
MIT Open Access Articles

Polynomial-Time Approximation Schemes for Subset-
Connectivity Problems in Bounded-Genus Graphs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Borradaile, Glencora, Erik D. Demaine, and Siamak Tazari. “Polynomial-Time
Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs.”
Algorithmica 68, no. 2 (February 2014): 287–311. doi:10.1007/s00453-012-9662-2.

As Published: http://stacs2009.informatik.uni-freiburg.de/proceedings_stacs09.pdf

Publisher: Springer-Verlag Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/87025

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-NonCommercial-No Derivative Works

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/87025
http://creativecommons.org/licenses/by-nc-nd/3.0/

Symposium on Theoretical Aspects of Computer Science year (city), pp. numbers
www.stacs-conf.org

POLYNOMIAL-TIME APPROXIMATION SCHEMES FOR

SUBSET-CONNECTIVITY PROBLEMS IN BOUNDED-GENUS GRAPHS

GLENCORA BORRADAILE 1 AND ERIK D. DEMAINE 2 AND SIAMAK TAZARI 3

1 University of Waterloo
E-mail address: glencora@uwaterloo.ca

2 Massachusetts Institute of Technology
E-mail address: edemaine@mit.edu

3 Technische Universität Darmstadt
E-mail address: tazari@cs.tu-darmstadt.de

Abstract. We present the first polynomial-time approximation schemes (PTASes) for
the following subset-connectivity problems in edge-weighted graphs of bounded genus:
Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run
in O(n log n) time for graphs embedded on both orientable and non-orientable surfaces.
This work generalizes the PTAS frameworks of Borradaile, Klein, and Mathieu [BMK07,
Kle06] from planar graphs to bounded-genus graphs: any future problems shown to admit
the required structure theorem for planar graphs will similarly extend to bounded-genus
graphs.

1. Introduction

In many practical scenarios of network design, input graphs have a natural drawing on
the sphere or equivalently the plane. In most cases, these embeddings have few crossings,
either to avoid digging multiple levels of tunnels for fiber or cable or to avoid building
overpasses in road networks. But a few crossings are common, and can easily come in
bunches where one tunnel or overpass might carry several links or roads. Thus we naturally
arrive at graphs of small (bounded) genus, which is the topic of this paper.

We develop a PTAS framework for subset-connectivity problems on edge-weighted
graphs of bounded genus. In general, we are given a subset of the nodes, called termi-
nals, and the goal is to connect the terminals together with some substructure of the graph
by using cost within 1+ε of the minimum possible cost. Our framework applies to three well-
studied problems in this framework. In Steiner tree, the substructure must be connected,
and thus forms a tree. In subset TSP (Traveling Salesman Problem), the substructure
must be a cycle; to guarantee existence, the cycle may traverse vertices and edges multiple

Key words and phrases: polynomial-time approximation scheme, bounded-genus graph, embedded graph,
Steiner tree, survivable-network design, subset TSP.

Glencora Borradaile was supported by an NSERC Postdoctoral Fellowship; Siamak Tazari was supported
by the Deutsche Forschungsgemeinschaft (DFG), grant MU1482/3-1.

c© G. Borradaile, E. Demaine, and S. Tazari
CC© Creative Commons Attribution-NoDerivs License

glencora@uwaterloo.ca
edemaine@mit.edu
tazari@cs.tu-darmstadt.de

2 G. BORRADAILE, E. DEMAINE, AND S. TAZARI

times, but pays for each traversal. In {0, 1, 2}-edge-connectivity survivable network design,
the substructure must have min{cx, cy} edge-disjoint paths connecting terminals x and y,
where each cx ∈ {0, 1, 2}; we allow the substructure to include multiple copies of an edge
in the graph, but pay for each copy. In particular, if cx = 1 for all terminals x and y, then
we obtain the Steiner tree problem; if cx = 2 for all terminals x and y, then we obtain the
minimum-cost 2-edge-connected submultigraph problem.

Our framework yields the first PTAS for all of these problems in bounded-genus graphs.
These PTASs are efficient, running in O(f(ε, g)n + h(g)n log n) time for graphs embedded
on orientable surfaces and non-orientable surfaces. (We usually omit the mention of f(ε, g)
and h(g) by assuming ε and g are constant, but we later bound f(ε, g) as singly exponential
in a polynomial in 1/ε and g and h(g) as singly exponential in g.) In contrast, the problems
we consider are APX-complete (and O(1)-approximable) for general graphs.

We build upon recent PTAS framework of Borradaile, Klein, and Mathieu [BMK07] for
subset-connectivity problems on planar graphs. In fact, our result is strictly more general:
any problem to which the previous planar-graph framework applies automatically works
in our framework as well, resulting in a PTAS for bounded-genus graphs. For example,
Borradaile, Klein and Pritchard [BKP] have recently claimed a PTAS for the {0, 1, . . . , k}-
edge-connectivity survivable network design problem using the planar framework. This will
imply a similar result in bounded genus graphs. In contrast to the planar-graph framework,
our PTASes have the attractive feature that they run correctly on all graphs with the
performance degrading with genus.

