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ABSTRACT 

 

Fine-group whole-core reactor analysis remains one of the long sought goals of the reactor 

physics community.  Such a detailed analysis is typically too computationally expensive to be 

realized on anything except the largest of supercomputers.  Recondensation using the Discrete 

Generalized Multigroup (DGM) method, though, offers a relatively cheap alternative to solving 

the fine group transport problem.  DGM, however, suffered from inconsistencies when applied to 

high-order spatial methods.  Many different approaches were taken to rectify this problem.  First, 

explicit spatial dependence was included in the group collapse process, thereby creating the first 

ever set of high-order spatial cross sections.  While these cross sections were able to 

asymptotically improve the solution, exact consistency was not achieved.  Second, the derivation 

of the DGM equations was instead applied to the transport equation once the spatial method had 

been applied, allowing for the definition of an exact corrective factor to drive recondensation to 

the exact fine-group solution.  However, this approach requires excessive memory to be practical 

for realistic problems.  Third, a new method called the Source Equivalence Acceleration Method 

(SEAM) was developed, which was able to form a coarse-group problem equivalent to the fine-

group problem allowing recondensation to converge to the fine-group solution with minimal 

memory requirements and little additional overhead. SEAM was then implemented in 

OpenMOC, a 2D Method of Characteristics code developed at MIT, and its performance tested 

against Coarse Mesh Finite Difference (CMFD) acceleration.  For extremely expensive transport 

calculations, SEAM was able to outperform CMFD, resulting in speed-ups of 20-45 relative to 

the normal power iteration calculation.  Additionally, to address the growing interest in Krylov 

based solvers applied to reactor physics calculations, an energy-based preconditioner was 

developed that is inexpensive to form and can accelerate convergence. 
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1 Objectives 

The end goal of this research is to make a major contribution to the field of high fidelity 

neutronics analysis through the production of methods and algorithms enabling fine group 

calculations at the whole core level.  In order to achieve this goal, reliance on fine group 

transport sweeps to converge the fine group solution must be significantly reduced.  The ability 

to do so in the context of high order spatial methods is also highly desirable to reduce the spatial 

degrees of freedom.  This thesis provides the tools and methods that are key to achieving all of 

these objectives.  However, it is important to understand both what did and did not work.  

Therefore, details will be provided for all the ideas and thoughts tested, which, while they may 

not have been breakthroughs in and of themselves, prove useful in formulating an approach that 

is practical, feasible and nearly universal in its application. 

In Chapter 2, the primary issues surrounding whole core analysis with fine group fidelity will be 

discussed and some of the ways the reactor physics community has approached these issues.  

Chapter 3 discusses the first steps towards addressing spatial inconsistencies between the 

Discrete Generalized Multigroup method (DGM) and the original fine group problem and what 

may be the first successful attempt at producing and incorporating high order spatial cross 

sections in the context of multigroup collapse.  Chapter 4 goes one step further and provides one 

of the first means of enforcing exact consistency between like spatial methods after energy 

condensation takes place.  Chapter 5 incorporates all the aspects learned from these previous 

attempts and establishes the Source Equivalence Acceleration Method (SEAM).  This new 

method defines the coarse group cross sections such that exact consistency is maintained 

throughout recondensation even though the coarse group problem may be using angular 

quadratures, orders and spatial methods different from those used in the fine group problem.  

Chapter 6 discusses the implementation of SEAM in OpenMOC and provides initial 2D results 

for the C5G7 benchmark and a 361 group problem based on the C5G7 core.  The results for 

SEAM in both cases are compared to CMFD, the current state-of-the-art in physics-based 
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acceleration techniques.  Chapter 7 then discusses an approach derived from DGM which allows 

for preconditioning of the energy problem in order to further accelerate convergence. 

The ideas proposed in this thesis provide a solid foundation for further acceleration of fine group 

transport calculations and represent a significant step forward in realizing the goal of fine group 

whole core analysis. 
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2 Introduction: Multigroup Whole Core Analysis 

Achieving high fidelity analysis of reactor neutronics is of utmost importance in analyzing the 

performance and safety of reactor designs. Since quantities such as power density are directly 

proportional to fission rate density, which in turn is dependent on the neutron distribution, 

accurate predictions of the distributions of neutrons in a reactor core are key to performing 

steady-state and transient safety analyses. These analyses are conducted by solving the neutron 

transport equation. 

The steady-state neutron transport equation is an integral-differential equation which governs the 

conservation of neutrons moving through any point in space at a certain angle with a particular 

kinetic energy.  In 3D applications, this equation has 6 dependent variables: 3 in space, 2 in angle 

and 1 in energy. 

 

 ⃑⃑    (    ⃑⃑   )    (    ) (    ⃑⃑   )

 
 

  
∫ ∫   (     ⃑⃑⃑⃑   ⃑⃑      ) (     ⃑⃑  ⃑   )    ⃑⃑⃑⃑ 

  

 

   

 

 

 
 (    )

      
∫    (     ) (     )   

 

 

 

(2.1) 

Ideally, this equation would be solved exactly for a given 3D reactor model including a detailed 

representation of all reactor internals and their corresponding cross section data.  The solution 

would then provide the number of neutrons at each spatial point in the core moving at a 

particular angle with a specific kinetic energy.  In order to be accurately solved, thermal-

hydraulics and fuel performance models must be coupled to the neutron transport solution in 

order to provide the exact neutronic conditions present in the core. 

Many simplifications can be made such that this transport equation becomes solvable.  If the 

neutron is assumed to be mono-energetic, meaning its kinetic energy remains constant, both the 

spatial and angular dependences can be solved.  If the angular distribution is assumed to be only 
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linearly anisotropic, then one can derive a neutron diffusion equation which may be solved using 

any number of finite difference, finite element, nodal or analytic methods.  In this case, the scalar 

(i.e. angle-integrated) fluxes are provided directly through solution of these equations.  On the 

other hand, if one only wishes to solve this equation over a discrete set of angles, one can derive 

the discrete ordinates method using various treatments for the spatial dependence, step difference 

(SD), diamond difference (DD), method of characteristics (MOC), etc. An extra step is required 

in this case, since one must apply numerical integration across all angles typically using some 

quadrature to arrive at the scalar flux distribution. 

The mono-energetic approximation, however, is extremely poor due to the nature of cross 

sections governing the various reactions rates.  This cross section data is gathered 

experimentally,  defined by 100,000’s of data points over the energy domain and, for many of 

the materials used in reactors, the variation of these cross sections are extremely complex.  This 

data may vary by many orders of magnitude, anywhere from 10
-5

 to 10
5
 barns (10

-24
 cm

2
), across 

an energy domain that can span 12 orders of magnitude, 10
-5

 eV to 10
7
 eV.  The scattering cross 

section is especially difficult to model accurately due to the coupled nature of scattering between 

energies and angles. 

A stochastic approach can be taken, like in MCNP and OpenMC, in which one essentially 

creates a neutron and samples across the whole gambit of possible reactions according to the 

entire set of evaluated nuclear data. [3] Although this can provide extremely accurate analyses 

for reactor design, the stochastic nature of this solver leads to a standard deviation and thus an 

uncertainty associated with the solution which decreases only as 1/√ .  Here, N represents the 

number of neutrons interacting with a given cell within the reactor.  In order to obtain an 

accurate representation of the fluxes across the entire core, an extremely large number of 

neutrons must be simulated. [3][29] 

The solution of the neutron transport equation through deterministic methods is computationally 

cheap by comparison, since a direct solve of the transport equation directly provides the neutron 

fluxes across the entire reactor.  However, an approximation is made which changes the energy 

dependence from a continuous quantity to a discrete dependence to allow solution of the neutron 



 

17 

 

 

 

spectrum in a feasible manner.  This is accomplished through application of the multigroup 

approximation.  

     (  )  
∫   (    ) (    )  

  

    

∫  (    )  
  

    

 (2.2) 

This approximation is applied through integration of the neutron transport equation across 

various bounded domains in energy, which are referred to as energy groups.  Integration across 

each of these groups effectively provides the total reaction rates within these energy bounds.  

These reactions rates are then divided by the integrated fluxes to provide a set of multigroup 

cross sections.  When applied to the continuous energy form of the neutron transport equation, 

this approximation provides a set of transport equations for each energy group, each of which are 

directly coupled to one another.  These are referred to as the multigroup transport equations. 

 

 ⃑⃑     (    ⃑⃑ )      (  )  (    ⃑⃑ )

 
 

  
∑(    )∑∑         (  )

    

     (  )

 
  (  )

   
∑      (     )     (  )

  

 

(2.3) 

One may notice that in the production of these multigroup equations the solution to the 

continuous neutron transport equation is assumed to be known a priori.  This leads us to a long 

standing philosophical question closely associated to whether the chicken came first or the egg.  

In this case, the question then becomes which comes first, the solution or the simplification?  

Therefore, all methods dealing with energy condensation in some way attempt to address how 

one obtains an approximate solution which provides an accurate solution using the simplified 

equations. 
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2.1 Cross Section Generation for Whole Core Analysis 

Currently, a multi-level procedure is employed to effectively treat energy dependence in the 

neutron transport equation.  At the first level, an extremely simplified spatial model is used to 

reduce the number of spatial and angular unknowns solved such that a detailed energy treatment 

can be undertaken.  This simplification can either contain no spatial information, as in the case of 

an infinite homogeneous calculation, or it can represent the first level of spatial heterogeneity in 

core, in the case of LWRs this would be a pin cell calculation.  In this calculation, the nuclear 

data can be represented in its original pointwise form or linear-linear interpolation of the 

pointwise data can also be used to solve for an extremely resolved neutron spectrum.  This 

allows one to account for energy self-shielding effects due to the presence of resonant absorbers 

and, in the case of the pin cell calculation, spatial self-shielding as well.  For example, in an 

infinite homogeneous calculation, background cross sections from either a moderator or other 

structural materials can be incorporated into resonance self-shielding models in order to 

accurately consider the effects of dilution. [15] Pin cell calculations can be used to calculate 

Dancoff factors in order to approximate the effects of spatial self-shielding due to the presence of 

fuel in an infinite repeating array.  Once these important physics features are captured, energy 

condensation is used to produce a set of multigroup cross sections.  Energy condensation allows 

the reaction rates from the resolved energy problem to be preserved exactly if the same spectral 

conditions are present in later calculations.  This reduces the number of energy unknowns one 

needs to solve from 100,000’s to a few hundred, making a more detailed spatial and angular 

treatment possible for larger, more complex geometries.  Though theoretically few group (2-10 

groups) cross sections can be produced at this point, this will lead to a very poor approximation 

in subsequent calculations since the spatial and angular dependence on the energy problem won’t 

be sufficiently captured 

At the second level, an assembly level calculation is conducted solving a few hundred coupled 

multigroup equations.  This analysis incorporates the presence of different fuel enrichments, 

burnable poisons, control rods, and structural materials within an assembly.  This step is 

incredibly important since any materials with significantly different properties may have a 
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profound effect on the reaction rates in neighboring fuel pins, due to changes in the neutron 

spectra.  Deterministic transport methods are usually applied at this stage to adequately resolve 

spatial and angular dependencies not present in the ultra-fine group calculation.  Once the fluxes 

are calculated for all the different assembly types present in the full reactor model, energy 

condensation is applied again, collapsing the few hundred cross sections to 2-8 group cross 

sections.  At this point, homogenization can also be applied either across individual pin cells 

within the assembly or across the entire assembly to further reduce spatial degrees of freedom.  

While condensation and homogenization may exactly preserve reactions rates when the 

conditions of the assembly calculation match perfectly those in the core, preservation of net 

currents isn’t guaranteed.  This second collapse procedure makes whole core calculations 

feasibly by countering the increase in spatial scale and complexity through a reduction of the 

energy degrees of freedom. 

At the third level, 2-8 multigroup equations are solved across the whole core geometry using 

either a low-order angular discrete ordinates approach or solving a diffusion problem.  If the 

assumptions behind all these approximations are satisfied at the whole core level, then the 

solution will provide an accurate representation of the reaction rates in the core. 

This approach still sidesteps the issue of needing the solution beforehand for energy 

condensation to preserve reaction rates exactly.  If the boundary conditions of the pin cell or 

assembly do not match those in the full core geometry, then each application of energy 

condensation will introduce errors into the subsequent calculation.  Unfortunately, the best 

assumption which can be made a priori is that of an infinitely repeating array of the same pin 

cell or assembly types.  If the core is comprised entirely of the same pin cell or assembly type, 

then this could be a decent approximation.  However, this is rarely the case.  There will typically 

be at least 2 or 3 pin cells containing different enrichments and burnups of fuel, but others could 

possibly contain burnable poisons, fission chambers, water holes, etc.  Assemblies of different 

types may be placed in close proximity to each other as well.  In all of these cases, the reflective 

boundary conditions used to collapse cross sections can’t accurately represent the interactions of 

ultra-fine group or fine group neutron spectra between differing adjacent materials. [1] 
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Therefore, additional methods have been developed to preserve some accuracy in the multi-level 

multigroup procedure. 

2.2 A Priori Methods 

Much of whole core analysis for the current LWR fleet is conducted through application of a 

priori methods, in which energy condensation is conducted for a single assembly using reflective 

boundary conditions.  This is usually in conjunction with some level of spatial homogenization, 

either of the full assembly or the individual pin cells within the assembly.  While the conditions 

inside the reactor may not be perfectly represented in these calculations, the approximation is 

typically assumed to be reasonable if there is no significant change in material properties 

between neighboring assemblies. 

2.2.1 General Equivalence Theory 

Generalized equivalence theory provided a practical and very cheap way to reduce errors accrued 

in the whole core calculation when differing assemblies are placed next to each other.  In many 

of the nodal diffusion calculations conducted at the whole core level, two major constraints were 

typically applied: continuity of current and continuity of surface fluxes at the boundary between 

assemblies.  However, conservation of neutrons is governed by the assembly averaged scalar 

fluxes and the net currents at the boundaries.  Continuity of the surface scalar flux between 

assemblies, while providing the additional equations needed to solve the problem, doesn't really 

factor into neutron balance.  Therefore, the surface scalar fluxes are allowed to become 

discontinuous between adjacent assemblies.  The relaxation of this continuity condition forms 

the foundation of General Equivalence Theory (GET). [31] 

GET's approach to defining these discontinuous surface fluxes is to compare the surface scalar 

flux from the heterogeneous assembly calculations to the result obtained by using the 

homogenized model.  The ratio of the heterogeneous to the homogenized surface fluxes provides 

the discontinuity factor (DF).  These DFs are defined using     
 , the surface scalar flux for the 

heterogeneous assembly calculations, and     
 , the surface scalar flux of the assembly using 

the cross sections homogenized from the heterogeneous calculation. 
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  (2.4) 

The general idea behind this approach is that the DF allows surfaces fluxes to be discontinuous 

in the whole core model so that the surface currents between neighboring assemblies or other 

homogenized regions can be more accurately captured.  For example, in a diffusion calculation, 

two constraints are placed on the boundaries between two neighboring assemblies, continuity of 

the surface scalar flux and continuity of the net surface current. Since the surface scalar flux of 

the homogenized assembly can be much different from that of the heterogeneous assembly, the 

scalar flux continuity condition in the homogenized problem biases the net surface current 

values.  When DFs are used according to Equation (2.5), the surface scalar flux continuity 

condition between two adjacent assemblies, A and B, is enforced using their respective DFs,    

and    through multiplication with the homogenous surface fluxes,   
  and   

 .  This forms a 

kind of heterogeneous surface scalar flux continuity condition for the homogenized problem, 

removing the bias to the net surface currents due to homogenization. 

     
      

  (2.5) 

This produced significant improvements in assembly power distributions in whole core 

calculations in an extremely cheap manner.  These DFs can also be produced by simultaneously 

homogenizing and condensing the assembly calculation to produce DFs that approximately 

recreate the conditions of the fine group, heterogeneous assembly calculation.  Any number of 

pin power reconstruction methods could then be used. [31][30] 

DFs have been applied to a wide variety of problems in reactor physics calculations due to their 

flexibility and simplicity.  Their application has been extended to produce interface discontinuity 

factors for individual pin cells to better correct for neighboring effects at the pin cell level, as 

opposed to assemblies. [17] DFs have also been included in to CITATION for HTR analysis for 

their ability to better take into account the larger neutron currents at the edge of the reflector and 

in the vicinity of the control rods. [33]  
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2.2.2 Superhomogenization Method 

A slightly different approach can be implemented through a process called 

Superhomogenization.  For this method, homogenization and condensation occur at the pin cell 

level within the assembly calculation.  Multiplicative factors referred to as Superhomogenization 

(SPH) factors,   , are defined for a cell k by the ratio of the heterogeneous pin cell fluxes,   
   , 

to the pin cell fluxes from the homogenous calculations,   
   .   

    
  

   

  
    (2.6) 

Since these SPH factors are determined for each of the homogenized pin cells scalar flux, and 

not the surface fluxes, these factors can be used to correct the homogenized cross sections for the 

pin cells. 

  ̃ 
        

    (2.7) 

Although the heterogeneous solution is independent of the SPH corrected cross sections, the 

changes in the homogenized cross sections cause the homogeneous fluxes to change after each 

update of the SPH factors.  Therefore, an iterative process must be conducted where the cross 

sections are updated with the SPH factors and new SPH factors are calculated using the updated 

cross sections.  After converging, these factors should provide the necessary corrections to 

conserve the net current through each cell.  It is important to note that there are an infinite 

number of SPH factors that can conserve reaction rates in this fashion, therefore an additional 

normalization condition is typically used to provide the closing relation.  These factors have been 

produced at the assembly level to approximately enforce transport (S16) to diffusion equivalence 

or transport (S16) to transport (P3) with good success. [4] [14] 

In the whole core calculation, fine mesh finite-difference diffusion can be used and these SPH 

factors applied to their respective homogenized pin cells to enforce what should be better defined 

pin cell currents.  While this does lead to some modest improvements in terms of assembly and 

pin power calculations, GET still remains the simplest and most widely used a priori approach. 
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2.3 Nonlinear Acceleration Methods 

Since a priori methods take a one-size-fits-all approach to approximating whole core solutions in 

a computationally cheap manner, the spectral interactions between adjacent assemblies may not 

be accurately characterized, especially if simultaneous homogenization and condensation has 

occurred.  Nonlinear acceleration methods, on the other hand, are able to capture all the spectral 

swapping but rely on an iterative approach in which full transport sweeps are conducted.  While 

the full transport sweeps are expensive, the problem is solved primarily through the creation and 

solution of equivalent, yet cheaper, versions of the full problem.  These cheaper versions can be 

formed using spatial homogenization, energy condensation and/or a low order angular 

approximation.  The solutions from these equivalent problems are then used to reduce the total 

number of full transport calculation required to converge the fission source.  This provides a 

relative cheap process by which the true solution of the whole core problem can be obtained. 

While this requires extra work relative to an assembly level calculation conducted before the 

fact, this provides the true solution through application of fewer full transport calculations. 

2.3.1 Diffusion Synthetic Acceleration 

In the early days of deterministic transport solvers, diffusion synthetic acceleration (DSA) was 

the primary method of use in accelerating convergence of transport problems.  In DSA, an 

inconsistent diffusion problem is used to provide an estimate of the error between successive 

transport iterations (within-group or power iteration).  This estimated linear error is then used to 

correct the transport solution to provide an acceleration of the scalar flux for the next iteration.  

Equation (2.8) provides an example of its use in accelerating within-group convergence.  The 

intermediate current and fluxes are calculated using the solution from the previous transport 

sweep.  

         
          

      
      

    ⁄
        

    ⁄
 (2.8) 

For Equation (2.8), Dg denotes the diffusion coefficient for coarse group g, ΣR,g is the total 

removal cross sections, and   
  is the total source for group g neglecting within-group scattering. 
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The parameters   
    ⁄

 and   
    ⁄

 are the current for group g and scalar flux for group g 

respectively as calculated from the intermediate transport solution.  The diffusion problem in 

Equation (2.8) is solved to provide the fully updated scalar flux,   
   , for the next transport 

calculation. 

This diffusion flux would accelerate the transport solution by providing a cheap means of 

improving the scalar flux spatial distribution.  However, energy condensation and spatial 

homogenization were never really folded into DSA. 

2.3.2 Simultaneous Homogenization and Condensation 

Coarse mesh rebalance (CMR) is another method by which a simpler problem is solved but 

forced to be consistent with the high order angular problem.  This approach, though, is typically 

focused on accelerating the spatial and angular complexity of high order problem, not necessarily 

the energy aspect.  CMR not only simplifies the angular aspect of the problem, but it also 

incorporates spatial homogenization.  A flux and volume weighted average is applied to cross 

sections across a collection of cells to form a larger, homogenized cell, thereby reducing the 

number of spatial degrees of freedom. Neutron conservation is maintained in this process by 

using the basic neutron balance equation and multiplying the incoming currents at the coarse 

mesh boundaries by a set of rebalance factors.  Application to a 1D problem is highlighted in 

Equation (2.9).  Index i denotes the coarse mesh, index k denotes a cell within coarse mesh i and 

l denotes the current iterate of the solution. The currents at the boundaries of cell i,    
      ⁄

 and 

  
      ⁄

, along with the cell averaged scalar flux,   
    ⁄

, and the cell averaged source,   
 , are 

forced into exact neutron balance by solving for rebalances factors for each cell,   
   . 

 

(  
      ⁄

   
      ⁄

 ∑       
    ⁄

   

)  
        

      ⁄
    

   

     
      ⁄

    
    ∑     

 

   

 

(2.9) 
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Once these rebalance factors are calculated for the previous high order iterate, the angular fluxes 

at the coarse mesh boundaries and the cell-averaged scalar fluxes are accelerated 

accordingly.  This significantly reduces the total number of transport sweeps required to achieve 

the given tolerance. Since this approach uses a general neutron balance equation, it can be easily 

applied to structured and unstructured geometries. 

Unfortunately, CMR is not without issues.  This nonlinear approach is only conditionally 

stable.  In many cases, when the coarse mesh is optically thick or thin, the acceleration scheme 

diverges. [7] However recent developments such as Coarse Mesh Angular Dependent Rebalance 

(CMADR) have been implemented and shown to be unconditionally stable.  This approach adds 

additional degrees of freedom to the coarse mesh problem being solved [26][27] 

Coarse mesh finite-difference (CMFD) diffusion is another widely used nonlinear acceleration 

scheme.  In this case, the high order angular problem is represented by a low-order diffusion 

problem.  Equivalence is enforced through the addition of current correction factors.  These take 

on the shape of an additional set of diffusion coefficients which modify the original 

coefficients.  These current correction factors are calculated using the net surface currents for 

cell i,      ⁄
    ⁄

, the coarse mesh scalar fluxes,   
    ⁄

 and     
    ⁄

, and the normal diffusion 

coefficient coupling the two coarse meshes,  ̃    ⁄ .  This current corrective factor between the 

meshes,  ̂    ⁄ , produces a diffusion problem equivalent to the transport problem. Not only can 

Equation (2.10) take into account spatial homogenization, but it can also include energy 

condensation, to create a cheaper version of a fine group transport calculation. 

  ̂    ⁄   
     ⁄
    ⁄

  ̃    ⁄ (    
    ⁄

   
    ⁄

)

    
    ⁄

   
    ⁄

 (2.10) 

Once the current correction factors are calculated, a set of finite-difference diffusion equations 

are solved to provide the updated fluxes for each of the coarse meshes. 
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 ∑     
 

   

 

(2.11) 

The updated coarse mesh fluxes are then used to scale the previous iterate of the fine mesh 

fluxes, thereby accelerating the transport problem.  While this tends to accelerate transport 

solutions faster than CMR, it is slightly limited in application since the typical finite difference 

approach is more intuitive when applied to problems using structured meshes. However, recent 

generalizations of CMFD to unstructured meshes have been derived and used to accelerate 

transport calculations as well. [19] CMFD’s applicability has even been extended to monte carlo 

codes by accelerating the convergence of the fission source distribution. [22] This acceleration of 

the fission source has also been included into OpenMC with the added functionality of 

estimating dominance ratios. [16]  

CMFD also suffers from the conditional stability issues observed in CMR.  In the case of CMFD, 

however, this usually only occurs for coarse meshes which are optically thick.  The best 

performance in CMFD is typically observed when applied to optically thin coarse meshes.  If 

CMFD is able to converge for an optically thick problem, little to no acceleration is observed. 

[21] In many applications of CMFD, a damping factor is applied to prevent such instabilities 

from growing and causing divergence.  This damping factor is largely problem dependent but a 

reasonable value can be applied across a number of different problems. Partial current Coarse 

Mesh Finite Difference (pCMFD) is a more recent development which has also been shown to be 

unconditionally stable and used to accelerate MOC calculations in the NEWT transport code.  

This approach adds a second degree of freedom to CMFD, allowing it to create two partial 

current corrective factors at the boundaries of a coarse mesh instead of just recreating a single net 

current corrective factor. [19][18] 

Generalized coarse mesh rebalance has been recently shown to bridge the gap, so to speak, 

between CMR and CMFD.  In the derivation of GCMR, it was shown that both CMR and CMFD 
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are specific cases of the generalized method.  This method employs a generic parameter which 

can be varied across a wide range of values to produce better stability than could be otherwise 

achieved in CMR or CMFD alone.  The choice of this parameter still requires some fine tuning 

and the optimal choice is likely problem dependent.  However, the CMFD-like method produced 

with GCMR tends to be very close to optimal choice for this parameter in many cases and, 

through this methodology, can be applied to unstructured meshes. [35] 

2.3.3 Recent Developments 

More recent approaches focus solely on maintaining exact consistency between a fine group and 

coarse group calculation.  One example is a PHYSOR 2002 paper looking at enforcing 

consistency in the context of MOC.  In order to enforce exact consistency, the outgoing coarse 

group angular fluxes were forced to match the collapsed fine group outgoing angular fluxes 

through application of discontinuity factors for each angle, segment and coarse group.  This led 

to significant deficiencies in performance since the memory overhead became huge for larger 

problems.  However, this method did show that it was possible to achieve full consistency, albeit 

at the cost of memory. [5] 

A more promising approach was developed by Lulu Li at MIT.  This approach formulates a low 

order MOC transport calculation using quadrant space-angle domains with equal weights across 

a pin cell homogenized problem.  A low order problem equivalent to the main MOC calculation 

is then set up by tallying the quadrant currents at each of the pin cell surfaces. An equivalent low 

order source is then calculated for each of the 8 coarse mesh tracks inside each pin cell to 

preserve the incoming and outgoing quadrant angular fluxes.  Once this lower order problem is 

constructed, it can then be solved and used to accelerate the high order MOC calculation.  This 

demonstrated very good acceleration of the C5G7 benchmark, even significantly improving upon 

the normal CMFD approach already incorporated into OpenMOC [23] 

Another approach to achieving consistency was conducted through the use of angular dependent 

total cross sections.  These were calculated by collapsing the fine group total cross sections using 

the cell-averaged angular fluxes instead of the scalar fluxes.  This was successfully applied using 
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diamond difference discrete ordinates and shown to converge to the fine group solution in that 

case.  A reduction of the angular order by collapsing the angular problem was attempted to 

minimize storage costs associated with an angular dependent cross section.  The result was a 

reduction of the high order angular quadrature to a sort of S2 calculation using a spatially varying 

average cosine angle.  While this approach is certainly interesting, inconsistencies lead the 

method to converge to the incorrect solution when the angular dependence of the coarse group 

total cross section was treated as an anisotropic source.  [6] 

2.4 Recondensation 

Recondensation is slightly different from the typical nonlinear acceleration method.  Rather than 

homogenizing and condensing a fine group problem, the focus is placed on accelerating the 

energy problem while staying on the same spatial discretization.  Ideally, acceleration would be 

achieved by solving an equivalent coarse group eigenvalue problem and then using an additional 

method to provide a way to reconstruct the previous fine group solution using the coarse group 

solution.  The reconstructed fine group flux would be an improved solution and subsequently 

used to produce new coarse group constants for another coarse group solve.  If the coarse group 

problem and reconstruction process are equivalent to the fine group problem, then iteration of 

this process will lead to the fine group solution.  Currently, there are two primary methods which 

allow for direct reconstruction of fine group fluxes: the Subgroup Decomposition Method (SGD) 

and the Discrete Generalized Multigroup Method (DGM). 

2.4.1 Subgroup Decomposition Method (SGD) 

The SGD method proposed by researchers at Georgia Tech will be covered more in-depth in 

Section 5.1.1. 

2.4.2 Discrete Generalized Multigroup Method (DGM) 

DGM is essentially a discrete form of the Generalized Energy Condensation (GEC) method, 

which applied a transformation through a series of continuous polynomial functions to the 

original fine group equations. [28] In DGM, however, a set of discrete basis functions are used to 
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produce a set of moment equations, referred to as DGM equations, to better represent the discrete 

nature of the multigroup cross sections.  Once solved, these equations produce a set of flux 

moments which can then be used to reconstruct fine group fluxes.  Sections 2.4.2.1 through 

2.4.4.2, will cover the derivation, properties and usage of DGM in the context of recondensation 

in detail. 

2.4.2.1 Derivation and Properties of DGM 

Using the multigroup approximation in the group collapse process, it is assumed that the fine 

group spectrum within each coarse group is flat.  In doing so, all information about the fine 

group spectrum is lost.  With DGM, it is assumed that the spectrum within each coarse group is 

expanded using a set of orthogonal functions.  While continuous functions in energy can be used 

to represent the fine group spectrum [28], discrete basis functions are a more natural fit for the 

discrete nature of the multigroup equations and constants.  This discrete representation of the 

within-group fluxes provides the basis for the formation of the DGM moment equations.  The 

fine group flux can be expanded in terms of these discrete basis functions within the traditional 

multigroup equations.  After this expansion, the resulting equation is dependent on all the 

moments.  To decouple these flux moments, the equation is multiplied by the i
th

 discrete basis 

function and summed.  This process produces the DGM moment equations shown in Equation 

(2.12). [40] Although this process also works for anisotropic sources, for the purpose of this 

thesis, it is assumed that only isotropic scattering is taken into account. 
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One may notice that the multigroup constants have been redefined in Equation (2.12).  This is 

required so that the source calculated is transformed into the same basis as the fine group flux.  

In this transformation, reaction rates must also be conserved.  This transformation can’t simply 

modify the fine group cross sections themselves, but must also take care to conserve the reaction 

rates from the fine group problem.  Therefore, the fine group reactions rates are multiplied by the 

discrete basis functions before carrying out the typical multigroup collapse. 

 
      (  )  ∑   (   )   (    )      (    )

    

∑   (   )   (    )

    

⁄  (2.13) 

 
    (  )  ∑   (   )  (    )

   

 (2.14) 

One thing to notice is that, while the definition of the fission cross section remains unchanged, 

the fission spectrum has been transformed using the discrete basis functions.  This is because the 

shape of the chi spectrum is not influenced by the incoming spectrum.  Only the magnitude of 

the outgoing fine group spectrum changes according to the total fission rate.  Therefore, the 

summation over incoming energy groups, L, can be separated from the summation over the 

outgoing energy groups, K, leading to the numerator of Equation (2.13) and Equation (2.14). The 

coarse group fission rate on group g’ is then normalized by the total flux in group g’ to preserve 

the fission reaction rate.  Since chi is not technically reaction rate but a spectrum, no weighting 

of the chi spectrum by the scalar flux is necessary in the case of energy condensation.  Only the 

spectrum itself needs to be transformed by the discrete basis function such that the basis 

representing the source matches that of the flux moments. 

 
         (  )  ∑ ∑   (   )   (    )  (      )

       

∑    (    )

    

⁄  (2.15) 

The scattering cross section looks a bit different, though.  Instead of the neutrons scattering from 

an initial fine group L to outgoing fine group K, they scatter from an initial coarse group g’ to 

coarse group g and moment i.  This is because the incoming energy of the scattering cross 

section is collapsed using the fine group flux to preserve reactions rates.  Once the incoming 
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energy has been collapsed to their respective coarse groups, this still leaves the outgoing fine 

group K.  This is weighted by the discrete basis functions before collapsing the outgoing energy.  

Coarse group fluxes can then be used to produce a fine group source, but one which has been 

transformed into the same basis as the flux moments. 

 
      (    ⃑ )  ∑   (   )  (    ⃑   )    (    )

   

∑   (   )  (    ⃑   )

   

⁄  (2.16) 

On top of the total source on the RHS of the transport equation, conservation of the streaming 

and removal operators must also be ensured.  The streaming term itself does not explicitly 

depend on the energy and so the summation over the discrete basis function only produces the 

flux moments inside the streaming operator.  However, the total removal reaction rate still needs 

to be conserved.  The fine group total cross sections are weighted by the angular flux and 

collapsed to produce the cross sections.  Alternatively, the scalar flux could be used to provide a 

coarse group total cross section, but for now the angular dependent definition will be used.   

 
      (    ⃑ )  ∑   (   )  (    ⃑   )    (    )

   

∑   (   )  (    ⃑   )

   

⁄  (2.17) 

One may notice that the total cross section was not defined using the discrete basis functions.  

There are two main reasons for this.  First, if the moment total cross sections were defined using 

the flux moments as defined in Equation (2.17), the summation on the denominator could 

potentially become zero since only the 0
th

 order moment flux is guaranteed to be positive. This 

could occur if the fine group spectrum is flat within a coarse group.  The first order moment total 

cross section would then be divided by the linear component of the spectrum, which would be 

zero in this case.  Since computers, like human beings, tend to not like dividing by zero or 

numbers close to zero, this should absolutely be avoided.  If left unaccounted for, this issue can 

lead to accrual of round off errors or divergence of the solution.  Second, the use of discrete basis 

functions to represent the moment total reaction rates, the numerator of Equation (2.17), can 

result in a negative moment total cross section. This might occur if the linear component of the 

total reaction rates has a slope opposite that of the flux.  If this is the case and a method such as 
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Step characteristics or MOC were being used, then the resulting solution of the first order 

differential transport equation produces exponential growth in the moment angular flux instead 

of exponential decay, possibly leading to further instability. [40] To prevent these issues the 

coarse group total cross sections are used for all the moment equations within a coarse group 

since these cross sections are always positive and finite.  However, a new term must be 

introduced to account for the difference between using the coarse group total cross section and 

the moment total cross section. 

 
    (    ⃑ )  ∑   (   )  (    ⃑   ) (    (    )        (    ⃑ ))
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⁄  (2.18) 

Since the coarse group total cross section is used, one can’t define a distinct total cross section 

for each moment.  A corrective term must be used that can account for this inconsistency. This is 

where a new term, the del term, comes into play.  The del term incorporates a correction to the 

LHS of the DGM equations by collapsing the difference between the fine group and coarse 

group total cross sections.  This can then be moved to the RHS of the transport equation and be 

treated like an angularly dependent source term. 

At this point, there are still as many equations as the original fine group problem, but what has 

changed is how these equations are used.  With DGM, the power iteration only needs to be 

conducted on the 0
th

 order DGM equation.   This is because all of the integrated reaction rate 

information is contained within the 0
th

 order equation.  Another nice feature is that the del term 

vanishes for the leading moment equation and reduces to the traditional coarse group equation.  

Therefore, instead of having to conduct the power iteration over all the fine group equations, this 

only has to be done for the coarse group equations.   

              (      ) (2.19) 

This by itself does not lead to an improved solution, since this still only produces a coarse group 

solution with the same limitations as before.  However, the higher order DGM equations only 

depend on the coarse group scalar and angular fluxes.  Therefore, once the coarse group solution 

has converged, these fluxes can be used to produce the sources for the higher order DGM 
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equations.   All that’s left to do is solve a set of fixed source problems to calculate the rest of the 

angular flux moments.   

              (           ) (2.20) 

If the moment cross sections have been properly defined for the problem, then the angular flux 

moments can be used to reconstruct the exact fine group solution. 

   (    ⃑   )  ∑     (   )    (    ⃑ )

   

   

 (2.21) 

2.4.3 Discrete Basis Functions 

Before continuing further, it is important to discuss the choice of discrete basis function that is 

used to transform the original fine group equations into the DGM equations.  The accuracy to 

which these basis functions can be constructed will in turn limit the ability of DGM to 

reconstruct fine group fluxes in a trustworthy manner. 

2.4.3.1 Discrete Legendre Polynomials 

Previous work focused primarily on using the Discrete Legendre Polynomials (DLP’s) as the 

basis for the DGM equations.  This basis is essentially the discrete analogue of the continuous 

Legendre Polynomials. [21] To build these DLPs, a second order recurrence relation defined by 

Equation (2.22) is used. 

 

(   )(   )    (   )

 (    )(    )  (   )

  (     )    (   ) 

(2.22) 

This relation is seeded with the initial values   (   )    and   (   )  (    )  ⁄  where 

N is the total number of discrete basis functions and both K and m vary from 0 to N-1. 
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For use in DGM, normalization constants must be computed for the reconstruction of our fine 

group fluxes.  For DLPs, these constants are defined according to Equation (2.23). 

 
   (    )

 ( )

(     )(   )
 

 ( )   (   )(   ) (     ) 

(2.23) 

Unfortunately, forming the DLPs using this recursive relation accrues a significant amount of 

roundoff error for N >50.  This is observed in Figure 1 which shows the inability of the DLPs to 

reconstruct a vector of random numbers using Equation (2.22).  The resulting loss in 

orthogonality between the higher order basis functions leads to erroneous solutions when solving 

the DGM equations or even failure to converge. 

2.4.3.2 Discrete Tchebyshev Polynomials 

The use of Discrete Tchebyshev Polynomials was also proposed previously for use in DGM.  

These basis functions were shown to have much more favorable properties relative to the DLPs 

with regard to the accrual of roundoff error.  This set of discrete basis functions is also defined 

using a recurrence relation. [42] 

 (   )    ( )  (    )(      )  ( )   (     )    ( ) (2.24) 

However, the generation of discrete basis function through use of recurrence relations was 

dropped altogether in favor of a more direct calculation of the elements describing such a 

function.  This was achieved through use of the Discrete Cosine Transform (DCT). 

2.4.3.3 Discrete Cosine Transform 

In this work, a different set of discrete basis function is used, the Discrete Cosine Transforms of 

Type II (DCT), for use in the DGM equations.  Normally applied to problems such as JPEG file 

compression, the quality that makes this type of DCT suitable is that the 0
th

 order basis is a 

vector of 1’s, which makes the leading order DGM equation still identical to the coarse group 

problem. [1] This type of DCT is defined by Equation (2.25). 
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The normalization constants for these DCTs are much more straightforward to calculate as well. 

   

{
 
 

 
 

   

 

 
    

 

 
    

 

Since DCTs can be built from directly evaluating cosine functions, any round off errors 

potentially accrued by using a recursive relation are eliminated.  The only errors introduced 

while forming the DCTs are therefore limited to the approximations used in evaluating the cosine 

functions.   

2.4.3.4 Best Choice of Discrete Basis 

Ideally, the choice of discrete basis function should be able to expand an arbitrarily large number 

of fine groups within a coarse group without introducing errors into the reconstruction process.  

Since the orthogonality of the discrete basis functions is required to ensure accurate 

reconstruction of the fine group flux, then the best choice should maintain orthogonality 

regardless of the number of fine groups reconstructed.   Therefore the ability of both DCTs and 

DLPs to reconstruct fine group fluxes were tested in the following manner. 

1. Multiply a vector, B, by a matrix, P, whose columnspace is comprised of the basis 

functions 

2. Multiply the resultant vector by the transpose of P 

3. Multiply by a diagonal matrix, a, comprised of the normalization constants for each 

function 

4. Subtract the final product from the original vector 

         (  (  )) 
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Here, P, can be any discrete basis function, but from now on the discrete basis functions will be 

referred by their names, DLP and DCT, which are already normalized. 

