
MIT Open Access Articles

A cloud-assisted design for autonomous driving

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kumar, Swarun, Shyamnath Gollakota, and Dina Katabi. “A Cloud-Assisted Design for
Autonomous Driving.” Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing - MCC ’12 (2012). August 17, 2012, Helsinki, Finland. ACM (2012).

As Published: http://dx.doi.org/10.1145/2342509.2342519

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/87077

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/87077
http://creativecommons.org/licenses/by-nc-sa/4.0/

A Cloud-Assisted Design for Autonomous Driving
Swarun Kumar

MIT CSAIL
swarun@mit.edu

Shyamnath Gollakota
MIT CSAIL

gshyam@mit.edu

Dina Katabi
MIT CSAIL
dk@mit.edu

ABSTRACT
This paper presents Carcel, a cloud-assisted system for au-

tonomous driving. Carcel enables the cloud to have access to sensor
data from autonomous vehicles as well as the roadside infrastruc-
ture. The cloud assists autonomous vehicles that use this system
to avoid obstacles such as pedestrians and other vehicles that may
not be directly detected by sensors on the vehicle. Further, Carcel
enables vehicles to plan efficient paths that account for unexpected
events such as road-work or accidents.

We evaluate a preliminary prototype of Carcel on a state-of-the-
art autonomous driving system in an outdoor testbed including an
autonomous golf car and six iRobot Create robots. Results show
that Carcel reduces the average time vehicles need to detect obsta-
cles such as pedestrians by 4.6× compared to today’s systems that
do not have access to the cloud.

CATEGORIES AND SUBJECT DESCRIPTORS

C.2.4 [Computer Systems Organization]: Computer-
Communications Networks

GENERAL TERMS

Algorithms, Design, Performance

KEYWORDS

Autonomous Vehicles, Cloud, Wireless Networks

1. INTRODUCTION
Recently, much research has been focused on developing au-

tonomous vehicles [9, 3, 14]. Such systems aim to navigate along
an efficient and safe path from a source to destination, in the pres-
ence of changes in the environment due to pedestrians and other
obstructions. Further, these systems need to deal with unexpected
events such as road-blocks, traffic and accidents. Thus, autonomous
vehicles need detailed and real-time information about their sur-
roundings [11]. Typically, they use on-board sensors such as laser
range-finders to build a 3D point-cloud (see figure 2) representing
the 3D (x, y, z)-coordinates of points on the surface of obstacles.
However, such sensors cannot deliver vehicles information about
hidden obstacles which are not directly in their line-of-sight, such
as pedestrians hidden from view at an intersection. Further, these
sensors are limited in range, and hence cannot report long-range
data with sufficient accuracy; thereby limiting the vehicle’s ability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCC’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-XXXX-X/12/08 ...$10.00.

Figure 1—Representation of regions using Octree.

to plan ahead [14]. For these reasons, the report from the DARPA
Urban Challenge identifies the need for autonomous vehicles to
have access to each other’s information as a key lesson learned from
the contest [2].

In this paper, we propose Carcel, a system where the cloud ob-
tains sensor information from autonomous vehicles and static road-
side infrastructure to assist autonomous cars in planning their tra-
jectories. Carcel enables autonomous vehicles to plan safer and
more efficient paths using the cloud. In particular, the cloud re-
quests sensor information from autonomous vehicles as well as
static road-side infrastructure. Further, the cloud records the current
trajectory of all the vehicles. The cloud aggregates all this infor-
mation and conveys information about obstacles, blind spots, and
alternate paths to each vehicle.

In Carcel, the cloud has access to a larger pool of sensor data
from multiple autonomous vehicles and static roadside sensors, that
enables safer and more efficient path planning. Thus, the cloud has
access to sensor information which may be from blind spots or out-
side the range of sensors on a single vehicle. Thus, the cloud can
assist vehicles to make intelligent decisions that foresee obstacle
not directly sensed by sensors on the vehicle itself. Further, since
the cloud has longer range information about the traffic patterns and
other unexpected events such as road-word or accidents, Carcel en-
ables autonomous vehicles to plan more efficient paths.

To realize the above design, Carcel has to address two main chal-
lenges.