Our techniques for attacking bounded-genus graphs include two recent results from
SODA 2007: decompositions into bounded-treewidth graphs via contractions [DHM07] and
fast algorithms for finding the shortest noncontractible cycle [CC07]. We also use a simpli-
fied version of an algorithm for finding a short sequence of loops on a topological surface
from SODA 2005 [EW05], and sophisticated dynamic programming.

2. Basics

All graphs G = (V, E) have n vertices, m edges and are undirected with edge lengths
(weights). The length of an edge e, subgraph H, and set of subgraphs H are denoted ℓ(e),
ℓ(H) and ℓ(H), respectively. The shortest distance between vertices x and y in graph G is
denoted distG(x, y). The boundary of a graph G embedded in the plane is denoted by ∂G.
For an edge e = uv, we define the operation of contracting e as identifying u and v and
removing all loops and duplicate edges.

We use the basic terminology for embeddings as outlined in [MT01]. In this paper, an
embedding refers to a 2-cell embedding, i.e. a drawing of the vertices and faces of the graph
as points and arcs on a surface such that every face is homeomorphic to an open disc. Such
an embedding can be described purely combinatorially by specifying a rotation system, for
the cyclic ordering of edges around vertices of the graph, and a signature for each edge of
the graph; we use this notion of a combinatorial embedding. A combinatorial embedding
of a graph G naturally induces such a 2-cell embedding on each subgraph of G. We only
consider compact surfaces without boundary. When we refer to a planar embedding, we
actually mean an embedding in the 2-sphere. If a surface contains a subset homeomorphic
to a Möbius strip, it is non-orientable; otherwise it is orientable. For a 2-cell embedded
graph G with f facial walks, the number g = 2 + m − n − f is called the Euler genus of
the surface. The Euler genus is equal to twice the usual genus for orientable surfaces and

PTAS FOR SUBSET-CONNECTIVITY PROBLEMS IN BOUNDED-GENUS GRAPHS 3

equals the usual genus for non-orientable surfaces. The dual of an embedded graph G is
defined as having the set of faces of G as its vertex set and having an edge between two
vertices if the corresponding faces of G are adjacent. We denote the dual graph by G⋆ and
identify each edge of G with its corresponding edge in G⋆. A cycle of an embedded graph is
contractible if it can be continuously deformed to a point; otherwise it is non-contractible.
The operation of cutting along a 2-sided cycle C is essentially: partition the edges adjacent
to C into left and right edges and replace C with two copies Cℓ and Cr, adjacent to the
left or right edges, accordingly. The inside of these new cycles is “patched” with two new
faces. If the resulting graph is disconnected, the cycle is called separating, otherwise non-
separating. Cutting along a 1-sided cycle C on non-orientable surfaces is defined similarly,
only that C is replaced by one bigger cycle C ′ that contains every edge of C exactly twice.

Next we define the notions related to treewidth as introduced by Robertson and Sey-
mour [RS86]. A tree decomposition of a graph G is a pair (T, χ), where T = (I, F) is a tree
and χ = {χi|i ∈ I} is family of subsets of V (G), called bags, such that

(1) every vertex of G appears in some bag of χ;
(2) for every edge e = uv of G, there exists a bag that contains both u and v;
(3) for every vertex v of G, the set of bags that contain v form a connected subtree Tv

of T .

The width of a tree decomposition is the maximum size of a bag in χ minus 1. The treewidth
of a graph G, denoted by tw(G), is the minimum width over all possible tree decompositions
of G.

The input graph is G0 = (V0, E0) and has genus g0; the terminal set is Q. We assume
G0 is equipped with a combinatorial embedding; such an embedding can be found in linear
time, if the genus is known to be fixed, see [Moh99]. Let P be the considered subset-
connectivity problem. In Section 5.1, we show how to find a subgraph G = (V, E) of G0,
so that for 0 ≤ ε ≤ 1 any (1 + ε)-approximate solution of P in G0 also exists in G. Hence,
we may use G instead of G0 in the rest of the paper. Note that as a subgraph of G0, G is
automatically equipped with a combinatorial embedding.

Let OPT denote the length of an optimal Steiner tree spanning terminals Q. We define
OPTP to be the length of an optimal solution to problem P. For the problems that we solve,
we require that OPTP = Θ(OPT) and in particular that OPT ≤ OPTP ≤ ξ OPT. The
constant ξ will be used in Section 5 and is equal to 2 for both the subset TSP and {0, 1, 2}-
edge-connectivity problems. This requirement is also needed for the planar case; see [BK08].
Because OPTP ≥ OPT, upper bounds in terms of OPT hold for all the problems herein.
As a result, we can safely drop the P subscript throughout the paper.

We show how to obtain a (1 + cε)OPTP solution for a fixed constant c. To obtain a
(1 + ε)OPTP solution, we can simply use ε′ = ε/c as input to the algorithm.