If the number of basis functions, N, matches the length of our vector, B, and the discrete basis 

functions are exactly orthogonal to one another, the errors accrued should be on the order of 

machine precision.  The following figure shows the results of this test using a vector of 100 

random values varying from 0 to 1.

 

Figure 1 : Comparison of errors accrued using Discrete Legendre Polynomials and Discrete Cosine 

Transforms 

While DLPs cannot reconstruct B to any reliable accuracy, as shown in Figure 1, DCTs can 

reconstruct all values of B to near machine precision.  This is an unfair comparison, though, 

since the issue with orthogonality in our DLPs was already known beforehand.  To be fair, the 

Modified Gram-Schmidt process was applied to re-orthogonalize the DLPs once the recursion 

relation has been used.  While this improved the reconstruction of B, the combination of 

Modified Gram-Schmidt with DLPs still did not match the performance of the DCTs.  It is 

important to recognize, however, that for reconstruction of a few fine groups within a coarse 

group, DLPs and DCTs perform similarly.  Though, since the goal is to extend this application to 
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larger numbers of fine groups (on the order of 100s) for any given coarse group, DCTs is no 

doubt the best option.   

Another very nice quality of DCTs is their ability to act on a vector in O(n log(n)) operations 

using Fast Fourier Transform methods instead of the usual O(n
2
) number of operations.  While 

for few fine groups this won’t enhance the performance, it could prove extremely useful in 

preparing cross section data when using DGM to reconstruct 100’s of fine groups within a single 

coarse group.  Therefore, for the rest of our study, DCTs will function as our primary discrete 

basis function for use in DGM. 

2.4.4 Recondensation with DGM 

An important observation to note is that DGM by itself can’t fully account for all spectral 

swapping at the whole core level.  No matter how accurately the discrete basis functions can be 

evaluated, a single solve of the DGM equations still can’t produce the exact fine group solution 

without knowing the true solution a priori.  The root of this limitation is in the fine group 

spectrum used beforehand to collapse all of the moment cross sections.  Even when using the 

moment cross sections and del terms provided by an assembly calculation, solving the DGM 

equations will still lead to an incorrect, albeit better, reconstructed fine group flux.  Since the 

spectral boundary conditions for each assembly in the core aren’t known a priori, the reaction 

rates and therefore the cross sections for all the DGM equations are not representative of the true 

problem.   Unfortunately, the correct calculation of our cross section moments assumes a priori 

knowledge of the true fine group solution.  Since nothing is gained from applying the DGM 

equations if the fine group eigenvalue problem has already been solved, another method is 

required.  This led to the development of a process called recondensation. 

2.4.4.1 Implementation Using DGM 

To initialize the recondensation process, an initial guess is assumed for the fine group fluxes and 

used to calculate the cross section moments.  This guess could be the result of an assembly level 

calculation, an infinite homogeneous calculation or simply a flat flux approximation.  With these 
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cross sections, the power iteration is applied to the coarse group equations and the coarse group 

flux is used to solve the higher order DGM equations.  With the new flux moments a new set of 

fine group fluxes is reconstructed.  One additional step is added in which these reconstructed fine 

group fluxes are used in energy condensation to obtain a new set of moment cross sections.     

 

Figure 2 : Flowchart for the recondensation procedure 

These updated cross sections are used in the next DGM calculation, the fine group fluxes 

reconstructed and the process is repeated.  After a number of recondensation steps, the 

reconstructed fine group fluxes will converge towards the true fine group solution.  This 

nonlinear iterative process, highlighted in Figure 2, is called recondensation.  [41] 

2.4.4.2 Stability and Use of Krasnoselskii Iteration 

Initially, recondensation suffered from stability issues which led to divergence in many cases.  

This instability was first resolved by incorporating a second sweep into recondensation.  One 

would take the fine group fluxes reconstructed form the DGM equations, construct a new fine 

group source with them and then carryout another transport sweep using the original fine group 

equations.  [41] 
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Ideally, the recondensation process would be performed without need for any fine group sweep, 

which was resolved by using a Krasnoselskii iteration on the updated angular flux moments 

instead of employing the typical Picard Iteration.  Gibson and Forget (2012) recast the 

recondensation process into operator notation and the Krasnoselskii iteration was applied to 

stabilize recondensation according to Equation (2.26). 

     
    (   )    

        
  (2.26) 

Here, T denotes the original recondensation process in operator form, k is the current iteration 

and lambda may vary from 0 to 1. The choice of lambda, of course, is problem specific, and a 

correct value will provide stability to the recondensation process, allowing it to converge to the 

true fine group solution. [12] 
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3 Approximate Spatial Recondensation 

Much of the work conducted using DGM has been applied to low order spatial methods, such as 

step difference Sn.  The recondensation process has already been shown to converge to the fine 

group solution with errors on the order of the convergence criteria set for the problem. [41] 

Unfortunately, when moving towards application to higher order spatial methods, DGM no 

longer converges to the exact fine group solution.  In this section, this problem is approached 

through explicit inclusion of the spatial dependence from the angular and scalar fluxes.   

To do this, however, requires use of high order spatial methods.  Therefore, a 1D High Order 

Method of Characteristics (HOMOC) method is developed that achieves arbitrarily high order.  

This will then be used to include spatial dependences from the fluxes directly into the cross 

sections when group collapse is conducted.  These high order spatial cross sections will then be 

used in a high order spatial version of the DGM equations, which should then account for much 

of the spatial information that is typically lost in the recondensation process when using higher 

order methods. 

3.1 Spatial Inconsistencies in DGM 

Spatial inconsistency in DGM is a direct result of the assumptions placed on the shape of the 

angular flux.  In step difference, no shape is assumed in the calculation of the cell averaged 

fluxes.  Therefore, the “shape” set by the streaming and removal operator is equivalent for both 

the fine group and DGM equations. 

In the Method of Characteristics (MOC), for example, the spatial variation of the angular flux in 

a given cell is defined by an exponential shape.  In the original fine group equations, these 

exponential shapes are dictated by the value of the fine group total cross section.  Therefore, each 

of the fine group angular fluxes has a different exponential shape.   

   ( )  (    ⃑   )   ⃑     (    ⃑   )      (    )  (    ⃑   ) (3.1) 
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The sweeping operator in the DGM equations, however, is identical across all moments since it 

uses the coarse group total cross section.  This means that the same exponential shape is used to 

calculate the angular flux moments for each coarse group. 

         (    ⃑ )   ⃑       (    ⃑ )        (    ⃑ )    (    ⃑ )      (    ⃑ )    (    ⃑ ) (3.2) 

While the del term that is added to try to correct for the difference in the sweeping operator, the 

del term is typically moved to the right hand side of the transport equation and treated as a flat 

source correction.  This is what leads to the discrepancy between the original fine group 

equations and our DGM equations.  The incorrect shapes assumed in DGM can’t be corrected by 

the current definition of the del term.  The lack of spatial information inside the del term 

introduces errors into the recondensation process, leading the method to converge to an incorrect 

solution. 

 

Figure 3 : Comparison of angular flux solution using the original fine group equations and the DGM 

equations 

Figure 3 provides an example of this issue when using a characteristic type method.  For the fine 

group case, the shapes of the angular fluxes are dependent on the total fine group cross sections.  

DGM, on the other hand, can only use the coarse group total cross section to define the 
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exponential shapes used in the calculation and therefore the same shape is applied across all 

moments within the same coarse group. 

The consequences of this inconsistency can be seen in Figure 4.  This plot provides a direct 

comparison of the recondensation process applied to both step difference Sn and MOC 

(equivalent to step characteristics in 1D) for the 47 group 1D BWR example problem defined in 

Appendix B.  Using each of these methods, the errors in the recondensation solution relative to 

the fine group reference case are compared.  The convergence profiles are also compared when 

using various convergence criteria for the fine group problem and the recondensation problem.  

This provides a good picture of whether or not DGM is consistent with the current spatial 

method being applied.  If the spatial method being used in recondensation is consistent, then 

tightening the convergence criteria will result in a smaller difference between the reference case 

and the converged solution.  If the method is inconsistent, then the deviation of the converged 

solution will reach an asymptotic value even though the convergence criteria are tightened 

further. 

 

Figure 4 : Recondensation with varying convergence criteria using step difference and step characteristics

 
For the step difference method, as the convergence criterion for keff and fluxes is decreased, the 

difference between the fine group and DGM solution decreases.  This shows that DGM can be 

applied to step difference Sn in a fully consistent manner.  As predicted before for step 

characteristics, the errors in the recondensation solution approach an asymptotic value even 

when the convergence criteria are tightened. 
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One other interesting behavior to notice is that when the criteria are set to 10
-6

 in the case of step 

characteristics, this produced an unanticipated error cancellation in the fluxes and resulted in a 

falsely accurate eigenvalue.  Therefore, it should be noted that the convergence criteria also plays 

a very important role in recondensation. 

While implementation of step difference is straightforward, this spatial method is only 1
st
 order 

accurate and requires a much finer spatial discretization to achieve a high fidelity solution 

relative to higher order spatial methods.  Since it would be widely beneficial if DGM could be 

made consistent with any spatial method applied in the whole core analysis, a modified 

definition of the del term is proposed which will incorporate local spatial dependence with the 

goal of correcting this inconsistency.   

Typically spatial dependence is referred to in a global sense where a set of cross section or 

material properties are described as homogenous within a given cell but can between cells.  In 

this case, though, it is suggested that there also exists a local spatial dependence within each cell 

that is typically ignored in the recondensation process.   Therefore, the goal is to define a del 

term that includes this local spatial dependence and recaptures the spatial information typically 

lost.   Introducing a high order spatial definition of the del term, though, requires use of a high 

order spatial method.  In this work, the 1D High-Order MOC (HOMOC) method previously 

developed will be used for the analysis. [10]

 

3.2 A 1D High Order MOC Method for Testing 

In a typical MOC calculation, the exponential shape of the angular flux is spatially averaged 

prior to being tallied to the cell’s scalar flux.  This simplifies the problem considerably since the 

source in each spatial cell becomes flat as well.  However, in order to apply DGM in a consistent 

manner using 1D MOC, a way must be found to include the spatial dependence lost when the 

angular flux is spatially averaged.  This requires a high order spatial method that provides the 

information needed to define a correct del term.  In this section, the derivation and the 

convergence properties of the 1D HOMOC method will be discussed.  1D HOMOC will then be 

used in building a new definition of the del term that can include this missing spatial 

information. 
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3.2.1 Derivation of 1D HOMOC 

To derive a high order MOC method, the spatial dependence within the 1D transport equation is 

cast into a dimensionless form.  The change of variable is conducted along the length of a single 

track lk.  To do this, the variable s spanning [0,lk] is changed to x spanning [-1, 1]. 

    
 

  
     

  

  
 

 

  
 (3.3) 

This change of variable leads to the following form of the 1D transport equation. 

 
  (   )

  
 

   
  

 (   )  
  
  

 ( ) (3.4) 

This 1D High Order MOC method assumes first that the source term on the right hand side of the 

1D transport equation can be expanded with a series of Legendre polynomials up to order N.   

  ( )  ∑     ( )

 

   

 (3.5) 

In this case, the exact form of the solution is known.   

  (   )  ∑   ( )  ( )

 

   

               
   
  

 (3.6) 

The exact form in Equation (3.6) is then substituted back into Equation (3.4), multiplied by 

Legendre polynomial of order l and integrated along the interval of orthogonality. 
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(3.7) 
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Upon taking the derivatives with respect to x, Equation (3.8) is reached.  Note that the 

exponential term has been canceled out since this solves the homogeneous form of the 1D 

transport equation. 

 

∫   ( ) [(∑   ( )
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]    

(3.8) 

In order to remove the dependence on the derivative, an identity relation is used, Equation (3.9) , 

to represent the derivative of a Legendre polynomial of order n. 

 
   ( )

  
 ∑ ( (    )   )       ( )

   (
   
 

)

   

 (3.9) 

This representation of the derivative is substituted back into the Equation (3.8). 

 

∫   ( )
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(3.10) 

Now that all terms are expressed in a series of Legendre polynomials, orthogonality properties 

can be used to simplify Equation (3.10). 
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(3.11) 

For the left most term to be non-zero, n-2m-1 must be equal to l, therefore all possible 

permutations of n and m that satisfy this equation must be found.  For any given n, m must be 

equal to (n-l-1)/2, therefore, all possible n satisfying this condition from m = 0 to the maximum 

possible value of flr(N-l-1/2) are found.  The floor function (flr) function ignores all decimal 

information and only uses the integer digits of the number being acted upon. This gives us the 

final form of the moment equation of order l. 

 (    ) ∑        ( )

   (
     

 
)

   

    ( )  
  
  

   
(3.12) 

In Equation (3.12), solving for a is equivalent to solving a linear system of equations. 

  ̿    ⃑  (3.13) 

Once the particular solution is found, the homogeneous solution can be calculated using the 

incoming angular flux condition. 

     ∑(  )   

 

   

     (3.14) 

The matrix notation can be substituted into this boundary condition to solve for b in terms of M, 

Q and the incoming angular flux,  in.  These equations provide the following relation.  
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  (       ⃑⃑⃑⃑⃑⃑ ⃑⃑   ̿   ⃑ )    

   ⃑⃑⃑⃑⃑⃑ ⃑⃑             (  )   

(3.15) 

Then the shape of the angular flux within the cell is defined by Equation (3.16). 

  ( )        (   )  ( ( )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑     (   )   ⃑⃑⃑⃑⃑⃑ ⃑⃑ )   ̿   ⃑  (3.16) 

Evaluation of the outgoing angular flux leads to the following set of equations. 

 

           ⃑   ⃑  

       

 ⃑  ( ⃑     ⃑⃑⃑⃑⃑⃑ ⃑⃑      ) ̿   

(3.17) 

In this formulation, A represents the typical streaming term governing the contribution of the 

incoming flux to the outgoing flux, but one may notice that B has changed from a scalar value 

(used in ordinary MOC calculations) into a vector that determines the correct contributions of the 

source’s spatial moments to the outgoing flux. 

The angular flux spatial moments are then calculated by multiplying Equation (3.16) by the n
th

 

Legendre polynomial and integrating over the cell.  These moments are then found by using the 

following equations. 

 

 ⃑          ̿   ⃑  

           

 ̿  ( ̿     (      ⃑⃑⃑⃑⃑⃑ ⃑⃑ ))   ̿   

(3.18) 

Here,    is defined according to the Equation (3.19). 

     ∫   ( )
 

  

        ∫   ( )
 

  

        ∫   ( )
 

  

        (3.19) 
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The previously scalar quantities C and D have become a vector and matrix respectively.  In this 

new method, the vector  ⃑  projects the shape of the incoming angular flux’s exponential shape 

into Legendre polynomials and adds them to the angular flux moment.  The matrix  ̿ maps the 

spatial moments of the source directly to the spatial moments of the angular flux.   

All of these equations, though, hinge on the correct evaluation of the exponential moments in 

Equation (3.19).  Exact integration to find these Legendre moments of the exponential term is 

not necessary and in some cases can be detrimental to the calculation.  This is observed for 

optically thin cells.  In Table 1, the results are shown from analytic computation of these 

moments for a cell where c = 0.05 using both double and quad precision arithmetic.   

Table 1  Comparison of Legendre moments for exponential using double and quad precision arithmetic. 

 Analytic Method (double) Analytic Method (quad) 

P=0 1.000416718753101 1.0004167187531003060609231655599 

P=1 -5.0012501116115(-2)* -5.0012501116123100012898749863086(-2) 

P=2 8.334821615108010(-4) 8.3348215319152901474084149108154(-4) 

P=3 -8.334382073371669(-6) -8.3344908065046330459409291167034(-6) 

P=4 1.818989403545856(-7) 5.9530573918278264147442897072133(-8) 

* (-2) notation used to represent multiplication with 10
-2 

At first, there doesn’t seem to be any problem just using the analytic form derived by conducting 

the appropriate integration.  Both the 0
th

 and 1
st
 order Legendre polynomial coefficients at double 

precision match the quad precision result down to 13 digits.  When the Legendre order is 

increased further, though, the double precision result deviates substantially from the quad 

precision result, until no digits in the double precision calculation actually match.   

The source of this error turns out to be inherent to the analytic form.  The main issue is that for 

these optically thin cells, the integrands evaluated at x=-1 and x=1 grow by two orders of 

magnitude with each increase in the Legendre order while the magnitude of the difference 

decreases. 
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Table 2  Legendre moment integrands for the exponential function using double precision arithmetic 

 Integrand at x=1 Integrand at x=-1 

P=0 -9.512294245007139 -10.512710963760240 

P=1 -5.992745374354497(2) -5.992245249343337(2) 

P=2 -5.997501521477001(4) -5.997501604825217(4) 

P=3 -8.397900437321818(6) -8.397900437313481(6) 

P=4 -1.511730033745314(8) -1.511730033745314(8) 

Since double precision codes can only handle precision up to roughly 16 digits, there reaches a 

point where the difference between the integrands falls beyond this range and produces results 

which are incorrect.  This behavior can be seen in Table 2 above. 

An alternative approach using Taylor series expansion can be applied instead to produce accurate 

results while still using double precision arithmetic.  While the Taylor series expansion for the 

exponential function is very well known, the Legendre polynomial expansion is not known and 

must be determined for this method.  To do so, a linear system of equations is formed knowing 

that the Taylor series expansion and the Legendre polynomial expansion must produce the same 

function for the infinite series of each. 

      ∑   ( )  ( )

 

   

 ∑
(  ) 

  
  

 

   

 (3.20) 

Solving an infinite linear system of equations for the exact coefficients is obviously infeasible, 

therefore both the Taylor and Legendre expansion are truncated to their first 30 terms.  Using 

this truncation, one can then solve the system of equations to determine approximate Legendre 

coefficients for the exponential. 
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Table 3  Comparison of the Taylor Series Method with the Analytic Method using quad precision arithmetic 

 Taylor Expansion Method (double) Analytic Method (>quad) 

P=0 1.000416718753100 1.0004167187531003060609231655599 

P=1 -5.0012501116123(-2) -5.001250111612310001289874986308(-2) 

P=2 8.334821531915293(-4) 8.3348215319152901474084149108154(-4) 

P=3 -8.334490806504635(-6) -8.334490806504633045940929116703(-6) 

P=4 5.953057391827828(-8) 5.9530573918278264147442897072133(-8) 

This truncation was tested on the same optically thin cell using c = 0.05 and the previously 

specified truncation.  The Taylor expansion coefficients provide the right hand side of the linear 

system of equations, the form of the Legendre polynomials provide the matrix on the left hand 

side and the Legendre coefficients are the vector of unknowns.  Table 3 shows that solving for 

the Legendre coefficients in this manner provides accurate results in the first 5 moment values to 

within double precision for this thin cell problem.  It is very interesting that this provides extra 

stability in the thin cell limit relative to the analytic form, but further research is beyond the 

scope of this thesis. 

3.2.2 Convergence Results Using 1D HOMOC 

A very simple 1D LWR fuel pin cell using 4 group cross sections was used to test each of these 

high order methods.  For the coarsest mesh, the fuel was split into 2 equally sized cells and the 

coolant was modeled as one cell on each side of the fuel.  The convergence criteria for both keff 

and the flux updates were set to 10
-9

.  Details of the geometry and group constants used can be 

found in Appendix A. 

For this case, the errors in keff  relative to the fully converged solution were observed to match 

well with the calculated l
2
 and l

∞
 errors of the scalar fluxes, therefore the h-p convergence results 

for keff  were used.  The reference value for the fully converged keff  was found using a standard 

MOC solver.  Beginning with the 4 cell model, each cell was split into 2 equally sized cells after 

satisfying the convergence criteria.  These calculations were repeated until 4x2
7
 cells were used 

to discretize the geometry.  With the data for each successive refinement, a polynomial fit was 

carried out on the relationship between keff  and the cell size.  The resulting polynomial was then 
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extrapolated to define a fully converged keff  at the limit where the cell size approaches zero.  

This fitted value was then used to evaluate the convergence rates of the 1D HOMOC method. 

The eigenvalue problem was solved for various cell sizes and using spatial moments beginning 

from the normal calculation with a 0
th

 order spatial representation and ending at 6
th

 order.  Figure 

5 shows the convergence of keff  for each of these calculations. 

 

Figure 5.  Convergence properties of the M-LC method 

In addition, the log-log slope for the data was taken for every order up to the 3
rd

 order, only 

stopping the slope calculation when the differences in the eigenvalue drop down to the order of 

machine precision.  Greater than the 3
rd

 order method, convergence behavior worsens until they 

ultimately fail to converge to any value of keff  when using a 6
th

 order spatial representation of the 

flux. 
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Table 4  Minimum, maximum and average convergence rates (log-log slopes) for M-LC method 

Order of 

Method 
Minimum Slope Maximum Slope Average Slope 

0 1.3926 1.9997 1.8733 

1 3.4631 3.9941 3.8197 

2 4.3030 5.7975 5.2977 

3 6.1159 10.1406 7.8363 

The order of the method for this particular test case seems to go approximately as 2(P+1), as is 

observed in Table 4.  When values of keff  are near machine precision in accuracy, the method 

stagnates and no longer exhibits h-p convergence.  Actual divergence is observed for the 6
th

 

order calculation, though this is likely due to both the accumulation of round-off errors in the 

high order equations and amplification of these errors when the moments are solved.  This 

amplification comes directly from the system of equations being solved.  When the moment 

equations are solved at high order and/or for optically thin cells, the system of equations 

becomes ill-conditioned.  The explicit form of the moment equations for an 7
th

 order calculation 

is provided in Equation (3.21) as an example. 
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  (3.21) 

When the cross section and/or track length decrease, the entire diagonal of the matrix becomes 

very small, significantly increasing the condition number of the system.  Also, the addition of an 
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extra order to the system of equations increases the condition number of the system, even if the 

cell sizes and cross sections remain the same.  Therefore, when applying the 1D HOMOC 

method to spatial recondensation, the maximum order method was set to P=3. 

With this high order method explained, let us return our focus to correcting the del term 

definition to provide spatial consistency between DGM and the original fine group problem 

3.3 Treatment of the Spatially Dependent Del Term 

To incorporate local spatial variation, a del term must be defined that incorporates the spatial 

dependence of the angular flux within each cell, which can now be done using 1D HOMOC.  

This spatial dependence has been explicitly included into the del term’s definition in Equation 

(3.22).  Note that we have replaced    with x to differentiate global (element to element) from 

local (within element) spatial dependence.  x is defined as spanning the length of a track segment 

from 0 to l. 

 

    (   )

 ∑   (   )  (     )[    ( )        ( )]

   

∑   (   )  (     )

   

⁄  (3.22) 

This new del term takes the spatially dependent angular flux and uses this to weight the 

difference between the fine group and coarse group total cross sections.  This produces a 

spatially varying del term which can be used as a high order spatial source term on the RHS of 

the transport equation. 
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∫     (   )  
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⁄    
(3.23) 

The coarse group total cross section is also defined as a spatial average of the spatially dependent 

cross section.  This still maintains consistency in our 0
th

 order coarse group equation since this 

definition causes the del term to vanish upon numerical integration in the i=0 case. 
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An unfortunate side effect of this del term and coarse group total cross section definition is that 

they now contain rational functions with respect to the position in a given cell.  The nature of 

such a rational function prevents usage of Legendre moment expansion since this will not 

guarantee the necessary quantities will be preserved.  The following thought experiments provide 

an understanding of why this is. 

3.3.1 Moment Expansion 

Assume that a del term is defined by a linear function divided by another linear function, each of 

which are defined using the exact angular flux. Then subsequent multiplication of this del term 

by the exact flux, produces ax+b.  Multiplying this by the normalized 0
th

 order Legendre 

polynomial and integrating produces b, the quantity we want to be conserved. 

 ∫     ( ) ( ) ( )  
 

  

 ∫   (
    

    
) (    )  

 

  

   (3.24) 

Unfortunately, if the del term in Equation (3.24) were expanded into its 0
th

 and 1
st
 continuous 

Legendre polynomial moments beforehand, then multiplication by cx+d and integration, would 

not result in the exact value b.  The full spatial dependence of the del term, since it is a rational 

function, can’t be fully captured using a finite number of Legendre moment expansions.   

 ∫     ( )(      )(    )  
 

  

   (3.25) 

This means that neutron conservation would not be satisfied with this del term and would still 

cause the recondensation process to converge to an errant solution. 

3.3.2 Numerical Quadrature 

Instead of moment expansion, numerical integration is used to incorporate the spatial del term 

into our high order method.  This requires the evaluation of all the components (the del term, the 

angular flux and the Legendre polynomials) at specific spatial quadrature points in the cell.  

These evaluations are multiplied by their corresponding quadrature weights and then summed to 
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conduct the numerical integration.  For this work, the Gauss-Legendre quadrature is used for its 

ability to use N+1 point evaluations to exactly integrate polynomials up to order 2N+1.  

Therefore, as long as enough point evaluations are conducted, the Gauss-Legendre quadrature is 

able to exactly integrate the following test case. 

 

∑       (   ) (   ) (   )

  

  

∑     (
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(3.26) 

Evaluation at these quadrature points, as shown in Equation (3.26), allows the denominator of 

our del term to cancel exactly with the angular flux, leading to integration of the numerator.  This 

is exactly what needed to happen to ensure neutron conservation.  The only remaining issue is to 

ensure that enough points are chosen to carry out this integration exactly.  Since integration of a 

1
st
 order polynomial is required in this case, 2 quadrature points is enough for exact integration.  

But for a given P order problem, the maximum order polynomial needed to be integrated is of 

order 2P, a result of multiplying the P
th

 order Legendre polynomial with the P
th

 order numerator 

of the del term.  Therefore, using P+1 quadrature points should always be enough to evaluate our 

integrals exactly, at least in 1D. 

3.4 1D Benchmark Results Using the Spatial Del Term 

Now this new del term definition must be included into the 1D HOMOC formulation.  To do this 

the contribution of the del term is treated as a high order spatial source.  This is done using 

numerical integration with the Gauss-Legendre quadrature.  First the total coarse group cross 

section is calculated for each cell and then the del term is evaluated at the spatial quadrature 

points.  Then numerical integration is conducted after multiplication with the new iterate of the 

angular flux.  This produces an additional source on the RHS of our transport equation which 

acts as a corrective term for the DGM equations. 
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(3.27) 

This del source must be defined for each spatial moment l, DGM moment i and coarse group g.  

Once this source is calculated it can be included to the total source according to Equation (3.28). 
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(3.28) 

The ability of this method to correct for the spatial inconsistencies inherent to DGM was tested 

on a simple BWR assembly described in Appendix B.  To determine the effectiveness of the new 

del term, the errors in keff  are compared for each like order solution.  This means the converged 

1
st
 order fine group solution is compared to the converged 1

st
 order DGM solution, the 2

nd
 order 

fine group solution to the 2
nd

 order DGM solution, and so on. 

 

Figure 6 : Spatial convergence of errors in keff with and without the high spatial order del term 
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Figure 6 shows that the del term can improve keff  by a significant digit, although this 

improvement is likely problem dependent.  Also, if these corrections were fully consistent, 

different orders of spatial convergence would be observed, but this is not the case.  This means 

that another source of spatial inconsistency exists that has not yet been taken to account.  To 

determine where these errors are originating, it is necessary to take another look at the fine group 

equations. 

3.5 Spatially Dependent Fission and Scattering Cross Sections 

For the original fine group equations, the geometry is discretized such that the total, scattering 

and fission cross sections are spatially flat within each cell.  After group collapse of the fine 

group cross sections, if the fine group fluxes are assumed to have some spatial variation within 

each cell, then the coarse group cross sections will become spatially dependent as well.  This 

spatial dependence is usually removed by collapsing the cross sections using the spatially 

averaged fine group fluxes instead.  This approximation results in propagation of additional 

errors in the coarse group calculation which can’t be corrected by the spatial del term alone.  

Therefore it was concluded that the lack of consistency observed when only using the del term 

could be addressed if the local spatial dependence of the scattering and fission cross sections are 

also taken into account.  To modify the definitions of the fission and scattering cross section, this 

spatial dependence of the scalar flux is included into energy condensation. 
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(3.29) 

To provide clarity for these new cross section definitions, L is an index pointing to a particular 

fine group within the incoming coarse group g’ and K is an index pointing to a particular fine 

group within the outgoing coarse group g. 

This leads to the same issues that arose for the del term since these cross sections are now 

defined by a rational function.  For reasons previously discussed in Sections 3.3.1 and 3.3.2, 
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numerical integration with the Gauss-Legendre quadrature is used to form the necessary spatial 

moments for the sources.  These spatially dependent cross sections are stored at the gauss points 

within each cell for numerical integration with the next iterate of the scalar flux.  As before, the 

fission and scattering sources are assumed isotropic. 
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(3.30) 

These new definitions provide additional information to our transport equation regarding the 

spatial variation of the fission and scattering sources within each cell.  At this point, all the 

spatial information that is lost in the typical multigroup collapse has been placed back into these 

cross section definitions.   

3.6 1D Benchmark Results Using Spatial Cross Sections 

These new definitions of the fission and scattering sources were incorporated into the 1D 

HOMOC code and tested on the 47 group 1D BWR assembly problem defined in Appendix B 

.  The exact fine group solution of each given spatial order calculation is used to collapse the fine 

group cross sections to provide  the spatially dependent coarse group values for each coarse 

group calculation of matching spatial order (a 1
st
 order fine group calculation provides the values 

for the 1
st
 order coarse group calculation for example).  The eigenvalue solve on the coarse group 

problem is applied using these cross sections.  This may seem like a waste, since in a realistic 

calculation one would not begin with any knowledge of the fine group solution, but it serves as 

an important metric for the purposes of identifying consistency.  Full consistency dictates that if 

the exact fine group solution is used to condense these new cross sections, then the coarse group 

eigenvalue problem should converge to the exact same eigenvalue.  If this is satisfied, then 

recondensation will also be able to converge to the true fine group solution.  
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Figure 7 : Spatial convergence of errors in keff (y-axis) relative to the inverse mesh spacing (x-axis) with and 

without using high spatial order del term and cross sections 

The result is an asymptotically consistent set of coarse group equations that can correct for the 

spatial inconsistencies between the fine group equations and the leading order DGM equation 

when using a high order spatial method.  It is important to note, however, that exact consistency 

is not attained with this approach.  The errors accrued when solving the DGM equations instead 

of the original fine group equations are due to the difference in the streaming operators, which 

are defined using exponentials in MOC.  These differences between exponential terms produce 

an error defined by an infinite sum, which can only be partially accounted for using the N
th

 

spatial order corrections applied through the cross sections and del terms.  Since these high order 

calculations do not achieve exact consistency, it is less clear from these examples that the 

recondensation procedure accompanying the DGM equations will converge closer to the fine 

group solution.  These new definitions for the group constants will now be incorporated into the 

recondensation process. 

Each spatial order recondensation calculation is conducted starting with 0
th

 order and ending 

with 3
rd

 HOMOC using successively tighter convergence criteria for keff  and the fluxes.  Every 

calculation uses the same discretization of the core and uses 100 iterations for the recondensation 

process.  While this may seem excessive, it is a direct result of the poor choice of lambda for the 
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Krasnoselskii Iteration and coarse group structure, the optimal choice of which is beyond the 

scope of this section.  Absolute errors are calculated relative to the true fine group solution for 

the same spatial order calculation using the same convergence criteria (e.g. 1
st
 order spatial DGM 

solution compared to 1
st
 order fine group solution).  Any persisting inconsistencies in the 

recondensation procedure will cause the solution to converge to an incorrect solution even if the 

convergence criteria are tightened.  Thus, if increasing consistency is achieved with this high 

order spatial recondensation process, consecutively lowering the convergence criteria should 

lead to decreases in errors relative to the other low order problems.  This behavior is exactly 

what is observed in Figure 8. 

 

Figure 8 : Comparison of errors in keff (y-axis) for different convergence criteria (x-axis) using various spatial 

order transport calculations 

Figure 8 shows that when moving from 0
th

 order to 3
rd

 order spatial recondensation, the 

converged value of keff  improves by approximately 1 significant digit for each increase in spatial 

order.  There is some curious behavior observed, however, since there is no monotonic trend in 

the error as the convergence criterion is tightened until we reach the 3
rd

 order calculation.  Error 

cancellation is the most likely culprit, since keff  is a global quantity that depends on a sum over 
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all scalar fluxes.  Therefore, to show that our methodology is truly working, it is necessary to 

show the root mean square (RMS) errors for the reconstructed fine group scalar fluxes instead. 

 

Figure 9 : Comparison of group 1 flux RMS errors (y-axis) for different convergence criteria (x-axis) using 

various spatial order transport calculations 

For the group 1 reconstructed flux, Figure 9 shows that the converged errors behave similar to 

what was observed in the absolute errors in keff.  Absolute RMS errors in the flux converged to 

2.2x10
-6

 for the 0
th

 order calculation, 4.0x10
-8

 for the 1
st
 order, 1.6x10

-9
 for the 2

nd
 order and 

3.6x10
-10

 for the 3
rd

 order.  This same behavior was found in every reconstructed fine group 

except for group 19 fluxes. 
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Figure 10 : Comparison of group 19 flux RMS errors (y-axis) using different convergence criteria (x-axis) for 

various spatial order transport calculations 

Figure 10 shows that the RMS errors in group 19 flux decrease much slower than the other 

groups.  This is likely due to the fine group total cross section in group 19 being significantly 

higher than the total cross section for the coarse group it lies within.  Therefore, the del term 

requires a higher order spatial calculation in order to capture the necessary spatial information 

for a better reconstructed flux.  Perhaps the 0
th

 order calculation is already a good enough 

approximation for this particular fine group, since moving to a high order spatial method in a 

high absorbing material can lead to numerical difficulties in some cases.  It is apparent, though, 

from Figure 8 that this has little effect on the accuracy of the global solution. 

Therefore, for this simple 1D case, it has been demonstrated that using high spatial order 

material properties in DGM can recapture spatial information lost in the typical group collapse 

procedure. 

3.7 Improving the 0
th

 Order Coarse Group Solution 

While these new cross section definitions have driven the recondensation solution closer to the 

fine group solution of an equivalent order, coupling a 0
th

 order coarse group to the 0
th

 order fine 
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group problem in a consistent manner still needs to be addressed.  While a lot of work has been 

put into showing consistency between the true fine group solution and the DGM solution in order 

to validate the methods described here, it should be noted that the eventual goal is to improve the 

coarse group solution with as little extra work as possible.  Therefore, a new approach must be 

established to couple the high order spatial DGM equations to the 0
th

 order coarse group equation 

to drive the recondensation process towards the 0
th

 order fine group solution.   

3.7.1 Methods for Using High Order Spatial DGM for Corrections 

Unfortunately, conducting a purely 0
th

 order recondensation step, by definition, results in a del 

term that is always 0.  Spatial information from the cross sections must be passed into the 0
th

 

order equations even though only spatially averaged fluxes are produced by the eigenvalue solve 

of the coarse group problem.  Therefore, a post-processing step is added after the power iteration 

to grab spatial information lost when the angular flux is spatially averaged.  This can be done 

using some of the new terms derived in 1D HOMOC.  More specifically, the full C vector and 

the first column of D are used to obtain higher order spatial moment contributions from  in and 

the flat source respectively.  Once the coarse group spatial moments are calculated, the high 

spatial order DGM equations can use them to produce spatially dependent cross sections which 

are then averaged and passed back into the 0
th

 order coarse group equations. 

To keep the coarse group problem consistently 0
th

 order, the fission and scattering source are 

limited to their 0
th

 order definitions while loosening the restriction placed on the del source, 

allowing use of high order del sources.  But these high order sources’ contributions to the 0
th

 

order angular fluxes are still needed.  Therefore, the only parts of matrix D used in subsequent 

calculations are the first column, which will provide the spatial information necessary for the 

high order spatial DGM equations, and the first row, which incorporates the spatially dependent 

del term into our 0
th

 order calculation. 
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This mixed low order, high order recondensation process can then be depicted according to 

Figure 11. 

 

Figure 11 : Flowchart for including high order spatial information into the 0th order recondensation 

procedure 

The result is a decoupling of the high order DGM equations from the 0
th

 order coarse group 

equations, allowing for a flexible treatment of the material properties.  Any number of 

combinations of averaged and spatially dependent cross sections or del terms can be used in the 

coarse group equations.  The following combinations were tested to identify the level of spatial 

dependence necessary to improve upon the original 0
th

 order recondensation solution.  It should 

be further noted that including more spatial information will lead to increases in the memory 

requirements of the method. 

1. Only use spatial dependence in the del term. 

2. Use the spatial dependence of angular flux and del term to evaluate the del source. 

3. All spatial dependences are considered, including fission, scattering and scalar fluxes. 

4. All spatial dependences are considered and the full matrix D is used in the postprocessing 

step that takes place in each iteration within the coarse group eigenvalue solve. 
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3.7.2 Results for 1D Benchmark 

Each of these steps successively adds more spatial information from the high order DGM 

solution into our 0
th

 order coarse group equations.  The fourth test case is used to validate the use 

of the low order D matrix to maintain consistency with the 0
th

 order problem.  

 

Figure 12 : Comparison of group 1 RMS errors (y-axis) for different spatial order transport calculations (x-

axis) using various spatial approximations to represent the cross sections 

In Figure 12, it is found that the best and most consistent reduction in group 1 errors is achieved 

when we include all the spatial dependences of our cross sections and when using the full 

definition of the D matrix from our 1D HOMOC.  This makes sense since local errors in the the 

fast fluxes will have a greater impact across the rest of the core due to the longer mean free paths 

of fast neutrons.  Also, the mean free path is larger than the average cell size, allowing better 

resolution of spatially dependent behavior.  Therefore, including all spatial information into the 

recondensation procedure will produce better agreement in fluxes across the core and lead to 

much lower core averaged RMS errors. 
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Figure 13 : Comparison of group 47 RMS errors (y-axis) for different spatial order transport calculations (x-

axis) using various spatial approximations to represent the cross sections 

For group 47 fluxes, however, the behavior is quite different.  For all 4 of the tested 

combinations the original solution was improved.  This is likely because the local errors do not 

propagate very far from their originating cells and the mean free path of the group 47 flux is 

smaller than the size of the current mesh.  All things considered, it is apparent that the case 

taking into consideration the most spatial information is the only consistent procedure. 

Therefore, this work has shown that high order spatial DGM equations can be used to provide 

corrections to our 0
th

 order coarse group equation and drive the coarse group solution closer to 

the true 0
th

 order fine group solution.  Unfortunately, doing so in a consistent manner requires 

use of all spatially dependent material parameters and fluxes, making our coarse group equations 

no longer 0
th

 order in the conventional sense.  The high order spatial equations are required for 

the “0
th

” order coarse group solve in order to incorporate the spatial information of the del term.  

Since the cost is similar to that of improving consistency for the higher order spatial methods, 

this spatial recondensation does not appear well suited for low order spatial method. 
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3.8 Memory Considerations for Spatial Recondensation 

While these methods have demonstrated the ability of high order spatial recondensation to 

correct for the spatial inconsistencies in DGM, they are still inadequate.  Increasing the spatial 

order of the angular flux expansion requires increased memory storage.  When these methods are 

applied 2D and 3D geometries, the number of gauss points will roughly increase as the order 

squared and cubed respectively.  This will put an enormous burden on the memory of a given 

system.  However, moving towards whole core analysis, this procedure leads to major memory 

issues that need to be addressed.  

