September 1978

A FAILSAFE DISTRIBUTED ROUTINGC

EE PUB. No. 313
Sep. 1977
Revised May 1978

LIDS-P-852

PROTOCOL

Philip M. Merlin and Adrian Segall

-

Department of Electrical = s
Technion - Israel Institute of T
Haifa, Israel.

Abstract

.
neering
-Yes
ec

rnology

An algorithm for constructing ard szdszptively maintaining

routing tables in communication networks is presented. The algor-

ithm can be employed in store-and-forwerd zs well as line switching

networks, uses distributed computation, vroviles routing tables

that are loop-free for each destination 2= =213

times, adapts to

changes in network flows and is completeiy Tziisafe. The latter

means that after arbitrary failures and additi

ons, the network

recovers in finite time in the sense of prcviding routing paths

between all physically connected nodes. Cczpleie rigorous proofs

of all these properties are provided.

The work of A. Segall was supported by the idvanced Research Project

_Agency of the US Department of Defense (monits
contract No. NO0OOlk-75-C-1183.

red by ONR) under

1. INTRODUCTION

Reliability and the ability to recover from topological changes are
properties of utmost importance for smooth operatiop of data-communication
networks. in today's data networks it happené occasionslly, more or less
often depending on the quality of the individual devices, that nodes and
communication liﬁk§.fail and recover; also new nodes or links become opera—
tional and have to be added to an already operating network. The reliability
of a computer-coﬁmunication network, in tHe eyes of i%s users, depends on its
ability to cope with these changes, meaning that no breakdown of the entire
network or of large portions of it will be triggered by such changgs;and that

in finite - and hopefully short - time after their occurrence, the remaining

Jnétwor:k will be able to operate normally. Unfortunately, recovery of the

network under arbitrary number, timing, and location of topological changes
is hard to insure and little successful analytical work has been done in

this direction so far.
St
The above reliability and recovery problems are difficult whether

one uses centralized or distributed routing control. With centralized rout-
ing, one has the problem of central node failure plus the chicken and‘egg
problem of needing rogtes to obtain the network information required to
establish routes. Our primary concern hére is with distributed routing that
recovers from topological changes; here one has the problems of asynchronous
computation of distributed statué information and of designing algorithms
which adapt to arbitrafy chanées in network topology in the absence df global

knowledge of topology.

The paper presents a distributed protocol that maintains a route
from any source to any destinatidﬁ in a network. The protocol is distributed
in the sense that no central tables are required and there is no global
knowledge of the routes, i.e. each node knows only who is the next node

fcalled phem"preferred neighbor") on the route to a given destination. Each

+

-2 -

node is responsible for updatiﬁg its own tables {e.g. choosing a new pre~
ferred neighbdr) and these updates are coordinated by the protocol via-
control messages sent between adjacent nodes. For a given destination, the
set of routes maintained by the protocol are loop~free at all times, and.
wheﬁever no failures occur, theyvform a spanning tree rooted at the destina-

tion (i.e. a tree that covers all nodes).

To each link in the network, a strictly rositive "distance" (or

"weight") is assigned which represents the cost of using the link. Accord-

‘ing to utilization and possibly other factors, this distance may vary with

time following long-term trends. The length of any path is the sum of the
distances on the links of this path. Destinaticns zay asynchronously trigger
the protocol and start update cycles to change routes according to newréis-
tances. Such a cycle first propagates uptree while rodifying the distance
estimates from nodes to the destination and then proragates downtree while
updating the preferred neighbors. Each cycle tezdis to find routes with |
short paths from each node to the destination, azd assuming time-invariance
of link weights, the strict minimum (i.e. shortes= veths) will be reached

within a finite number of update iterations.

The proposed protocol also provides for rescovery of routes after
failures and for additions of links or nodes to tze network. When a link
fails, appropriate information is propagated backwards in the network and,

in addition, a "request" message is generated ard forwarded towards the

destination. New links are brought up via a similzar protocol. The request

message triggers an update cycle and it is guaranteed that within finite

time, all nodes physically connected to each destizzzion will have a loop-

free route to it. This holds also for multiple <iorzoicgical changes, and
even if such changes occur while the protocol is zztive and the update is
in progress. The recoverability of the protocol Is achieved without employ-

ing any time-out in its operation, a feature whicz zreatly enhances its .

amenability to analysis and facilitates structured irpiementation.

4

-3 -

The protocol is mainly intended for quasi-static routing in communi-
cation networks and the routes provided by the protocol can be used in a |
variety of weys for actual routing of Information. Although specification of
information routing algorithms is outside the scope of the present paper,
we in&icate here a few applications. In a (physical or virtual) line-
switched network, it is often impractical to reroute already established
conversations, except in cése of disruption caused by failure or pfiority
preemption. In this case, the routes provided by the present protocol may
be used for assigning paths to new or disrupted calls. For example, in a
virtual line-switched network‘the link weights may represent link délays,
and then the path provided by our protocol in steady state will give the
minimum delay route for the new call. If the weights represent incremental
delay, then the path will minimize network average delay (see [1, eq. (25)1).
Other criteria 1like probability of blocking, can also be taken into con-
sideration in the link weight. Observe that if the link weights cﬁange
drastically, the above strategy may allow new conversations to follow paths
so different from the old ones that together they form a loop, but this is
still the best one can do under the constraint that established conversa-

tions cannot be rerouted.

Similar strategies can be used in networks using message switching,
where the preferred neighbor indicates the first hop of the present best
estimated route towards the SINK and the node may for example increase the
fraction of messages routed over this path while reducing the fraction
sent over other routes. More sophisticated fazilsafe routing and update
procedures, where exact amount of increase and reduction of traffic
fractions are indicated so that optimality and routing loop-freedom are
achieved, have been obtained using ideas similar to the protocol of this

paper and are presented in a subsequent report [2].

-Lh -

Finally, we may mention that the presexnt protocol can replace the
simple-minded saturation routing that is presently used in several networks
to locate mobile subscribers and to select routing paths [3]. The protocol
of this paper has all the advantages indicated in [3, Sec. II] for satura-
tion routing, but requires no time-out and provides a route selected not

only on the basis of the instantaneous congesiion but on averaged quantities.

This work was inspired by [4] and [5], where minimum.delay routing
algorithms using distributed computation were developed. These aigorithms
also maintain a per destination loop-?ree routizgz at each step. Q;e of the
main contributions of the protocol given in the present paper is ;9 intro-
duce features insuring recovery of the routes from arbitrary.topolbgical
changes of the network. As a result, the proiccol of the presenﬁ paper is,

to our knowledge, the first one that is distributed and for which all the

following properties are rigorously proved:
(a) Loop-freedom for routes to each destiratior at all times.

(b) Independently of the sequence, locaticn zrnd gquantity of topological

changes, the routes recover in finite tire.

(¢) Under stationary conditions, the routes converge to paths with

minimal weighted length.

Y

Several routing algorithms possessing scme of the properties indicated
above have been previousiy indicated in the lizersziure. 1In [6], a>routing‘
algorithm similar to the one used in the ARPA nezwork {7] put with unity
1ink weights, is presented. It is shown there, tze: at the time ‘the algorithm
terminates, fhe resulting routing procedure is loop-free and provides the
shortest paths to each destination. As with ths AR?4 routing, however, the
algorithm allows temporary loops to be formed during the evolution of the
algorithm. The algorithm proposed in [8] ensures lcop-free routing for
individual messages. This property is achieved 2 requesting éach node to

send a probing message to the destination before each individual rerouting;

—

LH

-5 -

the node is allowed to indeed perform the rerouting only after having receivéd

‘an acknowledgement from the destination. *The extra load on the network by

sending probing messages from each node to each destination for each rerouting
is clearly extremely large. Also loop freedom for individual messages is a
weaker property than loop freedom for each desStination. For example, in a
three-node network, sending traffic from node 3 to node 1 via node 2 and send-
ing traffic from node 2 to node 1 via node 3 would be loopfree for individual
messages, but not loopfree for each destination. See [9] for a more complete

discussion of loop freedom.

In addition to the introduction of this particular protocol and the
proofs of its main properties, thé paper provides contributions in the
direction of modeling, analysis and validation of distributed algorithms.
The operations required by the algorithm at each node are summ#rized as a
finite-state machine, with transitions between states triggered by'the
arrival of special control messages from the neighbors, and the execution
of a transition may result in the transmission of such messages. Methods
for modeling and validation of various communication protocols were proposed
in [10] - [13]. These methods are designed however to handle protocols in-
volving either only two communicating entities or nodes connected by a fixed
topology. The model we use to describe our algorithm is a coﬁbinatiqn of
these known models, but is extended to allow us to study a fairly complex
distributed protocol. The analysis and validation of the algorithm is per-

formed by using a special type of induction that allows us to prove global

'properties while essentially looking at local events.

-.-Before proceeding, we may mention two other distributed protocols
that were recently developed. In [14], an algorithm for network resynchroni-
zation is presented and its recovery properties are proved under arbitrary
topological changes. A similar goal is obtained by R.G. Gallager in an

unpublished work [15], while also determining the paths with minimunm number

4

- 58 -

of links.between each pair of nodes in the network. Although there is a
great similarity between the ways in which the updating information .propa- .
gates and the distributed computation is performed by the algorithms of

[14], [15] and of the present paper, the exact relationship between these

protocols is a subject for future resesrch.

4

2. THE PROTOCOL

To facilitate understanding, we describe the protocol in several
steps. We first present the "basic protocol", i.e. assuming that no topo-
logical changes occur. Then we describe the additions to the protocol in

case of link outage and finally the additions for links becoming operationsl.

" A node outage can be represented as the outage of all of its links, and

similarly, a node becoming operational can be represented as links becoming
operational. Therefore, we do not pay special attention to topological

changes caused by nodes.
The following comments apply to the rest of the paper:

1l. Since we are not concerned with data transfer, we use the term
"message" to mean the special control messages employed by the -

protocol.

2. We assume that messages sent by a node to a neighbor are received
in the same order that they are sent, i.e. FIFO is preserved in the

.links (and local protocols).

3. The protocol proceeds independently for each destination. Conse-

quently, for the rest of the paper we fix the destination and

present and analyse the protocol for that given dest}nation, which

is denoted by SINK.

2.1 The Basic. Protocol

As already mentioned, each node i in the network has at any time

a preferred neighbor. Thus,'we assume that each node has a variable pi
which points to that neighbor. For the basic protocol, we assume that after
initialization, the directed gréph defined by the nodes i and arcs (i,Pij
form a tree directed towards (and_therefore rooted at) the SINK, as exempli-
fied by the network of Fig. 1 where directed arcs denote the preferred

neighbors {pi}. Subsequent sections describing the protocol which handles

- T -

topological changes will show that this assumption is justified by the
initialization procedure. Each node i has also a positive variable di

maintained by the protocol,denoting an estimated distance from i to the

SINK (a4 is by definition equal to 0). During an update, the protocol

SINK
reevaluates the distances {di} and accordingly the nodes choose preferred
neighbors {pi} in such 8 way that the directed graph given by the arcs

(i,pi) remains at all times a tree rooted at the SINK.

As already mentioned in Section 1, to each link (i,%) a strictly

positive "distance", denoted by 4 is assigned. We assume all links to

ie?
be full duplex and allow a link to have a different distance in each direc-
tion. The distance diz is allowed to vary with time and needs to be
known (measured or estimated) only by node i. The protocol tends to mini-
mize the distance di from each node i to the SINK, where this distance
is given by the sum of the weights dzm on the directe@ path from & node
to the SIKK.

As described below, the SINK may asynchronously start update cyclés
to change routes according to new distances, Such a cycle first modifies
distance estimates {d;} uptree and then modifies preferred neighbors {pi}
downtree. An update cycle is started by the SINK by sending é message

MSG(dSI) to each of its neighbors (notice that MSG(} = MSG(0) by

NK 51K
definition). When a node, say i, receives a message from its Pi’ it
reevaluates its estimated distance di and transmits MSG(di) to each of
its neighbours except pi. Notice that the spanning tree structure meﬁtioned
before (Fig. 1) guarantees that after the SINK has started the updating
cycle, each of the network nodes will eventually perform this step. Further-

more, this is done in the order given by the tree from the SINK towards the

leaves.

-8 -

Whenever a node i receives a message MSG(d) from a neighbor 2,
it estimates and stores its disténce through this neighbor to the SIRK.
This distance is estimated as d*'dig' As said before, the reevaluation of
the estimated distance di is performed when receiving MSG from the pre-

ferred neighbor pi. Node i calculates then the minimum of the estimated

distances to the SINK through all those neighbors from which it has already

received MSG (during the present update cycle). The node sets then di as

this minimum. (Notice that d;, 1is only an "estimate" of the minimal dist-
ance to the SINK because it is sometimes calculated based upon part of the

neighbors of 1i.)

When a node, say i, has received MSG(d) from all of its neighbors,
it transmits MSG(di) to its p, and then determines its new preferred
neighbor p,- This is done by choosing p; as the neighbor which provides
minimal estimated distance from i to the SINK. This choice is made among
all neighbors of .i and as such it may pick a neighbor different from the
one which provided di (the calculation of the estimated distance di is
usually based upon part of the neighbors). Since, as previously shown, each
node i will eventually send MSG(di) to all its neighbors except ‘pi5
the leaves of the directed tfee will eventually receive MSG from all their
neighbors. Thus they will send MSG to their preferred neighbor Py and
reevaluate a new p; - It can be easily seen by induction, that each node
will perform this step. This happens in the order given by the ofiginal

directed tree, from the leaves towards the SINK.

