
EE PUB. No. 313
Sep. 1977
Revised MIay 1978

September 1978 LIDS-P-852

A FAILSAFE DISTRIBUTED ROUTING PROTOCOL

Philip M. Merlin and Adrian Segall

Department of Electrical rneerin g
Technion - Israel Institute of Technology

Haifa, Israel.

Abstract

An algorithm for constructing and adarptively maintaining

routing tables in communication networks is Presented. The algor-

ithm.can be employed in store-and-forward as well as line switching

networks, uses distributed computation, r o- ides routing tables

that are loop-free for each destination a A._l times, adapts to

changes in network flows and is completely failsafe. The latter

means that after arbitrary failures and additions, the network

recovers in finite time in the sense of o-rc-ding routing paths

between all physically connected nodes. Ccmplete rigorous proofs

of all these properties are provided.

The work of A. Segall was supported by the mdv_-nced Research Project
Agency of the US Department of Defense (monitored by ONR) under
contract No. N00014-75-C-1183.

1. INTRODUCTION

Reliability and the ability to recover from topological changes are

properties of utmost importance for smooth operation of data-communication

networks. In today's data networks it happens occasionally, more or less

often depending on the quality of the individual devices, that nodes and

communication links fail and recover; also new nodes or links become opera-

tional and have to be added to an already operating network. The reliability

of a computer-communication network, in the eyes of-its users, depends on its

ability to cope with these changes, meaning that no breakdown of the entire

network or of large portions of it will be triggered by such changes and that

in finite - and hopefully short - time after their occurrence, the remaining

network will be able to operate normally. Unfortunately, recovery of the

network under arbitrary number, timing, and location of topological changes

is hard to insure and little successful analytical work has been done in

this direction so far.

The above reliability and recovery problems are difficult whether

one uses centralized or distributed routing control. With centralized rout-

ing, one has the problem of central node failure plus the chicken and egg

problem of needing routes to obtain the network information required to

establish routes. Our primary concern here is with distributed routing that

recovers from topological changes; here one has the problems of asynchronous

computation of distributed status information and of designing algorithms

which adapt to arbitrary changes in network topology in the absence of global

knowledge of topology.

The paper presents a distributed protocol that maintains a route

from any source to any destination in a network. The protocol is distributed

in the sense that no central tables are required and there is no global

knowledge of the routes, i.e. each node knows only who is the next node

(called the "preferred neighbor") on the route to a given destination. Each

-2-

node is responsible for updating its own tables (e.g. choosing a new pre-

ferred neighbor) and these updates are coordinated by the protocol via

control messages sent between adjacent nodes. For a given destination, the

set of routes maintained by the protocol are loop--ree at all times, and

whenever no failures occur, they form a spanning tree rooted at the destina-

tion (i.e. a tree that covers all nodes).

To each link in the network, a strictly positive "distance" (or

"weight") is assigned which represents the cost of using the link. Accord-

-ing to utilization and possibly other factors, this' distance may vary with

time following long-term trends. The length of any path is the sum of the

distances on the links of this path. Destinations may asynchronously trigger

the protocol and start update cycles to change routes according to new dis-

tances. Such a cycle first propagates uptree wnl-e _odifying the distance

estimates from nodes to the destination and then p-ropagates downtree while

updating the preferred neighbors. Each cycle tends to find routes with

short paths from each node to the destination, end assuming time-invariance

of link weights, the strict minimum (i.e. shortest oaths) will be reached

within a finite number of update iterations.

The proposed protocol also provides for recovery of routes after

failures and for additions of links or nodes to the network. When a link

fails, appropriate information is propagated backwards in the network and,

in addition, a "request" message is generated and forwarded towards the

destination. New links are brought up via a so!4 ar protocol. The request

message triggers an update cycle and it is guaranteed that within finite

time, all nodes physically connected to each destina-tion will have a loop-

free route to it. This holds also for multiple t opological changes, and

even if such changes occur while the protocol is active and the update is

in progress. The recoverability of the protocol is achieved without employ-

ing any time-out in its operation, a feature whic h greatly enhances its

amenability to analysis and facilitates structuresd ilementation.

-3-

The protocol is mainly intended for quasi-static routing in communi-

cation networks and the routes provided by the protocol can be used in a

variety of ways for actual routing of information. Although specification of

information routing algorithms is outside the scope of the present paper,

we indicate here a few applications. In a (physical or virtual) line-

switched network, it is often impractical to reroute already established

conversations, except in case of disruption caused by failure or priority

preemption. In this case, the routes provided by the present protocol may

be used for assigning paths to new or disrupted calls. For example; in a

virtual line-switched network the link weights may represent link delays,

and then the path provided by our protocol in steady state will give the

minimum delay route for the new call. If the weights represent incremental

delay, then the path will minimize network average delay (see [1, eq. (25)]).

Other criteria like probability of blocking, can also be taken into con-

sideration in the link weight. Observe that if the link weights change

drastically, the above strategy may allow new conversations to follow paths

so different from the old ones that together they form a loop, but this is

still the best one can do under the constraint that established conversa-

tions cannot be rerouted.

Similar strategies can be used in networks using message switching,

where the preferred neighbor indicates the first hop of the present best

estimated route towards the SINK and the node may for example increase the

fraction of messages routed over this path while reducing the fraction

sent over other routes. More sophisticated failsafe routing and update

procedures, where exact amount of increase and reduction of traffic

fractions are indicated so that optimality and routing loop-freedom are

achieved, have been obtained using ideas similar to the protocol of this

paper and are presented in a subsequent report [2].

-4-

Finally, we may mention that the present protocol can replace the

simple-minded saturation routing that is presently used in several networks

to locate mobile subscribers and to select routing paths [3]. The protocol

of this paper has all the advantages indicated in [3, Sec. II] for satura-

tion routing, but requires no time-out and provides a route selected not

only on the basis of the instantaneous congestion but on averaged quantities.

This work was inspired by [4] and [5], -where minimum delay routing

algorithms using distributed computation were developed. These algorithms

also maintain a per destination loop-free routing at each step. One of the

main contributions of the protocol given in -he present paper is to intro-

duce features insuring recovery of the routes fGro arbitrary topological

changes of the network. As a result, the protocol of the present paper is,

to our knowledge, the first one that is distributed and for which all the

following properties are rigorously proved:

(a) Loop-freedom for routes to each destination at all times.

(b) Independently of the sequence, locatic- and quantity of topological

changes, the routes recover in finite :ime.

(c) Under stationary conditions, the routes converge to paths with

minimal weighted length.

Several routing algorithms possessing scoe of the properties indicated

above have been previously indicated in the lieratre. In [6], a routing.

algorithm similar to the one used in the AIE.P n e-twrk [7] but with unity

link weights, is presented. It is shown- there, that at the time the algorithm

terminates, the resulting routing procedure is loop-free and provides the

shortest paths to each destination. As with the ARPA routing, however, the

algorithm allows temporary loops to be formed &drzing the evolution of the

algorithm. The algorithm proposed in [8] ensures loop-free routing for

individual messages. This property is achieved b- requesting each node to

send a probing message to the destination before each individual rerouting;

-5-

the node is allowed to indeed perform the rerouting only after having received

an acknowledgement from the destination. 'The extra load on the network by

sending probing messages from each node to each destination for each rerouting

is clearly extremely large. Also loop freedom for individual messages is a

weaker property than loop freedom for each destination. For example, in a

three-node network, sending traffic from node 3 to node 1 via node 2 and send-

ing traffic from node 2 to node 1 via node 3 would be loopfree for individual

messages, but not loopfree for each destination. See [9] for a more complete

discussion of loop freedom.

In addition to the introduction of this particular protocol and the

proofs of its main properties, the paper provides contributions in the

direction of modeling, analysis and validation of distributed algorithms.

The operations required by the algorithm at each node are summarized as a

finite-state machine, with transitions between states triggered by the

arrival of special control messages from the neighbors, and the execution

of a transition may result in the transmission of such messages. Methods

for modeling and validation of various communication protocols were proposed

in [103- [13]. These methods are designed however to handle protocols in-

volving either only two communicating entities or nodes connected by a fixed

topology. The model we use to describe our algorithm is a combination of

these known models, but is extended to allow us to study a fairly complex

distributed protocol. The analysis and validation of the algorithm is per-

formed by using a special type of induction that allows us to prove global

properties while essentially looking at local events.

.Before proceeding, we may mention two other distributed protocols

that were recently developed. In [14], an algorithm for network resynchroni-

zation is presented and its recovery properties are proved under arbitrary

topological changes. A similar goal is obtained by R.G. Gallager in an

unpublished work [15], while also determining the paths with minimum number

- 5a -

of links.between each pair of nodes in the network. Although there is a

great similarity between the ways in which the updating information.propa-.

gates and the distributed computation is performed by the algorithms of

[14], [15] and of the present paper, the exact relationship between these

protocols is a subject for future research.

-6-

2. THE PROTOCOL

To facilitate understanding, we describe the protocol in several

steps. We first present the "basic protocol", i.e. assuming that no topo-

logical changes occur. Then we describe the additions to the protocol in

case of link outage and finally the additions for links becoming operational.

A node outage can be represented as the outage of all of its links, and

similarly, a node becoming operational can be represented as links becoming

operational. Therefore, we do not pay special attention to topological

changes caused by nodes.

The following comments apply to the rest of the paper:

1. Since we are not concerned with data transfer, we use the term

"message" to mean the special control messages employed by the -

protocol.

2. We assume that messages sent by a node to a neighbor are received

in the same order that they are sent, i.e. FIFO is preserved in the

links (and local protocols).

3. The protocol proceeds independently for each destination. Conse-

quently, for the rest of the paper we fix the destination and

present and analyse the protocol for that given destination, which

is denoted by SINK.

2.1 The Basic. Protocol

As already mentioned, each node i in the network has at any time

a preferred neighbor. Thus, we assume that each node has a variable Pi

which points to that neighbor. For the basic protocol, we assume that after

initialization, the directed graph defined by the nodes i and arcs (i,Pi)

form a tree directed towards (and therefore rooted at) the SINK, as exempli-

fied by the network of Fig. 1 where directed arcs denote the preferred

neighbors {Pi}. Subsequent sections describing the protocol which handles

-7-

topological changes will show that this assumption is Justified by the

initialization procedure. Each node i has also a positive variable di

maintained by the protocol,denoting an estimated distance from i to the

SINK (dSINK is by definition equal to 0). Puring an update, the protocol

reevaluates the distances {d.) and accordingly the nodes choose preferred

neighbors (Pi) in such a way that the directed graph given by the arcs

(i,Pi) remains at all times a tree rooted at the SINK.

As already mentioned in Section 1, to each link (i,X) a strictly

positive "distance", denoted by dig, is assigned. We assume all links to

be full duplex and allow a link to have a different distance in each direc-

tion. The distance dit is allowed to vary with time and needs to be

known (measured or estimated) only by node i. The protocol tends to mini-

mize the distance d. from each node i to the SINK, where this distance

is given by the sum of the weights dim on the directed path from a node

to the SINK.

As described below, the SINK may asynchronously start update cycles

to change routes according to new distances. Such a cycle first modifies

distance estimates {di) uptree and then modifies preferred neighbors (p.1

downtree. An update cycle is started by the SINK by sending a message

MSG(dNK) to each of its neighbors (notice that MSG(d s = MSG(O) by
SINK SINK

definition). When a node, say i, receives a message from its Pi, it

reevaluates its estimated distance d. and transmits MSG(d.) to each of
1 3.

its neighbours except Pi. Notice that the spanning tree structure mentioned

before (Fig. 1) guarantees that after the SINK has started the updating

cycle, each of the network nodes will eventually perform this step. Further-

more, this is done in the order given by the tree from the SINK towards the

leaves.

Whenever a node i receives a message MSG(d) from a neighbor i,

it estimates and stores its distance through this neighbor to the SINK.

This distance is estimated as d+ dig. As said before, the reevaluation of

the estimated distance d. is performed when receiving MSG from the pre-

ferred neighbor Pi. Node i calculates then the minimum of the estimated

distances to the SINK through all those neighbors from which it has already

received MSG (during the present update cycle). The node sets then di as

this minimum. (Notice that d. is only an "estimate" of the minimal dist-

ance to the SINK because it is sometimes calculated based upon part of the

neighbors of i.)

When a node, say i, has received MSG(d) from all of its neighbors,

it transmits MSG(di) to its Pi and then determines its new preferred

neighbor Pi. This is done by choosing Pi as the neighbor which provides

minimal estimated distance from i to the SINK. This choice is made among

all neighbors of i and as such it may pick a neighbor different from the

one which provided di (the calculation of the estimated distance di is

usually based upon part of the neighbors). Since, as previously shown, each

node i will eventually send MSG(di) to all its neighbors except p.i

the leaves of the directed tree will eventually receive MSG from all their

neighbors. Thus they will send MSG to their preferred neighbor Pi and

reevaluate a new Pi. It can be easily seen by induction, that each node

will perform this step. This happens in the order given by the original

directed tree, from the leaves towards the SINK.