Since computational power is generally considered to be cheaper than storage capacity, storage is 

typically replaced by on the fly calculations to reduce these memory requirements.  Therefore, a 

redefinition of the material properties for DGM is conducted to replace storage with on the fly 

calculations.  This is done by joining together two previously separate steps of the 

recondensation process.  The first step is the explicit reconstruction of the fine group fluxes after 

solving the DGM equations and the second is the generation of the new material properties using 

the reconstructed fine group fluxes.  Since the reconstruction process itself does not change, this 

calculation can be explicitly placed within the generation of the new material properties.  The del 

term can be redefined according to Equation (3.31). 
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 (3.31) 

Here,     
̿̿ ̿̿ ̿ is defined as the total cross section mass matrix.  It is formed using the fine group 

total cross sections for a given material and the discrete basis functions used in DGM. In this 

summation,    is the normalization constant for the j
th

 discrete basis function.  This mass matrix 

can be thought of as mapping the contribution of the j
th

 flux moment to the i
th

 cross section 

moment.   
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This redefinition of the del term requires only the total cross section mass matrix and the coarse 

group total cross sections be stored to calculate the del terms on the fly.  The mass matrix only 

needs to be stored for each coarse group and material type; resulting in negligible storage 

requirements (for the whole core problem the maximum storage would be approximately 3 MB).  

The major storage requirement therefore comes from the coarse group total cross section (10 

groups assumed), which is stored for each cell, angle and coarse group.  This shifts the storage 

requirement on del to the angular fluxes.   

The fission and scattering cross sections can be redefined in a similar fashion to minimize 

storage requirements.  For these material properties, only their respective mass matrices and 

vectors need to be stored for each material type, requiring storage of roughly a few MB for the 

same example.  For these definitions, only the scalar fluxes need to be stored, leading to 

significantly less memory consumption relative to the del term.  

The spatial del term is still the most memory intensive property in the entire calculation.  For this 

term, it is necessary to store the angular flux values for each moment within each coarse group 

(the total is the same as the total number of fine groups), for each angle, for each cell and each 

spatial moment.  To put this in perspective, imagine a 2D whole core geometry which spatial 

recondensation is applied to.  This core is discretized into a million cells, each of which contain 3 

spatial moments for a 1
st
 order spatial problem.  For the transport calculation 32 total angles are 

swept for each of the 200 fine groups (a total of 200 DGM moments).  The required storage for 

all the del terms (assuming double precision) for such a problem would be roughly 150 GB.  For 

the fine group problem in this case, the highest memory requirement is the scalar flux, which 

only needs to be stored for each cell and fine group, leading to 1.5 GB of storage in the case of 

considering only isotropic scattering.  This would certainly increase if anisotropic scattering 

were taken into account.  Increasing the spatial order of calculation also causes the number of 
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spatial moments to increase quadratically in 2D as opposed to linearly in 1D, further increasing 

storage requirements. 

In addition, the angular dependence may also be represented in terms of continuous basis 

functions, which would further reduce memory requirements but could lead to an increase in the 

errors introduced into the recondensation process.  

3.9 Summary 

To our knowledge, this is one of the first successful attempts at placing local spatial dependence 

in the the multigroup collapse procedure.  Using numerical integration with the Gauss-Legendre 

quadrature, high order spatial cross sections can be coupled to a high order spatial method.   At 

this point, only 1D testing has been conducted with this approach.  However, the numerical 

integration techniques used in our 1D example are already widely used in solving PDEs using 

finite element methods.  Therefore, this work is able to provide much insight into conducting the 

multigroup collapse procedure in a consistent manner when working with a finite element 

representation of a 2D core geometry. 

For our purposes, these spatially dependent cross sections have been successfully used in DGM 

equations to drive the converged flux moments closer to the fine group solution.  However, the 

issue of spatial consistency has only been partially addressed because the spatial recondensation 

approach is only asymptotically consistent.  Higher and higher spatial order representations of 

the angular fluxes can be used, but full consistency between DGM and the fine group problem 

can’t be feasibly achieved with this approach.   

There is also the very real problem of storing the angular fluxes.  In order for this work to be 

competitive, memory costs ideally would be lower than that of the fine group problem.  At this 

point, the memory requirements are at least two orders of magnitude greater in term of storage 

requirements when only considering isotropic scattering in the fine group problem.  On top of 

that, there is currently no consistent equivalent of 1D HOMOC in the arena of 2D solvers.  The 

best choice moving forward with this approach would be implementation into a finite element 

based neutron transport code.  However, the goal of this thesis was to make DGM and 
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recondensation applicable to a wide range of methods and problem.  In order to avoid being 

limited to finite element methods, it was necessary to find a new way to resolve the 

inconsistencies in DGM without resorting to the use of high order spatial cross sections.   
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4 Exact Spatial Recondensation 

In all previous work, the DGM equations were derived using the integro-differential form of the 

neutron transport equation.  Typically this is the best place to start because this is our primary 

source for ensuring conservation of neutrons.  However, in this particular case, the assumption 

that no particular spatial method has been applied limits the current DGM formulation.  The 

result is a del term that neglects the assumptions of the spatial method applied after formulating 

the DGM equations.   While the original del term becomes generalized and can technically be 

applied to any spatial method, full consistency is only observed for 1
st
 order methods assuming a 

flat angular flux.  Therefore, instead of forming a generalized del term, we decided to form a del 

term specifically for MOC by conducting the spatial integration on our transport equation first 

and then derive a set of DGM equations for this method. 

4.1 Derivation of Exact Recondensation for 1D MOC 

Instead of starting with the fine group equations in their integro-differential form, we assume that 

MOC has been applied.  This provides two equations that govern neutron conservation along a 

single 1D track superimposed on a given problem. 

 

      ( )    ( )     ( )    ( )  ( ) 

  
̅̅ ̅̅ ( )  

 

 
(  ( )     ( )    ( )  ( )) 

(4.1) 

In the first part of Equation (4.1), the incoming angular flux and the flat source are multiplied by 

respective coefficients, A and B to determine the outgoing angular flux.  The second equation 

uses coefficients, B and C, along with the incoming angular flux and the cell averaged source to 

determine the cell averaged angular flux for fine group K within coarse group g. [15] The 

notation denoting angle and segment has been dropped to maintain clarity. 

If we want to apply DGM consistently, we need to form a del term that can reproduce the exact 

outgoing and average fine group angular fluxes while instead using the the coarse group total 
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cross section to define the A, B, and C coefficients.  While the incoming-outgoing angular flux 

relation is directly related to the cell averaged angular flux relation, both are shown to highlight 

the need for two different correction terms to be introduced since difference streaming 

coefficients are used between the two equations in Equation (4.2). 

 

      ( )         ( )      ( )    
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(       ( )      ( ))    

   ( ) 
(4.2) 

These correction factors,   
  ( ) and   

   ( ), will be called del sources, since they act like 

source corrections to the MOC equations.  These del sources can be defined by setting Equations 

(4.2) and (4.3) equal to each other and then subtracting the necessary quantities.  The del sources 

are now defined according to Equation (4.3). 
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(4.3) 

Now, instead of using the differences in the total cross sections to define the del term, the del 

term is now calculated using the difference in the fine group streaming term and the coarse group 

streaming term. 

 

   ( )    ( )     

   ( )    ( )     

   ( )    ( )     

(4.4) 

Now a new set of moment equations are obtained by multiplying the modified fine group 

equations by the discrete basis functions and then sum over all fine groups K within coarse group 

g.  This leads us to the following equations defining the outgoing and cell averaged angular flux 

moments. 



 

75 

 

 

 

 

                              
   

    
̅̅ ̅̅ ̅  

 

 
(                )      

    
(4.5) 

These sets of equations are unsuspectingly difficult to actually solve.  This is due to the 

definition of the corrective terms on the right hand side.  The terms are defined by the action of a 

set of coefficient matrices on all the incoming angular flux moments for that particular coarse 

group. 
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(4.6) 

The coefficient matrices are produced through application of the discrete basis function on the 

differences between the fine group and coarse group streaming coefficients. 
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(4.7) 

These equations are almost in the same form as the original DGM equations now.  The cell 

averaged source moment is still defined by the scattering cross section and chi moments 

calculated during the recondensation process according to the work conducted by Zhu and 

Forget. [41] The only difference in these equations is that the del source is now defined in terms 

of the incoming angular flux moments and cell averaged source moments.  This is still not quite 

a DGM method, since these sources still contain couplings between all equations i and j within 
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the same coarse group.  Therefore, we divide the del source by the cell averaged angular flux and 

create a new del term that is fully consistent with the fine group MOC equations. 
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(4.8) 

Our new set of DGM equations defined in Equation (4.8) is very similar to the original 

formulation, except that in the case where i=0, the new del term does not vanish as it did in the 

original DGM equations.  This allows the del term to correct for the spatial errors without the 

need for additional high order spatial equations.  Although we have a new term added to the i=0 

equation, the sources for all the other higher order DGM equations still only depend on the 

coarse group solution.  Therefore, this new formulation still allows us to conduct the power 

iteration on the leading order equation, i=0, and then do a single sweep on the rest of the DGM 

equations for fine group flux reconstruction.  Once fine group reconstruction takes place, we can 

then recondense our cross section moments as before and use Equation (4.9) to update the del 

terms. 
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(4.9) 

We have now produced a new set of DGM equations built specifically for 1D MOC that enables 

the recondensation procedure to converge to the exact fine group solution. 

4.2 1D Benchmark Results for Exact Recondensation 

This new method is tested by using the true fine group solution from the 1D BWR problem to 

provide all the cross section moments and del terms for the DGM equations.  The leading order 

DGM equation is used in the power iteration until the same convergence criteria used in the fine 

group calculation are satisfied.  The higher order DGM equations are then solved and the fine 
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group fluxes are reconstructed.  This process was conducted for consecutively finer meshes.  If 

these equations are exactly consistent, then the errors remaining should be on the order of the 

convergence criteria and should not depend on the mesh size for the problem.  If an 

inconsistency remains, then the errors should start at some level above the convergence criteria 

and drop as the spatial problem is refined. 

 

Figure 14 : Comparison of errors in keff using the original del term definition and exact definition for varying 

mesh size 

From Figure 14, we see that while the original DGM solution slowly converges to the fine group 

solutions as the mesh size decreases, the MOC-DGM solution converges to the near exact 

solution.  We also see very little variation in the magnitude of the persisting errors as the mesh 

size decreases, further showing that the MOC-DGM equations allow the recondensation process 

to converge (within the convergence criteria, of course) to the exact fine group solution without 

need for any additional high order equations. 

4.3 Convergence Properties of Exact DGM 

Up to this point, no effort has been made to optimize the convergence properties of the 

recondensation process.  For all previous results, convergence of the recondensation process took 

roughly 100 iterations or more and required roughly the same number of transport sweeps as the 

full fine group problem.  The lambda value for the Krasnoselskii iteration was set to a very low 
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value, no effort was made to optimize the choice of coarse group structure and the convergence 

criterion used on the coarse group eigenvalue problem was extremely tight regardless of how 

inaccurate the initial guess was.   

The coarse group structure was modified according to the algorithm proposed by Gibson and 

Forget [11].  They suggest choosing the coarse group structure such that the ratio of the 

maximum and minimum fine group total cross sections within that coarse group remains below 

2.  This selection process is conducted one group at a time for all materials present in the 

example core.  Each material will likely have a different choice for the first coarse group, so the 

smallest one is chosen to ensure this ratio is maintained across all materials in the core.  This 

process begins again until the whole fine group domain has been distributed between the coarse 

groups.  For the 1D BWR geometry, a 6 coarse group model was able to roughly satisfy this 

constraint using 4, 4, 7, 27, 3 and 2 fine groups for each of the respective coarse groups.  This 

new coarse group structure allows us to use a λ of 0.9 for the Krasnoselskii iterations. 

4.3.1 Choosing the Eigenvalue Convergence Criteria 

In addition to choosing a different coarse group structure, we can also optimize how we solve the 

coarse group problem within recondensation.  Most of the work using DGM in recondensation 

supposes that fixing the convergence criteria for the coarse group to that used for the fine group 

calculation is the best option.  Unfortunately, if a poor initial guess is used to initialize 

recondensation and a tight convergence criterion is used, this will cause an unnecessary amount 

of work to be placed on converging the coarse group problem when the cross sections 

themselves may be way off.  Ideally, an algorithm needs to be put in place that can anticipate the 

convergence criteria needed to improve the coarse group solution enough so that source 

moments for our DGM solve are improved.   

Therefore, the recondensation procedure was modified such that the convergence criteria placed 

on the coarse group eigenvalue problem could change as the convergence of the reconstructed 

fine group fluxes improved.  In this work, the convergence criteria were set to the maximum 

change in the reconstructed fine group fluxes between recondensation steps and then divided by 

10.  The idea behind setting this value is that one would be setting their coarse group calculation 
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to converge the fluxes just enough so that the DGM solve will reconstruct a better fine group 

flux next time.  For these calculations, the convergence criteria set for the outer iteration (the 

recondensation iteration) is 10
-8

. 

      
    

‖
 
 ( )  

 
   ( )‖

 

  
 

(4.10) 

This approach was taken to affect the recondensation process in two major ways.  First, it 

reduces the computational burden placed on each eigenvalue solve by limiting the number of 

transport sweeps used to converge the coarse group fluxes.  This is achieved by assuming that 

the maximum difference in the fluxes between the previous two recondensation steps provides a 

decent estimate of the error remaining in the recondensation process.  Since there is not enough 

information to inform this method at the beginning, the criteria are set to 10
-3

 for the first two 

recondensation steps.  Second, dividing the maximum difference between recondensation steps 

ensures that the improvements between recondensation steps are not held back because of 

inaccurate eigenvalue solutions. 

This algorithm was tested using the 1D BWR example with a flat initial.  Since this initial guess 

is very poor, the value of λ for the first recondensation step was set to 0.3 to ensure stability and 

then increased to 1.0 for all other steps.  A plot of the number of power iterations applied for 

each recondensation step provides a good indication of whether the desired goal has been 

achieved. 
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Figure 15  The number of power iterations used at each recondensation step for the fixed and variable 

convergence criteria case 

According to Figure 15, this method does provide a significant reduction in the total number of 

power iterations applied to the coarse group solve and a more even distribution of the power 

iterations throughout recondensation.  However, these improvements do come at the cost of an 

increase in the number of recondensation steps needed to converge the outer iteration.  It is 

important to remember that the true measure of improvement is in the total number of transport 

sweeps used through this process.  For the fixed convergence criteria case, the total number of 

transport sweeps required converge to the fine group solution is 77,744.  This is almost twice as 

much as the original fine group problem which required roughly 44,000 transport sweeps.  This 

is the predominant reason why recondensation has not been considered as a stand-alone method 

for accelerating convergence to the fine group solution.  However, when the variable 

convergence criteria are used, the recondensation process sheds a significant fraction of the 

transport sweeps, reducing to 14,063. 

While this algorithm does work, it is apparent that it is not ideal.  This method suffers from an 

instability that occurs when a small change in the reconstructed fine group flux occurs early on in 

the recondensation process.  Due to the non-monotonic convergence of the fluxes, the change 

between subsequent steps can be much smaller than the actual error at the current iterate.  Any 
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small changes between steps will cause the convergence criteria for the following eigenvalue 

calculation to be set unnecessarily tight.  For example, let’s look at the case when a small change 

results in a difference of 10
-6

 in the fine group fluxes even though the recondensation process is 

still 10
-3

 away from the true solution.  Using Equation (4.10) the convergence criteria for the next 

eigenvalue calculation will be set to 10
-7

.  This significantly increases the number of power 

iterations used in the following coarse group eigenvalue solve.  Such a large emphasis on the 

eigenvalue problem will likely lead to big changes in the reconstructed fluxes for the next step 

and produces a loose convergence criterion for the next eigenvalue solve.  This loose criterion 

results in very few power iterations in the next eigenvalue solve, leading again to a small change 

in the reconstructed flux.  Eventually, though, this oscillation is damped because the 

recondensation process is still driving the fluxes toward the fine group solution. 

To dampen the oscillations occurring using Equation (4.10), another scheme is introduced that 

uses a weighted average of the previous two recondensation steps.   

      

     
    

 ‖
 
 ( )  

 
   ( )‖

 
 (   )‖

 
   ( )  

 
   ( )‖

 

 
 

(4.11) 

It can be seen that Equation (4.10) is recovered when we set =10 and =1.  To evaluate the 

impact this has on the eigenvalues solves, we compared the total number of power iterations at 

each recondensation step for various values of . 
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Figure 16  The number of power iterations used at each recondensation step for various values of omega  

In Figure 16 we see that using Equation (4.11) can better distribute the number of power 

iterations used over the course of the recondensation process.  However, we must keep in mind 

that placing too little weight on the power iterations at each recondensation step will shift the 

focus to our DGM solves and significantly increase the number of transport sweeps.  Therefore, 

we must compare the total number of transport sweeps required to converge the outer iteration in 

order to establish the true performance of this method.  We also compare these results when 

using different factors of  in Equation (4.11).   
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Figure 17  Comparison of total number of transport sweeps for various parameters used in Equation (4.11) 

As expected, when we tighten the convergence using a high value for , here we use 100, the 

total number of transport sweeps substantially increases.  This makes sense because the 

convergence criteria placed on the eigenvalue solve gets set very tightly and therefore too much 

effort is placed on converging the eigenvalue at each recondensation step.   

When we reduce  to 10, the total number of transport sweeps decrease.  This is because we are 

now converging the eigenvalue to a value that is much closer to the error remaining between the 

current iterate and the fine group solution.   The number of sweeps further decreases as  is 

reduced until reaching a minimum at 0.5.  Further decreasing  sets the convergence criteria to 

the maximum difference two recondensation steps before, placing too lax of a constraint on the 

eigenvalue for the current coarse group calculation.  This requires more recondensation steps and 

therefore more DGM solves. 

Another decrease is observed when we set  to a very low value, in this case 2.  The total number 

of sweeps drops beneath 10,000 and reaches a minimum when  is 0.75.  This is curious because 

one would expect that the transport sweeps would increase for such a low  value because more 

emphasis is being placed on solving the DGM equations than the coarse group eigenvalue 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2
x 10

4



Total Number

of Transport

Sweeps

 

 

=2

=10

=100



 

84 

 

 

problem.  Therefore, the distribution of power iterations is analyzed in Figure 18 when setting 

=2 to better understand this behavior. 

 

Figure 18 Comparison of the number of power iterations per recondensation step for various values of  for 

 equal to 2 

One of the consequences of setting the convergence criteria too low is an increase in the 

instability observed before Equation (4.11) was applied.  While changing the value of  does 

seem to reduce the oscillations, it is not nearly as effective as it was in the =10 case.  These 

oscillations also have an effect on the convergence in keff  between recondensation steps.  When 

comparing the =2 and =0.75 case to the =10 and =0.25 case in Figure 19, we see that while 

the =2 case does converge faster overall, the convergence behavior is much more oscillatory 

throughout the recondensation process.  It is not readily apparent that this behavior is worrying, 

though.  Recondensation is still being driven to the fine group solution regardless of how the 

power iterations are distributed.  While divergence of the solution due to this behavior has not 

yet been observed, further work should be conducted to determine if these oscillations can 

indeed lead to divergence in the outer iteration.  Optimal choice of these factors will likely be 

problem dependent base since the appropriate choice of omega will depend on how quickly the 

recondensation process converges and beta will depend on how expensive the higher order DGM 

sweeps are relative to the coarse group sweeps. 
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Figure 19  Difference of eigenvalues between consecutive recondensation steps 

It is also important to understand how the initial guess affects recondensation’s convergence 

behavior as well.  For all of these cases so far we have assumed that the flux is flat both in space 

and in energy.  This provides an extremely poor initial guess to start the recondensation process.  

For a realistic problem, though, we will likely have cross sections and fluxes from a previous 

assembly level calculation to work with, so for the next set of tests we will be using these fluxes 

as an initial guess.  There is no guarantee that we have all the incoming angular fluxes to all the 

cell faces from the assembly calculation to calculate our del terms, so the cell-averaged angular 

flux from an adjacent cell is used instead as the incoming angular flux.  While this is an 

approximation that is not consistent with step characteristics, it should capture much of the 

spatial effects from the assembly calculation needed to make the initial guess better. 
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Figure 20  Comparing convergence profiles when initial criteria set to 10
-3

 

In Figure 20, we see that choosing loose convergence criteria for the beginning of 

recondensation introduces a significant amount of oscillation in the convergence especially when 

 = 0.5 or greater.  Interestingly, the overall convergence profile shifts closer to the fixed 

eigenvalue case and when  = 1.0 the method converges faster than the fixed case.  One should 

remember, though, that since we are starting from better approximation we should also be using 

tighter convergence criteria from the beginning.  Any poorly converged solutions at the 

beginning of recondensation may be causing error cancellations and lead to false acceleration.  

To test this hypothesis, we ran these cases again but this time setting the initial convergence 

criteria to 10
-4

. 
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Figure 21   Comparing convergence profiles when initial criteria set to 10
-4

 

In Figure 21, we observe that using tighter convergence criteria reduces the number of 

recondensation steps it takes to converge.  In fact, we see that when =1.0 the convergence 

profile almost exactly matches the fixed convergence criteria case.  When comparing both Figure 

20 and Figure 21, it becomes apparent that the non-monotonic convergence is really an 

oscillation about the convergence profile for the fixed criteria case.  This oscillation appears to 

be dampened when the initial convergence criteria is tightened.  If this is the case, then further 

tightening the criteria should result in better agreement with the fixed criteria case. 
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Figure 22 Comparing convergence profiles when initial criteria set to 10
-5

 

In Figure 22 we see that the convergence profiles match much closer to the fixed criteria case.  

As in the previous cases, much better agreement with the fixed criteria case is observed when the 

value of  increases.  We have now shown that errors from using loose convergence criteria in 

the first couple eigenvalue solves can propagate through the recondensation process and lead to 

poor convergence properties in recondensation.  Therefore, it is important to keep in mind how 

well the first couple coarse group eigenvalue problems are converged. 

While it is certainly important to make sure we are optimally converging in the outer iteration of 

recondensation, we must also look at the total number of transport sweeps recondensation 

applied to converge the solution.  For all the cases shown in Figure 20, Figure 21 and Figure 22, 

we plot the dependence of the total number of transport sweeps on  and the initial convergence 

criteria.  
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Figure 23  The effect that omega and the initial convergence criteria have on the total number of transport 

sweeps used in recondensation 

We see that the minimum in all cases is still achieved between  = 0.5 and 0.75, although it 

seems that placing more emphasis on the initial convergence criteria actually reduces the total 

number.  This makes sense in a way because when the initial criteria produced a poorly 

converged coarse group solution, this brought more errors on top of those the multigroup 

approximation introduced and resulted in the oscillatory behavior.  So, in the case where the 

initial criteria were set to 10
-3

, convergence required more outer iterations and therefore required 

more DGM solves.  When the initial criteria were tightened, the errors leading into 

recondensation were much smaller.  This reduced the oscillations observed previously and 

brought the convergence profile much closer to the case when the criteria were fixed at 10
-8

.  The 

effect was a reduction in the number of DGM solves.  While the Krasnoselskii iteration is being 

used, the fixed source sweep across all high order DGM equations requires roughly a fine group 

number of sweeps over the problem, therefore a decrease in the number of recondensation steps 

leads to a significant reduction in the total number of transport sweeps.  When compared relative 

to the fixed tolerance case, on the order of 77,000, the total number of transport sweeps has been 

reduced by over a factor of 7 in almost all cases. 
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While this method for choosing the convergence criteria at each recondensation step is shown to 

work well, it is by no means the only possible approach.  Theoretically, one could use any L-

norm to set the convergence criteria or apply the L∞ norm to the cross section values at different 

iterates instead.  There are many possibilities that could lead to further improvement, but this 

work shows that the L∞ norm defined in Equation (4.11) provides a good estimate in a quick and 

cheap manner.   

4.3.2 Defining a Natural Del Term 

One of the interesting qualities of the exact del term is how flexible it is in application.  This is 

best seen when we look back at how it was first derived.  We started with the original fine group 

equations with our spatial method already incorporated, but then stated that we wanted to use the 

coarse group streaming operator instead of those used for the fine group problem.  We then had 

to calculate the difference between the two sets of operators and then transform these differences 

using the discrete basis functions.  This is what led to the formation of the coefficient matrices 

used to calculate the del term.  From the definitions in Equation (4.7), the coefficient matrix can 

be expanded according to Equation (4.12) in terms of the fine group quantities and coarse group 

quantities. 

 
      
̿̿ ̿̿ ̿̿ ̿    ∑   (   )(  ( )    )  (   )

   

 (4.12) 

After applying the summations two matrices are produced.  The first is dense and corresponds to 

the transformed set of fine group streaming operators.  The other matrix is diagonal and contains 

the values of coarse group streaming operator. This same expansion can be applied to the 

coefficient matrices for B and C, as well.   

       
̿̿ ̿̿ ̿̿ ̿       

̿̿ ̿̿ ̿̿      (  ) (4.13) 

The purpose of these coefficient matrices is to map the contributions of all the flux moments 

within a coarse group to the overall correction needed for that particular moment, angle and 

spatial cell to drive the recondensation process to the fine group solution.  Since it is extremely 

unlikely that the diagonal of the fine group streaming matrix is the same as that for the coarse 
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group, the coefficient matrix ends up containing non-zero values along its diagonal.  This means 

that at the current recondensation step, every del term contains information about the incoming 

angular flux and source for the same moment from the previous step.   For example, if we look at 

the incoming-outgoing del term for DGM moment i and coarse group g, we see that the diagonal 

terms of the coefficient matrix provide information about the i
th

 moment of the incoming angular 

flux from the previous step.  Take note that r denotes the recondensation step, not the iteration 

within an eigenvalue calculation. 

     
             

̿̿ ̿̿ ̿̿ ̿        
 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑        

̿̿ ̿̿ ̿̿ ̿     
 ⃑⃑ ⃑⃑ ⃑⃑  ⃑ (4.14) 

At first, this observation does not seem to be of any significance, but if we insert this del term 

with its functional dependence into the incoming-outgoing equation, we observe something very 

interesting.  For our purposes, we assume that the coarse group values have been sufficiently 

converged in the eigenvalue calculation going into the DGM solve. 

         
           

        
      

    (      
             

        
           

   ) ̅   
  (4.15) 

The first thing we notice in Equation (4.15) is that the del term for moment i contains 

information about the sources and incoming angular fluxes for all moments not equal to i.  These 

dependences are very important because, although these values are taken from the previous 

recondensation step, they provide the necessary spectral information to improve the solution.  

Their incorporation into the del term is also what decouples all the flux moments from each other 

so that the moments can be solved independent of one another. 

The second observation is that the current outer iteration on the outgoing angular flux also 

depends on the incoming angular flux and source for moment i from this iteration and from the 

previous iteration.  This dependence is very odd because, in a typical transport sweep, the 

outgoing angular flux only depends on the current iterate of the incoming angular flux and 

source.   Therefore, since we’re now using a combination of the current and previous iteration, 

the convergence of the solution very well could be lagging behind what it could achieve 

otherwise.  To test this hypothesis, a slight modification was made to the exact del term to 
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remove the dependence on the previous iterate but still provide the necessary spectral 

information from all the other moments. 

The primary source of this problem is that the coefficient matrices have nonzero elements along 

their diagonals.  This is because we assumed in our previous definition of the del term that we 

wanted to use the coarse group streaming operator for each of the moment equations. While 

transforming the equations in this fashion is much more intuitive and straightforward, there is no 

reason we can’t use some other value entirely.  By definition of the exact del term, we can use 

practically any value in place of the coarse group streaming operator and still maintain 

consistency with our fine group problem throughout the recondensation process. 

To remove the redundancy in our del term definition, we apply the discrete basis functions to our 

fine group equations without first assuming that we want to use the coarse group streaming 

operators.  This leads to the following set of equations for the outgoing angular flux and cell-

averaged angular flux moments.  We expand the matrix-vector form of the equation into its 

summation notation for the sake of clarity. 

 

         ∑            

   

 ∑         

   

 

    
̅̅ ̅̅ ̅  

 

 
(∑            

   

 ∑         

   

) 

(4.16) 

To remove all the contributions of the i
th

 flux moment from the del term definition for that 

moment, the diagonal terms from the A and B matrices must be removed. 

 

                                ∑            
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(4.17) 

By taking the diagonal terms out of the summation, we have defined a new streaming term for 

every flux moment equation whereas before we had only defined one term for all these moment 
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equations.  While these streaming terms produce a set of equations that are DGM-like, they are 

markedly different because no group collapse action on the fine group total cross sections is 

required.  The new streaming terms for use in our DGM equations are calculated using only the 

fine group streaming terms and the discrete basis functions without any weighting by angular or 

scalar fluxes.  Since the spatial method has already been applied, conservation is no longer 

placed on a coarse group removal reaction rate per se but rather it is placed on the streaming and 

removal that occurs within a given cell. 

The primary benefit of this new approach is that these streaming terms do not need to be changed 

after each recondensation step.  Since this method uses the fine group streaming terms without 

any weighting by flux moments, no update of the coarse group total cross section is required.  

This “natural” del term can then be defined as follows. 

 

    
   

∑                 ∑             

    
̅̅ ̅̅ ̅̅

 

    
   

 

 
  

(∑                 ∑             )

    
̅̅ ̅̅ ̅̅

 

(4.18) 

Now, the del term for coarse group g and moment i only takes in information from all other 

moments not equal to i within the same coarse group. We first test this new definition of the del 

term using the fixed convergence criteria case and compare the results to the previous exact del 

term. 
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Figure 24  Comparing the convergence profiles of the natural del term and the previous del term 

The resulting difference between the two definitions is very interesting.  Using the natural del 

term instead of the previous exact definition reduces the number of recondensation steps by 

about a third.  This definition does, however, introduce some oscillation to the convergence 

profile that was not there before.  The reason for this non-monotonic convergence will be 

explained later in Section 5.1.4.   While this oscillation is a drawback of this approach, this is 

outweighed by the fact that this natural del term dropped the total number of transport sweeps 

from 30,564 to 20,460.  Since the reduction in total sweeps is directly proportional to that of the 

recondensation process, this tells us is that the speed up in convergence is driven solely by a 

decrease in the number of fixed source DGM sweeps and not in the number of coarse group 

sweeps. 

Another noteworthy observation is that this does not appear to be an acceleration per se, since 

the average slope of the convergence profile for the natural del term roughly matches that of the 

previous case.  Instead, what is occurring is a faster improvement in the reconstructed fine group 

solution at the beginning of the recondensation process.  However, it is important to ensure that 

the initial decrease in k is not due to some error cancellation.  Therefore, we also looked at the 

convergence profile for the core RMS errors for the 4 fine group fluxes in the first coarse group. 
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Figure 25  Comparison of the actual RMS scalar flux errors for the first 4 fine group fluxes using the exact 

and natural del term definitions 

When we compare the errors in the fine group fluxes, we find that there is an initial drop in the 

error when using the natural del term.  When we use the previous definition, the error actually 

increases after the first coarse group eigenvalue solve.  Though we only show the results for the 

fine groups in coarse group 1, the fine group fluxes in the first 3 coarse groups all exhibit similar 

behavior.   It’s not until we reach the last 3 coarse groups that the convergence profiles begin to 

match a little closer to each other.  Figure 26 shows the comparison for the 3 fine group fluxes 

within coarse group 5. 
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Figure 26 Comparison of the actual RMS scalar flux errors for coarse group 5 using the exact and natural del 

term definitions 

Since this new definition showed so much promise in improving the convergence of 

recondensation, it seemed logical to evaluate the flexibility of the algorithm developed in Section 

4.3.1 by testing it with this approach.  Instead of using the fixed convergence criteria, we set the 

initial criteria to 10
-5

,  to 0.50 and  to 10.  This choice of parameters provided a good 

compromise in terms of both minimizing the total number of transport sweeps while also closely 

matching the convergence profile of the fixed eigenvalue case.  We use these parameters with the 

new del term and compare the results to assess the flexibility of this algorithm. 
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Figure 27  Comparison of the convergence profiles for the fixed and variable criteria cases 

We see right away that the previous choice of parameters do not work so well with this new del 

term.  Since the convergence properties of recondensation have changed, =10 does not allow 

the convergence criteria to decrease fast enough.  This causes the convergence profile to deviate 

substantially from the fixed criteria case.  It also produces the oscillations in the number of 

power iterations at each recondensation step that we were trying to avoid.   

 

Figure 28  Comparison of the number of power iterations per recondensation step for fixed and variable 

criteria cases 
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Therefore,  was increased to 50 to improve the algorithm’s performance.  This new value was 

able to adequately dampen out the oscillations in the power iterations and better match the fixed 

eigenvalue’s convergence.  For this case, the total overall number of transport sweeps it took to 

converge was 6,383, a decrease by roughly 2,000 transport sweeps from the variable case in 

Figure 23. 

While the non-monotonic convergence of the recondensation process with this new del term is 

not well understood at this point, it has been shown that the natural del term can speed up 

convergence in the outer iteration.  From this point on, this definition will be used in DGM.  

Unfortunately, since the algorithm for choosing the coarse group convergence criteria does not 

seem as flexible as initially thought, it is hard to know a priori what the best choice of  will be 

for any given case.  The best choice of  will likely depend on the methods used and the problem 

it is applied to.  Further discussion of this subject is beyond the focus of this work, therefore, we 

will continue to set  to 50 when using the natural del term and 10 when using the exact del 

term. 

4.3.3 The Del Term as a Modification to the Streaming Coefficients 

We can also change the convergence properties of recondensation by reevaluating how we use 

the del term into our DGM equations.  In Lei Zhu’s thesis, he included it into the equations by 

treating it as an additional source. [41]  

The derivation in Section 4.1 took a slightly different approach.  When we defined the exact del 

term, we did so in such a way that it was kept outside of the transport sweep.  We could have 

included it into the sweep process as was done previously, but this would have meant dividing 

the del term by the streaming coefficients so that we could later multiply them with these same 

coefficients at the next iteration.  This adds an unnecessary number of additional computations 

that we can avoid by using the DGM equations as defined in Equation (4.8). 

One of the unfortunate side effects of this method is that, when solving the coarse group 

equations, there is an additional term to the right side of our equation that is dependent on the 

coarse group angular flux values which we are iterating on.  This approach poses a problem if we 
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wish to use nonlinear methods to solve our coarse group eigenvalue problem.  Since we would 

be maintaining an explicit dependence of the residual on the cell-averaged angular fluxes, this 

requires searching for updates to the angular fluxes at each Newton step.  For a typical 

eigenvalue solve, one only needs to update the scalar fluxes.  Therefore, this approach 

significantly increases the number of unknowns that we need to solve for at each Newton step.  

In addition to making DGM applicable to nonlinear methods, it would also be far easier to 

implement DGM in pre-existing codes if this additional angular term could be dropped entirely.   

If we analyze how the del term is used in the power iteration, we gain some intuition about how 

it is being used.  We change Equation (4.8) slightly by adding the index k of the current iteration 

to obtain Equation (4.19).  Here, we see that the del term is essentially adding a fixed point 

iteration into each power iteration because the del term itself does not change.  Instead, it is the 

action of the cell-averaged angular flux on the del term which modifies its contribution to our 

calculation. 
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 )      
   

 ̅   
  

(4.19) 

Therefore, on top of converging the scalar flux and source during the power iteration, we also 

need to converge the angular source due to the del term at the same time.  We do not wish to 

potentially waste time converging this angular source, though, since the only way we benefit 

from the recondensation process is by keeping our eigenvalue solve as computationally cheap as 

possible.   

To get around this issue, we make an assumption that simplifies Equation (4.19).  A reasonable 

approximation is to assume that the angular flux at the k and k+1 iterations are the same. This is 

a good assumption because we know that when the eigenvalue problem is sufficiently converged 

the angular flux between iterations will be nearly identical.  Therefore, as the number of 

iterations approach infinity, we can simplify the average angular flux equation according to 

Equation (4.20). 
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This is equivalent to carrying out a fixed point iteration on the external angular source while 

keeping the incoming angular flux and source contributions fixed.  The convergence properties 

of the power iteration are now placed solely on the scalar flux and source update as was the case 

in the original coarse group eigenvalue problem. 

We can further simplify the incoming-outgoing equations if we’re assuming that the two iterates 

are the same.  Since we assumed that the k and k+1 iterates of the average angular flux were 

equal, we can substitute Equation (4.20) into the incoming-outgoing relation in Equation (4.19).  

This removes all dependence on the cell-averaged angular flux and instead uses the del terms to 

provide corrections to the streaming coefficients. 
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In theory, these modified equations should allow the coarse group equations to converge without 

spending unnecessary time converging the angular flux source contribution from the del term.  

Additionally because this new form doesn’t contain any explicit dependence on the cell-averaged 

angular flux, this opens up the eigenvalue problem for usage with nonlinear eigenvalue solvers 

other than power iteration and can be implemented into current transport codes more readily. 

There is some uncertainty, however, in this new formulation’s effect on the stability of the 

recondensation process.  If the approximation that the cell-averaged angular fluxes between 

power iterations is identical breaks down, then any poorly converged solutions could increase the 

number of recondensation steps.   On the other hand, if this assumption does hold, then any 

effects should be limited to the power iteration and not affect the convergence of the outer 

iteration.  Therefore, the cases where del is incorporated as a source term according to Equation 

(4.8) and when incorporated as a modification to the streaming coefficients according to 

Equations (4.20) and (4.21) are compare in Figure 29. 
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Figure 29  Comparison of convergence profiles when incorporating the del term as a source and as a 

modification to the streaming coefficients 

First, we use the fixed convergence criteria and compare the results when using the del term in 

its traditional source implementation and as a modification to the streaming coefficients.  Both 

convergence profiles are nearly identical until they approach 10
-6

.  There is some deviation after 

recondensation step 13, but this difference nearly disappears once the solution is sufficiently 

converged.  We also applied the variable convergence criteria algorithm to the coefficient 

modification approach.  Early on in recondensation, the new approach differs somewhat from the 

source approach but the profiles still match closely throughout the process. 

If we also look at the distribution of power iterations throughout the recondensation process, then 

we can see the source for these different convergence profiles.  For the fixed criteria case, the 

distribution matches well at the beginning which means that the approximation made to develop 

the coefficient modification approach holds well.  After step 13, fewer power iterations are 

required to converge, but this means that more work is applied in the following step to 

compensate for the poorly converged coarse group solution.  The normal behavior resumes after 

this brief oscillation.  In Figure 30, the behavior for the variable criteria case seems to match 

fairly well throughout all the recondensation steps.  
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Figure 30 Comparison of the number of power iterations at each recondensation step when using the del term 

as a source and as a modification to the streaming coefficients 

While there are minor differences when using the del term as a correction to the streaming 

coefficients, these deviations do not significantly affect the total number of transport sweeps 

applied to converge to the fine group solution.  For the fixed criteria case, the number was still 

around 22,000 total transport sweeps and for the variable criteria case, convergence occurred at 

around 6,400 total transport sweeps. 

Another modification can be made to the del term definition for the cell averaged angular flux 

equation by dividing with the scalar flux instead of the angular flux.   
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(4.22) 

Since we use the scalar flux, the source term in the average angular flux equation is only 

angularly dependent because of the del term itself.  We can then apply the quadrature summation 

on the cell-averaged angular flux equation and come up with an equation for the scalar flux.  

Index l is now included to denote the angular dependence of the problem. 
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In Equation (4.23), it is noticed that the term on the left is the definition of the updated scalar 

flux to be used in the next power iteration.  The first term on the right is the scalar flux that 

would be calculated if the del term were not included into the coarse group equation.  The term 

on the far right is a summation over the angular del source.  Since the del term is the only source 

of angular dependence, the scalar flux can be removed from the quadrature summation. 
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 (4.24) 

We see that we have another fixed point iteration on the angular del source embedded into the 

power iteration.  To further simplify our equation for the scalar flux, we assume that we conduct 

this fixed point iteration before actually conducting our sweep through the geometry.  Now that 

the scalar fluxes are equivalent, we can move the far right term to the left and solve for the scalar 

flux. 

