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Unsteady Propeller Hydrodynamics

by

Dirk H Renick

Submitted to the Department of Ocean Engineering
on May 22, 2001, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Ocean Engineering

Abstract

One of the main problem affecting modern propulsor design engineers is the ability to
quantitatively predict unsteady propeller forces for modern, multi-blade row, ducted
propulsors operating in highly contracting flowfields. Current algorithms provide
valuable insight into qualitative trendlines for these modern designs. This thesis
has focused on the more accurate quantitative force prediction by introducing more
physical modeling into the numerical computations, using more accurate analytical
representation of continuous physical phenomena, whilst not increasing the usage
complexity for the desktop engineer.

This thesis developed several novel algorithms and techniques and applied them
to build an evolutionary, general vortex-lattice lifting-surface propeller code. First,
a general method to track the trajectory of individual wake singularity sheets and
compute their influence velocities was evolved which reduces computation time, and
dramatically increases the accuracy of the unsteady blade loading problem.

To improve the general coupling technique between potential-based propeller codes
and volumetric Reynolds-Averaged Navier-Stokes codes, a general analytic method
based upon an elliptic integral method for the velocity induced by a vortex ring of
unsteady harmonic strength to compute of the time-averaged induced velocities in the
swept volume of the propeller was introduced which is more accurate, as demonstrated
in model problems, and more robust, as indicated by improved convergence and ac-
curacy in a fully three dimensional propeller code. A discretized geometric technique
was also created to internalize the coupling routines, making the code more robust,
while decreasing the computation burden over currect methods.

Finally, a higher order quadratic influence function technique was implemented
within the wake to more accurately define the induction velocity at the trailing edge
which has suffered in the past due to lack of discretization. These propeller propgram
enhancements were fitted into a fully functional version of the Propeller Unsteady
Forces (PUF)-series code, and coupled with a three dimensional RANS code.

Thesis Supervisor: Justin E. Kerwin
Title: Professor of Naval Architecture
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Chapter 1

Thesis Overview and Motivation

One of the main problem affecting modern propulsor design engineers is the ability to

quantitatively predict unsteady propeller forces for modern, multi-blade row, ducted

propulsors operating in highly contracting flowfields. Current algorithms provide

valuable insight into qualitative trendlines for these modern designs. This thesis

has focused on the more accurate quantitative force prediction by introducing more

physical modeling into the numerical computations, using more accurate analytical

representation of continuous physical phenomena, whilst not increasing the usage

complexity for the desktop engineer.

1.1 Thesis Goals

The goal of this thesis is to present improved algorithms in production quality software

that allows naval engineers to more accurately and more quickly predict the unsteady

forces and moments on advanced propulsors. Accomplishing this goal will allow more

flexibility in including advanced unsteady analysis as routine part of the exploration

of the design space presented to an engineer at the outset of any project. In fact, the

bounds upon the design space, at the outset, are more determined by computation

setup, running complexity and computing time, rather than other inherent challenges.

The goal of improved algorithms led to the development of analytic routines to

replace discretized routines which were shown to have slow convergence rates. In

17



other cases, unstable algorithms were replaced with more stable algorithms. And

physical insights allowed for major speed-ups with no loss of accuracy.

The goal of production quality software means that internal assumptions must

be clearly stated, converged and validated, or offered to the user to alter in an easy-

to-use manner. This is accomplished in this thesis through the use of input files for

controlling the code, vice requiring users to recompile the code frequently.

The final validation of these goals is in the comparison of the results to previous

unsteady propeller codes, and experimental results.

1.2 Unsteady Propeller Forces

The accurate prediction of the steady and unsteady propulsor forces arising from

operation of the propulsor in non-uniform wakes is an important aspect in the pre-

liminary design or later stage analysis of any propulsor. By unsteady it is meant that

the flow appears unsteady to a bug which sits upon the leading edge of the propeller.

To an observer in the global reference frame, the flow will appear quite steady, but the

bug will see large changes in angles of attack and other inflow phenomena traveling

through 360 degrees.

In a practical sense, the predicted unsteady propeller blade forces lead to numerous

other design considerations:

1. Shaft bearing and stern tube seal requirements.

2. Determination of acceptable vibration and radiated acoustic levels.

3. Steady off-axis maneuvering forces which must be counteracted by other control

surfaces and drive seal and stern strength considerations.

4. Unsteady cavitation inception, which again affects noise and blade corrosion.

18



1.3 Historical Context

This thesis follows from and complements a long line of research conducted into the

prediction of propeller forces arising during operation of a rotating propeller in an

unsteady flowfield. While the propeller code is the heart of this thesis, the strong

coupling between the propeller and the surrounding flow field must be accounted for

by the use of an external flow solver. Thus, the issues surrounding accuracy, ease

of use, and speed of use, associated with coupling the propeller and flow solvers are

addressed.

The propeller code used as a starting point for this research is the Propeller

Unsteady Forces (PUF) code developed at the Massachusetts Institute of Technology

(MIT) originally by Kerwin and Lee [16]. The vortex-lattice lifting-surface theory

which forms the basis for this research is based up the theory presented by Kerwin

and Lee [16]. Recent work by Warren [30] highlighted the need for improved modeling

of the wake near the trailing edge, which directly led to the work presented in Section

4.9. Work by Kinnas [17] showed that for contrived inflows wake alignment issues

were important in unsteady blade force calculations.

The Reynold's-Averaged Navier-Stokes code used for this research is IFLOW de-

veloped at David Taylor Model Basin by Sung [27],[28]. The RANS code UNCLE,

developed at Mississippi State University was also used to verify the validity of the

approaches taken here.

1.4 Summary of Computational Improvements

This thesis has resulted in significant improvements to the unsteady analysis of propul-

sors by providing more accurate, more computationally efficient, and more robust

computer analysis programs.
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Propeller Unsteady Forces (PUF) Program

This Research Previous Methodology

Propeller wakes fully aligned with the local Propeller wakes aligned with circumeferen-

inflow tial mean inflow and are not force free

New discretization of blade loops presented Blade and wake loops separate in formula-

which allows for higher order wake loops tion

downstream of the blade

Wake loops discretized to guarantee wake Wake loop discretization tied to blade time

grid independent solutions step discretization requiring fine time dis-

cretizations to achieve wake grid indpen-

dent solutions

Blade mean camber surface generated in Blade mean camber surface generated

elliptically solved-for flowfield along actual flow field stream surfaces, in-

stabilities could result in blades outside

flow domain

Blade forces output in format suitable for Suite of 3 post-processor programs used to

RANS code body force use transfer PUF forces to a RANS code

Propeller Unsteady Forces (PUF) Program and RANS Program Coupling

20

This Research Previous Methodology

Analytic method for prediction of induced Discrete algortihm via Biot-Savart Law

velocity via ring vortices of unsteady har-

monic strength

Fast geometric subdivision algorithm for Polygon overlap methodology

transferring forces

Trilinear interpolation used to transfer ve- Cubic interpolation scheme, which is un-

locity field information between PUF and stable in regions of high gradients

RANS domains



1.5 Summary of Results

This thesis has produced an improved vortex-lattice lifting-surface analysis code,

PUF, as well as a revised RANS code, IFLOW, which , when used in tandem, give

fast, accurate solutions to the most complex of geometries.

* The new PUF is a vortex-lattice lifting-surface propeller code which incorpo-

rates fully-three dimensional, independently aligned wakes.

" IFLOW is a three dimensional RANS code which internally couples with a

propeller blade force solver.

Both of these codes can be run independently, or coupled with a single change to

an input file. This flexibility removes several degrees of freedom from the analysis

process and allows engineers to concentrate on the engineering design issues, rather

than the analysis methodology issues.
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Chapter 2

Vortex-Lattice Lifting-Surface

Formulation

Vortex-lattice lifting-surface theory models a propeller as a singularity distribution in

free space, and imposes the kinematic boundary condition at selected points on the

foil surface requiring there to be no flow through the propeller blade at that point.

2.1 Lifting Line Theory

The roots of vortex-lattice lifting-surface theory lie actually in the development of

the lifting line theory early in the 20th century [5]. In lifting line theory, a wing

is represented as a two dimensional line of bound vorticity, as shown if Figure 2.1.

Figure 2.1 shows a wing modeled as a lifting line constant strength vortex. Due to

Kelvin's thereom, which briefly states that the circulation within a material volume

is constant over time, the lifting line of vorticity which lies along the wing must

extend downstream of the wing where there is a line of vorticity of equal and opposite

magnitude downstream of the lifting line wing. Taking a material volume as any

simple enclosed volume which surrounds the convex hull of the lifting line wing and

its trailing vortex system (composed of two trailers and the starting vortex), we see

that Kelvin's thereom is satisfied since the sum of all the circulation due to the lifting

line is zero. A more realistic vortex-lattice lifting line representation of the wing which

23



Free Vorticity -

Bou nd
Vorticity 

Free Vorticity

Figure 2-1: Lifting line representation of a finite wing.

has non constant strength along the span can be implemented by stacking individual

vortex segments shown in Figure 2.1 end on end.

A mathematical requirement of the lifting line wing representation is that the

circulation on the tips of the wings be zero. A completely rigorous mathematical

derivation is presented in both Newman [22] and Kerwin [14]. Due to this singularity

requirement, the circulation distribution over the span of a lifting line is usually

represented as a sine series, as first demonstrated by Glauert [5].

The lifting line wing has been implemented as a vortex-lattice lifting-line wing by

Kerwin [14]. The lifting line wing theory is directly transferable to propellers, and

was implemented as the Propeller Lifting Line computer program by Coney [2],[3].

The problem with the lifting line representation of the blade, though, is that it can

not represent swept wings (or skewed blades) due to the increasing singularity present

in the Cauchy principal value integral equation. The lifting-surface theory removes

this singularity by spreading the concentrated bound vortex over a chord.

2.2 Vortex-Lattice Theory

In a traditional propeller lifting surface propeller code, a grid lattice is placed on

the blade mean camber surface, the hub and duct (if present) and the trailing wake

system [16]. Each lattice segment is assigned a strength of vorticity. On the solid body

surfaces, such as the blade and hub, a control point is placed near the center of the

grid lattice. The strength of each vortex lattice segment is assigned by satisfying the
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kinematic boundary condition that the flow must be tangent to the propeller, hub, and

duct surfaces at every control point. A wake lattice is traditionally found by laying

the lattice upon a helicoidical surface, where the pitch is set by the hydrodynamic

pitch possibly with induced effect corrections.

Mathematically, the propeller problem involves a simple matrix equation. By

attacking the geometry of the problem, an influence matrix is formulated which gives

the velocity induced by a unit strength of vorticity along every vortex lattice upon

every control point - an [INF]luence matrix.

[INF)IF] - Vinduced (2.1)

The symmetry of the blades and wakes allows for great computational simplification

through similarity principles. Next, to satisfy the kinematic boundary condition, the

physics of the problem dictate that the component of the induced velocity normal to

the blade, when added to the component of the effective inflow velocity normal to the

blade must be zero.

[[INF] IF] +Ve,5V -f = (2.2)

Equation (2.2) is the heart of the propeller lifting surface code.

Equation (2.2) highlights the fact that a valid propeller calculation requires both

the correct geometrical position of the lattice and the correct effective velocity every-

where on the blade surface.

The propeller forces resulting from the vorticity and source distributions are calcu-

lated from the Kutta-Joukowski and Lagally theorems, respectively. Unsteady forces

arise from the unsteady pressure term in the unsteady Bernoulli equation. A Lighthill

leading edge suction force correction is applied to these forces in a chordwise fash-

ion, and the propeller's sectional drag is calculated either based on strip wise two

dimensional empirical drag coefficients, or a stripwise 2-D integral boundary layer

calculation [9]. Cavitation effects can be included through the use of a pressure and

velocity indication which finds the detachment and re-attachment points of the cavity
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Figure 2-2: A vortex-lattice lifting-surface propeller blade and wake model.

sheet. The computer code developed in this thesis uses only empirical sectional drag

coefficients and does not account for cavitation effects.
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Chapter 3

Unsteady Vortex-Lattice

Lifting-Surface Formulation

In an unsteady, vortex-lattice lifting-surface propeller code the requirement to satisfy

both a Kutta condition and Kelvin's thereom drives scientists to devise ever new

variations on a numerical theme to align theory with observation.

The main feature of the lifting surface formulation requires a representation of a

lifting body.

" Camber effects are accounted for by modeling the lifting surface on the mean

camber surface.

" Induced effects due to both bound and shed vorticity are calculated.

* Angle of attack effects are found by properly modeling the three dimensional

surface rotating through the fluid.