Since the SINK denotes the destination, the SINK has no preferred

neighbor, and therefore the SINK does not update PSINK when it receives

MSG(d) from all its neighbors. Instead, this event notifies the SINK that

the update cycle has been properly completed. The SINK is not allowed to

start a new update cycle until the previous cycle has been properly completed.

-9-

A node i always updates its preferred neighbor Pi to point

towards a node J having estimated distance dj < d.. As proved in

Section 3, this fact insures that the updated directed graph will remain

a tree at any time.

The basic protocol can be formally defined by the basic algorithm

performed by each node i. The latter is shown in Table 1 with the aid of

a Finite State Machine. Node i can be in either of two states. It will

be in state S2 after having received MSG from its preferred neighbor Pi

and until it receives messages from all its neighbors. Otherwise node i

will be in Sl. The variables D.(k), one for each neighbor 2 of i,
1

store the values of the estimated distance through link I to the SINK.

The variables Ni.(), one for each neighbor £ of i, denote flags which

can take the value "RCVD" to mean that MSG(d) was received from link (i,2)

during the current cycle, or the value "nil" otherwise. CT is a control

flag which can take over the values 0 or 1. We assume that when MSG(d)

arrives from link Q, it is given to the algorithm in the format MSG(d,Z).

When MSG(d,L) is processed, the flag N.i(d) is set to RCVD,

Di(4) is calculated, CT is set to 0, and then the Finite State Machine

executes transitions until no more transitions are possible. Transition T12

can be executed if node i is in state S1 and Condition 12 is satisfied,

i.e. the algorithm is processing a MSG(d,Z) in wahich Z = Pi and CT = 0.

If T12 is executed, then node i goes to state S2 and Action 12 is performed,

i.e. the estimated distance di is reevaluated and MSG(d) is transmitted to

each neighbor of i except the preferred neighbor Pi,. In a similar way,

T21 is executed when node i is in state S2 and Condition 21 is satisfied,

in which case node i goes to state S1 and Action 21 is performed. The role

of CT is to insure that T12 cannot be executed i=mediatly after T21 (for

example, suppose node i is in state S1 and MSG(d,9 = pi) arrives after

messages have arrived for all other links of i. In this case, without CT,

- 10 -

the sequence of transitions T12, T21, T12 will be performed in contradiction

with the protocol). Notice that the sequence T12, T21 is permitted.

The use of the Finite State Machine for describing the relatively

simple basic algorithm may appear superfluous. Its importance will become

apparent when describing the more complex protocols and the proofs of their

properties.

2.2 Handling Failures of Links

At our level of abstraction, the outage of a link is called "link

failure". Transient (or transmission) failures can be masked out by the

link protocol, and we are not concerned with them. If a link of the

directed tree fails, then all the nodes which are predecessors off this

link on the directed tree lose their route to the SINK, but they are unaware

of this fact at the time of the failure. For example, if link (7,8) of

Fig. 1 fails, nodes 6, 7 and 9 lose their route. Furthermore, if an update

cycle is started, node 7 will not be able to receive MSG(d,Z= 8) and there-

fore node 7, as well as nodes 6 and 9 will not be able to perform T12. In

such a case we would like to recover by finding an alternative route (e.g.

through node 5), but since the basic protocol alovws changing estimated

distance di and preferred neighbor Pi only after performing T12, there

is need to provide an extension to handle this situation. Two actions must

be taken by the extended protocol. First to inform. nodes 7, 6 and 9 not to

wait for triggering messages from the tree (and also that the existing tree

has no meaning for them anymore) and second, to oalo-w those nodes to choose

their Pi whenever control messages from new cyrcles arrive. These features

are in the sequel.

Whenever a node i discovers a failure of its link to the preferred

neighbour Pi, it sets Pi = nil and di = `o to mean that its estimated

distance to the SINK has become infinite. Then node i generates a special

message MSG(O) which propagates backwards through the tree to the nodes

that lost their route, causing them-also to set their best link to nil

and the estimated distance to infinite. The propagation backwards is done

as follows. Node i sends MSG(-) to all its neighbors except p i; if

a node J receives MSG(-) from a link other than pj, it stores it but

no other action is taken; if a node J receives MSG(-) from pj, then

it transmits MSG(-) to all its neighbors except pj and sets pj = nil,

dj = . When a node establishes Pi = nil, di = A, it is said to enter

state S3 (see Table 3).

The second part of the recovery, called "reattachment", consists of

choosing a new best link by those nodes i having Pi - nil. The reattach-

ment takes place if one of the following two situations occurs. One possi-

bility is that a node with Pi = nil receives on one of its links, I say,

a message MSG(doao) and the node is assured that this message was generated by

an update cycle that started after the failure that caused Pi = nil. A

second possibility is that at the time Pi is set to nil, such a message

has already been received at node i. The reattachment consists of setting

pi = 2, going to state S2 and effecting the same operations as in T12.

This, together with other mechanisms to be described, guarantees that if a

failure (or multiple failures) occurs, and if indeed a new update cycle is

started, all nodes physically connected to the SINK will eventually belong

to a non-disrupted directed tree rooted at the SINK.

As mentioned above, there is need to guarantee that reattachment

is performed only as a result of receiving a message generated by an up-

date cycle which started after the failure. This can be achieved by number-

ing the update cycles with nondecreasing numbers as described below. Each

node i will have a counter number n. which denotes the cycle number

currently handled by this node, and all messages transmitted by i will

carry ni in addition to di, i.e. they will be MSG(n,d i). The SINK

may increase its nSINK before starting a new update cycle, as explained later.

- 12 -

A node i receiving MSG(m,d) on its Pi updates its ni to equal m.

Now, reattachment is done by a node i with Pi = nil if an MSG(m,d) with

m > n. is received (or was previously received).

When an MSG(m,d) is received from link £ by node i, in addition

of storing d in Di(Z), there is need to remember also the value of m.

This can be saved in N.(Z), which can now take the values nil,O,1,2,3*...;
1

instead of nil and RCVD as in the basic algorithm.

If a failure occurs in a link not belonging to the directed tree,

no route is disrupted. However, if this link is connected to a node in

state S2, it is convenient to prevent T21 from happening at this node for

this update cycle. This will avoid nodes to update routes based upon

information which is invalidated by the failure and, more important, will

preclude proper completion from happening. Thus, proper completion will

indicate to the SINK that the update cycle was completed without failures

interfering with the process. Prevention of T21 is accomplished by intro-

ducing an additional.state, S2, into which a node enters if a nonpreferred

link fails while the node is in S2. A node i will leave S2 whenever new

information is received on Pi .see Table 3).

The described protocol allows the WINK to behave as follows. If

an update cycle started with nSIgK = m completes properly, the SINK is

allowed to start the next update cycle with the same nSINK . On the other

hand, the SINK may at any time increase nSINK and start a new update cycle

with an nSINK larger than those used before, even if previous cycles have

not been properly completed. (Notice that in any case the values of nSINK

are non-decreasing with time.) As proved later, if a new update cycle is

started while increasing nSINK, it will eventually "cover" all previous

cycles. Also, if failures do not occur for a long enough time, the new cycle

will be properly completed, and all failures will be recovered, i.e. for all

- 13 -

nodes i physically connected to the SINK, the directed graph of (i,pi)

will form a tree rooted at the SINK.

Table 2 summarizes the variables used by the algorithm performed by

an arbitrary node i as its part of the protocol. Fi(Z) denotes the status

of link £ as considered by node i, i.e. F.(Z) = UP if Z is considered

operational and Fi(2) = DOWN if Z is considered unoperational. F.(.) can

take also the value "READY" whose use will be described when dealing with the

problem of links becoming operational. At that time, the role of z.(l) will

also become clear. The variable mx. stores the value of the largest update

cycle number m of all the messages MSG(m,d,t) received by node i. The

rest of the variables and their use were already described. The local link

protocols controlling the operations of the links connected to node i may

relay to the algorithm performed by node i four types of messages, and they

are also summarized in Table 2. MSG denotes an updating message, FAIL(Q)

denotes the detection of the failure of link Z, and the remaining two will

be described later. The exact properties requirted fcori the local protocol

to insure proper operation of the network protocol will be discussed in

Section 2.7.

Table 3 describes the generalized algorithm of node i for the proto-

col which handles topological changes. The protocol as described up to now

is implemented by the algorithm of Table 3 if ignoring steps I.1, I.2.4, 1.3.1,

I.4, II.1.5, II.2.5 and II.7.7. These steps relate mainly to links becoming

operational and will be discussed in subsequent sections. Table 3 uses a

notation similar to the one of Table 1. States Sl, S2 and transitions T12 a

and T21 are similar to those described in Table 1 for the basic algorithm.

State S3 denotes the situation where the node has Pi = nil, which results

from receiving a FAIL or a MSG with d = co from Pi. State S2 denotes a

state similar to S2, but from which a transition T21 is precluded. As

previously described, the algorithm goes to such a state S2 if while at S2

a failure is detected from a link other than Pi. The "Facts" given in the

algorithm are displayed for helping in its understanding and are proven in

Theorem 2 of Section 3. A Fact holds if the transition under which it

appears is performed.

2.3 Starting a New Update Cycle

There exist several procedures for starting a new update cycle and

setting the corresponding nSINK in a way which satisfy the required behaviour

from the SINK as described in Section 2.2. Two of these procedures are des-

cribed next.

Version 1: At given intervals of time, or as a result of the detection of

a change in the traffic pattern, the SINK increments nSINK and starts a

new update cycle. The above version may make use of a time-out to trigger

a new update cycle if the previous one is not properly completed within

certain time. If a failure occurs after proper completion, there is no

direct triggering of a new update cycle, and thus recovery can be achieved

only whenever the SINK decides to start a new update cycle. In addition,

this version unnecessarily increments nSINK for every update; hence an

unnecessarily large number of bits to represent nSINK is required. These

two disadvantages are overcome by the next version.

Version 2: In order to cope with changes in traffic patterns, after proper

completion of the previous update cycle, the SINK may start a new update

cycle with the same nSINK. In addition, whenever a node i detects a

failure of a link attached to it, the node generates a special message

REQ(ni) which is forwarded through the directed path of preferred links

to the SINK. If such a REQ(m) arrives at a node i having Pi = nil, the

REQ is discarded. In Section 3 it is shown that if a REQ(ml) is generated

and forwarded as mentioned above, then some REQ(m2), m2 > ml will actually

arrive at the SINK, within finite time. Whenever a REQ(m) arrives at the SINK,

- 15 -

and if m = nSINK, then nSINK is incremented and a new update cycle is

started. This cycle will take care of recovery from the failure that

generated the REQ(m). If m < nSINK such a cycle was already started and

the REQ(m) can simply be ignored, (Notice that m cannot be larger than

nSINK.) This version guarantees that if an update cycle with nSINK = m

is started, the cycle will be properly completed in finite time or else, a

failure has occurred and a REQ(m) will arrive at the SINK. (This is provedr-&

in Section 3.) Thus, there is no need for a time-out to make sure that the

SINK will not wait indefinitely for the proper completion of an update

cycle. The additions to the algorithm for implementing this version are

given in I.1 and 1.2.4 of Table 3. In the rest of the paper, we assume

that this version is implemented, although most of the results are also

applicable to Version 1.

2.4 Handling Links Becoming Operational

If link (i,l) is down, i.e. F.(k) = F (i) = DOWN, and it becomes
1

operational, nodes i and L should coordinate the operations necessary

to bring the link up. Otherwise, a deadlock could occur, for instance, if

i sets Fi.() = UP while at S2 and . sets F9(i) = UP after performing

T21 of the same update cycle. In this case, i will not perform T21 until

receiving a message from Q, and such a message will not be sent because

Z already completed this update cycle, i.e. deadlock.

The coordination is achieved by having both nodes bring the link up

Just before starting to perform their part of the same new cycle. This

is done in two steps. First, i and 2 compare ni and nz via the local

protocol and decide to bring up the link when starting to process the first

cycle with number strictly higher than max(ni,n). This fact is remembered

at the nodes by setting z() nd z (i) to max(ni.n x), as well as

F.(Z) and F (i) to "READY". In addition, N i() and N (i) are bet to1 2. i .

- 16 -

nil and REQ(zi(W)) is generated by nodes i and Z and forwarded to the

SINK in the same way as described in Section 2.3 (Version 2) for failures.

This will guarantee that an update cycle with nSINK larger than zi(L)

(and z (i)) will be started. This first step of the coordination at node

i is done by message WAKE(k) given by the local protocol to the algorithm.

The actions performed by the algorithm when receiving such a message are

described in 1.4 of Table 3. The synchronization assumes that the execution

of WAKE(Q) and WAKE(i) are simultaneously started at nodes i and Z

respectively, in order to guarantee that zi(2) = zC(i). However, it may

happen that a failure occurs again in the link and one of the nodes succeeds

to complete the synchronization while the other node does not. The protocol

allows for such a situation and only requires that the link protocol ends

the synchronization (successfully or unsuccessfully) within finite time. If

the synchronization is unsuccessful, no action is taken by the node, and the

link will remain DOWN from this node's point of view. Section 2.7 gives a

more formal and complete list of the requirements that the link protocol

should satisfy.

