20), and (19).
We note that the inverse of Z for computation of ∆Φ

is readily available.
5) Carry out line search to determine the optimal step size

ηopt using the following two steps:
Step 5-1 Choose η ′ = sup{η ∈ [0,1]|λ + η∆λ > 0,s +

η∆s > 0} , Set η ′′ = (1− ε1)η
′, where ε1 is a

small parameter ε1 ∈ (0,1) chosen to avoid one-
dimensional line search. set η0 = η ′′.

Step 5-2 Iterate η j = βη j−1 until ‖r(yk)‖2 ≤ (1 −
αη i)‖r(y j−1)‖2 where α =min(1−ε,1/η ′′), and
ε is arbitrarily small.

IV. DESIGN OF PARALLEL MPC
We now introduce a parallelization for the computation of

∆y in (18). The parallelization is introduced in each of the
above steps discussed in §III-D. Of that, the most important
component is step 3, which involves the computation of
Γ−1 (decomposition of Γ) in (21). In contrast to the Nd
steps that were shown to be needed in step 3 in §III-D,
we will show that the proposed parallelization requires only
dlog2 Nde steps.
A. Parallel computations

We examine each of the five steps of §III-D and check
parallelizability of them.

Step 1: The underlying computations pertains to those of
performing the Cholesky decomposition of matrix Z(= LzLT

z)
and computing vector Rν1. Due to block diagonal structure
of Z, the computation of LZ can be fully parallelized. Using
Nd processors, each Lzi is computed in the ith processor.
This is indicated using green cells in step 1 in Fig. 3. For

computations of the blocks in Rν1 defined in (23), denoting
the ith block of Rν1 as Rν1(i), we note that every block i can
be computed independently, and is represented by the purple
cells in step 1.

Step 2: The focus of this step is the computation of Γ

and Rν2. Noting that Γ has a tridiagonal structure, the same
procedure as in Step 1 can be used to perform parallel
computations of the (i, j)th blocks of Γ, denoted by the green
cells in step 2 in Fig. 3, and computations of block i of Rν2,
denoted by the purple cells. The number of green cells in
this case is 2Nd and the number of purple cells is Nd .

Step 3: This step involves the computation of Γ−1. As Γ

is tridiagonal, computation of its inverse, in general, is not
parallelizable. For ease of exposition we consider a case in
which Nd = 2m, with m being a positive integer. In what
follows we propose a specific procedure that overcomes this
hurdle, and is based on an extended version of Parallel Cyclic
Reduction (PCR). The main idea behind PCR is to take a
tridiagonal matrix, select groups of the elements according
to their even or odd matrices and reduce the problem to two
tridiagonal matrices with each of the sizes being roughly half
the size of the original matrix[12]. Γ as defined in (28) is a

Fig. 3. Parallelizations within Steps for computing MPC input

symmetric tridiagonal matrix, and has the following form:

Γ =

Γ11 Γ12
ΓT

12 Γ22 Γ23
0 ΓT

23 Γ33 Γ34
.

ΓT
Nd−1,Nd

ΓNd ,Nd

 (29)

The problem at hand is the solution of
Γ∆ν = Rν2 (30)

where ∆ν is computed of Nd blocks, each of dimension (p+
q). We define ∆ν(i) as the ith block. Using (29), (30) can be
written as:
(−Γ

T
i−1,iΓ

−1
i−1,i−1Γ

T
i−2,i−1)∆ν(i−2)+(

Γi,i− (ΓT
i−1,iΓ

−1
i−1,i−1Γi−1,i)−Γi,i+1Γ

−1
i+1,i+1Γ

T
i,i+1

)
∆ν(i)

+(−Γi,i+1Γ
−1
i+1,i+1Γi+1,i+2)∆ν(i+2)

= Rν2(i)− (ΓT
i−1,iΓ

−1
i−1,i−1)Rν2(i−1)

− (Γi,i+1Γ
−1
i+1,i+1)Rν2(i+1) i = 1 : Nd (31)

where Γi, j = 0 for i, j < 1 and i, j > Nd . In (31), each even
(odd) block of ∆ν(i) depends only on the even (odd) blocks

4

∆ν(i− 2), and ∆ν(i+ 2). We define new matrices Γo and
Γe using the coefficients of the odd and even blocks of ∆ν ,
respectively. Expressions for Γo and Γe are given below:

Γo
j, j+1 = Γo

j+1, j
T def
=−Γ2 j−1,2 jΓ

−1
2 j,2 jΓ2 j,2 j+1, j = 1 : Nd

2 −1
Γo

j, j
def
= Γ2 j−1,2 j−1−ΓT

2 j−2,2 j−1Γ
−1
2 j−2,2 j−2Γ2 j−2,2 j−1

−Γ2 j−1,2 jΓ
−1
2 j,2 jΓ

T
2 j−1,2 j j = 1 : Nd

2
Γe

j, j+1 = Γo
j+1, j

T def
=−Γ2 j,2 j+1Γ

−1
2 j+1,2 j+1Γ2 j+1,2 j+2,

j = 1 : Nd
2 −1

Γe
j, j

def
= Γ2 j,2 j−ΓT

2 j−1,2 jΓ
−1
2 j−1,2 j−1Γ2 j−1,2 j

−Γ2 j,2 j−1Γ
−1
2 j+1,2 j+1ΓT

2 j,2 j+1, j = 1 : Nd
2 −1

Using the above for Γo and Γe we can write the following
new sets of equations for odd and even blocks of ∆ν :
Γ

o
j, j−1∆ν(2 j−3)+Γ

o
j, j∆ν(2 j−1)+Γ

o
j+1, j

T
∆ν(2 j+1)

= Ro
ν2(j), j = 1,2, ...,dNd

2
e (32)

Γ
e
j, j−1∆ν(2 j−2)+Γ

e
j, j∆ν(2 j)+Γ

e
j+1, j

T
∆ν(2 j+2)

= Re
ν2(j), j = 1,2, ...,bNd

2
c (33)

In (32) and (33), Ro
ν2(j) and Re

ν2(j) are defined as:
Ro

ν2(j) = Rν2(2 j−1)− (ΓT
2 j−2,2 j−1Γ

−1
2 j−2,2 j−2)Rν2(2 j−2)

− (Γ2 j−1,2 jΓ
−1
2 j,2 j)Rν2(2 j), j = 1 :

Nd

2
(34)

Re
ν2(j) = Rν2(2 j)− (ΓT

2 j−1,2 jΓ
−1
2 j−1,2 j−1)Rν2(2 j−1)

− (Γ2 j,2 j+1Γ
−1
2 j+1,2 j+1)Rν2(2 j+1), j = 1 :

Nd

2
(35)

where Rν2(i) = 0 for i < 1 and i > Nd . The above simplifica-
tions allowed us to reduce the Nd×Nd block tridiagonal ma-
trix Γ to two block tridiagonal matrices Γo and Γe, each with
Nd
2 ×

Nd
2 blocks. The second line in step 3 in Fig 3 illustrates

this transformation, with the purple cells Ro
1,R

o
3, · · · ,Ro

Nd
indicating (32), and orange cells Re

2,R
e
4, · · · ,Re

Nd−1 indicating
(33). Using the same procedure that we used to convert the
solution of Γ to the solution of Γe and Γo, one can convert the
solution of Γe and Γo to that of Γoo,Γoe,Γeo, and Γee, each
of which has a block size Nd

4 ×
Nd
4 . Repeating this procedure,

one can arrive at Nd
2 number of equations each of which

has coefficients with a block size 2× 2, with two blocks
of unknown parameters ∆ν in each equation. Each of these
equations can therefore be solved simultaneously to yield
the entire vector ∆ν . Noting that at each step k, the problem
reduces a block size of Nd

2k ×
Nd
2k to Nd

2k+1 ×
Nd

2k+1 , a total number
of m−1 steps is sufficient to reduce the block size from Nd
to two with the mth step providing the complete solution to
(30). The total number of steps is therefore m, which equals
log2 Nd . For any general Nd , it can be shown that ∆ν can be
determined in dlog2 Nde steps with Nd processors.

Step 4: Once ∆ν is computed in step 3, other elements
of ∆y can be computed with a series of matrix vector
multiplications. This step can be divided to three sub-steps:
step 4-1 to compute ∆Φ using (22), step 4-2 to compute ∆λ

using (20), and step 4-3 to compute ∆s using (19). We note
that each of these sub-steps are parallelizable, and can be
done independent of prediction horizon steps.