3. Structure Theorem

In [BMK07] and [BMK07b], Borradaile, Klein and Mathieu developed a PTAS for the
Steiner tree problem in planar graphs. The method involves finding a grid-like subgraph
called the mortar graph that spans the input terminals and has length O(OPT). The set of
feasible Steiner trees is restricted to those that cross between adjacent faces of the mortar
graph only at a small number (per face of the mortar graph) of pre-designated vertices called
portals. A Structure Theorem guarantees the existence of a nearly optimal solution (one

4 G. BORRADAILE, E. DEMAINE, AND S. TAZARI

(a) (b) (c) (d)

Figure 1: (a) An input graph G with mortar graph MG given by bold edges. (c) The set
of bricks corresponding to MG (d) A portal-connected graph, B+(MG, θ). The
portal edges are grey. (e) B+(MG, θ) with the bricks contracted, resulting in
B÷(MG, θ). The dark vertices are brick vertices.

that has length at most (1 + ε)OPT) in this set. We review the details that are relevant to
this work and generalize to genus-g graphs.

3.1. Mortar Graph

Here we define the mortar graph in such a way that generalizes to higher genus graphs.
A path P in a graph G is t-short in G if for every pair of vertices x and y on P , the
distance from x to y along P is at most (1 + t) times the distance from x to y in G:
distP (x, y) ≤ (1 + t)distG(x, y). Given a graph G embedded on a surface and a set of
terminals Q, a mortar graph is a subgraph of G with the following properties (where κ, to
be defined later, will depend polynomially on ε−1 and g):

Definition 3.1 (Mortar Graph and Bricks). Given an embedded graph G and a set of
terminals Q, a mortar graph is a subgraph MG of G spanning Q such that each facial walk
of MG encloses an area homeomorphic to an open disk. For each face of MG, we construct
a brick B of G by cutting G along the facial walk. B is the subgraph of G embedded inside
the face, including the facial walk. Each brick satisfies the following properties:

(1) B is planar.
(2) The boundary of B is the union of four paths in the clockwise order W , N , E, S.
(3) Every terminal of Q that is in B is on N or on S.
(4) N is 0-short in B, and every proper subpath of S is ε-short in B.
(5) There exists a number k ≤ κ and vertices s0, s1, s2, . . . , sk ordered from left to right

along S such that, for any vertex x of S[si, si+1), the distance from x to si along S
is less than ε times the distance from x to N in B: distS(x, si) < ε distB(x, N).

The mortar graph and the set of bricks are illustrated in Figures 1 (a), (b) and (c).
Constructing the mortar graph for planar graphs first involves finding a 2-approximate
Steiner tree T and cutting open the graph along T creating a new face with boundary H
and then:

(1) Finding shortest paths between certain vertices of H. These paths result in the N
and S boundaries of the bricks.

(2) Finding shortest paths between vertices of the paths found in Step 1. These paths
are called columns, do not cross each other, and have a natural order.

(3) Taking every κth path found in Step 2. These paths are called supercolumns and
form the E and W boundaries of the bricks.

PTAS FOR SUBSET-CONNECTIVITY PROBLEMS IN BOUNDED-GENUS GRAPHS 5

The mortar graph is composed of the edges of T (equivalently, H) and the edges found
in Steps 1 and 3. In [BMK07], it is shown that the total length of the mortar graph edges
is 9ε−1 OPT1. For the purposes of this paper, we bound the length of the mortar graph in
terms of ℓ(H). The following theorem can be easily deduced from [Kle06] and [BMK07]:

Theorem 3.2. [Kle06, BMK07] Given a planar graph with boundary H containing the
terminals and a number κ, there is a mortar graph containing H whose length is at most
(ε−1+1)2ℓ(H) and whose supercolumns have length at most 1

κε−1(ε−1+1)ℓ(H). The mortar
graph can be found in O(n log n) time.

We will use this theorem to prove the existence of a mortar graph for genus-g embedded
graphs. Section 5 is devoted to proving the following theorem:

Theorem 3.3. Let G be an embedded graph with fixed genus g. Let Q be a subset of vertices.
For γ = 2(8ξg + 2)(ε−1 + 1)2 and κ = γ/ε, there is a mortar graph MG of G such that the
length of MG is ≤ γ OPT and the supercolumns of MG have length ≤ ε OPT. The mortar
graph can be found in O(n log n) time.

3.2. Structural properties

Along with the mortar graph, Borradaile et al. [BMK07b] define an operation B+ called
brick-copy that allows a succinct statement of the Structure Theorem. For each brick B,
a subset of θ vertices are selected as portals such that the distance along ∂B between any
vertex and the closest portal is at most ℓ(∂B)/θ. For every brick B, embed B in the
corresponding face of MG and connect every portal of B to the corresponding vertex of
MG with a zero-length portal edge: this defines B+(MG, θ). B+(MG, θ) is illustrated in
Figure 1 (d). We denote the set of all portal edges by {portal edges}. The following simple
lemma, proved in [BMK07b] holds also for bounded-genus graphs:

Lemma 3.4. [BMK07b] If A is a connected subgraph of B+(MG, θ), then A\{portal edges}
is a connected subgraph of G spanning the same nodes of G.