The second step of bringing the link (i,Z) up is done by node i

(i.e. F.(Z) is set from READY to UP) when node i receives MSG from link

£ or when the node counter number n. becomes larger than z.i(). This

is represented respectively by 1.3.1 and II.1.5, II.2.5, II,7.7, of Table 3.

2.5 The Algorithm for the SINK

The algorithm for the SINK, assuming that Version 2 of Section 2.3

is chosen, appears in Table 4. Most of the algorithm was already informally

discussed in previous sections. The main difference between the algorithm

for the SINK and that for an arbitrary node i is that the first does not

need to keep the following variables:

- 17 -

-pi (which is not defined for the SINK)

di (which is always 0 for the SINK)

Di() (which is only needed to update di and pi)

- mxi (nSINK is always the largest update number)

- i(9) (during WAKE synchronization, zSINK() is always set to

nSINK = max(nSINKn')

In addition, the algorithm may receive a "START" message from the "outside

world" which will cause it to start a new cycle, provided that the last one

was properly completed. WAKE and REQ call also for the execution of the

Finite-State-Machine, and as a result WAKE as well as REQ(m= nSNK) will

cause an increment of nSiNK and a new update cycle will be started. States

Sl and S2 are similar to the corresponding states of the algorithm for an

arbitrary node i. However, Sl means for the SINK that the last update

cycle was properly completed, and S2 means that the current update cycle is

not yet completed. T12 and T22 represent the starting of a new update cycle

and T21 the proper completion. For the SINK there is no need for states

equivalent to S3 and S2.

2.6 Initialization of the Protocol…__-_______-______--_-_

Any arbitrary node i comes into operation in state S3, with node

counter number ni = 0, preferred neighbor Pi = nil, and Fi(k) = DOWN

for all k. The value of the remaining variables is immaterial. From this

initial condition, the local protocol may try to wake the links and it

proceeds operating as defined by the algorithm (Table 3). The SINK comes

into operation in state S1, with nSINK = 0 and Fi(k) = DOWN for all k,

and proceeds in the same way but according to the algorithm of Table' 4.

- 18 -

2.7 Properties Required from the Local Protocol

On each link of the network there is a local protocol that is in

charge of exchanging messages between neighbors. Our main algorithm assumes

that the following properties hold for the local protocol:

2.7.1 All links are bidirectional (duplex).

2.7.2 dig > 0 for all links (i,Z) at all times.

2.7.3 If a message is sent by node i to a neighbor X, then in finite

time, either the message will be received correctly at I or

F.i() = F (i) = DOWN. Observe that this assumption does not preclude

transmission errors that are recovered by the local protocol (e.g.

"resend and acknowledgement").

2.7.4 Failure of a node is considered as failure of all links connected

to it.

2.7.5 A node i comes up in state S3, with ni = 0, p = nil, and

F.() = DOWN for all links (i,Z).

2.7.6 The processor at node i receives messages from link (i,k) on a

first-in-first-served (FIFO) basis.

2.7.7 A link (i,k) is said to have become operational as soon as the

local protocol discovers that the link can be used. Links (i,k)

and (X,i) become operational at the same time and subject to the

following restrictions, a WAKE "message" is delivered in this case

to each of the processors i and Z.

WAUKE(Z) can be received at node i only if

(a) node Z receives WAKE(i) at the same (virtual) time;

(b) there are no other outstanding messages on link (±,L) and on (Z,'

(c) F.i() = F (i) = DOWN.

- 19 -

2.7.8 If Fi.() = DOWN, the only message that the processor at i can

receive from 9 is WAKE(R).

2.7.9 (a) If F.(i) # DOWN and FZ(i) # DOWN' and Fi.() goes to DOWN,

then Fi(i) goes to DOWN in finite time.

(b) If Fi () = F,(i) = DOWN and F.(l) goes to READY, then in

finite time, either Ft(i) goes to READY or F.(l) = FI(i) = DOWN.

2.7.10 When two nodes i and Z, receive WAKE as described in 2.7.7, a

"synchronization" between i and I is attempted. At either end the

synchronization may or may not be successful (the latter because of

a new failure). If it is successful, the node proceeds as in Step I.4

of Table 3. If not, then no action is taken.

- 20 -

3. PROPERTIES AND VALIDATION OF THE ALGORITHM

Some of the properties of the algorithm have already been indicated

in previous sections. Here we state them explicitly along with some of the

others. We start with properties that hold throughout the operation of the.

network, some of them referring to the entire network at a given instant of

time and some to a given node or link as time progresses. Then recovery of

the network after topological changes is proved through a series of theorems,

and finally we state and prove the fact that the algorithm achieves shortest

weighted routes. We may point out, that the most important features of the

algorithm are given in Theorems 1, 4, 5 and 6.

Before stating the main properties of the algorithm, we need several

definitions and notations:

S1, S2, 52, S3 = states of the Finite-State Machine.

PC(m) = time of proper completion with cycle counter number m.

Sl[n] = state S1 with node counter number n. = n, and similarly for

S2rn], S3[n], S2[n].

Whenever we want to refer to a quantity at a given time t, we add the time in

in parentheses (e.g. Pi(t) means preferred neighbor Pi of node i at

time t, N.i()(t) means variable N.(Z) at time t, etc.)

si(t) = state and possibly node counter number ni of node i at time t.

Therefore we sometimes write si(t) = S3 for instance, and sometimes

s.(t) = S3[n].

We use a compact notation to describe changes accompanying a transi-

tion, as follows:

Txy[t, i,MSG(ml,dl,kl),SEND(m2,d2, 2),(nl,n2),(dl,d2),(pl,p2),(mxl,mx2)] (la)

will mean that transition from state Sx to state Sy takes place at time

t at node i caused by receiving MSG(ml,dl) from neighbor- £1; in this

transition i sends MSG(m2,d2) to Z2, changes its node counter number

- 21 -

n. from nl to n2, its estimated distance to destination di from dl

to d2, its preferred neighbor Pi from pl to p2 and the largest up-

date counter number received up to now mxi from mxl to mx2. Similarly,

Txy[t,i,FAIL(4) ,SEND(m2,d2,2) ,(nl,n2) (dl,d2),(pl,p2),(mxl,mx2)] (lb)

denotes the same transition as above, except that it is caused by receiv-

ing FAIL(Q) from neighbor I. For simplicity, we delete all arguments that

are of no interest in a given description, and if for example nl is

arbitrary we write ($,n2) instead of (nl,n2). Similarly, if one of the

states is arbitrary, $ will replace this state. In particular observe

that

T02[t,SINK,(O,n2)] (2)

means that an updating cycle with number n2 is started at time t and

T21[t,SINK,(n2,n2)] (3)

means that proper completion of the cycle occurs at time t. If Txy[t],

then we use the notations:

t- = time Just before the transition,

t+ = time just after the transition.

We also use

[t,i,MSG(m,d,4)] (4)

to denote the fact that a message MSG(m,d) is received at time t at i

from Q, whether or not the receipt of the message causes a transition.

Finally, at a given instant t, we define the Routing Graph RG(t)

as the directed graph whose nodes are the network nodes and whose arcs are

given by the preferred neighbors Pi, namely there is an arc from node i

to node 4 if and only if Pi(t) = ,. For example, the routing graph of

the network in Fig. la is given in Fig. lb. In order to describe properties

of the RG(t), we also define an order for the states by S3>S2 = S2>S1.

- 22 -

Also, if Sx and Sy are states, then the notation Sx > Sy means Sx > Sy

or Sx = Sy. For conceptual purposes, we regard all the actions associated

with a transition of the Finite-State Machine to take place at the time of

the transition.

Theorem 1

At any instant of time, RG(t) consists of a set of disjoint trees

with the following ordering properties:

i) the roots of the trees are the SINK and all nodes in S3;

ii) if Pi(t) = Q, then n (t) > ni(t);

iii) if Pi(t) = and n(t)= ni(t), then sz(t) > it);

iv) if Pi(t) = Z and n (t) = ni(t) and sf(t) = si(t) = S1, then

d t) d.(t).

The proof of Theorem 1 is given in Appendix A. According to it, the

RG consists at any time of a set of disjoint trees, i.e. it contains no loops.

Observe that a tree consisting of a single isolated node is possible. The

algorithm maintains a certain ordering in a tree, namely that concatenation

of (ni,si) is nondecreasing when moving from the leaves to the root of a

tree and in addition, for nodes in S1 and with the same node counter number,

the estimated distances d. to the SINK are strictly decreasing.

In addition to properties of the entire network at each instant of

time, we can look at local properties as time progresses. Some of the most

important are given in the following theorem whose proof appears in Appendix A

(see c) and d) in Theorem A.ll).

- 23 -

Theorem 2

i) For a given node i, the node counter number ni is nondecreasing

and the messages MSG(m,d) received from a given neighbor have non-

decreasing numbers m.

ii) Between two'successive proper completions PC(m) and PC(m), for each

given m with m < m < m, each node sends to each of its neighbors

at most one message MSG(m,d) with d < a.

iii) Between two successive proper completions PC(m) and PC(m), for each

given m with m m < m, a node enters each of the sets of states

{Sl[m]}, {S2[m], S2[m]}, {S3[m]} at most once.

iv) All "Facts" in the formal description of the algorithm in Section II

are correct.

A third theorem describes the situation in the network at the time

proper completion occurs:

Theorem 3

At PC(m), the following hold for each node i:

i) If n. = m, then s. = S1 or si = S3.

ii) If a message MSG(m,d) with d # X is on its way to i, then

s. = S3 and n. = n.

iii) If either (ni = m and si = S1) or ni < m, then for all k such

that Fi(k) = UP, it cannot happen that {Ni(k) = m, Di(k) < -}.

A combined proof is necessary to show that the properties appearing

in Theorems 1, 2, 3 hold. The proof uses a two-level induction, first assum-

ing properties at PC to hold, then showing that the other properties hold

between this and the next PC and finally proving that the necessary proper-

- 24 -

ties hold at the next PC. The second induction level proves the properties

between successive proper completions by assuming that the property holds

until Just before the current time t and then showing that any possible

change at time t preserves the property. The entire rigorous procedure

appears in Appendix A.

In order to introduce properties of the algorithm regarding normal

activity and4 recovery of the network, we need several definitions.

Definition

We say that a link (i,Z) is potentially working if Fi(L) # DOWN

and F (i) # DOWN, and a link (i,Z) is working if FI(Z) = F(i) - UP.

Two nodes in the network are said to be potentially connected at time t
if there is a sequence of links that are -- otentially working at time t
connecting the two nodes. A set of nodes is said to be strongly connected

to the SINK if all nodes in the set are potentially connected to the SINK

and for all lirks (i,a) connecting those nodes, we have either

Fi() - F (i) = UP or Fi(k) = F (i) = DOWN.

Definition

Consider a given time t, and let ml be the highest counter

number of cycles started before t. We say that a pertinent topological

change happens at time t if the algorithm at a node i with ni(t-) = ml

receives at time t a message WAKE(g) resulting in successful WAKE syn-

chronization or a message FAIL(L). Observe from steps 1.2 and I.4 of

Table 3 that REQ(ml) is generated and sent if and only if a pertinent

topological change happens at a node i with Pi $ nil. Also note, that a

pertinent topological change happens if and only if node i has a link

(i,k) such that at time t, Fi(k) changes from DOWN to READY or from

either UP or READY tQ DOWN (see Fig. 2).

25 -

Theorem 4 (Normal activity)

Let

L(t) = (nodes potentially connected to SINK at time t} ,

H(t) = (nodes strongly connected to SINK at time t} .

Suppose

T 2[tl,SINK,(ml,ml)]; (5)

namely a cycle is started at tl with a number that was previously used.

Suppose also that no pertinent topological changes have happened while

nSiK = ml before tl and no such changes happen for long enough time

after tl. Then there exist tO, t2, t3 with tO < tl < t2 < t3 < ~ such

that a), b), c), d) hold:

a) T21[tO,SINK,(ml,ml)]; (6)

b) It in the interval [tO,t3], we have i(t) = L(t) = L(tO);

c) for all icL(tO), we have

T$2[t2ii, ,(ml,nl) (7)

for some time t2i in the interval [tl,t2];

d) i) T21[t3,SINK,(ml,ml)]; (8)

ii) RG(t3) for all nodes in L(tO) is a single tree rooted at SINK.

In words, Theorem 4 says that under the given conditions, if a new

cycle starts with a number that was previously used, then Proper Completion

with the same number has previously occurred and the new cycle will be

properly completed in finite time while connecting all nodes of interest (i.e.

in L(tO)) to the SINK, both strongly and routingwise. The proof of Theo-

rem 4 is given in Appendix B.

