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Abstract

Optimization is a key activity in any engineering discipline. Global optimization methods,
in particular, strive to solve nonconvex problems, which often arise in chemical engineering,
and deterministic algorithms such as branch-and-bound provide a certificate of optimality
for the identified solution. Unfortunately, the worst-case runtime of these algorithms is
exponential in the problem dimension. This leads to the notion of reduced-space problem
formulations where either the number of variables that the algorithm branches on is
reduced or only the actual degrees of freedom are visible to the optimization algorithms,
following a partition of the variables into independent and dependent ones. This approach
introduces new challenges though: McCormick relaxations, which are very easily applied
in this setting, can be nonsmooth, the minima are very likely to be unconstrained causing
the cluster problem and the information contained in the constraints is not as readily
exploited.

In this thesis, several advances to both theory and methods are reported. First, a new
analysis of the cluster problem is provided reaffirming the importance of second-order
convergent bounding methods. The cluster problem refers to the phenomenon whereby
a large number of boxes in the vicinity of a minimum are visited by branch-and-bound
algorithms. In particular, it is shown that tighter relaxations can lead to a significant
reduction in the number of boxes visited. Next, a constraint propagation technique for
intervals is extended to McCormick relaxations. This reverse McCormick update utilizes
information in the constraints and improves relaxations of the dependent variables, which
can be used to either strengthen the relaxations of the feasible set or, using generalized
McCormick relaxations, to construct reduced-space relaxations of the objective function.
Third, a second-order convergent interval bounding method for the zeros of parametric
nonlinear systems of equations is presented. This is useful to provide second-order
convergent interval information to generalized McCormick relaxations, e.g., in the reverse
propagation scheme. Fourth, the theory underpinning McCormick relaxations is extended
to a class of discontinuous functions. It is further shown that branch-and-bound algorithms
still possess their convergence properties.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

Optimization [29, 30, 130] is a key activity in any engineering discipline. Given a math-
ematical description of the problem at hand and a metric by which various alternatives
can be ranked, different existing technical solutions to a problem can be compared and
new proposed solutions can be easily evaluated and accepted if better or discarded if not.
Optimization in the strictest sense does not just imply improvement of a previous solution;
it refers to finding the truly best solution(s) to a problem. When the optimization problem
is convex, any local solution is also a global solution [35]. Furthermore, efficient algorithms
for this class of problems are known [82, 125]. Nonconvex problems, on the other hand,
may possess suboptimal local solutions. No algorithm whose runtime is polynomial in
the inputs is known for this problem class1. Methods for this task can be assigned to
different categories depending on their run-time behavior [129]. In this thesis, we consider
complete deterministic methods for nonconvex optimization only. Complete methods can
give an approximate solution within a specified tolerance in finite time. Deterministic
means that the behavior of the algorithm depends solely on its data and does not change
from execution to execution.

Complete methods for global optimization provide conservative estimates of how much
a current solution could still be improved, and are not prone to find solutions that are
locally optimal only. While good initial guesses certainly improve their run-time, they
do not rely on these. On the contrary, their ability to identify the global solution is
independent of the initial user-specified point [88].

In order to provide a guarantee that a (nearly) global solution has been found, complete
global optimization methods require a means to bound the objective function conservatively
on subsets of its domain. Experience shows that most computational effort is directed
towards successively refining, or improving, this bound; cf. Figure 1.1. This need for
global information about the problem is the single most important distinction with local
methods for optimization [130]. Simplifying, one can say that local methods process local
information such as function values or gradients at the current iterate only. This data
is used to calculate the next iterate. At each iteration of a global method, on the other
hand, information about the complete domain, or at least the currently considered subset
thereof, is needed. Obviously, obtaining accurate global information is as hard as solving
the original problem, so tractable conservative procedures have been designed for this
task, some of which are studied in detail in this thesis.

1In fact, it is conjectured that such algorithms do not exist.
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Figure 1.1: In a typical problem, the branch-and-bound algorithm identifies the solution
quickly and spends most time improving the lower bound.