(a) How does the cloud get real-time sensor data from au-
tonomous vehicles over a limited-bandwidth wireless link? The
wireless connection between an autonomous vehicle and the cloud
has a limited bandwidth. Navigation sensors, however, can generate
real-time data-streams at high data rates (often at Gb/s), that makes
it impractical to transmit all sensor information within the available
bandwidth. Moreover, it is important to note that different pieces of
information gathered by sensors are of unequal importance. A com-
munication system that does not recognize this fact, may inundate
the cloud with irrelevant or stale information. Thus, we need to ef-
ficiently utilize the wireless links between the autonomous vehicle
and the cloud.

Carcel achieves this by having a request-based system which en-
ables autonomous cars to gather information about different loca-
tions at various resolutions. In particular, in Carcel the cloud re-

Figure 2—An example of sensory information gathered during
autonomous driving. The figure shows a 3D-point cloud of a road
obtained using a Velodyne laser sensor. The colors refer to elevation
from the ground. A 3D-point cloud is a set of (x, y, z) coordinates
of points lying on the surface of obstacles.

quests information at a high resolution only for important regions
in the environment. The information for less important regions is
retrieved at a lower resolution, thereby consuming less bandwidth.
The cloud infers the importance of different regions in the envi-
ronment by taking into account: (1) the available low resolution
information from these regions; (2) the current paths and locations
of vehicles; and (3) the locations of the blind-spots of vehicles.

(b) How does the system deal with high packet losses that are
inherent to wireless channels? Since the autonomous vehicles are
mobile, the wireless channel experiences significant fading result-
ing in high packet losses. Since the communication between the
autonomous vehicles and the cloud is real-time and delay-sensitive,
we need to ensure that it is resilient to wireless losses.

Carcel achieves this by representing the transmitted sensor in-
formation over the wireless channel in a manner resilient to packet
losses. Specifically, Carcel leverages the Octree data-structure, used
typically in graphics to represent 3D objects, to provide resilience
to wireless losses. At a high level, Octree is a recursive data-
structure where the root represents the whole environment. As
shown in Fig. 1, each node in an Octree describes a cube in the
environment, and the sub-tree rooted at that node represents finer
details contained in that cube. Carcel ensures that each packet trans-
mitted to the cloud is self-contained by composing it with indepen-
dent branches of the Octree derived from its root. Therefore, each
packet received by the cloud can be reconstructed independent of
other packets, ensuring that Carcel is resilient to packet loss.

We have built an initial prototype of Carcel using ROS, the Robot
OS [12]. We integrated it with a state of the art path planner RRT*,
an earlier version of which was used in the DARPA Urban Chal-
lenge [7]. We evaluated our system on an outdoor testbed composed
of an autonomous Yamaha G22E golf car mounted with Hokuyo
laser range sensors accessing sensory information of iRobot Cre-
ate programmable robots connected to netbooks using Atheros
AR9285 cards and gathering sensor information from Xbox 360
kinects. We tested the vehicle’s ability to respond safely to pedes-
trians who suddenly exit a blind spot into a crosswalk along the
car’s path. Our findings are as follows:

• The cloud-based system can significantly reduce the vehicle’s
reaction time of today’s baseline autonomous vehicles. In par-
ticular, Carcel detects the pedestrian with an average delay of
0.66 sec after the pedestrian enters the crosswalk, which is 4.6×
smaller than the baseline which has a delay of 3.03 sec. If the
golf car is traveling at a maximum velocity of 2 meters per sec-
ond, our system is able to stop the golf car safely, even if the
pedestrian appears when the golf car is 1-2 meters from the in-

Figure 3—High-level Architecture of Autonomous Vehicles
Sensor information from various sensors is provided to the path
planner module which computes a path for the vehicle to navigate
along.

tersection. In contrast, the baseline is unable to stop the golf car
safely, even if the pedestrian appears when the golf car is 6-8
meters from the intersection.

• Augmented the cloud capability to a system where the au-
tonomous vehicles exchange information using an ad-hoc net-
work can provide significant benefits. Specifically, Carcel detects
the pedestrian with an average delay of 0.57 sec after the pedes-
trian enters the crosswalk, which is 3.8× smaller than that of a
system where the vehicles share their sensor information only
over the ad-hoc wireless network.