Since the SINK denotes the destination, the SINK has no preferred
neighbor, and therefore the SINK does not update PaNk when it receives
MSG(d) from all its neighbors. Instead, this event notifies the SINK that

the update cycle has been properly completed. The SINK is not allowed to

start a new update cycle until the previous cycle has been properly completed.

4

-9 -

A node 1 always updates its preferred neighbor Py to point

towards a node § having estimated distance d, < di. As proved in

J .
Section 3, this fact insures that the updated directed graph will remain

a tree at any time.

The basic protocol can be formally defined by the basic algorithm
performed by each node 1. The latter is shown in Table 1 with the aid of
a Finite State Machine. Node i can be in either of two states. It will
be in state S2 after having received MSG from its prefe;red neighbor ?i
and until it receives messages from all its neighbors. Otherwise node i
will be in S1. The variables ‘Di(z), one for each neighbor £ of i,
store the values of the estimated distance through link 2 to thé SINK.
The variables Ni(z), one for each neighbor £ of 1, denote flags which
can take the value "RCVD" to mean that MSG(d) was received from link (i,2)
during the current cycle, or the value "nil" otherwise. CT is a control

flag which can take over the values O or 1. We assume that when MSG(4)

‘arrives from link 2, it.is given to the algorithm in the format MSG(d,g).

When MSG(d,%) is processed, the flag Ni(d) is set to RCVD,
Di(z) is calculated, CT is set to 0, and then the Finite State Machine

executes transitions until no more transitions are possible. Transition T12

can Beiexecutea if node i is in state S1 and Condition 12 is satisfied,

i.e. the algorithm is processing a MSG(d,%) in which & = p; and CT = 0.

If T12 is executeﬁ, then node i goes to state S2 and Action 12 is perfofmed,
i.e. the estimated distance di is reevaluated ard MSG(di) is transmitted to
each neighbor of i except thé preferred neighbor p; - In a similar way,

TPl is executed when node i is in state S2 and Condition 21 is satisfied,

in which case node i goes to state S1 and Action 21 is performed. The role
of CT is to insure that T12 cannot be executed imrediatly after T21 (for
example, suppose node i is in state S1 and MSG(d,% = pi) arrives after

messages have arrived for all other links of i. In this case, without CT,

4

- 10 -

the sequence of transitions T12, T2l, T12 will be performed in contradiction

with the protocol). Notice that the sequence T12, T21 is permitted.

The use of the Finite State Machine for describing the relatively
simple basic algorithm may appear superfluous. Its importance will become
apparent when describing the more complex protocols and the proofs of their

propérties.

2.2 Handling Failures of Links

At our level of abstraction, the outage of a link is called "link
failure". Transient (or transmission) failures can be masked out by the
link protocol, and we are not concerned with them. If & link of the
directed tree fails, then éll the nodes which are predecessorg of,?his
link on the directed tree lose their route to the SINK, but they afe unawvare
of this fact at the time of the failure. For example, if link (7,8) of
Fig. 1 fails, nodes 6, 7 and 9 lose their route. TFurthermore, if an updatev
cycle is started, node T will not be able to receive MSG(d,2 =8) and there-
fore node T, as well as nodes 6 and 9 will not te zble to perform T12. 1In
such a case we would like to reccver by findirg zn alternative route (e.g.
through node 5), but since the basic protocol zllows changing estimated
distaﬁéﬁ di and preferred neighbor pi only sfter performing Tl2{ ﬁhere
is need to provide an extension to handle this situation. Two actions must
be taken by the extended protocol. First to inform nodes T, 6 and 9 not to
wait for triggering messages from the tree (a2nd 21so that the existing tfee
has no meaning for them anymore) and second, tc zllow those nodes to choose

their p. Wwhenever control messages from new cycles arrive. These features
i) :
are in the sequel.
Whenever a node i discovers a failure of its link to the preferred
neighbour p., it sets p., = nil and di = OO to mean that its estimated
i i

distance to the SINK has beccme infinite. Then node i generates a special

- 11 -

-

message MSG(«) which propagates backwards through the tree to the nodes
that lost their route, causing them also to set their best link to nil
and the estimated distance to infinite. ;géwéropagation backwards is done
as follows. Node i sends MSG(=) rto all its neighbors except P;3 if
a node J receives MSG(») from a link other than pj, it stores it but
no other action is taken; if a node J receives MSG(=) from pd, then
it transmits MSG(«) +to all its neighbors except Py and sets pd = nil,
dJ = @, When a node establishes p; = nil, di = o, it is said to enter
state S3 (see Table 3). -

The second part of the recovery, called "reattachment”, consists of
choosing a new best link by those nodes i having p; = nil. The reattach-
ment takes place if one of the following two situations occurs. One possi-

bility is that a node with p; = nil receives on one of its links, & say,

a message MSG(d#«) and the node is assured that this message was generated by

an update cycle that started after the failure that caused p; = nil. A

second possibility is that at the time p; is set to nil, such a message
has already been received at node i. The reattachment consists of setting
p, = 2, going to state S2 and effecting the same operations as in T12.
This, together with other mechanisms to be described, guarantees that if a
failure (or multiple failures) occurs, and if indeed a new update cycle is

started, all nodes physically connected to the SINK will eventually belong -

to a non-disrupted directed tree rooted at the SINX.

As mentioned aﬁove, there is need to guarantee that reattachment
is performed only as a result of receiving a message generated by an up-
date cycle which started after the failure. This caﬁ be achieved by number-
ing the update cycles with nondecreasing numbers as described below. Each
node i will have a counter number n, which denotes the cyéle number
currently handled by this node, and all messages transmitted by i will
carry n, in addition to d; > i.e. they will be MSG(ni’di)' The SINK

may increase its NoTNK before starting a new update cycle, as explained‘later;

- 12 -

A node i receiving MSG(m,d) on its pi updates its n, to equal m.
Now, reattachment is donme by & node i with p, = nil if an MSG(m,d) with

m > n, is received (or was previously received).

When an MSG(m,d) is received from link & by node i, in addition
of storing 4 in Di(z), there is need to remember also the value of m.

/

This can be saved in Ni(z), which can now take the values nil,0,1,2,3,...3

instead of nil and RCVD as in the basic algorithm.

If a failure occurs in a link not belonging to the directed tree,
no route is disrupted. However, if this link is connected to a nodé in
state S2, it is convenient to prevent T21 from haﬁpening at this node for
this update eycle. This will avoid nodes to update routes based upon
information which is invalidated by the failure and, more important, will
preclude proper completion from happening. Thus, proper completion will
indicate to the SINK that the update cycle was completed without failures
interfering with the process. Preveniion of T21 is accomplished by intro-
ducing an additional;state, S§, into wnich a node enters if a nonpreferred
link fails while the node is in S2. £ node i will leave S2 whenever new

information is received on P {see Table 3).

The described protocol allows the SINK to behave as follows. If . .

an update cycle started with n TNK = m completes properly, the SINK is

allowed to start the next update cycle with the same nSINK'

hand, the SINK may at any time increase RaTnk and start a new update cycle

On the other

with an n larger than those used before, even if previous cycles have

SINK)

not been properly completed. (Notice that in any case the values of nSINK
are non-decreasing with time.) As proved later, if a new update cycle is
started while increasing Do rnK? it will eventually "cover" all previous

cycles. Also, if failures do not occur for a long enough time, the new cycle

will be properly completed, and all failures will be recovered, i.e. for all

- 13 -

nodes 1 physically connected to the SINK, the directed graph of (i,pi)

will form a tree rooted at the SINK.

Table 2 summarizes the variables used by the algorithm performed by
an arbitrary node i as its part of the protocol. Fi(l) denotes the status
of link & as considered by node i, i.e. Fi(l) = UP if & is considered
operational and Fi(l) = DOWN if & is considered unoperational. Fi(z) can
take also the value "READYt;whose use will be described when dealing with the
problem of links becoming operational. At that time, the role of zi(z) will
also become clear. The variable mx, stores the value of the largest update
cycle number m of all the messages MSG(m,d,%) received by node i. The
rest of the variables and their use were already described. The local link
protocols controlling the operations of the links connected to node i may
relay to the algorithm performed by node i four types of messages, and they
are also summarized in Table 2. MSG denotes an updating message, FAIL(%)
denotes the detection of the failure of link £, and the remaining two will
be described later. The exact properiies required from the local protccol

to insure proper cperation of the network protocol will be discussed in

Section 2.7.

Table 3 describes the generalized algorithm of node 1 for the proto-
col which handles topological changes. The protocol as described up to now
is implemented by the algorithm of Table 3 if ignoring steps I.1, I.2.4, I.3.1,
I.b, IT.1.5, II.2.5 and II.T7.T. These steps relate mainly to links becoming
operational and will be discussed in subsequent sections. Table 3 uses a
notation similar to the one of Table 1. States S1, S2 and transitions T12 a
and T2l are similar to those described in Table 1 for the basic algorithm.
State S3 denotes the situation where the node has P; = nil, which results
from receiving a FAIL or a MSG with d =« from pi.' State s2 denctes a
state similar to S2, but from which a transition T2l is precluded. As

previously described, the algorithm goes to such a state 82 if while at S2

=1k -

a failure is detected from a link other than p;. The "Facts" given in the
algorithm are displayed for helping in its understanding and are proven in
Theorem 2 of Section 3. A Fact holds if the transition under which it

appears is performed.

2.3 Starting a New Update Cycle

There exist several procedures for starting a new update cycle and

setting the corresponding n in a wey which satisfy the required behaviour

SINK
from the SINK as described in Section 2.2. Two of these procedures are des-

cribed next.

Version 1: At given intervals of time, or as a result of the detection of

a change in the traffic pattern, the SINK increments n and starts a

SINK
new update cycle. The above version mayvmake use of a time-out to trigger
a new update cycle if the previous one is not properly completed within
certainrtime. If a failure occurs after proper completion, there.is no
direct triggering of a new update cycle, and'thus recovery can be achieved
only whenever the SINK decides to start a new update cycle. In addition,

this version unnecessarily increments n for every update; hence an

SINK

unnecessarily large number of bits to represent =n is required. These

SINK
two disadvantages are overcome by the next version.i
Version 2: In order to cope with changes in traffic patterns, after proper
completion of the previous update cycle, the SINK may start a new update
cycle with the same Dok In addition, whenever a node 1 detects a
failure of a link attached to it, the node generates a special message
REQ(ni) which is forwarded through the directed path of preferred links

to the SINK. If such a REQ(m) arrives at a node i having p; = nil, the
REQ is discarded. In Section 3 it is shown that if a REQ(ml) is generated
and forwarded as mentioned above, then some REQ(m2), m2 > ml will actually

arrive at the SINK, within finite time. Whenever a REQ(m) arrives at the SINK,

- 15 -

Nornk? then Doryg 1S incremented and a new update cycle is

started. This cycle will take care of recovery from the failure that

and if m =

generated the REQ(m). If m < Ngryk Such & cycle was already started and
the REQ(m) can simply be ignored. (Notice that m cannot be larger than
nSINK') This version guarantees that if an update cycle with Nerng = B

is started, the cycle will be properly completed in finite time or else, a
failure has occurred and a REQ(m) will arrive at the SINK. (This is proved--*
'in Section 3.) Thus, there is no need for a time-out to make sure that the
SINK will not wait indefinitély for the proper completion of an update

cycle. The additions to the algorithm for implementing this version are
given in I.1 and'I.Q.h of Table 3. In the rest of the paper, we assume

that this version is implemented, although most of the results‘are also

applicable to Version 1.

2.4 Handling Links Becoming Operational

If link (i,2) is down, i.e. Fi(z) =F (i) = DOWN, and it becomes

A
operational, nodes .i and & should coordinate the operations necessary

- to bring the link up. Othérwise, a deadlock could occur, for instance, if
i éets Fi(l) = UP while at S2 and 2% sets Fz(i) = UP after performing
T21 of the same update cycle. In this case, i will not perform T2l until

receiving a message from £, and such a message will not be sent because

% already completed this update cycle, i.e. deadlock.

The coordination is achieved by having both nodes bring the link up
Just‘before starting to perform their part of the same new cycle. This
~ is done in two steps. ?irst, i» and £ compare n, and nz via the local
protocol and decide to bring up the link when starting to process the first
cycle with number strictly higher than max(ni,nz). This fact is remembered

at the nodes by setting zi(ﬁ) and zz(i) to max(ni,nz), as well as

Fi(z) and Fz(i) to "READY". 1In addition, Ni(z) and Nz(i) are get to

- 16 -

nil and REQ(zi(z)) is generated by nodes i and £ and forwarded to the

SINK in the same way as described in Section 2.3 (Version 2) for failures.

This will guarantee that an update cycle with larger than zi(z)

AsINK
(and zl(i)) will be started. This first step of the coordination at node
i is done by message WAKE(Z) given by the local protocol to the algorithm.
The actions performed by the algorithm when receiving such & message are
described in I.k of Table 3. The synchronization assumes that the exécution
of WAKE(2) and WAKE(i) are simultaneously started at nodes i and 2
respectively, in order to guarantee that zi(z) = zz(i). However, it may
happen that a failure occurs agein in the link and one of the nodes succeeds
to complete the synchronization while the other node does not. The protocol
allows for suéh a situation and only requires that the link protocol ends
the synchronization (successfully or unsuccessfully) within finite tiﬁe. Iir
the synchronization is unsuccessful, no action is taken by the node, and the
link will remain DOWN from this node's point of view. Section 2.7 gives a
more formal and complete list of the requirements that the link protocol

should satisfy.

s

The second step of bringing the link (i,%2) up is done by node i
(iﬂe. Fi(z) is set from READY to UP) when node i receives MSG from link
%2 or when the node counter number ni becomes larger than zi(z). This

is represented respectively by I.3.1 end II.1.5, II.2.5, IL.7.T7, of Table 3.