While in some engineering disciplines linear models are sufficiently accurate to represent
the physical phenomena, chemical process systems often require nonlinear models. For
example, even simple networks of mixers and splitters with multi-component flows result
in nonlinear and nonconvex models [78]. Typical process flowsheet models of chemical
plants are significantly more complex. While local optimization methods have been
successfully applied to such problems, the quality of the identified solution depends
strongly on the initial guess which, in turn, depends on the user’s understanding of the
process. Commercially available steady-state process simulators such as Aspen Plus®

or HYSYS® allow for the construction of complicated flowsheets with complex physical
process models. In these software packages, “rigorous” blocks with tailored algorithms for
each unit operation are connected to build a model of the process [33]. Embedded local
optimization routines can be used to improve an initial guess. Work on building process
simulators that allow for global optimization is still in its infancy [11, 36, 37].

The most general problem can be described as follows: suppose D ⊂ Rn is open, C ⊂ D
is convex and let f : D → R, g : D → Rng and h : D → Rnh . Consider the optimization
problem given by

f ∗ = inf
y∈C

f (y)

s.t. g(y) ≤ 0,
h(y) = 0.

(1.1)

The feasible set of (1.1) is given by E = {y ∈ C : g(y) ≤ 0, h(y) = 0}. Any y∗ in the feasible
set that satisfies f (y∗) = f ∗ is called a minimum or a solution, sometimes with the qualifier
optimal, of (1.1). f ∗ is known as the infimum or the optimal solution value. When f ∗ = −∞,
(1.1) is said to be unbounded. If the feasible set is empty, then (1.1) is said to be infeasible.
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1.1 Branch-and-bound methods

In practical applications, h is often obtained from mass, species, momentum or energy
balances, thermodynamic property models, kinetic rate expressions or similar fundamental
physical or chemical laws or correlations, whereas g typically describes either technical pro-
cess limitations or desired product qualities and f is usually an economic or performance
metric, for example, the net present value, profit or energy efficiency.

In order to guarantee properties such as convergence of the numerical algorithms used
to find y∗ and f ∗, certain regularity assumptions are typically required to hold for C, f , g
and h.

1.1 Branch-and-bound methods

Many deterministic global optimization methods use a continuous branch-and-bound
algorithm at their core [59, 88]. A branch-and-bound algorithm in its basic form is given as
Algorithm 1.1. Here, we associate with each node a set, which can be easily characterized,
e.g., an n-dimensional interval, also known as a box. Starting at the root node with a set
that encloses all solutions to be considered, the algorithm repeatedly visits nodes, bounds
the optimal solution on the current node and, if improvement is possible, looks for a better
feasible solution, otherwise, the box is discarded. If a solution better than previously
known has been found, it is stored. The current box is partitioned into two smaller boxes,
which are stored along with the lower bound on the parent box for future processing.
A new overall lower bound on the objective value is established as the minimum of all
lower bounds of the remaining stored boxes. All boxes where the lower bound is greater
than the best identified solution value can be safely discarded. Until the best identified
solution value and the current lower bound agree to within some pre-specified tolerance,
the procedure is repeated.

Even in most basic form, Algorithm 1.1 relies on two heuristics: the node selection
heuristic [88, p. 130] that decides which node to visit next and the branching heuristic [50,
140] that decides how to partition a node. General requirements for each, which are
sufficient for finite convergence of the branch-and-bound algorithm, are given in [88].

This algorithm has exponential worst-case run-time dependence on the dimension of the
problem. In other words, increasing the problem dimension by one, i.e., by introducing
a single additional variable to the problem, can potentially double the time required
to solve the problem globally. This phenomenon is often referred to as the “curse of
dimensionality” [22]. Conceptually, adding new dimensions to the search space adds new
degrees of freedom thus complicating the search for the best possible solution. Using
so-called domain reduction techniques2 is one avenue to mitigate this exponential behavior
to some extent.