Related Work. There has been much interest in building au-
tonomous vehicles [9, 3, 14] spurred by public and private sec-
tor initiatives. In contrast, our paper explores the potential of inte-
grating the cloud capability with autonomous vehicles. Our work
is also related to work in networked robotics [4, 8] and vehicular
ad-hoc networks (VANETs) [1, 15, 6]. While we build on this past
work, Carcel focuses on communication and networking issues for
autonomous vehicles. In particular, Carcel addresses the challenge
of delivering high-bandwidth sensor data, inherent to autonomous
vehicles, at low latencies to the cloud.

2. BACKGROUND
In this section, we provide a primer on the software architec-

ture of autonomous vehicles. In order to navigate successfully, au-
tonomous vehicles rely on on-board sensors to provide sensory in-
formation describing their environment. Sensors such as laser scan-
ners and ultrasonic range finders provide accurate ranging informa-
tion, describing the distance of vehicles to surrounding obstacles
[14, 3, 9]. Vehicles may additionally augment their information us-
ing cameras and light sensors.

Autonomous vehicles most commonly use the Robot Operating
System (ROS) framework [12]. ROS provides a publish/subscribe
architecture, where modules (e.g. laser range-finders) publish in-
formation through topics (e.g. /laser_data) which can then be sub-
scribed to by one or more modules. We describe the commonly de-
scribed high-level modules of autonomous vehicles below: (Figure
3)

• Sensor modules: Each sensor attached to an autonomous vehicle
has an associated module which converts raw sensor information
into a generic format. The most commonly used format is the
3D-point cloud which provides a set of 3-Dimensional (x, y, z)
coordinates of points that are located on the surface of obstacles.
The sensor information is published, along with a time-stamp,
denoting the time at which the sensor data was obtained.

• Planner module: The planner subscribes to information from
the sensor modules and builds a detailed global map of the en-
vironment. It uses this map to compute an obstacle-free path for
the vehicle towards the destination. The planner is sub-divided
into five sub-modules:

Figure 4—System Design. The figure illustrates the different mod-
ules in the autonomous vehicles and the cloud, and how they inter-
act.

- Perception: The perception module subscribes to 3D-point
cloud information from the sensor modules and uses obstacle de-
tection algorithms to identify obstacles in the frame of reference
centered around the vehicle. The module then publishes a map of
these obstacles.

- Localization: The localization module publishes the current lo-
cation of the vehicle in a global map. The module often relies on
a combination of GPS, odometry and other more advanced sen-
sory infrastructure, often leading to accuracies as low as a few
centimeters [9].

- Mapper: The mapper subscribes to the map of obstacles and
the current position of the vehicle from the perception and lo-
calization modules respectively. It publishes a global map which
contains the locations of all obstacles.

- Path planner: The path planner subscribes to the global map of
obstacles from the mapper as well as the vehicle’s position and
publishes an obstacle-free path for the vehicle to navigate along.

- Emergency module: The emergency module subscribes to the
map of obstacles and detects unexpected changes to the map
resulting in new obstacles obstructing the vehicle’s path (e.g. a
pedestrian crossing the road unexpectedly). Depending on the
location of the obstacle, it can either update the vehicle’s trajec-
tory path to maneuver around the obstacle or stop the vehicle
altogether.

• Controller: The controller subscribes to the vehicle’s planned
path and issues steering, acceleration and velocity control com-
mands to the vehicle so that it follows the planned path.

3. SYSTEM DESCRIPTION
A high-level design of our cloud based system is shown in Figure

4. In Carcel, the cloud obtains sensor information from autonomous
vehicles and static infrastructure sensors. However, navigation sen-
sors can generate real-time data-streams at high data rates (often
at Gb/s), that makes it impractical for vehicles to transmit all their
sensor information within available bandwidth. A key observation
is that different pieces of information gathered by sensors are of
unequal importance. Carcel leverages this fact by making the cloud
request information at a higher resolution, only from important re-
gions in the environment.

The request module of the cloud issues these requests to the vehi-
cle. It analyzes aggregate sensor information represented using the
Octree data structure and generates requests for different regions at
specific resolutions based on lacunae in the available sensor data.

Requests are sent preferentially to regions which are closer to the
current locations of vehicles, are close to the current trajectory of
the vehicles or are in the vehicles’ blind spots.

The planner module aggregates sensor information obtained
from various autonomous vehicle and static road-side infrastruc-
ture sensors via the receiver module. It also records the current
trajectory of all the vehicles. The planner analyzes the aggregate
sensor information it has obtained to detect obstacles that may ob-
struct the current path of any vehicle. Information about obstacles
and available alternate paths are conveyed to each vehicle via the
sender module.