     
    

∑   
 
 
(                  

 ) 

  ∑         
   

 

 (4.25) 

One can see that we no longer have a dependence on the del term for each angle, but rather the 

quadrature weighted sum of the del term.  This reduces the memory requirements for the coarse 

group del term since we have completely removed the angular dependence.  We still need to find 

a way to factor this into the incoming-outgoing equation, though, which still depends on the 

average angular flux. So we expand the fully updated scalar flux in terms of its angular fluxes 

and find that the corrected angular flux is still multiplied by the same factor as the scalar flux. 
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(4.26) 

If we again assume that we have converged the fixed point iteration within the power iteration, 

then the cell averaged angular flux should be equivalent to the updated angular flux.  So we 

substitute the new angular flux into the incoming-outgoing equations and define a new set of 

modified streaming coefficients.  
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(4.27) 

Equations (4.25) and (4.27) were then implemented and tested on the 47 group 1D BWR 

example.  The results for this method are compared to the source implementation of the del term 

in Figure 31.

 

Figure 31  Comparison of convergence profiles when using the del term as a source and as a modification to 

the streaming coefficients 
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We observe in Figure 31 that using the scalar flux in the cell-averaged del term does not 

adversely affect the convergence of recondensation.  When using either the fixed or variable 

convergence criteria, good agreement is shown when compared to the source implementation of 

the del term.  The total number of transport sweep in both cases remains very close to the source 

implementation as well. 

While there is no benefit in terms of accelerating convergence with this different implementation 

of the del term, it has two main benefits regarding implementation.  There is a significant storage 

reduction since the corrective factor for the cell-averaged flux equation is not dependent on 

angle.  For this approach, one only needs to store this factor for each coarse group and cell for 

the i=0 DGM equation.  Also, one no longer needs to build a source completely separate from 

the fission and scattering to incorporate the del term.  With this new approach, we only need to 

look at the transport method used and add in the del term dependence to the streaming 

coefficients. 

Implementing this same approach to the higher order DGM equations is slightly different.  For 

Equation (4.8), the i>0 moments contain a del source that is dependent on the coarse group flux.   

At first, it isn’t apparent that we can apply any of the algebraic manipulation we conducted for 

the i=0 equations.  However, we need to remember that we are no longer in the context of the 

power iteration but are now in the recondensation procedure.  The primary difference in this case 

is that no successive iteration takes place since this is a fixed source sweep, the sole purpose of 

which is to update the fission and scattering cross sections and the del term.  The fission and 

scattering cross section update is straight forward since they only require the reconstructed fine 

group scalar fluxes.  The del term must be updated on the fly, though, to avoid storing the 

incoming angular flux moments on each of the cell’s faces.  If we do this, then we no longer 

need to temporarily store any incoming or cell-averaged angular fluxes at each recondensation 

step.  While this approach does not affect the incoming-outgoing equation, it does allow us to 

simplify the implementation in the cell-averaged angular flux equation.  First we apply our 

quadrature weighted summation in Equation (4.28). 
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When we do so, the left term becomes the new fine group scalar flux moment and the first right 

term is the scalar flux moment we would have calculated if we weren’t using a del term.  Since 

we used the scalar flux to define the del term, we can remove the scalar flux from the summation 

and leave the del term inside.   
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 (4.29) 

This new formulation allows us to first sweep through the i>0 DGM equations without using a 

del term and calculate an uncorrected scalar flux moment.  Once the scalar flux moments have 

been evaluated, we can use a corrective term that has no angular dependence.  This term is the 

del term numerically integrated with respect to angle and therefore is a scalar quantity.  This 

same term popped up when we applied this methodology to the coarse group equations and 

shows that we only need to store the cell-averaged angular flux del term for each cell and DGM 

moment.   

The incoming-outgoing equations still require the full storage of their respective del terms, 

though.  Applying the same averaged angular quantities that we did with the cell-averaged 

angular flux del term will introduce errors into recondensation because we would no longer be 

ensuring that the outgoing angular flux is consistent with the fine group problem.  Therefore, 

memory requirements are still the main hindrance to applying DGM to a realistic problem. 

4.4 Memory Requirements 

While we have proved that these new del terms allow for convergence to the true fine group 

solution, memory storage has suffered greatly in the process.  One thing that has not yet been 

discussed is the storage required for the coefficient matrices defined in Equation (4.7).  Not only 

do the incoming-outgoing del terms need to be stored, but also a coefficient matrix of size KxK 

(K being the number of fine groups within a coarse group) for each segment, angle, coarse group 
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and cell group.  Taking the 2D full core example problem from Section 3.8 and assuming an 

average of 6 segments per azimuthal angle while using 10 coarse groups (20 fine groups per), the 

total storage required becomes a staggering 18 TB. Therefore, it is extremely important to 

calculate these coefficient matrices on the fly instead. 

First, we look at the definition of the coefficient matrices from our new derivation.  We explicitly 

include the difference between the coarse group and fine group sweeping functions for MOC into 

this definition.  One approach that was considered was to Taylor expand the exponential 

dependence of these functions.  It should be noted that this procedure is only useful if the spatial 

method applied uses some sort of transcendental function, otherwise it is not necessary. 
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(4.30) 

By performing the Taylor expansion, the spatial information can be decoupled from the energy 

information.  We move the summation of the Taylor series outside the summation over the total 

number of fine groups and notice that we can define the coefficient matrix in terms of mass 

matrices. 
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Only the 1
st
 order mass matrix is really needed because of the following property of the n

th
 order 

mass matrix. 
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(4.32) 

Instead of having to store a coefficient matrix for every cell, angle and coarse group, one can 

store all the spatial and angular information separately and the mass matrix for the fine group 

total cross sections.  However, it becomes apparent that we have not really gained anything in 

terms of performance since we still need to evaluate a matrix exponential to calculate these terms 

on the fly.  Even if a rational function expansion were used to approximate the matrix 

exponential, this would eventually reduce down to a rational function approximating the 

exponentials contained inside the coefficient matrix. Therefore, we conclude that evaluating the 

fine group exponential functions on the fly is the most straight forward approach to calculating 

the coefficient matrices on the fly. 

With this issue resolved, we are now left with the memory burden of the incoming angular 

fluxes, which would still need to be stored for each segment.  The storage requirement is now 

roughly 500 GB.  This is definitely an improvement but still much larger than for the fine group 

problem.  One possibility to solution is to store the del term as angular moments, such as 

spherical harmonics, instead of as discrete angles.  Doing so would incorporate a moments-to-

discrete operator, such as that found in Denovo [8], that could take the angular moments of the 

del term and convert them to a value in a discrete direction on the fly.  Thus, if we were to store 

the values of del for 40 discrete angles (for a 2D problem using an S8 level symmetric 

quadrature) instead as 3 or 4 moments, we could further reduce storage by an order of 

magnitude.  However, it should be noted that any approximations we make on the incoming-

outgoing del term will cause our full consistency to breakdown and again lead recondensation to 

converge to a different solution. 
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4.5 Summary 

This section provides the first successful attempt at formulating an exact del term, allowing 

recondensation to converge to the exact fine group solution even when using a higher order 

method such as step characteristics in 1D.  While this new definition was successful, it produced 

non-monotonic convergence in the recondensation process. 

For this reason, a redefinition of the del term was considered which removed all dependence of 

the del term for a specific moment on that same angular flux.  This produced a natural del term 

with substantially improved convergence relative to the original exact del term definition.  

Unfortunately, this did not solve the non-monotonic convergence issue.   

Instead, the focus was shifted to further optimizing recondensation to reduce the total number of 

transport sweeps required to converge to the fine group solution.  A decent algorithm was 

produced which used the maximum difference between previous iterates to set the convergence 

criteria for subsequent coarse group eigenvalue calculations.  In preventing the coarse group 

calculation from converging all the way to the fine group convergence criteria, the total number 

of transport sweeps was reduced by a factor of 4 in some cases. 

Alternatively, all of these tools could be used instead to produce a considerably cheap 

improvement to a close initial guess of the coarse group flux from an assembly level calculation.  

Unfortunately, in order to accurately account for the missing spatial information in the DGM 

moment equations the exact del term definitions established in this section require inordinate 

amounts of memory for realistic transport problems.   

If exact convergence to the fine group solution was not required, future work could investigate 

ways of approximating this exact del term in an efficient manner through representation with 

continuous basis functions with respect to angle to provide cheap corrections to a coarse group 

solution 

However, at this point in time, exact recondensation remains limited by the memory 

requirements of the del term defined using DGM.  Therefore, the next section will continue 
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addressing this issue by relaxing some of the assumption made in the original derivation of DGM 

to determine if exact recondensation can be made feasible for whole core transport calculations. 
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5 The Source Equivalence Acceleration Method 

Ideally, a single scalar corrective factor would be defined in such a way to drive the 

recondensation process.  Unfortunately,  much of the memory issues regarding the current 

approach to DGM is tied to the incoming-outgoing del terms defined to correct the errors 

accrued when using the coarse group streaming coefficients in our transport sweep.  In order to 

even make a single scalar quantity feasible, the incoming-outgoing del term needs to be 

somehow removed from DGM. 

One of the main issues with Equation (4.2) is that any previous errors accrued before entering the 

current cell are not accounted for.  So instead of assuming that the true fine group is passed into 

the current cell, an incoming error term, Ein, to the incoming flux is added. 
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(5.1) 

In Equation (5.1),  ̃    ( ) refers to the incorrect incoming angular flux for fine group K since 

the same transport operator is being used across all the fine groups in the current coarse group g. 

At this point it is assumed that the source for fine group K does not contain any errors.  This is a 

good assumption since the only reason the source would be erroneous is from using inaccurate 

coarse group streaming coefficients in a previous iteration. 
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Separating the incoming errors and error sources in Equation (5.1) provides two different sets of 

terms in both of the relations in Equation (5.2).  The first term represents the transport sweep 

procedure that produces the incorrect angular fluxes when using the same transport operator 

across all fine groups within a coarse group.  The second term provides a correction which 
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incorporates all the errors accrued when using the same transport operator across all the fine 

groups.  These two sets of terms can be separated into two different transport sweep procedures 

such that the incorrect transport sweep can be carried out independently of the error sweep.  This 

separation allows one to use any pre-existing code for the incorrect transport sweep, minimizing 

the need for significant code rewrite. 

The error sweep can then be used to provide the necessary corrections to the incorrect outgoing 

angular flux and cell averaged angular flux according to Equation (5.3).  In these relations, 

 ̃      refers to the incorrect outgoing angular flux and   ̃ the incorrect cell-averaged angular 

flux.  The correct outgoing angular flux,       ,  and the correct cell-averaged angular flux,   
̅̅ ̅̅ , 

are produced by adding in the contributions of the incoming error and error sources to the 

incorrect outgoing angular flux and the incorrect cell-averaged angular flux. 
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(5.3) 

With these errors separated out, the transformation using our discrete basis functions can be 

applied to create a DGM-like set of equations. 
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(5.4) 

These error terms are useless, however, if there is no way of propagating them throughout the 

calculation.  Further inspection reveals that the entire term added to the incorrect outgoing 

angular flux is the outgoing error.  The error due to the use of coarse group coefficients can now 

be treated like a separate transport sweep. 
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In this new sweep, the errors in the average angular flux due to the incoming error and the error 

within the cell itself, Eavg, can now be fully accounted for.  Once this error sweep has been 

completed, only the cell-averaged error is required to correct the cell-averaged angular flux.  

Since this average error term already incorporates all incoming errors from the sweep, the 

incoming-outgoing del term can finally be removed. 
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(5.6) 

Even though an incorrect incoming angular flux is going into the average angular flux 

calculation, the error term now contains all the information necessary to correct this and 

reproduce the exact value.  If the average error term is divided by the scalar coarse group flux to 

produce the del term, quadrature summation can then be applied over the average angular flux 

equations to produce a relation between the correct DGM moment,     
̅̅ ̅̅ ̅, the incorrect DGM 

moment,     ̃ and the correct coarse group flux,     
̅̅ ̅̅ ̅. 
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 (5.7) 

Since the del term is being multiplied by the coarse group scalar flux, the quadrature sum is only 

applied to the del term and produces a new del term which is a purely scalar quantity.  Therefore 

all the corrective terms for DGM have been placed into a single scalar quantity for each cell and 

DGM moment.  The coarse group case can be further simplified to produce the following 

relation. 
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)⁄  (5.8) 

It is important to note that for this factor to fully correct the solution during the coarse group 

eigenvalue solve, it must be applied to the scalar fluxes after each transport sweep.  This makes 

sense because this factor was derived assuming the errors had been tallied assuming a single 
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transport sweep, not an entire eigenvalue solve.  These errors can be tallied side-by-side with the 

fixed source sweep in the DGM solve, thereby introducing little extra cost using this approach. 

Unfortunately, the devil lies in the details.  While all this simplification has produced an 

incredibly compact corrective factor, it has introduced another complication.  For the error 

sources in Equation (5.5) to be correctly defined, the correct fine group incoming angular fluxes 

are required.  Since these are not known a priori, the error sources rely on the accuracy of the 

DGM solve once each coarse group eigenvalue solve is completed.  The accuracy of the DGM 

solve, though, relies on the accuracy of the del term.  So once again the philosophical issue of 

which comes first, the solution or the simplification, crops up once again.  The DGM solve is 

relying on the del term to be correct in order to improve the flux moments, while the del term is 

relying on the DGM solve to provide better flux moments so that it too can improve.  In its 

current form, the method still doesn’t have the necessary information to converge to the fine 

group solution.  In order to accurately capture all the errors, the error sources used to define the 

del term must be unfolded. 
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(5.9) 

Each error source for a given moment relies on the incoming angular fluxes from all the other 

moments within that same coarse group.  Therefore, the moments within each coarse group must 

be swept simultaneously to recapture the true incoming angular fluxes for use in determining the 

error source.  While this can be done, it is certainly less than ideal and could significantly hinder 

future attempts at implementation. 

On top of this, there is still the issue of computing the coefficient matrices on the fly.  In addition 

to computing the fine group and coarse group exponentials on the fly, this process also 

introduces O(K
2
) computations since a matrix-vector multiplication must be conducted on the 

incoming angular fluxes.  This cost is much greater than the original fine group calculation since 

each fine group is decoupled at the level of the transport sweep, requiring only O(K) 

computations.  This is an unfortunate side-effect of transforming the original fine group 
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equations using the discrete basis functions.  This unfolding of the moments essentially undoes 

the transformation that was applied at the beginning which was supposed to lead to less 

computation.  Equation (5.10) highlights this shortcoming. 
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(5.10) 

At this point, it is deemed unnecessary to pursue DGM as the sole focus of this research.  Simply 

put, the use of discrete basis functions end up being more trouble than they are worth.  Therefore, 

analysis will be continued on a related method that doesn’t use such a transformation, the 

Subgroup Decomposition Method. 

5.1.1 The Subgroup Decomposition Method 

At its heart, the Subgroup Decomposition Method (SGD) proposed is essentially a simplification 

of the earlier DGM formulation.  Instead of applying a transformation using discrete basis 

functions, this method instead conducts the normal coarse group collapse only on the incoming 

energy group side of the scattering and fission cross sections.  This incorporates the fine group 

flux information while still allowing one to use a coarse group solution to produce a fine group 

source later. 

Recondensation can be used with this approach as well.  An initial guess on the fine group flux is 

used to produce an initial set of coarse group cross sections and coarse group fluxes.  What is 

different with SGD is the production of a second set of scattering cross sections which are only 

collapsed on the incoming energy group side.  The fission cross sections can remain represented 

in their coarse group form since the outgoing spectrum is solely dictated by the fission spectrum 

and is typically assumed to have no dependence on the neutron’s incoming energy.  Both of 

these cross section are referred to as “subgroup decomposition cross sections”.  This second set 

of cross sections allows one to build a fine group source using only a coarse group flux.  The 

next step is a fine group sweep using this new fine group source, which is referred to as the 

“decomposition sweep”.  This is slightly different from DGM in that DGM did not require a full 
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fine group sweep leading into recondensation, only a solve of the DGM equations.  After the 

decomposition sweep, a new fine group flux is obtained which is used to recondense the coarse 

group cross sections and subgroup decomposition cross sections.  This procedure then drives the 

initial fine group flux guess towards the true fine group solution with minimal computational 

effort. It has been successfully applied to step difference, linear diamond difference and diffusion 

in 1D and 2D calculations.[9][38] 

The storage of this second set of cross sections is largely unnecessary however, since SGD as 

well as DGM are essentially both multigrid methods operating in energy.  One only needs to 

look at the calculations behind the update of the coarse group and SGD cross sections to see why 

this is.  The cross sections are collapsed by weighting the fine group cross sections with the fine 

group flux from the previous iteration.  This produces a total reaction rate for neutron production 

or destruction for that coarse group.  This quantity is then divided by the summation of the fine 

group flux, which serves as the initial guess for the next coarse group solve.  This can be shown 

using the definition of the SGD scattering cross section.  The current recondensation step is 

denoted by index r. 
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(5.11) 

Once the coarse group eigenvalue problem is solved, the SGD cross sections are multiplied by 

the new coarse group fluxes to construct the new fine group source.  The definition of the SGD 

cross sections is now expanded within the construction of the fine group source.  
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When the source is formed in this manner, a common factor emerges that scales the fine group 

flux from the previous recondensation step.  This scaling factor is nothing more than the ratio of 

the new coarse group flux to the previous coarse group flux.  So instead of defining a separate set 

of SGD cross sections, a modified fine group flux can be used instead in the next fine group 

sweep.  This is identical to using the SGD cross sections to construct a fine group source but 

requires much less storage in terms of cross section data. 

   
    ⁄ ( )    
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) (5.13) 

The new coarse group and fine group flux are labeled with the r+1/2 index since they take part in 

an intermediate stage in the recondensation process.  The fine group fluxes obtained from the 

fine group sweep are designated with the r+1 index since these are the fluxes actually used to 

recondense the cross sections. 

As with DGM, SGD has shown promise in terms of providing computationally cheap 

improvements to a coarse group solution, but so far this has only been conducted in 1D and 2D 

using step difference, diamond difference and diffusion methods. [8][38][39] Also, the del term 

or perturbation term defined in SGD is defined as the difference between the fine group and 

coarse group total cross sections weighted by the fine group scalar fluxes.  This approach 

completely neglects the spatial consistency issue which comes from applying SGD and DGM to 

high order spatial problems.  While this del term may have worked for step difference and finite-

difference diffusion, this in no way guarantees accurate convergence of the recondensation 

process to higher order methods such as nodal diffusion or MOC.   

5.1.2 Fully Consistent Coarse Group Collapse for Recondensation 

While both DGM and SGD have been limited by certain facets of their approach to solving the 

fine group problem, they provide key insights into forming a feasible method.  DGM provided us 

with the insight into correcting for spatial inconsistencies when moving to high order spatial 

methods.  Unfortunately, the exact del term in DGM proved to be unwieldy since the original 
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fine group problem is transformed using discrete basis functions.  As a consequence, all of the 

incoming angular fluxes became coupled to one another through this transformation and added 

further complexity to the DGM sweep.  SGD provided us with a way around this issue since 

SGD has shown that one can use the original coarse group equations without the need for 

discrete basis functions and still produce a reconstructed fine group source.  By conducting a fine 

group sweep instead of a DGM sweep, the unpleasantries associated with sweeping various flux 

moments simultaneously and transforming incoming angular flux moments into and out of their 

fine group analog can be avoided. SGD did require the production of a second set of scattering 

cross sections, though, to be stored in addition to the traditional coarse group ones.  But, it was 

found that this could be further simplified by scaling the fine group fluxes from the previous 

recondensation step using the initial and converged coarse group flux and then use this 

intermediate flux to construct the fine group source.   This approach allows one to use the fine 

group cross sections directly without the need for additional storage. 

All of these aspects can be combined to form a feasible method that still provides cheap 

improvements to the initial solution and does so in a consistent manner when using any spatial 

method.  We will continue our work with the corrective factor developed in Section 4.3.3 by 

using a sort of energy scaling approach defined in Equation (5.13) and pass this fine group flux 

into the fine group equations.  Now the error sources can be define using the fine group 

equations and not the DGM equations, making their computation much more straightforward. 
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(5.14) 

This solves many of the previous issues.  The flux moments no longer need to be swept together 

within the same coarse group, but can instead sweep the fine group fluxes separately.  The 

discrete basis functions no longer have to be applied over and over again, saving unnecessary 

computation.  Best of all, since the error sweep defined in Equation (5.5) is included in the fine 

group sweep, accurate incoming angular fluxes can be accounted for in the production of our 

corrective factor.  This will allow the recondensation procedure to converge to the true fine 

group solution.   
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(5.15) 

The del term can be tallied in the same manner as the fine group fluxes throughout the sweep and 

then collapsed for use in the coarse group eigenvalue solve after recondensation. 
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Upon further reflection, this corrective factor can be further simplified if after looking back to 

Equation (5.3) and manipulate it as follows.  The error in the average angular flux can be defined 

as the difference between the fine group flux and the fine group flux calculated using the coarse 

group streaming coefficients.  The bar notation denotes the correct angular flux and the tilde 

notation the incorrect angular flux. 

       ( )    
̅̅ ̅̅ ( )    ̃( ) (5.17) 

This can then be substituted into Equation (5.16) and the summations applied. 
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This dramatically simplifies our definition of the del term.  
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 (5.19) 

Care must be taken, though, to define these “incorrect” coarse group fluxes accordingly to ensure 

that the del term still maintains consistency with the fine group problem.  In deriving this 

simplified form, the incorrect outgoing angular flux and cell averaged angular flux were defined 

according to Equation (5.20). 
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(5.20) 

It becomes clear that, although the coarse group coefficients are being used to conduct the 

sweep, the fine group source produced for the fine group sweep must be used.  If any other 

source is used, then the transport sweeps will not match and the del term will be incorrectly 

defined. 

Next since the streaming coefficients are constant across all the fine groups within a coarse 

group, a set of coarse group equations can be produced by conducting the multigroup collapse 

procedure on Equation (5.20). 
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(5.21) 

Now, instead of requiring an additional set of sweeps across all the fine groups, this new method 

only requires sweeping across the coarse groups.  If the collapsed fine group source is used, then 

the coarse group sweep will produce a del term that can account for the spatial inconsistencies 

introduced when moving from a fine group problem to coarse group.  Again, care must be taken 

that our source is the true source used in the fine group sweep.  If any inner iterations to the fine 

group sweep, such as Gauss-Seidel, upscatter or within-group iterations, are included then the 

converged source from these calculation must be used for the coarse group sweep.  Otherwise, 

the fine group source used in the coarse group sweep is not representative of the fine group 

reaction rates used in the multigroup collapse procedure. 

If this definition is substituted back into the del term defined in Equation (5.8), then the 

corrective factor applied inside the coarse group eigenvalue problem can defined by Equation 

(5.22). 



 

121 

 

 

 

   
  

  
 ̅̅̅̅

  
 ̃
 (5.22) 

For Equation (5.23), the index for the source iteration is denoted as k and that for the 

recondensation step as r.  The index value k+1/2 denotes an intermediate scalar flux which is the 

flux calculated after conducting a single, “incorrect” transport sweep.  This is then multiplied by 

this new corrective factor to produce the k+1 scalar flux.  The corrected scalar flux is then used 

to update the source for the next sweep, whether that be in the context of a Gauss-Seidel with or 

without upscatter iterations or in a within-group scatter iteration.  Care does need to be taken to 

make sure the factor is applied after each sweep and not just at the end of the power iteration. 

   
      

  ̃ 
    ⁄  (5.23) 

From now on this factor will be called the Source Equivalence Factor (SEF).  This is because the 

effect of it is to reproduce the collapsed fine group source regardless of how the inconsistent 

transport operator is defined. 

To gain some intuition about how these SEFs accomplish this, their definition can be analyzed 

using the operator notation of the fine group problem.  First, the new source is produced using 

the previous iterate of the fine group fluxes.  Here, Lg(K) represents the fine group streaming and 

total collision term in the transport equation and the action of Sg(K) on k
 will produce the fine 

group source using the k
th

 iterate scalar flux. 

   ( ) ̅ ( )    ( )   (5.24) 

The fine group transport sweep procedure can then be denoted by the action of Lg(K)
-1

 on this 

source.  Once the updated angular fluxes are obtained, they can be summed according to any 

given angular quadrature.  The quadrature summation will be denoted by the operator M, are also 

known as the discrete to moment operator.  The correct fine group scalar flux is defined, in 

operator form, according to Equation (5.25). 

  ̅ ( )     ( )    ( )   (5.25) 
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If an incorrect transport method is used instead, such as that produced after multigroup collapse, 

to produce the next iterate of the scalar flux, then an incorrect scalar flux is produced.  Notice 

that the use of operator Lg
-1

 represents the application of the coarse group sweep procedure. 

  ̃ ( )     
    ( )   (5.26) 

Also, by the very definition of the coarse group fluxes, it is known that the difference between 

the correct and incorrect coarse group scalar fluxes is equivalent to summing the differences 

between the correct and incorrect fine group fluxes within that coarse group. 

  ̅   ̃  ∑ ( ̅ ( )   ̃ ( ))

   

 (5.27) 

The definitions for the correct and incorrect fine group fluxes in operator notation can be 

substituted into Equation (5.27).  If it is assumed that the same fine group source is used in both 

definitions, then it is apparent that the difference between the correct and incorrect coarse group 

flux implicitly calculates the difference between the two transport sweep operators.  This 

provides a measure of the error accumulated due to the multigroup collapse of our total fine 

group cross sections. 

  ̅   ̃  ∑  (  ( )     
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 (5.28) 

This difference is directly related to the del term defined in Equation (5.19).  Through another 

simple manipulation, it is observed that the opposite of the del term is really the relative error in 

the incorrect coarse group flux. 
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 (5.29) 

Therefore, if the del term is negative, this means that the incorrect sweep has erroneously 

produced extra neutrons relative to the fine group sweep.  Since the incorrect flux is larger than 

the correct flux, the SEF defined in Equation (5.22) becomes less than one in order to remove 

these extra neutrons after each incorrect sweep.  On the other hand, if the del term is positive, 

then this means the incorrect sweep has removed neutrons from the calculation which otherwise 
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would have remained in our correct sweep.  In this case, the incorrect flux is smaller than the 

correct flux, making the SEF greater than 1 in order to replace the neutrons lost after the 

incorrect sweep.  So, in both cases, the SEF is enforcing neutron balance from the fine group 

sweep across every coarse group sweep.  This ensures that the coarse group problem is 

consistent with the fine group problem so that the recondensation problem can converge to 

the true solution. 

Another way to think about this is in terms of net leakage. The SEFs were defined by accounting 

for all the incoming and outgoing errors at each of the cells’ boundaries in Equation (5.5).  

Summing up the incoming and outgoing angular fluxes across the cell’s boundaries gives the net 

leakage for that cell.  Any errors in the incoming and outgoing angular fluxes then produce errors 

in these net leakages.  Therefore, these SEFs can be defined in terms of net leakage according to 

a simple neutron balance equation to provide further intuition.  In this basic neutron balance 

equation,    is the area of surface b enclosing volume V and   ̅ is the correct net surface current 

normal to surface b, and  ̅ is the correct fine group flux. 

 
   ̅  ∑  ̅  

   

    (5.30) 

In this correct case, neutrons are perfectly conserved because the total number of neutrons 

leaving the cell and being removed from within equals the net production of neutrons inside the 

cell.  This equation is satisfied when the fine group problem is fully converged.  But, when the 

multigroup collapse is applied, the transport sweep becomes inconsistent for higher spatial order 

methods and results in incorrect surface currents at the boundaries of the cell.  These incorrect 

net surface currents,  ̃ , then produce incorrect fine group scalar fluxes,  ̃. 

 
   ̃  ∑ ̃   

   

    (5.31) 

If Equations (5.30) and (5.31) are divided, the ratio of these balance equations directly related to 

the ratio of the correct and incorrect transport sweeps, Equations (5.25) and (5.26). Since neutron 
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conservation must be upheld in both basic neutron balance and in the transport sweep, the two 

definitions must be equal to one another.  In this case, when the same source is used in the cell, 

the errors in the surface currents originate solely from the incorrect transport sweep used after 

conducting the multigroup collapse. 

 
 ̅
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 (5.32) 

It is important to remember that only considering energy condensation is being considered in this 

case and not homogenization.  It is assumed that multigroup collapse is being conducted across 

the same discretization as the fine group problem.  Therefore, the net source of neutrons and the 

cell boundaries are the same on the numerator and the denominator. 

If this simplification weren’t enough, these SEFs can actually be folded back into the coarse 

group source to produce a set of fully consistent coarse group cross sections.  This can be done 

by observing how the SEFs are applied to the previous scalar flux and then incorporated into the 

production of the coarse group source. 
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(5.33) 

The most striking observation is that the denominator of the collapsed cross sections cancels with 

the numerator of these SEFs.  Thus, instead of applying the SEFs after each sweep, the coarse 

group cross sections can instead be defined such that this correction is already taken into 

account. 
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(5.34) 

This slight variation on the original definition of multigroup collapse shifts complete 

enforcement of neutron balance directly to the coarse group fission and scattering cross sections.  

This is a more natural approach since the coarse group cross sections were originally intended to 

preserve the reaction rates from the fine group problem.  In this modification, though, the 

reaction rate is divided by the incorrect coarse group flux instead of using the collapsed 

fine group flux.  Folding the SEFs into these cross sections allows for the simultaneous 

preservation of cell reaction rates and net leakages without using multiplicative factors after each 

coarse group transport sweep.   

It is important to note that these new cross sections completely replace the original cross 

sections; therefore no additional storage is added onto the original coarse group problem.  Since 

the original fine group problem was not modified, the fine group cross sections can still be stored 

per material as well.  There is only a slight increase in memory due to storage of the coarse group 

scalar flux before and after converging the coarse group eigenvalue problem in order to conduct 

the prolongation of the fine group scalar fluxes.   Another slight increase can be attributed to 

temporary storage of the collapsed fine group source needed to calculate the incorrect coarse 

group fluxes to produce the modified cross sections.  Therefore, a new set of cross sections has 

been defined that allow the recondensation process to converge to the fine group solution for any 

spatial method with very little additional storage. 

It is important to note that this new approach shares some similarities with the SPH methods 

since it uses a single multiplicative factor to enforce preservation of reactions and net currents.  

There are two main differences between SPH factors and SEFs.  First, SPH factors are produced 

to correct for error introduced when spatial homogenization and energy condensation has been 

applied.  SEFs are produced intentionally without including spatial homogenization.  Second, 
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SPH factors are applied to all the cross sections being generated, including the total cross 

section.  Since the total cross section is used in the transport calculation, an iterative procedure is 

used to converge the SPH factors before application to the coarse group eigenvalue problem.  An 

additional constraint is also required for this approach, typically some sort of volume-flux 

normalization equation.  For this application, SPH factors would require an iterative process to 

converge these factors for each recondensation iteration.  On the other hand, SEFs are produced 

assuming that the total cross section isn’t modified, therefore all necessary corrections are being 

applied only to the right-hand side cross sections.  Since the total coarse group cross section 

remains unaffected by the application of these SEFs, only a single coarse group transport sweep 

is required at each recondensation iteration. [14] 

These new cross section definitions were applied to the 47 group 1D BWR problem and used in 

conjunction with step difference, diamond difference and step characteristics methods.  For each 

method, the errors in the eigenvalue were calculated relative to the eigenvalue of the fine group 

problem using like methods.  Therefore, the recondensation solution using step difference is 

being compared to the fine group solution using step difference, for example. 

 

Figure 32  Comparison of eigenvalue convergence when applying the consistent cross sections to various 1D 

Transport methods for the 47 Group BWR problem. 
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In Figure 32, it is seen that across all these different transport methods, recondensation with 

these new cross sections definitions converges within 0.1 pcm of the reference eigenvalue when 

the convergence criteria is set to 10
-7

.  Since the error is roughly on order with the convergence 

criteria, this means that this approach is consistent and can be applied to any spatial method. 

5.1.3 Applying the Coarse Group Sweep 

One of the great benefits of this new approach is that it provides much more flexibility in how 

recondensation is applied.  First, we look at the impact of separating the condensation of our 

coarse group total cross section from the fission and scattering cross sections.   

In all the previous methods, only the previous iterate of the total coarse group cross section could 

be used in the DGM sweep.  Because the fine group fluxes could only be reconstructed after the 

DGM sweep, the del term was correcting for the use of the previous coarse group total cross 

section and not the total cross sections that would be used in the next coarse group eigenvalue 

problem.  With these consistent multigroup cross sections, the calculation no longer needs to be 

held back by a lagging del term. 

Instead, the coarse group total cross sections can be collapsed once the fine group sweep has 

been conducted and then use the newly collapsed coarse group total cross section in the fixed 

source coarse group sweep.  This takes into account all the errors accrued using the current 

iterate of the coarse group total cross sections as opposed to using the previous iterate.  Instead of 

defining our recondensation procedure according to Figure 2, the new procedure depicted in 

Figure 33, called the Source Equivalence Acceleration Method (SEAM), allows the collapse of 

the total cross section to be separated from the collapse of the fission and scattering cross 

sections. 
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Figure 33 New flow chart for recondensation using the Source Equivalence Acceleration Method (SEAM) 
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This new procedure was tested on the 47 group 1D BWR problem and the convergence 

compared to the old recondensation procedure.  A flat flux both in energy and space was used to 

initialize the recondensation process.   

One important thing to note is that the Krasnoselskii iteration is no longer being used.  In Figure 

34, even though the second coarse group eigenvalue jumps up to an extremely large eigenvalue, 

recondensation still manages to recover and eventually converge.  This shows that the fully 

updated cross sections can be used in both cases without having to use any dampening factors.  

Even though using the previous total cross section for the coarse group sweep is equivalent to the 

use of the del term as defined in Equation (4.8), these new cross section definitions have 

stabilized the recondensation procedure. 

 

Figure 34 Comparing convergence profiles when conducting the coarse group sweep before and after the new 

coarse group total cross section is recondensed. 

In addition to providing better stability, collapsing the coarse group total cross sections before 

the coarse group sweep helps reduce the number of recondensation steps required to converge 

the eigenvalue.  Unfortunately, this improvement brings with it the oscillatory behavior that was 

first observed in Figure 24 but in this case the effect is even more pronounced.  Clearly, there is 
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something else holding the recondensation process back outside of how the recondensation 

procedure is ordered. 

5.1.4 Removing the Non-Monotonic Convergence of the Recondensation Process 

Since SEAM’s cross sections now provide full consistency with the fine group problem, there 

must be some other source which is driving the non-monotonic convergence.  Taking another 

look at the recondensation procedure is therefore necessary to try and identify the source of the 

oscillations observed in Figure 34.  One possible issue could be with the coarse group eigenvalue 

problem itself, but this can’t be the source of the non-monotonic convergence since the fluxes are 

being tightly converged in this calculation.  Recondensation of these cross sections can’t be the 

source either since the new definitions were already shown to be fully consistent and actually 

improve convergence.  The fine group sweep, though, is where the least amount of effort has 

been placed in terms of converging the solution and is the only other possible source of this 

behavior.   

One of the primary assumptions made when GEC and DGM were first derived was that a single 

fixed sourced sweep using the DGM equation or fine group equations would be sufficient to 

improve the coarse group solution in the next recondensation step.  While the eventual 

convergence of the recondensation process does show that this is the case, it was theorized that 

the oscillations may be because the convergence of the coarse group solution may be outpacing 

that of the fine group problem.  Because of this, the coarse group problem can only converge as 

quickly as the fine group sweep allows.  To test this, many different approaches to better 

converge the fine group problem were tested.  These methods were applied to both the coarse 

group eigenvalue solve and the single fine group sweep or source iteration and compared relative 

to the reference solution converged using those same methods. 
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Figure 35 Comparing the convergence of the eigenvalue relative to the 47 group 1D BWR fine group solution 

when using various energy convergence methods. 

To test this idea the following four calculations were considered: 

 Normal power iteration – This provided a direct reference by which the alternatives could 

be compared and their relative performances ascertained 

 Within-group iterations – Instead of producing a fixed source, the within-group portion of 

the source is converged by a fixed point calculation.  First, the source is built ignoring the 

contributions of within-group scattering.  The within-group scattering is then added to 

this source and the transport sweep is conducted.  After sweeping through all the cells 

and angles, the flux is updated, a new within-group source is built and another sweep is 

conducted.  This iterative process completes when the source has converged to some set 

tolerance or has reached the maximum allowable number of iterations.  In this case, the 

same tolerance set for the coarse group eigenvalue solve is used and the max number of 

iterations is set to 10.  However, the results in Figure 35 show very little improvement. 

 Gauss-Seidel with downscatter – The within-group iterations begin with the fastest group 

and the converged flux used to produce the source for the next slowest group.  The 
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upscatter sources were calculated using the previous iterate of the scalar fluxes and 

therefore remained fixed throughout the calculation.  When this procedure was applied to 

the source iteration on our fine group problem, it removed most, if not all, of the 

oscillations.  As suspected, the oscillations in recondensation were a direct result of a 

poorly converged fine group solution. 

 Gauss-Seidel with upscatter – This approach applies the previously defined downscatter 

loop until reaching the section of the scattering matrix containing upscatter cross section.  

When Gauss-Seidel first reaches the first group with upscattering cross sections, it 

initially treats them as a fixed source and proceeds as if it were a purely downscatter 

problem.  When the final energy group has been swept, all the fluxes in the upscatter 

section are used to update the upscatter sources.  All of the fluxes in the upscatter section 

are then swept again using the new upscatter sources.  This process repeats until fluxes 

converge to the set tolerance.  As seen in Figure 35, convergence improves even more if 

upscatter iterations are included into the fine group source iteration. 

The tolerances for the within-group and upscatter iteration conducted at each power iteration are 

set using residual from the previous power iteration divided by 100 or the convergence criteria 

for the power iteration, whichever is larger.  This ensures that the update of the keff is not being 

held back by a lack of convergence in space and energy between power iterations. 

While this work definitively shows that these oscillations were in fact due to the fixed source 

fine group sweep, it is not readily apparent in the 47 group problem tested that converging the 

fine group flux at each step is actually beneficial in terms of computational effort.  Therefore, 

these approaches were also tested on the 361 group 1D BWR problem to be defined in Section 

5.2.  This model was thought to be significantly harder to solve since the resonances become 

much more pronounced and lead to significant variations in the shape of the flux across the 

neutron spectrum.  Also, the number of upscattering groups increases to 89, further making the 

fine group problem more difficult to converge with a single fixed source sweep. 

This time, though, a slight modification is made to the original fine group convergence scheme 

by first applying Gauss-Seidel without and with upscatter to the coarse group problem and then 
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apply them to the fine group source iteration as well.  The results were compared to test if the 

assumption holds that the coarse group problem was already sufficiently converged in the 

eigenvalue solve.  Figure 36 shows that applying Gauss-Seidel only to the coarse group problem 

does absolutely nothing to remove the oscillations, both the green and blue lines lay directly on 

top of one another.  Only when Gauss-Seidel is applied to the fine group problem is there nearly 

a complete removal of the non-monotonic convergence in the recondensation process. 

 

Figure 36 Effect of using energy convergence methods on the convergence of k during recondensation for the 

361 group 1D BWR problem using the 34 coarse group mapping 

These results also reveal how dependent the convergence of recondensation is on the problem at 

hand. For this 361 group problem, the oscillations still occur and the overall convergence occurs 

much more slowly when only a fixed source sweep is applied at each recondensation step.  After 

30 recondensation steps, the eigenvalue hasn’t even come close to converging.  When Gauss-

Seidel with and without upscatter is applied, the eigenvalue converges to below 1 pcm using only 

5 recondensation steps.  This further emphasizes the importance of converging the fine group 

source at each recondensation step.  While this does significantly decrease the number of 

recondensation steps, it is necessary to look at how much computational effort is being spent on 

converging the coarse group eigenvalue problem and the fine group source.  
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First, we look at the total number of transport sweeps that has been done for each coarse group. 