The following Structure Theorem is the heart of the correctness of the PTASs.

Theorem 3.5 (Structure Theorem). Let G be an embedded graph of genus g. There exists
a constant θ(γ, α) depending polynomially on γ and α such that

OPT(B+(MG, θ), Q) ≤ (1 + cε)OPT(G, Q).

Here α = o(ε−2.5κ) for Steiner tree and {0, 1, 2}-edge connectivity and α = O(κ) for subset
TSP. Recall that κ and γ depend polynomially on ε−1 and g (Theorem 3.3).

Since the bricks are always planar, the proof for bounded-genus graphs follows as for
the planar cases: see [BMK07b] for the Steiner tree problem and [BK08] for the {0, 1, 2}-
edge-connectivity problem. In the remainder of this section, we sketch the proof for the
subset-TSP problem.

We will use the following lemma due to Arora:

Lemma 3.6 (Patching Lemma [Aro03]). Let S be any line segment of length s and π be a
closed path that crosses S at least thrice. Then we can break the path in all but two of these
places and add to it line segments lying on S of total length at most 3s such that π changes
into a closed path π′ that crosses S at most twice.

1Actually, they claim that the length is 5ε
−1 OPT. The correction is forthcoming in a journal version.

6 G. BORRADAILE, E. DEMAINE, AND S. TAZARI

This lemma applies to embedded graphs as well. Note: the patching process connects
paths in the tour that end on a common side of S by a subpath of S.

Let H be a subgraph of a graph G and let P be a path in H. A joining vertex of H with
P is a vertex of P that is the endpoint of an edge of H \ P . The proof of Theorem 3.2 for
subset-TSP follows from the following TSP Property of Bricks using the same technique as
the planar case for, e.g., Steiner tree. See [BMK07b] for details. The condition that E and
W are crossed at most twice each is achieved by including two copies of each supercolumn
in the solution and rerouting the tour around these copies.

Theorem 3.7 (TSP Property of Bricks). Let B be a brick of graph G with boundary
N ∪ E ∪ S ∪ W (where E and W are supercolumns). Let T be a tour in G such that T
crosses E and W at most 2 times each. Let H be the intersection of T with B. Then there
is another subgraph of B, H ′, such that:

(T1) H ′ has at most α(ε) joining vertices with ∂B.
(T2) ℓ(H ′) ≤ (1 + 3ε)ℓ(H).
(T3) There is a tour in the edge set T \ H ∪ H ′ that spans the vertices in ∂B ∩ T .

In the above, α(ε) = O(κ).

Proof. Let H be the subgraph of T that is strictly enclosed by B (i.e., H contains no edges of
∂B). We can write H as the union of 4 sets of minimal ∂B-to-∂B paths PS∪PN∪PEW∪PNS

where paths in: PS start and end on S; PN start and end on N ; PEW start on E or W and
end on ∂B; PNS start on S and end on N .

Because T crosses E and W at most 4 times, |PEW | ≤ 4 and PEW results in at most

8 joining vertices with ∂B. For each path P ∈ PN , let P̂ ′ be the minimal subpath of N

that spans P ’s endpoints and let P̂N be the resulting set. Similarly define P̂S . Because N
is 0-short and S is ε-short,

ℓ(P̂N) + ℓ(P̂S) ≤ ℓ(PN) + (1 + ε)ℓ(PS). (3.1)

Because P̂N and P̂S are subpaths of ∂B, they result in no joining vertices with ∂B.
It remains to deal with the paths in PNS .
Let s0, s1, s2, . . . , sk (where k ≤ κ) be the vertices of S guaranteed by the properties of

the bricks (see Section 3.1). Let Xi be the subset of paths of PNS that start on S strictly
between si and si+1. Let X be the remaining paths (note: |X | ≤ κ + 1).

If |Xi| > 2, we do the following: Let Pi be the path in Xi whose endpoint x on S is
closest to si+1. Let Qi be the subpath of S from si to x. By the properties of the bricks,
ℓ(Qi) ≤ εℓ(Pi). Apply the Patching Lemma to the tour T and path Qi: as a result, at
most two paths of Xi occur right before (or after) crossings of Q in the new tour T ′. Let
X ′

i whose endpoints are not crossings in T ′: |X ′
i | ≤ |Xi| − 2. Let Qi be the subpaths of Qi

that are added to the tour. By the Patching Lemma,

ℓ(Qi) ≤ 3ℓ(Qi) ≤ 3εℓ(Pi). (3.2)

While |X ′
i | ≥ 2, we do the following: Let P be any path in X ′

i . As a result of the
patching process P is connected to another path P ′ in Xi via a path Q′ ∈ Qi: that is,
P ∪ Q′ ∪ P ′ is a subpath of the tour. Let L be the minimal subpath of N connecting the
endpoints of P and P ′. Because N is 0-short, ℓ(L) ≤ ℓ(P)+ ℓ(Q′)+ ℓ(P ′). By the patching
process, the endpoints of P and P ′ on S are spanned by a part of the tour “on the other
side” of Qi. Remove Qi from Qi and add L. Remove P and P ′ from Xi. When we are
done, X ′

i is empty.