2Sometimes domain reduction methods are also referred to as range reduction or bounds tightening
procedures.
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Algorithm 1.1: Generic branch-and-bound algorithm
Input: box X0, termination criterion
Output: problem infeasible ( f ∗ = +∞) or solution x∗, solution value f ∗

1 LBD ← −∞, f ∗ ← +∞, k← 1, N ← {X0};
2 while NotConverged (LBD, f ∗) and |N | > 0 do
3 Xk ←SelectBox (N );
4 N ← N\{Xk};
5 LBD(Xk)←LowerBound (Xk);
6 if LBD(Xk) < f ∗ then
7 (UBDk, xk)←FindFeasibleSolution (Xk);
8 if UBDk < f ∗ then
9 f ∗ ← UBDk, x∗ ← xk;

10 N ← {X ∈ N : NotConverged(LBD(X), f ∗)};
11 Xk ←ReduceDomain (Xk, f ∗, LBD(Xk)); // optional

12 (X′, X′′)←PartitionBox (Xk);
13 LBD(X′)← LBD(Xk), LBD(X′′)← LBD(Xk);
14 N ← N ∪ {X′, X′′};
15 LBD ← minX∈N LBD(X);
16 k← k + 1;

17 return ( f ∗, x∗);
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1.1 Branch-and-bound methods

1.1.1 Bounding methods

As outlined above, obtaining global information about the range of a function is a key
component in a deterministic global optimization algorithm. We show in Chapter 2 that
the features of the bounding procedure have a great influence on the number of iterations
of a branch-and-bound algorithm. Summarizing, three properties are essential for an
effective bounding method:

1. efficiency of the required computations,

2. initial overestimation by the method, and

3. rate of convergence of the resulting conservative bound to the true image.

While the first requirement is common to any numerical method, the remaining two can
be loosely recapped as “tight on large boxes and rapidly converging”.

Simplistically, one can distinguish two routes to bound the range of a function. Some
methods directly compute a lower bound on the range of a given function whereas other
methods set up a convex optimization problem that is guaranteed to return a lower bound
on the range of the function.

The most important representatives belonging to the first class are various methods
in the realm of interval analysis [3, 122, 127]. The basic object in interval analysis is
the interval, to which the arithmetic in the real number system can be extended. This
so-called interval arithmetic can then be used to estimate conservatively the range of a
function. Methods that are derived in this context include natural interval extensions
and centered forms. Other methods with similar ideas are also known [e.g., 161], but not
further considered.

The latter class approaches the problem differently. Another optimization problem,
termed a relaxation of (1.1), is derived from (1.1) by enlarging the feasible set and/or
replacing the objective function with a function that takes a smaller value for each point
in its domain. In addition, the relaxation is either a linear or a convex program so that it
can be efficiently and reliably solved to global optimality [29, 30, 35]. Examples include
McCormick’s method [118, 156], αBB relaxations [1] and smooth reformulation with the
introduction of auxiliary variables and constraints [159, 165, 166]. When the obtained
relaxations are convex, it is in principle possible to linearize these and solve the resulting
linear program [e.g., 167].

In Chapter 3, we study these different bounding methods in more detail.

1.1.2 Domain reduction methods

Domain reductions methods strive to shrink the currently considered box using informa-
tion about the best solution found so far. Their goal is to discard a subset of the search
space for which it can be established that either no feasible solution exists or that any
feasible solution is no better than best solution found up to now. This step is optional
in the sense that branch-and-bound algorithms are shown to converge without it, but it
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can reduce the iteration count and the run time. Proposed methods include optimality-
based [148], feasibility-based [75] and duality-based [166] techniques. It has also been
suggested to construct conservative (outer approximating) linearizations of the constraint
functions and minimizing or maximizing each variable as linear programs [36]. Other
ideas are present in the literature under the keyword “constraint propagation” [e.g., 31].

A constraint satisfaction problem (CSP) consists of a finite set of variables, domains
and constraints. A solution of a CSP is an assignment of values from the domains to the
variables so that all constraints are satisfied. In general, these problems are NP-hard and
hence it is desirable to compute an enclosure of the solution set. Constraint propagation
routines, or, more generally, contractors, are numerical methods that assist in this task.
Using the information about the relationship between variables that is contained in a
single constraint, or in a set of constraints, they attempt to shrink the domains. Typically,
intervals are used to enclose the solution sets whereas a constraint propagation technique
for McCormick relaxations [118, 156] are proposed in this contribution.

Constraint propagation was first developed for logic constraints on discrete domains [114].
Different notions of consistency, which describes the degree to which the remaining ele-
ments of the domain satisfy the constraints, have been introduced for this case [13, 31].
Constraint propagation has also been applied to connected sets that appear in so-called
numerical CSPs [28, 51] and a large number of techniques have been proposed in the
literature.