In Figure 37, it is seen that many more sweeps have been conducted across all coarse groups 

when the fixed source solve of the fine group problem is used.  The number of sweeps decreases 

significantly when the fine group source is being converged.  Because the tolerance of the fine 

group source iteration are being set close to that of the coarse group eigenvalue solve, the next 

coarse group solve uses cross sections containing improved fine group reactions rates.  However, 

this drop in coarse group sweeps is still roughly proportional to the number of recondensation 

steps.  Therefore the total number of fine group sweeps also an important measure of the 

additional effort being placed on converging the fine group source. 

 

Figure 37  The total number of sweeps conducted for each coarse group over the recondensation process for 

the 361 group 1D BWR problem 

In Figure 38 the use of Gauss-Seidel on the coarse group eigenvalue problem and a fixed source 

sweep on the fine group problem results in a flat distribution of the total number of fine group 

sweeps applied.  This is to be expected since all the fine groups are being swept the same number 

of times with the fixed source approach.  This also reaffirms that not converging the energy 

variable in our coarse group problem results in little to no acceleration. 
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Figure 38  The total number of sweeps conducted for each fine group over the recondensation process for the 

361 group 1D BWR problem 

On the other hand, if Gauss-Seidel is applied to the fine group problem, the “additional” effort 

leads to a significant reduction in the number of fine group sweeps.  This reduction is due to the 

additional emphasis placed on the fluxes which are harder to converge when within-group 

iterations and upscattering is included.  Because both sets of iterations better distribute the 

computational effort across the fine group fluxes, sweeps are not wasted on groups which are 

easier to convergence.  This is highlighted in Figure 38 by the number of sweeps applied to fine 

groups 100 to 275.  For these groups, only one or two transport sweeps per recondensation step 

are required to converge the flux to the necessary tolerance. 

5.2 Application to the 1D HTR and 1D MOX Fine Group Problems 

A set of two distinct 1D reactor models were used to test the 1D application of SEAM to 

evaluate this new method’s ability to accelerate fine group transport calculations.  Each reactor 

type represents significantly type of physics dominating the calculation. 

Lei Zhu developed a 1D 295 group HTR model to test his initial work with DGM and 

recondensation. [41] A simple diagram of his simplified HTR core is provided in Figure 39.  The 
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reflective boundary condition placed on the left edge and the vacuum boundary on the right edge 

approximately simulates an annular graphite core. 

 

Figure 39 Simple description of the 1D 295 Group HTR model 

While scattering is the dominant interaction for this problem due to the presence of graphite, 

relatively few of the resonances are captured in the cross section data set provided for this 

problem.  The homogenization of the fuel region effectively self-shields a significant portion of 

the resonances to begin with, thereby making the resonances less pronounced.  A high absorbing 

medium was added to this model, simulating the placement of the control rod at the outer edge of 

the fuel region.  The thermal absorption cross section for this region is extremely high and results 

in a significant flux depression and spectral shift.  Another difficult aspect of graphite reactor 

physics, which is captured in this 295 group model, is the large influx of thermal neutrons at the 

boundary of the fuel region and the graphite reflector/moderator.  A full description of the 

geometry used in this model can be found in Table 5.  

Table 5  Description of the geometry for the 1D 295 Group HTR Model 

Region 1 2 3 4 5 6 

Material Graphite Fuel 1 Fuel 2 Fuel 3 CR Graphite 

Width (cm) 90 36 36 36 10 116 

The 1D 361 group BWR model, developed by Nathan Gibson, uses 361 group cross sections 

produced according to the SHEM-361 fine group structure. [12] Though, the cross sections 

produced are largely unrealistic since no energy self-shielding model was applied in their 

creation, this core still captures many of the difficult physics involved with the analysis of MOX 

loaded LWR cores.  Key to analyzing this core is being able to capture the swapping of different 

spectra between neighboring MOX and UO2 assemblies.  While there are slight differences 
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associated with the fission spectra of both assembly types, the true differences come from the 

presence of different resonances and the larger thermal absorption in the MOX fuel.  This 361 

group model is able to accurately characterize these spectral shifts which may be lost with a few 

group model. 

 

Figure 40  Simple description of the 1D 361 Group BWR model tested 

Figure 40 presents a simple model of the 361 group MOX loaded core used for this analysis.  

This core consists of an alternating array of 4 low enriched UO2 assemblies and 3 MOX loaded 

assemblies.  These assemblies are 15.24 cm in width and each contain water spacings separating 

neighboring assemblies.  Vacuum boundary conditions are applied to both sides of the core. 

Both of these cores were tested in a 1D code built using MATLAB.  While MATLAB has the 

nice advantage of many built-in functions to do fast matrix-vector products and matrix inversion, 

since it is not a pre-compiled compute language but rather an interpreted language, MATLAB 

executes instructions directly and translating them on the fly.  This leads to very poor 

performance on transport calculations and is why performance comparison for this section are 

measured in terms of fine group, coarse group and total number of transport sweeps. 

5.2.1 Effect of Coarse Group Structure 

In reactor analysis, choice of coarse group structure is dictated by the ability of said structure to 

produce a solution to within some accuracy relative to the fine group problem.  If solution 

accuracy is not attained, the coarse group structure is tossed since some key physics are likely 

being neglected.  However, in some cases it is not guaranteed that an accurate eigenvalue is truly 
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representative of the accuracy of the whole solution.  Depending on the structure analyzed, error 

cancellations may occur in core and lead to an erroneously accurate eigenvalue. 

Therefore, recondensation using SEAM is applied to the BWR and HTR problems described in 

Section 5.2.  For each reactor type, two different coarse group structures are chosen for the 

coarse group problem by roughly applying the methodology proposed by Gibson and Forget.  

This produced a 34 group structure for the BWR problem and a 23 group structure for the HTR 

problem.  The performances of these structures were compared to a simple 2 group structure for 

both reactor types.  These 2 group structures were chosen such that the second group contained 

all groups containing upscatter and the first group comprised of the remaining groups.  The 

eigenvalue convergence relative to the reference fine group calculation for each case is compared 

in Figure 41.  For all cases, 1D step characteristics was applied using an S32 angular quadrature. 

 

Figure 41  Convergence profiles for the 1D BWR using 2 and 34 groups and for the 1D HTR using 2 and 23 

groups 

In the BWR case, the eigenvalues converge to nearly the tolerance applied to the fine group 

eigenvalue problem.  The difference between the recondensation and fine group eigenvalue 

asymptotically approaches a value below 1 pcm.  This further shows that the new cross section 

formulation still maintains full consistency with the fine group problem.  In addition, the 34 

group structure is used instead of the 2 group, the recondensation process converges faster, at 

least in terms of recondensation steps.  This is to be expected since the 34 group structure is 
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more likely to capture the physics of the fine group problem while the 2 group structure neglects 

much of these details.  However, since error cancellations can hide the true error of the solution, 

the error in neutron fluxes for the 34 group and 2 group solutions are calculated and compared 

relative to the reference fine group solution. 

 

Figure 42 Relative error in the 361 group fluxes when using a 2 group and 34 group mapping for the 361 

group BWR problem 

For both structures, nearly all 361 group fluxes are near or below 0.01% of the reference 

solution. Therefore, Figure 42 definitively shows that SEAM is fully consistent and adequately 

resolves errors such that error cancellation is no longer a concern in our neutronics analyses.  

The errors in most of the fluxes are so low that the error takes the shape of the second harmonic.  

This also explains why most of the errors dip so low near the same spatial points because this is 

where the magnitude of the second harmonic vanishes, leaving a near exact fundamental mode at 

those points.  This has big implications since any coarse group structure may be chosen and 

consistency with the fine group problem will always be maintained.   

It should be noted, though, that errors in 3 of the fine group fluxes for the 34 group structure 

problem deviate significantly from the other groups.  The primary cause is that the values of 

these 3 fluxes are on the order of the convergence criteria.  Therefore any proportionally large 

changes between power iterations in these fluxes will not affect satisfaction of the convergence 
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criteria since the L∞ norm defines the flux residual.  Because the L∞ norm used in 34 group 

recondensation problem required fewer fine group sweeps to satisfy the convergence criteria, the 

errors in these fluxes remained large relative to the other converged fluxes.  While the 1D results 

in this section continue to use this definition of the residual to ensure an apples to apples 

comparison, the 2D calculations of Section 6 will employ the L2 norm of the total source residual 

to avoid this issue.   

With accuracy shown in the BWR case, it is important to determine how much if any 

computational effort has been spared using this method.  For the 2 group and 34 group cases, the 

total number of coarse group sweeps and fine group sweeps applied are compared in Table 6.  

These numbers do not take into account the total number of angles being swept over.  The 

number of sweeps applied per fine group is also calculated, as well as the total number of 

transport sweep which does take into account the total number of angles. 

Table 6  Comparison of transport sweeps for 361 group 1D BWR using different coarse group structures 

CG Structure CG Sweeps FG Sweeps Sweeps/FG Tot. Sweeps* 

2 Group 2,874 10,129 28.06 208,048 

34 Group 22,415 4,269 11.83 426,944 

Reference -- 128,381 355.62 2,054,096 
* Total sweeps includes number of angles swept – (CG + FG) x Number of Angles 

Although the number of coarse group sweeps increases when using the 34 group structure, the 

number of fine group sweeps is reduced.  The result is convergence of the fine group problem, 

though only roughly 12 full fine group sweeps have been conducted.  For the 2 group problem, 

28 sets of fine group sweeps are required to converge.  However, the additional effort placed on 

converging the 34 group problem unfortunately outweighs the reduction in fine group sweeps, 

leading to poorer performance relative to the 2 group problem when looking at the total number 

of transport sweeps.  In this category, the 2 group problem reduces the number of sweeps by an 

order of magnitude, while the 34 group problem is only able to reduce this by a factor of 5. 

A more detailed representation of the recondensation process is also provided in Table 7.  This 

table compares the total number of transport sweeps conducted at each recondensation step and 

the difference between in eigenvalue relative to the reference fine group solution.  
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Table 7  Comparison of convergence for 361 group 1D BWR using different coarse group structures 

Rec. Step 2 G – Sweeps k (pcm) 34 G – Sweeps k (pcm) 

1 1632 93,064.9 30368 24,463.5 

2 40656 2,263.5 129936 340.4 

3 62256 928.1 169872 66.9 

4 91632 165.7 278864 15.9 

5 125040 34.6 388784 0.1 

6 156160 2.0 406896 0.5 

All the solutions begin very far away from the solution since a flat flux initial guess is used to 

seed the recondensation process.  This provides very poor coarse group cross sections initially 

since flux dips at the resonance peaks are not being captured.  The initial guess used here is the 

worst case scenario which means that performance could be further enhanced even using the 

simplest of self-shielding models.   

While the 34 group case is able to drive the eigenvalue to within 1 pcm of the reference in only 5 

recondensation steps, this requires roughly double the number of total transport sweeps relative 

to the 2 group case.  Although the 2 group problem works better in reducing the total number of 

transport sweeps, it should be noted that 34 group recondensation reduces the number of fine 

group transport sweeps by over half that used for the 2 group problem.  Therefore, if the 34 

group problem were made cheaper, then this would lead to significantly better performance. 

While the BWR problem was shown to converge within 1 pcm in Figure 41, recondensation only 

converges to within 10 pcm for the 2 group and 23 group structures in the HTR problem.  This is 

very interesting since it has been shown that the simplifications made in Section 5.1.2 still allow 

SEAM to be fully consistent with the fine group problem.  To verify that consistency is being 

maintained, the relative errors in the fine group scalar fluxes are compared in Figure 43. 
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Figure 43 Relative errors in the fine group fluxes for the 295 group 1D HTR problem using 2 and 23 coarse 

groups. 

In both the 2 group and 23 group case, although the relative errors in the fuel region (spatial 

indices 79 to 132) still remain near or below 0.01%, the errors in the reflectors reach 0.1% and, 

in the 2 group case, can reach up to 20%.  This is likely due to the high scattering ratio present in 

the HTR problem.  While the higher scattering ratio of graphite in the reflector makes the reactor 

much more efficient in terms of its neutron economy, this also makes the within-group more 

difficult to converge.  Therefore, the maximum number of within-group iterations was increased 

to allow additional effort to be spent on converging the within-group scalar fluxes.  This number 

of iterations was increased from 10 to 50 to 200 and finally to 3200, but using S2 so as to 

converge without using more total sweeps than 200 with S32. 
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Figure 44 Comparison of the eigenvalue convergence when increasing the maximum iterations allowed in the 

within-group iteration and upscatter iteration. 

Although increasing effort was placed on converging the within-group fluxes, no significant 

improvements were seen.  While there is some variation in the number of recondensation steps 

required to converge, the error in the eigenvalue remains near 10 pcm. 

Instead of focusing on possible issues with SEAM, the focus was switched to the fine group 

problem.  If scattering is the issue, then the reference fine group solution itself may not be fully 

converged even though the same tolerances are used to obtain the solution in both cases.  The 

tolerance used in obtaining the reference solution was further tightened from 10
-7

 to 10
-8

 and 

compared to the recondensation solution in Figure 45.  The tolerances in recondensation were 

still kept at 10
-7

. 
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Figure 45 Comparison of the eigenvalue relative to the reference solution converged using a tolerance of 10-7 

and 10-8  

The results from this hunch prove to be very fruitful.  When the reference eigenvalue is 

calculated using a tolerance of 10
-7

, the recondensation eigenvalue is on the order of 10 pcm off 

from this reference solution.  This is very similar to the behavior shown in Figure 41.  When the 

reference case uses a tolerance of 10
-8

, the recondensation eigenvalue actually matches to within 

1 pcm.  This suggests that the reference fine group solution was insufficiently converged to begin 

with, even though it uses Gauss-Seidel with upscatter and the same tolerance recondensation 

used.  The scalar fluxes must be analyzed, though, to ensure that error cancellation has not given 

us falsely accurate eigenvalue. 
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Figure 46 Fine group flux errors in the converged recondensation solution relative to the fine group problem 

converged with a tolerance of 10
-8

. 

In Figure 46 scalar fluxes in the 2 group and 23 group solutions are, for the most part, driven to 

or below 0.01% in the fuel regions and in the reflector regions immediately adjacent to the fuel.  

While much of the larger errors further out into the reflector still remain, it becomes apparent 

that this does not have a significant impact on the global solution.  This also suggests that the 

source of the convergence issues in the reference fine group problem is being caused by the 

difficulty converging the scattering source.  This appears to be eased when using recondensation. 

To see why this is the case, the coarse group and fine group sweeps required to achieve 

convergence are compared in Table 8.   For the 2 group case, the number of sweeps per coarse 

group is roughly 10,000 and in the 23 group case, this number is closer to 6,000.  In both cases, 

this is much greater than the 2,000 sweeps applied per fine group in the reference solution.  This 

means that the within-group problem is converged to a higher degree in recondensation, resulting 

in a significantly better spatial solution than would be obtained in the reference fine group 

solution. 

0 50 100 150
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Spatial Index

Fine Group

Flux Errors

(%)

0 50 100 150
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Spatial Index

Fine Group

Flux Errors

(%)

23 Coarse Groups2 Coarse Groups



 

146 

 

 

Table 8  Comparison of transport sweeps for 295 group 1D HTR using different coarse group structures 

CG Structure CG Sweeps FG Sweeps Sweeps/FG Total Sweeps 

2 Group 21,808 11,947 40.5 540,080 

23 Group 149,267 7,961 27.0 2,515,648 

Reference (10
-7

) -- 622,793 2,111.1 9,964,688 

Reference (10
-8

) -- 844,487 2,339.2 13,511,792 

While the 23 group problem shows only modest improvements relative to the reference, a 

reduction by a factor of 6, 2 group recondensation is able to cut transport sweeps by a factor of 

over 20.  The large number of transport sweeps added to the 23 group problem come from the 

need to sweep across 10 times as many group as the 2 group problem.  Therefore, even though 

the 23 group sweeps are able to reduce the total number of fine group sweeps to 27, this is the 

done at the expense of more coarse group transport sweeps.  Again, if the 23 group solution 

could be made significantly cheaper than the fine group transport sweeps, then this would 

become the better option of the two.   

As expected, SEAM is able to reproduce the eigenvalue to within 1 pcm of the reference 

solution, as can be seen in Table 9.  However, the 23 group SEAM calculation appears to 

converge a bit slower than the 2 group calculation once it drops below 100 pcm.   A likely 

explanation is that the 2 group convergence dropped temporarily close to the reference 

eigenvalue and is actually converging slower.  

Table 9  Comparison of convergence for 295 group 1D HTR using different coarse group structures 

Rec. Step 2 G – Sweeps* k (pcm) 23 G – Sweeps* k (pcm) 

1 27,568 36,066.7 29,056 31,400.2 

2 154,896 3,031.9 519,568 2,090.3 

3 261,968 228.9 1,134,304 221.3 

4 386,096 7.1 1,775,808 19.5 

5 480,768 0.3 2,410,784 1.4 

6 509,136 0.6 2,450,144 1.3 

* Total number of sweeps including angles  

The HTR problem is distinct in this respect, since choosing the coarse group structure solely 

based off the fine group total cross sections does not produce significant improvements in the 

convergence of recondensation.  This does make sense because, outside of the control material, 
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there are no significant changes in the total cross sections.  This means that the shape of the 

scalar flux is defined primarily by the scattering and fission sources.  While a different approach 

to choosing coarse group structures should be developed for optically thin problems, this issue 

remains outside the scope of this thesis. 

5.2.2 Coupling to Different Polar Angle Quadratures 

While these new multigroup cross sections were originally derived to maintain equivalence 

between fine group and coarse group problems, they allow for much more flexibility than just 

application for multigroup collapse.  Since the errors initially corrected originated from 

inconsistencies in the streaming operator, it is also possible to take into account other 

approximations which give rise to similar errors.  If the coarse group sweep is only dependent on 

the collapsed fine group source to achieve consistency, then it should be the case that any 

angular quadrature could be used in the coarse group problem without sacrificing exact 

equivalence.  For this purpose, the consistent cross section can be defined according to the high 

order fine group scalar flux and the low order coarse group scalar flux according to Equation 

(5.35). 

 

     (  )  ∑  ̅    (    )     (    )

   

 ̃    (  )⁄  
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 ̃     (  )⁄  

(5.35) 

To test this idea, recondensation was applied to the 361 group BWR problem using the 2 group 

and 34 group structures.  This time, however, the coarse group problem was calculated using the 

angular quadrature in the reference problem, S16, and a lower order quadrature, S2.  The results of 

this simplification in the coarse group problem can be found in Figure 47. 
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Figure 47  Comparison of convergence in k for the 2 and 34 group mappings, as well as S32 and S2 couplings, 

relative to the reference 361 group BWR calculation 

As expected, consistency is still achieved even when using a different angular quadrature in the 

coarse group problem.  Since the convergence profile remains relatively unchanged when 

switching to a lower order angular problem, this suggests, at least in 1D calculations, that the 

angular dependence does not contribute significantly to the spatial problem.  The distribution of 

sweeps across the coarse group solution also remains unaffected by the switch, as is highlighted 

in Figure 48.   
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Figure 48  Distribution of the number of group sweeps per recondensation step for the 2 and 34 group 

mappings using the S32 and S2 couplings 

Little variation in the distribution of fine group sweeps is also observed in Figure 49.  For the 

fine group fluxes above the upscatter cutoff, the number of sweeps per fine group remains the 

same regardless of the choice of angular quadrature and coarse group structure.  For the fine 

groups in the upscatter regime, there is a slight deviation from the higher order angular 

calculation but this difference does not appear to be significant. 
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Figure 49  Distribution of the number of fine group sweeps per recondensation step for the 2 and 34 group 

mappings using the S32 and S2 couplings 

Now that consistency has been determined when applying differing quadrature in conjunction 

with multigroup collapse, the number of coarse group and fine group sweeps used during 

recondensation is compared in Table 10.  The number of sweeps per fine group is also shown to 

highlight the total reduction in effort placed on the fine group problem. 

Table 10 Total number of transport sweeps for the 361 Group 1D MOX BWR Benchmark 

Method CG Sweeps FG Sweeps Sweeps/FG Total Sweeps 

2 Groups, S32 2,874 10,129 28.06 208,048 

2 Groups, S2 2,623 9,746 26.99 158,559 

34 Groups, S32 22,415 4,269 11.82 426,944 

34 Groups, S2 20,081 4,199 11.63 87,265 

Reference -- 128,381 355.62 2,054,096 

In the two group case, although the number of angles used in the coarse group sweep has been 

reduced by a factor of 16, the total number of sweeps is only reduced by roughly 25%.  This is 

explained by the fact that computational effort in the two group problem is weighted heavily 

towards the single fine group source iteration.  Only about 20% of transport sweeps are 

accounted for in the coarse group solve when the S32 quadrature is used.  Since the fine group 

problem must be solved according to the desired quadrature, any further reduction in the angular 
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dependence of the coarse group problem will not result in significant reductions in the total 

number of transport sweeps. 

However, the 34 group case is markedly different.  When using an S32 quadrature, the coarse 

group problem makes up roughly 84% of the total number of transport sweeps.  Therefore, the 

behavior observed when using the S2 quadrature in the coarse group problem makes sense.  Since 

computational effort is weighted significantly towards the coarse group problem, reducing the 

number of angles in the transport sweep significantly reduces the total number of transport 

sweeps. 

This approach was also applied to the 1D HTR model to ensure this performance is not reactor 

dependent.  When the low order angular approximation is applied to the coarse group problem, 

the convergence properties stay relatively the same as their S32 counterparts, as seen in Figure 

50. 

 

Figure 50 Comparison of convergence in k for the 2 and 23 group mappings, as well as S32 and S2 couplings 

relative to the reference 295 Group HTR calculation 

The eigenvalues in both the 2 and 23 group cases still remain roughly 1 pcm away from the 

reference fine group calculation (using the 10
-8

 tolerance) conducted when the S2 quadrature is 
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applied to the coarse group calculations instead of S32.  This shows that consistency is still 

maintained even when applied to a problem significantly different from the BWR model. 

The number of coarse group and fine group sweeps is then compared in Figure 10 to identify 

gains in computational performance.  Similar to the BWR calculation, the reduction in the total 

number of transport sweeps is much more apparent in the 23 group case than the 2 group case. 

Table 11 Total number of transport sweeps for the 295 Group 1D HTR Calculations 

Method CG Sweeps FG Sweeps Sweeps/FG Total Sweeps 

2 Groups, S32 21,808 11,947 40.50 540,080 

2 Groups, S2 22,253 12,041 40.82 214,909 

23 Groups, S32 149,267 7,961 26.97 2,515,648 

23 Groups, S2 153,331 7,356 24.94 271,027 

Reference -- 844,487 2,339.2 13,511,792 

The reduction in the 2 group case is slightly more pronounced because of the extra effort 

required to converge the within-group fluxes during Gauss-Seidel.  When the S32 quadrature is 

used, the coarse group problem takes up roughly 64% of the number transport sweeps.  In this 

case, since the number of sweeps in the coarse group problem is proportional to the number of 

angles, the maximum possible reduction is roughly half the total when using S32. 

When using 23 groups, the coarse group sweeps represent 94% of the total number of transport 

sweeps.  One would expect that if the S2 quadrature were used in place of S32 then the total effort 

to drop significantly more than in the 2 group case.  Indeed, this is what happens.  The total 

number of transport sweeps is reduced by almost a factor of 10.   

It should be noted that for these cross sections to be fully consistent, the coarse group and fine 

group problems must stay on the same mesh.   Otherwise, the collapse of the fine group source 

for use in the coarse group sweep may not yield a consistent coarse group flux for use in the 

cross section definitions. 

5.2.3 Coupling to Different Spatial/Angular Methods 

On top of applying a low order angular method, the argument made in Section 5.2.2 can be taken 

one step further.  If the collapse of the fine group source is conducted in a consistent manner, 
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then the coarse group problem should be able to use a dissimilar spatial method from the fine 

group problem.  This means that a fine group problem using step characteristics and an S32 

angular quadrature could be coupled to a coarse group problem using step difference with an S2 

angular quadrature or even diffusion.  All that would need to be done is collapse the fine group 

source and apply the coarse group sweep using the differing spatial method.  Then the cross 

section can be defined according to Equation (5.36). In these equations X refers to the spatial 

method applied to the coarse group problem. 

 

     (  )  ∑  ̅       (    )     (    )

   

 ̃   (  )⁄  

       (  )  ∑ ∑  ̅        (    )  (      )

       

 ̃    (  )⁄  

(5.36) 

To verify these claims, this approach is tested on the 1D BWR example.  The convergence of the 

eigenvalue throughout  the recondensation process is compared when using the following spatial 

methods for the coarse group calculations: step characteristics, step difference, diamond 

difference and finite-difference diffusion.  For all the transport methods, an S2 quadrature is used 

for the low order angular problem.  In the case of finite-difference diffusion, the coefficients are 

calculated without regard to any transport correction methodologies to truly show the universal 

application of this methodology.  The diffusion coefficients for the coarse group problem are 

defined according to Equation (5.37). 
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Regardless of the type of spatial method applied to the coarse group problem, the eigenvalue still 

converges to within 1 pcm of the reference case.  Just as well, when transport methods are 

applied, the convergence plots match very closely to the original step characteristics approach. 

 

Figure 51 Comparison of convergence profiles when using dissimilar spatial methods for the coarse group 

eigenvalue problem.  Comparison is relative to the reference 361 group BWR calculation. 

However, while the diffusion case did eventually converge to within 1 pcm of the reference 

solution, a significant deviation occurs.  In this case, recondensation requires nearly twice as 

many steps before the eigenvalue is converged.  This has to do primarily with how the diffusion 

problem is solved in this case.  For this comparison, diffusion is treated in a similar fashion.  No 

scattering is included in the diffusion matrix when each coarse group flux is solved.  This is 

obviously hindering the diffusion problem since the within-group scattering component of the 

source can be moved to the LHS, removing the need to converge a within-group flux.  When this 

is done, the convergence profile matches those observed for all the transport cases. 

While showing consistency is important, if using different spatial methods causes the number of 

fine group sweeps to increase relative to using the original spatial method, then this largely 

defeats the purpose of replacing an expensive computation with a cheap one.  Therefore, in Table 

12, the number of coarse group and fine group sweeps are compared when using the different 

spatial methods.  One of the 34 group cases is also provided to show that finite diffusion can be 

used effectively when upscatter is included in the coarse group calculation. 
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Table 12  Comparison of transport sweeps for 361 group BWR model using different spatial methods 

Method CG Sweeps FG Sweeps Sweeps/FG Total Sweeps 

2 G SC 2,623 9,746 27.0 158,559 

2 G SD 2,655 10,049 27.8 163,439 

2 G DD 3,009 9,776 27.1 159,425 

2 G FD Diff. 7,064 20,828 57.7 340,312 

2 G FD Diff.* 470 10,205 28.27 163,750 

34 G FD Diff.** 6,807 4,649 12.88 81,191 

Reference -- 128,381 355.6 2,054,096 

When the different transport methods are used, the number of coarse group and fine group 

sweeps does not deviate much from when step characteristics was applied.  While this hasn’t 

reduced the number of transport sweeps, it is important to note that both step difference and 

diamond difference do not require the evaluation of exponentials on the fly for every single 

sweeps.  This makes this approach very appealing but it should be noted that an interpolation 

table can be built to evaluate exponentials without the overhead of intrinsic functions. [2] 

However, if finite-difference diffusion is used instead, the number of transport sweeps doubles 

due to the increase in the number of recondensation steps.  This increase is because the within-

group convergence is being treated the same as it was in the transport sweeps.  This is not truly 

representative of how a diffusion problem is actually solved, since the within-group scattering 

can be moved into the diffusion matrix.  When the 2 group case is treated in this fashion, since 

no upscattering is present in this case, the number of coarse group solves reduces down to the 

number of power iterations.  For the 34 group case, when within-group scattering is moved to the 

diffusion matrix, the total number of transport sweeps/diffusion solves is slightly improved with 

respect to step characteristics using the S2 quadrature.  One could move the entire scattering 

matrix to the diffusion matrix, but this is unnecessary for this example since the coarse group 

solve only account for less than 8% of the total number of sweeps/solves.  Therefore, any further 

reductions in computational effort due to fewer coarse group solves would be small and, at least 

in this case, not worth the effort. 
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Again, to ensure that this performance is matched for different reactor types, this same 

methodology is applied to the 1D HTR example.  The fine group problem is still solved using 

step characteristics S32, but is coupled via the consistent cross sections with coarse group 

calculations employing step characteristics, step difference, diamond difference and finite-

difference diffusion.  For the transport methods, the S2 angular quadrature was used and 

Equation (5.37) was used to define the diffusion coefficients for the diffusion methods. 

The convergence of the eigenvalue with respect to the reference solution was compared for each 

of these cases for the 2 group problem in Figure 52.  The finite difference approach was also 

applied after moving the within-group scattering source to the diffusion matrix to remove the 

within-group iterations.  Although not shown in this figure, diffusion was also applied to the 23 

group problem to show its use in the context of Gauss-Seidel with upscatter. 

 

Figure 52 Comparison of eigenvalue convergence when coupling various spatial methods used on the coarse 

group eigenvalue solve to the step characters method used on the 295 group HTR model. 

While diamond difference and finite-difference diffusion match the convergence profile for step 

characteristics closely, step difference requires a couple more recondensation steps to converge.  

This could be due to the presence of the strong absorber at the edge of the outer fuel region.  It is 

not well-understood as to why this is the case, but the result is a significant increase in the total 

number of transport sweeps required to converge in recondensation.  The finite-difference 
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approach also behaves differently.  In the HTR example, applying the within-group iterations to 

the diffusion problem does not lead to an increase in recondensation step.  In fact, diffusion 

matches the transport methods very well in this case.  This behavior can be seen in Table 13. 

Table 13  Comparison of transport sweeps for 295 group HTR model using different spatial methods 

Method CG Sweeps FG Sweeps Sweeps/FG Total Sweeps 

2 G SC 22,253 12,041 40.82 214,909 

2 G SD 27,033 15,525 52.63 275,433 

2 G DD 22,747 12,343 41.84 220,235 

2 G FD Diff. 21,399 11,668 39.55 208,087 

2 G FD Diff.* 310 13,451 45.60 215,526 

23 G FD Diff.** 56,232 5,661 19.19 146,808 

Reference (10
-8

) -- 844,487 2,339.2 13,511,792 

* Scattering reduced Power Iteration 

** Scattering reduced Gauss Seidel with Upscatter 

Another interesting behavior is observed when within-group scattering is moved into the 

diffusion matrix; the number of coarse group solves decreases substantially while the number of 

fine group sweeps increases.  This is unintuitive since one would expect better convergence of 

the within-group problem to positively impact the convergence of the fine group problem.   

When diffusion is applied to the 23 group structure instead, diffusion’s performance relative to 

transport actually improves, reducing the number of sweeps per fine group from about 25 to 19.  

This case produces the best improvement upon the reference fine group problem observed thus 

far.  The total number of transport sweeps and the total number of fine group sweeps are each 

reduced by nearly a factor of 100.  Further improvement could be made with the diffusion 

problem in this case if the full scatter matrix were included in this case, since the coarse group 

solves represent roughly 1/3 of the total number of sweeps and solves.  Again, since the diffusion 

calculation is significantly cheaper than a transport sweep, the improvement this would have may 

be negligible. 
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5.2.4 Application to Linear Anisotropic Scattering in 1D HTR 

So far, all of these examples have assumed that the sources in the core are solely isotropic.  

However, this approximation is not always satisfied in a real reactor.  Therefore, the consistent 

multigroup cross sections are applied to the 1D HTR example when linearly anisotropic 

scattering cross sections are included into the model.  While initially it would seem that 

consistency could not be achieved since the source is now coupled to angle, it is really only 

coupled indirectly.  The linearly anistropic cross sections only produce a “moment” source upon 

which an evaluated basis function must be multiplied to actually produce the contribution to the 

full angular dependent source.   

 
  ( )  ∑     ( )       ( )

   

 ∑     ( )

   

  ∑     ( )

   

 (5.38) 

Since these moment sources are decoupled from the angular dependence, direct summation of 

the fine group anisotropic source on the same mesh should provide the subsequent coarse group 

fixed source sweep with the correct information to produce the consistent multigroup cross 

sections. 

However, producing a new collapsing procedure for the linearly anisotropic scattering cross 

sections is not straight forward.   Although the first order flux moments are used to produce the 

anisotropic source, these fluxes are not guaranteed to be positive.  This means that if we 

normalize the anisotropic scattering reaction rates with the sum of these fluxes across multiple 

fine groups, cancellations may occur and drive the denominator to or close to 0.  To avoid this 

issue, the isotropic scalar flux is used instead to normalize the reaction rate.  Therefore, the 

consistent formulation for the linearly anisotropic scattering cross sections is defined according 

to Equation (5.39). 

          (  )  ∑ ∑  ̅          (    )    (      )
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This equivalent cross section for the anisotropic HTR model was tested using the S32 and S2 

angular quadratures applied to the 2 group problem.  S2 was applied in this case since the Gauss-
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Legendre quadrature is able to exactly integrate functions up to order 1.  Therefore, this is the 

bare minimum number of discrete angles which can be used to accurately calculate the first order 

fluxes.  If quadratic or cubic anisotropy were included an S4 quadrature would be required to 

calculate the second and third order fluxes.  The use of such a low order operator also highlights 

how flexible this method can be. 

The convergence profiles for both sets of angular quadratures is calculated relative to the 

solution using tolerances of 10
-7

 and 10
-8

 as was initially compared in Section 5.2.1.  This 

comparison is necessary since we originally showed in the isotropic case that the solution 

provided by recondensation actually matched the reference fine group problem better when the 

tolerance was set 10
-8

.  Since most of the physics from the isotropic case still applied to the 

anisotropic one, it is expected that the recondensation solution will match the 10
-8

 tolerance fine 

group solution better. 

 

Figure 53  Convergence of the eigenvalue relative to the Linear Anisotropic 295 group HTR calculation 

converged to tolerances of 10
-7

 and 10
-8

 

As expected, the recondensation process is shown to match closer to the 10
-8

 reference solution 

in Figure 53.  In this case, the eigenvalue matches the reference to within 1 pcm while, in the 10
-7

 

case, the eigenvalue is off by about 10 pcm.  This is impressive considering equivalence is still 
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maintained between the 295 group S32 problem and the 2 group S2 problem when linear 

anisotropy is included.   

The transport sweeps conducted for the coarse group eigenvalue solve and fine group source 

iterations are compared in Table 14 for the recondensation process.   

Table 14  Comparison of transport sweeps for 295 group HTR model using linear anisotropic source 

Method CG Sweeps FG Sweeps Sweeps/FG Total Sweeps 

S32 16,456 12,973 43.98 470,864 

S2 17,109 12,677 42.98 219,941 

Reference (10
-7

) -- 760,281 2,577.2 12,164,496 

Reference (10
-8

) -- 960,345 2,660.2 15,365,520 

The number of sweeps for both the high order and low order angular coarse group problems 

roughly match those observed in the isotropic source case, even though the reference fine group 

problem requires significantly more transport sweeps to converge the solution.  Therefore, even 

more improvements are realized when applying angular coupling to anisotropic scattering 

problem. 

While application of this methodology has been shown for a linearly anisotropic problem, it 

should be noted that conducting anisotropic neutronics analyses in 1D is very straightforward.  

While it is expected that this same approach should work in 2D just as well as it does in 1D, the 

practical application will likely be much more difficult.  This is because it requires use of the full 

set of spherical harmonics to represent the angular dependent source instead of simple Legendre 

polynomials.  The approach taken in this section could be simplified if an isotropic source 

calculation were used in the coarse group problem instead and the angular moments were scaled 

using the scalar fluxes instead of the higher order angular moments. 

5.3 Summary 

In this section, a new method called SEAM was derived from the original work from the first 

attempts at making DGM fully consistent for 1D step characteristics.  The del term was further 

simplified from its initial definition in Section 4.1 using intuition gained from previous work 

with DGM and also from SGD developed at Georgia Tech.   These simplifications allowed a 
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drastic reduction in the storage required to produce a fully consistent transport calculation 

despite the inherent differences in the transport operator when moving from the fine group to 

coarse group problem.  Instead of storing a corrective term for each cell, fine group, and discrete 

angle, this new factor only needs to be stored for each cell and coarse group.   

Not only has this new method reduced memory requirements, but it also comes at little extra 

computational cost to the normal problem.  All that is required is a fixed source coarse group 

sweep using the collapsed fine group source from the previous fine group sweep.  Initially, the 

collapsed fine group flux from the fine group sweeps was divided by this intermediate coarse 

group flux to produce a new equivalence factor.  This factor is multiplied with the coarse group 

scalar flux after each coarse group sweep to produce a corrected coarse group flux.  Further 

inspection revealed that this procedure was identical to using the fixed source coarse group flux 

to weight the fine group reaction rates in the group collapse procedure instead of the collapsed 

fine group flux.   

In both cases, the main effect is a recreation of the fine group source in the coarse group sweep 

even though the coarse group transport operator isn’t consistent with the fine group.  Thus it was 

coined the Source Equivalence Acceleration Method (SEAM).  This method was found to be 

more general in its application, though, than just correcting for errors accrued in the group 

collapse process.  By definition, the formulation of the Source Equivalence Factors allow for one 

to use any inconsistent method, whether it be a lower angle approximation or an entirely 

different method altogether from the one used in the fine group calculation.  This provides 

SEAM with a simplicity and flexibility that is astounding. 

SEAM was then applied to two 1D test problems, a 361 group BWR core and a 295 group HTR 

core to highlight.  Although the physics behind each of the cores are markedly different, a 

sizeable reduction in fine group transport sweeps was observed across the board.  On top of 

correcting the errors accrued in the typical group collapse with step characteristics, the flexibility 

of SEAM was tested by coupling high-order to low-order angular approximations, step 

characteristics to step difference, diamond difference and even finite-difference diffusion.  These 

examples culminated in the successful coupling of a 295 group, S32 calculation using step 
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characteristics to a 2 group, S2 calculation using step difference while including linearly 

anisotropic scattering. 

Up to this point, though, SEAM’s favorable characteristics have only been demonstrated using a 

1D transport code developed in MATLAB.  While MATLAB served as an ideal language to test 

out these ideas and concepts, no time comparison were provided since it suffers from the same 

performance deficiencies as other interpreted programming languages.  Even relatively small 1D 

calculations took on the order of minutes to converge.  Therefore, a new code was chosen for 

further application into 2D transport.  Since the original intent of this thesis was focused on 

spatial consistency using higher order methods, OpenMOC was chosen for its use of the Method 

of Characteristics (MOC) in 2D and its potential for large-scale parallelization.  Since it is 

largely writing in C++ and includes the option of applying Coarse Mesh Finite Difference 

(CMFD) acceleration, it serves as the best candidate by which to accurately assess the 

performance of SEAM and compare it with CMFD. 
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6 2D Testing of SEAM using OpenMOC 

While the derivation and testing of SEAM conducted in 1D transport calculations produced very 

favorable results, this method is of little use if it does not produce the same level of acceleration 

or better than the methods currently used to accelerate 2D transport calculations.  CMFD, for 

example, has shown incredible flexibility in its ability to accelerate transport calculations.  In 

OpenMOC, for example, CMFD has been implemented and shown to reduce the number of 

transport sweeps by nearly a factor of 40. [2] The objective of this section, therefore, is to 

determine SEAM’s ability to accelerate fine group 2D transport calculations by implementing it 

in OpenMOC and then compare its performance to that of CMFD acceleration. 

6.1 A Brief Introduction to OpenMOC 

OpenMOC makes use of the transport method called the Method of Characteristics (MOC).  

Instead of solving for the average angular flux across an entire cell one at a time, MOC tallies 

angular fluxes which are solved across many tracks superimposed upon the problem.  One of the 

primary simplifications in standard MOC is that the source in each cell is spatially flat.  

