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ABSTRACT

The interfaces of a dielectric sample are resolved in reflection geometry using light from a frequency agile array of
terahertz quantum-cascade lasers. The terahertz source is a 10-element linear array of third-order distributed feedback
QCLs emitting at discrete frequencies from 2.08 to 2.4 THz. Emission from the array is collimated and sent through a
Michelson interferometer, with the sample placed in one of the arms. Interference signals collected at each frequency are
used to reconstruct an interferogram and detect the interfaces in the sample. Due to the long coherence length of the
source, the interferometer arms need not be adjusted to the zero-path delay. A depth resolution of 360 pum in the
dielectric is achieved with further potential improvement through improved frequency coverage of the array. The entire
experiment footprint is <1 m x 1 m with the source operated in a compact, closed-cycle cryocooler.

Keywords: terahertz, quantum cascade laser, tomography

1. INTRODUCTION

Tomography of dielectric thin films using terahertz frequency radiation (300 GHz to 10 THz) has found recent practical
applications for the characterization of industrial polymers [1]. The non-ionizing nature of THz radiation and its strong
response to water content also makes it suitable for characterization of biomaterials such as corneas [3] and teeth.

Comparing to the current commercial terahertz systems using nonlinear generation

mechanisms, quantum-cascade lasers (QCLs) are a promising fundamental source of terahertz frequency radiation for
their multi milliwatt power levels, electrical operation, and absence of optical alignment. However, the use of QCLs for
the tomography of dielectric films is challenging due to the lack of picosecond pulsed sources necessary for time-of-
flight tomography or the practical frequency tuning mechanisms necessary for interferometry based tomography. In this
paper we report a frequency agile QCL source and the demonstration of tomography using the swept-source optical
coherence tomography technique [6]. The letter is divided into sections detailing different key components of the THz
swept-source optical coherence tomography system (SS-OCT) system. Section 2 details the working principles of SS-
OCT. Section 3 reports the design of third-order distributed feedback THz quantum cascade lasers and detailed
characterization of such a laser array. Section 4 describes the measurement result of the OCT system on dielectric thin
film and the algorithm for retrieving the depth and interface information. Section 5 will discuss the recent improvement
on 3" DFB design to further improve the frequency coverage.

2. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY (SS-OCT)

The frequency tunable source of the SS-OCT system is used to generate a tomographic profile (see Figure 1) of a
sample, whose resolution is dependent on the bandwidth of the source. This profile is obtained by processing the
interferometric signal, S, for each wavelength, 4;, incident on the detector:

M
4.
Si[Ax] = pz I:PR": + PS,i,j + ZHPR,{PS,L/’ - COS (Tl . (Ax + x])>] (1)
j=1
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Here p is the responsivity of the detector, Pg; is the measured power from the reference arm, Ps;;; is the measured power
from the /™ interface in the sample, Ax is the path length difference between the sample and the reference arms, and x; is
the thickness of the j'™ layer. Taking a summation over i (i.e. adding the signal from all the discrete wavelengths in the
tunable source), results in the waveforms shown in Figure 1. The first column is for a single interface (j = 1) at Ax =0
i.e. only a mirror in the sample arm. The second column shows the result for a sample with two interfaces (j = 2), whose
thickness is x; = - 1 mm. Here the sinusoids tend to cancel except when Ax = x; =0 and when Ax=x,=-1mm. Asa
result, an interface at -1 mm is clearly visible, where the strength of the signal is related to the discontinuity of the
interface. In (1), weaker terms occurring from reflections within the sample are ignored.
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Figure 1. Figure of simulated interference signal resulting from SS-OCT scan. Left column shows the signal from a single
interface (a mirror) placed in the sample arm. Right column shows the signal from a dielectric sample. Increasing the
bandwidth of the source results in better resolution.