Many constraint propagation methods use ideas from interval analysis: they consider
interval domains and use interval arithmetic. Cleary [46] and Davis [51] presented the first
algorithms for constraint propagation with interval domains. Hyvönen [89] considered
cases where exact numbers are insufficient and studied how interval arithmetic can be
utilized in CSPs. Lhomme [107] proposed an extension of arc-consistency to numeric
CSPs. Benhamou et al. [26] introduced the notion of box-consistency. Sam-Haroud and
Faltings [152] approximated feasible regions by 2n-trees and presented algorithms to label
leaves consistently. Benhamou and Older [25] proposed the notion of hull-consistency.
Van Hentenryck et al. [169] showed how interval extensions can be used to calculate
box-consistent labels, see also [170]. Benhamou et al. [27] proposed an algorithm for
hull-consistency that does not require decomposing constraints into primitives. Vu et al.
[173] proposed a method to construct inner and outer approximations of the feasible set
using unions of intervals. Lebbah et al. [106] discussed how the reformulation-linearization
technique can be used to relax nonlinear constraints and to aid in pruning the search
space. Granvilliers and Benhamou [69] proposed an algorithm that prunes boxes using
both constraint propagation techniques and the interval Newton method. Recently, Domes
and Neumaier [53] proposed a constraint propagation method for linear and quadratic
constraints and Jaulin [90] studied set-valued CSPs.

Jaulin et al. [91] discussed contractors based on interval analysis, many of which were
also the subject of Neumaier’s book, though it focused on solving systems of equations
in the presence of data uncertainty [127]. Recently, Schichl and Neumaier [153] studied
directed acyclic graphs (DAGs) to represent functions for interval evaluation. Vu et al. [174]
used this representation and extended the contractor proposed in [27], which propagates
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interval information forward and backward along the DAG. Recently, Stuber et al. [164]
extended contractors based on interval analysis to compute convex and concave relaxations
of implicit functions. However, their methods require existence and uniqueness of the
implicit function on the full domain.

Continuous optimization problems are often solved to guaranteed global optimality
using continuous branch-and-bound algorithms [59, 88]. It is well-known that the efficiency
of these algorithms can be improved by discarding parts of the search space that are
infeasible or that are known not to contain optimal solutions [165]. These tasks are
often referred to as domain reduction. Obviously, global optimization is an important
application of CSPs [129] and ideas originally developed for CSPs are routinely utilized
in global optimization: logic-based methods can enhance and expedite optimization
routines [86]; constraint propagation is often used to discard parts of the domain where
the solution is known not to exist [e.g., 74, 75, 148]. For example, constraint propagation
routines are part of BARON’s pre-processing step [151]. It is also not coincidental that
many constraint satisfaction tools use branch-and-prune frameworks inspired by global
optimization algorithms to identify a set of boxes that contains all solutions [e.g., 69, 106,
169]. Also, see the recent discussion of feasibility-based bounds-tightening procedures
in [23, 24]. Thus, borrowing and embracing ideas from the other field has been very
beneficial for both fields.

As briefly described in Section 1.1.1, branch-and-bounds algorithms also require com-
putable rigorous bounds on the objective function and on non-convex constraints. In
Chapter 4, we explore how ideas from CSP can be used to construct improved relaxations
of nonconvex functions, in particular, when these are defined implicitly only. Compared
to the interval method in Vu et al. [174], the proposed method for McCormick relaxations
goes one step further. It traverses the directed acyclic graph of a factorable function
forwards and backwards. During the forward pass, the typical operations for McCormick
relaxations [118, 156] are performed. The obtained relaxations are then tightened using
information about the constraints and the graph is traversed in reverse order. At each node,
the operation is inverted in a sense that is detailed in Section 4.2. In the end, we obtain
tighter relaxations of each variable. Depending on the initialization of the relaxations of
the independent variables prior to the forward pass, these can be interpreted in a different
way as we discuss in detail in Section 4.3.