PTAS FOR SUBSET-CONNECTIVITY PROBLEMS IN BOUNDED-GENUS GRAPHS 7

Let Q̂i be the set resulting from all such replacements. Let P̂NS be the union of X ,

Xi \ X
′
i and Q̂i over all i. Because Q̂i is a set of subpaths of N and S, these paths result in

no joining vertices with ∂B. Because |Xi \ X
′
i | ≤ 2, these paths result in at most 4 joining

vertices with ∂B. Because |X | ≤ κ + 1, these paths have at most 2(κ + 1) joining vertices

with ∂B. Therefore P̂NS has at most 6(κ + 1) joining vertices with ∂B.
Because the only added length is introduced via the patching process, by Equation (3.2),

ℓ(P̂NS) ≤ ℓ(PNS) +
∑

i

3εℓ(Pi) ≤ (1 + 3ε)ℓ(PNS). (3.3)

Let H ′ be the union of the paths in PEW , P̂S , P̂N , and P̂NS . Combining Equations (3.1)
and (3.3), we find that ℓ(H ′) ≤ (1 + 3ε)ℓ(H). By construction, the edges in T \ H ∪ H ′

contains a tour. H ′ has 6(κ + 1) + 8 = 6κ + 14 joining vertices with ∂B.

4. Algorithm

In [Kle06], Klein gave a framework for designing PTASes in planar graphs that is based
on finding a spanner for a problem, a subgraph containing a nearly optimal solution having
length O(OPT). It is possible, using the techniques in this paper and in [DHM07], to find
such a spanner for bounded-genus graphs. We omit the details in favour of generalizing
the framework of Borradaile et al. [BMK07b]. While both methods result in O(n log n)
algorithms, the first method is doubly exponential in a polynomial in g and ε−1 and the
second is singly exponential.2

The idea in [BMK07b] is to perform dynamic programming over the bricks of the brick
decomposition after performing a thinning step which groups the bricks into manageable
groups. To this end, the operation brick-contraction B÷ is defined to be the application of
the operation B+ followed by contracting each brick to become a single vertex of degree at
most θ (see Figure 1(e)). The thinning algorithm decomposes the mortar graph MG into
parts, called parcels, of bounded dual radius (implying bounded treewidth). Applying B÷

to each parcel maintains bounded dual radius. The dynamic program computes optimal
Steiner trees inside the bricks using the method of [EMAFV87] only at the leaves of the
dynamic programming tree, thus eliminating the need of an a-priori constructed spanner.
The interaction between subproblems of the dynamic programming is restricted to the
portals, of which there are a few.

For embedded graphs with genus > 0, the concept of bounded dual radius does not apply
in the same way. We deal with treewidth directly by applying the following Contraction
Decomposition Theorem due to Demaine et al. [DHM07]:

Theorem 4.1. [DHM07, Theorem 1.1] For a fixed genus g, and any integer k ≥ 2 and
for every graph G of Euler genus at most g, the edges of G can be partitioned into k sets
such that contracting any one of the sets results in a graph of treewidth at most O(g2k).

Furthermore, such a partition can be found in O(g5/2n3/2 log n) time.

2For the subset-TSP problem, it is possible to obtain a singly exponential algorithm by following the
spanner construction of Klein [Kle06] after performing the planarizing step (Lemma 5.2). Our presentation
here is chosen to unify the methods for all problems studied.

8 G. BORRADAILE, E. DEMAINE, AND S. TAZARI

(Recent techniques [CC07] have improved the above running time to O(n log n).)
We apply the above theorem directly to B÷(MG) and contract a set of edges S⋆ in

B÷(MG). In B÷(MG), we modify the definition of contraction: after contracting an edge,
we do not delete parallel portal edges. Because portal edges connect the mortar graph
to the bricks, they are not parallel in the graph in which we find a solution via dynamic
programming. With this modified definition, we have the following algorithm:

Thinning(G, MG):

(1) Assign the weight ℓ(∂F) to each portal edge e enclosed in a face F of MG.
(2) Apply the contraction decomposition of Theorem 4.1 to B÷(MG) with k := 3θγε−1

to obtain edge sets S1, . . . , Sk; let S⋆ be the set of minimum weight.
(3) If S⋆ includes a portal edge e of a brick B enclosed in a face F of MG,

add ∂F to S⋆ and mark B as ignored.
(4) Let K := B÷(MG)/S⋆ and (T, χ) be a tree decomposition of width O(g2k) of K.
(5) For each vertex b of K that represents an unignored contracted brick with portals

{p1, . . . , pθ}:
5.1. Replace every occurence of b in χ with {p1, . . . , pθ};
5.2. Add a bag {b, p1, . . . , pθ} to χ and connect it to a bag containing {p1, . . . , pθ}.