Step 5: This step is devoted to the line search algorithm
to find the amount of changes in y in each step that
eventually results in finding the optimal input. Most of the
computations of step 5 are the matrix-vector multiplications
to compute residuals. It should be noted that the residuals
r = (rX ,rν ,rλ ,rs) are independent of each other, and each
of them has Nd blocks that can be computed independently
as well. However, because of iterative nature of this step,
the computation of the residuals has to be repeated until
satisfactory results are achieved or the maximum number of
iterations is reached.
B. Overall Computational Time

Up to now, we discussed the parallel structure of the MPC
computations without considering the computational time of
each step. In this section, we investigate the computational
cost of each step assuming parallel structure of §IV is
implemented. In what follows we discuss the computational
time of each step of §III-D based on the parallel structure
shown in Fig. 3.

Step 1 mainly focuses on computation of Lz and Rν1.
Matrix Z is block diagonal with each block defined in
(26), and using Nd processors, Z can be decomposed in
one step with cost of O(8q3 + p3). Computations of each
block of Rν1 can be done independently from the prediction
horizon steps as well, provided there are additional Nd
processors. The computational time of Rν1 is in the order
of O(5m1 p2 +14m2q2).

In Step 2, components of block tridiagonal matrix Γ are
calculated using Nd processors. The computational complex-
ity of this task is O(2(p+ q)3), while computational com-
plexity of Rν2 using Nd processors is O((p+2q)3). However,
the overall time taken for the first two steps is relatively
small compared to step 3 since they are independent of the
prediction horizon Nd .

Step 3 is for the computation of Γ matrices. To estimate
the total cost of step 3, we divide the computation of these
new Γs, which is associated with each row of step 3 in
Fig. 3, to three sub-steps. Step 3-1 is for the factorization
of diagonal blocks at each step and has a computational
complexity of O((p+q)3) if Nd processors are used. Step 3-2
computes the expressions Γ

−1
i,i Γi+1,i+2 and Γ

−1
i,i Γi,i−1 and has

the computational time of O((p+q)3) with 2Nd processors.
Step 3-3 pertains to the computations of the elements of
the new tridiagonal matrices and using Nd processors, it
corresponds to a computational time of O((p+ q)3). Fig 4
illustrates these three sub-steps for the computation of Γo

and Γe from Γ, which corresponds to the second row of step
3 in Fig. 3. Since there are dlog2 Nde rows in step 3 and the
overall computational time is the number of steps multiplied
by computations within each step, the computational time of
step 3 is in the order of O(3dlog2 Nde(p+q)3).

Step 4 is for the matrix-vector multiplications to compute
elements of ∆y and using Nd processors, its computational
complexity is O((p+q)3).

The line search algorithm of Step 5 using Nd processors
has the computational complexity of O(2p2 +5q2) for each
iteration. We can estimate the order of computational time

5

Fig. 4. Computations associated with the second row of step 3

for computing the control input by considering the compu-
tational time in each step.

As shown in this paper, by taking advantage of the
structure of MPC and parallelizing the control algorithm,
we can significantly reduce the computational time. This in
turn allows the algorithm to be efficiently implemented using
different hardware structures such as multi-core processors
and FPGA. An efficient hardware implementation can in turn
facilitate the application of MPC to many portable, low-
power, embedded, and high bandwidth applications [13].
The emergence of FPGA has generated even more attention
to the topic of hardware implementation of MPC [6], [9].
This may be due to the fact that building FPGA prototypes
costs much less than building an ASIC (Application-Specific
Integrated Circuit) prototype [14]. Also, compared to General
Purpose Processor (GPU), implementing MPC algorithm on
FPGA is more energy efficient [9]. Given that the algorithm
proposed in this paper results in a much shorter computation
time compared to those in [6], [9], [13], we expect its
implementation in FPGA to be equally advantageous as well.
In particular assuming that the system is implemented on an
FPGA with Nd available processors and the computation of
Γs in step 3 of the algorithm takes δ seconds, our results
above imply that the time to compute ∆ν would be in the
order of O(3dlog2 Nde(p+q)3δ).

Remark 1: It should be noted that the parallelism and
reduction of number of time unit steps was achieved by
introducing more computations in each step of solving (21).
Also, there are more communications among the processors
that can add to the computational time as a result of the
communication delays. The communication delay increases
linearly with length and is in the order of nano seconds [15].
The overall computational time is therefore expected to be
much less than other methods and justifies using the proposed
algorithm at the expense of adding communication delays.