The paper thin vortex lattice representing the blade is set upon the mean camber

surface. Consequently provisions must be made for the two-dimensional effects of the

foil:

* Thickness. Can be accounted for through the distribution of source singularities

alongside the vortex singularities.
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" Leading edge suction. Foils not at their shock free entry angle produce leading

edge suction. This can be handled through the use of an analytically correct

2-D solution, applied in three dimensions, as shown by Lan [19].

" Boundary layer (shear) drag. Any number, or combination of, empirical, semi-

empirical, or 2-D/3-D analytic methods can be implemented [9].

3.1 Kutta Condition

In general, the Kutta condition can take many forms:

1. Zero pressure jump at the trailing edge.

2. Finite velocity at the trailing edge.

3. Smooth flow tangent to the blade at the trailing edge [22].

4. A wake singularity sheet extends downstream of the blade where the singularity

strength is the difference in singularity strengths on the upper and lower surfaces

of the blade directly upstream of the trailing edge

The numerical implementation of the Kutta condition then falls classically into either

an explicit or an implicit form [16].

In the explicit formulation of the Kutta condition the strength of the last few

bound vortices on the blade are manipulated to satisfy a condition imposed by the

researcher. For steady flow, the condition that the bound vortex strength vanish

at the trailing edge is imposed. Numerically, the imposition of this extra condition

requires either another unknown, or that one of the constraint equations be dropped.

In the implicit formulation of the Kutta condition, judicious placement of the

blade and wake vortices are assumed to satisfy the Kutta condition. The hypothesis

can be assured by placing the final downstream control point along the trailing edge.

Since the numerics of the discretized boundary value problem require there to be no

fluid velocity normal to the blade at any control point, the Kutta condition is assured.

Further derivations and supporting arguments have been shown in the literature.
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Steady Formulation
Free Vorticity - Horseshoe extends to infinity

r Starting vortex

o O O ' is infintely downstream

Unsteady Formulation
Free Vorticity - Loops correspond to time step

000 0 0

Vortex Loop Spacing on Blade set by user Vortex Loop Size in Wake depends on Total Flow Velocities

Figure 3-1: These two figures show the major difference between steady (upper figure)
and unsteady (lower figure) vortex lattices formulations.

3.2 Unsteady Modeling

The major difference between a steady and unsteady formulation is the shedding of

span-wise vortex segments of free vorticity which account for the changes in blade

circulation as the propeller traverses three hundred and sixty degrees. This is shown

in Figure 3-1. In a steady code the wake vortex is a single horseshoe extending to

infinity. In an unsteady code the wake vortex loop strength changes due to the change

in blade shed vorticity at each blade time step. So along a constant spanwise series of

wake vortex loops, there are unequal amounts of vorticity. The difference in strength

of the trailing vortex segments (i.e., the vortex lattice segments in the streamwise

direction) require that spanwise vortex segments, called shed vortex segments, be

introduced which connect the trailers to satisfy Kelvin.

In the unsteady code, the unknowns include not only the vortex strength on the

blades, but also the first wake loop. This is because as the blade advances through

the fluid from time step N to time step N + 1 the amount of circulation shed into

the wake to satisfy Kelvin is unknown. So the general solution procedure, as shown

in Figure 3-2 is

1. Starting from a known solution, advance the wakes downstream by one loop.

Note that we make the assumption that the loops are sized such that one loop is

equivalent in size to the distance a fluid particle would travel in one time step.
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blade wake

r F r r, r- r r - Time = N

advance (convect) the wakavorticity
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solved for set by
Kelvin
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r r r r r [r F Time=N+2

Figure 3-2: This figure shows a slice along the chordwise direction (constant span)
for a blade, and the steps required to advance the blade one time step.

2. Solve the boundary value problem on the blade surface.

3. Place the correct circulation in the first wake loop based on the definition of

Kelvin's thereom.

4. This then represents another known solution, and the process repeats itself.

One requirement to implement this scheme, is that the vortex lattice spacing in the

wake is directly dependent upon the time step set by the user. The blade vortex

spacing, though, is set in a different manner by the user since there is no intra-

problem dependency between the number and relative size of the blade and wake

vortex lattices. This gives rise to a sharp gradient in grid density at the trailing

edge of the blade as the solution transitions from the blade to the wake lattice. This

problem is further accentuated by the fact that the blade lattice is cosine spaced in

the chordwise direction.

Star~ibA* 'E& W69%AftA M~cfflkat &1AaW10Ajtpivyhhj dvgigeggop g

I'g-8vitgg gggeorfahce N ECM~nl bq% ] t leqqtiffi klorbe~dW 44%96~f lyt

thoR9nei6he vortex induced flow due the vorticity on the blade, the vortex induced

flow due to the vorticity in the wake, and the effective inflow.

3.3 Discrete B1 undary Value Problem
Z(Fb)jBi,j + E('s)kWi,k = -Vi (3.1)

j=1 k=1
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where Nb number of blade vortex loops

(rb)j circulation strength of blade vortex loop j

Bi, Infuence of unit circulation strength in blade j on

control point i

N, number of wake vortex loops

(Fs)k circulatoin strength of wake loop k

Wi,k Infuence of unit circulation strength in wake loop

k on control point i

Vi Effective velocity at control point i

In the unsteady formulation, a simple notation scheme is introduced modifying Equa-

tion 3.1 which states that the end state of the problem is to find the solution at the

next time step, N + 1.

Nb N.

(Fb)N+Bi,j + 1(r,)N+W -
j=1 k=1

(3.2)

From the physics of the problem, it is known that the vorticity present in the wake

convects with the local velocity. By sizing the wake panels such that the size of one

wake panel is the distance traveled by the blade in one time step, we can state with

certainty that the vorticity present on the k + 1 panel at time N + 1 is the vorticity

which existed on the kth panel at time N.

(ps)N+l p)N for k > 0

Since the shed vorticity present in the wake is known at time N, this means that the

wake influence velocities are known due to all wake panels except the k = 1 panel.

Nb Nw

(b) +1B2, + ( 8 )N+1 Wi,1 = -1V - Z(Fs) W,_1
j=1 k=2

(3.4)
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To account for the vorticity present on the first wake panel,(F8 )N+l, we make use of

Kelvin's thereom. When applied to a material contour which encompasses the blade

and the entire wake, we can see that any change in vorticity on the blade over a given

time interval must be balanced by a change in vorticity in the wake.

-0

b+ OF, = 0 (3.5)
at at

The first observation to make concerning Equation 3.5 is that integrating all terms

with respect to time t gives the absolute change in vorticity. That being said, the

second observation to make is that the only place the vorticity in the wake changes

within the material volume (which by the definition of a material volume convects

with the flow) is on the first wake panel.

IN ab dt + (F 8)N1+ = 0 (3.6)

Applying a very low order integration scheme, such as a one-sided trapezoidal rule

for the first term in Equation 3.6

IN+ gt =(T)N ATb
fN at t

Tb =Zb

AT = Z(Fb)N+ - (b) N

NI Dbdt = (]Fb )N+1 (3.7)

Substituting Equation 3.7 into Equation 3.6 gives
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Nb

pN+ = - ( (3.8)
j=1

Substituting Equation 3.8 into Equation 3.4

Nb Nb N.

Z(bf+ 1 Bj - Z( +1 Wi,1 = -Vi - (F)NWk-1 (3.9)
j=1 j=1 k=2

Equation 3.9 is the final discretized boundary value problem which can be solved

numerically. The important things to note about Equation 3.9 is that all the un-

knowns on the left hand side are the Fb of interest at the next time step. Further,

the low order integration means that interestingly enough that first wake panel does

not influence the right hand side of the equation.

Combining the two terms on the left hand side of Equation 3.9 reduces it to the

more usual form of Ax = b.

Nb N.

[Bij - W = --Vi - Z(F)kWk (3.10)
j=1 k=2

Physically this means that the blade influence loops include the influence of the first

wake panel. Note that the influence of the first wake panel is not found on the right

hand side of Equation 3.10.

This formulation differs from previous unsteady formulations in the placement of

the first shed vortex segment. Previous researchers have placed the first shed vortex

segment one quarter downstream of the foil trailing edge, presumably in an attempt to

avoid the trailing edge singularity. This thesis has shown that the correct placement

of the first shed vortex is one complete time step downstream of the blade trailing

edge.
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3.4 Higher Order Wake Representation

One method to increase the accuracy for a given problem is to increase the order of the

discretized representation of the physical, analog, system. For a vortex-lattice code,

this strategy leads to a higher order representation of the singularity distribution over

a given vortex loop since in its most basic form, a vortex loop is a constant strength

dipole sheet. Practically speaking, this is implemented by subdividing a vortex loop

and assigning a spatially varying singularity strength to the subdivided loops based

on the singularity value at the boundary of the original loop.

For a lifting surface code, there is no requirement to represent the entire transition

wake as higher order loops, because most of the loops are far downstream from the

control points of interest. To save computational time, then, only the first wake

panel downstream of the trailing edge is represented by a higher order singularity

distribution. This solution technique assumes that the blade solution is affected most

by the order of the first wake panel since the first wake panels adjacent to the trailing

edge have the largest influence upon induced velocities at the boundary value problem

control points.

The theory and results are presented below for a linear variation, and 2nd order

variation in singularity strength.

3.4.1 Linear Variation in Wake Loop Strength

The first improvement upon the low order scheme presented in Equation 3.10 is to

model the strength of vorticity across the first wake panel as linearly varying across

the panel.This is accomplished by breaking the first shed wake panel into several

smaller panels as shown in Figure 3-3. Higher order wake panels are modeled by

subdividing the first wake panel. The singularity strength of each sub panel can then

be forced to conform to a higher order scheme: linear, quadratic or higher. Notice

that the strength across the panel then depends upon the blade circulation which is
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N+I F s F N
m=i s m=2 s m=3 sNm-1 sNm l bb

First wake loop subdivided into m subpanels

Figure 3-3: Higher order wake panel.

the unknown, and the previous timestep blade circulation, which is known.

psN+1 s s1-m)F1omFI

1=- ; b3 + (i) b Pb3
(3.11)

The variable m in Equation 3.11 represents the distance between 0 and 1 across the

subdivided panel.

This changes the discretized boundary value problem as shown in Equation 3.12.

Notice in Equation 3.12 that the influence of the first wake panel is accounted for on

both the left hand side and right hand side of the equation. And that each subdivided

panel influences each control point.

Nb Nm N. Nm Nb

(Fb 1 [Bj - Z(1 - n)Wm,1 ] = -Vi - k(s)NWi,k_1 - S S(b) m)WMl
j=1 m=1 k=2 m=1 j=1

(3.12)

where Wm,1 is the influence of the mth subpanel in the 1 " wake panel

3.4.2 Quadratic Variation in Wake Loop Strength

The second improvement upon the low order scheme presented in Equation 3.10 is to

model the strength of vorticity across the first wake panel as quadratically varying.
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This is accomplished by again breaking the first shed wake panel into several smaller

panels as shown in Figure 3-3.

Examining a single chordwise strip of vortex loops extending from the blade and

into the wake, this method states that the strength of vorticity in the wake panel

varies quadratically in space downstream of the blade trailing edge. Therefore, the

strength of the vorticity is represented as a quadratic equation as shown in Equation

3.13.

Psm = as2 + bs + c (3.13)

where s = distance downstream of trailing edge

a, b, c = polynomial coefficients

Because the wake panel spacing is constant, a 3X3 matrix can be formed to find

the polynomial coefficients using the unknown Fo at the trailing edge, and the known

F,1 and ]P2 on the second and third panels. When the coefficient matrix is inverted

and the terms re-ordered to show the dependence on the various P8 's, Equation 3.14

results. This is equivalent to solving the Lagrange polynomial solution.

12 3 12 1
Fsm = (s - -s + 1)FsTE + (--2 + 2s)F + s2 - 1)F2 (3-14)

2 2 2 2

By following up with the usual representation of the shed vorticity in terms of the

blade vorticity at a given time step

Nb

(17s)TE = b +

j=1

Nb

s1 L Zob)N
j=1
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Nb

]s2 b
j=1

Inserting these definitions into Equation 3.10 and migrating the unknowns to the

left hand side and the known to the right hand side leads to the final discrete equation

shown in Equation 3.15.

Nb Nm 1S(Fb)+1  , (2 - + 1)Wm,1i
j=1 m=1

N. Nm Nb Nb

Vk - 1(sN(- + 2s) + Z(" - 2 -- ))WM,1
k=2 m=1 j=1 j=1

(3.15)
where s is the non-dimensional distance of the sub-

divided wake panel across the total wake

panel
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Chapter 4

Force Free Wake Alignment

Force free wake alignment means that the wake vortex lattice structures are aligned

with the local fluid velocity. The wake is then force free by the Kutta-Jukowski

thereom, Equation 4.1, since the cross product of the velocity and vorticity is zero.