(6) Reset the weight of the portal edges back to zero.
(7) Return (T, χ) and S⋆.

Lemma 4.2. The algorithm Thinning(G, MG) returns a set of edges S⋆ and a tree de-
composition (T, χ) of B÷(MG), so that

(i) the treewidth of (T, χ) is at most ω where ω(ε−1, g) = O(g2kθ);
(ii) every brick is either marked as ignored or none of its portal edges are in S⋆;
(iii) ℓ(S⋆) ≤ ε OPT;

Proof. We first verify that (T, χ) is indeed a tree decomposition. For a vertex v and a tree
decomposition (T ′, χ′), let T ′

v denote the subtree of T ′ that contains v in all of its bags.
Let us denote the tree decomposition of step (4) by (T 0, χ0). For each brick vertex b and
each of its portals pi, we know that T 0

b is connected and T 0
pi

is connected and that these
two subtrees intersect; it follows that after the replacement in step (5.2), we have that
Tpi

= T 0
b ∪T 0

pi
is a connected subtree of T and hence, (T, χ) is a correct tree decomposition.

Note that Theorem 4.1 guarantees a tree decomposition of width O(g2k) if any of S1, . . . , Sk

are contracted; and in step (3), we only add to the set of edges to be contracted. Hence,
the treewidth of (T 0, χ0) is indeed O(g2k) and with the construction in line (5.1), the size
of each bag will be multiplied by a factor of at most θ. This shows the correctness of claim
(i). The correctness of claim (ii) is immediate from the construction in line (3). It remains
to verify claim (iii).

Let L denote the weight of B÷(MG) after setting the weights of the portal edges
according to step (1) of the algorithm. We have that

L ≤ ℓ(MG) +
∑

F

ℓ(∂F)θ ≤ γ OPT+θ
∑

F

ℓ(∂F) ≤ γ OPT+θ · 2γ OPT ≤ 3θγ OPT .

Hence, the weight of S⋆, as selected in step (2), is at most L/k ≤ 3θγ OPT
3θγε−1 ≤ ε OPT. The

operation in step (3) does not add to the weight of S⋆: when the boundary of a face F is

PTAS FOR SUBSET-CONNECTIVITY PROBLEMS IN BOUNDED-GENUS GRAPHS 9

added to S⋆, its weight is subtracted again when resetting the weights of the portal edges
back to 0 in step (6).

If a brick is “ignored” by Thinning, the boundary of its enclosing mortar graph face is
completely added to S⋆. Because S⋆ can be added to the final solution, every potential
connection through that brick can be rerouted through S⋆ around the boundary of the
brick. The interior of the brick is not needed.

An almost standard dynamic programming algorithm for bounded-treewidth graphs
(cf. [AP89, KS90]) can be applied to K and (T, χ). However, for the leaves of the tree
decomposition that are added in step (5.2) of the Thinning procedure, the cost of a subset
of portal edges is calculated as, e.g., the cost of the minimum Steiner tree interconnecting
these portals in the corresponding brick. Because the bricks are planar, this cost can be
calculated by the algorithm of Erickson et al. [EMAFV87] for Steiner tree or [BK08] for
2-edge connectivity. Because all the portal edges of this brick are present in this bag
(recall that we do not delete parallel portal edges after contractions), all possible solutions
restricted to the corresponding brick will be considered. Because the contracted brick
vertices only appear in leaves of the dynamic programming tree, the rest of the dynamic
programming algorithm can be carried out as in the standard case, considering the portal
edges, whenever they occur again, as having zero length.

Analysis of the running time. As was shown in [BMK07b], the total time spent in
the leaves of the dynamic programming is O(4θn). The rest of the dynamic programming

takes time O(2poly(ω)n). The running time of the thinning algorithm is dominated by the
contraction decomposition of Theorem 4.1 which is O(n log n) [CC07]. Hence, the total

time is O(2poly(ω)n + n log n) for the general case; particularly, this is singly exponential in
ε−1 and g, as desired.

5. Constructing a Mortar Graph for Bounded-Genus Graphs

Let G0 = (V0, E0) be the input graph of genus g0 and Q be the terminal set. In a first
preprocessing step, we delete a number of unnecessary vertices and edges of G0 to obtain
a graph G = (V, E) of genus g ≤ g0 that still contains every (1 + ε)-approximate solution
for terminal set Q for all 0 ≤ ε ≤ 1 while fulfilling certain bounds on the length of shortest
paths. In the next step, we find a cut graph CG of G that contains all terminals and whose
length is bounded by a constant times OPT. We cut the graph open along CG, so that it
becomes a planar graph with a simple cycle σ as boundary, where the length of σ is twice
that of CG. See Figure 2 for an illustration. Afterwards, the remaining steps of building
the mortar graph can be the same as in the planar case, by way of Theorem 3.2.