1.2 Full-space and reduced-space problem formulation

As outlined above, to each (1.1), there exists a directed acyclic graph3. One very common
problem reformulation introduces additional variables and constraints for each intermedi-
ate node in the graph [159, 165–167]. In some sense, this results in an “increased-space”
problem formulation. Main advantages of this approach include the fact that most con-
straints involve small numbers of variables only so that the reformulated problem is

3Typically, many different graphs exist that correspond to the same problem, which have relaxations of
varying quality.
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much more sparse and the ease with which a tight relaxation can be constructed for each
nonconvex constraint of the reformulation. The disadvantage of the formulation is the
large dimension of the lower bounding problem that necessitates a weaker linearization of
the relaxations of the constraints to obtain a LP relaxation [167].

As mentioned earlier, all known global optimization algorithms scale exponentially with
the problem dimension. Thus, it has been suggested [e.g., 56] to focus the attention of the
optimizer on a select subset of the variables. For example, if it suffices to branch on a small
subset of variables y in (1.1), then the curse of dimensionality can be potentially mitigated.
In [56], a selective branching scheme is proposed and shown to converge for a class of
functions. It is applicable when the objective function and each inequality constraint can
be decomposed into the following form: w(z, p) = wA(z) + ∑i wB,i(z)wC,i(p) + wD(p)
where wA and wB,i are convex and wC,i and wD are continuous. Furthermore, for each i,
wB,i must be affine or wC,i non-negative. Under these conditions, the authors show that it
suffices to branch on p only. Note that it can only be applied to equality constraints when
they are linear in z.

Similarly, in [96] a pre-processing method is proposed to determine a minimum set of
variables in the increased-space problem formulation that needs to be branched on in
order to guarantee convergence. This paper extends earlier work in [94]. Other work to
detect convexity of graphs include [63, 64].

However, the cost of each bounding problem that is solved in each iteration of the
branch-and-bound algorithm also scales with the number of the variables. Thus, it might
be beneficial if the problem could be recast so that only a subset of the variables is visible
as far as every routine of the branch-and-bound algorithm is concerned.

Suppose that we can partition the variables into independent and dependent variables,
p ∈ Dp ⊂ Rnp and z ∈ Dx ⊂ Rnx , respectively, so that n = np + nx and we have y = (p, z)
for each y ∈ D; similarly, we partition C into Cx and Cp. The intention is that the equations
h(y) = 0 can be used to find exactly one z ∈ Cx for each p ∈ Cp so that h(p, z) = 0.
In other words, we use the equality constraint in (1.1) to define implicitly a mapping
x : Cp → Cx. Consequently, we can transform (1.1) into

min
p∈Cp

f (p, x(p))

s.t. g(p, x(p)) ≤ 0,
(1.2)

a problem with a smaller number of variables and less constraints. Thus, the optimizer
sees only np instead of n variables. In a branch-and-bound algorithm, this also means that
the lower and upper bounding problems are solved in this reduced space, decreasing the
computational cost of each iteration which can be assumed to scale polynomially with the
number of variables.

When we employ relaxations to construct the lower bounding problem, it is necessary
to know relaxations of x. Stuber et al. [164] presented a technique for the construction
of such relaxations. As we briefly alluded to above, Chapter 4 also contains methods for
obtaining relaxations of implicitly defined functions or set-valued mappings. These are
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especially useful when applied to the reduced-space problem formulation as they allow us
to construct relaxations of x on convex subsets of Cp.

1.2.1 Regularity of the reduced-space model

We also mentioned above that certain regularity assumptions are often required by the
numerical methods employed. For example, gradient-based local search routines tacitly
assume that the functions are at least continuously differentiable [e.g., 130]. When this
assumption does not hold, their behavior is no longer guaranteed by most of the established
theoretical results. As an illustrative example, consider the method of steepest descent,
which uses the negative of the gradient vector to restrict the search to a ray originating at
the current point. Along this ray, the best possible point is selected as the next iterate. For
a differentiable function and a point in the interior of the feasible region, this is a sensible
choice4: one can always find a better solution when moving in the direction of steepest
descent. When the differentiability assumption is removed, this no longer holds. Similarly,
when the functions are not continuous it is not even guaranteed that points “nearby” are
also “close” in their objective function value.