-P = p' x (4.1)

This chapter presents the development, implementation, and validation of a novel

technique to align the vortex-lattice wake with the local flowfield. The engineering

applicability to this line of research is presented in Section 4.1. A broad overview to

wake modeling in the context of a propeller code is presented in Section 4.2. Section

4.3 presents the approach taken to accomplish three dimensional, independent wake

alignment. Two model problems are shown in Section 4.4. Section 4.5 contains the

details on wake growing. Hub image placement is shown in Section 4.6. A very

relevant adjunct to wake alignment which makes the computational burden bearable

is wake subdivision, shown in Section 4.8. A novel method to improve computation

accuracy at reduced computational expense through judicious application of higher

order techniques is presented in Section 4.9, where a higher order wake panel to resolve

the influence velocity more accurately near the trailing edge singularity is created.

Results for these new algorithms as implemented in a fully functional propeller code

are found in Section 4.10.
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4.1 Applications for Non-Uniform Wakes

Real world applications of propeller codes highlight two cases of interest where wake

alignment contributes to the accuracy of the solution:

1. Propellers operating on inclined shafts and the non-axial flow which follows the

aft buttock lines.

2. Maneuvering vehicles present strong cross flow contributions to the inflow seen

by the propeller in its rotating reference frame.

3. Propellers operating within unsteady flowfields due to the presence of upstream

appendages such as control surfaces, sails, struts, or an inclined shaft.

These real world flow conditions lead to unsteady propeller blade forces. The

naval engineer then has the task of designing the propeller such that the outwardly

measurable effects of the generated unsteady blade forces can be accurately modeled,

in magnitude and variation, to within the design specifications.

There are two approaches that can be taken to align the propeller vortex-lattice

wake with the local fluid velocities:

1. Align the vortex lattice wake using the combined affects of the blade and wake

singularity-induced velocity and a given effective inflow.

2. Align the vortex lattice wake with a prescribed total inflow. The total inflow

can be either recorded in an experimental test facility or found with a numerical

simulation technique such as the RANS used in this research.

The first approach has been undertaken by Shih [25] and Kinnas [23] among others.

This approach brings with it the requirements to lump vorticity at the tip of the

wake sheet as the tips roll-up and to de-singularize the influence kernel function. This

approach also has the more serious shortcoming that it does not properly account for

the fact that the vortex-vortex interaction between the vorticity present in the inflow

and the blade vorticity alters the inflow velocity profile [24]. This is explained more

fully in Appendix B.1.
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The second approach, that of aligning the the vortex lattice wake with a prescribed

velocity field is undertaken in this thesis. This research utilizes the basic model of

coupling with a Reynolds-Averaged Navier-Stokes flow solver [15] to give directly the

wake field. There are two main reasons as to the relevance of this approach:

1. The general fidelity, usability, and availability of RANS codes makes them ac-

cessible to design engineers.

2. A RANS code can properly model the vortex-vortex interactivity, redistributing

the vorticity present in the inflow in the presence of the propeller.

One possible shortcoming, which is not explored further, is that the time-averaged

nature of the RANS solution means that the fluid velocities are time-averaged ( or

equivalently spatially-averaged), while the lifting-surface formulation requires local

velocities to correctly solve the boundary value problem [15]. The details are explained

in Appendix B. This assumption has proven valid in practice for axisymmetric flow,

where circumferential mean flow averaged over the entire propeller swept volume, is

substituted for local blade flow.

There are two major advantages of the approach taken here:

1. Computational efficiency: The calculation of the blade and wake singularity

influence on the wake sheets is an extremely time consuming process which

scales with the square of the number of singularity elements. Memory can

not be traded against the computation, since the influences change at each

alignment step.

2. Compatibility with empirical measurements: Empirical measurements of

flow around bodies in the plane of the propeller provide either nominal (velocity

measurements in the absence of the propeller) or total (velocity measurements

with the effects of the propeller) velocities. For use in numerical validation, if

total velocities are measured these can be exactly used as boundary conditions.

Nominal values measured in an empirical test can be used to calibrate, or set the

boundary conditions, for a numerical solver. In both cases, if the measurements
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are taken far enough upstream of the propeller to negate the influence of the

propeller (usually 2 propeller diameters for open propellers) these measurements

are equal and can be used as a boundary condition on a volume solver. Note,

however, that this method assumes that the propeller code is coupled with an

external code which solves for the effective inflow while maintaining the proper

velocities downstream of the propeller to convect the wake.

4.2 Wake Modeling in a Propeller Code

The wake scheme used as a starting point, is that devised by Greeley and Kerwin [7]

as implemented in both the PBD-14 code [21] and the original PUF code [13]. In this

formulation, the wake is divided into both a transition and ultimate wake model.

The transition wake is a fully three dimensional wake vortex lattice. The lattice of

the transition wake matches the spanwise number of blade lattice element, while the

streamwise number of vortex loops depends upon the time step set for the particular

problem. The transition wake extends downstream from the blade a user-specified

distance.

The ultimate wake model is composed of trailing helical vortices extending to

infinity. That is, at each spanwise lattice position, a helical vortex is grown, with

the same pitch as the tipwise element. The closed form solutions due to Hough

and Ordway [8] as implemented by Leibman [20] provide accurate influence velocities

due to the ultimate wake helical vortices. The helical vortices at a given radius are

averaged at each blade position, to produce a steady set of helical vortices.

4.3 Approach to Wake Alignment

Two pieces are required to solve the wake alignment problem:

o individual wake growing.

o faster numerical algorithms to compensate for the increased number of influence

calculations required.
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The first piece is the need to align each wake vortex-lattice sheet convecting down-

stream from each blade with the local flowfield. Because the symmetry of the axisym-

metric wake generation scheme is destroyed, there is an increase in computational and

memory requirements (since each wake must be individually grown and has individ-

ual influence calculations and associated storage requirements). This leads to the

requirement to divorce wake discretization from problem size. This is accomplished

through the implementation of a pseudo-higher level wake discretization scheme using

sub-divided wake vortex loops.

4.4 Wake Alignment Model Problems

The first problem for the two cases presented in Section 4.1 involves the propeller

acting in the non-uniform flowfield produced by upstream appendages. As is clearly

shown in the extreme case of a step change in inflow velocity in Figure 4-1 the pitch

angle of the wake is directly affected by the non-uniformity in axial velocity. To

quantify these effects upon the resulting propeller higher harmonic forces, a prescribed

inflow composed of known harmonic inflows can be imposed, and then the resulting

harmonic forces predicted by the propeller program with aligned and non-aligned

wakes can be measured and compared.

The second problem of wakes convecting downstream at angle, as in the case of

a maneuvering vehicle or a propeller mounted at a fixed angle of inclination with

respect to the inflow as shown in Figure 4-2 , again results in a change to the wake

pitch angle. The once per revolution change in pitch directly affects the blade solution.

This change results from the azimuthal component of the velocity field convecting the

wake. Conceptually, if the cartesian representation of any given velocity is translated

to a cylindrical form, and radial velocities would of course not affect the pitch, but

axial and azimuthal velocity components would change the pitch.
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Figure 4-1: A non-uniform inflow directly affects the pitch angle of the wake sheets.
Here the non-uniformity is produced by a step function change in the axial velocity.

z

Figure 4-2: With the propeller operating in a 10 degree inclined inflow, the wake
properly follows the inflow angle.
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Figure 4-3: As the wake convects downstream aligned with the local flowfield, it forms
a cylindrical tube.

4.5 Wake Tracking Methodology

The PUF reference frame is stationary, with the axis centered near the blade, at

the centroid of blade rotation. Because the blades remain stationary a rotational

component is added to the transition wake as it convects downstream from the blade

trailing edge. The approach taken here is to convect the wake sheets with the local

flowfield. As the wake sheets convect, a center of rotation is defined at each timestep.

The wake sheets can then be rotated about that axis by the angular blade step.

If the wake sheets can be considered to convect downstream within a cylindrical

tube that is aligned with the wakefield, then there must be a centerline axis along

which the cylinder can be generated. This is shown in Figure 4-3. Conversely, if the

centerline axis (generator line) of the cylindrical tube can be defined, then the wake

sheets can be properly rotated about the generator line to account for the rotational

component required within the PUF reference frame. Notice for a propeller in a

uniform, straight ahead flow situation, like in a water tunnel, the wake generator line

lies along the shaft axis. In real world cases where the wake shifts to align with an

unsteady, non-uniform flow field, the wake generator line is arbitrarily oriented in

space. This leads to the requirement to rotate a point in space a given angle about

an arbitrarily-oriented axis.
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Figure 4-4: Notation used in specifying how a point in the PUF reference frame is
rotated about an arbitrary vector

4.5.1 Wake Sheet Generator Line

The wake sheet generator line is created by tracking a cylindrical shell of fluid through

space. The centerline of the cylindrical shell is the wake sheet generator line. The

cylindrical shell is generated by marching a ring downstream from the seven-tenths

radius of the propeller. The center of this ring is the centerline axis. The position of

the generator line at each timestep is found by averaging the coordinates of the ring.

The orientation of the generator line is found using a backwards Euler differencing

scheme.

Once the wake sheet generator line is defined, the wake sheets are convected with

the local flow and rotated by the propeller angular increment, which is dependent on

the number of propeller time steps per revolution. This involves a three dimensional

rotation of a point about an arbitrary axis.

4.5.2 Rotation of a Point about an Arbitrary Axis

The rotation of a point (x, y, z) about an arbitrary vector {ai, bj, ck} positioned in

space at the point (xp, yp, zp) by a desired angle a is found using a series of rotational

and translational matrix manipulations. The basic series of steps, and associated

transformation matrices, are shown below:
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. Translate the coordinate center of the axis of rotation to the axes center.

T

1 0 0 0

0 1 0 0

0 0 1 0

-XP -YP -ZP 11

* Rotate the axis of rotation vector about the Y-axis to place the coordinate

center of the vector in the YZ plane

0 sin(O) 0

0 1 0 0

0 cos(0) 0

0 0 0 1

* Rotate the axis vector about the X-axis to align the rotation axis vector with

the Z-axis.

1 0

0 cos(O)

0 -sin()

0 0

0 0

sin()

cos(0)

0

0

0 1

* The rotation axes vector and the global Z axes are now colinear. The desired

rotation is now a rotation of the point about the Z-axis by the desired angle a.

Ra =

cos(a) sin(a) 0 0

-sin(a) cos(a) 0 0

0 0 1 0

0 0 0 1

The remaining steps remove the transformations accomplished in steps 1-3.
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* Undo the rotation about the X-axis

1

0

0

0

0

cos(#)

sin(#)

0

0

-si(#)

cos(q)

0

0

0

0

1

e Undo the rotation about the Y-axis

Ro=

cos(O)

0

sirn(O)

0

0

1

0

0

-sin(O)

0

cos(0)

0

0

0

0

1

* Translate the rotation vector base point (which really defines the local coordi-

nate axes) from the global axes center to original position

1

0

0

XP

0

1

0

YP

0

0

1

ZP

0

0

0

1

These matrices can be combined to create a single transformation matrix.

[Transform] = [T] [Ro] [Rqj [Rcj [R-0] [R0 ] [T] (4.2)

4.6 Hub Image Placement

The method of images is used for the hub and duct image placement - as is done

for the blade vortex lattice hub and duct. Because there is no general guarantee

that a shaft extends downstream of the propeller through the length of the wake, the

hub images are more an accounting method to convect the hub image vortices which
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Figure 4-5: Terminology used in determining the
lattice point positions.

Profile View

position of the wake hub image

are required for enforcement of the kinematic boundary condition on the hub in the

presence of the blade vortices.

Due to the non-axisymmetric nature of the wake vortex loop position, it is not

possible to use a common axis center to place the image vortices. Rather, the position

of the wake hub images must follow from the position of the wake vortex lattice

elements.

As normal, the radius of the hub image point is then given by Equation 4.3.

(ro - HGAP) 2

rimageTi (4.3)

Here ro is the distance from hubmost wake lattice point to the generator axis and r1

is the distance from the point to be imaged to generator axis. The tricky part is to

now define the center axis from which ro and ri are measured. As luck would have

it, though, the center axis was previously defined in convecting the wake in the first

place.

The hub image location, as shown in Figure 4-5 is placed in a position coplanar

with the innermost wake vortex lattice element to prevent undesirable lattice skew.

The axial location of the image vortice is set to match the axial location of the

hubmost lattice.
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Figure 4-6: Velocity components of a 10 degree inclined flow as seen by a propeller.
Plots of the axial, radial, and tangential component of the inflow at the propeller
seven-tenths radius.

Force Component Aligned Wake Non-aligned Wake A%
Steady KT 0.15799 0.15740 -0.37
Steady 10KQ 0.29348 0.29443 0.32
1st Harmonic Axial Force 0.01849 0.01458 21
1st Harmonic Vertical Force 0.00158 0.00217 37
1st Harmonic Side Force 0.01055 0.00823 22

Table 4.1: Aligned and Non-aligned wake results for 10 degree angle of inclination.