The recovery properties of the algorithm are described in Proposi-

tions 1, 2 and in Theorem 5. The proofs of the propositions appear in

Appendix B.

- 26 -

Proposition 1

Let L(t), H(t) be as in Theorem 4. Suppose

T$2[tl,SINK,(ml,m2)] ; m2 > ml , (9)

namely a cycle starts at time tl with p number that was not previously:

used. Suppose also that no pertinent topological changes happen for a

long enough period after tl. Then

a) there exists a time t2, with tl < t2 < A, such that

i) for all ---ii L(t2)

T,2[t2ii, ($,m2)] ' (10)

happen at some time t2. with tl < t2i < t2.

ii) H(t2) = L(t2)

b) There exists a time t3 < X such that

r- i) T21[t3,SINK,(m2,m2)] ; (11)

ii) Yt in the interval [t2,t3], we have H(t) = L(t) = H(t2);

iii) RG(t3) for all nodes in L(t3) is a single tree rooted at

SINK.

Part a) of Proposition 1 says that under the stated conditions, all nodes

in L(t) will eventually enter state S2[m2]. Part b) says that the cycle

will be properly completed and all nodes potentially connected to the SINK

at time PC(m2) will actually be strongly connected to the SINK and will also

have a routing path to the SINK.

Finally, we observe that reattachment of a node loosing its path to

the SINK or bringing a link up requires a cycle with a counter number higher

than the one the node currently has. Proposition 2 ensures that such a cycle

has been or will be started in finite time by the SINK.

- 27 -

Proposition 2

Suppose a node i receives FAIL(Z) while n. = ml or a successful

WAKE(Q) synchronization occurs at node i while z.i() = ml. Then the

SINK has received before t a message REQ(ml) or will receive such a message

in finite time after t.

Propositions 1 and 2 are combined in:

Theorem 5 (Recovery theorem)

Let L(t), H(t) be as in Theorem 4. Suppose there is a time tl

after which no pertinent topological changes happen in the network for long

enough time. Then there exists a time t3 with tl < t3 < - such that

all nodes in L(t3) are strongly connected to the SINK and are on a single

tree rooted at SINK.

Proof

Let tO < tl be the time of the last pertinent topological change

before tl. Let i be the node detecting it and let m = n.(tO-). Then

Proposition 2 assures that a message REQ(m) arrives at some finite time at

SINK. Let t2 < - be the time the first REQ(n) message arrives at SINK.

Condition 12 or 22 in Table 4 dictates that SINK will start at time t2 a

new cycle, with number ml = m+l. Since by the definition of pertinent

change, m is the largest number at time tO, we have that tO < t2. By

assumption, no pertinent topological changes happen after time tO for

a long enough period, so that no such changes happen after time t2. Con-

sequently Proposition 1 holds after this time and the assertions of the

Theorem follows.

Theorem 6 (Shortest paths)

With the notations of Theorem 5, suppose the conditions of Theorem 5

hold and in addition, suppose that the weights di of the-links are time in-

variant for a long enough period after tl. Then, after completion of a

- 28 -

finite number of cycles after t3, the routing graph RG will provide the

shortest route in terms of the weights di from each node in L(t3) to

the SINK. Let SR be the graph providing the shortest routes in terms of

dig. Then the necessary number of cycles is bounded from above by the

largest distance from SINK in terms of number of hops on SR.

Proof

Observe from steps II.1.3 and II.3.7 in Table 3, that during the

first cycle after t3 all nodes closest to SINK on SR will have Pi = SINK

and will never change p. afterwards.

Next, consider any connected subgraph A of SR that includes the

SINK. Suppose that at the time of a cycle completion SR and RG coincide

for nodes in A. Then these nodes will never change their preferred neighbors

Pi afterwards. Also during the next cycle at least the nodes neighboring A

on SR will change their pi such that RG and SR will coincide for them too,

and this proves the assertion.

- 29 -

IV. DISCUSSION AND CONCLUSIONS

The paper presents an algorithm for constructing and maintaining

loop-free routing tables in a data-network, when arbitrary failures and.

additions happen in the network. Clearly, the properties that are rigorously

proved in Section 3 and the Appendices hold also for several other versions

of the algorithm, some of them simpler and some of them more involved than

the present one. We have decided on the present form of the algorithm as a

compromise between simplicity and still keeping some properties that are

intuitively appealing. For example, 'one possibility is to increase the up-

date cycle number every time a new cycle is started. This will not simplify

the algorithm, but will greatly simplify the proofs. On the other hand, it

will require.many more bits for the update cycle and node numbers m and n

than the algorithm given in the paper. Another version of the algorithm

previously considered by us was to require that every time a node

receives a number higher than n. from some neighbor, it will "forget" all

its previous information and will "reattach" to that node immediately, by a

similar operation to transition T32. This change in the algorithm would

considerably simplify.both the algorithm and the proofs, but every topologi-

cal change will affect the entire network, since after any topological change,

all nodes will act as if they had no previous information. On the other

hand, the version given in the paper "localizes" failures in the sense that

only those nodes whose best path to SINK was destroyed will have to forget

all their previous information. This is performed in the algorithm by re-

quiring that nodes not in S3 will wait for a signal from the preferred neigh-

bor Pi before they proceed, even if they receive a number higher than ni

from other neighbors, The signal may be either a, in which case the node

enters S3 (and eventually reattaches) or less than -, in which case the

node proceeds as usual.

- 30 -

A final remark regarding the amount of control information required

by the protocol. Observe that since for each update and for each destina-

tion each node sends over each link the distance d. and the node counter
1

number. n., the amount of information sent over each link is of the same

order of magnitude as the ARPA routing protocol [7]. The difference is

that the latter allows information for all destinations to be sent in one

message, whereas our protocol requires in principle separate messages for

different destinations (although sometimes several messages may be packed

together). If the overhead for control messages is not too large however,

the extra load will not be significant.

- 31 -

Appendix A

We organize the proofs as folloVs: We start with the statements of

a few properties that follow immediately from the formal description of the

algorithm in Table 3. Lemmas A.1 - A.4 and Theorem A.1 contain the proofs

of Theorems 1, 2 and 3, together with some other properties needed in the

proofs themselves. Theorem 4 and Propositions 1 and 2 will be proved in

Appendix B.

Properties of the Algorithm

R1 Any change in ni, Si. Pi. or sending any message (m,d) can happen

only while i performs a transition.

R2 Txy[t,i,SEND(m,d),($,n2),($,d2),(i,mx2)] implies d = d2.

If d #o, then

i) Txy = T12 or T21 or T22 or T32 or T22

ii) n2 =.mx2 = m

If d = a, then

iii) Txy = T13 or T23 or T23

iv) n2 = m.

R3 T32[ti,(nl,n2)] -- n2 > nl

R4 si(t) = S3 <=> pi(t) = nil <=- di(t) =

R5 Txy[t,i,(pl,p2)], pl 1 nil, p2 i pl 4 Txy = T13 or T21 or T23 or T23.

R6 mxi(t) is nondecreasing in time for any i.

R7 In the Finite-State-Machine, no two conditions can hold at the same time.

This implies that the order of checking the conditions of the transitions

is irrelevant.

R8 For all t and all nodes i in the network, nSiNK(t) > ni(t) and

n_ ,(t) > mxI(t).

- 32 -

R9 The Finite-State Machine has two types of transitions. The first type

is effected directly by the incoming message, while the second type is

caused by the situation in the memory of the node. Transitions T23

and T21 are of the second type, all others are of the first type. Each

message can trigger only one transition of the first type, and this

transition comes 'always before transitions of the second type. This

is controlled by the variable CT in Table 3.

R10 The possible changes of Fi (Z) are given in Fig. 2. The types of

messages causing them are also shown. A pertinent topological change

happens iff Fi(Z) + DOWN or Fi(L) changes from DOWN to READY at a

node i with ni(t-) = ml, where ml is the highest counter number of

cycles started before t.

The following lemma says that the node number ni can be changed

only when receiving a message from the preferred neighbor Pi and then, the

new number is exactly the cycle number m received in that message. It also

gives conditions for leaving state S3.

Lemma A.1

If

Txy t,i, MSG(m,d,Z), (nl,n2), (pl,) (A.1)

or
Txy[t,i, FAIL(Q),(nl,n2),(pl,O)

then

a) pl # nil, n2 # nl'-> = = pl and n2 =m ;

b) pl = nil n> n2>nl, and also 3k s.t. Fi(k)(t-) = UP, Ni(k)(t-) n= 2.

- 33 -

Proof

a) From the algorithm we see that T21, T22, T22 do not apply here since

they imply n2 = nl. Also T32 does not apply, since then pl = nil.

If T13, T23 or T23 is caused by FAIL(L) then n2 = nl, so this

case does not apply either. In all other cases, n2 3 m and pl 3 L

(see II.1.4, II.2.1, II.2.4 in Table 3).

b) pl = nil implies Txy T32 and the assertion follows from steps

II.7.1 and II.7.5 in Table 3.

The next lemma proves statement i) of Theorem 2 and shows the role of

the node counter number ni. Here we see for the first time that several

properties have to be proved in a common induction.

Lemma A.2

a) [i,tl,MSG(ml,dl,Q)], [i,t2,MSG(m2,d2,k)], t2 > tl 4 m2 > ml.

b) T%%[t,i,(nl,n2)] - n2 > nl .

c) Let M.(t,pi(t)) denote the counter number m of the last message

MSG(m,d) received at i before or at time t from the preferred

neighbor Pi(t). Then

ni(t) < M.(t,Pi(t)) (A.2)

Proof

The proof proceeds by induction. We assume that a), b), c) hold up

to, but not including, time t for all nodes in the network. We then prove

below that any possible event at time t preserves the properties. This,

combined with the fact that a), b), c) hold trivially at the time any

node comes up for the first time completes the proof.

- 34 -

a) Suppose t - t2. Then by FIFO and property R2, 3t3,t4 with

t3 < t4 < t such that n (t3) = ml and n (t4) = m2. By induction

hypothesis on b), n4 was nondecreasing up to (but not including)

time t, so ml < m2.

b) Observe first from steps 1.2.4 and II.5.1 in Table 3,

T[t, i,FAIL(1),(nl,n2)

implies n2 = nl, so that the statement is true in this case. We

therefore have to check only the case when the transition is caused

by MSG. Suppose

T$$[t, i, MSG(m,d,Z),(nl,n2),(pl,p2) (A.3)

happens. If n2 = nl, q.e.d. If n2 A nl, then Lemma A.1 implies

that either pl = nil or (pl = L, n2 = m). If pl = nil, q.e.d.

from Lemma A.1. If (pl = i, n2 = m),

then

nl < M. (t-,pl) = Mi(t-,£) < M.(t,L) = m = n2 (A.4)

where the inequalities follow respectively from induction hypothesis

on c) and from applying a) at time t.

c) We have to show that if

[i,t, MSG(m,d,),(nl,n2),(pl,p2)] (A.5)

then

i) £ = pl =p2 implies n2 < m, and

ii) p2 # pl, p2 # nil implies n2 < Mi(t+,p2)

To do this we check all possible transitions and also the case when the received

message causes no transition. T13, T23 and T23 do not apply here because

then pl # nil, p2 = nil. If T22 or no transition, then p2 = pl and

n2 = nl, and we have

n2 - nl < M (t-,pl) < M (t+,pl)= M.(t+,p2) = m ,(A.6)

- 35 -

where the inequalities follow from the induction hypothesis and from

a) respectively. For the other transitions we have

T12, T22 and T22 imply Z = pl = p2, n2 = m (see II.1.1 and II.1.4

in Table 3).

T21 implies p2 # nil, and then the counter number of the last

message received from any neighbor before t+ is

nl = n2 = m.

T32 implies p2 # pl, p2 $ nil and then from steps II.7.4, II.7.5

II.7.1 in Table 3, n2 = mx.(t-), p2 = k*, Mi(t+,k*) =

N. (k*)(t-) = mx (t-).
1 1

The next lemma shows what are messages that can travel on a line after

a failure or after a message with d = .

Lemma A.3

a) If

[i,tl,MSG(ml,dl,k)3, [i,t2,M3G(m2,d2,))] (A.7a)

where t2 > tl, dl = , then m2 > ml.

b) If

[i,tl,FAIL(Q)], [i,t2,MSG(m2,d2,Z)] (A.7b)

where t2 > tl, then m2 > n (tl) and also m2 > n (tl).

Proof

a) 3t3 < tl such that

T3[Q,t3,SEND(ml,dl,i),(,n2)] (A.8)

and from property R2 we have ml = n2. The next transition of Q must

be

T32[X,(n2,n3)], n3 > n2

so that by Lemma A.2 b) and R2, node Q will never send after t3 any

message MSG(m,d) with m < ml. FIFO at node i completes the proof.

- 36 -

b) After failure, a link (i,z) can be brought up only with numbers

strictly higher than zi(Z) as defined in step I.4 of Table 3.

Since ni is non-decreasing by Lemma A.2. b), the proof is complete.