Therefore, each cell in an MOC calculation is a flat source region. 

Along each track, the angular flux is calculated using the same process as 1D step characteristics.  

The incoming angular flux and the source along the direction of the track are used to calculate 

the outgoing angular flux and the segment average angular flux.  The segment is defined as a 

distinct portion of a single track spanning across a single cell.  In order to calculate the full cell-

averaged scalar flux, these segment angular fluxes must be integrated across the angular and 

spatial domain.  Calculating this integral exactly is computationally intractable, so multiple 

tracks are generated across a set of discrete azimuthal angles to carry out this integration.  These 

tracks are also generated in the transverse direction in order to cover the full spatial domain of 

the problem.  OpenMOC generates these tracks according to a cyclical characteristics condition.  

The key advantage of using cyclic characteristics is that reflective boundary conditions can be 

accurately described.  This is done by propagating a track at a specific azimuthal angle and 
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allowing it to reflect at the boundaries of the problem.  Since this is the exact path a neutron 

would take when hitting a reflective boundary condition, this guarantees that the boundary 

condition is being accurately characterized.  In order to conserve memory, however, the track 

must eventually terminate either where the propagation was initialized or at the beginning of 

some other track.  The result is a discrete set of allowable angles generated that approximately 

match the number of azimuthal angles and track spacing specified by the user.   

Each track is then split into segments corresponding to the section of the track passing through a 

single cell.  Once the average angular fluxes across all the segments of each track are calculated, 

then summation according to Equation (6.1)  is used to produce a scalar flux for each cell.  In 

this equation, i denotes the cell, m refers to the azimuthal angle, k designates the segment and λ is 

the index for the polar angle.  Therefore,  ̅ is the average angular flux for each azimuthal angle, 

segment and polar angle.  The cell i’s volume is Vi and the mapping from segment k to cell i is 

labeled using the Kroenecker delta function      
. 

 
   

 

    
∑  ∑     

∑   ̅     

   

 (6.1) 

Here, the azimuthal weights,   , are divided according to the spacing between each nearest 

angle,   , effectively creating a Riemann sum to conduct the azimuthal integration.  This weight 

is also multiplied by the effective spacing,    , for that angle to include transverse integration in 

space.  

         (6.2) 

The polar angle and weights, Wλ, is set using a predetermined angular quadrature.  OpenMOC 

allows the user to specify if one would like to use Tabuchi-Yamamoto (TY) or Gauss-Legendre 

(GL) quadrature.  TY is most popular in use since it was derived to best approximate the 

Bickley-Naylor function used in the Collision Probability Method (CPM) calculations.  Use of 

the TY quadrature therefore allows MOC to nearly achieve the accuracy of CPM without having 

to invert a dense matrix at each power iteration or sacrifice accurate characterization of reflective 

boundaries.  [37] 
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Of course, OpenMOC doesn’t store the average angular flux for every single segment before 

conducting the summation.  The segment angular fluxes are tallied on the fly according to 

Equation (6.3) as the transport sweep is conducted.   

    
  

    
 

 

    
∑  ∑     

∑  (            )
(     )

  
   

 (6.3) 

In order to minimize memory requirements, the exponentials used in the scalar flux tally must be 

calculated on the fly, making this the most expensive aspect of the transport sweep.  In 

OpenMOC, this cost is minimized by use of linear interpolation of the exponential function 

based on the maximum optical length appearing in the problem.  This produces a cost efficient 

way of accurately calculating exponentials on the fly. 

Currently, OpenMOC relies on power iteration to solve the eigenvalue problem.  Thus, after all 

transport sweeps are conducted and the scalar fluxes have been updated, keff is updated for the 

next iteration.  This is calculated directly using the Rayleigh Quotient, which determines the 

current estimate of the eigenvalue problem through the ratio of the volume integrated fission rate 

to the integrated absorption rate and net leakage from the system. 

      
 

   
 (6.4) 

Once keff is updated, the scalar fluxes are normalized using the volume integrated fission rate 

before constructing a new source from the updated fluxes for the next set of transport sweeps. 

6.2 New Features Implemented to Test SEAM 

While many useful features, such as CMFD, have been recently added to OpenMOC, some of 

the methods and approaches specific to SEAM did not exist in the code.  Therefore, before the 

flexibility and feasibility of SEAM in 2D could be tested, the following functionality was 

incorporated. 
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6.2.1 Group Collapse for Transport Problems 

Previously, OpenMOC had no support for cross section condensation other than to one group.  

What made inclusion of SEAM less intuitive was the fact that group collapse required 

information to be passed between two different transport solver objects.  Although 

homogenization had already been implemented in the CMFD class in OpenMOC, the CMFD 

method itself is more self-contained than SEAM.  A completely separate CMFD class was 

created in order to incorporate homogenization and diffusion solver into the code.  Therefore, a 

whole new approach to incorporating condensed cross sections was required since both the 

coarse group and fine group problem operate on the same unstructured mesh.  Creating a whole 

new class of solver was avoided by incorporating much of SEAM’s functions, including group 

collapse, into the Geometry class.  Since both solvers rely on the same spatial mesh, and the 

track information is kept separate from Geometry object, the functions added to the Geometry 

object would have access to the scalar fluxes in both solvers. In addition to that, the separation of 

the track generator from the geometry allows one to use two completely different tracks in both 

solvers without needing a second Geometry object.  This setup seemed ideal at the time but there 

will likely be plenty of room for optimization in the near future.   

6.2.2 Gauss-Seidel with Upscatter Option 

This addition to the code was deemed necessary due to the enhanced performance observed in 

the 1D calculations when Gauss-Seidel was used in the fine group problem in place of the 

normal power iteration.  This proved difficult because the original transportSweep() function was 

originally developed to sweep across all energy groups simultaneously to take advantage of 

SIMD vectorization.  Therefore, the groupTransportSweep(int g) function was added into the 

ThreadPrivateSolver class to sweep across energy groups individually.  Power iteration using 

Gauss-Seidel was implemented as a separate function, convergeUsingGS(), in the Solver class.   

While Gauss-Seidel is fairly straightforward to implement in diffusion calculations, 

incorporation into transport calculations require a bit more effort.  Since the full scattering matrix 

can’t be moved explicitly to the LHS of the transport equation before the transport sweep is 
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applied, fixed point iterations, called within-group iterations, are applied to converge the within-

group scattering source.  If the scattering matrix is completely lower triangular, meaning only 

downscattering exists, then scattering source can converge using only G sets of within-group 

iterations.  However, if upscattering exists, another iteration must be nested within the 

downscatter loop in order to sufficiently converge the upscatter source.     

6.2.3 Step Difference Transport Kernel 

While MOC uses the characteristic definition of the angular flux according to Equation (4.1), in 

all practicality any method that provides an average angular flux can be used in tallying the 

scalar flux according to Equation (6.1).  Therefore, a step difference scalar flux tally function 

was added into OpenMOC to modify the outgoing and average angular flux calculations across a 

given track segment. 

  ̅  
 

   
    

 

   
  (6.5) 

At first, it may seem odd that such a low order method was added into OpenMOC in the first 

place, but this functionality was included for two reasons.  First, step difference was included to 

show that SEAM can still couple a high order transport problem to any other method.  

Theoretically, SEAM should be able to couple a fine group calculation using MOC to a less 

expensive transport calculation such as step difference.  This should make the coarse group 

transport calculation even cheaper.  Second, the coarse group total cross sections change after 

each recondensation step.   Since the exponential interpolation table is built using the maximum 

exponential term and a set precision level, the table itself might need to be updated if the values 

of the coarse group total cross sections increase substantially between recondensation iterations.  

Using SEAM to create an equivalent step difference problem sidesteps both issues by removing 

the need to calculate exponentials altogether in the coarse group transport sweep.  Since coupling 

step characteristics with step difference in 1D did not adversely affect the convergence of 

recondensation, this appears to be a good option for making the coarse group problem cheaper to 

solve. 
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6.2.4 Fine Group Volumes and Leakage Scaling for the Rayleigh Quotient 

One primary difference between OpenMOC and the 1D code tested in MATLAB is in how the 

eigenvalue is updated.  In the 1D code, the current eigenvalue was estimated using the ratio of 

the total fission rate of the current iteration to the total fission rate of the previous iterate.  Since 

the corrective factors used in SEAM effectively create a coarse group source equivalent to the 

fine group source, this allows the eigenvalue to be updated in a manner consistent with the fine 

group problem.  However, in OpenMOC, the eigenvalue is updated through the Raleigh Quotient 

defined in Equation (6.4).  While the fine group fission and absorption sources can be 

equivalently represented in the coarse group problem, the net leakage is not guaranteed to be 

equivalent.  This differs from CMFD in which the net current across each surface of a cell is 

preserved.  Since preservation occurs across each surface, then the net leakage across the 

boundary of the full boundary can be preserved as well.  On the other hand, SEFs only provide 

one additional degree of freedom per spatial cell, allowing only the net leakage for each cell to 

be preserved.  Therefore, an additional factor, the Leakage Scaling Factor, is defined to enforce 

an equivalent fine group net leakage in the coarse group problem.   

This factor is defined by the ratio of the fine group leakage from the previous fine group sweep 

to the coarse group leakage from the fixed source coarse group calculation.  This factor is an 

integral quantity defined according to Equation (6.6) specifically for a 2D problem.  In 2D, the 

net leakage from the boundary of the problem is defined by a line integral across the boundary, 

sb, of the geometry and an integral over the angular half-space  ⃑        (all directions leaving 

the boundary surface at a given position). 

          
∑ ∫ ∮  (     ) ⃑     

   ⃑⃑        

∑ ∫ ∮   (   ) ⃑     
   ⃑⃑        

 (6.6) 

Also, since it is not guaranteed that tracks for every angle will cross every cell on the boundary, 

the net leakage for these cells might be inconsistent with the fine group problem. Assuming the 

fine group problem uses a fine angular discretization which can conduct the full angular 
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integration in Equation (6.6), the Leakage Scaling Factor will also be able to ensure that net 

leakage is preserved in the coarse group problem when using a coarse angular discretization.     

Since the Rayleigh Quotient is defined using volume integrated reaction rates, the volumes used 

in the fine group calculation must also be used in the coarse group calculation, even if the coarse 

group calculation uses a coarser angular discretization or track spacing.  Incorporating all of 

these factors leads to a modified form of the Rayleigh Quotient for the coarse group problem. 

      
   (   )

   (   )             
 (6.7) 

It should be noted that all the reaction rates and net leakage used to update keff in Equation (6.7) 

are calculated at each power iteration in the eigenvalue solve for the coarse group problem.   

6.3 Application of SEAM to the C5G7 Benchmark Core 

The C5G7 benchmark problem is an extremely well documented and analyzed MOX-loaded core 

commonly analyzed when developing new methods.  This benchmark originated primarily as a 

means to test the ability of codes to analyze non-homogenized problems.  This quarter core 

model is comprised of 4 square assemblies, each 21.42 cm wide.  Each assembly contains a 17 

by 17 lattice of square pin cells, defined using a pitch of 1.26 cm.  A 21.42 cm wide water 

moderator region is also included and surrounds the inner 2 by 2 array of fuel assemblies. 

The core itself is comprised of two assembly types.  One is an assembly containing solely UO2 

fuel, while the other contains a mix of three different enrichments (4.3%, 7.0% and 8.7%) of 

MOX loaded fuel.  Two other materials are included which describe the properties of the guide 

tubes and fission chambers in the fuel assemblies.  The benchmark includes a 7 group cross 

section data set for each of these 7 materials in the core. [25] 

In addition to including many of the basic physics of light water reactors, the unstructured nature 

of this benchmark is ideal for analysis with MOC.  All of the C5G7 calculations used in this 

thesis, including the normal power iteration, SEAM and CMFD were run using a single node 



 

170 

 

 

containing two six-core processors on the Nuclear Science and Engineering educational cluster.  

A total of twelve threads were used on each of the C5G7 runs. 

6.3.1 Energy Acceleration of the C5G7 Benchmark Using SEAM 

The C5G7 benchmark problem was first tested using a track spacing of .14 cm and only 4 total 

azimuthal angles.  A whole core version of the C5G7 core was used in place of the typical 

quarter core model.  This is the result of a slight inconsistency in how SEAM is applied and how 

OpenMOC conducts its transport sweep of the core.  As it was built for parallelization, the 

transport sweep is initialized using the boundary angular flux from the previous iteration and is 

propagated down multiple tracks at once until reach their respective ends.  Those same tracks are 

swept backwards using the boundary angular flux at the opposite end.  To enforce consistency 

using SEAM with this setup, the fine group boundary angular fluxes must also be collapsed at 

the boundaries in addition to the sources within the flat source regions.  Unless the same track 

spacing and number of azimuthal angles are used, there isn’t a clear cut way to ensure that the 

fine group boundary angular fluxes are collapsed in a consistent manner along, say, a reflective 

boundary condition.  Since a whole core uses vacuum boundaries to enforce the same condition 

across the entire core periphery, this was the ideal approach to test SEAM in OpenMOC. 

SEAM was then used to accelerate the normal 7 group problem by creating an equivalent 1 

group problem at each recondensation step.  The same geometry and tracks were used in the 1 

group problem as the 7 group problem.  Instead of using MOC, though, the 1 group problem 

used step difference with only 1 polar angle.  The converged flux and coarse group fission cross 

section from this calculation are shown in Figure 54, along with a plot of converged fission rate 

distributions calculated using the converged solution. 
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Figure 54 Comparison of the scalar flux and the fission cross section for the 1 group problem.  Note that 

while both the fluxes (top left) and cross sections (top right) look rather non-physical, the product of the two 

produces the correct fission rates (bottom center) across the C5G7 core. 

One of the interesting things to note from the scalar flux and fission cross section is that, while 

the global solution looks reasonable, the local solution looks unphysical.  While the flux still 

peaks in the center (top left image in Figure 54) and has a roughly cosine shape to it, the ray 

effects in the flux almost appear to be amplified; a square grid structure appears.  The fission 

cross sections (top right image in Figure 54) also peaks at the core periphery, which is to be 

expected because of the influx of thermal neutrons at the assembly edges, but the variation of the 

cross section within the assemblies are non-intuitive.  It should be noted that although the fission 

cross sections are higher at the periphery, this doesn’t necessarily mean the fission rates will be 
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highest.  On the contrary, while the spectrum does shift at the periphery, the fluxes at the core 

edge are significantly lower than those in the center. 

Since SEAM does not homogenize the spatial problem, there is a one-to-one mapping between 

the fine group and coarse group geometries.  Therefore, a detailed analysis of the fission error 

distribution can be made down past the fuel-pin level into the individual flat source regions.   

  

Figure 55 Percentage errors in SEAM 1 Group fission rates relative to the solution using normal power 

iteration converged with a 10
-5

 tolerance (left) and a 10
-6

 tolerance (right) 

Figure 55 shows that, while the flux and cross sections may look non-physical due to apparent 

artifacts in both distributions, the product of these values form a near perfect match to the flat 

source regions fission rates calculated using the normal power iteration on the fine group 

problem.  The errors in the fission source relative to the normal 7 group calculation remain 

below 0.1%.  This is impressive considering the SEAM mostly used power iteration of the 1 

group problem using step difference and only 1 polar angle to converge the 7 group problem. 

However, this calculation did use a source convergence criterion of 10
-5

, so it was initially 

expected that the fission rate errors would drop well below .01%.  In order to verify that 

equivalence has been maintained, the differences in the fission rates of the unaccelerated fine 

group solution using a source convergence criterion of 10
-5

 and 10
-6

 were calculated.  If the 

errors in the SEAM calculation are on par with these errors, then this provides a good indication 

that equivalence has been maintained. 
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Figure 56  Errors in fission rates using normal power iteration when using a 10
-5

 tolerance as opposed to 10
-6

 

for a 4 azimuthal angle, 0.14 cm track spacing calculation 

The fission rate errors between the two unaccelerated solutions in Figure 56 match very closely 

to the error distribution on the right side of Figure 55.  While the errors are certainly greater than 

initially expected, the comparison of the unaccelerated and accelerated solutions relative to the 

more precise solution indicates that equivalence has been maintained in the 1 group calculation 

using SEAM. 

After equivalence was shown, 1, 2 and 4 group SEAM calculations were conducted to determine 

the relative impact of coarse group structure on acceleration.  This was done by comparing the 

convergence profiles for all 3 calculations.  Again, in each SEAM calculation, the primary 

problem solved used the same number of azimuthal angles and track spacing as the 7 group 

problem, but conducted the transport sweep using step difference and 1 polar angle. A stability 

issue did arise in subsequent SEAM calculations and for this reason two successive power 

iterations are used between recondensation steps.  This issue will be explained in detail in 

Section 6.3.2. 

Since CMFD represents one of the most widely used methods to accelerate transport 

calculations, and as such, represents the best choice to compare with in terms of pre-existing 

methods.  Therefore, the results using SEAM were compared to a 7 Group CMFD accelerated 
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calculation using pin cell homogenization.  This was deemed to be the best possible acceleration 

achievable by CMFD for the C5G7 problem since the “coarse” mesh provides a detailed 

representation of the averaged pin cell fluxes and the lack of group collapse allows the spectral 

effects to be fully accelerated.  For this application, the relaxation factor was set to 0.6 to 

stabilize CMFD acceleration. 

 

Figure 57 Convergence profiles for SEAM using different coarse group structure and 7 Group CMFD using 

pin cell homogenization 

As expected, the ability of SEAM to accelerate improves as the number of coarse groups 

increases. Stability also seems to improve when using more groups.  In the 1 group calculation, 

oscillations occur at first before finally converging and for the 2 group calculation there is an 

initial stagnation in source residual before convergence begins.  When SEAM uses 4 groups, 

though, convergence is stable and appears to be nearly monotonic.  In this case, SEAM is able to 

converge the solution while only using 24 7 group transport sweeps.  This is actually a slight 

reduction from the 27 sweeps required by CMFD.  Therefore, even when the cross sections are 

collapsed to 4 groups, the detailed acceleration of the FSR fluxes is able to match the 

performance of pin cell homogenized CMFD. 
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However, the convergence profiles do not provide the best indication of true performance with 

respect to time.  Although SEAM was able to match the performance of CMFD, it is extremely 

important to compare the time required to conduct the power iterations since the transport 

sweeps used in SEAM computationally expensive relative to the diffusion calculations used in 

CMFD. 

Table 15  Comparison of performance between PI, SEAM and CMFD for the 4 az, 0.14 cm C5G7 problem 

Method FG Sweeps FG Time CG Sweeps CG Time Total Time 

Normal PI 768 502.6 N/A N/A 502.6 

1 Group 76 51.8 6519 1930.2 2015.4 

2 Group 34 21.5 1507 563.4 601.8 

4 Group 24 15.6 939 441.1 468.4 

CMFD 26 19.7 26* 52.4 72.1 

* The number of diffusion eigenvalue solves used in CMFD 

In fact, in Table 15, the diffusion solve in CMFD is able to beat the SEAM transport sweeps by 

nearly a factor of 10.  The relatively cheap diffusion calculations in CMFD are key to its success 

in accelerating transport calculations.  Since CMFD is able to create a cheap yet equivalent 

diffusion problem, SEAM’s equivalent transport problem can’t compete in terms of total time. 

However, it is important to remember that SEAM is not being used to its full ability in this test 

case.  The reduction in the number of groups is unimpressive and the same number of azimuthal 

angles and track spacing are being used as in the normal 7 group.  It is no surprise that SEAM, at 

best, barely beats the performance of the normal power iteration.  Since SEAM is theoretically 

able to correct for any inconsistency in the transport sweep operator, it should be possible to 

incorporate both energy and angular acceleration into the same calculations.  If this is the case, 

then the transport sweeps used in SEAM may be cheap enough relative to a most costly transport 

problem that the performance could match CMFD. 

6.3.2 Simultaneous Energy-Angle Acceleration 

In all previous SEAM calculations, equivalence with the respect to the transport operator was 

maintained when using different number of polar angles while sweeping across the same tracks.  
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In MOC, though, the accuracy of the transport sweep is dictated not solely by the number of 

polar angles but also by the number azimuthal angles and the track spacing.  Since all of these 

quantities tie in directly with the transport operator, SEAM should be able to create an equivalent 

transport problem even when using different number of azimuthal angles and track spacings.   

  

Figure 58 Equivalence between a lower order and high order angular discretization can be maintained using 

SEAM in addition to group collapse.  In theory, a very coarse track distribution (left) can be used to 

accelerate a very fine track distribution (right) to accelerate high fidelity calculations. 

For example, Figure 58 compares the tracks generated across the area of a single pin cell using 4 

azimuthal angles and 0.14 cm track spacing to 128 azimuthal angles and 0.01 cm track spacing.  

As long as the coarser tracks pass through every cell in the problem, then an equivalent 

transport problem can be formed using SEAM.  If this can be achieved, then the transport 

sweeps used in SEAM become significantly cheaper than the full transport sweep and improve 

its performance relative to CMFD. 

Initially, this was tested on the C5G7 model with the full transport problem using 7 groups, 32 

azimuthal angles, 0.02 cm track spacing, 3 polar angles and MOC.  With SEAM, an equivalent 

problem was formed at each recondensation step using 4 groups, 4 azimuthal angles, 0.14 cm 

track spacing, 1 polar angle and step difference.  The results using 1 and 2 power iterations per 

recondensation step were compared when using both the 4 and 32 azimuthal angle full transport 

sweeps 
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Figure 59 Convergence profiles when using 1 and 2 power iterations between recondensation steps when 

coupling between similar and dissimilar track layouts in MOC 

While using only 1 power iteration was stable for the 4 azimuthal problem, the equivalence 

formed with the 32 azimuthal angle problem caused recondensation to diverge.  At this time, the 

behavior is not well understood and further investigation is required to understand the 

mechanism behind the divergence in this case.  According to Figure 59, using 2 power iterations 

per recondensation step stabilizes the 32 azimuthal angle problem and dampens out the 

oscillations without significantly increasing the number of full transport sweeps required to 

converge.  This also shows that convergence using SEAM is largely independent of the angular 

discretization and track spacing of the full transport problem. 

However, it still remains to be seen whether the cheaper transport problem SEAM forms is 

equivalent to the full transport problem when sufficiently converged.  Therefore, the flat source 

region fission rates of the SEAM coarse group solution were compared to the full transport 

solution using power iteration.  This comparison was made with the power iteration solution 

using both a 10
-5

 and 10
-6

 tolerance on the source residual. 
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Figure 60  Fission errors of the converged solution using SEAM to accelerate a 32 az, 0.02 cm C5G7 model 

using an equivalent 4 az, 0.14 cm, 4 group transport problem at each recondensation step.  The comparison is 

made with the full solution converged using 10
-5

 (left) and 10
-6

 (right) as the tolerance for the source residual. 

The magnitude of the errors shown in Figure 60 match well with the errors observed in Figure 

55.  All the local fission rate errors relative to the 10
-5

 tolerance calculation remain well below 

.1%.  SEAM’s fission errors relative to the 10
-6

 tolerance also fall within the range of the errors 

between the 10
-5

 and 10
-6

 tolerance calculation plotted in Figure 61. 

 

Figure 61  Errors in fission rates using normal power iteration when using a 10
-5

 tolerance as opposed to 10
-6

 

for a 32 azimuthal angle, 0.02 cm track spacing calculation 

The comparison of these errors proves that SEAM has effectively maintained equivalence using 

fewer azimuthal angles and wider track spacings than the full transport problem and doing so 
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without homogenization.  While macro-track transport-based acceleration of MOC calculations 

was developed and used in CASMO-4E provide to a similar effect, these macro-tracks are 

formed using a subset of the finely spaced tracks already being used and therefore require use of 

the same angular discretization.  On the other hand, SEAM builds the low order problem 

independently of the high order problem, allowing a completely different angular 

discretization and arbitrary track spacing to be used in the low order transport problem.  

This represents a significant step forward in showcasing SEAM’s flexibility. [32] 

The simultaneous group and energy acceleration of SEAM was then tested using different coarse 

group structures.  The same coarse angular discretization and track spacing was used for 1, 2 and 

4 group collapse of the C5G7 core.  As discussed previously, 2 power iterations are used prior to 

each recondensation step to ensure stability and near monotonic convergence of SEAM.  The 

results of SEAM are also compared to 7 group CMFD using pin cell homogenization. 
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Figure 62 Comparison of convergence profiles for SEAM using 4 azimuthal angles, 0.14 cm track spacing and 

for 7 group CMFD using pin cell homogenization for a 32 azimuthal angle, 0.02 cm track spacing 

discretization of the C5G7 problem. 

A subtle difference in the convergence profiles of the 1 group problem is observed in Figure 62.  

Whereas 1 group convergence in the 4 azimuthal angle C5G7 problem was at best oscillatory, 

even when using 2 power iterations per recondensation step, here the 1 group convergence is 

nearly monotonic from the beginning.  This allows SEAM to converge after 54 full transport 

sweeps with 1 group collapse instead of using 76.  SEAM using 2 and 4 group collapse retains 

similar convergence properties as the 4 azimuthal angle problem, as does 7 group CMFD. 

While the number of full transport sweeps remained relatively the same, SEAM’s overall 

performance improved significantly relative to the 4 azimuthal angle problem.  This is to be 

expected since the full transport sweep becomes the most intensive part of the calculation.  As 

long as SEAM’s transport sweeps are much cheaper than the full sweeps, then performance will 

improve as the full sweep becomes more expensive. 
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Table 16  Comparison of performance between PI, SEAM and CMFD for the 32 az, 0.02 cm C5G7 problem 

Method FG Sweeps FG Time CG Sweeps CG Time Total Time 

Normal PI 782 5,227.4 N/A  5,227.4 

1 Group 54 342.9 2138 627.4 993.5 

2 Group 32 206.1 1170 437.7 658.0 

4 Group 24 152.2 982 439.7 603.4 

CMFD 27 275.5 27* 55.1 330.6 

* The number of diffusion eigenvalue solves used in CMFD 

The data in Table 16 show that all the SEAM calculations, even for the 1 group problem, 

accelerate the normal power iteration calculation.  SEAM’s best performance is achieved in the 4 

group calculation, reducing the total time to convergence by roughly a factor of 9.  This is still 

more expensive than 7 group CMFD, which is able to converge the problem in roughly half the 

time of the 4 group SEAM calculation.  The cheapest possible transport calculation still can’t 

compete with the diffusion solves used in CMFD.   

However, it is clear that additional overhead is accumulating in the full transport calculations 

since the time spent conducting the full transport sweep isn’t scaling with the SEAM calculation.  

While SEAM averages roughly about 6.4 seconds per full transport sweep regardless of the 

number of groups, 7 group CMFD spends on average 10.2 seconds. This overhead comes from 

the added cost of tallying the partial currents at each of the pin cell boundaries during the full 

sweep.  This overhead doesn’t accumulate in SEAM since this new method only requires the 

scalar fluxes from the full sweep.  While SEAM does require the additional fixed source sweep 

at each recondensation step, this is an extremely cheap calculation relative to the full transport 

sweep and only requires the scalar flux to be tallied.  In total, the fixed source sweep along with 

all the group collapse functions only add 21.5 seconds to the 4 group calculation. 

The equivalence possible with SEAM doesn’t end here, though.  This can be taken to an extreme 

degree by creating equivalence between a 4 azimuthal angle, 0.14 cm spacing, 1 polar angle step 

difference sweep and a 128 azimuthal angle, 0.01 spacing, 3 polar angle MOC sweep.  From 

Figure 58, it is seen that the 128 azimuthal angle tracks provide extremely good coverage of a 

single cell while the 4 azimuthal angle tracks barely cover it.  This equivalence was tested with 
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SEAM also adding in coarse group collapse to 1, 2 and 4 groups.  SEAM’s results are compared 

to that of 7 group CMFD using pin cell homogenization in Figure 63. 

 

Figure 63 Comparison of convergence profiles for SEAM using 4 azimuthal angles, 0.14 cm track spacing and 

for 7 group CMFD using pin cell homogenization for a 128 azimuthal angle, 0.01 cm track spacing 

discretization of the C5G7 problem. 

The convergence profiles produced using SEAM on the 128 azimuthal angle C5G7 problem are 

very similar to the 32 azimuthal angle equivalence.  The 1, 2 and 4 group SEAM problems and 

the 7 group CMFD calculation all converge in using the same number of full transport sweeps as 

was needed for the 32 azimuthal angle problem.  The performance of each, measured in Figure 

16, show that while the convergence profiles remain the same, the time to convergence continues 

to improve for SEAM relative to both the normal power iteration and 7 Group CMFD. 
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Table 17  Comparison of performance between PI, SEAM and CMFD for the 128 az, 0.01 cm C5G7 problem 

Method FG Sweeps FG Time CG Sweeps CG Time Total Time 

Normal PI 782 45,984.0   45,984.0 

1 Group 54 2,254.2 2137 637.2 2917.8 

2 Group 32 1342.2 1170 493.6 1850.6 

4 Group 24 1011.4 982 479.7 1503.0 

CMFD 27 1853.7 27* 55.4 1909.1 

* The number of diffusion eigenvalue solves used in CMFD 

The best performance is still achieved when using the 4 group collapse in conjunction with 

angular acceleration in SEAM.  While 7 group CMFD still speeds up the calculation by a factor 

of 24, the best performance of SEAM is able to achieve a speed up of over 30 relative to the 

normal power iteration.  While the diffusion eigenvalue problem solved in CMFD still requires 

nearly 10 times less time than the cheap transport eigenvalue problem used in SEAM, the 

overhead of the partial current tallies used in CMFD continues to scale proportionally with the 

number of azimuthal angles and inversely to the track spacing.  Therefore, even though the 

diffusion problem beat SEAM’s transport sweeps by 424 seconds, the additional tallies in CMFD 

accrue an extra 842 seconds.  And while CMFD performance could be improved through 

further optimization of the surface tallying function in OpenMOC, it should be noted that 

SEAM requires no new code to be added into the transport sweep and therefore is much 

less intrusive to pre-existing codes.  

It is apparent from these results that energy acceleration doesn’t have a profound impact on the 

C5G7 benchmark.  Since much of the difficult spectral information has been collapsed down into 

a few group problem, there isn’t a significant amount of acceleration which can be achieved 

through energy acceleration by itself.  Therefore, while this thesis has primarily been focused on 

energy acceleration, the flexibility and utility of SEAM have been shown to extend far beyond 

what it was originally intended for.  Therefore, it is worth further exploring the possibility of 

purely angular acceleration for few group problems, meaning the group collapse procedure is not 

involved in the SEAM calculation. 
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6.3.3 Angular Acceleration for Few Group Problems 

The original idea behind the development of SEAM was to be able to create a few group 

transport method that can equivalently represent the original fine group problem.  Ideally, the 

bulk of the work would be placed on converging the few group problem and reduce the number 

of fine group transport sweeps.  However, in problems already using few groups, there is little to 

gain from further reducing the number of groups using SEAM.  Instead, the results from Section 

6.3.2 point towards angular acceleration being the most beneficial for few group problems.  

Therefore, angular acceleration will be considered when using SEAM with 7 groups. 

While the cross section can continue to be defined differently for each flat source region as was 

required in group collapse.  The modification of the coarse group cross sections using the 

corrective factors defined in Section 5.1.2 added no additional storage since the coarse group 

cross sections already needed to be stored for each cell.  When using the same number of groups, 

the corrective factors can instead be applied to the scalar flux after each “incorrect” sweep to 

produce the equivalent fine group source for the next calculation instead of storing new cross 

sections for each cell.  In this case, only the factors need to be stored for each cell and fine group.  

Since the storage required for cross sections increases as G
2
, this can significantly reduce storage 

requirements if only angular acceleration is desirable.  However, if one is collapsing the fine 

group cross sections and storing coarse group cross sections for each cell then using the new 

cross section definitions in Equation (5.34) makes more sense. 

This idea of purely angular acceleration was tested on the C5G7 using SEAM without group 

collapse but still creating an equivalent transport problem using 4 azimuthal angles, 0.14 cm 

track spacing, 1 polar angles and step difference.  This equivalence was formed for the 4, 32 and 

128 azimuthal angle C5G7 problems used in Sections 6.3.1 and 6.3.2.  Figure 64 shows the 

results of the SEAM calculations and compares them with the results of 7 group CMFD 

acceleration using pin cell homogenization. 
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Figure 64  Comparison of convergence profiles for SEAM coupling 4 azimuthal angles, 0.14 cm track spacing 

to finer track spacings and for CMFD using pin cell homogenization, all using 7 groups.  All the CMFD runs 

have the same convergence profile, as does the SEAM calculation for 32 and 128 azimuthal angles. 

For C5G7, 7 group SEAM is able to reduce the number of full transport sweeps by almost half 

relative to 7 group CMFD.  The 4 azimuthal angle problem only requires 10 full sweeps, while 

both the 32 and 128 azimuthal angle problem only require 14.  The stellar performance in the 4 

azimuthal angle problem is to be expected, however, since fewer approximations are being made.  

In this case, the same tracks are being used in the full and equivalent transport sweeps, the only 

difference is that the SEAM transport sweep uses 1 polar angle and step difference.  The true 

performance measured in time shows that this is still just as time consuming as the normal power 

iteration.  The run time does not significantly improve because the polar angles are included into 

the SIMD vectorization used in OpenMOC.  This means that the sweep process across an 

individual segment can be carried out simultaneously across all the polar angles at once. 
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Table 18  Performance of Normal PI, 7 Group SEAM and 7 Group CMFD for the C5G7 Problem 

Method 
4 Az. Angles 32 Az. Angles 128 Az. Angles 

Sweeps Time Sweeps Time Sweeps Time 

Normal PI 768 502.6 782 5,227.4 782 45,984.0 

SEAM 10/756 440.1 14/845 670.3 14/845 1,110.5 

CMFD 26 72.1 27 330.6 27 1,909.1 

Another interesting behavior is observed in Table 18 for the 32 azimuthal angle problem.  In this 

case, 4 group SEAM is able to outperform 7 group SEAM by over a minute.  Even though 7 

group SEAM significantly reduces the number of full transport sweeps, the 4 group problem is 

able to provide a cheaper means of converging the equivalent transport problem.  Since the time 

required to converge the equivalent problem is still larger than time spent sweeping the full 

transport problem, 4 group SEAM still wins out. 

The true benefit of angular acceleration with SEAM is seen in the results of the 128 azimuthal 

angle C5G7 analysis.  For this problem, conducting even a few of the full transport sweeps 

becomes much more expensive than converging the equivalent transport problem.  Since 7 group 

SEAM is able to reduce the number of full transport sweeps by half relative to the CMFD 

problem, SEAM substantially decreases the time required to converge the solution.  For 7 group 

SEAM, the result is a speed up of over 45 relative to the normal power iteration and a speed up 

of 1.7 relative to CMFD. 

The primary reason SEAM is able to reduce the number of full transport sweeps by so much 

relative to CMFD is because SEAM does not make use of spatial homogenization.  While CMFD 

can provide very good acceleration of the global problem, the local problem within each pin cell 

can’t be effectively accelerated once spatial homogenization takes place.  SEAM, on the other 

hand, performs no spatial homogenization and therefore can accelerate each flat source 

region individually.  In this case, there isn’t even an approximation used with respect to energy, 

therefore the group fluxes for each flat source region can be accelerated individually too.  This 

results in a substantial acceleration of the 128 azimuthal angle problem relative to CMFD. 
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6.4 Application of SEAM to the “C5G361” Core 

While the C5G7 benchmark served as the ideal problem to initially test SEAM in 2D transport, 

this problem was not able to provide a good basis for determining the performance of SEAM in a 

truly fine group problem.  Therefore, in order to establish SEAM’s ability to accelerate a fine 

group transport calculation, a modified benchmark problem is proposed that incorporates the 361 

group microscopic cross sections used in the 1D BWR analysis of Section 5.2 into the geometry 

of the original C5G7 benchmark.  From here on, this problem will be referred to as the C5G361 

problem. 

6.4.1 Description of the “C5G361” Core 

The C5G361 core retains the exact same spatial description of the original C5G7 problem except 

for a few minor differences.  Since the compositions of the guide tubes and fission chambers 

could not be accurately ascertained from the definition of the C5G7 benchmark description, these 

materials were replaced with water to simplify the model.  Also, due the presence of large 

resonances with this very detailed fine group data, the number of rings used to describe each fuel 

pin was increased from 3 to 7 in order to adequately resolve the sharp flux gradients at the 

resonances.    

The exact compositions of the various Pu and MA isotopes were also not defined in the C5G7 

description, so the following composition was used in order to be representative of LWR MOX 

fuel at the 4.3%, 7.0% and 8.7% enrichments. 
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Table 19 Plutonium and Minor Actinide Compositions Assumed in Macroscopic Cross Section Production for 

the MOX fuel in the C5G361 problem (Uranium not included here) 

Pu Composition (At. %) MA Composition (At. %) 

Pu-238 1.60 Np-237 51.1 

Pu-239 60.2 Am-241 32.3 

Pu-240 24.7 Am-243 16.6 

Pu-241 8.60   

Pu-242 4.90   

    

Total Pu 89.4 Total MA 10.6 

This 361 group 2D core is the first of its kind to be tested in OpenMOC and should prove 

difficult enough to test the limits of both SEAM and CMFD in their ability to accelerate fine 

group transport calculations. 

The whole core version of this problem was first analyzed using 4 azimuthal angles, 0.14 cm 

track spacing and 3 polar angles.  As stated before, the fuel rings were divided into 7 concentric, 

equal area rings and the same moderator discretization as used in the C5G7 core was used again 

in this case.  However, the guide tubes and fission chambers were replaced with additional 

moderator using a fine square mesh cell.  OpenMOC was used to converge the source residual to 

a tolerance of 10
-5

.  The converged value of keff was found to be 1.180338.  The total run time to 

converge this problem ended up being 86,983 seconds, or just over 24 hours.  While the angular 

discretization used for this problem was very poor, moving to a calculation using 32 angles and a 

0.02 cm spacing would have required roughly 10 days to fully converge.  However, the analysis 

from Section 6.3 indicated that the convergence profiles of both SEAM and CMFD were mostly 

independent of the angular discretization used in the full transport problem.  Therefore, using 4 

azimuthal angles should provide a good indication of performance using a more resolved angular 

discretization. 
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6.4.2 C5G361 Fine Group Transport Acceleration with SEAM and CMFD 

For this 361 group 2D problem, two coarse group structures were tested using SEAM.  The first 

is a 9 group structure that largely glosses over many of the prominent resonances except for the 

6.67 eV resonance of U-238.  The 23 group structure separates out the rest of the resolved 

resonances to determine if this would significantly improve the convergence of SEAM.  The 9 

group SEAM calculation was conducted twice, using 1 and 2 power iterations to determine if the 

behavior observed in Figure 59 was specific to the C5G7 problem or if it’s inherent to SEAM.  

Each SEAM calculation used the same 4 azimuthal angles and 0.14 cm track spacing as the 

original problem, but continued to use step difference with 1 polar angle for the transport sweep. 

These results were then compared to runs using CMFD acceleration.  First, pin cell 

homogenization was used with two different relaxation factors, 0.45 and 0.6 to determine if the 

cheaper diffusion calculation could provide quick acceleration of the problem.  For each 

relaxation factor, the same coarse group structure as the SEAM calculations were used to 

conduct 9 group and 23 group calculations with CMFD.  The same coarse group structure and 

the finest possible mesh size were thought to provide a good basis by which to compare SEAM. 
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Figure 65  Comparison of convergence profiles for 9 and 23 group SEAM and CMFD (pin cell 

homogenization) acceleration of the C5G361 problem 

Even though a very different problem is being considered in this case, oscillations in the 

convergence of SEAM persist when using 1 power iteration per recondensation step.  Since this 

behavior seems to be problem independent, it is advisable to always conduct 2 power iterations 

per step to ensure stability and achieve monotonic convergence.  However, further investigation 

should be conducted to determine the source of this instability. 