4.7 Aligned Wakes with Prescribed Effective In-

flow

The results presented here represent calculations made with a prescribed effective

inflow inclined at 10 degrees. Fully coupled results are presented in Chapter 6. A

standard three-bladed propeller, DTMB Propeller 4119, is used for all calculations.

The first result is to show the wake position when aligned with a ten degree

angled inflow as shown in Figure 4-2. The axial,radial, and tangential components of

the inflow are shown in Figure 4-6. The once per revolution variation in tangential

velocity component will produce a wake with non-constant pitch angle. The resulting

differences in predicted operating conditions between using the aligned wake model

and the non-aligned wake model are shown in Table 4.1. The differences in lateral

forces are maily due to phase differences. Notice that while the mean forces are

generally similar, the predicted first harmonic forces differ by an order of magnitude
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Circulation at the 0.7 Radius in 10 Degree Inclined Inflow
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Difference
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Figure 4-7: With the propeller operating in a 10 degree inclined inflow, this plot
shows the circulation at the -L radius as the propeller rotates through 360 degrees.10

Figure 4-7 highlights the difference in resulting blade solution for aligned and

non-aligned wakes. Figure 4-7 shows the blade circulation at the 1 th radius as the10

propeller sweeps through 360 degrees in a 10 degree inclined flow. Note that the mean,

or steady circulation, is nearly the same, but the prediction in the 1St harmonic shows

phase and amplitude differences.

4.7.1 Once per Revolution Change in Axial Velocity

The second test is to vary the wake pitch angle by creating a stylized flowfield with

varying axial velocity. The components of the flowfield are shown in Figure 4-8. This

is a simplified model for the effects of upstream appendages. The variation in axial

velocity will produce a varying wake pitch angle. Again, the propeller program is run

with and without wake alignment.

The results of this analysis are shown in Figure 4-9. Because there is negligible
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Force Component
Steady Fx
Steady Fy
Steady Fz
1st Harmonic Fx
1st Harmonic Fy
1st Harmonic Fz

Aligned Wake
-0.04874
0.00274
0.02822
0.01555
0.00214
0.00752

Non-aligned Wake A%
-0.05068 4.00
0.00270 1.50
0.02891 2.50
0.01311 15.7
0.00296 38.3
0.00574 23.7

Table 4.2: Unsteady blade forces produced by a propeller in an axially non-uniform
flow with and without wake alignment. There are large penalties associated with not
aligning the wake.
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Figure 4-8: Velocity components for a once per revolution variation in the magni-
tude of the axial component of the inflow. Plots of the axial, radial, and tangential
component of the inflow at the propeller seven-tenths radius.

steady offset, the mean predicted propeller KT and 1OKQ differ insignificantly. The

once per revolution variation, though, highlights the difference in unsteady perfor-

mance. Table 4.7.1 shows the differences in 1st harmonic forces.

4.8 Wake Lattice Spacing

Due to the requirement that the vorticity present on a given wake panel convects

downstream in the time interval between successive blade clicks, the size of the wake

vortex lattice loops are directly determined by this time step (Number of Time Steps

per revolution in PUF terminology). Because each shed vortex loop corresponds

to the distance between angular blade positions, a large number of blade steps per

revolution is required to keep a sufficiently small wake discretization. But an increased
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Figure 4-9: 4119 circulation at the seven-tenths radius for axially non-uniform inflow.

number of time steps requires longer solution times. This problem is highlighted by

the required angular resolution which follows directly from the user-specified number

of time steps per revolution (NTSR).

The propeller time step is given by:

ATo - 2J
NTSR

(4.4)

Which directly leads to the following angular increment between each successive blade
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position

Vs
nD

n Qprop
27r

Oprop Qprop A Tprop

in PUF, VS = 1.0 and D = 2.0

prop 7r ATropo prop

- 2 (4.5)
NTSR

Notice that the angular discretization is independent of advance coefficient, J, and

depends only upon the user input number of blade positions per revolution. This

means that if it is possible to create a wake discretization scheme independent of

blade time steps it will also be problem independent. This would obviously be a more

robust algorithm in general.

This discretization error is seen in the convergence rate of the blade forces with

changes in pseudo time step (the NTSR variable using PUF terminology) shown in

Figure 4-10. This test was conducted using a uniform effective inflow and maintaining

constant lattice size on the blade. These results are similar to those presented by

Warren [30]. Under the older wake growing scheme, where wake loop size is dependent

upon time step discretization, the convergence of KT and KQ such that they are no

longer dependent upon NTSR comes with a stiff penalty in the form of computational

expense. Notice from Figure 4-10 that the wake growing scheme is unstable at low

NTSR. A goal of this research is to remove the solution dependence on NTSR while

maintaining low computation times.

4.9 Higher Order Wakes

There are two methods which could be used to remove the dependence between the

propeller discrete time stepping and the wake loop discretization.
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Figure 4-10: The convergence of the propeller solution is directly determined by the
pseudo time stepping, which is controlled via the user-defined Number of Time Steps
per Revolution (NTSR).

1. Higher order vortex strength representation. The coarse discretization could be

overcome with higher order representation of the vortex loop strengths.

2. Higher order panels. If the shed vortex loops can be considered constant

strength singularity panels, then a higher order panel would accurately repre-

sent the geometry, while minimizing the computational expense. The curvature

effects are missed for very coarse panels.

These methods directly result from the fact the influence velocity of the wake is due

to the product of the influence coefficient and the vortex loop strength

Nw

Vinf = F' [W IF]j,, (4.6)
k=1

The secondr method is the better choice, since a higher order panel will also solve

the instability in the vortex loop placement scheme associated with the current lower

order scheme.
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4.9.1 Higher Order Wake Loop Scheme

A classical higher order loop would be created by defining the perimeter of the loop,

and using a higher-order influence function to return the influence of that loop. The

degree would depend, then, on the higher order derivatives at the wake loop edges.

This is nearly equivalent to breaking the loop into smaller loops, calculating the

influence of each smaller loop, and re-assembling these smaller influences into an

overall influence coefficient for the total loop. Recall that global loop size is still

dictated by the propeller discrete time stepping (since shed vorticity from the blades

at each pseudo time step must be convected in the wake). The advantages of the loop

subdivision scheme are,

" wake curvature effects are captured

" more stable than large stepping scheme currently used

* ability to easily integrate a streamwise strength variation scheme

Figure 4-11 shows pictorially the resulting wake loop discretization with and with-

out subidivisions. The smaller subdivided panel better capture the real curvature

effects of the wake, and reduce the mis-alignment between the wake panel tengency

and the local fluid flow.

4.9.2 Convergence with Subdivided Wake Loops

Figure 4-12 shows the results for varying the subdivisions of each wake vortex loop.

Notice that KT and 1OKQ converge after the wake loops are subdivided to an equiva-

lent NTSR=60 level, and requires one-third of the computation time. Based on these

results, the algorithm is set to subdivide the wake vortex loops to use an equivalent

pseudo timestepping which would result if the user had specified NTSR = 60 in

the old scheme. The pseudo time stepping in the wake, then, is not equivalent to

Equation 4.4 but is given by Equation 4.7.
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Z

Figure 4-11: Subdividing the loop sizes required by the pseudo time step into smaller

loops creates a higher order influence panel. The solid dashed lines are the actual

wake loop sizes as dictated by the pseudo time step and the lighter solid lines are the

subdivided wake loop locations. There are five subdivisions per time step.

ATwak e = (47)
60

And the equivalent rotational component added at each time step is shown in Equa-

tion 4.8.

7r

Oprop = (4.8)

The results show a 70 percent reduction in computation time for equivalent accu-

racy and convergence. Computation time could be further reduced by implementing

a higher order influence calculation since the computation burden is now evenly di-

vided between the wake growing algorithm using small pseudo time steps and the

calculation of the influences for each of these smaller loops. The time savings results

from many factors:
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" reduced number of angular positions requires fewer time steps to convect the

starting vortex downstream

" the force calculation directory depends on the number of blade panel positions

" less memory required

The use of the user-defined parameter for the number of timesteps per revolution

should now only be set higher than the number of blades to capture unsteady, higher

harmonic effects. There are many calculations which do not require the calculation

of higher harmonic unsteady forces, which will benefit from the 70 percent speed-up.

" Maneuvering vehicle calculations typically only require 1st and 2nd harmonic

unsteady forces.

* When coupled with an external flow solver, such as a RANS code, it does make

any sense at all to try and calculate harmonic forces higher than the azimuthal

grid resolution. For instance, given a seven bladed propeller coupled with a

RANS code with 36 grid cells in the azimuthal direction, the user should not

expect to resolve any harmonics higher than 2.

4.9.3 Solution Validation with Subdivided Wake Loops

The numerical accuracy of the new wake subdivision scheme is found by comparing

the results of PUF with and without the wake subdivision scheme, where there are a

large number of wake loops in the non-subdivided scheme. This check is necasarray

due to the large scale changes in array indexing, solution advancement, and influence

looping the wake subdivision scheme required.
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Figure 4-12: Using a pseudo higher order influence scheme through subdividing the

wake loops results in less computation effort for convergence.

The numerical results for circulation distribution with the wake subdivision scheme

is shown in Figure 4-13. The integrated results for KT and 10KQ are,

NTSR KT 10KQ

PUF14 1 with subdivided wakes 3 0.15173 0.28532

PUF14' without subdivided wakes 60 0.15174 0.28534

PUF14 2 without subdivided wakes 60 0.15231 0.28184

' Individual Wakes

2 Imaged Wakes

It is hypothesized that this difference is due to round off errors present when rotating

the imaged wakes to the correct angular positions.

4.10 Validations of Aligned, Subdivided Wake Scheme

To test the subdivision scheme, Propeller 4119 is given an unsteady effective inflow.

While the blade lattice size is held fixed at 15X15, the number of discrete time steps

is increased to the maximum memory of the machine. The results are presented

in Table 4.3. Notice that the results do vary slightly. This is due to the different
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Figure 4-13: Validation of PUF14 using the wake subdivision scheme with PUF14
without the wake subdivision scheme in a uniform, axial inflow.

NTSR KT 10KQ
15 0.15380 0.28503
30 0.15423 0.28643
45 0.15453 0.28731

Table 4.3: Affect of NTSR on subdivided wake scheme results. The difference of less
than 1% is attributable to the variable spacing in the first wake panel, which does
depend upon NTSR

subdivision sizes present in the first wake lattice.

4.10.1 Convergence Test of Aligned, Subdivided Wake Scheme

The first convergence test is to investigate if the propeller solution with the subdivided

wakes requires a finer blade grid than the constant-sized wake panel solution. To make

the investigation more interesting, the propeller code with subdivided wakes is tested

against the propeller code with constant-sized wakes in a non-uniform inflow which

is specified as the effective flowfield. The convergence rate with blade lattice size is

shown in Figure 4-14. These results indicate that the users of the new code do not

need to change their thought process on the correct settings for blade discretization.
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Discretization Convergence Tests
Subdivided and Non-subdivded Wake Loops

0.34 Propeller 4119
Non Uniform Inflow with Vel = 1+sin(2 theta
IHUB=1/2 NKEY

0.32

0
0.28

0.26

0.24 - -Constant Wake Panel, NTSR=60
-- -Constant Wake Panel, NTSR=60

0.22 - -- Subdivided Wake Loops
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Figure 4-14: Convergence rate of the new wake discretization scheme in a non-uniform
inflow. Compared to the previous scheme of large, non-subdivided wake panels, the
convergence rate is similar with changes in blade lattice density.
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Discretization Convergence Tests in PUF with
Fully Aligned, Subdivided Wakes in Uniform
and Non-uniform Inflows

Propeller 4119
Uniform Inflow Vel = 1.0
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Figure 4-15: Mean KT and 10KQ results are shown for PUF using fully aligned,
subdivided wakes in both uniform and non-uniform inflows. Grid convergence occurs

at a lattice size of around 20.

Mean KT and 10KQ results are shown in Figure 4-15 for PUF using fully aligned,

subdivided wakes in both uniform and non-uniform inflows. These results indicate

that grid convergence occurs at a lattice size of around 20.

4.10.2 Propeller 4119 in Non Uniform Axial Inflow

The varying pitch angle of the wake as shown in Figure 4-1 is compared with the

wake grown in previous methods in Figure 4-16. While there is some difference in the

performance prediction between the aligned and non-aligned calculations, the largest

difference shows up in the prediction of the blade harmonic forces.
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Non-aligned Wake

Aligned Wake

Figure 4-16: A non-uniform inflow directly affects the pitch angle of the wake sheets.
Here the non-uniformity is produced by a step function change in the axial velocity.
Aligning the wakes with the local flow produces radical changes in the wake pitch
angle. The aligned wake is the same as shown in Figure 4-1.
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Chapter 5

Coupled Algorithms

The major shortcoming of the lifting surface formulation described above is the in-

ability to model the vorticity interaction. As previously mentioned, the propeller

induction velocities cause a redistribution of the vorticity present in the inflow. This

interaction is critical in the design of modern, full stern submarines, where the stern

prismatic coefficient is so high that the propulsor actually inhibits separation of the

boundary layer.

