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ABSTRACT  

The interfaces of a dielectric sample are resolved in reflection geometry using light from a frequency agile array of 
terahertz quantum-cascade lasers. The terahertz source is a 10-element linear array of third-order distributed feedback 
QCLs emitting at discrete frequencies from 2.08 to 2.4 THz. Emission from the array is collimated and sent through a 
Michelson interferometer, with the sample placed in one of the arms. Interference signals collected at each frequency are 
used to reconstruct an interferogram and detect the interfaces in the sample. Due to the long coherence length of the 
source, the interferometer arms need not be adjusted to the zero-path delay. A depth resolution of 360 µm in the 
dielectric is achieved with further potential improvement through improved frequency coverage of the array. The entire 
experiment footprint is <1 m × 1 m with the source operated in a compact, closed-cycle cryocooler.  

Keywords: terahertz, quantum cascade laser, tomography 
 

1. INTRODUCTION  
Tomography of dielectric thin films using terahertz frequency radiation (300 GHz to 10 THz) has found recent practical 
applications for the characterization of industrial polymers [1]. The non-ionizing nature of THz radiation and its strong 
response to water content also makes it suitable for characterization of biomaterials such as corneas [3] and teeth.
Comparing to the current commercial terahertz systems using nonlinear generation 
mechanisms, quantum-cascade lasers (QCLs) are a promising fundamental source of terahertz frequency radiation for 
their multi milliwatt power levels, electrical operation, and absence of optical alignment. However, the use of QCLs for 
the tomography of dielectric films is challenging due to the lack of picosecond pulsed sources necessary for time-of-
flight tomography or the practical frequency tuning mechanisms necessary for interferometry based tomography. In this 
paper we report a frequency agile QCL source and the demonstration of tomography using the swept-source optical 
coherence tomography technique [6]. The letter is divided into sections detailing different key components of the THz 
swept-source optical coherence tomography system (SS-OCT) system. Section 2 details the working principles of SS-
OCT. Section 3 reports the design of third-order distributed feedback THz quantum cascade lasers and detailed 
characterization of such a laser array. Section 4 describes the measurement result of the OCT system on dielectric thin 
film and the algorithm for retrieving the depth and interface information. Section 5 will discuss the recent improvement 
on 3rd DFB design to further improve the frequency coverage.  

2. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY (SS-OCT) 
The frequency tunable source of the SS-OCT system is used to generate a tomographic profile (see Figure 1) of a 
sample, whose resolution is dependent on the bandwidth of the source. This profile is obtained by processing the 
interferometric signal, S, for each wavelength, λi, incident on the detector:  

 ௜ܵሾΔݔሿ = ߩ ෍ ൤ ோܲ,௜ + ௌܲ,௜,௝ + 2ඥ ோܲ,௜ ௌܲ,௜,௝ ⋅ ݏ݋ܿ ൬4 ⋅ ௜ߣߨ ⋅ (Δݔ + ௝)൰൨ெݔ
௝ୀଵ   

 (1) 
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differences can be fabricated next to each other with a distance of 150 µm or less. Using current THz QCL fabrication 
techniques we can pack up to 21 QCLs on a single die. 

 
Figure 2. Part (a), schematic of a linear end-fire antenna array. Each rod (antenna) has 180 degree phase shift and is λo/2 
from its neighbor, resulting in constructive interference in the array direction.  Part (b), the calculated beam pattern of an 
end-fire antenna array.  Part (c), the top schematic view of a corrugated 3rd order DFB QCL.  Part (d), the electric field of 
the designed mode inside a 3rd order DFB laser.  The arrows indicate the aperture from which field is radiated.  Adjacent 
apertures alternate signs indicating a π phase shift. Because the apertures are close to λo/2 apart, endfire emission results.   

To understand how the 3rd order grating operates, one can adopt the concept of a linear phased array (Figure 2 (a)).  Here 
a series of antennas are spaced by λ0/2, where λ0 is the free space wavelength, and adjacent antennas are phase-shifted by 
π (indicated by arrows). Constructive interference from different antennas will form a narrow beam in the direction 
along the array. Part (c) shows a 3rd order DFB grating fabricated in a metal-metal waveguide, where the “antennas” 
from the phased array example are narrow sections or apertures.  The electric field inside each aperture (part d) will be at 
its peak value with the phase adjacent apertures differing by π.  Since the optical index of the gain medium is close to 3, 
the apertures are very close to λo/2 apart.  Constructive interference results and forms a narrow beam pattern in the 
direction along the laser ridge. The divergence of the beam pattern is inversely-scaled with the square root of the number 
of the grating apertures (or the total length of the laser). 