Lemma A.4

If Fi(t)(t) = READY and

t ,i ,MSG(m,d,R)] (A.9)

then m > zi(l)(t). Observe that this is Fact 1.3.1 in Table 3.

Proof

From step8s 1.l1-I-.4 in Table 3 and property 2.7.7inSec.. 2A7, Fi(1) can

go to READY only from DOWN and only when successful synchronization of

WAKE(Z) occurs at i. I4et tl < t be the time this occurs. By property

2.7.7, at time tl there are no outstanding messages on (i,Z) or (h,i)

and zi(2) is established as max{ni,nj} (see I.4 in Table 3). Therefore

the message in (A,9): must have been sent at time t2 > tl and since L

sends messages only to nodes k for which F (k) = UP it follows that

F9 (i)(t2+) = UP, But F (i) could have gone to UP from READY only because

of II.1.5, II.2.5 42, II.4.2, II.6., II7.7, I.8.2 or 11.9.2 in Table 3, and

not because of 1.3 and in all the above we have n, > z9(i) M z (l). Since

nz is nondecreasing and I sends MSG(m,d) only with m m nt, the asser-

tion follows.

Lemma A.5

If

T02[tl,i, (,m)] , (A.10)

then It > tl+, we have Vk s.t. Fi(k)(t) a READY that zi(k)(t) > m

Therefore, no link can be brought up by node i with number m after the

node entered S2[m] (brought up means Fi(k) + UP).

- 37 -

Proof

If we have F.(k)(tl-) = READY and z.(k)(tl-) < m, then at time
1 1

tl, we have F.(k) + UP. If it is not, then t > tl, we have ni(t) > m

by Lemma A.2, so that only for nodes k with zi(k) > m it can happen that

F.(k) - READY after tl.

The next theorem completes the proof of Theorems 1, 2 and 3.

Theorem A.1

Let PC(m), PC(m) be the instants of occurrence of two successive

proper completions. Then

a) Theorem 3.

b) Consider any number ml < m. Let m be the highest number m < ml

such that PC(m) occurs. Let LPC(m,ml) be the time of occurrence

of the last PC(m) such that PC(m) < PC(m). If for any i,k,

t < PC(m), we have either

N (k)(t) = ml = m, Di(k)(t) # a, si(t) # S3, ni(t) = m (A.lla)

or

N.(k)(t) = ml > m , (A.llb)

then 3Tle [LPC(m,ml),t) and T2E (T,t) such that

[Tl,k,SEND(ml,dl,i)] (A,12a)

[T2,i,MSG(ml,d2,k)] (A.12b)

with dl = D.(k)(t) - dik(T2), d2 = Di(k)(t).

(Note: In words, the above insures that the message (ml,dl) was

sent and received no earlier than LPC(m,,ml)).

c) Consider any number ml < m. Let m be the highest number m < ml

such that PC(m) occurs. Let LPC(m,ml) be the time of occurrence

of the last PC(m) such that PC(m) < PC(m). Then

- 38 -

i) [tl,i,MSG(ml,dl,i)], [t2,i,MSG(m2,d2,1)] where

LPC(m,ml) < tl < t2 < PC(m) and d2 # c imply m2 > ml.

ii) If

T21[tl,i,(nl,nl)] (A.13)

[t2,i,MSG(m,d,Q))], d # (A.14)

where LPC(m,nl) < tl < t2 < PC(m), then m > nl.

iii) A node i enters, between LPC(m,m) and PC(m), each of

the followipg sets of states at most once

{Sl[m]}, {S2[n], S2[m]}, S3[m]} .

d) All "Facts" in Table 3 are correct.

e) i) The possible transitions at a node are the following, where

n2 > nl and n3 > nl: T12[(nl,n2)], T13[(nl,n2)1, T21[(nl,nl)],

T22[(nl,n3)], T22[(n,nl,)], T23[(nl,n2)], T23[(nl,n2)],

T32[(nl,n3)], T22[(nl,n3)].

ii) T21[t,i,(nl,nl)], Pk(t)- i implies sk(t) = Sl[nl].

f) Theorem 1.

g) i) Suppose T21[t,i,(nl,nl)] with nl = m and let Tl be the

last time before t such that T42[Tl,i,(c,nl)]. Then we

have F.i(k)(Tl) = UP if and only if Fi(k)(T) = UP,

t4. E [Tl,t]

ii) If for some t E [PC(m), PC(m)] we have

T02[t,i,(O,n2)], n2 = m , (A.15)

then

B3T1 (t,PC(m)) s.t. T21[Tl,i,(n2,n2)]

and

'T2 e(t,PC(m)) s.t. T23[r2,i] or T22[r2,i:].

(A.16)

- 39 -

h) If ~i,k, t e (PC(m),PC(m)] such that for some T e (PC(m),t] we

have

[T,k,SEND(m,d,i)], d X

and if i either has not received this message by time t or has

Ni(k)(t) = m, Di(k)(t) # a, then -tle [t,PC(m)] such that

si(tl) = S2[m] or s.(tl) = S3[m] . (A.17)

Proof

As said before, the proof proceeds using a two-leveZ induction. We

first notice that a) holds at the time the network comes up for the first

time. We call this PC(O). Then we assume that a)-h) hold at every time

up and including PC(m). Next we prove that b) - h) hold until PC(mj and

then show that a) holds at PC(m).

b) Observe that from Lemma A.2 b) and Property R8, by time LPC(m,ml)

no node in the network has ever heard of a number > m. Therefore

if (A.llb) holds, an appropriate message must have been sent and

received after LPC(m,ml) and hence (A.12) holds.

On the other hand, observe that (A.lla) and Property R3 imply

that si(LPC(m,ml)) # S3[m]. Also note that the induction hypo-

thesis assumes that a), namely Theorem 3, holds at time LPC(m,ml)

and therefore at this time, first,no message MSG(m,d) with d # ~

is on its way to i and second, it cannot happen that {Ni(k) = m,

Di(k) # a}. But (A.lla) says that the latter occurs at time t

and therefore, by step 1.3 in Table 3, i must have received

a message MSG(m,d) with d # X after LPC(i) and hence (A.12b).

Since no such message was on its way to i at LPC(m), A(12a) holds

also.

- 40o -

c) Suppose c) i), ii) and iii) are true for all nodes in the network

up to time t-. We prove c) i) and c) ii) for t2 = t and then

prove c) iii) for t.

i) If dl = a, then m2 > ml from Lemma A.3. It remains to prove

the assertion for dl < a. From Lemma A.2, we have m2 > ml.

Suppose dl # X and m2 = ml. Then Lemmas A.3a) and A.2a)

respectively, imply that 't3e (tl,t) such that

(i,t3,MSG(d3 = o,)] or such that [i,t3,MSG(m3,d3,Z)],

m3 $ m2 = ml. Therefore the two messages received at tl and

t2 = t, can be taken as consecutive. So using b),

t4 £ [LPC(m,ml),tl), t5 £ (t4,t) such that

Txy[t4,Z,SEND(ml,dl,i)], dl A X , (A.18)

TaB[t5,Z,SEND(ml,d2,i)], d2 0 X . (A.19)

By R2,. Txy = T21 or T12 or T32 or T22 or T22 and same

for TaB. .But by induction hypothesis on c) iii), node I cannot

.enter the set of states {S2[nl], S2[ml]) twice between LPC(i,ml)

and t, so that the only possibilities are

{T12[t4,Z] OR T32[t4,L] OR T22[t4,Z] OR T22[t4,Z·]J AND

{T21[t5,j]) and no other transition happens between t4 and t5.

But in TR2[t4,k], node Z sends a message to every neighbor

except p (t4+) and in T21[t5,Z] it sends a message only to

p (t5-) and since no other transition happens between t4 and

t5 we have pz(t4+) = pQ(t5-). This contradicts (A.18), (A.19).

ii) If F.(Z)(tl-) = DOWN or READY, then Lemma A.4 together with the

facts that n. is nondecreasing (by Lemma A.2b) and that z.(Z)

is established as in step I.4 of Table 3 show that the first

message MSG(ml,dl,2) that can be received by i from 2 after

tl must have ml > nl. Then the assertion follows from Lemma A.2a).

41

If F (M)(tl-) = UP, then step II.3.1 in Table 3 requires

Ni(t)(tl-) = nl (A.20)

and by the definition of LPC(m,nl) we have nl > m.

If Di.()(tl-) = a, then ;.t3 < tl (possibly t3 < LpC(rn,nl))

such that

[t3,i,MSG(nl,dl,Z)], dl = , (A.21)

which together with (A.14) implies by Lemma A.3a) that

m > nl.

If Di.()(tl-) # a, then from b) follows 3t3eLLPC(m,nl),tl),

such that

[t3,i,MSG(nl,dl,Z)], dl < ~ (A.22)

and the assertion follows from c) i).

iii) From Lemma A.2, ni is nondecreasing, so that once ni is

increased, it cannot return to the old value.

From the algorithm, a node can leave {S2[m], S2[m]} and not

change ni = m only via T21 or T23 or T23. If T23 or T23,

then R3 shows that it will strictly increase ni when leaving

S3[m]. If T21[(m,m)], then c) ii) shows that it cannot subse-

quently receive a message MSG(m,d) -with d- a , and in-order to

enter S2[m], such a message must be received. Therefore, the

statement holds for {S2[m], S2[m]).

To Sl[m] one enters only from S2[m], so that a node cannot

enter Sl[m] twice unless it enters {S2[m], S2[m]} twice, so

that the statement holds for Sl[m].

If a node enters S3[m], by R3 it leaves it only with a higher

n., so that it cannot come back with the same n..
1 1

d) The Fact in 1.3 was proved in Lemma A.4. The Fact in I.4 follows from

property 2.7.7 in Sec. 2.7. Next, observe from II.2.3, II.2.7, II.6.3

and II.9.3 in Table 3 that

T$3[i,(dl,d2),(pl,p2)] (A.23)

implies d2 = , p2 = nil, so Fact 32 is correct. Facts 13, 12, 23

and 23 follow from Lemma A.2a) and A.2c), since if MSG is received at

i at time t and T13 or T12 or T23 or T23 happen, then

m = number received by i at t on Pi(t-) > Mi(t-,i(t-)) .

(A.24)

Fact 21 is correct, since if T%2[i,(dl,d2)], then d2 < ~ and

since Pi . nil iff si = S3.

e) i) The assertion follows immediately from Lemma A.2 b) and from

checking changes on n. in Table 3.

ii) Recall that we are always considering times until PC(m).

Observe from II.3.1 in Table 3 that

T21[t,i,(nl,nl)] (A.25)

implies that Ni(z)(t-) = nl for all Z with Fi(i) = UP, and

since from II.3.7 in Table 3 Pk(t) = i implies Fi(k) = UP,

we have N.(k)(t-) = nl. Note further that D.(k)(t-) # ~,

since otherwise k was some time before t in S3[nl] and

could set Pk + i only if i sent to k a message MSG with

number strictly higher than nl. But Ni(k)(t-) = nl,

Di(k)(t-) # ~ implies from b) that 3 r e [LPC(m,nl),t) such

that

Txy[Tr,k,SEND(nl,d,i)], d # . (A.26)

Now if pk(t-) p i, then Txy = T12, but in order for

Pk(t) = i A Pk(T-), k must have performed T21[tl,k] at some

- 43 -

T1 (T,t). On the other hand, if Pk(T-) = i, then Txy = T21.

Therefore k performed

T2l[n,k,(nl,nl),(pl,p2)j, p2 = i (A.27)

at some time ne [LPC(m,nl),t). So sk(n+) = Sl[nl].

From e) i)-, the fact that until t node k receives no number

higher than nl and pk(t) = i, one can easily see that k

remains in Sl[nl] until time t.

f) We refer to the properties to be proven here as tree properties. If

Pi =k, we say that i is-a predecessor of k and k the successor

of i. Also, we look at the concatenation (n.,si) and write

(ni,s i) (nksk) if n > nk and if n. =nk implies >

Using this notation observe from e) i), that

Txy[i,(nl,n2)]

implies (n2,y) > (nl,x) except when Txy = T21.

As before, we prove the tree properties by induction, assuming that

they hold up to time t- and showing that any possible change at

time t preserves the properties. The changes of interest here are

in the quantities ni .si, Pi' di.

Let us consider all possible transitions:

T22[t,i]; only si changes, si(t+) = si(t-), so "trees" properties

are preserved.

T13[t,i], T231t,i], T23[t,i]; then Pi(t+) = nil, so no successor at t+.

Also by Lemma A.2 and induction hypothesis follows that if pk(t) - i,

then

(ni,si)(t+) > (ni,si)(t-)r (f, k (A.28)

so properties are preserved for all predecessors.