However, in some problems, the modeled reality does indeed behave in such a non-
regular fashion [e.g., 14]. In order to be able to use the standard numerical tools, models
have been proposed that regularize the mathematical formulation by increasing the number
of variables and/or constraints [e.g., 55, 168]. In Chapter 6, we present the first method
to solve global optimization problems with discontinuities and compare our reduced-
space approach to the increased-space formulation in the literature. However, the lack
of regularity presents unique challenges; in particular, convergence of the employed
relaxations can be slow or incomplete. Chapter 7 contains some improvements that can
guarantee convergence of the relaxations.

1.2.2 Cluster effect for problems in the reduced-space formulation

Solving reduced-space problems makes it more likely that a solution is unconstrained: in
the most extreme case (ng = 0 and nh � 0), the reduced space formulation lacks all of
the constraints that were present in the full space formulation. Hence, it is much more
likely that the optimal solution is in the interior of the feasible region of (1.2). As we
will see in Chapter 2, unconstrained global optima of smooth optimization problems are
known to be prone to the cluster problem [54], i.e., the branch-and-bound algorithm creates
a large number of nodes in the immediate vicinity of the optimal solution. Since points
close to the optimal solution are also close in objective function value in a second-order
sense, and we require a verification of the global optimum within some tolerance, the
algorithm can guarantee the optimality of the found solution only after solving the lower
bounding problem on a large number of small boxes in the direct vicinity of the solution.
We confirm the literature result that the convergence order of the bounding procedure
greatly influences the severity of this effect. Also, we argue that the required convergence

4Although more efficient local optimization approaches are known; see [e.g., 130]
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order criteria are easier to satisfy for non-smooth problems when the optimal solution is at
a point of non-differentiability. Lastly, we add that constrained optimal solutions typically
do not exhibit this behavior or at least not to the same extent [129]. This is due to the fact
that most constrained minima are not also stationary points.

In Chapter 5, we also show that current parametric interval methods for nonlinear
equations provide linearly convergent bounds on the set of zeros only. Based on the
sensitivities, we present a second-order convergent parametric interval method. The
obtained bounds can then be used to initialize generalized McCormick relaxations, e.g.,
for the reverse McCormick propagation as discussed in Chapter 4 in order to achieve the
important quadratic convergence order of the relaxations. Also, it can serve as a more
effective domain reduction method.

1.3 Contributions

This thesis contains these original contributions:

• a new analysis of cluster effect5, Chapter 2,

• a method to improve McCormick relaxations using the information contained equal-
ity and inequality constraints, Chapter 4,

• a second-order convergent method for interval bounds of parametric nonlinear
equations, Chapter 5,

• a method to solve discontinuous global optimization problems6, Chapter 6,

• a method to improve convergence of relaxations of discontinuous functions, Chap-
ter 7,

• a domain reduction technique based on subgradients of the convex relaxations of the
objective function, Appendix A,

• a method for optimal process design with heat integration at subambient conditions7,
Appendix B,

• a pinch operator for streams with non-constant heat capacity, Appendix C.

5Published as [178]
6Published as [176]
7Published as [177]
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Chapter 2

The cluster problem in global optimization

It is well known that branch-and-bound algorithms for continuous global optimization [59,
88] can create a large number of small boxes in the vicinity of a global minimizer, see
Figure 2.1 and Table 2.1. This behavior was first discussed by Du and Kearfott [54] in the
context of interval branch-and-bound methods and the authors coined the term cluster
problem for this phenomenon. They provided an analysis to establish an upper bound
on the number of boxes that cannot be fathomed by value dominance before the width
of the boxes becomes smaller then a user specified tolerance. The authors were also
the first to point out the importance of the convergence order of the bounding method
(see Definition 2.1) in mitigating the cluster problem. Later, Neumaier [129] provided a
similar analysis: it considers a hyperellipsoidal region around an unconstrained global
minimizer, uses the determinant of the Hessian at the global minimizer instead of its
smallest eigenvalue and introduces the proportionality constant for the volume of a
hypersphere. Regardless, the result of the analysis is similar to Du and Kearfott [54] and
stresses the importance of the convergence order. The main conclusion in these articles
is that, in the worst case, at least second-order convergence is necessary to overcome the
cluster problem. However, even with second-order convergence, the number of boxes
still has exponential dependence on the problem dimension as Neumaier claims in [129].
Recently, Schöbel and Scholz [154] studied the worst-case behavior of branch-and-bound
algorithms and gave an upper bound on the number of boxes needed for convergence that
is very conservative.