2.5 The Algorithm for the SINK

The algorithm forAthe SINK, assuming that Version 2 of Section 2.3'.
is chosen, appears in Table 4. Most of the algorithm'was already informally
discussed in previous sectioqs. The main difference between the algorithm
for the SINK and that for an arbitrary node iA is fhat the first does not

need to keep the following variables:

- 17 -

- P (which is not defined for the SINK)
- a (wvhich is always O for the SINK)

- ni(z) (which is only needed to update 4, and pi)

- mx; (nSINK is always the largest update number)
- zi(l) (during WAKE synchronization, ZSINK(z) is always set to
gk = PeX{ngrycong)

In addition, the algorithm may receive a "START" message from the "outside
world" which will cause it to start a new cycle, provided that the last one
was properly completed. WAKE and REQ call also for the execution of the

Finite-State-Machine, and as a result WAKE as well as REQ(m=n) will

SINK

cause an increment of n and a new update cycle will be started. States

SINK
S1 and S2 are similar to the corresponding states of the algorithm for an
arbitrary node i.‘ Howevér, S1 means for the SINK that the last update
cycle was properly completed, and S2 means that the current update cycle is
not yet completed. T}? and T2z represent the starting of a new update cycle

and T2l the proper completion. For the SINK there is no need for states

equivalent to S3 and s2.

2.6 Initialization of the Protocol

Any arbitrary node i comes into operation in state S3, with noée
counter number n, = 0, preferred neighbor p, = nil, and Fi(k) = DOWN
for 8l1l k. The value of the remaining variables is immateriel. From this
initial condition, the local protocol may try to wake the links and it
proceeds operating as defined by the algorithm (Table 3). The SINK comes
into operation in state S1, with ng. =0 and Fi(k) = DOWN for all k,

and proceeds in the same way but according to the algorithm of Teble L,

- 18 -~

2.7 Properties Required from the Local Protocol

On each link of the network there is a local protocol that is in

charge of exchanging messages between neighbors. Our main algorithm assumes

that the following properties hold for'fhe local protocol:

2.7.1
2.7.2

2.7.3

2.7.4

2.7.5

2.7.6

2.7.7

All links are bidirectional (duplex).

dil >0 for all links (i,%) at all times.

If a message is sent by node i to a neighbor £, then in finite
time, either the message will be received correctly at £ or

Fi(z) = F, (1) = DOWN. Observe that this assumption does not preclude
transmission errors that are recovered by the local protocol (e.g.

"resend and acknowledgement").

Failure of a node is considered as failure of all links connected

to it.

A node i comes up in state 53, with n, =0, p, =nil, and

Fi(l) = DOWN for all links (i,2).

The processor at node 1 receives messages from link (i,2) on a

first-in-first-served (FIFO) basis.

A link (i,l) is said to have become operational as soon as the

local protocol discovers that the link can be used. Links (i,z)
and (%,i) Ybecome operational at the same time and subject to the
following restrictions, a WAKE "message" is delivered in this case

to each of the processors i and &.

WAKE(%) can be received at node i only if
(a) node & receives WAKE(i) at the same (virtual) time;
(b) there are no other ocutstanding messages on link (z,2) and on (1Y%

(e) Fi(l) = F (i) = DOWN.

L

2.7.8

2.709

2.7.10

If Fi(l) = DOWN, the only message that the processor at i can

receive from & i1s WAKE(L).

(a) If F. (2) # DOWN and F (1) # DOWN end F,(%) goes to DOWN,

then Fz(i) goes to DOWN in finite time.

(b) 1If Fi(z) = Fz(i) = DOWN and Fi(l) goes to READY, then in

finite time, either Fz(i) goes to READY or Fi(z) = Fz(i) = DOWN.

When two nodes i and & receive WAKE as described in 2,7.7, a
"synchronization" between i and % is attempted. At either end the
synchronization may or may not be successful (the latter because of

a new failure). If it is successful, the node proceeds as in Step I.h

of Table 3. If not, then no action is taken.,

-20 -

3. [PROPERTIES AND VALIDATION OF THE ALGORITHM

) Some of the properties of the elgorithm have already been indicated
in previous sections. Here we state them explicitly along with some Qf the
others. We start with properties that hold throughout the operation of. the.
network, some of them referring to the entire network at a given instant of
time and some to a given node or link as time progresses. Then recovery of .
the network after topological changes is proved through a series of theore?s,
and finally we state and prove the fact that the algorithm achieves shorteét

weighted ‘routes. We may point out, that the most important features of the

algorithm are given in Theorems 1, 4, 5 and 6.

Before stating the main properties of the algorithm, we need several

definitions and notations:

S1, 82, S2, S3 = states of the Finite-State Machine.

PC(m) = time of proper completion with cycle counter number m.

state S1 with node counter number ni =n, and similarly for

S1[n]
s2[n], S3[n], S2[n]...
Whenever we want to refer to 2 quantity at a given time t, we add the time in

in parentheses (e.g. pi(t) means preferred neighbor p, of node i at

time t, Ni(z)(t) means variable Ni(l) at time t, etc.)

si(t) = state and possibly node counter number n, of node i at time t.
Therefore we sometimes write si(t) = 53 Zfor instance, and sometimes
si(t) = s3(n].
We use a compact notation to describe changes accompanying a transi~

tion, as follows:

Tm[t’i’MSG(ml3dl’ll) ,SEND(mé,dQ,lQ) >(nl »n2) :(dl,dQ) ,(pl,p2) ,(le,mxz)] (12)

will mean that transition from state Sx to state 8y takes place at time
t at node i caused by receiving MSG(ml,dl) from neighbor £1; in this

transition i sends MSG(m2,d2) to 22, changes its node counter number

- 21 -

n, from nl to n2, its estimated distance to destination di from 4l
to d2, its preferred neighbor pi from pl to p2 and the largest up-

date counter number received up to now mxi from mxl to mx2. Similarly,

Txy[t,i,EAIL(z),smnn(mz,de,ze),(nl,na)(dl,dz),(él,pa),(mxl,mxz)] (1v)

denotes the same transition as above, except that it 1s caused by receiv-
ing FAIL(%) from neighﬁor L. For simplicity, we delete all arguments that
are of no interest in a given description, and if for example nl is |
arbitrary we write (¢,n2) instead of (nl,n2). Similarly; if one of the
‘staxes is arbitrary, ¢ will replace this state. In particular observe
that
T¢2[t,SINK,($,n2)] (2)

means that ;n wpdating cycle with number n2 1is started at time t and

T21{t,SINK,(n2,né)} (3)

means that‘proper completion of the cycle occurs at time t. If Txy[tl],

then we use the notations:

t- = time Just before the transitionm,

t+

il

time just after the transition.

We also use

[t,1,M5G(m,a,2)] . (%)

to denote the fact that a message MSG(m,d) is received at time t at i

from £, whether or not the receipt of the message causes a transition.

Finally, at a given instant t, we define the Routing Graph RG(t)
as the directed graph whose nodes are the network nodes and whose sarcs are
given by the preferred neighbors P, > namely there is an arc from node i
to node % if and only if pi(t) = 9, For example, the routing graph of
the network in Fig. la is given in Fig. 1b. In order to describe properties

of the RG(t), we also define an order for the states by S3>S2 = S2>S1.

- 22 -

Also, if Sx and Sy are states, then the notation Sx > Sy means Sx > Sy
or 8Sx = Sy. For conceptual purposes, we regard sll the actions aésociated
with a transition of the Finite-State Machine to take place at the time of

the transition.

Theorem 1

At any instant of time, RG(t) consists of a set of disjoint trees

-with the following ordering properties:

i) the roots of the trees are the SINK and all nodes in S3;

i

ii) if pi(t) %, then n (t) Z_ni(t);

1i1) if p.(t) =4 and ngﬁt) n,(t), then s (t) 3_si(t);

o~

iv) if pi(t) 2 and n(t) = n(t) and s,(t) =s,(t) =51, then

dz(t) < di(t).

The proof of Theorem 1l is given in Appendix A, According to it, the
RG consists at any time of a set of disjoint trees, i.e. it contains no loops.
Observe that a tree consisting of a single isolated node is possible. The
algorithm maintains a certain ordering in & tree, namely that concatenation
of (ni,si) is nondecreasing when moving from the leaves to the root of a
tree and in addition, for nodes in S1 and with the same node counter number,

the estimated distances di to the SINK are strictly decreasing.

In addition to properties of the entire network at each instant of
time, we can look at local properties as time progresses. Some of the most
important are given in the following theorem whose proof appears in Appendix A

(see ¢) and d) in Theorem A.l).

- 23 -

Theorem 2

i) For a given node i, the node counter number ni is nondecreasing

and the messages MSG(m,d) received from a given neighbor havé non-
decreasing numbers m.
ii) Between two successive proper completions PC(m) and PC(m), for each -
given m with m <m < m, each node sends to each of its neighbors
et most one message MSG(m,d) with d < =,
iii) Between two successive proper completions PC(m) and PC(;), for each

given m with m <m<m, anode enters each of the sets of states

{si[m]}, {s2[m], Sé[m]}, {SS[m]} at most once.

iv) All “Facts" in the formal description of the algorithm in Section II

are correct.

A third theorem describes the situation in the network at the time

proper completion occurs:

Theorem 3

At PC(m), the following hold for each node i:

i) If n, =m, then s, =Sl or s, = S3.
1 . 1 1

ii) If a message MSG(m,d) with d # is on its way to i, then

s, =83 and n. = m.
1 1

iii) If either (ni =m and s = S1) or n, < 5, then for all k such

that Fi(k) = UP, it cannot happen that {Ni(k) = m, Di(k) < o},

A combined proof is necessary to show that the properties appearing

in Theorems 1, 2, 3 hold. The proof uses a two-level induction, first assum-
ing properties at PC to hold, then showing that the other properties hold

between this and the next PC and finally proving that the necessary properé

- 24 -

ties hold at the next PC. The second induction level proves the properties
between successive proper completions by assuming that the property holds
until Just before the current time t and then showing that any possible
change at time t preserves the property. The entire rigorous procedure

appears in Appendix A.

In order to introduce properties of the algorithm regarding normal

activity and recovery of the network, we need several definitions.

Definition

We say that a link (i,2) is potentially working if Fi(z) # DOWN
end F,(i) # DOWN, and e link (i,2) is vorking if F,(2) = F (1) = UP.
Two nodes in the network are said to be potentially connected at time +t

if there is a sequence of links that are - potentially working at time ¢t
connecting the two nodes. A set of nodes is-said to be strongly connected

to the SINK if all nodes in the set are potentially connected to the SINK
and for all linpks '(i,l) connecting those nodes, we have either
_?i(g) = Fz(l) =UP or Fi(£) = Fz(l) = DOWN.
Definitiqn
Consider a given time t, and let ml be the highest counter

number of cycles started before t. We say that a pertinent topological

-change happens at time t if the algorithm at a node i with ni(t~) = ml
receives at time t a message WAKE(f) resulting in successful WAKE syn-
chronization or s message FAIL(%2). Observe from steps I.2 and I.4 of
Table 3 that REQ(ml) is generated and sent if and only if a pertinent
topological change hapéens at a node i with P; # nil. Also note, thgt -
pertinent topological change happens if and only if node i has # link
(i,k) such thet at time t, Fi?£> changes from DOWN to READY or from

either UP or READY to DOWN (see Fig. 2).

- 25 -

~

Theorem 4 (Normal activity)
Let

L(t) = {nodes potentially connected to SINK at time t} ,

H(t) = {nodes strongly connected to SINK at time t} .

Suppose
T$2[t1,SINK, (ml,m1)] y (5)

namely a cycle is started at tl1 with a number that was previously used.
Suppose also that no pertinent topological changes have happened while

nSINK = ml before t1 and no such changes happen for long enough time

after tl. Then there exist t0, t2, t3 with t0 < %1 < 2 < t3 < » such

that a), b), ¢), d) hold:

a) T21[£0,SINK,(m1,m1)]; _ (6)

b) ¥ in the interval ‘[t0,£3], we have H(t) = L(t) = L(t0);

c) fbriall i.sIKﬁO), we havé

T32lt2, .1, (xl,m)] (7)

for some time .t21 in the intervel [t1,t2];

a) i) T21[t3,SINK,(ml,m1)]; | (8)
ii) RG(t3) for all nodes in L(t0) 1is a single tree rooted at SINK.

In words, Theorem b says that under tﬁe given conditions, if a new
cycle starts with & number that was previously used, then Proper Completion
with the same number haé previously occurred and the new cycle will be
properly completed in finite time while connecting all nodes of interest (i.é.
in L(t0)) to the SINK, béth strongly‘and routingwise. The proof of Theo;
rem 4 is given in Appeﬂdix B.

The recovery ﬁropertiqs of the algorithm are described in Proposié
tions 1, 2 and in Theorem 5. The proofs of the propositions appear in

Appendix B.