On each autonomous vehicle, the receiver module records re-
quests and instructs the sender to transmit a greater proportion of
sensor data from regions which have been requested, at the appro-
priate resolution. The receiver also alerts the planner of obstacles
or alternate trajectories reported by the cloud. The sender module
transmits sensor information from various requested regions, pro-
portional to the number of requests received from the cloud for each
of these regions. The sender also transmits the current location and
trajectory of the vehicle.

To achieve the above design, we need to address the following
key challenges:

(a) How do we represent different regions in the environment?
Carcel uses the Octree representation to identify and name regions
in the environment. In particular, Carcel partitions the world re-
cursively into cubes. It begins with a known bounding cube that
encompasses the entire environment of the vehicles. Each cube is
then recursively divides into eight smaller cubes as depicted in fig-
ure 1. Carcel maintains an Octree, a recursive structure, where each
node in the Octree represents a cube and a sub-tree rooted at that
node represents the recursive divisions of the cube. Such a represen-
tation enables Carcel to name regions at different locations in the
environment. Each node in the Octree (i.e. each region) is given a
global unique identifier id to distinguish between different regions.

The Octree data structure can also be used to represent sensor
information (i.e. a 3D-point cloud). Each node in the Octree (i.e.
each region) is tagged with one of the following attributes: (1) oc-
cupied, if the point cloud representation has any points in the cor-
responding cube (i.e., the cube has some object and the car should
not drive through it); (2) unoccupied, if there are no points in this
region (i.e., the cube is vacant and the car may drive through it);
and (3) unknown, if there is insufficient sensor information about
this region (i.e., the cube may have some object, but these have not
been picked up by the sensors). We note that a parent is occupied
if any of its descendants are occupied. A parent is unoccupied only
if all of its descendants are known and unoccupied. A parent is un-
known, if none of its descendants are occupied and at least one of
them is unknown.

(b) How does the cloud obtain information about regions at dif-
ferent resolutions? The Octree data structure provides us a mech-
anism to query information about various regions at different reso-
lutions. In particular, information from deeper levels of the Octree
provide higher resolution information about a region. Similarly, in-
formation at higher levels provide a lower resolution view of the
same region. Thus, in Carcel, a request for a region is represented
as a 2-tuple (id, res), where id represents the location of the region
and res represents the resolution (depth) at which the region is re-
quested. The autonomous vehicles can use their sensor information
represented in the form of the Octree data structure to respond to
such a request. In particular, the response contains the encoding of
the sub-tree in the Octree data-structure rooted at node id of the
tree, and truncated to depth res.

(c) How do autonomous vehicles transmit sensor information

Figure 5—Octree Representation Representation of 3D-point
cloud using a 2-level Octree. Vertices that are unoccupied are not
expanded; vertices that are completely occupied or unknown are
terminated by special leaf vertices; these have been omitted for clar-
ity.

from these regions in a loss-resilient manner? Sensor informa-
tion transmitted to the cloud can be significantly affected by packet
loss that often occurs in a wireless medium. This is because, loss
of a single packet in the Octree encoding of sensor data can often
corrupt all the information stored in the Octree. To see why this is
the case, let us first understand how the Octree data-structure is en-
coded [13, 5]. The standard Octree encoding technique proceeds as
follows: Each node in the Octree be represented by a tuple of length
8 representing the occupancy of each of its children. Encoding is
performed by traversing the tree in a top-down and breadth-first
fashion and reading off the corresponding tuples. The root node is
always assumed to be occupied. Now, for each node, its occupied
and unknown children are recursively encoded. No information is
encoded for unoccupied nodes since their corresponding regions
are assumed to be entirely unoccupied. Additionally, nodes whose
descendants are entirely occupied or unknown are terminated by
a special 8-tuple (with all entries marked occupied or unknown re-
spectively) and are not further encoded. At the receiver, the decoder
can faithfully recover the Octree by following the same traversal
rules as the encoder.