The second area of propulsor design affected by this shortcoming is in the design

of multi-element propulsors. The problem is that at points where the trailing wake

vorticity from the upstream blade rows intersect the control points of the downstream

blades, the mathematics of the problem produces a singular solution. Multi-element

propulsor design is important in the design of modern naval combatant propulsors,

and in the design of waterjet pumps.

5.1 Time-averaged Induced Velocity

When coupling a potential-based lifting-surface blade solver with a RANS code, the

need arises to correctly evaluate the effective velocity given the total velocity solved

for by the RANS code.
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In the propeller code, the velocity at any field point can be broken down as follow:

V® + = VO+ + (5.1)

where: V' is the effective inflow

V1 d is the time-averaged induced velocity

VO is the fluctuating, local blade-to-blade induced velocity

Since the effective inflow is not measurable in the RANS code, the assumption is

made that the mean of the local blade-to-blade flow is zero,

V@ = 0 (5.2)

This then directly leads to the final statement that the time-averaged effective velocity

is equivalent in the RANS code , as indicated by the VO notation and the propeller

code, such that the effective velocity is just the total velocity minus the time-averaged

induced velocity.

V® -=Vo = V- -V® (5.3)
eff - 'eff -Ind

This statement ignores the effect of the fluctuating blade-to-blade component on the

vorticity redistribution, explained in Section B.1, but is countered by the physical

observation that the higher harmonically fluctuating blade to blade flows quickly

decay away from the blades.

The computational burden then comes from the requirement to compute the time-

averaged induced velocity at all boundary condition points. In its most elemental

form, this calculation involves determining the velocity induced at a field point in

space by a large set of three dimensional vortex segments rotated about an axis to

form conic vortex sections, where the strength of the vorticity varies with respect to

angular position on the conic.
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5.2 Velocity Induced by a Vortex Segment

The velocity induced by a vortex segment on a point in space is known precisely from

the Biot-Savart Law [141,

F R x d(5
di =' - (5.4)

47r R3

where: dii is the induced velocity vector

R is the vector from the vortex element to the field point

ds is the unit vector along the vortex segment

R3 is the cube of the distance vector

Integrating Equation 5.4 along the length of the segment gives the total induced veloc-

ity upon the field point. The numerical implementation of Equation 5.4 is described

more fully by Greeley [7].

5.2.1 Discrete Calculation of the Velocity Induced by a Conic

Section

Using the Biot-Savart law as implemented numerically by Greeley [7] naturally leads

to representing the conic section as a series of vortex sticks swung about the x-axis.

This is shown in Figure 5-1. Because the strength of the vortex segment varies with

angular position, it follows that the induced velocity of the conic section can be found

through integrating the effect of the discrete vortex segments,

f 2
l Is F(O)R x d9

1 4dO (5.5)
0 0 47r R3
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Single Vortex Segment in Free Space......................................rotated about the x-axis at discrete angular positions

z z

5 x

Figure 5-1: Conic section made up of discrete vortex segments. This illustration
shows how discrete vortex segments can be combined to form a nearly continuous
sheet.

5.3 Velocity Induced by a Ring Vortex of Harmon-

ically Varying Strength

An alternative method, presented by Buchoux [1] for the uniform axisymmetric case,

and refined by Greeley is to represent the conic section as rings of vorticity. The Biot-

Savart equation is still the governing equation, but instead of integrating around

0 to 27r, vortex rings are integrated along the surface of the conic section. The

derivation for the induced velocity due to a vortex ring of uniform strength is shown

in Kucheman [18]. The final resulting equation for the velocity induced by a vortex

ring of harmonically varying strength was shown first by Greeley [6] who implemented

several computer codes to solve the model problem.

5.3.1 Velocity Induced by Constant Strength Vortex Ring

As shown in Kucheman [18], a constant strength vortex ring induces only an axial

and radial component of velocity. The x component of velocity is given by integrating

the ring around the circumference,

X p 27r rcos(/ - #') -(1
47rr' o y/x2 + r 2 + 1- 2rcos(o5 - 0')3 '
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This integral is expressed in terms of elliptic integrals through,

F

where

I1 -

1

X2 + (r + 1)2[x2 + (r -

rcos(O - 0') - 1

2r[cos(#--#')+1] +
X2+(r+1)2

1)211

2r [1-cos(--O')1
X2+ (r-1)2

I1 can be further simplified by letting,

k 2 
4r

x2 + (r + 1)2

such that,

This gives the final result that,

p 1
vX = =K

21rr VX2 + (r + 1)2
(k) - 11 + 2 (r - 1)E(k)

X2 + (r - 1)2

A similar derivation can be followed to arrive at the radial velocity induced by a

vortex ring. Due to the axial symmetry of the problem there can be no tangential

component of the induced velocity

5.3.2 Non-constant Strength Vortex Ring Induced Velocity

Non-constant strength vortex rings can be modeled through replacing F in Equation

5.6 with Fasin(n#). Modeling the various harmonic component of F, Equation 5.6 is

modified to,

1 f2
X FIsin(no')(rcos(o - 0') - 1) ,

4rr' o /x 2 +r2 +1-2rcos(# -Y) 3
(5.8)

Equation 5.8 can again be reduced to a complete elliptical integral of the third kind.

All three components of velocity are present, now, due to the loss of axial symmetry.
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5.3.3 Conic Sections by Successively Integrating Vortex Rings

The conic section problem is then solved by successively integrating the vortex rings

along the length of the conic, and properly accounting for the phase shift and ampli-

tudes of the induced velocities. Due to the linear nature of the problem, the solution

is sped up by finding the complex response phase and amplitude response at a point

defined by its axial and radial coordinates. The response at other points along the

same radial ring are phase shifted from this initial solution.

Adaptive Quadrature Method

An adaptive quadrature scheme is required due to the highly non-linear nature of

the influence velocity calculation. The Romberg integration scheme [26) with the

Richardson extrapolation method [26] was implemented. The basic methodology is

outlined in Appendix C.1.

At each subdivision step, a trapezoidal integration is performed followed by the

Richardson error extrapolation. Based on the convergence check, a further subdivision

is performed unless the maximum subdivision level has been reached.

5.3.4 Discrete and Analytic Model Comparison

The necessity of the analytic model can be shown through comparing the discrete

and analytic induced velocities calculated for simple model lamp shade problems.

The lamp shade is formed by rotating a three dimensional element of vorticity about

the x-axis as seen in Figure 5-1. To simulate the harmonic effects found in unsteady

propeller forces, harmonically varying strengths are assigned to the elemental vortex

as it traverses 360 degrees, where the strength of the segment is dependent upon the

angular position of the element.

The question as to how fine a discretization level is required to produce results

comparable to the analytic results must be answered. This is done through two model

problems where a field point is moved relative to a conic section represented by sticks

of vortex segments.
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Figure 5-2: Two model problems to highlight the discretization required to reproduce
analytic results.

The first model problem involves forming a conic section of straight vortex seg-

ments and rotating a field point around the outside of the conic section. Increasing

the number of discrete segments makes the resulting induced velocity calculations

converge to the analytic results as shown in Figure 5-3. The method of using dis-

cretized lateral elements does not converge until a high number of elements are used,

while the method of successively integrating analytic rings converges quite quickly.

Note the instability in the predicted induced velocities for a medium resolution level

of discretization.

The second validation is to again calculate the influence of a conical section of vor-

ticity upon a field point as the field point approaches, and passes through, the lamp

shade. Again, the conical section has non-uniform, harmonically varying strength.

The results shown in Figure 5-4 show that a high number of discretizations are needed

for the discrete solution to approach the analytic solution. The method of using dis-

cretized lateral elements does not converge until a high number of elements are used,

while the method of successively integrating analytic rings converges quite quickly.
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Figure 5-3: Induced velocity upon a field point as it traverses around a conical vortex
sheet as predicted by both the analytic method and discretized stick elements.
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Figure 5-4: Induced velocity upon a field point as it pierces a conical vortex sheet as
predicted by both the analytic method and discretized stick elements.
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5.4 Induced Velocity Methodology Implementation

The analytic expression for the velocity induced by a non-uniform vortex ring was

implemented as part of a new fully unsteady three dimensional vortex-lattice lifting-

surface code, PUF-15. The basic procedure follows as,

1. At the end of the blade solution, calculate blade circulation harmonic amplitudes

and phases.

2. For each blade loop, calculate the analytic induced velocity based on an adap-

tive Romberg iteration scheme which calls the harmonic vortex ring influence

routines.

3. The wakes are handled as axisymmetric annuluses, similar to the blades, with

the proper shed vortex strength.

4. The induced velocity is then the recombination of the influence and the circu-

lation amplitude, offset by the phase difference between the response and the

input.

5.4.1 Numerical Validations

Axisymmetric ring vortices of constant strength were shown by Buechoux [1] to have

an analytic solution, and an induced velocity routine based on those derivations was

implemented by Bechoux in the steady propeller analysis code, PBD-14. By ana-

lyzing the unsteady propeller in a steady flowfield the results from the two analysis

techniques are demonstrable.

Figure 5-5 shows the comparison of the analytic routines implemented by Be-

choux in the steady propeller code PBD and the analytic routines implemented in

the unsteady propeller program PUF15 by this research. Both codes use an analyt-

ical representation of the vorticity as vortex rings and solve the problem via elliptic

integrals. The good agreement and solution smoothness over the entire blade val-

idates the new approach. Comparison between the two analytic codes shows very
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Figure 5-5: Comparison of induced velocity calculated in steady propeller analysis
program, solid contour lines, and the unsteady propeller analysis program PUF in
dashed lines.

good agreement. Within an unsteady code, a comparison can be made between the

induced velocities produced by the discrete algorithm and the new analytic algorithm.

Comparison between the discrete modeling algorithm implemented in PUF14 and the

analytic algorithm implemented in PUF15 is shown in Figure 5-6. The largest dis-

crepancies are found near the tip, where the blade vortex lattice segments are densely

spaced. This discrepancy,however, is balanced by the fact that there is very little

load at the tip, which minimizes the error introduced into the coupling.

5.5 Grid Intersection Methodology

The second major piece in coupling the vortex-lattice lifting-surface code and a RANS

code is to interpolate the velocities from the RANS grid to the propeller grid, and to

interpolate the propeller-generated forces within the swept volume of the propeller to

the proper RANS cells.

The interpolation of continuous propeller forces to the RANS grid is the more

complex of the two interpolations since volume interpolations, vice point interpola-

tions, must be done. Previous coupling methods have used an exhaustive polyhedron

overlap search algorithm which finds the percent overlap between each PUF cell and

each RANS grid cell.
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Figure 5-6: Comparison of induced velocity calculated in unsteady propeller analysis
code via discrete (solid lines) and analytic (dashed lines) methods. The comparison
of induced velocity vectors in (d) shows the large discrepancy at the tip.
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Figure 5-7: Grid subdivision to transfer forces between PUF and RANS. The upper
figure is the circumferential PUF blade grid where body forces are know. The bottom
grid is the actual RANS grid, and the middle grid is the subdivided RANS grid, which
is the fine transfer mesh.

This thesis has implemented a new algorithm which uses a cell subdivision tech-

nique. The process is to subdivide the RANS cells into smaller cells. It is then a

very fast search to determine if the center of the subdivided RANS cell lies within

any of the PUF cells. If the center of the subdivided RANS cell is found to lie within

the swept volume of the propeller, a linear interpolation is done from the edges of

the PUF cell to place the correct force density in the RANS cell. Recall that RANS

solvers introduce the propeller forces as source terms on the right hand side of the

RANS equation [29]. This formulation also leads to the propeller forces being called

body forces. A pictoral of this process is shown in Figure 5-7.

Numerical experiments show that subdividing the RANS cells by a factor of 10

along each side, such that there are 1, 000 subdivided cells within each RANS cell,

keeps the interpolation error well under 0.10%. And because the searching algorithm

now involves the search for a point within a limited set of domains, vice polyhedron
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overlapping volumes, the algorithm is actually faster.
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Chapter 6

Coupled Validations

Coupling the propeller and RANS codes allows for numerical validation, as well as

validation against experimental test results.