- 26 -

Proposition 1

Let L(t), H(t) be as in Theorem 4. Suppose
'i'¢2[t1,SINK,(ml,m2)] ; m2>ml ,- o (9)
namely a cycle starts at time t1 with g number thdtvvas nét pﬁéﬁiouslyiii
used. Suppose also that no pertinent topologica; changes héppen fb?,a*
long enough period after tl. Then N v
a) there exists a time 2, with t1 < t2 < o, such_pga;'
i)' ‘for all.-iE L(t2) |
92[t2,,1,(¢,m2)] . o)
happen at some time t2i with tl1 < tEi _<T_t2; |
ii) H(t2) =-L(t2) .
b) There exists a‘time t3 ? o such that
i) 721 [t3,SINK, (m2,m2)] 3 o R :1'(11)
31) ¥t in the imterval [t2,83], we heve H(t) = L(t) - H(tQ);

iii) RG(t3) for all nodes in L(t3) 1is a single tree rog{:ed at
SINK. | |
Part a) of Proposition 1 says that under the stated>condit10ﬁs,.ail nodes
in L(t) will eventually enter state 82[ﬁ2]. Part b) sa&s thaf-the cycle‘
will be properly completed and all nodes potentially connected to the SINK
at time PC(m2) will actually be strongly connected to the SINK.énd wiil also

have a routing path to the SINK.

Finally, we observe that reattachment of a node loosithits path to
the SINK or bringing a link up requires a cycle with a countér number higher
than the one the node currently has. Proposition 2 ensﬁres that such a cycle

has been or will be started in finite time by the SINK.

- 27 -

Proposition 2

| Suppose a node i receives FAIL(Z) while n. =ml or a successful -
WAKE(2) synchronization occurs at node i while zi(l) = ml. Then the |
SINK has received before t a message REQ(ml) or will receive such a message

in finite time after t.
Propositions 1 and 2 are combined in:

Theorem 5 (Recovery theorem)

Let L(t), H(t) be as in Theorem k. Sﬁppose there is a time t1
after which no pertinent topological changes happen in the network for long
enough time. Then there exists a time t3 with 11 < t3 <= such that
all nodes in L(t3) are strongly connected to the SINK and are on a.single‘

tree rooted at SINK.

Proof

Let t0 < t1 be the time of the last pertinent topological change
before tl. Let i ©be the node detecting it and let m = ni(tO-). Then
Proposition 2 assures that a message REQ(m) arrives at some finite time at
SINK. Let t2 < o be the time the first REG(m) message arrives at SINK.
Condition 12 or 22 in Table 4 dictates that SINK will start at time t2 a
new cycle, with number ml = m+1. Since by the definition of pertinent
change, m is the largest number at time tO, we have that t0 < t2. By
assumption, no pertinent topological changes happen after time t0 for
a long énough period, so that no such changes happen after time t2. Con-
sequently Proposition 1 holds after this time and the assertions of the

Theorem follows.

Theorem 6 (Shortest paths)
With the notations of Theorem 5, suppose the conditions of Theorem 5
hold and in addition, suppose that the weights 4., of the links are time in-

variant for a long enough period after tl. Then, after completion of a

- 28 -~

finite number of cycles after +t3, the routing graph RG will provide the

shortest route in terms of the weights dil. from each node in L(t3) to

the SINK. Let SR be the graph providing the shortest routes in terms of

d Then the necessary number of cycles is bounded from above by the

i’
largest distance from SINK in terms of number of hops on SR.

Proof
Observe from steps II.1.3 and II.3.T in Teble 3, that during the -
first eycle after %3 all nodes closest to SINK on SR will have p; = SINK

and will never change p, afterwards.

. Next, consider any connected subgraph A of SR that inéludes the
SINK. Suppose that at the time of a cycle completion SR and RG coincide
for nodes in A. Then these nodes will never cheange their preferred neighboré
P, afterwards. Also during tpe next cycle at least the nodes neighboring A
on SR will change their pi such that RG and SR will coinqide_fbr theﬁ foo,

and this proves the assertion.

- 29 -
IV. DISCUSSION AND CONCLUSIONS

ihe'paper presents an élgorithm for constructing and maintaining
loop-free routing tables in e data-network, when arbitrary failurés and.
;dditions happen in the network. Clearly,.the properties that aré“rigorously:’
provéd in Sectioﬁ 3 and th; Appendices hold also for several other versions
of the algofithm; some ofvfhem sim@ler and some of them more involved than
the presenf oﬁe. We ha?e decided on the present form of the algorithm as a
compromise between simplicity aﬁd still keeping some prcpert;es that are
intuitively apjéaling. ' For example, one possibility is to inérease the up-
dé.te cycle number every time a new cycle is started. This wiil not simplify,
the.algorithm, but will grestly simplify the proofs. On the other hand, it
wili require many more bits for thérppdate'cyélevand node numbers m #nd ny

than the algorithm given in the paper. Another version of the algorithm

previously considered by us was to require that every time a node

receives & number higher than n, from some neighbor, it will “"forget" all
its previoué infbrﬁation and will "reattach" to that node immediately, by a
similar operation to transition T32. This change in the algorithm would
considerably simélifywboth thé algorithm and the proofs, but every topologi~
cal chagge will affect the enﬁire ngtwqu, since after any topological change,
a2ll nodes will act as'if they had no previous information. On ﬁhe other
hand, the version given in the paper "%Qcalizes" failures in the sense that
only those nodes whose best péth~to SINK was destroyed will have to forget
vall their previous information. This is performed in the algorithm by re-
quiring that nodes not in 83 will wait for a signal from the preferred neigh-
bor 1 before they proceed, even if they receive a number higher than hi
from other neighbors. The signal may be either «, in which case the node
enters S3 (and e&entually reattaches) or less than «, in which case the

node proceeds as usual.

- 30 -

A final remark regarding the esmount of control information required
by the protocol. Observe that since for each update and for each destina-
tion each node sends over each link the distance di and the node counter
number. n, ., the amount of information sent over each link'is of the same
order of magnitude as the ARPA routing protocol [7]. The difference is -
that the latter allows information for all éestinations to be sent in oﬁe
message, whereas our protocol requires in principle separate messages for
different destinations (although sometimes several messages may be packed
together). If the overhead for control messages is not too large however,

the extra load will not be significant.

- 31 -

Appendix A
fWé organize the proofs as. follows: We start with the statements of
a few properties that follow immediately from the formal descriptioh éf the
algorithm in Table 3. Lemmas A.l - A.4 and Theorem A.l contain the proofs
of Theorems 1, 2 and 3, together with some other proﬁerties needed in the
prbofs themselves. Theorem 4 and Propositiohs 1 and 2 will be proved in

Appendix B.

Properties of the Algorithm

Rl Any change in. ni, 5.5 P> or sending any message (m,d) can happen

only while i performs a transition.

R2 Txy[ﬁ,i,SEND(m,d);(¢,n2),(¢;d2),(¢,mx2)] implies 4 = 42.

If d #e, then

i) Txy = T12 or T2l or T22 or T32 or T22

ii) n2=mx2 =m

If 4 = «, then

1ii) Txy = T13 or T23 or T23

iv) n2 =m .
R3 T32[t,i,(n1,n2)] => n2 > nl
Rk si(t) = 83 <= pi(t)'= nil <= di(t) = o
RS Txylt.i,(pl,p2)], pl # nil, p2 # pl => Txy = T13 or T2l or T23.or T23.
R6 mxi(t) is nondecreasing in time for any 1i.

R7T In the Finite-State-Machine, no two conditions can hold at the same time.

This implies that the order of checking the conditions of the transitions

is irrelevant.

R8 For all t and all nodes i in the network, nSINK(t) 3.ni(t) and

nerng(t) 2 mx, (t).

R9

R10

- 32 -

The Finite-State Machine has two types of transitions. The first type
is effected directly by the~incom1ng message, while the second type is
caused by the situation in the memory of the node. Transitions T23

and T21 are of the second type, all others are of the first type. Each

message can trigger only one tranmsition of the first type, and this

transition comes always before transitions of the second type. This

is controlled by the ﬁariable CT in Table 3.

The possible changes of Fi(z) are given in Fig. 2. The types of
messages causing them are also shown. A pertinent topological change
happens iff Fi(l) < DOWN or ”Fi{l) changes from DOWN to READY at a

node i with ni(t-) = ml, where ml is the highest counter number of

"cycles started before t.

The following lemma says that the node number ni can be changed
only when receiving a message from the preferred neighbor pi and then, the
new number is exactly the cycle number m received in that message. It also

: . £

gives conditions for leaving state S3.

Lemma A.1
If
tht’iy MSG(mser)’ (nl,n2), (Plsd’)] (A.l)
or .
Txy[t,i, FAIL(2),(nl,n2),(pl,4}]
then

a) pl #nil, n2 #nl' = 2 =pl and n2=nm ;

b) pl = nil = n2$n1, and also 3k s.t. Fi(k)(t—~) = UP, Ni(k)(t-) = n2.

- 33 -

Proof
a) From the algorithm we see that T21, T2§, T22 do not apply here since
they imply n2 = nl. Also T32 does not apply, since then- pl = nil.
If T13, T23 or T23 is caused by FAIL(2) then =n2 = nl, so this
case does not apply either. In all other éases, n2=m and pl = ¢

(see IX.1.4, 11.2.1, 11.2.4 in Table 3).

b) pl = nil implies Txy = T32 and the assertion follows from steps

I1.7.1 and IX.7.5 in Table 3.

The next lemma proves statement i) of Theorem 2 and shows the role of
the node counter number ni. Here we see for the first time that several

propergies have to be proved in a common induction.

Lemma A.2
a) [i,tl,MSGtml;dl,z)], [i,t2,MSG(m2,d2,2)], t2 > t1 => m2 > ml.
b) T¢¢tt,i,(nl,n2)] =>n2 > nl .
e) Let Mi(t,éi(t)) denote the counter number m of the last message

‘MSG(m,d) received at i before or at time t from the preferred

neighbor pi(t). "Then

n,(¢) < i, (£,p,(+)) (a.2)

Proof
The proof proceeds by induction. We assume that a), b), ¢) hold up

to, but not including, time t for &ll nodes in the network. We then prove

below that any possible event at time +t preserves the properties. This,
combined with the fact that a), b), e¢) hold trivially at the time any

node comes up for the first ﬁime,completes the proof.

a) Suppose t = t2. Then by FIFO and property R2, Jt3,th with

. b)-

c)

- 34 -

t3 < th < t such that nz(tB) =ml and nz(th) = m2. By induction

hypothesis on b), n, was nondecreasing up to (but not including)

time t, so ml < m2.
Observe first from steps II.2.4 and II.5.1 in Table 3,
Tgo[t,1,FAIL(L), (nl,n2)]

implies n2 = nl, so that the statement is true in this case. We
therefore have to check only thg case when the transition is caused

by MSG. Suppose
To[t, 1, MSG(m,d,2),(n1,n2),(pl,p2)] (A.3)

heppens. If n2 =nl, q.e.d. If n2 # nl, then Lemma A.l implies
that either pl = nil or (pl =%, n2 =m). If pl =nil, q.e.d.

from Lemma A.l. If (pl =2, n2 =m),

then
nl < M, (t-,p1) = M (t-,2) < M;(£,2) == =n2 (A.4)
where the inequalities follow respectively from induction hypothesis

on c¢) and from applying a) at time t.

We have to show that if
[i,i:, MsG(m,d,2),(n1,n2),(pl,p2)] (4.5)

then R

i) & = pl =p2 implies n2 < m, and

ii) p2 # pl, p2 # nil implies n2 < Mi(t+,92) .
To do this we check all possible transitions and a2lso the case when the received
message causes no transition. T13, T23 and T23 do not apply here because
then pl # nil, p2 = nil. If T22 orA no transition, them p2 = pl and
n2 = nl, and we have

n2 = nl _<_Mi(t-,p1) _<_Mi(t+,pl)' = M (t+,p2) = m ,(A.6)

- 35 -

"where the inequalities follow from the induction hypothesis and from

a) respectively. For the other transitions we have

T12, T22 and T22 imply & = pl = p2, n2 =m (see II.1.1 and II.1l.h

in Table 3).

T21 implies p2 # nil, and then the counter number of the last
message received from any neighbor before t+ is

T32 implies p2 # pl, p2 # nil and then from steps II.T.4, II.7.5
II.7.1 in Table 3, n2 = mx,(t-), p2 = k*, M, (t+,k#) = '

Ni(k*)(t~) = mxi(t-).

The next lemma shows what are messages that can travel on a line after

‘a failure or after a message with d = «,

Lemma A.3

a) If

[1,t1,M5G(m1,d1,2)], [i,t2,MSG(m2,d42,2)] (A.Ta)
where t2 > tl, d1l = », then m2 > ml,

b) If

[i,t1,FATL(2)], [i,t2,M8G(m2,d2,2)] (A.7p)

where t2 > tl, then m2 > ni(tl) and also m2 > nz(tl).

Proof
a) Jt3 <tl such that

T¢3(%,t3,SEND(ml,d1,1),($,n2)] (A.8)

and from property R2 we have ml = n2. The next transition of 2 must

be
T32[2,(n2,n3)}, n3 > n2

so that by Lemma A.2 b) and R2, node & will never send after t3 any

message MSG(m,d) with m < ml. FIFO at node i completes the proof.

- 36 -

b) After failure, a link (i,2) can be brought up only with numbers
strictly higher than zi(z) as defined in step I.4 of Table 3.

Since n, is non-decreasing by Lemma A.2. b), the proof is complete.

Lemma A.b4
Ir Fi(z)(t) = READY and

[t’isMSG(m,dii)] .. (A.9)

then m > zi(l)(t). Observe that this is Fact I.3.1 in Table 3.