The problem with this encoding, however, is that loss of even
a single byte in the Octree representation corrupts all data follow-
ing that byte. This is because a byte corresponding to a node in
the Octree describes the number and location of its children. Loss
of this byte corrupts the entire sub-tree rooted at that node. For
example, loss of the first byte in the Octree shown in Fig. 5 cor-
rupts the entire Octree, since information detailing the locations of
the root’s child nodes is lost. To address this problem, Carcel en-
sures that each packet transmitted by the sender is self-contained
and independent of other packets. In particular, Carcel randomly
chooses sub-trees starting from the root node of the Octree, whose
encoding fits within a single packet. To choose the sub-tree, Carcel
picks a random leaf node l in the Octree. We construct the packet
by including information about the path from this leaf node to the
root. We also include information about all the descendants of the
parent node P(l) of leaf node l in the packet. We proceed recur-
sively, including all descendants of the parent node P(P(l)) of node
P(l), as long as these are within the size of the packet. The sub-
tree obtained at the end of this process has the property that the
paths from all nodes in the sub-tree to the root of the Octree is
known. This ensures that each packet can be reconstructed indepen-
dent of other packets. Additionally, the bottom-up encoding process
ensures minimal overlap between packets, thereby requiring fewer
packets to encode the entire Octree.

Besides loss-resilience, Carcel’s approach for encoding has sev-
eral other desirable properties: (1) It is computationally efficient
since it is linear in the size of the sub-tree corresponding to a re-
gion; (2) Packets received from different vehicles sensing the same
region have minimal overlap, since the randomization process en-
sures that at any point in time, they transmit different parts of the
region’s Octree; and (3) It supports a form of unequal error protec-

Figure 6—Carcel’s Outdoor Setup. A picture of the actual golf
car route showing the pedestrian crosswalk that poses a hazardous
blind-spot for the golf car. This setup makes visual confirmation of
a pedestrian difficult before he is actually on the road.

tion because the transmitted sub-trees contain paths of all nodes to
the root of the region. Therefore, nodes at higher levels in the tree
are less likely to be lost than nodes at lower levels. Hence, the loss
of a packet typically results in the loss of resolution as opposed to
complete loss of information.

4. IMPLEMENTATION
We implement Carcel in the cloud as well as autonomous ve-

hicles using the Robot Operating System (ROS) [12]. Our ROS
implementation is operated on the Ubuntu 11.04 distribution (with
linux kernel version 2.6.38-8-generic), that runs on the ASUS net-
books attached to the iRobot Create robots. We implement Carcel in
an environment with a global map containing 80 regions. To have
an initial evaluation of such a cloud based system, we use WiFi
wireless links to connect to the cloud.

Our implementation of Carcel on autonomous vehicles sub-
scribes to multiple topics containing sensor information in ROS’s
PointCloud format. The system tracks request messages from the
cloud, and accordingly transmits the sensor information in the form
of UDP packets to the cloud. The path planners in the vehicles and
the cloud use the RRT* algorithm [7], an updated version of the
autonomous path planning algorithm used by MIT’s vehicle in the
DARPA urban challenge.

We evaluate Carcel in an outdoor testbed in a campus-like set-
ting that contains an autonomous Yamaha G22E golf car equipped
with multiple sensors, including SICK range finders, cameras and
Hokuyo laser sensors. The autonomous car navigates in a campus-
like environment in the presence of other vehicles as well as pedes-
trians. We implement Carcel on the golf car as well as six iRobot
Create robots mounted with Kinect sensors placed in multiple loca-
tions. The Kinects are connected to Asus EEPC 1015PX netbooks
equipped with Atheros AR9285 wireless network adapters. A cen-
tralized server collects sensor information from the golf car and
robots over a WiFi network. Figure 6 illustrates a pedestrian cross-
walk where the experiments were conducted. Some of the robots
were placed in the lobby adjacent to the crosswalk which was a
blind-spot for the vehicle.

4.1 Metric
We use two metrics to evaluate Carcel:

• Response time. This measures the time it takes for the car to re-
spond (send a STOP command) to a pedestrian, from the time
the pedestrian starts entering the crosswalk.

• Distance to pedestrian. This measures the distance from the
pedestrian crosswalk at which the car stops once it detects a
pedestrian.

 0

 1

 2

 3

 4

 5

1-2 2-4 4-6 6-8

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Distance when Pedestrian enters Crosswalk (m)

Carcel
Today’s system

Figure 7—Time Delay Averages for Carcel and baseline. Dis-
tances on the x-axis are grouped into bins of two meters repre-
senting distances of the golf car from the crosswalk at the time the
pedestrian enters the crosswalk.