Remark 2: Many commercial software packages use
Mehrotra’s predictor-corrector algorithm [16] in solving inte-
rior point problems, which typically results in fewer number
of outer iterations. This is achieved by solving the step search
problem (18) twice in each step with different right hand
sides that makes it most effective with factorization meth-
ods. However, in a problem with large prediction horizon,
the computational time of solving the problem using the
proposed method of this paper is much shorter than using
factorization methods.

V. CONCLUSIONS

In this research a parallel algorithm to take full advantage
of the structures of MPC with quadratic cost function is
proposed. First, MPC was reformulated to get a form with
sparse matrices. The numerical algorithm to solve the interior
point problem associated with finding the optimal input

was divided to 5 steps. The computational time of different
steps were analyzed to detect computational bottlenecks.
We showed that the involved matrices in MPC problem
have block diagonal and block tridiagonal structures. Using
sparse format of the derived matrices, computations within
each steps were parallelized to minimize the time to finish
the task. Step 3, which is solving a system of equations
involving block tridiagonal matrix Γ, is the most burdensome
part of computations. We proposed to compute the step
search direction ∆y by making use of tridiagonal symmetric
structure of Γ to reduce the computational time relative to
the prediction horizon to O(dlog2 Nde). This reduction of
computational time paves the way for more high bandwidth
and real-time application of MPC.

ACKNOWLEDGMENT
The authors would like to thank Prof. Samarjit

Chakraborty and Dr. Dip Goswami of TU Munich for their
helpful discussions and suggestions.

REFERENCES
[1] S. Qin and T. Badgwell, “A survey of industrial model predictive

control technology,” Control engineering practice, vol. 11, no. 7, pp.
733–764, 2003.

[2] A. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami, and
S. Chakraborty, “Arbitrated network control systems: A co-design of
control and platform for cyber-physical systems,” in Workshop on
Control of Cyber Physical Systems, 2013.

[3] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[4] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, 2010.

[5] J. L. Jerez, E. C. Kerrigan, and G. A. Constantinides, “A condensed
and sparse QP formulation for predictive control,” in CDC-ECC’11,
2011, pp. 5217 –5222.

[6] K. Ling, S. Yue, and J. Maciejowski, “A FPGA implementation of
model predictive control,” in ACC’06, 2006, pp. 1930–1935.

[7] S. Wright, “Applying new optimization algorithms to model predictive
control,” in Fifth International Conference on Chemical Process
Control CPC V, 1997, pp. 147–155.

[8] S. Boyd and B. Wegbreit, “Fast computation of optimal contact
forces,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1117 –
1132, 2007.

[9] J. Jerez, G. Constantinides, E. Kerrigan, and K. Ling, “Parallel mpc
for real-time FPGA-based implementation,” in IFAC World Congress,
2011.

[10] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ
Pr, 2004.

[11] S. Wright, Primal-dual interior-point methods. Society for Industrial
Mathematics, 1997, vol. 54.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed compu-
tation: numerical methods. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[13] A. Wills, G. Knagge, and B. Ninness, “Fast linear model predictive
control via custom integrated circuit architecture,” IEEE Transactions
on Control Systems Technology, vol. 20, no. 1, pp. 59 –71, 2012.

[14] P. Fasang, “Prototyping for industrial applications [industry forum],”
Industrial Electronics Magazine, IEEE, vol. 3, no. 1, pp. 4 –7, 2009.

[15] T. Mak, P. Sedcole, P. Cheung, and W. Luk, “Average interconnection
delay estimation for on-FPGA communication links,” Electronics
Letters, vol. 43, no. 17, pp. 918 –920, 2007.

[16] S. Mehrotra, “On the implementation of a primal-dual interior point
method,” SIAM Journal on optimization, vol. 2, no. 4, pp. 575–601,
1992.

6

	INTRODUCTION
	NCS Model
	Problem Statement

	Design of Model Predictive Control
	Stage cost
	Inequality Constraints
	Primal-Dual Method
	Numerical procedure to find the Newton step

	Design of Parallel MPC
	Parallel computations
	Overall Computational Time

	Conclusions
	References