For an edge e = vw in G0, we let distG0
(r, e) = min{distG0

(r, v), distG0
(r, w)} + ℓ(e)

and say that e is at distance distG0
(r, e) from r. If the root vertex represents a contracted

graph H, we use the same terminology with respect to H.

5.1. Preprocessing the Input Graph

Our first step is to apply the following preprocessing procedure:

10 G. BORRADAILE, E. DEMAINE, AND S. TAZARI

Preprocess(G0, Q, ξ):

(1) Find a 2-approximate Steiner tree T0 of G0 and Q; contract T0 to a vertex r.
(2) Find a shortest-path tree rooted at r.
(3) Delete all vertices v and edges e of G0 with distG0

(r, v), distG0
(r, e) > 2ξℓ(T0).

Any deleted vertex or edge is at distance > 2ξℓ(T0) > 2ξ OPT from any terminal and hence,
can not be part of a (1 + ε)-approximation for any 0 ≤ ε ≤ 1. We call the resulting graph
G = (V, E) and henceforth use G instead of G0 in our algorithm. The preprocessing step
can be accomplished in linear time: T0 can be calculated with the recent improvement on
Mehlhorn’s algorithm [Meh88] by Tazari and Müller-Hannemann [TMH08], and the shortest
path tree with Henzinger et al.’s algorithm [HKRS97]. Trivially, we have

Proposition 5.1. Any vertex and any edge of G is at distance at most 4ξ OPT from T0.

5.2. Constructing the Cut Graph

Start again with T0 contracted to a vertex r. We construct our cut graph as a system
of loops rooted at r: iteratively find short non-separating cycles through r and cut the
graph open along each cycle. Erickson and Whittlesey [EW05] showed that, for orientable
surfaces, taking the shortest applicable cycle at each step results in the shortest system of
loops through r. They suggest an implementation of their algorithm using the tree-cotree
decomposition, introduced by Eppstein [Epp03], that runs in linear time on bounded-genus
graphs. A tree-cotree decomposition of an embedded graph G is a triple (T, T ⋆, X), so that
T is a spanning tree of G rooted at r, T ⋆ is a spanning tree of the dual of G \ T , and X is
the remaining set of edges (recall that we identify the edges of G and G⋆). Eppstein showed
that the set of elementary cycles {loop(T, e) : e ∈ X} is a cut graph of G where loop(T, e) is
the cycle formed by the paths in T from r to the endpoints of e plus the edge e. Eppstein’s
decomposition also works for non-orientable embeddings. As we only need to bound the
length of our cut graph, we present a simpler algorithm:

Planarize(G, R):

(1) Contract T0 to become a single vertex r.
(2) Find a shortest paths tree SPT rooted at r.
(3) Uncontract r and set T1 = T0 ∪ SPT . (T1 is a spanning tree of G.)
(4) Find a spanning tree T ⋆

1 in (G \ T1)
⋆. (T ⋆

1 is a spanning tree of G⋆.)
(5) Let X = E \ (T1 ∪ T ⋆

1).
(6) Return CG = T0 ∪ {loop(T1, e) : e ∈ X}.

Lemma 5.2. The algorithm Planarize returns a cut graph CG, so that cutting G open
along CG results in a planar graph Gp with a distinguished face whose facial walk σ

(1) is a simple cycle;
(2) contains all terminals (some terminals might appear more than once as multiple

copies might be created during the cutting process);
(3) has length ℓ(σ) ≤ 2(8ξg + 2)OPT.

The algorithm can be implemented in linear time.

PTAS FOR SUBSET-CONNECTIVITY PROBLEMS IN BOUNDED-GENUS GRAPHS 11

(a) (b)

Figure 2: (a) a cut graph of a tree drawn on a torus; (b) the result of cutting the surface
open along the cut graph: the shaded area is now homeomorphic to a disc and
the white area is the new distinguished face of the planarized surface.

Proof. Clearly, (T1, T
⋆
1 , X) is tree-cotree decomposition of G and so, by Eppstein’s lemma [Epp03],

CG is a cut graph. By Euler’s formula, we get that |X| = g, the Euler genus of G. Each edge
e = vw ∈ X completes a (non-surface-separating, not-necessarily simple) cycle as follows:
a shortest path P1 from T0 to v, the edge e, a shortest path P2 from w to T0 and possibly
a path P3 in T0. By Proposition 5.1, we know that e is at distance at most 4ξ OPT from
T0 and so, P1, P2, and at least one of P1 ∪ {e} and P2 ∪ {e} have length at most 4ξ OPT.
Hence, we have that ℓ(P1 ∪ {e} ∪ P2) ≤ 8ξ OPT. Because there are (exactly) g such cycles
in CG, we get that

ℓ(CG) ≤ g · 8ξ OPT+ℓ(T0) ≤ (8ξg + 2)OPT .