-10

-5

 0

 5

 10

1-2 2-4 4-6 6-8

A
v
g

 D
is

ta
n

c
e

 t
o

 P
e

d
e

s
tr

ia
n

 (
m

)

Distance when Pedestrian enters Crosswalk (m)

Carcel
Today’s system

Figure 8—Comparison of golf car distance from the crosswalk
when the pedestrian enters the crosswalk to the distance from cross-
walk at which the receiver issues a stop command to the vehicle.
Distances on the x-axis are grouped into bins of 2 m.

To measure the response time, we log the time at which the pedes-
trian was detected at the netbook mounted on the robot which is
placed to view pedestrians entering the crosswalk. We compare this
time against the time when the golf car’s emergency module issues
the stop command to the vehicle. All vehicles use NTP to synchro-
nize their time within tens of milliseconds in the implementation.
To compute the distance to pedestrian metric, we use the localiza-
tion module on the vehicles that measure the distance of the vehicle
from the crosswalk when the pedestrian entered the crosswalk, and
when the golf car issued a stop command.

5. RESULTS
We compare the benefits of using a cloud-based system in two

scenarios:

• The vehicles do not directly communicate with each other.
• The vehicles are additionally connected by an inter-vehicular ad-

hoc wireless network over which they broadcast and share their
sensor information.

Experiment 1: We first consider today’s systems where the au-
tonomous vehicles are neither connected to the cloud nor inter-
connected using an inter-vehicular network. We run an experiment
where the pedestrian enters the blind spot in the crosswalk, when
the vehicle is at distances of around eight meters, six meters, four
meters and two meters from the crosswalk. The golf car travels at
a speed of 2 meters/sec during the experiments. The results of the
experiments are averaged over five runs at each of the distances.

Results: Fig. 7 plots the average reaction time in seconds. The x-
axis plots the distance between the car and the crosswalk when the

 0

 1

 2

 3

 4

 5

1-2 2-4 4-6 6-8

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Distance when Pedestrian enters Crosswalk (m)

Adhoc+Carcel
Adhoc

Figure 9—Time Delay Averages for Carcel and baseline when
vehicles are additionally connected by ad-hoc wireless network.
Distances on the x-axis are grouped into bins of 2 meters.

pedestrian starts crossing. The results show that Carcel’s reaction
times are significantly smaller than that of today’s systems. The av-
erage time for pedestrian detection with Carcel is 0.66 sec, which is
4.6× smaller than the response time of 3.03 sec in today’s systems.

Fig 8 plots the average distance to pedestrian in meters. The re-
sults show that today’s systems that do not use the cloud, fail to
stop the golf car even when it is around 6-8 meters away from the
crosswalk as the pedestrian enters it. In contrast, with Carcel the
golf car safely stops before the crosswalk, even when the pedes-
trian enters the crosswalk as the golf car is just 1-2 meters away
from the crosswalk and the golf car is traveling at two meters per
second. This is because, using the cloud, Carcel can receive infor-
mation about the critical region in the blind spots of the vehicle.
This is achieved by issuing requests for regions in the environment,
including the blind spot, through which pedestrians may enter to
obstruct the current planned path of the vehicle. This enables the
cloud to accurately confirm pedestrian detection well before a sim-
ilar conclusion is reached by the golf car’s processor in today’s sys-
tems.

Experiment 2: Next, we consider a scenario where the vehicles
are connected by an inter-vehicular ad-hoc wireless network over
which they broadcast and share their sensor information. We eval-
uate the benefits of augmenting access to the cloud using Carcel, in
such a scenario.

Results 2: Fig. 7 plots the average reaction time for both ad-hoc
networked vehicles and a cloud augmented ad-hoc networked vehi-
cles. The graph shows that Carcel’s reaction times are still signif-
icantly smaller than the ad-hoc networked system. The maximum
reaction time of pedestrian detection with Carcel is 0.57 sec, which
is 3.8× smaller than the delay of 2.18 sec in the ad-hoc networked
systems. This is because, Carcel can leverage the cloud to detect
obstacles and pedestrians faster, even when the vehicles already use
an ad-hoc wireless network to share information.