Also observed in Figure 65 is that there is very little discernable difference in the convergence of 

the 9 group and 23 group SEAM runs when using 2 power iterations.  Both require 44 fine group 

transport sweeps before the source is converged.  This was somewhat surprising since the 9 

group coarse group structure does not provide a detailed representation of the resonances in the 

361 group total cross sections.  In retrospect, this seems reasonable since any large sources 

initially present in the resonances at the beginning of the calculation will converge very quickly 

due to the very quick exponential decay of neutrons in the resonances.  Since this will be picked 

up very quickly in the 361 group transport sweeps, then it may be important to take other spectral 

effects, such as upscatter, into consideration when choosing the coarse group structure.  While 



 

191 

 

 

 

optimal choice of coarse groups is an important step in further optimizing the convergence of 

SEAM for fine group problems, this subject remains outside the scope of this thesis. 

More important is to show that both the 9 and 23 group SEAM transport calculations remain 

equivalent to the full 361 group one.  Therefore, the fission rate errors for each flat source region 

were calculated relative to the converged solution using the normal power iteration procedure in 

OpenMOC. 

  

Figure 66  Comparison of fission errors in the 9 group (left) and 23 group (right) problems using SEAM 

Figure 66 shows that all of these errors remain well below 0.1%.  In fact, the majority the fission 

rate errors across over 90% of the core are below 0.01% for both the 9 group and 23 group 

SEAM runs using 2 power iterations per recondensation step.  This proves that even for a 361 

group problem, SEAM can still create an equivalent transport problem at each recondensation 

step even when using only 9 groups. 

CMFD for both the 9 and 23 group calculations is able to converge quickly but not as much as 

SEAM.  Both CMFD calculations using a relaxation factor of 0.45 were stable and required 50-

51 fine group transport sweeps.  So, in this case, SEAM was able to converge using 6-7 fewer 

fine group sweeps than CMFD.  While using a larger relaxation factor was thought to further 

reduce fine group sweeps, the pin cell homogenized CMFD calculation became unstable when 

using the 0.6 relaxation factor. 
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Further inspection of Figure 65 show that initially the convergence of CMFD and SEAM match 

very closely to one another, but when their respective residuals drop below somewhere between 

10
-2

-10
-3

 then the convergence of CMFD begins to slow relative to SEAM.  Since the coarse 

group structures, number of azimuthal angles and track spacings are all equivalent, the main 

difference must lie within the pin cell homogenization used in CMFD.  This makes sense 

because of the spatial approximations used in CMFD. 

While CMFD, even in its pin cell homogenized form, is able to produce a much better global 

solution after each iteration, eventually it has to rely on the fine group transport sweeps to 

sufficiently converge the spatial dependence of the scalar fluxes within each pin cell.  This is 

likely what’s occurring when CMFD deviates from SEAM.  SEAM, on the other hand, doesn’t 

apply any spatial homogenization and therefore is able to accelerate the scalar fluxes for each 

and every flat source region, providing a level of detail to the equivalent problem that CMFD 

can’t achieve when applying spatial homogenization. 

Table 20  Comparison of performance between PI, SEAM and CMFD for the 4 az, 0.14 cm C5G361 problem 

Method FG Sweeps FG Time CG Sweeps CG Time Total Time 

Normal PI 2,101 86,983.0 N/A N/A 86,983.0 

9G SEAM 44 1,752.8 2,290 2,383.2 4,457.8 

23G SEAM 44 1,790.8 2,428 4,729.7 6,883.9 

9G CMFD 50 
5,098.6 

(3,059)** 
50* 3,673.2 8,771.9 

23G CMFD 50 
4,926.3 

(2,963)** 
50* 14,788.7 19,715.0 

* The number of diffusion eigenvalue solves used in CMFD 

** Normalization accounting for overhead 

In terms of performance, the 9 group SEAM calculation definitely provides the most efficient 

approach for creating an equivalent coarse group transport calculation.  In this case, SEAM is 

able to speed up the normal fine group power iteration calculation by a factor of 19.5.  On the 

other hand, CMFD is only able to speed it up by less than a factor of 10.  This is primarily due to 

how expensive the solving the diffusion problem becomes when doing the full fine group CMFD 

calculation.  The substantial increase in the diffusion solve time moving from 9 groups to 23 

groups also highlights the need for optimization for many groups in OpenMOC CMFD solver.  



 

193 

 

 

 

Further angular refinement of this problem will also lead to additional overhead in the fine group 

sweeps for CMFD.  All of this taken into consideration, it appears that SEAM is better suited to 

meet the challenges of fine group transport acceleration. 

6.5 Summary 

SEAM has now been successfully implemented in OpenMOC and tested on two different 2D 

problems, the C5G7 benchmark core and a newly created problem called the C5G361 core.   

Results in the C5G7 testing show that SEAM can create a substantially cheaper transport 

problem that is equivalent to the full transport problem.  One of the best examples of this was 

demonstrating that a 1 group calculation using 4 azimuthal angles, a 0.14 cm track spacing, 1 

polar angle with step difference could be made equivalent to the full 7 group transport 

calculation using 128 azimuthal angles, a 0.01 cm track spacing, 3 polar angles with MOC.  This 

test highlights SEAM’s flexibility in forming a cheap but equivalent transport problem.   

Initial comparison with CMFD showed that although 4 group SEAM calculations could match 

the number of full transport calculations used in CMFD, the relatively cheap transport 

calculations still required much more effort than conducting the incredibly cheap diffusion 

calculation used in CMFD.  However, when moving to large numbers of azimuthal angles like 

the 128 azimuthal angle example, 4 group SEAM is able to outperform CMFD because of the 

additional overhead required to tally the surface partial currents for each of the homogenized pin 

cells to create the equivalent diffusion problem.  While the equivalent transport problem SEAM 

forms is more expensive to solve, only a single fixed source sweep of the low order problem is 

required to form equivalence.  Therefore, the same overhead is required even though high order 

problem becomes more expensive.  Since the net current tally overhead is proportional to the 

angular order and track spacing used, CMFD eventually reaches the point where the overhead is 

much greater than the gains in the diffusion calculations.  This point was reached in the 128 

azimuthal angle, 0.01 cm calculation, at which point the 4 group SEAM calculation was able to 

converge in about 1500 seconds as opposed to CMFD’s time of 1900 seconds. 
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SEAM was also able to accelerate the C5G7 problem without using group collapse.  The result 

was a purely angular acceleration approach that further improved the 128 azimuthal angle 

results.  The 7 group SEAM calculation was able to cut the number of full transport sweeps 

nearly in half relative to the CMFD calculation.  In doing so, 7 group SEAM was able to 

converge in only 1100 seconds, resulting in a final speed up of 45 relative to the normal power 

iteration calculation. 

Unfortunately, testing with the C5G7 benchmark core was unable to provide an adequate testing 

base for a true fine group transport problem, so a new 361 group problem was formed to truly 

test the performance of energy acceleration using SEAM.  This “C5G361” problem is based 

almost exactly off of the geometry of the C5G7 core, but instead uses the 361 group microscopic 

cross section data used to test SEAM in the 1D BWR calculations of Section 5.2.  This new 

problem was tested with 9 and 23 group CMFD acceleration pin cell homogenization and 

compared with the 9 and 23 group calculation using SEAM.  Both 9 and 23 group SEAM 

calculations were able to further converge the solution using only 44 fine group transport sweeps 

as compared to the 50-51 required to converge using the most detailed CMFD calculation.  This 

result suggests that convergence below a source residual of 10
-2

 is dictated more by changes in 

the flux inside the pin cell which can’t be captured using a homogenized pin cell approximation.  

Since SEAM doesn’t use spatial homogenization, the scalar fluxes for each flat source region can 

be accelerated and leads to better performance. 

SEAM has now been shown to accelerate both fine group and high fidelity transport calculations, 

in many cases even improve upon CMFD acceleration.  While further study is necessary, it is 

important to recognize that the recondensation process used in SEAM is very similar to that used 

in DGM.  Even though DGM proved ultimately too memory intensive, it may still hold valuable 

intuition into how to further improve SEAM in the future.  Therefore, recondensation using 

DGM will be looked at both as a nonlinear method and as a form of energy preconditioning.  
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7 Nonlinear DGM and Energy Preconditioning 

Although DGM does not appear to be feasible in direct use for accelerating fine group transport 

calculations, it may still provide useful insights into how to apply nonlinear methods to 

recondensation.  One only needs to look at the definitions of our cross section moments in DGM 

to understand this.  Any changes in the flux moments will lead to a nonlinear change in the cross 

section because the reaction rate is divided by the coarse group flux, the leading order flux 

moment. 

            

∑      (          )
 

          
 

(7.1) 

The recondensation process which has been applied thus far is essentially a fixed point iteration 

which solves this nonlinear problem.  Throughout this process it is assumed that the cross section 

moments do not change as the coarse group eigenvalue is conducted and the fixed source DGM 

solved.  It is only after the fine group fluxes have been reconstructed, which is assume to be 

closer to the true solution, that the cross sections are actually updated.  Therefore, instead of 

using this fixed point iteration concept, there should be a way to apply a nonlinear solver to 

recondensation and solve for the flux moments, eigenvalue and cross section moments 

simultaneously.  Newton’s method will be applied for this purpose. 

Newton’s method is one of the most widely used methods for solving nonlinear problems.  In 

order to apply this method, the definition of the problem is changed in such a way that a function 

or set of operations, F, performed on the solution x equals 0.  The operator F is defined as a set 

of residual nonlinear equations acting on all of the unknowns in the vector x. 

   (  )    (7.2) 

In deriving Newton’s method, a Taylor Expansion is performed on the residual equations 

centered about the initial guess or current iterate of the solution.  All quadratic or higher terms 

are dropped thereby forming an approximation that linearizes the nonlinear problem.  Index k 
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will denote the current iterate of x within the Newton method, while i and j will be used to 

distinguish between the residual equations in F and the unknowns in x respectively. 

   (       )    (   )   (   )    (7.3) 

J is used to describe the first order partial derivatives of the residual equations with respect to all 

the unknowns in x.  This matrix is referred to as the Jacobian and its elements are defined for the 

i
th

 residual equation and the j
th

 unknown as follows. 

    (  
 )  

   (  )

   
]
      

 (7.4) 

Using this approximation, a change in our current solution can be found that will drive the 

linearized residual to zero.  Assuming that this is a good approximation to our problem, this will 

drive the current iterate closer to the true solution.  This step amounts to setting the linearized 

form of F equal to zero and solving a linear system of equations for the search direction δx. 

 
       (   )    (   ) 

               

(7.5) 

Then the current solution is updated with the evaluated search direction and the Jacobian is 

reevaluated at the new iterate for use in the next iteration.  If this linear approximation holds, 

then the solution will converge.  One of the very nice properties of Newton’s method is that it 

achieves quadratic convergence.  For example, if the current iterate is roughly accurate to one 

digit, then the first Newton step will provide accuracy to two digits, the second provides 4 digit 

accuracy and so on. 

Unfortunately, this behavior is achieved only when the linear approximation used in the Taylor 

expansion is good.  Since nonlinear problems are rarely well-behaving function, the initial guess 

could also provide a Jacobian that is singular and therefore not invertible.  There are many 

potential fixes for this, such as using a continuation scheme.  This approach adds a linear 

problem on top of the current nonlinear problem using a weighting that, at first, heavily favors 

the linear problem.  After each newton step, the weight is reduced such that the modified 

problem better resembles the original nonlinear problem.  While choosing how much to relax 
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this weight is tricky, this allows the method to avoid many of the convergence issues associated 

with Newton’s method.  For the infinite homogeneous problems being considered, however, it is 

assumed that they are well-behaved nonlinear functions and therefore it is unlikely using a 

continuation scheme will be necessary. 

While Newton’s method provides very good convergence for nonlinear problems, it does require 

the solution of a linear system of equations at each Newton step.  For large problems, providing 

an exact inverse of the Jacobian is computationally prohibitive and, for the most part, 

unnecessary.  If the solution to the linear system is found within machine precision, but only 

provides one or two orders of magnitude improvement in the residual norm of our Newton 

method, then a significant amount of time has been wasted in obtaining unnecessary accuracy for 

the search direction.  On the other hand, if the search direction is too inaccurate, then the 

quadratic convergence of the Newton method can deteriorate to linear convergence.  Therefore, 

inexact Newton can be used instead to reduce the burden of the linear solves at each Newton 

step. 

For determining the approximate solution, any number of Krylov methods can be applied to 

solve the linear system of equations.  For our purposes, since the nature of the Jacobian for the 

infinite homogeneous problem is largely material dependent, the Generalized Minimum 

RESidual (GMRES) method will be applied for the linear solve. 

7.1 Nonlinear Derivation with Explicit Recondensation 

In order to apply recondensation to Newton’s method, the residual equations must be defined in 

order to build the Jacobian at each Newton step.  The infinite homogeneous form of the Discrete 

Generalized Multigroup equations serves as the starting point for this derivation.  All terms on 

the right hand side are moved to the left to form the residual equation for DGM.   λ is used 

instead of 1/keff  for simplicity in the definition of the nonlinear problem. 
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          (7.6) 

This provides a different equation for each fine group, but each has considerably more unknowns 

to solve for.  Since the point is to incorporate the cross section moments into the Newton 

method, all of these must be included in the total list of unknowns.  For this infinite 

homogeneous problem, the total number of unknowns associated with these cross sections is 

FGxCG+FG+2xCG.   

To incorporate the definitions of the cross section moments and the del terms into the nonlinear 

solve, the original definitions of these material properties are put into residual form as was done 

for the DGM equations. 

The definition for the coarse group total cross section is used to derive a residual equation that 

will be used to evaluate the Jacobian. 

   
            ∑           

   

 (7.7) 

The same process is applied to the del term, scattering cross section moments and the coarse 

group fission cross section.  The equations for chi are not included in the nonlinear 

recondensation process because the group collapse of chi is independent of the fine group fluxes 

and only depends on the fine group values for chi.   
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(7.8) 
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Although the correct number of residual equations for each of the cross section definitions has 

been added, there is still the eigenvalue to account for.  An additional equation must be defined 

so that the problem becomes solvable.  A normalization residual is typically used for this 

purpose.  Due to the nature of the eigenvalue problem, changing the magnitude of a mode 

solving the eigenvalue problem will not affect the validity of the solution.  Therefore a constraint 

can be placed on the flux limiting the magnitude of the flux moment vector.  This constraint only 

needs to be placed on the flux moments since any changes in the overall magnitude of the flux 

moment vector will not change the cross section values. 

To ensure that the method is equivalent to the nonlinear fine group equations, the normalization 

residual used in the fine group calculation is used. 

  ( )  
 

 
(∑ ∑   ( ) 

    

  ) (7.9) 

The definition of the flux moments can be used to substitute the flux moments in place of the 

fine group fluxes.  Since the flux moments are defined through the application of the discrete 

basis function and these basis functions satisfy an orthonormality condition, the fine group fluxes 

can be expanded in terms of the flux moments,  ̌, which are the fine group fluxes transformed 

with the discrete basis function, P, and normalization, A. 

  ( ̌)  
 

 
( ̌        ̌   ) (7.10) 

This substitution defines a new normalization residual for the flux moments.  If the 

orthonormality condition still holds true for the discrete basis functions, then the following 

relation must hold as well. 

        (7.11) 

Since A is a diagonal matrix, there is no difference between A and A
T
.   In the end, this means 

that the product of the four matrices in Equation (7.10) reduces down to A.  Thus the 

normalization equation reduces to Equation (7.12). 
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  ) (7.12) 

This ensures not only that the converged solution will match the true fine group solution, but this 

also ensures that their norms will match perfectly. 

In order to implement the Newton method, the Jacobian must be formed using the residual 

equations.  While employing a Jacobian-Free Newton-Krylov method would be the most clear 

choice, since this is a first of its kind treatment of the infinite homogeneous problem, defining 

and analyzing the structure of the Jacobian will be important in determining the practicality of 

this method moving forward. 

The first part of the Jacobian is formed by taking the partial derivatives of the DGM Residual 

Equation with respect to the flux moments, eigenvalue, coarse group total cross section, del term, 

scattering moment cross sections and fission cross sections in that order.  For clarity, upper case 

deltas in the following definitions represent Kroenecker deltas if no comma is present.  All lower 

case deltas represent the del term used in DGM. 
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      ∑            

  

   

          

 (7.13) 

It is noted that as long as the number of coarse group is much less than the fine group problem it 

represents, this region of the Jacobian will be very sparse.  This is because only the columns 

corresponding to the coarse group fluxes will be completely filled.  All other columns have a 

single value along the diagonal. 

The derivative with respect to the eigenvalue produces only a single column vector relating 

directly to the fission term. 
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 (7.14) 
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The partial derivative with respect to the coarse group total cross section produces a diagonal 

matrix whose diagonal is filled with the flux moments.  

 
     

   

     
         (7.15) 

The partial derivative with respect to the del term results in a diagonal matrix filled only with the 

coarse group fluxes. 
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Next, the coarse group total cross section residual is incorporated into the Jacobian by taking its 

partial derivative with respect to the flux moments and the coarse group cross sections.  The first 

set of equations is defined by a row of diagonal matrices and the second is a single diagonal 

matrix. 
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 (7.19) 

 

 
  

  

     
         (7.20) 

 



 

202 

 

 

The partial derivative of the del tem with respect to the flux moments forms a block diagonal 

matrix which is blocked by coarse group.  With respect to the coarse group total cross section, 

the derivative forms a column of diagonal matrices.  Taking the derivative with respect to the del 

term produces an additional diagonal matrix. 
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(7.23) 

The scattering term residual is now factored into the Jacobian. 

        (  )                ∑                

   

 (7.24) 

The partial derivative of this residual is taken with respect to the flux moments and the cross 

section moments to determine the linear response due to changes in these parameters. 
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The contribution of the fission cross section term to the Jacobian is also derived.  The partial 

derivative with respect to the flux moments and fission cross sections are taken. 
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Lastly, the contribution of the normalization term to the Jacobian is found by taking the 

derivative with respect to the flux moments. 

 
 ( ̌)

     
                

(7.29) 

This leads to a Jacobian that is much larger in total size than that for the original fine group 

problem, but is sparser and actually has fewer nonzero terms.  The only dense region in the 

Jacobian is due to the partial derivative of the scattering cross section with respect to the flux 

moments.  Most of the other partial derivatives return a diagonal or mostly diagonal contribution 

to the Jacobian.  The sparsity pattern of the Jacobian mapping a 295 fine group problem onto an 

8 coarse group problem can be seen in Figure 67. 

 
Figure 67  Sparsity pattern for the Jacobian built for a 295 fine group problem using explicit nonlinear 

recondensation 
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This Jacobian is very sparse due to the additional residual equations introduced to relate the flux 

moments to the cross section moments.  A one coarse group calculation roughly doubles the 

number of nonzeros relative to the 8 group case and leads to a much more dense Jacobian.  

However, in total, the number of nonzero Jacobian elements for the original fine group problem 

is roughly 87,000, therefore introducing this approach for a one coarse group representation 

actually increases the number of nonzeros.  There seems to be a minimum in the number of total 

nonzeros as one moves to splitting the fine group problem into more and more coarse groups.  

This certainly is interesting and could translate into improved performance if a Jacobian-Free 

method were applied to this problem.  For now, though, application of this approach will 

continue to be focused on using Newton-Krylov methods. 

7.2 Results for Infinite Homogeneous Problems 

For our infinite homogeneous problem, the inexact Newton solve uses a convergence criterion 

that solves the linear system of equation to near machine precision and therefore is an exact 

Newton method.  Therefore, if the linear approximation holds, quadratic convergence should be 

observed.  The tolerance for the residual of the Newton method is set to 10
-12

.  The problem 

analyzed here is for a 295 group infinite homogeneous material representative of fuel in an HTR. 

 

Figure 68  Convergence of the residual using explicit nonlinear recondensation and the del term 
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In Figure 68, the convergence rate is shown to depend strongly on the number of coarse groups 

representing the fine group problem.  While quadratic convergence is observed in the one group 

problem, the 4 group problem only attains linear convergence.  It seems that somewhere in the 

explicit nonlinear recondensation equations, convergence is forced to be linear instead of the 

optimal quadratic convergence Newton’s method is known for.  Not shown in this figure is the 

convergence plot for the 8 group problem, which is unstable and does not converge after 20 

Newton iterations.  Therefore, this approach to nonlinear recondensation does not appear to be 

viable. 

One thought was that the del term, which was a necessity in spatial calculations, is not really 

required in an infinite homogeneous problem and could be causing the Newton method to lag 

behind its optimal convergence properties.  Therefore, the del term definition was combined with 

the definition of the total coarse group cross section to produce a coarse group total cross section 

moment in hopes of improving the convergence properties. 

                              (7.30) 

As a consequence of combining these two terms, a new residual equation is defined to 

incorporate this new definition into the Jacobian. 

     (  )             ∑            

   

 (7.31) 

Unfortunately, this doesn’t seem to be the true source of the problem.  In Figure 69 below, the 

exact same convergence properties are observed as in the previous approach.  Here, the 

convergence behavior for the 8 group case is also shown to highlight its divergence. 
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Figure 69  Convergence of residual for nonlinear explicit recondensation without using a del term 

7.3 Nonlinear Implicit Recondensation 
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dependent problem, then this number would need to be further multiplied by the total number of 

spatial unknowns.  This is considerably more number crunching and storage than would be 

required if the fine group equations were used to begin with.   

The primary issue with this approach is that it seems that explicitly defining the recondensation 

process in its true nonlinear form does not lead to any gains in performance and actually can lead 

to instability and divergence.  Therefore, in order to make the method practical regarding 

performance and memory requirements, the moment cross sections definitions are folded back 
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(7.32) 

Once these residual definitions are substituted, many cancellations occur which lead to the 

definition of Equation (7.33). 

 

    (   )  ∑            

   

 ∑∑                

     

      ∑∑             

     

 

(7.33) 

This new set of equations is essentially the original fine group residual equations transformed 

using the discrete basis functions.  If this is placed in matrix-vector form, the similarity is more 

striking.  First the vector of flux moments is organized by stacking the moments from each group 

in sequential order.  This organization dictates the order in which the rest of the mass matrices 

must be ordered as well. 

For the DGM scattering matrix, it is defined in block form by coarse group.  

   
̿̿ ̿  (

 ̿       ̿     

   

 ̿       ̿     

) (7.34) 

Each block is defined by the action of discrete basis functions on all the in-going and outgoing 

fine group scattering information when scattering from one coarse group to another. 

 
             ∑ ∑   ( )  (   )  ( )  

       

 (7.35) 
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The total cross section information, originally a diagonal matrix, becomes block diagonal.  

   
̿̿̿̿  (

 ̿     

   

   ̿   

) (7.36) 

Each block is a dense matrix which looks like the discrete equivalent of mass matrices used in 

finite element methods. 

 
         ∑ ∑   ( )  ( )  ( )  

       

 (7.37) 

The fine group fission cross sections and fission spectrum are transformed by the discrete basis 

functions to produce a new set of vectors which are grouped by coarse group. 

    
⃑⃑ ⃑⃑ ⃑⃑   (

     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

 

     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ 

),     (
  ⃑⃑⃑⃑ 
 

  ⃑⃑ ⃑⃑ 
) (7.38) 

Each vector group is comprised of the fission and spectrum moments, respectively, each of 

which are produced by applying the discrete basis functions to the fine group data. 

 

         ∑     ( )     ( )

   

 

      ∑   ( )  ( )

   

 

(7.39) 

The complete flux moment vector is similarly defined for this set of DGM residual equations and 

is organized by coarse group. 

  ⃑  (
  
⃑⃑ ⃑⃑ 

 

  
⃑⃑⃑⃑  ⃑

) (7.40) 

Each group of column vectors contains all of the flux moments for that coarse group.  These are 

also defined through application of the discrete basis functions. 
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 (7.41) 

When all the components of the DGM residual equations are defined in this manner, the 

equations simplify down to the following form. 

  ⃑ (   )  (  
̿̿̿̿    

̿̿ ̿   (      
⃑⃑ ⃑⃑ ⃑⃑  ))  ⃑  (7.42) 

The only unknowns in this implicit formulation of the recondensation process are the flux 

moments and eigenvalue.  All the cross section moments have been implicitly included into the 

mass matrix formalism.  If a matrix were created where the discrete basis functions are placed in 

block diagonal fashion for each coarse group, then the summations are replaced by a set of 

matrix-matrix and matrix-vector multiplications. 

  ̿  (
 ̿   
   

   ̿ 

) (7.43) 

Each block’s columnspace is defined by the discrete basis functions that are being applied to 

each distinct coarse group.  These blocks are dense, square and are of the same size as the 

number of fine groups within that particular coarse group. 

   ̿  (

  ( )   ( )

  ( )   ( )
 

  ( )

  ( )
   

  ( )   ( )    ( )

) (7.44) 

The normalization constants must also be organized by group and then moment to match the 

ordering of the discrete basis functions in P.  Matrix A is block diagonal by coarse group and 

each block is a diagonal matrix comprised of the normalization constants for each moment 

within that coarse group. 
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   ̿ 

) (7.45) 

With the discrete basis functions and residual equations organized in this manner, the summation 

definitions previously used can be defined instead by the following matrix notation. 

 

  
̿̿̿̿   ̿      (      ) ̿ ̿ 

  
̿̿ ̿   ̿   ̿     ̿ ̿ 

   
⃑⃑ ⃑⃑ ⃑⃑         

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   ̿ ̿ 

      ⃑⃑ ⃑⃑ ⃑⃑   ̿ 

(7.46) 

Substituting these definitions into our residual equation to produce Equation (7.47). 

  ⃑ (   )   ̿ (     (      )    ̿      (   ⃑⃑ ⃑⃑ ⃑⃑  
 
      
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ))  ̿ ̿ ̿    

⃑⃑ ⃑⃑ ⃑⃑  ⃑ (7.47) 

Now the nonlinear implicit recondensation method is nothing more than the original nonlinear 

fine group problem projected using the discrete basis functions.  Since this new mapping is 

linear, the search direction at each Newton step is transformed in the same linear fashion and will 

result in the same convergence properties as the original fine group problem.  Therefore, there is 

no reason to expect that this new formulation would cause the Newton method to converge 

faster.  While this may be the case, one can see that this DGM formulation is essentially a left 

and right preconditioning of the original fine group problem using the discrete basis functions.  

This means that there is the possibility of acceleration in determining the new search direction if 

a method such as GMRES were used.  This idea will be later explored in Section 7.4.2, but for 

now the focus will be solely on the Newton method without worrying about the solver used in 

the linear problem. 
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7.4 Results for Infinite Homogeneous Problems 

For initial tests of this implicit nonlinear recondensation method, the same 295 group data set 

applied to the explicit case was used.  The initial guess for the fine group problem is a flat 

spectrum and the discrete basis function is used to produce the corresponding initial guess for the 

DGM problem to maintain consistency.  

 

Figure 70  Convergence of the Newton method when applied to the fine group problem and implicit 

recondensation. The two convergence plots match exactly, so the flue line is directly beneath the green. 

As can be seen, the two methods produce exactly the same convergence profiles.  As was 

mentioned before, this is to be expected since the Newton method uses a linearization of the 

nonlinear problem. Therefore, projecting the original problem using a linear mapping will also 

lead to mapping the search direction into the new space as well. 

This seems fairly counterproductive since the whole reason behind developing a nonlinear DGM 

method is to achieve near fine group accuracy with much less work than a fine group solve.  It is 

concluded, therefore, that this linear mapping using the discrete basis functions doesn’t provide 

any acceleration to the Newton method. 
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7.4.1 Relaxing the Residual Equations 

While this projection of the fine group equations does not improve convergence, it does provide 

different ways to relax some of the residual equations placed on the original fine group problem 

if implicit recondensation is interpreted in terms of the original recondensation process.  By 

doing so, some of the constraints can be relaxed knowing that coarse group values and reaction 

rates must match those of the fine group exactly. 

For the original recondensation procedure, the coarse group problem was separated from the 

moment solve because, while the higher moments provided the spectral shape functions to 

reconstruct fine group fluxes, the coarse group flux is still what preserves the reaction rates.  

Now normalization residual will be considered in this context.  If the coarse group flux is what 

actually maintains neutron balance, then the normalization residual need only to be placed on the 

coarse group flux.  This should allow the problem to converge to the correct solution since the 

moments will automatically adjust with any changes in the coarse group flux. 

In fact, considerable acceleration in our Newton method is observed just by using the fact that 

the higher moments in the original recondensation process depended only on the coarse group 

solution.  There is one slight issue that is worth mentioning, though, when changing the 

normalization residual to depend solely on the coarse group fluxes and that is consistency.  A 

direct sum of the fine groups to produce the coarse group solution represents an L1 norm for each 

coarse group, but when these coarse groups are applied to the normalization, which represents an 

L2 norm, the result is a slight difference in the initial guess.  Therefore, the summed coarse 

groups are renormalized such that they satisfy the normalization residual at the initial guess. 

Next, fission contributions to the residual can be trimmed using the same logic.  From the coarse 

group equations in the original recondensation process, the outgoing fission spectrum is assumed 

to be completely independent of the neutron spectrum coming into the fission reaction.  Under 

this assumption, only the magnitude, not the shape, of the fission spectrum can be affected by the 

scalar fluxes through the total fission rate.   In this coarse group formulation, though, the total 

fission rate is only tied to the coarse group flux and not the higher flux moments within the 



 

213 

 

 

 

coarse group.  Therefore, the higher order flux moments’ contributions to the fission part of the 

residual can be removed, leaving only the contributions from the coarse group fluxes.  

 

Figure 71 Comparison of Newton method convergence when normalization and fission residuals are 

simplified. 

For this problem, trimming the fission contribution to the residual leads to even more 

improvement in the Newton method.  Since the method converges in one iteration, it can be said 

that these modifications to the residual have essentially changed this nonlinear eigenvalue 

problem in such a way that it becomes linear or at least very close to linear.  This is the only 

logical way to explain how it is that the Newton method converged in only one step 

7.4.2 Discrete Cosine Transforms as a Preconditioner 

In addition to accelerating the Newton method through changes in the residual, the method used 

to solve for the correct search direction at each Newton step is also analyzed.  Since application 

of the discrete basis functions are, in a sense, preconditioning the fine group problem, their 

impact on the convergence of GMRES in solving for the search direction will be determined.  

All three types of basis functions were tested to determine if any performed better than the 

others.  In order to apply Discrete Legendre Polynomials to the 295 group problem, an 8 coarse 

group structure was used to minimize accrual of round off error in forming this particular basis. 
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Figure 72  Comparison of convergence for the Newton method and GMRES when using various discrete basis 

functions.  

As seen in Figure 72, preconditioning using any of the discrete basis functions is largely 

ineffective.  This is to be expected because the transformations applied contain no information 

pertaining to the nature of the problem they are trying to precondition.   

The eigenvalue distribution of the problem also provides a good indicator as to the effectiveness 

of the preconditioner.  This is extremely important when preconditioning the problem for Krylov 

methods like GMRES.  These methods work basically by producing an approximate function 

that interpolates the eigenvalues of the linear system.  If many of eigenvalues are clumped close 

together, then the Krylov method will produce a good approximation for the solution very 

quickly.  If they are spaced out, then more GMRES iterations will be required to converge to an 

approximate solution.  Therefore, comparing the eigenvalue distribution of the original fine 

group problem to the preconditioned problem using the discrete basis functions should provide a 

good indicator at how effective they are at preconditioning the system. 
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Figure 73  Plot of the eigenvalues for the infinite homogeneous problem before and after applying discrete 

basis functions 

The biggest discernible difference in Figure 73 is the scaling of the eigenvalues that takes place 

when the discrete basis functions are applied to the original problem.  The overall shape and 

distribution of the eigenvalues distribution has not changed significantly, therefore, there is no 

observed improvement in the convergence of GMRES at each newton step.  

Looking forward in applying this methodology to spatial problems, accelerating the Newton 

method will only go so far in reducing the total number of transport sweeps.  In fact, for infinite 

homogeneous and spatial problems, it is possible that relaxing the constraints previously placed 

on the basis functions could reduce the total number of sweeps more than the Newton 

acceleration could.  Therefore, instead of applying discrete basis functions, generic left and right 

preconditioners will be applied to the fine group problem in the following fashion.  Note the fine 

group residual matrix from the fine group problem has been replaced with the short hand 

notation M(λ). 

  ⃑ (   )     ( )    
    (7.48) 

Preconditioning is focused on this part of the Residual and Jacobian because it constitutes the 

bulk of the physics.  Preconditioning this quantity will incorporate energy information, as well as 

spatial, if solving a diffusion problem.  Applying the preconditioners only to this subset of the 
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problem, though, will lead to the formation of a different nonlinear problem and will become 

inconsistent with the original fine group problem.  Therefore, these matrices must be applied 

with the full Jacobian in a linear fashion to maintain consistency while still achieving the desired 

effect.  First the original linear problem solved at each newton step.   

 [
 ( )    

   
] [

  
  

]  [
 ( ) 

(  ⁄ )(     )
] (7.49) 

In this notation, F is used to represent the “scattering” due to fission term, which is the outer 

product of chi and the fission cross sections.  Then the preconditioner can be drawn out of the 

identity matrix if the orthonormality condition placed on the preconditioners is satisfied.  

Equation (7.50) shows the end result of this transformation. 

 [
   ( )       

     
] [  

    
  

]  [
   ( ) 

(  ⁄ )(     )
] (7.50) 

Another set of transformations must be applied such that all the necessary unknowns are right 

preconditioned to produce a set of flux moments.  To do this, the orthonormality condition can 

be substituted in place of the identity matrices, allowing the preconditioners to be applied 

directly to the fine group fluxes.  Upon further simplification, Equation (7.51) is obtained. 

 [
 ̃( )   ̃ ̃

 ̃   
    

] [  ̃
  

]  [
 ̃( ) ̃

(  ⁄ )( ̃   
    ̃   )

] (7.51) 

This new form of the linearized problem is now consistent with the original fine group problem 

as long as the left preconditioner is unitary.  This assures that no scaling of the residual occurs.  

This is important because, while a unitary transformation will maintain the correct search 

direction, any additional scaling will cause the magnitude of the search vector to expand or 

contract and produce a different starting point for the next newton step.  Therefore a unitary left 

preconditioner should minimize any scaling of the residuals and therefore reduce the number of 

GMRES steps for each linear solve without affecting the newton method. 
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7.4.3 Forming a Set of Natural Basis Functions 

The best preconditioners that can be used are those which, in addition to satisfying the unitary 

behavior noted above, diagonalize or approximately diagonalize  ( ).  If this is done exactly, 

then the eigenvalues of the Jacobian will be grouped together very closely and lead to fewer 

GMRES iterations.  Obviously the ideal preconditioner would be the exact inverse of  ( ), but 

if enough work has been put in to produce the inverse at every newton step then problem is 

nearly solved already.  What can be done instead is calculate the inverse of M at a fixed value for 

lambda, say 1, knowing beforehand that realistic reactors will have an eigenvalue near 1.  

Therefore, inverting M at this value should give us a very good approximation of the inverse at 

every Newton step. 

Another quality of a good preconditioner is that it is easily invertible.  There’s little point to 

preconditioning the problem if calculating the preconditioner’s inverse is just as time consuming 

and computationally intensive as inverting the original problem.  Therefore, it would be ideal for 

the preconditioner to be sparse or, as discussed before, unitary since the inverse of a unitary 

matrix is its transpose.  For the purposes of preconditioning an infinite homogeneous problem, 

since the problem from the beginning is not sparse, the focus will be placed on preconditioners 

that have this unitary property. 

The first possible method which satisfies all these properties is eigendecomposition.  This 

method decomposes the original matrix into two matrices, one which is a dense square matrix 

and the other diagonal.  The diagonal matrix, Λ, contains all of the eigenvalues of the original 

matrix while the full matrix, Q, contains their respective eigenvectors.  The original matrix, M, is 

decomposed using Λ and Q in the following manner. 

         (7.52) 

The matrix of eigenvectors can be unitary if the original matrix is real and symmetric.  While the 

matrices considered are always real, they are never symmetric.  This asymmetry can’t be avoided 

since it is a direct result of the cross section data.  Therefore, eigendecomposition will likely lead 
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to complex numbers defining the columnspace of the preconditioner and they won’t be unitary.  

Therefore, inverting Q would also be just as costly as inverting the initial problem.  Therefore 

this method was not considered further for producing preconditioners. 

Singular Value Decomposition (SVD), on the other hand, takes in a matrix M and produces a 

single diagonal matrix, S, and two different unitary matrices, U and V.  The values in the 

diagonal matrix are called singular values. SVD can be applied to non-symmetric matrices and 

still yield U and V matrices which are orthonormal to their respective transposes, providing two 

different preconditioners that are easily invertible.  The matrix M can then be decomposed using 

the different basis functions produced via SVD. 

        (7.53) 

If the matrix M is real, then SVD is closely related to eigendecomposition according to Equation 

(7.54). 

 

                   

                   
(7.54) 

In this case, SVD produces eigenvectors for M
T
M and MM

T
 and the common eigenvalues the two 

products share.  Therefore, V is a matrix composed of the eigenvectors of M
T
M, U is a matrix 

composed of the eigenvectors of MM
T
 and the singular values are the square roots of the 

eigenvalues. 

One of the truly interesting aspects of using SVD on this type of problem rests in the 

columnspace of U and V.  Since these matrices are related to the eigenvectors of M
T
M and MM

T
, 

then these eigenvectors should have some relation to the solution of these modified problems.  

So if φ is the solution to the fine group problem, Mφ=0, then it is also the solution to M
T
Mφ=0 as 

well.  This means that the columnspace of V is composed of eigenvectors which have some 

relation to the approximate fine group solution.  This can be observed by comparing the 

columnspace of V to fine group solution, as is done in Figure 74. 
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Figure 74  Comparison of the columnspace of V associated with the smallest singular value for different 

assumed eigenvalues 

In Figure 74, the fine group flux is compared to the column of matrix V corresponding to the 

lowest singular value in S.  When lambda is equal to the exact value converged upon in the 

Newton iteration, this column of V is exactly the same as the true fine group solution.  This 

means that there are N-1 additional columns that contain a natural set of basis functions which 

are all orthonormal to the exact fine group solution.  This, of course, the eigenvalue is known 

beforehand, which means that the solution is already full known at this point.  In order to apply 

this technique to the infinite homogeneous problem without conducting an eigensolve first, 

lambda is assumed to be 1 when SVD is applied.  In this case the SVD only needs to be 

computed for the approximate problem once and then applied accordingly at each Newton step.  

This approximation provides us with an approximate fine group spectrum for the last column of 

V.  The remaining column space of V then provides basis functions which can be used to correct 

the approximate spectrum. 

Since V will be used to perform the right preconditioning of our problem, seeing how V
T
 acts on 

φ provides some insight into what V is really doing to our infinite homogeneous problem. 
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Figure 75  Flux moment values sorted from highest to lowest values after applying DCT, approximate V and 

exact V as the discrete basis functions used in DGM.  A faster drop in the magnitude of the flux moment 

moving right to left means fewer moments are required to represent an approximate solution. 