Section 6.1 presents results for coupling the propeller code PUF-15 with two sep-

arate RANS codes, IFLOW-41 and UNCLE-3D. Two RANS codes are used to assess

the relative errors due to the discretizations and formulations of the propeller code,

the coupling code, and the RANS code. Section 6.2 presents the results for the same

propeller 4119 inclined at 10 degrees with respect to the horizontal. Section 6.3

presents coupled results for the DTMB Propeller 4679 driven by a downstream shaft

inclined at 7.5 degrees. Experimental data recorded for propeller 4679 is compared

with the predictions from this thesis.

Figure 6-1 gives an overview of the code interaction, and workflow followed to

show validated results. Among the four coupled cases presented here, all validations

were performed to the greatest extent possible. The blocks in the center of Figure

6-1 represent the codes used for the analysis, and the dashed line encompasses newly

created analysis codes

6.1 Propeller 4119 Validations

The DTMB propeller 4119 shown in Figure 6-2 represents nearly an ideal propeller

to validate against due to the large, benign blade sections, with no rake and skew
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Propeller 4119 on Straight Shaft

Propeller 4119 on Inclined Shaft
Propeller 4679 on DTMB Test Shaft

Propeller 4679 on Inclined DTMB Test Shaft Propeller Blade Generation

RANS Grid Generation

Renick's Areas of Concentration ReikCpig

PUF w/ Analytic Induced Velocities
PUF w/ Aligned Wakes ------------------ ---- '

PUF w/ Higher Order Wake Panels M

' -- -- -- -- - -- -- -- -- - -- -Coupling Code U C E 3

Cases to Run

Codes to Run

RANS Grid Convergence
Propeller Lattice Convergence
Effective Inflow Validation
Empirical Results Comparison
Numerical Code to Code Comparison

Output to Generate

Figure 6-1: This schematic gives an overview of the coupled RANS cases run, and
the types of analysis performed..

Profile View

Figure 6-2: These plots show the geometric simplicity of the DTMB propeller 4119.

[4]. Experimental data is available for boundary layer profiles, pressure distributions,

drag coefficients, and downstream wake survey [12]. This fact and the geometric

simplicity make 4119 an ideal validation candidate for numerical propeller schemes.

6.1.1 UNCLE-3D Coupling with Propeller 4119

The UNCLE-3D RANS solver represents a modern day RANS solver. The computa-

tional RANS grid is shown in Figure 6-3. It is an 0-grid topology of size 75X35X57.

A grid convergence study was not completed since this validation work follows from
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Figure 6-3: Numerical grid used in the UNCLE-3D RANS code

previous validation work [30]. Note the great number of cells across the chord of the

propeller. Experience has shown that greater than 10 cells are required across the

chord to accurate capture the changes which occur in the blade passage.

Induced Velocity Calculations

Coupling the propeller and RANS code in a uniform inflow, with a no-slip boundary

condition on the shaft to simulate an inviscid flow, should give the result that the

effective velocity everywhere on the blade is 1.0. Previous results for this test case

[30] , showed that this result was not attained.

The improved algorithm for the calculation of induced velocities presented in this

thesis shows large improvements over previous results. Figure 6-4 shows contours of

effective velocity for the new (analytic) and old (discrete) cases. The velocity should

be 1.0 everywhere on the blade. The analytic algorithm presented in this thesis

shows better results than the discrete scheme previously used. These improvements,

while not perfect, carry through into the calculation of the propeller performance as

compared to experiment, shown in Table 6.1.

A final way to view the positive trend is to examine the circulation distribution

on the blade predicted by using the new and old induced velocity algorithms with
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PUF/UNCLE3D PUF/UNCLE3D Experiment
discrete analytic

KT 0.16412 0.15267 0.1455
1OKQ 0.30045 0.28191 0.2810

Table 6.1: Results predicted from UNCLE and IFLOW coupling of propeller 4119
in axial, uniform inflow. The discrete column is the previous method used to calcu-
late time-averaged induced velocities, and the analytic column is using the method
presented in this thesis.

11 1.1

10 1.08
6'9 1.06

6466 8 1.04
6 7 1.02

6 1
6' 5 0.98

4 0.96
3 0.94
2 0.92
1 0.9

AnalyticTime-Averaged
Velocity Calculation -- X

(A)

11 1.1
10 1.08
9 1.06
8 1.04
7 1.02

5 0.98

Y

Discrete Time-Averaged
Velocity Calculation

(B)

Figure 6-4: These two plots show the axial component of the effective velocity for
Propeller 4119 in uniform inflow, coupled with the UNCLE flow solver.
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0.035 -

0.03

0. 02 5

S0. 02-

4(0.015

0.01 _Effective Velocity (Control Values)
- - Coupled RANS with Discrete Algorithm

0.005 - -+- - Coupled RANS with Analytic Algorithm

i i I I I I I I 1 1 1 1 1 1 1 1 1 1
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Hub Radial Distance off Centerline Tip

Figure 6-5: Blade circulations are shown for the old and new coupling algorithms,
compared to the stand-alone calculation, which is the control in this experiment.

the circulation distribution predicted for a perfect effective inflow of uniform axial

velocity. A plot of the predicted blade circulations is shown in Figure 6-5. Notice

how much closer the analytic algorithm recovers the true solution. Both coupled

algorithms are inaccurate at the hub, because the RANS code has grown a shaft

boundary layer. This delta at the hub does highlight the effect of not properly

accounting for a thin boundary layer, in that neglecting the presence of the shaft

boundary layer will underpredict the true circulation at the hub.

6.1.2 IFLOW-41 Coupling with Propeller 4119

The RANS code IFLOW-41 was coupled with PUF to perform several analysis. The

grid is a simple 0-type grid, with 48 cells axially, 32 cells radially, and 32 cells

azimuthally. Because the purpose of this study wasn't to capture boundary layer

effects, the maximum Y+ is allowed to be 19. The grid is shown in Figure 6-6 .
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Figure 6-6: Infinite shaft grid used in IFLOW41 of size 48x32x32.

The pressure residual history for two different blade lattice sizes is shown in Figure

6-7. This figure shows that the coupling with IFLOW41 is quickly convergent. A

spike in the pressure residual indicates that a new PUF solution for body forces was

injected into the RANS domain at that iteration. The fact that the convergence is

not dependent on the blade lattice size indicates that the body force coupling routine,

which is now internal to PUF, does not introduce spurious results.

Propeller Lattice Convergence Study

A propeller lattice convergence was conducted to find the minimum necessary pro-

peller lattice size required to produce converged answers. The results are presented in

Figure 6-8. These indicate that good propeller convergence is achieve with a 15X15

blade lattice size in PUF. Recall that the real key here is that the number of discrete

blade positions is 6. This is an order of magnitude reduction over previous techniques.
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' '
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Multigrid Cycle Number

200 250

Figure 6-7:
dashed line

Pressure residual history for IFLOW41 coupled with PUF. The solid and
are for two different blade grid densities used on the propeller code.
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Propeller 4119 Coupled with IFLOW-41
Propeller Blade Lattice Convergence Study

0.035 - > - -

0.03 -

-0.025

S0.02-

<i0.01 5
0

0.01

0005 - - 10 x 10 Lattice
-. e- 15 x 15 Lattice

Effective (Control)
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Radial Location (r/R)

Figure 6-8: Increasing the propeller lattice size when coupled with IFLOW-41 pro-
duces results that are closer to the theoretical results. This study shows that use of
a 15X15 blade lattice is sufficient to converge a simple propeller geometry, such as
Propeller 4119.
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6.2 Propeller 4119 at 10 Degree Inclination

A preliminary test of the full wake alignment and higher-order wake panel algorithms

is presented here. The stability of the new method is shown in that the solutions

converge, and produce results that follow intuition. Since there are no experimental

results to compare with, this coupled RANS run shows that the new propeller program

PUF-15 works well with the RANS code UNCLE-3D.

Figure 6-9 highlights new physical phenomena which are modeled when a realistic

wake model is introduced: the wake detaches from the lee side of the shaft, while

effects of radial contraction due to flow acceleration are still captured. Conversely,

on the windward side of the shaft, the modeling is not so accurate. Realistically, the

wake piles up on itself, while the model here allows the wake to pierce the shaft if the

wake stepping algortihm oversteps the innermost streamline.

A pictorial showing the propeller-induced high axial velocities being convected

downstream at an angle to the horizontal is shown in Figure 6-10.

The effects of the wake alignment scheme are clearly shown in the next set of

figures. Figure 6-11 shows the magnitude of the first harmonic of Cp at the 0.5, 0.7,

and 0.9 radii. Figure 6-12 shows the magnitude of the first harmonic of Cp at the

0.5, 0.7, and 0.9 radii. Figure 6-13 shows the phase of the first harmonic of Cp at the

0.5, 0.7, and 0.9 radii.

6.3 Propeller 4679 at 7.5 Degree Inclination

DTMB Propeller 4679 was tested at the DTMB High Speed Basin [10]. The three

bladed propeller was driven from downstream with a strut/pod openwater drive sys-

tem, which was inclined at 7.5 degrees with respect to the horizontal [11]. A compu-

tational rendering of the physical model is shown in Figure 6-14.
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Wake Radial Contraction
Effects Evident

Figure 6-9: Using the flowfield produced by Propeller 4119 on a shaft inclined at 10

degrees, and coupled with the UNCLE-3D RANS code.

Contours of Swirl Velocity
Propeller 4119 at 10 Degree inclined angle

Figure 6-10: Propeller 4119 at 10 Degree inclined angle showing the convection of

swirl downstream of the propeller swept volume.
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PUF: Mean C Results at r/R=0.5 for
Propeller 4116 on 10 degree Inclined Shaft
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Figure 6-11: Magnitude of the Mean Cp of Propeller 4119 at 10 Degree inclined angle.
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PUF: First Harmonic C Results at r/R=0.5 for
Propeller 4119 on 10 degree Inclined Shaft
with Aligned Wakes and without Aligned Wakes
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Figure 6-12: Magnitude of the First Harmonic of Propeller 4119 at 10 Degree inclined
angle Cp.

90

0.25 0.5 0.75
Distance along Chord (x/c)

1

1

1



PUF: First Harmonic C Phase Results at r/R=0.5
Propeller 4119 on 10 degree Inclined Shaft
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Figure 6-13: Phase of the First Harmonic of Propeller 4119 at 10 Degree inclined

angle Cp.
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Coarse Grid 64 x 24 x 16

Figure 6-14: Computational model of the DTMB downstream driven propeller shaft.

The propeller sits on the rounded ball near the nose.

Propeller DTMB 4679

Inclined Angle 7.5 degrees

Advance Coeff. 1.078

Shaft Configuration Downstream driven podded shaft

6.3.1 Nominal Flow Convergence

A grid convergence study was conducted on three grids of increasing fineness to ensure

the solution was grid independent. Figure 6-15 shows the log of the pressure residual.

Because no measurements were presented for the pressure coefficient along the shaft

or boundary layer profiles, it is not possible to ascertain the validity of the RANS

model.

It is interesting to examine the contours of axial velocity for the nominal flow case

shown in Figure 6-16. Note the high velocities over the ball on the shaft where the

propeller sits. The large radial gradients here show that the full detail of the shaft

must be modeled to accurately reproduce the empirical propeller measurements..

The axial velocity contours shown learly indicate that modeling the inflow as purely

uniform, axial flow will produce erroneous computational predictions.
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Figure 6-15: Log of pressure residuals for nominal, axial flow around DTMB down-
stream driven shaft.

25

c7 633 '5.4 5 !r 97 17|' m15 M15 lll4j

rNomia VelocitY COnDUIs fOr Downstream Driven Shaft|4 1.

37 1.16

17M17llllllll7 m 35 1.14
33 1.12 -

p 3 1.12

2329 108

23 102

17 0.96

9 0.88

Figure 6-16: The nominal flow around the DTMB downstream driven test shaft.
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Propeller 4679 - IFLOW41 Coarse Grid
0.035 - Blade Lattice Convergence Test
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The blade sits on a
hemisphere making
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Figure 6-17: Propeller 4679 blade lattice convergence study. The 20X20 lattice shows
nearly the same results as the 15X15 lattice, indicating that the solution has achieved

grid independence.

6.3.2 Propeller Solution Convergence

A propeller convergence test was conducted by varying the lattice size of the propeller

while holding the RANS grid constant. The resulting propeller circulation distribution

plots are shown in Figure 6-17. Propeller lattice convergence is shown at a 20X20

lattice. The expected flattening of the circulation distribution is not seen near the

hub due to the axial curvature of the hub.