6. DISCUSSION
This paper provides a proof of concept of Carcel, where the cloud

assists autonomous vehicles with path planning in order to avoid
pedestrians and other obstacles in the environment. However, more
research is needed to realize the full potential of the cloud. For in-
stance, autonomous vehicles often require accurate localization, be-
yond what GPS and odometric sensors can provide [10]. By lever-
aging positions of known landmarks detected in the environments,
vehicles can potentially obtain this localization information from
the cloud. Similarly the cloud can provide a host of other services
for autonomous vehicles, such as real-time information about traf-
fic, congestion, detours, accidents, etc. The key challenge in design-

ing such a system is ensuring low latency and high availability over
an inherently unreliable wireless medium. We believe that a com-
prehensive cloud-assisted design of autonomous vehicular systems
can significantly improve the safety and reliability of autonomous
vehicles and can bring commercial autonomous cars closer to real-
ity.

Acknowledgments: We thank Lixin Shi, Stephanie Gil, Nabeel
Ahmed and Prof. Daniela Rus for their support. This work is funded
by NSF and SMART-FM. We thank the members of the MIT Cen-
ter for Wireless Networks and Mobile Computing, including Ama-
zon.com, Cisco, Intel, Mediatek, Microsoft, and ST Microelectron-
ics, for their interest and support.

7. CONCLUSION
In this paper, we present Carcel, a cloud-assisted system for

autonomous driving. Carcel enables autonomous cars to plan safer
and more efficient paths by sharing their sensor information with
the cloud. We evaluate an initial prototype of Carcel using field
experiments with iRobot Create robots and a Yamaha golf car. Our
results demonstrate that Carcel can significantly improve the safety
of autonomous driving, by providing vehicles greater access to
critical information in their blind spots.

8. REFERENCES

[1] L. Bononi and M. Di Felice. A cross layered mac and
clustering scheme for efficient broadcast in vanets. In MASS,
pages 1–8, 2007.

[2] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray.
Autonomous driving in urban environments: approaches,
lessons and challenges. Philosophical Transactions of the
Royal Society Series A, 368:4649–4672, 2010.

[3] Z. Chong, B. Qin, T. Bandyopadhyay, T. Wongpiromsarn,
E. Rankin, M. Ang, E. Frazzoli, D. Rus, D. Hsu, and K. Low.
Autonomous personal vehicle for the first- and last-mile
transportation services. In CIS 2011, pages 253 –260, 2011.

[4] S. Gil, M. Schwager, B. Julian, and D. Rus. Optimizing
communication in air-ground robot networks using
decentralized control. In ICRA 2010, pages 1964 –1971,
2010.

[5] Y. Huang, J. Peng, C.-C. Kuo, and M. Gopi. A generic
scheme for progressive point cloud coding. Visualization and
Computer Graphics, IEEE Transactions on, 2008.

[6] A. Iwai and M. Aoyama. Automotive cloud service systems
based on service-oriented architecture and its evaluation. In
Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 638 –645, july 2011.

[7] S. Karaman and E. Frazzoli. Sampling-based algorithms for
optimal motion planning. CoRR, 2011.

[8] A. Kolling and S. Carpin. Multi-robot pursuit-evasion
without maps. In ICRA 2010, pages 3045 –3051, 2010.

[9] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Kolter, D. Langer, O. Pink, V. Pratt,
M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun. Towards fully autonomous
driving: Systems and algorithms. In IEEE IV 2011, pages
163 –168, 2011.

[10] J. Levinson, M. Montemerlo, and S. Thrun. Map-based
precision vehicle localization in urban environments. In
Proceedings of Robotics: Science and Systems, Atlanta, GA,
USA, June 2007.

[11] F. Maurelli, D. Droeschel, T. Wisspeintner, S. May, and

H. Surmann. A 3d laser scanner system for autonomous
vehicle navigation. In ICAR 2009., pages 1 –6, june 2009.

[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open Source
Software, 2009.

[13] R. Schnabel and R. Klein. Octree-based point-cloud
compression. In Symposium on Point-Based Graphics, 2006.

[14] C. Urmson, C. R. Baker , J. M. Dolan, P. Rybski, B. Salesky,
W. R. L. Whittaker, D. Ferguson, and M. Darms.
Autonomous driving in traffic: Boss and the urban challenge.
AI Magazine, pages 17–29.

[15] J. Wang, J. Cho, S. Lee, and T. Ma. Real time services for
future cloud computing enabled vehicle networks. In
Wireless Communications and Signal Processing (WCSP),
2011 International Conference on, pages 1 –5, nov. 2011.

	Introduction
	Background
	System Description
	Implementation
	Metric

	Results
	Discussion
	Conclusion
	References