- 44 -

T12[t,i], T22[t,i], T22[t,i] (change di, s i and possibly ni; no

change in pi). Regarding predecessors, the proof evolves as for

T13. Regarding Pi, we see that

Txy[t,i,MSG(m,d,Q),(nl,n2),(pi,pl)] , " (A.29)

where Txy = Ti2 or T22 or T22, implies from steps II.1.1, II.4.1,

11.8.1 in Table 3 that Z = pl, d # - and from steps I1.1.4, II.4.2,

II.8.2 that m = n2. From b) and R2, this implies that

3T c [LPC(m,m),t) such that spl () = S2[n2]. Now, if on (T,t), pl

stayed in S2[n2] or performed any transition except T21[pl,(n2,n2)],

then T12[i] or T22[i]- or T22[i] preserve the.tree properties.

We want to show by contradiction that pi could not have performed

T21 on (T,t). Suppose

T21[rl,pl,(n2,n2)], T < tl < t , (A.30)

then by step II.3.1 of Table 3 we have Npl(i)(T1) 3 n2. Now we

distinguish between two cases:

If D p(T1) P X, then by b), i3T2e (LPC(m,n2),1l) such that

[T2,i,SEND(n2,d,pl)] , d i (A.31)

which by R2 implies that si(T2-) = S2[n2] or si(T2+) S2[n2].

But T12[t,i,(nl,n2)] or T22[t,i,(nl,n2)j or T22ft,i,(nl,n2)]

says that i enters S2[n2] at time t which contradicts c) iii).

If Dpl(i)(rl) - a, then for some T2 < T1 (not necessarily

T2 > LPC(m,n2))

[T2,i,SEND(n2,d,pl)], d = X

which implies that s.(T2+) = S3[n2]. But s.(t+) = S2[n2] and

T2 < t, which is impossible by R3 and Ler-a A.2.

- 45 -

T32[t,i,(nl,n2),(nil,pl)]. Regarding predecessors the tree proper-

ties are preserved since n2 > nl. Regarding successor, the

above implies that 3_ e (LPC(m,n2),t)

[T,pl,SEND(n2,d,i)]

Now, from Lemma A.2, npl(t) > n pl(). From R2, np(T) = n2.

Now, if n l(t) > n2, then

(nplspi)(t) > (ni si)(t+)

If on the other hand npl(t) = n2, then the same argument as

for T12, T22 shows that pl was in S2[n] sometime before t

and could not return to Sl[n2] in the meantime, so that

(nplspl)(t). > (ni si)(t+)

In addition to the above, since here there is a change in Pi

from nil to Onil, we have to check that this change does not

close a loop. This is seen from the fact that every node k

upstream from i at time t has

(nk,sk)(t) < (ni,si)(t-) = (nl,3) < (n2,2) = (ni,si)(t+)

and every node L downstream from pl has

(nz,s)(t) (nplSpl)(t) > (n2,2)

T21[t,i(nl,nl),(pl,p2),(dl,dl)]. If Pk(t) = i, then from e) ii)

follows that sk (t) = Sl[nl], so

(ni,si)(t+) = (nk,sk)(t)

Regarding successor, steps II.3.1 and II.3.7 of Table 3 show that

Ni(p2)(t-) = nl, Di(p2)(t-) # ", so that from b), 3 T [LPC(m,m),t)

such that

- 46 -

[T,p2,SEND(m,d,i)]

with m nln p2(T+), d d (T+) = Di(p2)(t-) - di ().

Therefore from Lemma A.2,

(np2,sp2)(t) . (nl,1) = (ni,si)(t+) .

Now suppose that the change in Pi closes a loop at t+.

Then the last expression and the induction hypothesis show that

at time t+

(n ,sp) > (ns)

for all nodes i around the loop, so that (n,s) must be con-

stant around the loop, namely

(n,s) - (nl,l)

around the loop. Therefore sp2(t) = Sl[nl]. ,But by R2, 8 2 (T-) =

sp2(T+) = S2[nl] where T is defined above, so by c) iii), node

p2 could not enter again S2[nl] between T+ and t, so

d 2(t) = d2 (T+) = Di(p2)(t-) - d (p2)

But from steps 1.3.2 and 11.3.7 of Table 3

dl > D.(p2)(t-) = dp(t) + d. ip()
-- p2 i,p2

which from Assumption 2.7.2 implies that

dl d (t+)> 'a (t)
1i p2

On the other hand, the induction hypothesis implies that since

(nksk) = (nl,1) around the loop, we have

d (t) > d (t)

for all * £ i around the loop and this provides a contradiction,

therefore no loop is closed by the change in Pi.

- 47 -

g) i) During (Tl,t), no link is brought up by i because of Lemma A.4.

If there are failures, let T3 be the first time on (Tl,t)

such that

[T3,i,FAIL(k)]

Then T23[T3,i,(nl,nl)] or T22[T3,i,(nl,nl)] happen with l w m.

In either case, e) i) shows that to exit S3[nl] or S2[nl], one

has to increase Hi, so that it is not possible that

T21[t,i,(nl,nl)3

So no failure can occur..

ii) Consider the sequences of nodes and instants

i = iO,il'i2s*is = SINK

t =t o t > t > t... t

such that

T2[t u, , (,n2) , (PluP2

where n2 = m and p2U = iU+l' There must have existed such

sequences if T02[io]. Suppose/ £E [to,PC(G)] such that

T21[-r,i o ,(n2,n2)]

We want to show that tle [tl,PC(m)] such that

T21[rl,i1 ,(n2,n2)]

If there existed such a T1, it follows from g) i) that

Fi (i)(T) = UP.

We want to show now that 2 < Tl such that

[T2,i ,SEND(n2,d,i)], d =

and T3 e (PC(mn),Tl) such that such a message with d # " is

sent. For T2 < to this follows respectively from R2, R3 and
o)

- 48 -

R2, c) iii). For T2 = to, it follows from the fact that

Pi (to+) = i1
0

For T2E (toPC(m), the only possibilities for io if T21 does

not happen, are to stay in S2[m] or T22[(n2,n2)], or

T23[(n2,n2)], or T23[(n2,n2)]. In all cases i will not send
0

any message to i

The above show that N i (i)(T 1-) # m = n2 so that

1

T21[Tl,il,(n2,n2)]

is impossible. Repeating the proof, it follows that such

that

T21[T ,SINK,(n2,n2)], n2 =-m ,

which contradicts the assumption that there is a proper comple-

tion at time PC(m). This proves the first part of g) ii).- The

second part follows because T21[Tl,i,(n2,n2)], n = m is not

possible if T23[i,(n2,n2)] or T22[i,(n2,n2)] happen.

h) If [T,k,SEND(m,d 0#.,i)], then Fk(i)() = UP and by R2 either

Tx2[T,k,(O,n2)], n2 = m, x = 1,2,3

or

T21[Tlk,(n2,n2)], n2 = m

If Tx2 then g) ii) implies .JT2e (T,PC(M)) such that

T21[2,k,(n2,n2)], n2 = m

and Fk(i)(Tl) = UP. Therefore T21 happens at node k at some time

(Tl or T2). Call this time n. We have then Nk(i)(n) = m. By

b) either 3T3E [PC(m),n) such that

- 49 -

[T3,i ,SEN(m,d -o,k)]

or 3T4 < n such that

[r4,i,SEND(m,d- o,k)] .

But by R2, this means that i is at some time before n in S3[m]

or is at some time between PC(m) and PC(m) in S2[m]. If the

first holds, node i will stay in S3[m] at least until PC(i).

If the latter holds, then by g) ii) it must perform T21[i,(n2,n2)]

before PC(m). But since it still has Ni(k)(t) m, Di(k)(t) m

or has not received yet the message by time t, property c) i)

implies that node i could not perform T21[i,(n2,n2)] -before

time t. Therefore it will peilform later, so q.e.d.

Proof that a) holds at time PC(m)

i) Node i cannot be in S2[m] because of g) ii) and c) iii). It

cannot be in S2[m] because it must have been in S2[m] before

and because of g) ii).

ii) Take t = PC(m) in h). Then h) says that

si(PC(m)) = S2f[] or S3[m].

But g) ii) and c) iii) imply that s i (P C (m)) A S2[m].

iii) Follows by contradiction, because if we had

Ni(k)(PC(m)) = m, Di(k)(PC(m)) f X ,

it follows by taking t = PC(m) in h) that

si(PC(m)) = S2[m] or S3[m]

This completes the proof of Theorem A.l.

- 50 -

Appendix B

In Appendix A we have proved Theorems 1, 2 and 3. This appendix is

devoted to proofs of the remaining statements, namely Theorem 4 (normal

activity) and Propositions 1 and 2 that lead to the recovery theorem, Theorem 5.

The proofs are organized as follows: Lemma B.O is preliminary and shows

that on any link (i,O) the only two "stable" situations are

{F.i() = FW(i) = DOWN) or {Fi(Z) # DOWN, Fz(i) # DOWN). Lemmas B.1 and B.2
1

prove Proposition 1, Lemma B.3 proves Theorem 4, and the Proposition 2 is

proved by the series of four lemmas B.A to B.7.

Lemma B.O

If F (Z)(tl) = DOWN, F (i)(tl) # DOWN, then in finite time after tl

we have either Fi(l) = F (i) = DOWN or {Fi(Z) # DOWN and F (i) # DOWN}.

Proof

If F (i)(tl) = READY, then i and Z arrived to this situation

from {FI(i) = Fi(.) = DOWN) or {F£(i) = F i(1) = READY) or

{Fz(i) = READY, Fi(£) = UP). Then assumptions 2.7.9 imply the assertion.

If F£(i)(tl) = UP, then i and Z arrived to this situation from

{F (i) = READY, Fi(£) = DOWN) or {F (i) = Fi(l) = UP), or

{F (i) = UP, Fi(C) = READY). In the first case, the discussion reduces to

the first part of the proof, whereas for the second and third case, asser-

tion 2.7.9 a) in Sec. 2.7 proves the assertion.

Lemma B.1

Proposition l(a).

Proof

Clearly, ni(tl-) < m2 for all i. Therefore (10) may happen only

at or after tl.

- 51-

Let

A(t) = {i: ieL(t) and i effected (10) with t2i < t}

If '<t2 such that A(t2) = L(t2), then the proof is complete. Otherwise,

for a given t3, we will show (by contradiction) that 3.t, t3 < t <

such that

A(t) Z>A(t3) and A(t) # A(t3) . (B.1)

Hence by induction, the set A(t) keeps growing until it equals L(t).

Since there are no pertinent topological changes and all ie A(t)

have ni(t) = m2, property R10 implies that the set A(t) is nondecreasing

as t increases. Therefore to prove part i) of Proposition l(a) it is

sufficient to show that the following cannot hold:

Vt > t3, A(t) - A(t3) L(t) (B.2)

Let

B(t) = {ili L(t) and i A(t)} ,

A'(t) = {iisA(t) and i has a potentially working link to a node of B(t)},

B'(t) = {ijieB(t) and i has a potentially working link to a node of A(t)}.

The following three claims will contradict (B.2).

Claim 1

If (B.2) holds, then 3t4¢ e(t3,o) such that !j.aB'(t4),3t4j < t4

such that [t4 1,J,MSG(m2)], (i.e. all nodes of B'(t4) receive m2 in

finite time).

Proof of Claim 1

At time t2i < t3, node iF A'(t2 i) performs transition (10). Now

observe that since no pertinent topological changes occur, property R10

implies that for all Z, Fi() cannot be changed from or to DOWN after t2i.

Therefore if F.(Z)(t2.-) = DOWN then Fi(z)(t) = DOWN for t > t2 and
1 1 i i

- 52 -

if Fi(I)(t2i-) =.READY or UP, then Fi(z)(t) = UP for t > t2 (isee 11.1.5,

II.4.2, 11.7.7, II.8.2 in Table 3). For links (i,k), where i A'(t2i),

2 iB'(t2i) and Fi(L)(t2i+) = UP, observe from II.1.6 in Table 3 that if

Pi(t2i) s,, then

[t2i,i,SEND(m2,)]

Since by Lemma A.2c) we have

pi(t2i) B(t2i)

and since property 2.7.9 Sec. 2.7 insures that the above message will arrive,

there is a time t4 for which all nodes j that were in B'(t2i) for some i,

either are not in B'(t4) anymore or have received MSG(m2). Also observe

that B'(t4) cannot be empty, since then B.2 is contradicted.

Let t5jk denote the time at which J eB'(t4) receivesMSG(m2,k), where
jk

ks A'(t4). If 3j eB'(t4) such that pj(t5jk) k for some keA'(t4) then

from II.1.1, 11.4.1, II.8.1 in Table 3, the transition T~2[j,(O,m2)] occurs,

contradicting (B.2), q.e.d. Otherwise,

Claim 2

If JeB'(t4) such that pj(t5jk) # k then t > t5jk, p (t) # k.

Proof of Claim 2

Suppose

Txy[t,J,(pl,p2 = k)1, t > t5
3k

If x # 3, by R5 Txy = T13 or T21 or T23 or T23,

But T23, T13, T23 9 p2 = nil ~ k, therefore this cannot happen.

T21 A>Vq, N3(q)(t) = nJ < m2, but N (k)(t) = m2 , hence T21

cannot happen.