6.3.3 Aligned and Non-Aligned Wake Results

An experiment was conducted with a propeller code with non-aligned wakes and a

propeller code with aligned wakes, both coupled with the RANS codes for Propeller

4679 at 7.5 degree inclined angle. This test quantifies the effects upon the unsteady

forces of aligning the wake. The coupled results, presented in Table 6.3.3 show similar

trends presented earlier for stand-alone PUF. The large difference in the Z component

of the unsteady force is expected as the propeller is inclined with respect to the Y

axis, thus the Z directed force is the unsteady component of the side force.
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Component Wake Aligned Non-aligned Wake
Fx 0.01581 0.01602
Phase Fx 183 159
Fy 0.00718 0.00726
Phase Fy 16 36
Fz 0.01313 0.01138
Phase Fz 26 8

Table 6.2: Predicted 1st Harmonic force results for P4679 at 7.5 degree inclined angle
for aligned and non-aligned wakes.

6.3.4 Blade Loading Numerical Comparison

The plots of the blade loading for each discrete propeller position are shown in Figure

6-18. From the figure, it is clear that there are magnitude and phase differences

between the two propeller programs.

6.3.5 Experimental Comparison

The results from the experiments conducted at DTMB contain Cp data at constant

radial positions along the propeller, for both the suction and pressure side. The data

are both amplitude and phase information. This data allows a key comparison to be

made with the fully-aligned wake method, since results presented in previous sections

have shown that the wake alignments procedure alters both the magnitude and phase

of the resulting blade forces.
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Figure 6-18: Propeller 4679 Steady Cp at r/R 0.5

Propeller 4679 at 7.5 Degree Inclined Angle
Steady C, at r/R=0.5
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Figure 6-19: Propeller 4679 Steady Cp at r/R = 0.5
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Figure 6-20: Propeller 4679 Steady Cp at r/R = 0.7
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Figure 6-21: Propeller 4679 Steady Cp at r/R = 0.9
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Propeller 4679 at 7.5 Degree Inclined Angle
1st Harmonic C, at r/R=0.5

0.2 -

PUF 150.18 -{>- -Experiment

0.16

0.14 -

0.12

0.08 -

0.06 N

0.04 -

0.02 -

0
0 0.25 0.5 0.75 1

x/c

Figure 6-22: Propeller 4679 first harmonic Cp at r/R = 0.5
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Figure 6-23: Propeller 4679 first harmonic phase of Cp at r/R 0.5
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Propeller 4679 at 7.5 Degree Inclined Angle
1st Harmonic C, at r/R=0.7
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Figure 6-24: Propeller 4679 first harmonic Cp at r/R 0.7
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Figure 6-25: Propeller 4679 first harmonic phase of Cp at r/R = 0.7
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Propeller 4679 at 7.5 Degree Inclined Angle
1st Harmonic C, at r/R=0.9
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Figure 6-26: Propeller 4679 first harmonic Cp at r/R = 0.9
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Figure 6-27: Propeller 4679 first harmonic phase of Cp at r/R 0.9
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Chapter 7

Conclusions

This thesis has focused on design challenges facing propulsion engineers. By im-

proving upon the state of the art techniques in vortex-lattice lifting-surface methods

and coupled RANS methods as specifically applied to complex propulsor design and

analysis, this thesis has advanced the frontier of knowledge, and will allow practicing

engineers to more fully explore their design space.

There are still a great number of challenges facing the industry and the scientific

research community which supports it. The largest challenge is the promise of more

fully populated flow simulation codes and empirical testing techniques to enhance our

understanding of the physics of the problem, and then apply these new insights into

rigorous design methodologies. This thesis has shown how localized applications of

physics-based modeling and sleight of mind paradigm shifts in discretization thoughts

have led to noticeable gains in efficiency and accuracy. And as far as pushing the

state of the art, this is a practical course to achieving evolutionary progress. But

as basic science advances upon revolutionary insights based on ever refined length

scales, time scales, and densities, there must be at some point order imposed to feed

back into the engineer that builds a product.

There are,also , many specific challenges facing future researchers in the state of

the art as envisioned today,

1. Unsteady drag force modeling: While the state of the art is pushing for
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steady drag modeling on a vortex-lattice lifting-surface model, the unsteady

blade drag, especially in the highly loaded internal propulsion units gaining

popularity, remains an open question. Experimental evidence shows that even

the steady numerical models do not perform as well as was hoped.

2. Thickness modeling:This thesis ignored the thickness of the blade (usually

modeled as source singularities) upon the blade solution. This was purposeful

in that if the unsteady thickness load coupling effects are modeled, then the

unsteady viscous load coupling effects must too be modeled. Ignoring both in

tandem is hypothesized to create no undue logical errors.

3. Entropy generation in RANS: The fact that blade drag appears as an

entropy source in the RANS code could be modeled through another tweaking

of the right hand side of the RANS equation. However, the effects upon firmly-

established turbulent boundary layer models would certainly lead to an active

debate.

7.1 The Future

The future is bright for today's engineers. Ever faster computational resources with

ever expanding memory make problems solvable today that were untenable twenty

years ago. This thesis has provided a few new tools to examine some of the more

interesting aspects of the design space that the digital and hardware revolution brings

forth.
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Appendix A

Validation Techniques for PUF

Type Codes

This appendix seeks to layout validation techniques which have been used with suc-

cess at the MIT Marine Hydrodynamics Laboratory. Along with validation to code

improvments, sections are also provided which list best practice trouble shooting

methods.

Note that the best validation is with experimental data, but in the absence of

good data for all cases, there are some numerical techniques to verify the accuracy of

a coupled technique.

A.1 Coupled Validation

The best validation between a vortex-lattice lifting-surface code and a volume solver

(RANS, Euler) is the effective inflow equals 1.0 test.

A.1.1 Effective Inflow Equals 1.0 Test

Running the volume solver in inviscid mode turns the expensive volume solver into a

Laplace Solver.

1. Set farfield upstream fluid velocity to 1.0
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2. Couple PUF and the volume solver

At the end of the coupling, the effective velocity everywhere on the blade should be

1.0 since

Vef = VRANS - Vinduced (A.1)

and there is no vorticity in the inflow which interacts with the blade vorticity to cause

a radial redistribution of the propeller inflow profile.

This procedure also results in a completely aligned wake, and so can be used to

validate wake self-alignment techniques, too.

Plots of interest would show

* Contour plot of the effective velocity Vx on the blade surface

" Wake lattice pitch at various spanwise positions

A.1.2 V0 Test

Between the propeller code and the RANS code, the tangential induced velocity (or

swirl velocity) must be the same. An easy check, then, is to extract the swirl velocity

from the RANS domain at the blade trailing edge, and compare this with the swirl

velocity output by the propeller code. Differences are easily attributable to force

non-dimensionalization and scaling issues, and should be immediately addressed.

A.1.3 Blade Isolation Test

A good test to test the coupling suite is to make an inflow that has a pie slice of a

lower velocity. Using this contrived flowfield as an input to the propeller code, the

output induced velocities from the propeller code should show a spike in the same

blade position.

Another similary worthwhile test is to couple the RANS and the propeller code

where the RANS inflow has harmonic content. Once again, an overlay of the induced
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velocities output by the propeller program and the inflow, should show contour levels

which are in phase.

A.1.4 Coupled Problems

In generating a new coupling, most of the problems lie in the non-dimensionalization

of forces.

A.1.5 Coupling Code Non-Dimensionalizations

Length Scale

The length scales are independently scaled between PUF and the volume solver (la-

belled as RANS in the following equations). The ratio of the length scales is given as

A.

LPUF A
LRANS

(A. 2)

The L in both codes is taken as the same measure, usually of propeller diameter.

Therefore, the volume ratio is given as

APUF

ARANS

3 ARANS _A 3

ARANS

Rotation Speed

By standard definition, the advance ratio, J, is given as

V
nD

(A.3)

(A.4)
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Within PUF, V is always 1 ship which is assumed to be 1.0 and the propeller diameter

D is 2.0. Thus, the rotation speed in PUF is given as

1
nPUF = - 2J

(A.5)

This translates into an Q given as

(A.6)QPUF =

Force

Start from the fact that by similarity considerations, the non-dimensional thrust

coefficient must match between the two codes.

KTRANS = KTPUF (A.7)

By definition, then, the force in the RANS domain can be shown to be

FRANS KTPRANSnRANSD ANS

KTPRANS JD NS) D4ANS

= AKpRANS V2DRANS

Substitute in the definition for KT which is known from PUF.

FRTPUF 1 PRANSV! 2
DRANS

FRANS D A J
2

PUF I

4
TPUF PRANS 

2

PUF

A12TPUFPRANS S2

(A-8)

(A.9)
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If in the RANS code, p = 1.0 and Vs = 1.0 then

FRANS

FPUF

1

A2 (A.10)

Force Density

Since most RANS codes use a force potential in the formulation of the Navier-Stokes

equations, it is useful to see how a force density in the PUF coordinate system is

transformed to a force density in the RANS coordinate system.

FRCDENSRANS= FRANS

LRANS

FRCDENSRANS A
FRCDENSPUF
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Appendix B

Potential - RANS Coupling

B.1 Effective Inflow

All propeller design and analysis takes place in the effective inflow. The calculation

of the effective inflow is the starting point for any propeller design. An accurate

knowledge of the effective inflow is critical to the success of the propeller design. The

effective inflow is obscured by the fact that the vorticity present on the propeller blades

and the vorticity within the boundary layer where the propeller operates interacts in

a highly non-linear fashion.

While the nominal inflow is the inflow field when there is no propeller present, it

is not equal to the effective inflow. This is due to the effects of the propeller upon the

vorticity in the inflow. This can be seen from the definition of the vorticity vector.

w=VxV (B.1)

A non-radially-uniform meridional inflow suggests the presence of a tangential com-

ponent of vorticity.

WO = -(B.2)
Ox Dr

The tangential vorticity can be thought of as a ring which circumscribes the propeller
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shaft (Newman, 1977). The propeller induced velocity causes a contraction of the

tangential vorticity ring. As this ring contracts, Kelvin's thereom requires that the

strength of the vorticity remain constant. Therefore, from equation (B.2), it is evident

there is a change in O to counteract the change in O. If there were no tangential

vorticity present in the inflow, though, the nominal and effective inflows are exactly

equal. This fact is a standard technique used to validate the any coupling presented

between a potential-based propeller code and an RANS code.

B.2 The Coupled Hull Flow Problem

To accurately design a propeller requires an accurate knowledge of the ship's resis-

tance. The increased fluid velocity along the stern of the vessel due to the presence

of the operating propeller causes an increase in drag since there is more incomplete

pressure recovery. Historically, the values for the resistance of the ship with and

without a propeller operating are related through the thrust deduction coefficient.

RT = (1 - t) T (B.3)

Modern computation techniques which model the interaction of the propeller and

the fluid flow around the hull solve both the effective inflow and thrust deduction

problems by nearly exactly solving for the fluid flow over the hull with the propeller

operating. In this method, the entire submarine and duct, if present, is modelled in

the computer. The shear flow is exactly computed along the body, and the correct

propeller interaction effects are also modelled.

B.3 Implementation in RANS Formulation

The effects of the propeller are introduced into the RANS domain as body forces,

which appear as source terms on the right hand side of the RANS equation, Equation

B.4
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ui + au
at Uiaj

OP + 1 auz
Oxi Oxj Re Oxj

The body force term F must be properly non-dimensionalized for the RANS code at

hand. Usually, the non-dimensionalization is,

fi
FpU2 /L (B.5)

Where fi is the force per unit volume from the propeller code.
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Appendix C

Propeller Numeric Routines

C.1 Romberg Integration

There are several advantages to the use of the Romberg adaptive quadrature scheme

with the Richardson extrapolation [26]:

" Improved accuracy. The truncation error associated with the normal trapezoidal

scheme is O(h2 ) while with the Romberg scheme the order of the error is reduced

to O(h4).

" Calculation reuse. Previously calculated terms are used in the extrapolation

step reducing computational expense.

* Controlled accuracy. The stepping scheme which steps the solution to finer

levels can be halted once a desired convergence level is reached.

" Fast convergence. Because the Romberg scheme contains an extrapolated error

estimate, fewer steps are needed to achieve convergence.

" The Romberg integration scheme has been validated to perform very well when

the higher derivatives of the intergrand are large, which is the case for vortex

influence functions.

The basic formula of the trapezoidal integration is given in Equation C.1.
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h
Tlk = ~[f (a) + f (b) +2Zf(a+jh)]

j=1

(C.1)

where

The prediction via application of the trapezoidal scheme via successive spacing re-

finement can be accelarated through extrapolated estimates of the coarser approx-

imations. Forming these successive extrapolations and solution into a matrix gives

the elements of the classic Romberg matrix,

1
T, = 41-1 1 (4'T1-1,k+2 - T_1,k) (C.2)

The first column of the Romberg matrix contains the approximation of the integral

and the extrapolation for each step is along the diagonal. The relative truncation

error at the end of any refinement step is given by,

T,k - T1,k1

T1,k
(C.3)

C.2 Tri-linear Interpolation

The art of data interplation is a careful balance of

and stability of the method. Many schemese were

scheme was selected:

the computation time, accuracy,

investigated before the tri-linear

* tricubic spline interpolation (too unpredictable in high gradient regions)

" constant strength ( too inaccurate for coarse RANS grids)
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* corner-weighted block interpolation (inaccurate)

In the PUF-RANS coupled scheme, the major interpolations involve interpolating

the velocities defined on cell centers to the PUF control points (Neumann boundary

condition points), which are usually not coincidental. Originally, PUF utilized a

three dimensional cubic spline interpolation. This scheme proved unstable due to the

presence of large, higher order, gradients in the flowfield, especially in the boundary

layer region. This thesis implemented a tri-linear interpolation scheme.