To obtain accurate frequency calculations and detailed grating parameter designs for third-order grating DFB lasers, full-
wave three-dimension finite element method (FEM) simulations are required.  An FEM simulation can determine all the 
modes supported in the laser structure along with the optical losses due to radiation, which we loosely term “gain 
threshold” [10]. Gain thresholds are plotted versus frequency for all resonant modes to obtain the plot shown in Figure 3.  
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Figure 8.  Interference signals (blue ‘+’) and numerical fit (red solid trace) for various devices obtained as a function of 
position of the reference mirror.  The first column shows signals when no sample is present.  The second column shows 
interference signals when a 380-µm thick sample of polypropylene is inserted in the sample arm. 

The interference patterns show clear sinusoidal modulation with mirror position for both the case without a sample (left 
column), and with a 380-µm thick sample (right column). Due to the long coherence length of QCL, the sinusoidal 
modulations are apparent even at large path differences between the reference and sample arms. This eliminates the need 
of finding the zero-path delay required in the time-domain approaches, further simplifying the interferometer setup. In 
order to resolve the air/polypropylene and polypropylene/metal interfaces, the algorithm shown in Figure 9 is used.  

After the interference signal is acquired (‘+’ symbols in Figure 8) a numerical fit is used to determine the amplitude, 
period and phase of the modulation for each device (red trace in Figure 8). Amplitude normalization is performed, and 
the interference signals are summed, resulting in the traces shown in Figure 10.  The first column of part a shows the 
case where no sample is present and all modulation frequencies add together when the path length difference between 
the interferometer arms is zero.  Due to the limited number of QCLs, and the limited bandwidth (~300 GHz), side lobes 
appear between 0.5 to 1 mm and -1 to -0.5 mm.  Phase and amplitude modulations resulting from the insertion of the 
sample result in the pattern shown in the second column.  To resolve the interfaces, it is useful to measure the envelope 
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of the summation. In Figure 10 (a), right column, the air/polypropylene and polypropylene/metal interfaces become 
apparent.  

 

 
Figure 9. Algorithm for depth measurement of a sample. 

The measured interfaces can be sharpened somewhat by de-convolving the measured signal (Figure 10(b)), using the 
reference signal as the kernel. Using the iterative Richardson-Lucy algorithm for N=20 iterations, the interfaces are 
sharpened in the trace of part b.  The position of the air/polypropylene interface occurs at 380 µm because the sample 
arm is shortened after inserting a sample.  However the path to the polypropylene/metal interface is effectively 
lengthened by the higher index polypropylene: (npoly -1) ×380 µm = 160µm, giving out npoly = 1.42, (Figure 10(c)). 
Without the knowledge of the index of refraction, it would appear that the sample is 380 + 140= 520 µm thick. 
Additional characterizations of the thickness measurement were done on 180-µm thick glass slides (Figure 10(d)). Only 
the glass/air interface was resolvable due to the strong attenuation in the glass. 

The acquisition time of this experiment was ~40 s, discounting the ~5 s required for the lock-in amplifier to reacquire a 
phase lock when a laser is switched. The primary limitation on the acquisition speed is the large number (30) of 
reference mirror scan steps used to determine the amplitude and phase of the interference signals of Figure 10(a). System 
scan speed can be greatly increased by scanning only a small number of positions. As in typical near-IR OCT systems, it 
is possible to fix the position of the reference mirror altogether, resulting in halving of the axial range of the scan, but 
greatly increased scan speed while simplifying the mechanics [12]. The large translation of the reference mirror was 
done in this work to allow amplitude normalization, without which the reconstruction of the interferogram of Figure 10(a) 
for the limited number of lasers would not have resulted in cancelation away from the zero path delay (e.g., larger side 
lobes). Additional speed increases can be obtained by improving the electronics to eliminate the lock-in amplifier. 

The FWHM depth resolution (z) is given by the bandwidth of the source as shown in Eq (2). For the present system, this 
limits the depth resolution to approximately 360 µm in polypropylene (n=1.42) or 470 µm in air, which is close to the 
measured FWHM of 440 µm in Figure 10(a). A finer depth resolution can be achieved by further improving the 
frequency coverage. 
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