If x = 3 then T32[t,j, MSG(m2)] happens, contradicting (B.2), q.e.d. Claim 2.

- 53 -

Claim 3

In finite time, all nodes i CB(t4) will effect T03[i,(O,m)],

m < ml without effecting T35 thereafer.

Proof of Claim 3

ni is updated in T12, T13i T22, T23 and T32 only. For all

is B(t4), T02[i,(O,m2)] does not occur because of (B.2), and T03(i,($,m2)]

does not occur because there are no pertinent topological changes. Hence,

V4isB(t4) and it > t4, n.(t) < ml .
1

Since after t4 no update cycles-with m < ml are started by Theorem 2(ii),

the number of messages with d - =: generated by the nodes of B(t4) is finite.

Similarly, since the number of arcs is finite, the number of messages

FAIL is also finite. Consider B(t4) after all these messages are

generated and received. Then i ¢eB(t4), T3$[i] cannot occur and

Txy[i,(pi,p2 A pl)] implies p2 = nil. Then

1. if VkEB(t4), Pk = nil, then q.e.d. Claim 3;

2. otherwise, after a sufficiently long period of time tmx, by Claim 2

and Theorem Al, there exist k and i such that:

i,keB(t3), Pk(t) = i and Pi(tmx) = nil

When Pi was set to nil, Txy[i,SEND(m,d = a,k)] occurs. At tmx

this message is not yet received by k' because Pk(tx) = i. After

this message is received node k effects T03, enters S3 and does

not leave it anymore. By induction, q.e.d. Claim 3.

The proof of Proposition l(a)(i) is completed as follows. Consider a

node j B'(t4). Define t3j to be the time at which T03[t3j,j] occurs by

Claim 3. But

- 54 -

if t3j < t5jk then T32[t5jk,J] happens,

if t3 > t5jk then T32[t3 ,j] occurs, and t3 $ t5jk,

which contradicts (B.2), q.e.d.

To prove part (ii) of Proposition l(a), we investigate further the

situation in L(t2) at time t2. Observe that since all nodes in L(t2) have

ni = m2, and no pertinent topological changes happen, it follows from R10 and

Lemma B.O that for any link (i,k) such that is L(t2), le L(t2), it cannot

happen that at time t2 we have Fi(2) = DOWN, F (i) 0 DOWN. Also

F.(k) = READY is not possible, because lack of pertinent topological changes

imply that Fi(L)(t2i-) READY as well, and then II.1.5 in Table 3 shows that,

for example Fi(Q)(t2+) = UP and therefore Fi(z)(t2) - UP. Therefore, for

links (i,Z) connecting nodes in L(t2), the only possibilities at time t2

are {F. () = FI(i) = DOWN), {Fi(Z) = FI(i) = }l), hence Proposition l(a)(ii)

is proved.

Next, assuming Proposition l(a) which was proved by Lemma B.1, we now

prove Proposition l(b).

Lemma B.2

Let L(t) be as in Lemma B.1, and suppose that a new cycle

T02[tl,SINK,(0,ml)] is started. Suppose also that no pertinent topological

changes have happened before tl while nSINK = ml and that no such changes

will take place after tl for a sufficiently long period of time. Define

t2. to be the smallest time t such that

T02[t,i,(0,ml)], t > tl

occurs. Suppose also there exists t2, tl < t2 < X such that for all

i e L(t2)

TI2[t2 i,i,(0,ml]

occurs with tl < t2. < t2, and t2 = max (t2) .
t2. <o

- 55 -

i) There exists a time t3 < X such that t2 < t3 and that

T21[t3,SINK,(ml,ml) occurs;

ii) Vte [t2,t3], we have H(t) = L(t) = Hft2);

iii) RG(t3) for the nodes in L(t3) is a single tree rooted at SINK.

Proof

We prove first that there is PC(ml) after tl, then we show that

there is no PC(ml) between tl and t2.

Since there. are no pertinent topological changes,after entering S2[ml]

at t2i each node ie L(t2) can only perform transitions between states

S1 and S2. Furthermore, by Theorem l(i), after t2, these nodes form a

single tree rooted at SINK. Consider a time t', t' > t2. Since there are

no pertinent topological changes, L(t') = L(t2). Also, by Theorem 2(iii),

if a node ·ieL(t2) enters S2[ml] after t2, PC(ml) has occurred after tl.

1. If fi CL(t'), si(t') = S1 then there exists t3, tl < t3 < t'

such that T21[t3,SINK,(ml,ml)] occurred;

2. otherwise, consider a node k such that sk(t') S2

DJ if p(t') = k, then s(t') = S1 (B.3)

such a node k always exists. Classify the neighbors of k into:

A = {i: Fi(k)(t') = UP and si(t') = Sl}

B = {i: Fi(k)(t') = UP and si(t') = S2}..

At some time in the interval [tl,t'], the nodes in A have sent

messages MSG(ml,d #o) to all their neighbors. At some time in the

same interval, those in B have sent such messages to all their

neighbors except p.(t'). Hence by (B.3), k will receive messages

MSG(ml,d -) from all its neighbors, at a finite time, say t4. Then

- 56 -

.2.1 if sk(t4+) = S2 means that 3ii with Fk(i)(t4) = UP such that Nk(i)(t 4) =

which implies that T21(k,(ml,ml)] occurred in the interval [tl,t4],

hence by Theorem 2(iii), PC(ml) occurred between tl and t4;

2.2 if sk(t4+) = S1, by induction, PC(ml) will occur in finite time

after tl.

We show next that PC(ml) cannot happen in [tl,t2]. Suppose that

at t5, the first PC(ml) after tl occurs. Let k be a node such that

t2k < t5 and keL(t2), hence since there are no pertinent failures, there

exists a J eL(t2) such that F (k)(t2j) = F.(k)(t5) - UP. But j sent- to k

a message MSG(ml,d#O) in the interval [t2j,t5]; on the other hand by

Theorem 3 such a node k does not exist.

Since there are no pertinent topological changes, we have

L(t2) = L(t3), and according to Theorem l(i) these nodes have preferred links

forming a single tree rooted at SINK and hence iii).

Finally, looking at the situation in the network at time t2 as described

in Lemma B.1, and for all te [t2,t3], we observe that for all (i,2) for which

Fi(k)(t2) = UP we must have F.i()(t) = UP and if Fi(Z)(t2) = DOWN, we must
i .1

have Fi(z)(t) = DOWN. This completes the proof of ii).

Lemma B.3

Theorem, 4.

Proof

By the Algorithm, a new cycle T12[tl,SI=K,(ml,ml)i can start only

if all previous cycles with the same counter number ml were properly com-

pleted. Since cycle counter numbers are non-decreasing, the first cycle with

ml was started at a time, say t', by

T12[t',SINK,(mO,ml)], ml > 0mO

- 57 -

This transition satisfies the condition of Proposition 1. Hence in a finite

time, say t", the cycle is properly completed, L(t") forms a tree rooted

at SINK, all ic L(t") have n. = ml, and since there are no pertinent

topological changes, for all t > t":

1. H(t) = L(t) = L(t") q.e.d. Theorem 4(b), and

2. by Theorem l(i) all nodes i cL(t) form a single tree rooted'at

SINK, q.e.d. Theorem 4(d,ii).

Define Ak to be the set of nodes that are on the tree at time tl,

at a distance of k nodes from the SINK. Ao = SINK and it is assumed by

Theorem 4 that Ti2[t 2SINR = tl,SINK,(ml,ml)] occurs. Suppose all i Ak

effect T12[t2i,i,(ml,ml)], sending messages MSG(ml) to all j eAA

through their pj(tl). But since there are no pertinent topological changes

after tl, pj can only change by T21, and since sj(tl) = S1, only after

T12. Then, all j Ak+1 will receive messages MSG(ml) at a finite time

t2 from pj(t2j), which trigger the occurrence of T12[t2jj,(mlml) and

by induction on k, q.e.d. Theorem 4c).

Theorem 4(d)L) follows directly from Lemma B.2 by assuming Theorem 4(c).

Theorem 4(a) follows directly from the algorithm for SINK. This completes

the proof.

Proposition 2 will be proved by Lemmas B.4 and B.7. When an REQ(ml)

is generated& it is placed in the queue for processing. If, when the

REQ(ml) is processed, the node is at S2, S2 or S1, then an REQ(ml) is sent

by this node to its current preferred link. The proof of Proposition 2 for

these cases is given in Lemma B.5 (for S2 or S2) and Lemma B.7 (for Sl).

Lemma B.6 proves the proposition for the case where there is a node in state

S3[ml]. Lemma B.4 is used to simplify proofs.

- 58 -

Lemma B.4

If a REQ(ml) is generated, then either:

1. REQ(ml) is processed only by nodes having n.i ml, and all nodes

J have nj cml, or

2. a REQ(ml) arrived at SINK.

Proof

By Theorem l(ii) and by the Algorithm, REQ(ml) is not received

(i.e. processed) by a node i with-.. n. < ml. On the other hand, if there
:

exists a node i with ni > ml,. -the SINK started a cycle with m > ml;

this can happen only following the arrival of REQ(ml) to SINK, q.e.d.

Lemma B.5

If a node i sends REQ(ml) while si = S2[ml] or S2[ml], then

a REQ(ml) arrived or will arrive at SINK in finite tile...

Proof

Consider the strings of nodes and instants

i i 1ili2' i =m SINK

to > t > t 2 > ... > t

such that

T2[t ui u(,,n2) (plup2 u)] ,

where n2 = 1, p2U = i . There must exist such a string if si = S2[ml]
u u+l'

or S2[ml]. The string has no loops, otherwise Lemma B.4, 'Theorems 1, 2 or 4

will be contradicted.

Suppose that at time t2U, a node i sends REQ(ml) to i
u u+l

Suppose also that in the interval [tu,t2u], node iU effects no transition

except possibly T22. After tu+1, the first transition executed by iu+

could be

- 59 -

T22[i 1; q.e.d. by Theorem 3 and Lemma B.4.u+l

T22[il] , in which case a failure is detected by i and REQ(ml)U+1 u+3

sent to iu+2.

T21[i 1; this transition is executed only after receiving a messageU+l

from iu. Such a message is sent by iu when T21[i u] happens,

i.e. after iu has sent REQ(ml). Since FIFO is preserved, i

will receive and therefore send REQ(ml) to iu+2 before T21[i +11

happens, i.e. while s. - S2.
1u+1 -

T23[i l]; in this case there exist ir, r > i+l such that T22[i Iu+l 'r* r

and i sends REQ(ml) to ir r+l'

Thus by induction REQ(ml) arrived or will arrive at SINK in finite time.

Lemma B.6

If there exists a node that effects T03[($,ml)], then a REQ(ml)

arrived or will arrive at SINK in finite time.

Proof

Let PCJ, (J = 0,1,2,...) denote the J-th occurrence of PC[ml].

Given a node i and a time t such that T02[i,(O,ml)] has occurred

before t, if PCJ is the last PC[ml] before t after which

T$2[i,(~,ml)] occurred, then define Ei(t) = J+l.

By Lemma B.4, we have to prove only the case in which ni c ml for

all i. Thus, if a node i is in state S3[ml], this node will not execute

any further transitions.

- 60 -

Property

Given a time t, suppose Pi(t) = k and ni(t) - nk(t) = ml, then

E(t) < Ek(t)

This can be proved as. follows:

Suppose that prior to t and after PCa, Pi was last set to be k.

This can be done only by T21[i] or T32[i]. Since at PCa,

Si # S2[ml] (by Theorem 31 this implies that T2[(i] occurred

after PC and T$2[i] cannot occur again before t because thisa

will set again Pi. Hence E.(t) = a+l. The occurrence of T21[i]

or T32[i] implies that a message from k with d < - arrived at

i after PC . By Theorem 3, this message was sent after PC , thisa a

being possible only if k effected 'TO2[k] after PC . Since L

is non-decreasing then Ek(t) > a+l,

Since after a node effected T$3[(%,ml)] the same node cannot per-

form any further transitions, only a finite number of transitions T$3[(C,ml)]

can be executed in the.network. If T03[(O,ml)] happens, there exists a

node which detects a failure in its best link and executes T3U[(ml,ml)].

Define B1 as the.set of nodes for which T$3[(ml,ml)] happens, this is

B1 = {i: T$3[t i,i,(m l,ml)] happens}

Define B2 as the subset of BB1 for which TW3[(ml,ml)] happens with the

highest Ei, i.e.

B2 - {J: J B1 and (E(tj) = max Ei(ti)}
a a icA

- 61 -

Case 1: Suppose there exists icB2 that effects T23[i,(ml,ml)].