Proof

* From steps I.1-I.lL in Table 3 and property 2.7.TinSec. 2.7, F,;(2) can
go to READY only from DOWN and only when successful synchronization of
WAKE(2) occurs at i. Let tl1 <t be the time this occurs. By property
2.7.7, at time t1 there are no outstanding messages .on (1,2) or (2,i).
and zi(z) is established as max{ni,nz} (see I.h in Table 3). Therefore
the message in (A.9) must have been sent at time t2 > t1 and since 2
sends meséages only to nodes k for which Fz(k) = UP it follows that
Fz(i)(t2+) = UP, But Fz(i) could heve gone to UP from READY only because
of II.1.5, II.2.5, II.4.2, II.6.2, II.7.7, II1.8.2 or II.9.2 in Table 3, and
not because of I.3 and in all the sbove we have n, > zz(i)) z‘(z). aince
n, 1is nondecreasing end £ sends MSG(m,d) only with m = Npy the asser=

L
tion follows.

Lemma A.5
If

T2(t1,1,(¢,m)] , (A.10)
then Yt > tl+, we have Vi s.t. F,(x)(t) = READY that z, (k)(t) 2 m.
Therefore, no link can be brought up by node 1 with number m after the

node entered 852[m] (brought up means Fi(k) « UP),

Proof

- 37 -

If we have Fi(k)(tl—-) = READY and zi(k)(tl—) < m, then at time

t1, we have Fi(k) « UP. If it is not, then ¥t > tl, we have ni(’c) >m

by Lemma A.2, so that only for nodes k with zi(k) >m it can happen that

Fi(k) < READY after t1.

The next theorem completes the proof of Theorems 1, 2 and 3.

Theorem A.l

Let PC(m), PC(m) Dbe the instants of occurrence of two successive

proper completions. Then

a)

b)

c)

Theorem 3.

Consider any number ml < m. Let m be the highest number 1;1 < ml

‘such that PC(m) oeccurs. Let LPC(m,ml) be the time of occurrence

of the last PC(m) such that PC(m) < PC(m). 1If for any i,k,
t < PC(m), we have either |
N (k)(8) = ml =@, D (k)(¢) # =, s.(t) #83, n(t) =m (A.lla)

or

N (k) (t) = ml > o, (A.11b)
then Jrle [LPC(@,ml),t) end t2e (1 ,t) such that
[t1,k,SEND(ml,d1,i)] (A,12a)

[t2,i,MSG(m1,d2,k)] (A.120)

with al = Di(k)('b) - dik('rZ), a = Di(k)(t).

(Note: In words, the above insures that the message (ml,d1) was

sent and received no earlier than LPC(m,ml)).

Consider any number ml < m. Let m be the highest number m < ml
such that PC(m) occurs. Let LPC(m,ml) be the time of occurrence -

of the last PC(m) such that PC(m) < PC(m). Then

- 38 -

i) [t1,i,Ms6(m1l,d1,2)]), [t2,i,MSG(m2,d2,2)] where
IPC(m,ml) < tl < t2 < PC(m) and d2 # » imply m2 > ml.

ii) If
T21[t1,i,(nl,n1)] | (A.13)

[t2,1,M56(m,d,2)], a # = (A.1L)
where LPC(m,nl) < tl < t2 < PC(m), then m > nl,

iii) A node i enters, between LPC(i,m) and PC(m), each of

the following sets of states at most once
{si[m]}, {s2[mn], s2[m]}, {83[m]} .
d) All "Pacts" in Table 3 are correct.

e) i) The possible transitions at & node are the following, where
n2 >nl and n3 > nl: T12{(nl,n2)], T13{(n1l,n2)], T21[(n1,n1)],
722[(n1,n3)], T22[(n1,n1)], T23[(n1,n2)], T23[(n1,n2)],

32[(n1,n3)], T22[(nl,n3)].

ii) 7T2ilt,i,(nl,n1)], p {(t) = i implies s,(t) = si[nl].
Py k

f) - Theorem 1. .
g) i) Suppose T21l[t,i,(nl,nl)] with nl =m and let tl be the
last time before t such that T¢2[t1,i,(¢,nl)]. Then we
have F,(k)(1l) = UP if and only if Fi(k)(r)_= uP,
i$re [t1,t] .

ii) If for some ' te [PC(m), PC(m)] we have

T¢2[t,i,(¢,n2)], n2 =m , (4.15)
then ’
Jtle (t,PC{m)) s.t. T21[1,i,(n2,n2)]

and .
zTEe(t,PC(;)) s.t. T23[12,i] or T22[12,il.
(A.16)

T

-39 -

h) If Zik, te (Pc(m),PC(m)] such that for some te (PC(m),t] we
have

[1,k,SEND(m,d,1)], 4 # =

and if i either has not received this message by time t or has

N, (k)(t) =m, D,(k)(t) #=, then l'tle [t,PC(m)] such that

s, (t1) = s2[m] or s, (t1) = s3[a] . (A.17)

Proof |

As said before, the proof proceeds using a two-level induction. We
first notice that a) holds at the time the network comes up for the first
time. We call this PC(0). Then we assume that a) - h) hold at every time
up and including PC(m). Next we prove that b)- 1) hold until PC(m) and

then show that a) holds at PC(m).

b) Observe that from Lemma A.2 b) and Property R8, by time 1PC(m,m1)
no node in the network has ever heard of & number > m. Therefore
if (A.11b) holds, an appropriate message must have been sent and

received after LPC(E,ml) and hence (A.12) holds.

On the other hand, observe that (A.lle) znd Property R3 imply

that si(LPc(rE,ml)) # 53[m]. Also note that the induction hypo-
thesis assumes that a), namely Theorem 3, holds at time IPC(m,ml)
and therefore at this time, first, nc message MSG(m,d) with 4@ #
is on its way to i and second, it cannot happen that {Ni(k) = m,
Di(k) # »}., But (A.lla) says that the latter occurs at time t
and therefore, by step I.3 in Teble 3, 1 must have received

a message MSG(m,d) with d # » after LPC(m) and hence (A.12b).
Since no such message was on its way to i =at LPC(m), A(12a) holds

also.

c)

- 40 -

Suppose ¢) i), ii) and iii) are true for all nodes in the network

up to time t-. We prove c¢) i) and ¢) ii) for t2 =t and then

prove c) iii) for t.

i) If 41 = «, then m2 > ml from Lemma A.3. It remains to prove

the assertion for dl < =, From Lemma A.2, we have m2 > ml.

Suppose dl # ® and m2 = ml. Then Lermas A.3a) and A.2a)
respectively, imply that gtB e (t1,t) such that

[i,t3,M5G(d3 = »,2)] or such that [1,t3,456(n3,d3,2) 1,

m3 # m2 = ml. Therefore the two messages received at tl1 and

t2 = t, can be tsken as consecutive. So using b),

3 the [LPC(m,ml),t1), t5¢ (th,t) such that
'Txy[th,z,SEND(ml,dl,i)], a1 # =, (A.18)

TaB[t5,2,5END(ml,d2,1)], d2 # = . (A.19)

By R2, Txy = T21 or Tl2 or T32 or T22 or T22 | and same
for Tas.‘_But‘by induction hypothesis on ¢) iii), node £ ecannot
. enter ‘t..he set of states {S2[mi], S2[ml]} twice between LPC(f,ml)
and t, so that the only possibilities are

{T12[th,2] OR T32[th,2] OR T22[th,2] OR T22(th,2]} AND
{T21[t5,2]} and no other transition happens between th and t5.
But in T¢2[th,2], node £ sends a message to every neighbor
. except pz(th+) and in T21[t5,2] it sends a message only to
pl(ts—) and since no other transition happens between t4 and

t5 we have pz(th+) = pz(tS—), This contradicts (A.18), (A.19).

ii) 1If Fi(z)(tl-) = DOWN or READY, then Lerme A.L together with the
facts that ni is nondecreasing (by Lerma A.2b) and that zi(z)
is established as in step I.4t of Table 3 show that the first
message MSG(ml,d1,%) that can be received by i from & after

t1 must have ml > nl. Then the assertion follows from Lemma A.2a).

iii)

- 41 -

If Fi(z)(tl-) = UP, then step II.3.1 in Table 3 requires

Ni(z)(tl—)‘ = nl (A.20)

and by the definition of LPC(m,nl) we have nl >m.

Ir D, (2)(t1-) ==, then [it3 < tl (possibly t3 < LpC(m,n1))
such that

[t3,i,MSG(nl,dl,2)], dl = =, (A.Ql)

which together with (A.1l4) implies by Lemma A.3a) that

m > nl.

If D,(2)(tl-) # =, then from b) follows Jt3 eﬁfc(ﬁ’,nl),tl),
such that

[t3,i,MSG(n1,d41,2)], 41l < = (A.22)
and the assertion follows from c) i).

From Lemma A.2, n, is nondecreasing, so that once n, is

increased, it cannot return to the 0ld value.

From the algorithm, & node can leave {S2[m], s2[m]} and not
change n, =m only vié T21 or T23 or T§3. If T23 or é?%,
then R3 shows that it will strictly increase n; when leaving
s3[m]. If T21[(m,m)], then c) ii) shows that it cannot subse-
quently receive a message MSG(m,d) with & # =, and in order to
enter S2[m], such a message must be received. Therefore; the

statement holds for {S2[m], s2[m]}.

To S1l[m] one enters only from S2[m], so that a node cannot
enter S1l[m] twice unless it enters {s2[ml, s2[m]} twice, so

that the statement holds for Si[m].

If a node enters S3[m], by R3 it leaves it'only with a higher

n,, so that it cannot come back with the same n, .

d)

e)

- 42 o

The Fact in I.3 was proved in Lemma A.4. The Fact in I.4 follows from
property 2.7.7 in Sec. 2.7. Next, observe from I1I.2.3, I1I.2.7, II.6.3

and 1I.9.3 in>Table 3 that
431, (a1,d2),(p1,72)] | 0 (a.23)

implies d2 = =, p2 = nil, so Fact 32 is correct. Facts 13, 12, 23
and §3 follow from Lemma A.2a) and A.2c¢), since if MSG is received at

i at time t and T13 or T12 or T23 or T23 happen, then

n & number received by i at t on pi(t-) 3_Mi(t-,pi(t?9);‘
(A.24)
Fact 21 is correct, since if T¢2[i,(d1,d2)], then 42 < « and

since p; = nil iff s; = s3.

i) The assertion follows immediately from Lemma A.2 b) and from

checking chianges on n, in Table 3.

ii) Recall that we are always considering times until PC(;).

Observe from II.3.1 in Table 3 that
T21[t,1,(al,nl)] | (4.25)

implies that N;(2)(t-) =nl for all ¢ with F,(g) = UP, and
since from II.3.7 in Table 3 pk(t) = i implies Fi(k) = UP,
we ﬁave Ni(k)(t-) = nl. Note further that Di(k)(t-) # o,
since otherwise k was some time before t in S3[nl] and
could set P - i1 only if i sent to k a message MSG with
number strictly higher than nl. But Ni(k)(t—) = nl,

D, (k)(t-) # = dimplies from b) that 3 te [LPC(m,nl),t) such
that |

Txy[t ,k,SEND(nl,d,i)], d#= . (A.26)

Now if p (t-) # i, then Txy = T12, but in order for

pk(t) =i # pk(T—), k must have performed T21l[tl,k] at some

)

- 43 -

" tle(t,t). On the other hand, if p (t-) =1, then Txy = ToL,

Therefore k performed
T21[n,k,(nl,n1),(pl,p2)], p2 =1 (A.27)
at some time 11e[LPC(ﬁ,nl),t)., So sk(n+) = Si[nl].

From e) i), the fact that until t node k receives no number
higher than nl and pk(t) = i, one can easily see that k

remains in S1[nl] until time t.

We refer to the properties to be proven here as tree properties; It

Pi =k, we say that i is a predecessor of k and k the successor

of 1. Also,'ﬁe look at the concatenation (n.,si) and write

i
(ni,si) Z'(nk’sk) if n,>n and if n, =n implies s, > s .

| k R T
Using this notation observe from e) i), that

Txy[i,(nl,n2)]
implies (n2,y) > (nl,x) except when Txy = T2l.

As before, we prove the tree properties by induction, assuming that
they hold upto time t- and showing that any possible change at
time t preserves the properties. The changes of interest here are

b

in the quantities ni,‘si, Pi’ di'

Let us consider all possible transitions:

T22[t,1]; only sy changes, éi(t+) = si(t—), so "trees'" properties

are preserved,
T13[t i], T231t,1i], T23[t i]; then pi(t+) = nil, S0 no successor at t+.

Also by Lemma A.2 and induction hypothesis follows that 1if pk(t) -1,

then ‘
(n;,8)(t4) > (n;,s.)(t=) 2 (mp,8)(8) , (A.28)

so properties are preserved for all predecessors.,

- 44 -

»

T12[t,1], T22[t,i], T22[t,i] (change di’ 5, and possibly n; no
change in pi). Regarding predecessors, the proof evolves as for

Tl13. Regarding p;» Wwe see that
Txy[t,1,MSG(m,d,2),(nl,n2),(pl,pl)] , © (A.29)

where Txy = TiZ'o; T22 or T22, implies from steps II.1l.l, II.4.1, -
I1.8.1 in Tabie é that & = pl, d # » and from steps II.1.4, 1I.4.2,
II.8.2. that m = n2. From b) and R2, this implies that |
31’6[LPC(i,m),t) such that spl(t) = 52[n2]. Now, if on (r,t), pl-
stayed in S2[n2] or performed any transition except T21[p1,(n2,n2)},
ghen TlZfi] or T22[i] or TiZ[i] preserve the tree proPerti;s.