The compactness of the flux moment representation is compared when using DCTs, the 

approximate V matrix and the exact V matrix as discrete basis functions.  This was done in 

Figure 75 by sorting the flux moments from their largest value to lowest.  As expected the best 

representation occurs when the exact V matrix is used as the discrete basis function.  In this case, 

the last column of V is the exact fine group spectrum and therefore provides the sole source of 

information necessary for the problem.  All other moments, since they are orthonormal to the 

fine group solution, are within machine precision of 0.  The application of DCT’s performs 

poorly because little to no physics has been incorporated in generating these basis functions.  The 

first moment in DCTs assumes a flat spectrum and the rest of the higher moments are used after 

to correct for this poor approximation.  Application of V from the approximate problem, 

however, provides a significant improvement upon DCTs without needing to fully solve the 

eigenvalue problem beforehand.  Because the last column contains an approximate fine group 

spectrum, this moment within V is able to incorporate the bulk of the spectral information while 

the rest of the higher moments provide small corrections to the approximation. 
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The same logic can be applied to the use of U as our left preconditioner.  Since it is known that 

the adjoint fine group flux solves the following problem, M
T
φ

†
=0, then this should also lead to 

MM
T
 φ

†
=0.  This means that the eigenvectors in U must relate somehow to the solution of the 

adjoint problem.  A comparison of the calculated adjoint flux to the columnspace of U is 

provided in Figure 76. 

 

Figure 76  Adjoint flux moment values sorted from highest to lowest values after applying DCT, approximate 

U and exact U as the discrete basis functions used in DGM.  The blue line lies beneath the red line since use of 

the exact eigenvalue produces the exact fine group adjoint flux in U. 

When U is produced from the SVD of the residual problem assuming the exact eigenvalue the 

last column of U matches, the exact fine group adjoint flux is calculated to within machine 

precision.  What this tells us is that application of U
T
 as a left preconditioner provides a 

transformation of the residual using the adjoint flux solution.  If the adjoint flux is interpreted as 

an indicator of neutron importance, then this application of U
T
 as a left preconditioner weights 

the residual for each fine group according to their relative importance to the problem.  However, 

since the correct eigenvalue is not known beforehand, it is assumed to be close to 1.  This 

provides us with a different U which carries an approximate adjoint flux solution in its last 
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column.  The rest of the columnspace then provides a means to correct for the approximation 

used. 

One of the other interesting aspects of SVD lies in the behavior of the singular values.  In the 

fine group problem, when lambda approaches the correct eigenvalue, the minimum singular 

value approaches 0.  Since this is the singular value directly related to the approximate flux and 

adjoint flux solutions, this appears to be a major problem.  This seems to contradict the Eckartt-

Young theorem.  This theorem states that if the SVD is applied in such a way that the singular 

values in S are ordered from largest to smallest, then choosing the highest N singular values 

produces a rank N matrix which optimally approximates the original matrix in a least-squares 

sense.  In our problem, though, the minimum singular value corresponds to the fine group flux 

vector within V.  Therefore, a singular value of 0 is counterintuitive since it actually coincides 

with the most important column of matrix V. 

Upon further reflection, a singular value of 0 is the only way there can be solution of the form 

Mφ=0.  This becomes apparent if SVD of M is decomposed and the actions of U, S and V
T
 on φ 

are separated.  First, V
T
 acts on φ, the exact fine group solution, and produces a vector with the 

only nonzero occurring at the bottom.  If the minimum singular value were nonzero, then this 

value would have scaled according to the singular value and multiply U as a scalar.  This would 

then produce a nonzero vector and not satisfy the eigenvalue problem.  The only way Mφ=0 can 

be satisfied in this case is if the minimum singular value of M is zero.  As long as the initial 

choice of lambda is far enough away from the correct value, this will have little effect on our 

application. 

From this analysis, it appears that SVD provides a set of natural basis functions in U and V that 

can include some of the important physics of the infinite homogeneous solution into their 

construction.  Therefore, SVD is chosen as the primary method of preconditioning based on its 

ability to approximately diagonalize the problem and on the physical interpretation of the left and 

right preconditioners that SVD produces.  These preconditioners can be defined according to 

Equation (7.55). 
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(7.55) 

Assuming that the approximations applied in our SVD are good, application of these natural 

basis functions should shift the eigenvalues of the Jacobian very close to 1 and allow GMRES to 

converge much faster at each Newton step. 

7.4.4 Results for Natural Basis Preconditioning 

The DGM-SVD preconditioning method was first applied to the 295 group infinite homogeneous 

HTR problem.  The cross sections chosen for this problem are those for the type 3 fuel specified 

in Section 5.2.  Inexact Newton was used to prevent GMRES from wasting too much effort on 

unnecessary accuracy in the linear solve when the current iterate is still far away from the correct 

nonlinear solution.  Since there are only 296 unknowns in this infinite homogeneous problem, 

memory requirements are low and full GMRES was chosen over restarted GMRES.  The initial 

guess was assumed to be a flat spectrum.  Nothing was used to initially seed the calculation to 

provide a better guess. 

The natural basis functions were produced when SVD was applied to the original fine group 

problem, M, assuming an eigenvalue of 1.  These energy preconditioners were then included into 

GMRES for the linear solve at each Newton step. 
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Figure 77 Accelerating convergence using the natural basis functions as a preconditioner.  Newton iteration 

convergence located to the left and cumulative GMRES iterations to the right. 

These natural basis functions are shown in Figure 77 to accelerate convergence of GMRES at 

each Newton step relative to the original fine group problem.  Without preconditioning, the fine 

group problem took 19 total Newton steps and 517 total GMRES iterations to converge. No 

cutoff is applied for each Newton step and no restart is used either. When the natural basis 

functions were used as preconditioners for the energy problem, convergence required only 7 

Newton steps and 18 total GMRES iterations.  The original problem takes more Newton steps to 

converge due to the inexact nature of the linear solve at each step.  When DGM-SVD is applied, 

convergence of the Newton residual matches exactly what the results when converging GMRES 

to very high tolerances.   The natural basis function precondition the problem so well that the 

GMRES residual drops very faster, essentially producing an exact inversion at each Newton step.  

Since the residual drops far below the given tolerance for each linear solve, the inexact nature of 

these calculations becomes more like the exact Newton method.  On average, this DGM-SVD 

method solves for the next search direction using only 3 GMRES iterations.  The reason for this 

acceleration can be seen in the structure of our old and new Jacobians at the final Newton step in 

Figure 78. 
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Figure 78  Comparing the magnitude of the elements in the Jacobian before and after preconditioning using 

the approximate SVD 

Our old fine group problem contains a significant amount of off-diagonal information most of 

which are within 3 orders of magnitude of the diagonal values.  Application of the natural basis 

functions, even though derived using an incorrect eigenvalue, is able to approximately 

diagonalize the original problem very well.  Most of the off-diagonal elements are now 5 to 8 

orders to magnitude lower than the diagonal.  On top of this, it is noticed that much of the larger 

couplings in the preconditioned Jacobian are moved towards the last few columns and rows.  

This is expected since the columns and rows associated with the smallest singular values, at least 

in the case of the eigenvalue problems, contribute the most in terms of the physics of this 

problem.   

While the diagonalization is easily seen by comparing these two Jacobians, the eigenvalue 

distributions are the true indicators of how much faster GMRES will converge.  Therefore, the 

eigenvalues for each Jacobian were also calculated and plotted on the complex plane in Figure 

79. 
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Figure 79  Comparing the eigenvalue distributions of the fine group problem before (left) and after (right) 

preconditioning with the natural basis functions 

This is where the difference is truly interesting.  While the eigenvalue distribution for the fine 

group problem is spread out across the entire complex plane, the DGM-SVD method has 

effectively clustered all but two of the eigenvalues near 1 and eliminated nearly all of the 

imaginary components of the eigenvalues.  This accounts for the average convergence in roughly 

3 GMRES iterations at each Newton step, since there are effectively only 3 distinct eigenvalues 

in the preconditioned Jacobian. 

The DGM-SVD method comes at a cost, though, requiring (n
3
) operations for dense matrices.  

This is a considerable cost for just solving an infinite homogeneous problem. To fairly compare 

this method against the original fine group problem, the cost of the SVD must be compared to 

the cost of the GMRES iterations, each of which is (n
2
) due to the matrix-vector multiplication.  

For this 295 group problem, the DGM-SVD method required roughly 295 (n
2
) calculations for 

the SVD while only 18 were necessary for the actual solver.  The original problem required a 

total of 517 (n
2
) calculations.  Therefore, even with the cost of the SVD factored in, the DGM-

SVD method was still able to outperform the Newton solver on the original fine group problem, 

reducing the total cost by roughly 40%.  Still, this is considerably more expensive than 

conducting a single power iteration to converge the problem, since this only requires (n
2
) 

operations. 
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One way to potentially reduce the cost of the SVD would be to reduce the total number of 

nonzeros in the original fine group problem.  It is possible that something as simple as a cutoff 

could be applied to the problem would be effective, but remains outside the scope of this work. 

7.5 Results for the 1D HTR Model Using Diffusion 

While the nonlinear and preconditioning methods highlighted thus far show limited 

improvements in performance for infinite homogeneous problems, they could prove to be 

beneficial in spatially dependent problems.  However, when applying Newton’s method to a 

spatially dependent problem, it is not guaranteed that the method will converge to the 

fundamental mode of the eigenvalue problem.  A good practice to avoid this complication is to 

apply a small number of power iterations to the initial guess first before using it in Newton’s 

method.  This will remove many of the higher order modes for the eigenvalue problem, allowing 

Newton’s method to focus in on the fundamental mode.  For these 1D diffusion examples, the 3 

power iterations should remove the higher modes and allow Newton’s method to converge to the 

fundamental mode.  

7.5.1 Preconditioning Using Natural Basis Functions 

The true potential of DGM-SVD really lies in its application to spatial methods, where the 

number of spatial unknowns greatly exceeds the number of different material types in the 

problem.  This is because the SVD used to calculate the preconditioners needs to only be applied 

to an infinite homogeneous problem for each material.  Using this approach, the (n
3
) cost of the 

SVD is applied to a much smaller subset of the total problem and the preconditioners only need 

to be stored for each material type.   The primary issue then becomes how to organize the 

problem and apply the preconditioners. 

The typical method of arranging the fluxes in a given multigroup diffusion problem is by 

grouping all the fluxes associated with a single energy group into a block.  This approach will be 

called energy blocking.  Within each energy block, the fluxes are organized by some indexing 

with respect to their position in the geometry.  Application of our preconditioners to the problem 
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in this form is not straight forward since the matrices produced by SVD need to be applied to all 

groups within a cell, not the other way around.  Therefore, cell blocking will be applied instead.  

This new organizational scheme groups all fine group fluxes associated with a single cell 

together.  Within each cell block, the fluxes are arranged from the lowest (fastest) group to the 

highest (most thermal) group.  For the 13 cell diffusion fine group problem that will be 

considered later, the sparsity pattern seen on the right side of Figure 80 is much more compact. 

The matrix is now block tridiagonal with the diagonal blocks, D, being dense and the off-

diagonal blocks, C and E, being diagonal themselves.  When the problem is formed in this 

manner, the left and right preconditioners can be applied in block diagonal form.  The following 

serves as an example for a 6 cell problem. 
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 (7.56) 

Since DGM-SVD is only preconditioning the energy dependence of the problem, this method 

doesn’t incorporate any spatial information from the problem.  Therefore, the spatial problem 

also needs to be preconditioned.  To do this without having to recalculate the spatial 

preconditioner at every Newton step, lambda is assumed to be 1.  The first spatial preconditioner 

tested is just the inverse of the main diagonal from the SVD preconditioned problem.  The next 

step is to conduct ILU(0) on the preconditioned problem.  Unfortunately, applying any ILU 

decomposition, even if it is ILU(0), would prove unfruitful since the off diagonal blocks have 

been made dense in the process.  Conducting ILU(0), since all possible fill-in spots from the 

original fine group problem are already nonzero, would lead to the exact LU decomposition. 
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Figure 80  Comparing the magnitude of the elements in the 1D Jacobian before (left) and after (right) 

preconditioning with the approximate SVD 

Therefore, the elements of the preconditioned matrix are truncated through application of a fixed 

ratio respect to the lowest valued term on the main diagonal.  While naïve truncation in a matrix 

would be less than ideal, preconditioning with SVD has increased the magnitude of the most 

important moments through application of S
-1

.  It is this action that allows truncation to be 

applied in this simplistic fashion.  Decreasing this ratio will allow more spatial information from 

the preconditioned problem to be used in the ILU(0) decomposition.  Once this is completed, 

then ILU(0) is applied to the truncated problem.  The resulting ILU decomposition should 

incorporate the necessary spatial information into the problem that is missing in the block cell 

SVD preconditioners.  The right and left preconditioners must be modified in order to 

incorporate the incompletely LU decompositions. 

 

    ̃     

        ̃   
(7.57) 

Comparing these results to the unpreconditioned fine group problem is unfair since most whole 

core methods incorporate some form of ILU decomposition to precondition the problem.  

Therefore, normal ILU decomposition will also be used to precondition the fine group problem.  

First only the main diagonal will be used to precondition, then ILU(0) will be applied and lastly 

limited fill-in through application of a pivot threshold, , will be allowed.  To incorporate more 

Fine Group Problem

 

 

1000 2000 3000

500

1000

1500

2000

2500

3000

3500

DGM-SVD Preconditioned Problem

 

 

1000 2000 3000

500

1000

1500

2000

2500

3000

3500
-16

-14

-12

-10

-8

-6

-4

-2

0

2

-20

-15

-10

-5

0



 

230 

 

 

information into the ILU(), the threshold will be reduced by an order of magnitude and the 

results compared to the DGM-SVD preconditioner.   An exact LU decomposition of the fine 

group problem will be used as a reference to determine the relative performances of all these 

preconditioners. 

 

Figure 81 Comparison of precondition achieved using ILU(t) on the fine group problem and truncation of the 

SVD preconditioned problem. 

In Figure 81 above, the diagonal preconditioner used in conjunction with the DGM-SVD 

provides significant improvements in convergence even relative to applying a pivot threshold of 

.1 to the original fine group problem.  Even when applying a very large truncation ratio, 1/21, to 

the DGM-SVD problem, enough spatial information is incorporated into the preconditioner to 

allow further acceleration.  At this point, DGM-SVD is converging using 38 iterations, only 20 

additional iterations away from the fine group problem preconditioned using the exact LU 

decomposition.  This is very interesting since preconditioning with the exact LU decomposition 

is equivalent to computing the exact inverse at each Newton step.  However, further reducing the 

truncation ratio only produces slight improvements in convergence.  This was thought to be a 

result of applying ILU(0) to building the spatial preconditioner instead of allowing some fill-in 

according to some tolerance.  Therefore, ILU() was also applied to each level of truncation 
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using a threshold of .001.  The performance is compared to the original ILU(0) results in Figure 

82. 

 

Figure 82 Comparison of SVD preconditioning when using ILU(t) in conjunction with naïve truncation 

Even when a limited amount of fill-in is included into the ILU, this still doesn’t provide any 

significant improvement on the convergence of the problem.  The only way this makes sense is if 

the no-fill in approximation being used is of second order importance when compared to the 

truncation of elements in the first preconditioned matrix.  In order to see what is really taking 

place, truncated ILU calculated using the 1/21 cutoff ratio was compared to the fine group 

ILU() that produces the same total number of GMRES iterations, 38.  The value of  producing 

this level of preconditioning is 5.5x10
-5
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Figure 83 Comparison of the sparsity patterns of ILU(t) applied to the normal fine group problem (top) and 

ILU(0) applied the naïve truncation of the SVD preconditioned problem (bottom) 

Indeed, DGM-SVD preconditioning is shown in Figure 83 to have placed the most important 

information in the column within each cell corresponding to the last column of V, which is an 

approximate fine group spectrum.  This result is a direct consequence of the application of the 

inverse singular values as part of the DGM-SVD right preconditioner.  Since an eigenvalue of 1 

is assumed to be close to the correct value for the infinite homogeneous problem,  this should 

result in a small singular value corresponding to the approximate fine group flux in the last 

column of V.  Multiplying by the inverse of V therefore provides a large weight to the flux 

moment corresponding to this singular value.  This can be seen when the DGM-SVD 

preconditioner is applied to the off-diagonal blocks. 
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Figure 84  Comparing the off-diagonal components of the Jacobian for a 1D problem before (left) and after 

(right) preconditioning using the approximate SVD 

The original off-diagonal block, itself, is diagonal.  Once the right and left DGM-SVD 

preconditioners are applied, though, this becomes a dense matrix.  Before we apply the inverse of 

the singular values, the matrix is filled with elements of roughly the same order of magnitude.  In 

order to invert the approximate infinite homogeneous problem, it must also be multiplied by the 

inverse of the singular values.  This produces a drastic shift in the importance placed in the right 

most columns of V corresponding to the smallest singular values.  Even though there is still a 

diagonal clearly visible after this transformation, most of the information has been shifted to the 

right most column corresponding to the column in V containing the approximate fine group 

spectrum.   

This shift also explains why including fill-in into this method did not produce significant gains in 

performance.  Fill-ins due to LU decomposition occur when there are blank spaces located 

between the main diagonal and any off-diagonal elements within that matrix.  Since the 

rightmost column of each cell block is the most important and is completely filled, allowing fill-

in to take place will have no effect.  The only fill-ins that occur are in the other columns that are 

mostly empty.  If the assumption made in the SVD is good, then these fill-ins contribute very 

little information to the problem and result in almost no noticeable improvement in 

preconditioner performance. 
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In a way, the DGM-SVD preconditioning is able to highlight the most important information 

necessary for the spatial preconditioner and explains why such a sparse ILU with no fill-ins can 

outperform the ILU with fill-in applied to the original fine group problem.  The true ability of 

DGM-SVD preconditioning is its ability to drastically reduce the storage required to effectively 

precondition a spatially dependent fine group problem.  We can show this by plotting the total 

number of GMRES iterations required to converge the Newton method against the total number 

of nonzeros stored in the ILU decomposition. 

 

Figure 85 Total number of nonzeros in preconditioners using normal ILU and DGM-SVD 

In Figure 85, it is observed that the true power of the DGM-SVD preconditioning method is in its 

ability to reduce the total storage required for the ILU decomposition.  For the 38 GMRES 

iteration case in Figure 81, the DGM-SVD ILU decomposition required the storage of only 

18,000 nonzeros while the equivalent fine group ILU decomposition required over 10
6
.  This is 

an improvement of almost two orders of magnitude.  Of course, the reason so much information 

could be compressed into so little storage is because spatial preconditioning and energy 

preconditioning have become approximately decoupled. 

If the total storage required for the SVD preconditioners were added into these results, Figure 85 

above would look much less impressive.  This is primarily because the 1D problem being tested 

still has roughly as many spatial unknowns as materials (13 cells and 4 materials).  As the 

number of cells grows larger than the number of materials, it can be expected that the total 
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storage required for the SVD preconditioners will be significantly less relative to ILU with 

threshold pivoting for the full fine group problem. 

7.6 Summary 

The nonlinear process of recondensation has been successfully linearized and solved through use 

of an inexact Newton method, showing that further accelerations in the SEAM calculations of 

Sections 5 and 6 are possible.  For the infinite homogeneous problem initially tested, improved 

acceleration of the Newton method curiously occurred when certain parts of the Jacobian were 

removed.  When the normalization residual and the fission rate residuals were defined solely 

using the coarse group flux, the Newton method converged in only one step.  This means that 

this transformation of the eigenvalue problem effectively linearized what would have been a 

nonlinear problem.  Unfortunately this same approach did not work as well when applied to a 1D 

diffusion problem, likely because the lack of spectral swapping when the residuals are defined in 

this way produces inconsistencies in the model. 

While the acceleration of the Newton method was ineffective for spatial problems, 

preconditioning the energy aspect of a coarse spatial problem resulted in very good reductions in 

the number of GMRES iterations required to converge the Newton method.  In this application, 

taking the SVD of the infinite homogeneous problem produced a set of natural basis functions 

which have the very nice feature of containing an approximate fine group forward and adjoint 

flux in its columnspaces.  This allows for a significant portion of the information to be moved 

towards the right most column of each energy block.  In doing so, this allows for an extremely 

efficient preconditioner to be built with ILU(0) for the problem tested in this section. This 

definitely merits further work in determining if this approach with SVD can provide the same 

level of acceleration to more realistic problems. 
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8 Conclusions 

Achieving high fidelity analysis for reactor neutronics is of utmost importance in analyzing the 

performance and safety of reactor designs.  Since quantities such as power density are directly 

proportional to fission rate density, which in turn is dependent on the neutron distribution, 

accurate descriptions of neutrons in core are key to performing adequate steady-state and 

transient safety analyses.  These analyses are conducted by solving the neutron transport 

equation. 

While fine group whole core reactor analysis remains one of the long sought after goals of the 

reactor physics community, such a detailed analysis is typically too computationally expensive to 

be realized on anything outside of supercomputers.  However, recondensation using the Discrete 

Generalized Multigroup (DGM) method offers a relatively cheap alternative to solving the full 

fine group transport problem.  DGM forms a set of moment equations, of which the leading order 

is equivalent to a coarse group eigenvalue problem.  All other moment equations can be 

described as fixed source sweeps relying solely on the solution of the coarse group flux to 

provide the source.  Therefore, once the coarse group solution is found, solving the higher 

moment equations provides a cheap way to reconstruct an approximate fine group flux solution. 

Since the full fine group solution isn’t known a priori, though, a nonlinear iteration is used to 

update the coarse group constants and moment cross sections using the updated fine group flux 

upon solving the DGM equations.  This process is called recondensation. 

While this process was shown to converge to the exact fine group solution when applied to step 

difference Sn, inconsistencies arose when applied to high order spatial methods such as step 

characteristics. 

Therefore, the goals of this research were two-fold.  First, this spatial inconsistency needed to be 

fully corrected to ensure that the convergence to the fine group solution is guaranteed across all 

spatial methods.  Second, recondensation was applied to significantly reduce the number of fine 

group transport sweeps required to converge to the fine group solution. 
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8.1 Spatial Recondensation 

Spatial recondensation was the first step taken towards addressing spatial inconsistencies 

between DGM and the original fine group problem. The theory behind this work was that while 

the cross sections were collapsed assuming spatially flat angular and scalar fluxes, in step 

characteristics these fluxes actually do assume a distinct shape across a given cell.  Including this 

spatial variation explicitly into the coarse group collapse process would then be able to 

reintroduce some of the spatial information usually lost in the normal group collapse procedure.  

This approach was tested using a 1-D High Order MOC (HOMOC) method able developed for 

the purposes of spatial recondensation.  1D HOMOC provided an accurate description of the 

angular and scalar fluxes to an arbitrarily high order.  The result of this was a first of its kind 

attempt at producing and incorporating high order spatial variation into cross sections within the 

context of multigroup collapse.   

When these high order spatial cross sections were included into the DGM equations and the 

recondensation process, the result was an asymptotically improving agreement between the fine 

group and recondensation solution with every spatial order added to represent the cross sections. 

A similar result was also achieved for a 0
th

 order 1D MOC calculation by incorporating spatial 

information from a high order spatial DGM calculation back into the 0
th

 order problem. 

While this first of its kind approach worked, albeit asymptotically, it also suffered from 

exceeding large memory requirements when considering realistic transport problems.  The del 

term would be stored for each discrete angle, DGM moment and spatial quadrature point, 

increasing memory requirements relative to the original fine group problem by a factor of 100.  

While this approach was abandoned, maintaining consistency between fine and coarse group 

transport solutions using higher order spatial methods was still of utmost importance to realizing 

the objectives of this thesis.  Therefore a different approach was taken that could exactly resolve 

the inconsistencies between DGM and the original fine group problem given any spatial method. 
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8.2 Exact Recondensation Using DGM 

One of the initial assumptions made in the original derivation of DGM was that no spatial 

method was yet applied.  While this created a general del term for use in correct transport 

calculations, it could not fully capture the effects of higher order methods such as step 

characteristics.  Therefore, step characteristics first applied to the multigroup transport problem 

first and then DGM was derived through the application of discrete basis functions.  The result of 

this was the production of two del terms, one that corrects the incoming-outgoing angular flux 

relationship and another which corrects the cell-averaged angular flux. 

Since these two terms theoretically correct for all the errors accrued when moving to the DGM 

calculation, the fission and scattering cross sections could be treated through the normal coarse 

group collapse procedure.  The results offered in this thesis revealed that the errors using the 

original del term slowly decrease as mesh size decreases while the exact del term could entirely 

remove all errors due to spatial inconsistencies. 

Alternatively, all of these tools could be used instead to produce a considerably cheap 

improvement assuming a close initial guess of the coarse group flux from an assembly level 

calculation.  Unfortunately, in order to accurately account for the missing spatial information in 

the DGM moment equations the exact del term definitions established in this section required an 

inordinate amount of memory for realistic transport problems.  Once again, the del term needed 

to be stored for every angle, cell and DGM moment.  If exact convergence to the fine group 

solution were not required, future work could investigate ways of approximating this exact del 

term in an efficient manner through representation with continuous basis functions in angle to 

provide cheaper corrections to a coarse group solution.  An approximate del term could also be 

produced for a given pin cell or assembly so as to provide corrections informed by the errors of 

the high spatial order method used. 

In its current state, though, exact recondensation remains limited by the memory requirements of 

the del term defined using DGM.  Therefore, the next section will continue addressing this issue 
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by relaxing some of the assumption made in the original derivation of DGM to determine if exact 

recondensation can be made feasible for whole core transport calculations. 

8.3 The Source Equivalence Acceleration Method (SEAM) 

A new method called SEAM was derived through further simplifications of the del term using 

intuition gained from previous work with DGM and also from the SubGroup Decomposition 

method (SGD) developed at Georgia Tech.  These simplifications drastically reduced the storage 

required to produce a fully consistent transport calculation despite the inherent differences in the 

transport operator when moving from the fine group to coarse group problem.  Instead of storing 

a corrective term for each cell, fine group, and discrete angle, these new factors only need to be 

stored for each cell and coarse group.   

Not only did this new method reduce memory requirements, but it also came at little extra 

computational cost on top of the normal problem.  This method only requires a fixed source 

coarse group sweep using the collapsed fine group source from the previous fine group 

calculation.  Initially, the collapsed fine group flux from the fine group sweeps was divided by 

this intermediate coarse group flux to produce a Source Equivalence Factor (SEF).  This factor 

could be multiplied with the coarse group scalar flux after each coarse group sweep to produce a 

corrected coarse group flux.  Further inspection revealed that this procedure was identical to 

using the fixed source coarse group flux to normalize the fine group reaction rates in the group 

collapse procedure instead of the collapsed fine group flux.   

In both cases, the main effect was a recreation of the fine group source in the coarse group sweep 

regardless of how inconsistent the coarse group transport operator is relative to the fine group.  

Therefore this method was called the Source Equivalence Acceleration Method (SEAM).  This 

method was found to be much more general in its application, though, than just correcting for 

errors accrued in the group collapse process.  By definition, the formulation of the Source 

Equivalence Factors enables the use of any inconsistent method, whether it’s a lower order angle 

approximation or an entirely different transport method altogether from the one used in the fine 

group calculation.  SEAM’s simplicity and flexibility are hard to match. 
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After testing on a number of 1D fine group cores, SEAM was successfully implemented in 

OpenMOC and tested on two different 2D problems, the C5G7 benchmark core and a newly 

created problem called the C5G361 core.   

Results from C5G7 testing showed that SEAM can create a substantially cheaper transport 

problem that is still equivalent to the full transport problem although MOC is a higher order 

spatial method.  As an example, a 4 group calculation using 4 azimuthal angles, a 0.14 cm track 

spacing, 1 polar angle with step difference was made equivalent to the full 7 group transport 

calculation using 32 azimuthal angles, a 0.02 cm track spacing, 3 polar angles with MOC using 

SEAM.  

Initial comparison with CMFD showed that although 4 group SEAM calculations could match 

the number of full transport calculations used in CMFD, the relatively cheap transport 

calculations still required much more effort than conducting the much cheaper diffusion 

calculations in CMFD.  However, when moving to large numbers of azimuthal angles like the 

128 azimuthal angle example, 4 group SEAM was able to outperform CMFD because of the 

additional overhead required to tally the surface partial currents for each of the homogenized pin 

cells when creating the equivalent diffusion problem.  While SEAM’s equivalent transport 

problem is more expensive to solve, it’s formation only requires a single fixed source sweep 

across the low order problem.  In this way the overhead only scales with the low order problem, 

not the high order on.  Since the partial current tally overhead is proportional to the angular order 

and track spacing used, CMFD eventually reaches the point where the overhead is much greater 

than the gains in the diffusion calculations.  This point was reached in the 128 azimuthal angle, 

0.01 cm calculation.  In this case, the 4 group SEAM calculation converged in about 1500 

seconds as opposed to CMFD’s time of 1900 seconds. 

SEAM was also able to accelerate the C5G7 problem without using group collapse.  The result 

was a purely angular acceleration approach that further improved the 128 azimuthal angle 

results.  The 7 group SEAM calculation was able to cut the number of full transport sweeps 

nearly in half relative to the CMFD calculation.  In doing so, 7 group SEAM converged in only 
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1100 seconds, resulting in a final speed up of 45 relative to the normal power iteration 

calculation.   

Unfortunately, testing with the C5G7 benchmark core was unable to provide an adequate testing 

base for a true fine group transport problem, so a new 361 group problem was formed to truly 

test the performance of energy acceleration using SEAM.  This “C5G361” problem was based 

almost exactly off of the geometry of the C5G7 core, but instead used a 361 group microscopic 

cross section data set representative of a MOX-load LWR core.  This new problem was tested 

with CMFD using pin cell homogenization to compare with the 9 and 23 group calculation using 

SEAM.  The CMFD calculation was run using the same coarse group structures as the SEAM 

calculations 

While the 9 group calculation using 1 power iteration converged using only 40 fine group 

transport sweeps, this approach would limit the flexibility of SEAM by requiring use of the same 

angular discretization as the fine group problem.  When the 9 and 23 group SEAM calculations 

used 2 power iterations convergence still occurred after 44 fine group transport sweeps as 

compared to the 50 used in the CMFD calculation.  While switching to 2 power iterations did 

slightly degrade performance, this also provided additional stability and would allow for further 

coupling between low and high order angular discretization if desired.   

The improvement over CMFD in this case suggests that, while the diffusion calculation contains 

a good approximation of the global spatial problem, convergence is limited by changes in the 

solution at the pin cell level which aren’t captured with a homogenized problem.  Since SEAM 

uses no spatial homogenization, the scalar fluxes for each flat source region can be accelerated, 

leading to the better performance observed for this 361 group problem. 

SEAM was shown to accelerate both fine group and high fidelity transport calculations, and in 

some cases even improving upon the acceleration of CMFD.  While further study is merited, it is 

important to recognize that the recondensation process used in SEAM is very similar to that used 

in DGM.  Even though DGM proved ultimately too memory intensive, it may still hold valuable 

intuition into how to further improve SEAM in the future. 
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8.4 Nonlinear Recondensation and Energy Preconditioning 

The nonlinear process of recondensation was successfully solved through use of an inexact 

Newton method, showing that further accelerations in the SEAM calculations could be possible.  

For the infinite homogeneous problem initially tested, improved acceleration of the Newton 

method curiously occurred when certain parts of the Jacobian were removed.   

When the normalization residual and the fission rate residuals were defined solely using the 

coarse group flux, the Newton method converged in only one step.  This meant that this 

transformation of the eigenvalue problem effectively linearized what would have been an 

otherwise nonlinear problem.  Unfortunately this same approach did not work as well when 

applied to a 1D diffusion problem, likely because the lack of spectral swapping when the 

residuals are defined in this way produces inconsistencies in the model. 

While the acceleration of the Newton method was ineffective for spatial problems, 

preconditioning the energy aspect of a 1D coarse mesh spatial problem resulted in very good 

reductions in the cumulative number of Generalized Minimum RESidual (GMRES) iterations 

required to converge the Newton method.  In this application, taking the Singular Value 

Decomposition (SVD) of the infinite homogeneous problem produced a set of natural basis 

functions which have the very nice feature of containing an approximate fine group forward and 

adjoint flux in the columnspaces of U and V.   

This allows for a significant portion of the information to be moved towards the right most 

column of each energy block, resulting in a substantial reduction in storage for the 

preconditioner.  Therefore, a very efficient preconditioner was built with ILU(0) for the problem 

tested in this section. This interesting approach merits further work in determining if ILU(0) and 

SVD can provide this same level of acceleration to more realistic problems or perhaps be used in 

conjunction with SEAM. 
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8.5 Summary and Future Work 

The discoveries, tools and methods developed in this thesis provide a strong foundation for 

further accelerating fine group whole core neutron transport calculations.  While this work began 

with the goal of maintaining consistency in the recondensation process using DGM, it led to the 

development of many first of their kind methods. 

 1D HOMOC was developed in order to provide arbitrarily high order spatial angular and 

scalar fluxes for use in spatial recondensation.  In-depth analysis showed that this method 

provided 2(P+1) spatial convergence 

 High order spatial cross section definitions were developed and employed in DGM and 

recondensation to enforce consistency between fine and coarse group calculations.  First 

of its kind method, called spatial recondensation, produced asymptotic consistency but 

unfortunately at the expense of memory requirements. 

 Exact recondensation was derived specifically for 1D step characteristics and allowed 

recondensation to converge the coarse group problem to the exact fine group solution for 

the first time.  However, memory requirements made this approach largely infeasible 

when considering realistic 2D problems. 

 SEAM, developed using various aspects of these previous attempts, enabled the first ever 

generalized, yet fully consistent, coupling between transport-transport and transport-

diffusion calculations in the context of the multigroup collapse procedure.  

Implementation and testing in OpenMOC revealed its additional ability to accelerate the 

angular problem by forming equivalence between completely different numbers of 

azimuthal angles and track spacings.  For fine group problems or problems using very 

fine angular discretizations, SEAM was able to match the performance of or outperform 

equivalent CMFD calculations. 

 Natural basis functions for DGM were developed through the application of SVD on the 

infinite homogeneous problem and successfully preconditioned GMRES used in an 



 

245 

 

 

 

inexact Newton method to solve a 1D diffusion eigenvalue problem.  The decoupling of 

energy and spatial dependences provided a very efficient preconditioner, both in terms of 

its storage, ease of inversion and reduction of GMRES iterations. 

All of these new methods open up many avenues for future work. 

8.5.1 Cheap Improvement of Whole Core Coarse Group Solution 

One of the possibilities is to take the fine group fluxes from an assembly level calculation and 

conduct one or two power iterations using them at the whole core level.  Using the collapsed fine 

group source, a set of core wide coarse group cross sections could be produced for each cell 

using a very cheap transport method with a low order angular approximation.  Once the coarse 

group problem converged, theoretically, the reaction rates and eigenvalue should be closer to the 

true fine group solution than had the ordinary assembly collapsed cross sections been used to 

conduct the whole core analysis.  One primary difference with this approach is the cell by cell 

cross sections produced using SEAM.  This would give it an advantage over calculations using 

assembly or pin cell homogenized cross sections in terms of driving the solution closer on a 

single whole core sweep. 

8.5.2 A Priori Generation of Assembly Level Method Corrected Cross Sections 

Another possibility could be to produce few group assembly cross sections with SEAM using a 

single recondensation.  The idea would be to conduct the normal fine group assembly level 

calculation, but then apply SEAM with which ever low order angular discretization and coarse 

group structure the whole core calculation will be using.  An approach could be take like that of 

the SPH method.  The SPH approach, however, requires a full iterative process to arrive at SPH 

factors since these modify the homogenized and condensed source as well as the total cross 

sections.  On the other hand, SEAM only relies on the source of the converged fine group 

assembly solution, so the only cost of this calculation would be to converge the boundary fluxes 

of the coarse group problem.  This would then produce a fully heterogeneous set of equivalent 

cross sections as that could simulate a high order angular, fine group whole core transport 
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calculation on the cheap.  Discontinuity factors at the assembly, pin cell or even individual mesh 

level could also be coupled with this approach to provide better agreement with conditions in the 

core.   

8.5.3 Combined SEAM and CMFD Iterations 

Both SEAM and CMFD have their strengths and their weaknesses.  With SEAM the level of 

spatial heterogeneity give it the advantage to accelerate the spatial convergence of a whole core 

transport solution.  Unfortunately, this can’t be coupled with a many or fine group calculation, 

otherwise the cost of the acceleration method would be just as high as the whole core transport 

calculation itself.  CMFD, though, can homogenize either assemblies or pin cells to reduce the 

spatial degrees of freedom and allow it to focus more attention on the global spatial solution 

using better spectral resolution.  Instead of the two methods competing over different parts of the 

problem, it may work even better to have both SEAM and CMFD work hand in hand.  A single 

whole core transport sweep could be used to set up both the CMFD problem and the SEAM 

problem.  The two could then iterate between each other with CMFD passing improved spectral 

information to SEAM and SEAM passing much improved spatial fluxes to CMFD.  This seems 

to have the potential to further reduce the number of fine group whole core transport sweeps. 

8.5.4 Unstructured and Heterogeneous Diffusion Acceleration Using SEAM 

As was done in 1D, an equivalent fully heterogeneous diffusion problem could be constructed 

with SEAM in place of a lower order transport problem to further reduce the cost of solving the 

equivalent problem.  Since even the cheapest transport calculations tested in this work were still 

9-10 times more expensive than the diffusion solve used in CMFD, this has the potential to 

further reduce the cost of the SEAM calculation and increase speed up even further. 

8.5.5 Application of Newton Methods to Recondensation Using SEAM 

   Lastly, it may be possible to recast the full 2D recondensation procedure using SEAM as a 

nonlinear system of equations and apply inexact Newton with preconditioning using the natural 

basis functions derived in this work.  The quadratic convergence of the Newton method could 
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further reduce the number of fine group, whole core transport sweeps required to converge the 

solution, especially if used in conjunction with efficient preconditioners.  This represents just a 

small fraction of what could be possible with the tools developed in this thesis. 
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Appendix A 

 

Figure 86  Specification of 1D test geometry 

 

Table 21 4 Group Constants for Material 1 

     
       

    
  

g=1 0.2020132 0.0048928 0.9928300 

g=2 0.4876502 0.0128748 0.0071700 

g=3 0.7546648 0.1206095 0.0 

g=4 1.2963174 0.2599271 0.0 

 

 

Table 22 Scattering Cross Sections for Material 1 

      
  g=1 g=2 g=3 g=4 

h=1 0.1566631 0.0 0.0 0.0 

h=2 0.0426728 0.4267787 0.0 0.0 

h=3 0.0 0.0305304 0.4363064 0.3152042 

h=4 0.0 0.0055881 0.2367508 0.8342739 
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Table 23 4 Group Constants for Material 2 

     
       

    
  

g=1 0.1807996 0.0 0.0 

g=2 0.5365751 0.0 0.0 

g=3 0.8700957 0.0 0.0 

g=4 1.5457978 0.0 0.0 

 

Table 24 Scattering Cross Sections for Material 2 

      
  g=1 g=2 g=3 g=4 

h=1 0.1188257 0.0 0.0 0.0 

h=2 0.0617344 0.4765734 0.0 0.0 

h=3 0.0 0.0494727 0.4651354 0.2681453 

h=4 0.0 0.0094437 0.3942237 1.2664212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

255 

 

 

 

Appendix B 

A 1D test geometry comprised of 7 BWR fuel assemblies of differing material composition is 

used to evaluate the ability of high order spatial recondensation to regain accuracy otherwise lost 

in moving from the fine group equations to the DGM equations.  Two different assembly types 

were used to construct the core, one using an even distribution of low enriched fuel, the other 

containing an inner region of high enriched fuel.  The thickness of the inner slab is set at 6.5024 

cm and the outer slab thickness is set at 3.2512 cm.  1.1176 cm. spacings containing water are 

placed at the edges of the assemblies.   

 

Figure 87 : 1D BWR core test geometry used for spatial recondensation testing 

For each assembly the inner fuel region is evenly distributed between 3 cells, the outer fuel slabs 

are each split into 2 cells and 1 cell represents the water regions on each of the assembly edges.  

Vacuum boundary conditions are applied to the outer edges of the core.  The same coarse group 

structure used in the assembly calculations is used in this analysis as well. 
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