Let max Ei(ti) = a+l. Then at PC , by Theorem 3,
isA

Si $ S2[ml]. Thus the first i eB2 that effects T23[ml,ml)] has

a path to SINK at ti (by Theorem 1). From all icB2 that
1

effect T23[ti,i,(ml,ml)] while having a path to SINK, let qo

denote the node having the shortest path. Suppose the path is

Q qo 4 l + " ' q, -- (SINK = q 1k+)

By Theorem 1 all qeQ have sq(t) = S2[ml]. But qi can onlyqcq

effect T21 or T22, and ql cannot effect T21 unless receiv-

ing a message from qo which cannot be sent because qo does not

effect T21. Hence ql will detect a failure of link (qo,ql)

and by Lemma B.5 the proof is complete.

Case 2: Suppose there is no ic B2 that effects T23[i,(ml,ml)].

Let qo B2 denote a node such that d (t -) = min d (ti-),
% %, Q, EieB2

and suppose p (t) = q Node q cannot effect T23

(definition of Case 2) and cannot effect T13 (violates the defini-

tion of qo). Thus, ql detects a failure of link (qo,ql) and

a REQ(ml) is generated.

If at any time this REQ(ml) enters a node at S2 or S2, then

q.e.d. by Lemma B.5. Otherwise the REQ(ml) keeps moving through

nodes at S1 having decreasing d.. The REQ(ml) cannot be re-

ceived by a node at S3 because this violates Case 2 or the defini-

tion of qo. Since for all i, d > 0, di is an integral

number and the only node with di = 0 is the SINK, the REQ(ml)

will arrive at SINK after a finite number of steps. Q.e.d.

- 62 -

Lemma B.7

If a node i sends a REQ(ml) while si = S1, then a REQ(ml)
o0

arrived or will arrive at SINK in finite time.

Proof

By Lemma B.4, we have to prove only the case in which for all i,

ni ml, and by Theorem 1, the REQ(ml) sent by i may encounter only

nodes having ni = ml.

If there exists a node i such that si - S3[ml], then q.e.d. by

Lemma B.6. Hence we may assume that for all i, si 0 S3[mll and there-

fore by Theorem 1 the REQ(ml) is in a tree rooted at SINK. Thus as in the

proof of Lemnna B.6, the REQ(ml) either arrives at a node in S2 or S2

(q.e.d. by Lemma B.5) or travels through nodes at Sl, with decreasing di

until it arrives at SINK, q.e.d.

Acknowledgement

The first stages of this work were performed when A. Segall was

with the Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, and with the Codex Corporation,

Newton, Mass., where he benefited from close collaboration with R.G. Gallager,

G.D. Forney and S.G. Finn. Thanks are also due to Mr. M. Sidi for useful

suggestions.

- 63 -

References

[1] A. Segall, The modeling of adaptive routing in data-communication networks,
IEEE Trans. on Comm., Vol. COM-25, pp. 85-95, Jan. 1977.

[2] A. Segall and M. Sidi, Optimal failsafe distributed routing in data-
communication networks, in preparation.

[3] G. Ludwig and R. Roy, Saturation routing network limits, Proc. IEEE,
Vol. 65, No. 9, pp. 1353-1362, Sept. 1977.

[4] R.G. Gallager, A minimum delay routing algorithm using distributed
computation, IEEE Trans. on Comm., Vol. COM-25, pp. 73-85,
Jan. 1977.

[5] A. Segall, Optimal distributed routing for line-switched data net-
works, submitted to IEEE Trans. on Comm.

[6] W.D. TaJibnapis, A correctness proof of a topology information
maintenance protocol for a distributed computer network,
Communications ACM, Vol. 20, No. 7, pp. 477-485, July 1977.

[7] M. Schwartz, Computer-Communication Networks: Analysis and Design,
Prentice-Hall, 1977.

[8] W.E. Naylor, A loop-free adaptive routing'algorithm for packet switched
networks, Proc. 4th Data Communication Symposium, Quebec City,.
pp. 7.9- 7.14, Oct. 1975.

[9] R.G. Gallager, Loops in multicommodity flows, Paper ESL-P-772, M.I.T.,
Sept. 1977.

[10] G.V. Bochmann and J. Gecsei, "A unified method for the specification
and verification of protocols", Publication #247, Departement
d'Informatique, University of Montreal, Nov. 1976. To be pre-
sented at the IFIP-Congress 1977, Toronto.

[11] P.M. Merlin, A methodology for the design and implementation of com-
munication protocols, IEEE Trans. on Communications, Vol. COM-24,
No. 6, pp. 614-621, June 1976.

[12] C.A. Sunshine, Survey of communication protocol verification tech-
niques, Trends and Applications 1976: Computer Networks,
(Symposium sponsored by IEEE Computer Society; National Bureau
of Standards), Gaithersburg, Maryland, Nov. 1976.

[13] M.G. Gouda and E.G. Manning, protocol machines: A concise formal
model and its automatic implementation. Proceedings of the
Third International Conference on Computer Communication,
pp. 346-345, Toronto, Aug. 1976.

[14] S.G. Finn, Resynch network protocols, Proc. of ICC, 1977.

[15] R.G. Gallager, personal communication.

- 64 -

Footnote

1. The FACTS given in the algorithm are displayed for helping in its

understanding and are proved in Theorem 2.

- 65 -

Table 1 - The Basic Algorithm

For MSG(d.,)

N. (L) RCVD

D.(Z) d+d ;
1 i

CT E-O

Execute FINITE-STATE-MACHINE

BASIC-FINITE-STATE-MACHINE

1 2 i t T

D.()Di (. .

State S1

T12: Condition 12 MSG(d,Q=pi), CT = 0.

Action 12 d. + min D.(k)
1 k:N. (k)-RCVD

1

transmit MSG(di) to all k s.t. k # Pi

State S2

T21: Condition 21 tkthen Ni(k) = RCVD.

Action 21 transmit MSG(di) to pi;

pi k* that achieves min D(k);

.i- set Ni(k) - nil;

CT + 1.

- 66 -

Table 2a - Variables of the Algorithm of Table 3.

Note: It is assumed that the network is composed by K nodes.

Variable Name Meaning Domain of Values

.p ... preferred neighbor nil,l,2, ,K

d. estimated distance from SINK ,1,2,3,...

d. estimated distance of link (i,1) 1,2,3,...

n. current counter number 0,1,2,...

mx. largest number m received by node i 0,1,2,...

CT control flag 0,1

last number m received from I after

1N(i completed last update cycle

D .() d+ d for last d received from 12

F. (2) status of link (i,k) DOWN ,READY ,UP

synchronization number used by i to

ZiWa bring link (i,Z) UP

Table 2b - Messages received by the algorithm of Table 3.

Message Format Meaning Domain of Values

MSG(m,d,Z) updating message from £ m = 0,1,2,
d =ta9,0,1,2,...
. = 1,2,...,K

FAIL(Q) failure detected on link (i,1) Z = 1,2 ...,K

WAKE(Q) link (i,t) becomes operational | = 1,2,...,K

REQ(im) request for new update cycle with m 0,1,2,

nSINK m

- 67 -

Table 3 - Algorithm for an Arbitrary Node i

1.1 For REQ(m)

if Pi ¢ nil, then send REQ(m) to pi.

1 2 For FAIL(l)

1.2.1 F. () + DOWN;
1

1.2.2 CT -- 0;

1.2.3 Execute FINITE-STATE MACHINE;

I.2.4 if Pi p nil, then send REQ(ni) to Pi.

1.3 For MSG(m,d,.Z)

1.3.1 if F.(t) READY, then F.(Z) + UP
1 1

(Factl: m > z.(Z));

1.3.2 N (9) + m;

1.3.3 D.(Z) d+ d+.;
1 1

I.3.4 mxi max{m,mxi};

I.3.5 CT + 0;

I.3.6 Execute FINITE-STATE MACHINE.

I.4 For WAKE(Z)

(Fact : F. () = DOWN)

wait for end of WAKE synchronization (see Section 2.7);.

if WAKE synchronization is successful, then

z i () + max{ni n z};

Fi(i) + READY;

N .(Z) nil;

if Pi # nil, then send REQ(zi(l)) to Pi.

(continued)

- 68 -

Table 3 (cont'd)

II. FINITE STATE MACHINE

State S1

II.1.1 T12 Condition 12 MSG(m = mx i, d I , Q = Pi) , CT 0= O

II.1.2 Fact 12 m > n.
-1

II.1.3 Action 12 d. + min Di(k);
1 k:F i(k) UP

N.(k) =m

11.1.4 n. m;

II.1.5 fk s.t. Fi(k) = READY if ni > zi(k), then

Fi(k) + UP, Ni(.) - nil;

11.1.6 transmit (ni,di) to all k s.t. Fi(k) = UP

and k # pi;

1I.1.7 CT + 1.

11.2.1 T13 Condition 13 (MSG (Z = Pi,d = -,m) or FAIL(I = pi)), CT = 0

11.2.2 Fact -13 If MSG, then m > n..

11.2.3 Action 13 di ;

11.2.4 if MSG, then n i + m;

II.2.5 Ik s.t. F.(k) = READY, if n. > z i(k), then
'5 1 1 1

Fi(k) * UP, Ni(k) * nil;

II.2.6 transmit (ni,d i) to all k s.t. F.(k) = UP3.

and k # pi;

11.2.7 Pi + nil;

II.2.8 CT + 1.

(continued)

- 69 -
Table 3 (cont'd)

State S2

II.3.1 T21 Condition 21 Yk s.t. Fi(k) = UP, then Ni(k) = ni =mxi;

II,3.2 3k s.t. Fi(k) = UP and Di(k) < di;

II.3.3 if CT = 0, then MSG;

II.3.4 Di(Pi) A

11.3.5 Fact 21 di Pi nil.

1I.3.6 Action 21 Transmit (ni,di) to Pi;

11.3.7 pi - k* that achieves min Di(k)'
k:Ft(k)=UP

II.3.8 1k s.t. F.(k) = UP, set Ni(k) + nil;

11.3.9 CT + 1.

11.4.1 T22 Condition 22 MSG(m = mxi > ni, d # p,2 = Pi) CT = 0.

II.4L.2 Action 22 Same as Action 12.

II.5.1 T22 Condition 22 FAIL(L i Pi)# CT = 0.

II.5.2 Action 22 CT 4 1.

II.6.1 T23 Condition 23 Same as Condition 13.

II.6.2 Fact 23 Same as Fact 13.

II.6.3 Action 23 Same as Action 13.

State S3

II.7.1 T32' Condition 32 gk s.t. F.(k) = UPmx = N (k) > ni,Di(k)

11.7.2 Fact 32 pi = nil, di =

II.7.3 Action 32 Let k* achieve min D. (k).
k:F. (k)-UP

Ni(k)mxi

(continued)

- 70 -
Table 3 (cont'd)

II.7.4 Then Pi k*;

II.7.5 n i - mx

II.7.6 d i + Di(k*);

II.7.7 Vk s.t. F(k) = READY, if ni > zi (k), then

Fi(k) - UP, Ni(k) + nil;

II.7.8 transmit (ni,di) to all k s.t. Fi(k) UP

and k pi;

II.7.9 CT - 1.

State S2

11.8.1 T22 Condition 22 MSG(m = mxi > n i,d C o,l - Pi) , CT = 0.

11.8.2 Action 22 Same as Action 12

1.9.1 T23 Condition 23 Same as Condition 13

1.9.2 Fact 23 Same as Fact 13

II.9.3 Action 23 Same as Action 13

- 71 -

Table 4

The Algorithm for the SINK

For REQ(m)

CT + 0;

execute FINITE-STATE-MACHINE,

For FAIL(Q)

F. () + DOWN;

CT+ O; 0

execute FINITE-STATE-MACHINE.

For MSG(m,d,S)

N.(Z) m;-

CT - O;

execute FINITE-STATE-MACHINE,

For WAKE(Z)

(Fact: Fi(Z) = DOWJN)

wait for end of WAKE synchronization;

if WAKE synchronization is successful, then

F (.). - READY;

CT - O;

execute FINITE-STATE-MACHINE.

For START

CT + 0;

execute FINITE-STATE-MACHINE.

(continued)

- 72 -

Table 4 (cont'd)

FINITE-STATE MACHINE FOR SINK

721

State S1

T12 Condition 12 (CT = 0) and (REQ,(m - nSINK) or FAIL or WAKE or START)

Action 12 if (REQ or FAIL or WAKE))then nSINK + nSiK + 1;

Vk s.t. F i(k) = READYthen F.i(k) + UP, Ni(k) + nil;

transmit (nSI1 ,0) to all k s.t. F.(k) = UP;

CT + 1.

State S2

T21 Condition 21 Ok s.t. F.(k) = UP, then N.(k) =nSIK;

MSG or START.

Action 21 .k s.t. F.(k) = UP, then N.(k) + NIL;
1 1

CT + 1,

T22 Condition 22 (CT = 0) and (REQ(m = nSINK) or FAIL or WAKE)

Action 22 Same as Action 12.

- 73-

·. ' \ t
7 < 1

3 8 2

SINK
SINK

(a) (b)

Fig. 1: (a) Network example

(b) Corresponding directed tree

, -...... . --Il

Fig. 2: Possible changes of F.(Z)
,Y