We want to show by contradiction that p4 could not have performed

Tél og (t,t). Suppose
TZl[tl,pl,(AZ;n25], T<Tl<t, kA.BO)
then by step'II.3;l of Table 3 we have Npl(i)(rl) = n2. Nﬁw we
‘distinguish between two cases:
If . Dpl(rl) # o 'Fhen by b), Jt2¢ (LPC(n;,nZ),-rl) such that
112,1,SEND(n2,d,p1)] , d# = ' i (A.31)

which b& R?:impliés‘that si(TZ—) = S2[n2] or si(12+) = S2[n2].
But T12[t,i,(nl,n2)] or T22[t,i,(nl,n2)] or Téz[c,i,cnl,nz)]
says that 1 enters S2[nZ] at time t which contradicts ¢) iii).
If Dpl(i)(rl) = w,.”then for some 12 < 11 (not necessarily

12 > LPC(m,n2))

[t2,i,SEND(n2,d,pl)], 4 ==

which implies that si(12+) = 83[n2]. But si(t+) = 52[n2] eand

12 < t, which iS.iEPOSSible by R3 and Lemmsa A.2.

- 45 -

. T32[t,i,(n1,n2),(nil,pl)]. Regarding predecessors the tree proper-
ties are preserved sihce n2 > nl. Regarding successor, the

above implies that 31 € (LPC(Ea,nZ),t)
[t,pl,SEND(n2,d,i)] .

Now, from Lemma -A.2, ,npl(t) Z.npl(r). From R2, npl(t? = n2.

Now, if. npl(t)'> n2, then
(npl,spi)(t) > (ni,si)(t'l-) .

If on the other hand n?l(t) = n2, then the same argument as
for T12, T22 shows that pl was in S2[n] sometime before ‘t

and could not return to S1[n2] in the meantime, so that

(npl,s

+) .
p1) (8 2 (ny05,)(24)
In addifion to the above, since here there is a change in Py
from nil to #nil, we have to check that this change does not

close a loop. This is seen from the fact that every node k

upstream from i at time t has
(nk,sk)(t) ff(ni’si)(tf) = (n1,3) < (n2,2) = (nifsi)(t+) |
and every node £ downstream from pl has

(ng»5y)(8) 2 (n o8)(8) 2 (52,2)

pl’

T21[t,i(n1,n1),(pl,p2),(a1,a1)]. If p () =i, then from e) ii)

follows that sk(t) = 81[nl], so
(ni,si)(t+) = (nk’sk)(t)
Regarding successor, steps II.3.1 and II.3.7 of Table 3 show that

Ni(pZ)(t—) = nl, Di(pZ)(t~) # =, so that from b), 3 t e [LPC(m,m), t)

such that

- 46 -

[t,p2,SEND(m,d,1)]

vith m=nl =n ,(t+), a = d,(v+) = D (p2)(t-) = &; (v).

Therefore from Lemms A.2,

(n,

,spe)(t) 2 (n1,1) = (ng,5,)(t+) .
Now suppose that the change in Py '~ closes a loop at t+.
Then the last expression and the induction hypothesis show that

at time t+

(n ’S)i(n,S)
Py’ Py " 2774

for all nodes & around the loop, so that (n,s) must be con-

_ stant around the loop, namely
(n,s) =(n1,1)

around the loop. Therefore spe(t) = S1[n1]. ,But by R2, spe(f_) =
sp2(1+) = S2[nl] where T is defined above, so by c¢) iii), node

p2 could not enter again S2[nl] between 1+ and t, so

dpe(t) = dp2(1+) = Di(pE)(t-)-- di,pe(f)-

But from steps 1I.3.2 and II.3.7 of Table 3
ai z_Di(p2)(t-) = dp2(t) + di,pQ(T)

which from Assﬁmption 2.7.2 implies that
a1 = di§t+)-> dpg(t) .

On the other hand, the induction hypothesis implies that since

(nz,sz) = (nl,1) around the loop, we have

a,(t) > sz(t)

for all - 2 # i around the loop and this provides a contradiction,

therefore no loop is closed by the change in pi.

- 47 -

i) During (tl,t), no link is brought up by ‘1 because of Lemma A.kL.

If there are failures, let T3 be the first time on (11,t)

such that
[t3,1i,FAIL(k)] .
Then T23[t3,1i,(nl,nl)] or 125[13,1,(n1,n1)1 happen ﬁith nl = m,
In e'it:he.r cé:.;,e., e) 1) shows that 'to exit 83[nl] or Si[pl], one
has to increase n'i, so that it is not possible that ‘..
T21[t,1i,(nl,nl)] .

So no failure can occur..

ii) Consider the sequences of nodes and instants
is= io’il’iz”"’is = SINK

t=to>t1>_t2>"'>ts

such that

T¢2[t 1 ,(¢,02),(p1 ;P2)]

where n2 = ; and p2u =i » There must have existed such -

u+l
sequences if T¢2[i°]. Suppose j‘r € [to,PC(;)] such thet

‘T21[1,i ,(n2,n2)] .

We want to show that ﬂrle [tl,PC(;)] such that

TQl[Tl,il,(n2,n2) 1.

If there existed such a tl, it follows from g) i) that

F, (i)(rl) = Uvp.
il o

We want to show now that 32 < T1 such that

[Te,io,SEND(nQ,d,il)], d=,

and ?1:35 (PC(m),71) such that such & message with d # @ is

sent. For 12 < to

) this follows respectively from R2, R3 and

- 48 -
R2, ¢) iii). For 12 = t,» it follows from the fact that

pio(to-!-) =4 .

For rzez(to,PC(;l), the only possibilities for i§ if T21 does -
not happen, are to stay in .S2[;] or 7Téé[(n2,n2)], or

T23[(n29né)]s::6? 4T53[(n2,n2)]. In all cases i, will not send

any message to 11.'

The above show that ﬁi (io)(Tl-) #m=n2 so that
1 3
T2l[rl,ilf(n2,n2)]

ié impossible. Repeating the proof, it follows that ;?Ls such‘é
that | |

T21[7 ,SINK,(n2,n2)], p2=m ,
which éontradicts the assumption that there is a proper cémple—
tion at time PC(m). This proves the first part of g) ii)y The
second part follows because T21[71,i,(n2,n2)], n = m is not

possible if T23[1,(n2,n2)] or T22[i,(n2,n2)] happen.

n) If [v,k,SEND(m,d #=,i)], then F (i)(Y) = UP and by R2 either

Tx2[T,k,(¢,n2)], n2 ;,‘ x=1,2,3
or ‘ '

T21[71,k,(n2,n2)], n2 =m .

If Tx2 then g) ii) implies 57;26 (T,PC(E)) such that
T21{12,k,(n2,n2)], n2 = m

and Fk(i)(rl) = UP, Therefore T2l happens at node k at séme time

(t1 or t2). Call this time n. We have then Nk(i)(n) =m. By

" b) either Jt3e [PC(R),n) such that

- 49 -

[73,1,SEND(m,d #=,k)]
or jrh < n such that
[tk4,i,SEND(m,a==,k)]. -

But by R2, this means.that i is at some time before 7 in ?SSt;]
or is at some time bétyeen PC(m) and PC(;j in -S2[§]. If the
first holds, node i will stay in s3[m) at'ieast until PC(;);
If the latter holds, then by g) ii) it must-perform iél{i,(nZ,né)]

before PC(m). But since it still has Ni(k)(t) =m, Di(k)(t) $ oo
or has not received yet the message by time t, property ¢) i)
implies that node i could not perform T21[i,(n2,n2)] ‘before

time t. Therefore it will-péfform later, so q.e.d,

.

Proof thet a) holds at time PC(m)

i)

ii)

iii)

Node i cannot be in 852[m] because of g) i1) and ¢) iii); It
cannot be in S2[m] because it must have been in s2[m] before

and because of g) ii).
Take t:'= Pe(m) in h). Then h) says that
s (Pc(m)) = s2[m] or s3[al.
But g) ii) and c) iii) imply that si(Pc(fn)) # se[;?i].
Follows by contradicfion, bécaﬁse if we had |
N, (k)(PC(m)) = m, D(k)(PC(m)) # = ,

it follows by taking t = PC(m) in h) that

s2[m] or S3[m] .

si(Pc(E))

This completes the proof of Theorem A.l.

- 50 -
Appendix B

In Appendix A we have proved Theorems 1, 2 aﬁd 3. This appendix is
devoted to proofs of the feméining statements, namely Theoren I (normal
activity)'and Propositions 1 and 2 that lead to the recovery theorem, Theorem 5.
The 'proofs are organized as follows: Lemma B.O is‘preliminary and shows
that on any link (i,2) the oﬁly two "steble" situations are
4{Fi(2) = F (i) = DOWN} or ({F, (%) # DOWN, F, (1) # DOWN}. Lemmas B.1 and B.2
prove Proposition 1, Lemma B,3 proves Theofem L, aﬁd the Proposition 2 is

proved by the series of four lemmas B.4 to B.T.

Lemma B.O

L}

If Fi(z)(tl) DOWN, Fz(i)(tl) # DOWN, then in finite time after tl

we have eithei Fi(z) Fz(i) = DOWN or {Fi(z) # DOWN and Fz(i) # DOWN}.

Proof

Ir Fz(i)(tl)

READY, then i and & earrived to this situation

ﬁm{Wﬂ=§m=mw}w{Wﬂ=§m=mmnor

L}

’{Fz(i) = READY, F, (%)

.
.

UP}. Then assumptions 2.7.9 imply the assertion.

If F,(i)(tl) = UP, then i and % arrived to this situation from

I
[

'{Fz(i) READY, Fi(z) DOWN} or {Fz(i) = F,(2) = WP}, or

{Fg(i) uP, Fi(z) = READY}. 1In the first cese, the discussion reduces to

.

the first part of the proof, whereas for the second and third case, asser-

tion 2.7.9 &) in Sec. 2.7 proves the assertion.

Lerma B.l

Proposition 1(a}.

Proof

Clearly, ni(tl-) <m2 for all i. Therefore (10) may happen only

at or after t1.

- 51-

Let

A(t) = {i: ieL(t) and i effected (10) with t2, <t} .

i
If fj;»tz such that A(t2) = L(t2), then the proof is complete. Otherwise,
for a given t3, we will show (by contradiction) that Jt, t3 <t <o
such that

A{t) DA(t3) and A(t) # A(£3) . (B.1) -
Hence by induction, the set A(t) keeps growing until it equals L(t).

Since there are no pertinent topological changes and all ieA(t)
have ni(t) = m2, property RLO implies that the set A{t) is nondecreasing
as t increases. Therefore to prove part i) of Proposition 1l(a) it is

sufficient to show that the following cannot hold: -

‘V't > t3, A(t) = A(t3) # L(t) (B.2)
Let “
B(t) = {i|ieL(t) and ifA(t)},
A'(t) = {i|ieA(t) and i has a potentially working link to a node of B(t)},
B'(t) = {i|ieB(t) and i has a potentially working link to a node of A(t)}.

The following three claims will contradict (B.2).

Claim 1

If (B.2) holds, then Sthe (t3,) such that *’Jen'(th),gtud' < Y
such that [th,‘,j,MSG(mZ)], (i.e. a1l nodes of B'(tlh) receive m2 in
finite time).

Proof of Claim 1

At time t2, < t3, node ieA'(tZi) performs transition (10). Now

observe that since no pertinent topological changes occur, property R10

implies that for all g, Fi(z) cannot be changed from or to DOWN after t21.

Therefore if F, (2)(t2,~) = DOWN then F,(2)(t) = DOWN for +t > t2, end

- 52 -

if Fi(z)(tZi-) = READY or UP, then F,(2)(t) = UP for t > t2y (see 11.1.5,
I1.4.2, 11.7.7, 11.8.2 in Table 3). For links (i,%2), where ie:A'(tZi),
QtiB'(tZi) and Fi(z)(t21+) = UP, observe from II.1.6 in Table 3 that if
pi(tZi) # 2, thgn

[t2,,1,SEND(m2,2)] . -

Since by Lemma A.2c) we have A

p_i(tzi) # B(tzi)
and since property 2.7.9 Sec. 2.7 insures that the above messége will arrive,
there is a time t4 for which all nodes j that were in B'(tzi)' for some 1,

either are not in Bf(té) anymore or have received MSG(m2). . Also observeb

that B'(t4) cannot Ee empty, since then B.2 is contradicted.
Let tsjk' denote the time at which j € B'(t4) ;eceive:MSG(mZ,k), ﬁheie '

keA'(t4). If JjeB'(t4) such that pj(tS) =k for some keA'(t4) then

. ik . ,
from II.1.1, II.4.1, II.8.1 in Table 3, the transition T¢2[j,(¢$,m2)] occurs, -

contradicting (B.2), q.e.d. Otherwise,

Claim 2

If JeB'(t4) such that p,(t5,) # k then i > €54y pJ(t) # k.

Proof of Claim 2

Suppose

Txy[t,J,(pl,p2 =k)}, t> 5 -

If x#3, by RS Txy = T3 or T2l or T23 or T23,

But T23, T13, T23 => p2 = nil # k, therefore this cannot happen.

T21‘=”\f§, Nd(q)(t) =n, <m2, but NJ(k)(t) =m2 , hence T21

J

cannot happen.

If x =3 then T32[t, j, MSG(m2)] happens, contradicting (B.2), q.e.d. Claim 2.