The axial resolution of the interface is proportional to how quickly the sinusoids cancel with respect to Ax, which is
proportional to the bandwidth of the source:

5= Cc
"~ 2nAf )

Here § is the depth resolution, ¢ is the speed of light, n is the optical index of the material and Af'is the bandwidth of the
tunable source. The increased resolution is apparent when looking at the rows of Figure 1 which have increasing
amounts of bandwidth. For example, for a system with 21 frequencies spanning 1.8 THz to 2.4 THz, a resolution of 125
pm would result (n=1). This expression only represents the full width at half maximmum (FWHM) of a detected interface
(e.g. the FWHM of the envelope of Figure 1). If the SNR of the returned signal is high, smaller interface separations can
be sub-resolved. Therefore the depth resolution is dependent on the frequency bandwidth of the QCL source, and to a
lesser degree, its output power.

3. TERAHERTZ RADIATION SOURCE: THE QUANTUM CASCADE LASER
3.1 Key Component: 3" order DFB QCL

To control the emission frequency of a QCL, a distributed feedback (DFB) grating fabricated into metal-metal
waveguide can be used [8]. First-order gratings, where the grating periodicity, A, is half a guided wavelength (A = A/2)
have been demonstrated in single mode operation. However, the subwavelength dimensions of the optical waveguide
result in highly divergent beam patterns exceeding 180°. A unique solution to control the beam divergence has recently
been demonstrated using third-order gratings (A = 3- A/2) [9]. This 3" order DFB takes advantage of grating spacing,
and the optical index (n~3.5-3.6 at 2-5 THz) of the GaAs/GaAlAs multiple quantum wells (MQW) gain medium,
effectively making the laser an end-fire linear antenna array — and therefore a narrow emitter. The small footprint of this
type of laser makes it ideal for dense array implementation. A series of 3™ order DFB QCLs of linear frequency
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differences can be fabricated next to each other with a distance of 150 pm or less. Using current THz QCL fabrication
techniques we can pack up to 21 QCLs on a single die.
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Figure 2. Part (a), schematic of a linear end-fire antenna array. Each rod (antenna) has 180 degree phase shift and is 4,/2
from its neighbor, resulting in constructive interference in the array direction. Part (b), the calculated beam pattern of an
end-fire antenna array. Part (c), the top schematic view of a corrugated 3™ order DFB QCL. Part (d), the electric field of
the designed mode inside a 3™ order DFB laser. The arrows indicate the aperture from which field is radiated. Adjacent
apertures alternate signs indicating a  phase shift. Because the apertures are close to A,/2 apart, endfire emission results.

To understand how the 3™ order grating operates, one can adopt the concept of a linear phased array (Figure 2 (a)). Here
a series of antennas are spaced by A¢/2, where A is the free space wavelength, and adjacent antennas are phase-shifted by
n (indicated by arrows). Constructive interference from different antennas will form a narrow beam in the direction
along the array. Part (c) shows a 3™ order DFB grating fabricated in a metal-metal waveguide, where the “antennas”
from the phased array example are narrow sections or apertures. The electric field inside each aperture (part d) will be at
its peak value with the phase adjacent apertures differing by m. Since the optical index of the gain medium is close to 3,
the apertures are very close to A,/2 apart. Constructive interference results and forms a narrow beam pattern in the
direction along the laser ridge. The divergence of the beam pattern is inversely-scaled with the square root of the number
of the grating apertures (or the total length of the laser).

To obtain accurate frequency calculations and detailed grating parameter designs for third-order grating DFB lasers, full-
wave three-dimension finite element method (FEM) simulations are required. An FEM simulation can determine all the
modes supported in the laser structure along with the optical losses due to radiation, which we loosely term “gain
threshold” [10]. Gain thresholds are plotted versus frequency for all resonant modes to obtain the plot shown in Figure 3.
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Figure 3. Part (a), a typical plot of the gain threshold of 3rd order DFB QCLs (corrugated structures). The designed mode
(red arrow) has the lowest threshold and is thus most likely to lase, with other modes (black arrow) with similar losses
competing for gain. Part (b), the simulated magnetic field corresponding to the designed mode (red arrow part a). The mode
is clearly the fundamental lateral mode and also shows strong 3rd order grating effect (A~32/2, where A is guided
wavelength). Part (c), the simulated magnetic field in the second lowest threshold mode (black arrow, part a). This mode is
a hybrid mode consisting of several high-order lateral modes. Part (d) shows a measured far-field beam-pattern of a 3rd
order DFB QCL.