Because CG is a cut graph, it follows that it consists of a single facial walk σ′; this follows
easily from Euler’s formula, because CG has Euler genus g (because G \ CG is planar),
with some k vertices and k + g − 1 edges. So, σ′ contains every edge of CG exactly twice
(cf. [MT01]), i.e. ℓ(σ′) = 2ℓ(CG). Cutting the graph open along σ′ results in a planar graph
with a simple cycle σ = σ′ as its boundary, as desired (see Fig. 2).

As mentioned in the previous section, T0 and SPT can be computed in linear time on
bounded-genus graphs [HKRS97, TMH08]. T ⋆

1 can be obtained, for example, by a simple
breadth-first-search in the dual. The remaining steps can also easily be implemented in
linear time.

5.3. Proof of Theorem 3.3

We complete the construction of a mortar graph for genus-g embedded graphs.
Let Gp be the result of planarizing G as guaranteed by Lemma 5.2. Gp is a planar

graph with boundary σ spanning Q and with length ≤ 2(8ξg + 2)OPT. Let MG be the
mortar graph guaranteed by Theorem 3.2. Every edge of MG corresponds to an edge of G.
Let MG′ be the subgraph of G composed of edges corresponding to MG. Every face f of
MG (other than σ) corresponds to a face f ′ of MG′ and the interior of f ′ is homeomorphic
to a disk on the surface in which G is embedded. It is easy to verify that MG′ is a mortar
graph of G satisfying the length bounds of Theorem 3.3.

Acknowledgements. The authors thank Jeff Erickson for pointing out that Theorem 4.1
can be implemented in O(n log n) time in both orientable and non-orientable surfaces.

12 G. BORRADAILE, E. DEMAINE, AND S. TAZARI

References

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to
partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[Aro03] S. Arora. Approximation schemes for NP -hard geometric optimization problems: A survey.
Mathematical Programming, 97(1–2):43–69, 2003.

[BK08] G. Borradaile and P. N. Klein. The two-edge connectivity survivable network problem in planar
graphs. In ICALP ’08: Proceedings of the 35th International Colloquium on Automata, Lan-

guages and Programming, volume 5125 of Lecture Notes in Computer Science, pages 485–501.
Springer, 2008.

[BMK07] G. Borradaile, C. Mathieu, and P. N. Klein. A polynomial-time approximation scheme for
Steiner tree in planar graphs. In SODA ’07: Proceedings of the 18th Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 1285–1294, 2007.
[BKP] G. Borradaile, P. N. Klein, and D. Pritchard. A polynomial-time approximation scheme for the

survivable network problem in planar graphs. In preparation.
[BMK07b] G. Borradaile, C. Mathieu, and P. N. Klein. Steiner tree in planar graphs: An O(n log n) ap-

proximation scheme with singly exponential dependence on epsilon. In WADS ’07: Proceedings

of the 10th Workshop on Algorithms and Data Structures, volume 4619 of Lecture Notes in

Computer Science, pages 275–286. Springer, 2007.
[CC07] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. In SODA

’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
89–97, Philadelphia, PA, USA, 2007.

[DHM07] E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction de-
composition. In SODA ’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 278–287, Philadelphia, PA, USA, 2007.
[EMAFV87] R. E. Erickson, C. L. Monma, and Jr. A. F. Veinott. Send-and-split method for minimum-

concave-cost network flows. Math. Oper. Res., 12(4):634–664, 1987.
[Epp03] D. Eppstein. Dynamic generators of topologically embedded graphs. In SODA ’03: Proceedings

of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 599–608, Philadel-
phia, PA, USA, 2003.

[EW05] J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. In SODA

’05: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1038–1046, Philadelphia, PA, USA, 2005.

[HKRS97] M. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for
planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.

[Kle06] P. N. Klein. A subset spanner for planar graphs, with application to subset TSP. In STOC ’06:

Proceedings of the 38th ACM Symposium on Theory of Computing, pages 749–756, 2006.
[KS90] E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner tree in graphs with

bounded treewidth. Manuscript, 1990.
[Meh88] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Information

Processing Letters, 27:125–128, 1988.
[Moh99] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal

on Discrete Mathematics, 12(1):6–26, 1999.
[MT01] B. Mohar and C. Thomassen. Graphs on Surfaces. The John Hopkins University Press, 2001.
[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal

of Algorithms, 7(3):309–322, 1986.
[TMH08] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-closed graph

classes, with an application to Steiner tree approximation. Discrete Applied Mathematics, in
press, 2008. An extended abstract appeared in WG ’08: Proceedings of the 34th Workshop on
Graph Theoretic Concepts in Computer Science, LNCS 5344, pp. 360–371, Springer, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

http://creativecommons.org/licenses/by-nd/3.0/

	1. Introduction
	2. Basics
	3. Structure Theorem
	3.1. Mortar Graph
	3.2. Structural properties

	4. Algorithm
	5. Constructing a Mortar Graph for Bounded-Genus Graphs
	5.1. Preprocessing the Input Graph
	5.2. Constructing the Cut Graph
	5.3. Proof of Theorem ??

	References