- 53 =
Cla.im 3

In finite time, all nodes ieB(t4) will effect T¢3[i,(¢,m)],

.m < ml without effecting T3¢ thereafer.

Proof of Claim 3
| n, is updated in TI2, T13, T22, T23 and 132 only. For all
ieB(td), Té2[i,(¢,m2)] does not occur because of (B.2), and T¢3[i,(¢,m2)]

does not occur bécause there-are no pertinent topological changes. Hence,
. v t¥ _
‘V':LeB(tlp) and Tt > t4, ni(t) <ml .

Since after t4 no update cycles with m < ml are started by Theorem 2(ii), |
the numbér of mes.s'ages with d < .= generated by the nodes of B(t4) isg finite.
Similarly, since the number of arcs is fiziite, the number of messages

FAIL is ;also finite. .Consider B(té&) afte;' all thgsé_meééaées are
generated and .received. Then ‘Vi €eB(t4), T34[i] cannot occur 'a.né.

Txy[i,(pl,p2 # pl)] implies p2 = nil. Then
1. if VksB(tl;), Py = nil, then q.e.d. Clgim 33

2. otherwise, after a sufficiently long period of time tmx’ by Claim 2

and Theorem Al, there exist k and i such that:

i,keB(t3), pk(tmx) =i and pi(tmx) = nil .

When P; was set to nil, Txy[i,SEND(m,d = =,k)] occurs. At tmx

. /)

this message is not yet received by k because Pk(tmx) =3i. After
this message is received node k effects T¢3; -enters S3 and does

/

not leave it anymore. By induction, gq.e.d. Claim 3.

The proof of Proposition 1(a) (i) is completed as follows. Consider a

node jeB'(t4). Define t3j to be the time at which T¢3[t3j,j] occurs by

Claim 3. But: : >

- 54 -

if tBJ < tSJk

ir tBJ > tsjk

then T3§[t53k,31 happens, .

then T32[t33,J] occurs, end tBJ # tsjk’

which contradicts (B.2), q.e.d.
To prove part (ii) of Proposition 1(a), we investigate further the

situation in L(t2) at time t2. Observe that since all nodes in L(t2) have

i.
Lemma B.0 that for any link (1,2) such that 1eL(t2), 2eL(t2), it cannot

n, = m2, and no pertinent topblogical changes happen, it follows from R10 and

happen that at time t2 we have’ Fi(z) = DOWN, Fz(i) # DOWN. Aisq

Fi(z) - READY is not possible, becaﬁse lack of pertinent topological changes
imply that Fi(z)(tQi—) = READY as well , and then II.1.5 in Table 3-shows that,
for example ,Fi(z)(t21+) = UP and Fherefore Fi(z)(tZ) = UP.,'Iﬁerefqre, for
links (4,%) .connecting nodes in L(ti), the only possibilitiés at tim; t2
are {Fi(l) = Fﬁ(i) = DOWN}, {Fi(l) = Fl(i) = UP}, hence Propositiénll(a)(ii)

is proved.

Next, assﬁming Proposition 1(a) which was proved by Lemma B.l, we now
prove Proposition 1(b).
Lemma B.2 |
| Let L(t) be as in Lemma B.1l, and suppose that a new cycle
T$2[t1,SINK,(¢,m1)] 1is started. Suppose also that no pertinent topological
changes have happened before Fl Vvhi}e BNk = ml and that no such changes '
will take place after tl for e sufficiently long period of time. Define

t2i to be the smallest time t such that
T¢2[t,i,(¢,m1)], t > tl
occurs. Suppose also there exists t2, tl < t2 < = such that for all

ieL(t2)

’ T¢2[tzi,i,(¢,ml)]

occurs with tl < t2, < t2, and t2 = max (t2) .
: 1 t2, <o
1

- 55 -

i) There exists a time t3 < » such that t2 < t3 and that

T21[{t3,SINK,(ml,m1)] occurs;
11) yte [£2,t3], we have H(t) = L(t) = HYt2);

iii) RG(t3) for ‘the nodes in L(t3) 1is a single tree rooted at SINK.

Proof

We prove first that there is PC(ml) after tl, then we show that

there is no PC(ml) between tl1 and t2.

Since there. are no pertinent topological changes, after entering S2[ml]
at téi~ eaph node ieL(t2) can only perform transitions between states
S1 and S2. Furthermore, by Theor;m 1(i), after t2, these nodes form a
single tree rooted at SINK. Consider a time t', t' > t2. Since there are
no pertineﬁt topological changes, L(t') = L(t2). Also, by Theorem 2(iii),

if a node ieL(t2) enters S2[ml] after t2, PC(ml) has occurred after tl.

1. If ‘VisL(t'), si(t') = S1 then there exists 13, tl1 < t3 < t!

such that T2l[t3,SINK,(ml,ml)] occurred;

2. otherwise, consider a node k such that sk(t') = S2)
16 if pj(t') = k, then sj(t') = S1 (B.3)

such a node k always exists. Classify the neighbors of k into:

I
]

A= {1i: Fi(k)(t') UP .gnd si(t') Sl}

B = {i: Fi(k)(t') UP and si(t') =82} ..

At some time in the interval [tl,t'], the nodes in A have sent
messages MSG(ml,d #«) to all their neighbors. At some time in the
same interval, those in B have sent such messages to all their
neighbors,exéept pj(t'). Hence by (B.3), k will receive messages

MSG(ml,d #=) from all its neighbors, at a finite time, say té4. Then

-~ 56 -

2.1 if s (th+) = 52 means that i with F, (1) (t4) = UP such that N, (1)(t4) =
which implies that T21[k,(ml,ml)] occurred in the interval [tl1,t}],

hence by Theorem 2(iii), PC(ml) occurred between tl1 and tlh;

2.2 if s, (th+) =81, by induction, PC(ml) will occur in finite time

after tl.

We show pext that PC(ml) cannot happen in [t1,t2]. Suppose that
at t5, the first PC(ml) after tl1 occurs. Let k be a node such that
t2, < t5 and ke L(t2), hence since there are no pertineﬁt failures, there

exists & JeL(t2) such that F, (’k)(tzj) = F () (£5) = UP. But j sent to k

a message MSG(ml,d#%) in the interval [t2, ,t5]; on the other hand by

J

Theorem 3 such a node k does not exist.

Since there are no pertinent topologicel changes, we have
L(t2) = L(t3), and according to Theorem 1(i) these nodes have préférred links

forming a single tree rooted at SINK and hence iii).

Finally; looking at the situation in the network at time t2 ‘as described
in Lemma B.l, and for all te [t2,t3], we observe that for all (i,2) for which
Fi(z)(tZ) = UP :we must havé Ei(l)(t) = UP and if Fi(z)(tZ) = DOWN, we must

have 'Fi(z)(t) = DOWN. This completes the proof of ii).

Lemma B.3

Theorem.h.

 Proof

By the Algorithm, a new cycle T12[t1,SINK,(ml,ml)] can start only
if all previous cycles with the same counter number ml were properly com-
pleted. Since cycle counter numbers are non-decreasing, the first cycle with

ml was started at a‘time; say t', by

T12[t',SINK,(mO,m1)], ml > mO .

- 57 -

This transition satisfies the condition of Proposition 1. Hence in a finite
time, say t", the cycle is properly completed, L(t") forms a tree rooted.

at SINK, all ieL(t") have n, = ml, and since there are no pertinent

topological changes, for all t > t":
1. H(t) = L(t) = L(t") q.e;d. Theorem 4(b), and

2. by Theorem 1(i) ell nodes ieL(t) form a single tree rooted at

SINK, q.e.d. Theorem 4(d,ii).

Define Ak to be the set.of nodes that are on the tree at time tl,
at a distance of k nodes from the SINK. Ab = SINK and it is assumed by
Theorem Z that ??12[1:251NK = t1,SINK, {ml,ml)] occurs. Sﬁppose #11 i fAk
effect T12[t2i,i, (ml,ml)], sending messages MSG(ml) to alln 3 EAki-l
through their pj(tl). But since there are no pertinent topological changes
after tl,. Ps can only change by T21, and since sj(tl) = Sl,‘ only after
T12. Then, all j EAk*l will receive messages MSG(ml) atva>finite time

t2 frpm pj(tZ »j,(ml,ml) and

J 3
by induction on k, q.e.d. Theorem é4c).

), which trigger the occurrence of TlZ[th
Theorem 4(d)@) follows directly from Lemma B.2 by assuming Theorem L{c).
Theorem i(a) follows directly from the algorithm for SINK. ‘This completes
the proof. |
. Proposition 2 will be proved by Lemmas B.4 and B.T. ‘When an REQ(ml)
is generated, it is placed.in the éueue for processing. If, when the
REQ(ml) is processed, the node is at 52, 83 or S1, then an REQ(ml) is sent
by this node to its current preferred link. ‘The proof,of Prbpositicn 2 for
these cases is given in Lemma B.5 (for 52 or S2) and Lemma B.T (for S1).

Lemma B.6 proves the proposition for the case where there is a node in state

s3[m1]. Lemma B.h is used to simplify proofs.

- S —

- 58 -

Lemma B.L

If a REQ(ml) is generated, then either:

1. REQ(ml) is processed only by nodes having ﬁi = ml, and all nodes
ml, or ‘ |

d .
2. .a REQ(ml) arrived st SINK.

J have n

Proof

By Theorem 1(ii) and by the Algorithm, REQ(ml) is not received
(i.e. processed) by & node i with“"'ni < ml. On the other hand, if thefg
exists a nodé i vith n, > ml,- the SINK started a cycle with_‘mr> ml; |

this can happen only following the arrival of REQ(ml) to SINK, q.e.d.

Lemma B.5
If a node i sends REQ(ml) vhile s, = s2[ml] or 82[ml], then
a REQ(ml) arrived or will arrive at SINK in finite time..
Proof | R
Consider the strings of nodes and iﬁ&égnts
i= io’il’iE""’im = SINK
such that
T¢2{tu$i“la(¢’n2) ’(Plu’qu)] ?
where n2 =1, p2u = iu+l' There must ex;st such a string if s; = s2{mi]

or S2[ml]. The string has no loops, otherwise Lemma B.4, Theorems 1, 2 or &

will be contradicted.

Suppose that at tl?e t2, @ node i ~ sends REQ(ml) to i1
Suppose also that in the interval [tu,tQu], node i effects no transition
except possibly T22. After tu+l’ the first transition executed by iu&l

could be

- 59 -

T22[iu+l]; g.e.d. by Theorem 3 and Lemma B.L.

~ . .
T22[iu+l], in which case a failure is detec#ed by i,, eand REQ(ml)
sent to 1u*2'
T21[i]; this transition is executed only after receiving a message .

u+l

from i . Sucha message is sent by i_ when T2l[iu] happens,

u

i.e. after i has sent REQ(ml). Since FIFO is preserved,

will receive and therefore send REQ(ml) to i before T21[i

u+2 u+1]

happens, i.e. while s, = 52.
u+l . -

T23[1_,,)5 in this case there exist i, r > i+l such that Taé(ir]

and ir -sends REQ(ml) to e

Thus by inductioh) REQ(ml) arrived or will arrive at SINK in finite time.

Lemma B.6
If there exists a node that effects Té3[(¢,m1)], then a REQ(ml)

arrived or will arrive at'SINK in finite time,

Proof:

0,1,2,...) denote the j-th cccurrence of PC[ml].

Let PC,, (3
Given a node i &and a time t such that T¢2[i,(¢,ml)] has occurred
before t, if PC, is the lést PC[ml] before t after which

J
T¢2[1,(¢,m1)] occurred, then define E;(t) = J+1.

By Lemma B.4, we have to prove only the case in which n, <ml for
all i. Thus, if a node i is in state S3[ml], this node will not execute

any further transitions.

- 60 -

Property
Given & time t, suppose pi(t) =k ard ni(t) = nk(t) = ml, then
Ei(t) <E (%) .

This can be proved as follows:

Suppose that prior to t and after PCa, p, vas last set to be k.
This can be done only by T21{i] or T32[i]. Since at Pca,’

si # S2[m1] (by Theorem 3) this implies that T¢2[i] ‘occurred
after PCa and T¢2[i] cannot occur again before t because t%is
will set aéain Py - Hence 'Ei(t) = a+1, The occurrence of T2i[i]
or T32[i] implies that a message from k with 4 < O_iarrived at
i aftgf PCa. By Tﬁeorem 3, this message was sent aftef Pca; this
being possible only if k effected ‘T¢2[k] after PCa. Since Lk

is non-decreasing then Ek(t) > a+l,

Since after a node effected T¢3[(¢,ml)] the same node cannot per-
form any further transitions, only a finite number of transitions T¢3[(¢,ml)]
can be executed in the network. If Té$3{(é,m1)] happens,_tﬁere exists a
node which detects a failure in its best link and executes Té¢3[(ml,ml)].

Define Bl as the set of nodes for which T¢3[(ml,m1)] happens, this is
Bl = {i: T¢3[ti,i,(ml,ml)] happens} .

Define B2 as the subset of Bl for which T¢3[(ml,ml)] heppens with the

highest E i.e.

i’ .
B2 = {j: jeBl and (Ej(tj) = ?22 Ei(ti)} .

Case 1:

Case 2:

- 61 -

Suppose there exists 1eB2 that effects T23[i,(ml,ml)].

Let max E (t,) = a+1. Then at PC_ , by Theorem 3,
jea * % . &

s, # 52[ml]. Thus the first 1eB2 that effects T23[ml,m1)] has
& path to SINK at t, (by Theorem 1). From all ieB2 that
effect T23[ti,i,(m1,m1)] while having a path to SINK, let q

denote the node having the shortest path. Suppose the path is

Q= Qy QY oeer Q> (SINK =) .