3.2 Results of Frequency Agile 3™ order DFB QCL Array

The resulted QCL arrays after two iterations are shown in Figure 4. From the right of the figure, each device is
numbered 1 through 21. The array is designed so that if all the devices are lasing in the correct mode, and the gain
bandwidth of the QCL array is broad enough, frequency coverage will be from 1.8 THz (device 1) up to 2.6 THz
(device 21). The devices were fabricated using standard metal-metal waveguide fabrication techniques [11], using
contact lithography and Electron Cyclotron Resonance-Reactive Ion Etch (ECR-RIE) to define the laser mesas. Here the
metallization on top of the device serves as a mask, resulting nearly vertical sidewalls, preventing lateral current
spreading and bias non-uniformity. The device was indium soldered to a copper substrate for mounting in the
cryocooler. Electrical contact was made by wirebonds between the QCL bonding pads, and an external printed circuit
board with a pluggable header for easy removal of the module.

a) b)

Figure 4. Part (a), image of a 3 order DFB QCL array (corrugated structure) which emits in endfire mode. Electrical
biasing is through a bonding pad shown with attached wirebonds. Part (b), shows the packaged QCL array. The array is
indium soldered to a copper substrate, and wirebonds are made to the PCB. A standard connection header (0.05” pitch) is
used for reliability and replaceability.
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Individual QCLs were lost during the wire bonding process, due to the relatively small (150-pm pitch) bonding pads.
The surviving devices were tested in pulsed mode (500 ns at ~10% duty cycle) at 48 K with the resulting spectra
measured by Fourier transform infrared spectroscopy (FTIR) shown in Figure 5. Thresholds current densities range from
290 A/em’ to 340 A/em’ across whole array. From Device 9, a continuous increase in lasing frequency was observed for
each device up to Device 19, spanning a frequency range of 2.08 to 2.4 THz. Device 7 and 8 lased around 2.3 and 2.5
THz. This type of mode hopping behavior is attributed to the relative position between the designed DFB modes and the
peak gain frequency of the gain medium (see dashed-line in Figure 5). The maximum achievable frequency range is
limited by the gain bandwidth of the QCL, the mode selectivity (difference in loss) of the optical modes, and the spacing
between the modes. Peak optical power for individual laser was measured using a thermo-pile power meter (Scientech
AC2500H) with peak power ~1.5 mW for device 16, whose lasing frequency is at the peak gain frequency of the gain
medium. Device 9 has only ~ 150 uW peak power since it lased far from the peak gain frequency.
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Figure 5. Spectra of DFB QCL array showing frequency separation ~30GHz. Devices 9 through 19 show frequency
coverage of 320GHz. Dashed line indicates measured gain bandwidth of the QCL active region which peaks ~2.3 THz.

4. THZ SS-OCT SYSTEM RESULTS

The prototype OCT system is shown in Figure 6 and consists of: QCL residing in a closed cycle, cryogen free, Stirling
Cycle cryocooler; an /1 silicon lens to collimate the beam emerging from the cooler; a quartz beam splitter; a movable
reference mirror; an f/1 silicon lens to focus the reflected light; a Ga:Ge photodetector. The compact Stirling cycle
cryocooler is powered by 120 V and is controlled through a USB interface to actively maintain a cold finger temperature
of 48 K (with 120 W electrical power consumption). The cryocooler system is compact (footprint 32 cm x 38 cm),
relatively light (12 kg), and rated for MTTF of 25,000 hours, which will ultimately lead to a system that can be
demonstrated in the field. The cryocooler is capable of cooling the device to 35 K, or dissipating 9 W of electrical
power at 77 K — a temperature at which the devices are anticipated to operate efficiently. The 9 W power dissipation
should be sufficient for continuous wave operation. A custom vacuum shroud including vacuum electrical feed-through
for a 40 pin connector, and optical access were fabricated.