Given the position and velocities on the eight node points for the block where the

field point is located,

Xi,Y, ZZ,VXVYi,VZi where i = 1..8

The linear assumption assumes that the velocity in any direction at any field point

in the block is given by,

VX(x,y,z) =Ax + By+Cz +Dxy + Exz + Fyz+Gxyz+ H

VY(x, y,z) =Ax + By +Cz+Dxy + Exz + Fyz+Gxyz+ H

VZ(x, y,z) =Ax + By+Cz+Dxy + Exz + Fyz+Gxyz+ H

where the weight coefficients A-H differ for each velocity direction

The weight coefficients are found for each of the three directions independently by

solving the 8x8 coefficient matrix. Standard LAPACK LU decpmposition and back

substitution routines were used for this thesis.

C.3 Elliptical Streamline Grids

One of the first problems that is encounter by the propeller program is to find a

circumferential mean flowfield from the RANS total flowfield, so that the propeller
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blade lattice can be placed along these streamlines. Previous schemes took the cir-

cumferential mean velocity through the RANS domain. The problem came that in

regions of high velocity, the propeller blade growing algorithm would take too large

of a step and go through a solid boundary. This produced propellers that extended

into hubs, and into ducts.

The solution which this thesis incorporated was to use the 2-D outer boundary

of RANS domain as the edges of an invisicid flowfield, and solve Laplace's equation

internal to the domain to give beautiful streamlines which follow the boundaries, and

will keep the propeller blades in the fluid domain.

The goal of any grid generation routine is to logically organize a set of (x, y, z)

points within the fluid domain of interest so that the conservation laws can be applied

on these discrete points.

Within the realm of numerical grid generation routines, there are several types

of grids. The generation of a particular grid type is by dictated the later use of the

grid. A particular type of grid is only suited to one, or a few, of the many numerical

implementations of the governing fluid dynamic equations. On a broad level, there

are two types of grids: structured and unstructured.

Another classification of grid generation routines is between those that are fixed

and those that are adaptive. In a fixed grid, the gridpoints are fixed. In an adaptive

scheme, the grid points are altered as the flow solution evolves to cluster gridpoints

in regions of high flow gradients, near shocks for instance. With adaptive grids, the

quality of the flow solution is increased due to the fineness of the grid in the regions

that require it. However, this increase in accuracy comes with a computational, and

programming, cost.

There are a wide variety of grid generation techniques available to the fluid dy-

namicist, each of which embodies a unique set of trade-offs. And it is not merely

hearsay that the quality of the mesh grid greatly affects the quality of the numeri-

cal flow solution. This paper seeks to explain the rudimentary differences, and offer

simple algorithms for their implementations.
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C.3.1 Structured Grid Generation

The goal of a structured grid generation routine is to map gridpoints distributed in

the x, y physical fluid domain to a , rj computational domain. In the computation

domain A = A77 = 1 to allow a finite difference discretization of the differential form

of the flow equations. As the finite difference equations must also be transformed from

the physical to the computational domain, the grid and flow solution are intimately

coupled by the metrics of the transformation. The requirements for a structured grid

are that

1. There be a one-to-one mapping such that gridlines do not cross each other.

Also, for numerical accuracy of the solution to the flow equations we desire that,

1. The distribution of gridpoints is smooth.

2. There is a minimum of grid line skew.

3. Grid line orthogonality or near orthogonality is maintained.

4. Grid points are concentrated in regions of high flow gradients.

C.3.2 Techniques of Structured Grid Generation

There are three historically-used techniques for generating structured grids: conformal

mapping, algebraic mapping, and the elliptic partial differential equation.

Conformal Mapping involves the use of complex variables to map the physical do-

main to the complex domain. While the metrics are guaranteed to be good,

conformal mapping is applicable only in two dimensional regions. Even in two

dimensional regions, very few geometries are known for which conformal map-

ping functions can be generated. Conformal grids are no longer used in industry.

Algebraic Mapping uses an algebraic transformation to map between the physical

and computational domain. These routines are very fast and easy to implement.
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However, control of grid skewness and smoothness is difficult, and discontinuities

at the boundary are deadly when later solving boundary value partial differential

equations.

Elliptic PDE grids are generated by solving Poisson's equation with a specified

boundary geometry and either Dirichlet or Neumann boundary conditions (re-

call that with Dirichlet boundary conditions the points on the boundary are

specified, and with Neumann boundary conditions the gradient, or normal, at

the boundary is specified). PDE grid generation routines are also called bound-

ary fitted, elliptical, or Laplacian grids. These routines are by far the most

flexible and widely used strucutred grid method.

The following two sections will discuss the theory of elliptic grid generation, and

how algebraic grids found a proper place.

C.4 Poisson, or Elliptical, Grid Generation

The beauty of Laplace's equation is its minimization principle. It can be shown that

given a function ( which satisfies Laplace's equation,

GX + Gy = 0 (C.4)

This function ( also minimizes the quantity I, where I is given by

I = f7 - V~dQ (C.5)

Note that V mathematically expresses the length of the grid spacing in the ?7

domain. Hence, a solution to Laplace's equation leads to a minimization of grid

density. The very minimum is of course equal spacing !

So, now all we have to do is solve Laplace's equation in the computational domain

to minimize and r. Laplace's equation in two dimensions for the ((, rj) coordinates
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is

Xx + Gyy = 0 (C.6)

r1xx + ryy = 0 (C.7)

In equations (C.6) and (C.7) x and y are the independent variables and and 'q

are the dependent variables. This implies that we are given a distribution of gridpoints

in the (x, y) domain and alter the corresponding ( , rI) gridpoints until equations (C.6)

and (C.7) are satisfied. In reality, though, we exactly know the ((, r7) position of every

grid point in the rj computational domain. So the trick is to interchange the role of

the independent and dependent variables in equations (C.6) and (C.7) such that we

are now solving for the (x, y) position of every ((, r) gridpoint.

It may be helpful to follow the algebraic steps necessary to derive the new version

of Poisson's equation. We started by making the assertion that

= r/(x, y)

and that

(d _ x ( dx(
I III II(C.8)

drlJx 7y/ \dy

Obviously we can state that a relationship exists for the inverse relationship.

)(C.9)

dy ) y y1  dr)

By inspection we can relate the two transformation matrices and assert that
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Xy X-

y y7,J

-
'q : 2

where J is the Jacobian of the transformation between ( , 7) and (x, y) defined as

J = XOyn - ny

Now we are ready to perform the algebraic steps necessary to show how xx equals

a function where x and y are differentiated with respect to and q.

the [1,1] element of equation (C.10).

use the chain rule of differentiation

We start with

=G

J7) J (LJ) J7)77

When this process is carried out again to find ,yy , ryy and after several alge-

braic groupings are made, the following final expressions for x and y in terms of (

and 71 result.

acx - 20xe, + 7x,, = 0 (C.12)
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ay C - 2/yg7 + -yyn = 0

where:

X= ? + Y'

Equations (C.12) and (C.13) are sometimes referred to as the Thompson equa-

tions after Joe Thompson at Mississippi State University who first discovered their

properties.

C.4.1 Solution Techniques for the Elliptical Grid Equations

We can solve equations (C.12) and (C.13) for x and y, respectively using standard

iterative numerical methods for solving elliptical PDE's such as Gauss Siedel, SLOR,

multigrid, etc ... The non-linearities can be assumed away be treating them as linear.

A simplified solution technique follows the following logic:

1. Provide an initial guess for the (x, Y)j,k values of the gridpoints.

2. Calculate (a, 3, )j,k at each gridpoint.

3. Keeping (a, #, '})j,k fixed, perform a set number of Gauss-Siedel iterations on

the x coordinate.

4. Keeping (a, 0, -Y)j,k fixed, perform a set number of Gauss-Siedel iterations on

the y coordinate.

5. Update boundary conditions, be they Dirichlet or Neumann.

6. Check for convergence through a suitable technique - for instance, calculate the

log of the L2 norm of the residual solution vector.

7. Repeat steps 2-6 until the solution is converged to the desired level of conver-

gence.
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Note that the non-linearities present in equations (C.12) and (C.13) slow the

convergence rate for elementary iterative techniques. More sophisticated non-linear

solution methods such as Newton-Rhapson can provide a faster convergence.

Although no forcing functions were used in this implementation, it would be an

easy manner to add them in to handle more exotic domain geometries.

C.4.2 Forced Functions

Solving equations (C.12) and (C.13) guarantees a smooth, one to one mapping. How-

ever, an orthogonal grid is not guaranteed and there is no ability to cluster gridpoints

inthe desired region. Also, the smoothness of the Laplacian solution leads to pinched

grids near convex boundaries, and stretched grids near concave boundaries. These

deficiencies can be overcome through the use of forcing functions on the right hand

side of the PDE's, leading exactly to Poisson's equation. Equations (C.12) and (C.13)

with forcing functions are given by:

oax - 2/3x + 7yx,, = _-j2 (pX + QX,7) (C. 14)

ay - 2 /ygn + ,yyq = -J 2 (Py + Qy') (C.15)

The forcing functions P and Q allow for clustering near lines of constant , and

,i and near individual points ( j,9q). The expressions for P and Q are:

P((, 2) = - aisign( - i)ec'i-i - bjsign( - i)e-di -)2+(,-j)2 (C.16)

W7 77 aisgn(7 - Tj~e'i'7-'i bisign(r7 _ 1,i)e-dji ( )2 +(n-q.)2 (C 17)
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where

aj, bi are amplification factors

aj, bi > 0 attracts lines to ,

aj, bi < 0 repel lines from ,

ci, di are decay factors.

The amplification factors cause gridlines to cluster near the gridline of interest.

The decay factors set the degree to which the forcing decays as you get away from

the gridline of interest. There is no way to specify a priori values for aj, bi, ci, di.

With the introduction of the forcing functions, one to one gridpoint mapping with

non-overlapping gridlines between the 77 and xy planes are no longer guaranteed.

The grid must be carefully checked before it is used in a flow solver.

Orthogonality at the boundary can be artificially introduced by requiring that the

grid points on the body, which is itself a line of constant rq (i.e., r70), be orthogonal

to the gridpoints above the body surface at r71. The Dirichlet boundary condition

mathematically can be expressed as:

x x' + yy7 = 0 (C.18)

Obviously this condition can be applied at any other boundary, too. Of course,

at every boundary, only one type of boundary condition can be applied.
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Appendix D

Propeller Terminology

D.1 Abbreviations

Propeller Blade-on-Blade influence matrix

Propeller diameter ( = 2.0 in PUF )

David Taylor Model Basin (now Naval Sea Systems Com-

mand, Carderock Division)

Hub gap, distance between the hub and the propeller,

only useful for tip driven propeller

advance coefficient, =

T
-pn

2 D 4

-Q

-pn
2 D 5

Number of Time Steps per Revolution, PUF input pa-

rameter

propeller revolution rate in rps

Surface normal vector

Pressure

Propeller torque

Local radius

Propeller max radius ( = 1.0 in PUF )
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DTMB

HGAP

J

KT

KQ

NTSR

n
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Q
r
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RT Total resistance

T Barehull resistance

T Propeller thrust

V0 Velocity in PUF

V0 Velocity in RANS

Veff Effective Inflow Velocity

Vinduced Induced Inflow Velocity

Vnominal Nominal Inflow Velocity

17total Total Inflow Velocity

Vs Ship velocity ( =1.0 in PUF)

[W] Propeller wake on blade influence matrix

WT Taylor wake fraction

WN Nominal volumetric wake fraction

Z Number of propeller blades

V Gradient Operator

p density

A distance scaling factor between PUF and RANS

IF Circulation

FB Bound circulation

Es Shed circulation, dumped into the wake

W Rotation rate
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D.2 Propeller Terms

Effective Wake

Nominal Wake

Total Wake

Non-physical fluid velocity that is the total fluid velocity

in the region of the propeller minus the induced veloci-

ties due to the propeller. Most potential-based propeller

solvers solve the propeller problem in an effective wake.

Fluid flow in the region of the propeller at the design

vehicle speed without the presence of the propeller

Fluid velocities in the region of the propeller with the

effects of the propeller.
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