Qes1

By Theorem 1 all qeQ have sq(tq) = s2[ml}. But q, can ohly
: - (o]

effect T21 or T22, and 9 cannot effect T21 unless receiv-

ing a message from q, which cannot be sent because q_° does not

effect T2l. Hence 94 will detect a fajlure of link (qo,ql)-

-and by Lemma B.5 the proof is complete.

- Suppose there is no ieB2 that effects T23[i,(ml,m1)].

Let g eB2 denote a node such that d (t) = min di(ti-),
9% 1eB2
and suppose Py (tq -) = q,- Node gq, cannot effect T23

o 0 ‘
(definition of Case 2) and cannot effect T13 (violates the defini-

tion of qo). Thus, q, detects a failure of link (qo,ql) and

& REQ(ml) is generated.

If at any time this REQ(ml) enters a2 node at S2 or Sé, then
qg.e.d. by Lemma B.5. Otherwise the REQ(ml) keeps moving through
nodes at S1 having decreasing d. . The REQ(ml) cannot 5e re-
ceived by a node at S3 Dbecause this vioclates Case 2 or the defini-
tion of qo. Sipce for all i, di 3:0, di .is an integral

number and the only node with d, = 0 is the SINK, the REQ(ml)

will arrive at SINK after a finite number of steps. Q.e.d.

- 62 -

Lemma B.T

If a node i sends a REQ(ml) while s, = S1, then a REQ(ml)

1o

arrived or will arrive at SINK in finite time.’

Proof
By Lemma B.L, we have to prove only the case in which for all i,
n, <ml, and by Theorem 1, the REQ(ml) sent by io may encounter only

nodes having n, =ml.

If therelexists a node i such tﬁat s; = S3[m1], then gq.e.d. by
Lemma B.6. Hence we may assume that for all i, 5; ¥ S3[ml] end there-
fore by Theorem 1 the REQ(ml) is in a tree rooted at SINK. Thus as in the
proof of Lemma B.6, the REQ(ml) either arrives at a node in 82 or- 82
(g.e.d. by Lemma B.5) or travels through nodes at S1, with decreasing d

i
until it arrives at SINK, q.e.d.

Acknowledgemegt
The first stages of this work were performed when A. Segall was
with the Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, and with the Codex'Corporation,

Newton, Mass., where he benefited from close collsboration with R.G. Gallager,

G.D. Forney and S.G. Finn. Thanks are also due to Mr. M. Sidi for useful

suggestions.

[1]
[2]
[3]

(4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

- 63 -

References

A. Segall, The modeling of adaptive routing in data-communication networks,
IEEE Trans. on Comm., Vol. COM-25, pp. 85-95, Jan. 1977.

A. Segall and M. Sidi, Optimal failsafe distributed routing in daté—
communication networks, in preparation. . '

'G. Ludwig and R. Roy, Saturation routing network limits, Proc. IEEE,

Vol. 65, No. 9, pp. 1353-1362, Sept. 1977.

R.G. Gallager, A minimum delay routing algorithm using distributed
computaetion, IEEE Trans. on Comm., Vol. COM-25, pp. T73-85,
Jan. 1977. .

A. Segall, Optimal distributed routing for line-switched data net-
works, submitted to IEEE Trans. on Comm,

W.D. TaQibnapis, A correctness proof of a topology information
malnte?anc? protocol for a distributed computer network,
Communications ACM, Vol. 20, No. Ts PP. h??-hBS; July 1977.

M. Schwartz, Computer—Commﬁnication Networks: Analysis and Design,
Prentice-Hall, 1977.

W.E. Naylor, A loop-free adaptive routing'algorithm for packet switched
networks, Proc. 4th Data Communication Symposium, Quebec City,
pp. 7.9~-7T.14, Oct. 1975. A

R.G. Gallager, Loops in multicommodity flows, Paper ESL-P-772, M.I.T.,
Sept. 1977.

G.V. Bochmann and J. Gecsei, "A unified method for the specification
and verification of protocols"”, Publication #247, Departement
d'Informatique, University of Montreal, Nov. 19T6. To be pre-
sented at the IFIP-Congress 1977, Toronto.

P.M. Merlin, A methodology for the design and implementation of com-
munication protocols, IEEE Trans. on Communications, Vol. COM-24,

No. 6, pp. 614-621, June 1976.

C.A. Sunshine, Survey of communication protocol verification tech-
niques, Trends and Applications 1976: Computer Networks,
(Symposium sponsored by IEEE Computer Society; National Bureau
of Standards), Gaithersburg, Maryland, Nov. 1976.

M.G. Gouda and E.G. Manning, protocol machines: A concise formal
model and its automatic implementation. Proceedings of the
Third International Conference on Computer Communication,
pp. 346-3L45, Toronto, Aug. 1976.

S.G. Finn, Resynch network'protocols, Proc. of ICC, 1977.

R.G. Gallager, personal communication.

- 64 -

Footnote

1. The FACTS given iﬁ'the algorithm are displayed for helping in its

understanding and are proved in Theorem 2.

- 65 -

Table 1 -~ The Basic Algorithm

For MsG(d,%)
Ni(z) < RCVD
D.(2) <« d+d. ;
i ig
CT « O

Execute FINITE-STATE-MACHINE

BASIC-FINITE-STATE-MACHINE

Pl %

2 112 f{eeece...] K TWL 1—24

D, (%) .

Ni(z)

State S1

T12: Condition 12 MSG(d,9.=pi), CT = 0.

Action 12 a, « min Di(k)
k:Ni(k)'=RCVD

transmit MSG(di) to 211 k s.t. k # p; -

State S2

T21: Condition 21 ¥k, then N, (k) = RCVD.

Action 21 transmit MSG(di) to D.3

-

p. < k¥ that achieves min D (k);
1 k 1
Y | set N, (k) « nils

CT « 1.

- 66 —

Teble 2a - Variables of the Algorithm of Table 3.

Note: It is assumed that the network is composed by K nodes.

-~

‘Variable Name - Meaning Domein of Values

| pi - preferfeé neighbor nil,l,2,...,K‘
di ' estimated @istance from SINK ®.1,2,35..
diE estimated distance of %ink (i,2) 1,2,35...
n, current counter number 0,1,»2,.'..
mx, largest number m received by node | i 0,1,2,...
CT | control flag 0,1

last number m received from 2 after

Ni(z) i completed last update cycle nil,0,1,2,..."
Di(k) di-diz for last 4 received from & ©,1,2,.0.
Fi(z) status of link (i,%) DOWN ,READY ,UP
synchronization number used by 1 to 0.1.2
z; () bring link (i,%2) UP ekt A
Tgsble 2b - Messages received by the algorithm of Table 3.
Message Format Meaning ~ |Domain of Values
MSG(m,d,%) | updating message from 2% m= 0,1,2,...
X d =w,0,l,2,..o
l = l,z’OOQ’K
FAIL(L) failure detected on link (i,2) 2 =1,2,...,K
WAKE(2) link (i,%) becomes operational 2 =1,2,...,K
REQ(m) request for new update cycle with m=0,1,2,...

“grng © ™

- 67 ~

Table 3 - Algorithm for an Arbitrary Node i

I.1 For REQ(m)
if p; # nil, then send REQ(m) to

I.2 . For FAIL(%)

I.2.1 Fi(z) < DOWN;

I.2.2 CT <« O3

1.2.3 Execute FINITE-STATE MACHINE;

I.2.h if P, # nil, then send REQ(ni) to D, -
I.3 For MSG(m,d,8)

1.3.1 if F.(2) = READY, then F (&) « UP

(Factl: m > zi(l));

I1.3.2 Ni(z) < m;

I.3.3 D,(2) « a+4q,,3

I.3.h mx, + max{m,mxi};

I.3.5 CT « 0

I.3.6 Execute FINITE-STATE MACEINE.

I.L For WAKE(%)
(Fact : F,(2) = DOWN)
wait for end of WAKE synchronization (see Section 2.7);.
if WAKE synchronization is successful, then
z,(2) « max{n, ,n }3
Fi(z) + READY;
N, (%) « nil;

if p; # nil, then send REQ(zi(Q.)) to p,.

(continued)

- 68 -
Table 3 (cont'd)

II. EINITE STATE MACHINE

State S1

II.1.1 T12 Condition 12 MSG(m = mX, 5 dFee, L= pi), CT =0,

II.1.2 Fact 12 m > n,

I1.1.3 Action 12 4, « min Di(k);

' k:Fi(k) = UP
Ni(k) =nmn
II.1.L n, <+ m;
1

II.1.5 ¥ s.t. F (k) = READY if n, > z,(k), then
Fi(k) « UP, Ni(z) + nily

I1.1.6 transmit (ni,di) to all k s.t. Fi(k) = UP
and k # Pys

I1.1.7 CT « 1.

1I1.2.2 Fdet:13 If MSG, then m z_ni.

I1.2.3 Action 13 di « o

II.2.4 if MSG, then n, < m;

1I.2.5 Yk s.t. Fi(k) = READY, if n; > zi(k), then
Fi(k) + UP, Ni(k) « nil;

II1.2.6 " transmit (ni,di) to all k s.t. Fi(k) = UP
and k # P,

I1.2.7 Py « nily

I11.2.8 CT <« 1.

(continued)

- 69 -
Table 3 (cont'd)

~ ' 'State 82

II.3.1 T21 Condition 21 Yk s.t. F,(k) = UP, then N (k) =n; =mx s

i

II.3.2 dx st F(x) =UP and Dy(k) <43
II.3.3 if CT = G, then MSG}
II.3.h4 D, (p;) # =.
I1.3.5 Fact 21 di # o, Py # nil.
II.3.6 Action 21 Transmit (ni,di) to p,3
II.3.7 p; < k* that achieves min Di(k); '
. k:Fi(k)=UP
I1.3.8 Vk s.t. Fi('k). = UP, set Ni(k) + nil;
1I1.3.9 CT « 1.
II.b.1 T22 Condition 22 MSG(m = mx;, > n,, & # ®,& =p,), CT =o0.
II.h.2 Action 22 Same as Action 12,
I1.5.1 T22 Condition .2.5_ FAIL(L # p.), CT = 0.
I1.5.2 Action 22 cT « 1,
I1.6.1 T23 Condition 23 Saﬁe as Condition 13,
I1.6.2 Fact 23 Same as Fact 13,
11.6.3 Action 23 Same as Action 13,
State S3
II.7.1 T32 Condition 32 Jk s.t. Fi(k) = UP,mx, = Nikk) > ni',Di(k) Foo
I1.7.2 Fact 32 | p; = nil, di = e,
11.7.3 Action 32 Let k* achieve min D.(k);
- k:F, (k)=UP :
I;Ii(k)=mx:.L

(continued)

Table 3

IT.7T.h
II.7.5
II.7.6
II.7.7

II.7.8

I1.7.9

I1.8.1

I1.8.2

I1.9.1
I1.9.2

I1.9.3

(cont'd)

State S2

732

T23

Conditign 52

Action 22

Condition 23

Fa.ct 53 '

Action 23

- 70 -

Then Py *+ k¥*;

ni*mx;
#®).

Vk s.t. Fi(k) = READY, if n_ > zi(k), then

i
Fi(k) + UP, N, (k) « nil;

transmit (ni,'ai) to all k s.t. Fi(k) = UP

end k # p;3

CT « 1,

MSG(m = mx, > ni,d. # o, 8= pi), CT = 0.

Same as Action 12

Same as Condition 13
Same as Fact 13

Same as Action 13 .

- 71 -
Table L

The Algorithm for the SINK

For REQ(m)
CT+ 03

execute FINITE-STATE-MACHINE.

For FATL(%)

Fi(z) + DOWN ;
CT « 0.

execute FINITE-STATE-MACHINE .

For MSG(m,d,%)

Ni(z) “my
CT « 03

execute FINITE-STATE~-MACHINE .

For WAKE(L)
(Fact: Fi(z) = DOWN)

wait for end of WAKE synchronization;

if WAKE synchronization is successful, then

Fi(ﬂ)l*- READY;
CT « Q3

execute FINITE-STATE-MACHINE.

Far START
CT « 03

execute FINITE-STATE-MACHINE.

(continued)

-72 -

Table 4 (cont'd)

FINITE-STATE MACHINE FOR SINK

State S1

T12 Condition 12 (CT = 0) and (REQ(m =‘nsm<) or FAIL or WAKE or START)

Action 12 if (REQ or FAIL or WAKE) then n 1;

stk © Psmvk *

Vi s.t. F, (k) = READY, then F, (k) < UP, N, (k) < nil;

transmit (n 0) to all k s.t. Fi(k)'= uP;

SINK®
CT « 1.
State S2 '
1+9 ;'," = = .
To1 COndlplon 21 7k s.t. Fi(k) UP, then Ni(k) Do
MSG or START.
Action 21 k s.t. Fi(k) = UP, then Ni(k) < NIL;
CT « 1,

722 Condition 22 (CT = 0) and (REG(m INK) or FAIL or WAKE)

Ny

Action 22 Same as Action 12.

- 73 -

SINK
(a) ‘ (v)

Fig. 1: (a) Network example
(b) Corresponding directed tree

_ - '
FAIL :) (Rendy
. !n:/t £t . -‘('// A
et .
e N7 —
i L /
__/'

ig. 2: ssible chang f F. (2
Fig. 2: Possible changes o i()