Custom bias electronics were fabricated and allow the software to select up to 16 different devices (limited by the MUX
IC used in the hardware). The laser biasing electronics for the laser array, depicted schematically in Figure 7, consist of
two boards: a PC interface/timing control board enabled by FPGA, and a power supply/modulation board which powers
a device via a 1x16 multiplexing circuit. The FPGA board consists of a USB interface for interfacing the PC with the
onboard microcontroller and an Altera FPGA. This microcontroller/FPGA combination was selected for maximum

Proc. of SPIE Vol. 8585 858508-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/02/2014 Terms of Use: http://spiedl.org/terms



flexibility in implementing the timing signals. These timing signals are used to synchronously bias the laser, and trigger
the boxcar integrator/ADC/lock-in amplifier for detection. This board also generates laser select signals and the variable
power supply control signals for the MUX/BIAS board, combing with Matlab GUI based software, the system allows
<10 ms cycling though 16 QCL devices, and therefore rapid frequency switching.

ICL array inside closedcycle,
ogen free cooler

Photodetector

=

4
Dielectric film
on mirror

|
ﬂ

BS

QCL Array
In Cryocooler L -
* Reference

Pobpropylene

g

Figure 6. Prototype OCT system includes: a multi-element frequency agile QCL array residing in a compact Stirling cycle

cryocooler (cryogen free); an interferometer; a Ge:Ga

terahertz photodetector. Beam path through the interferometer shown

in red. (on the right) the schematic for the similar optical setup is also shown.
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Figure 7. Overview of electronics for the SS-OCT experiment.

Interferometry measurements were taken in pulsed mode (500 ns pulse width 7% duty cycle), with either a mirror in the
sample arm (for normalization) or a 380-pum thick piece of polypropylene in front of the sample mirror. In either case,
the reference was stepped 30 times over a total distance of 140 um. At each step, the signal was acquired via lock-in
amplifier at the pulse repetition rate, for each of the lasers, resulting in the interferometric signals shown in Figure 8.
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Figure 8. Interference signals (blue ‘+’) and numerical fit (red solid trace) for various devices obtained as a function of
position of the reference mirror. The first column shows signals when no sample is present. The second column shows
interference signals when a 380-pm thick sample of polypropylene is inserted in the sample arm.

The interference patterns show clear sinusoidal modulation with mirror position for both the case without a sample (left
column), and with a 380-pum thick sample (right column). Due to the long coherence length of QCL, the sinusoidal
modulations are apparent even at large path differences between the reference and sample arms. This eliminates the need
of finding the zero-path delay required in the time-domain approaches, further simplifying the interferometer setup. In
order to resolve the air/polypropylene and polypropylene/metal interfaces, the algorithm shown in Figure 9 is used.

After the interference signal is acquired (‘+’ symbols in Figure 8) a numerical fit is used to determine the amplitude,
period and phase of the modulation for each device (red trace in Figure 8). Amplitude normalization is performed, and
the interference signals are summed, resulting in the traces shown in Figure 10. The first column of part a shows the
case where no sample is present and all modulation frequencies add together when the path length difference between
the interferometer arms is zero. Due to the limited number of QCLs, and the limited bandwidth (~300 GHz), side lobes
appear between 0.5 to 1 mm and -1 to -0.5 mm. Phase and amplitude modulations resulting from the insertion of the
sample result in the pattern shown in the second column. To resolve the interfaces, it is useful to measure the envelope
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of the summation. In Figure 10 (a), right column, the air/polypropylene and polypropylene/metal interfaces become
apparent.

Bias QCL device number i

Repeat for Acquire Interference signal S; while reference
N lasers mirror translates by at least Ax =A/2

Numerical fit to S; = a;-cos(4m/A; - Ax +¢,;)

Normalize S, to reference signal

Compute summation overi

Take Hilbert transform and take
envelope

Deconvolve with stored Kernel

Figure 9. Algorithm for depth measurement of a sample.

The measured interfaces can be sharpened somewhat by de-convolving the measured signal (Figure 10(b)), using the
reference signal as the kernel. Using the iterative Richardson-Lucy algorithm for N=20 iterations, the interfaces are
sharpened in the trace of part b. The position of the air/polypropylene interface occurs at 380 um because the sample
arm is shortened after inserting a sample. However the path to the polypropylene/metal interface is effectively
lengthened by the higher index polypropylene: (npy -1) X380 um = 160um, giving out nye, = 1.42, (Figure 10(c)).
Without the knowledge of the index of refraction, it would appear that the sample is 380 + 140= 520 um thick.
Additional characterizations of the thickness measurement were done on 180-pm thick glass slides (Figure 10(d)). Only
the glass/air interface was resolvable due to the strong attenuation in the glass.

The acquisition time of this experiment was ~40 s, discounting the ~5 s required for the lock-in amplifier to reacquire a
phase lock when a laser is switched. The primary limitation on the acquisition speed is the large number (30) of
reference mirror scan steps used to determine the amplitude and phase of the interference signals of Figure 10(a). System
scan speed can be greatly increased by scanning only a small number of positions. As in typical near-IR OCT systems, it
is possible to fix the position of the reference mirror altogether, resulting in halving of the axial range of the scan, but
greatly increased scan speed while simplifying the mechanics [12]. The large translation of the reference mirror was
done in this work to allow amplitude normalization, without which the reconstruction of the interferogram of Figure 10(a)
for the limited number of lasers would not have resulted in cancelation away from the zero path delay (e.g., larger side
lobes). Additional speed increases can be obtained by improving the electronics to eliminate the lock-in amplifier.

The FWHM depth resolution (z) is given by the bandwidth of the source as shown in Eq (2). For the present system, this
limits the depth resolution to approximately 360 pm in polypropylene (n=1.42) or 470 pum in air, which is close to the
measured FWHM of 440 um in Figure 10(a). A finer depth resolution can be achieved by further improving the
frequency coverage.
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Figure 10. Part (a). Reconstructed interferogram (summation of normalized measured signals) as a function of path length
difference between the interferometer arms. The left column shows results without a sample while the second column has a
380-um thick polypropylene sample. The numerical fitting envelope function was shown in red. Part (b) shows the
numerically sharpened version of right column in (part a) using deconvolution. The interfaces of the thin sample are clearly
visible, demonstrating the key concept of SS-OCT: axial tomography. Part (c) shows the effect of inserting a polypropylene
sample in path of the interferometer. Due to the index of polypropylene, the back mirror appears at ~ 160 pm further from
the zero path difference point. The total thickness has the appearance of a 540-um thick piece of n = 1 sample. Part (d) the
reconstructed signals from one and two 180-pm thick glass samples.

5. RECENT IMPROVEMENT ON 3*” DFB THZ QCL DESIGN FOR WIDE FREQUENCY
COVERAGE

One determining factor of spatial resolution in a THz SS-OCT system is the frequency coverage of swept source. In our
initial implementation of DFB QCL array, a 320-GHz frequency coverage was obtained. In order to achieve larger
frequency coverage, we improve upon the previous design by changing the shape of the corrugated gratings from a
traditional square tooth to a tapered shape as shown in Figure 11(b). According to an electromagnetic finite-element
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(FEM) simulation, the taper-horn shape increases the radiation loss from the unwanted upper band-edge mode while
marginally reducing the radiation loss for the desired third-order DFB mode, hence improving mode selectivity and thus
more robust single-mode operation. Effectively, this approach leverages a trade-off between the output power efficiency
and mode discrimination. With this improved frequency selectivity, we realize a linear frequency coverage of 440 GHz,
from 4.61 to 5.05 THz (from a different gain medium used in the previous QCL array) as shown in Figure 11(a), which
covers ~ 80% of the gain spectrum. The linearity of the DFB QCL arrays was also improved (see the inset for near
uniform frequency spacing between adjacent elements).
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Figure 11. (a) Spectra of an array with 11 devices operating in pulsed mode (at 10 K) demonstrating the frequency
selectivity of a third-order DFB QCL array. (b) Scanning electron microscope (SEM) image for a taper-horn third-order
DFB laser.

6. CONCLUSION

In summary, we have demonstrated the tomography of a dielectric sample using a frequency agile QCL array source at
terahertz frequencies. The electrically switched source suggests fast axial scan speeds. Improved axial resolution will
result from a spectrally broader source. An increase in the number of elements in the source will allow greater scan depth
and potentially a fixed reference mirror interferometer, greatly enhancing the scan speed and simplicity of the system.
We also addressed the issue of limited frequency bandwidth of our first DFB QCL array by introducing new type of
DFB structure for better mode selectivity. A ~30% improvement in frequency coverage is achieved (from 320 to 440
GHz).
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