If the minimizer coincides with the vertex of a box at some point in the branch-and-

Termination
tolerance

Nodes visited by

Method 1 Method 2

0.1 2,091 171

0.01 6,831 231

0.001 56,531 275

0.0001 549,347 299

0.00001 > 1,000,000 355

Table 2.1: The cluster problem is very sensitive to the termination tolerance. The employed
bounding methods correspond to those used to construct Figure 2.1.
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Figure 2.1: When the cluster problem occurs, a very large number of nodes is visited in
the immediate vicinity of global solutions and near-optimal local solutions
as shown in (a) and (b). An improved bounding method can mitigate this
phenomenon effectively, see (c) and (d).
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bound algorithm then an exponential number of boxes will contain this minimizer. The
analysis presented below assumes, however, that boxes can be placed so that the minimizer
is in the center of the box. Strategies such as back-boxing [171] or epsilon-inflation [117]
can potentially avoid the former case. Also, see the discussion in [129, Chapter 15].

Here, the cluster problem is revisited and the analysis is refined. In particular, it is shown
that the convergence order pre-factor is important: assuming second-order convergence,
the exponential dependence on the problem dimension can be avoided if the pre-factor is
sufficiently small and the minimizer is always in the interior of a box in the branch-and-
bound tree. Thus, not all relaxations with second-order convergence are equal in higher
dimensions. On the contrary, tightness of the relaxations, for which the pre-factor is a
good measure, is very important. Lastly, it is shown that for nonsmooth optimization
problems where the objective function is not differentiable at the optimal solution, linear
convergence of the relaxations can suffice to prevent the cluster problem.

2.1 Analysis of the cluster problem

It is assumed that the reader is familiar with branch-and-bound algorithms for continuous
global optimization [59, 88], also see Section 1.1, and the construction and use of convex
relaxations in such algorithms [2, 5, 118, 156], also see Chapter 3.

Assumption 2.1. Suppose D ⊂ Rn is open, C ⊂ D is convex and let f : D → R be twice
differentiable on D. Suppose that x∗ is the unique unconstrained global minimum of f on C,
so that ∇ f (x∗) = 0 and suppose furthermore that ∇2 f (x∗) is positive definite.

Suppose Z ⊂ Rn. The set of all interval subsets of Z is denoted by IZ. The width of an
n-dimensional interval X = [x, x] is defined as w(X) = maxi=1,...,n(xi − xi).

Definition 2.1. Let a continuous convex relaxation1 of f on any X ∈ IC be given by

ˇ
fX : X → R. The relaxations are said to have convergence order β ≥ 1 if there exists K > 0
such that

min
x∈X

f (x)−min
x∈X ˇ

fX(x) ≤ Kw(X)β, ∀X ∈ IC. (2.1)

Note that convergence order is typically defined as the difference of the width of the
image of X under the enclosure of f and the width of the image of X under f [34, 128, 138].
However, Definition 2.1 is more natural for the purpose of this chapter and the difference
is unimportant for this argument.

Assumption 2.2. Let ε be the termination tolerance for the branch-and-bound algorithm
and assume the algorithm has found the upper bound, UBDk = f (x∗). Assume the
algorithm terminates at iteration k when UBDk − LBDk ≤ ε, where LBDk is the current
lower bound.

1For a in-depth discussion refer to Chapter 3.
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Chapter 2 The cluster problem in global optimization

Lemma 2.1. Let X∗ ∈ IC be such that x∗ ∈ X∗. If the bound given by Definition 2.1 is sharp for
all X ∈ IC, then a necessary condition for termination of the branch-and-bound algorithm is

w(X∗) ≤
( ε

K

) 1
β

. (2.2)

Proof. At any iteration LBDk ≤ minx∈X∗
ˇ
fX∗(x) ≤ UBDk holds. Thus, a necessary condition

for termination is UBDk −minx∈X∗
ˇ
fX∗(x) ≤ ε. In the worst case, the bound on the

underestimation by the relaxation in (2.1) is exact so that

UBDk −min
x∈X∗ ˇ

fX∗(x) = min
x∈X∗

f (x)−min
x∈X∗ ˇ

fX∗(x) = Kw(X∗)β.

Therefore, the algorithm terminates only if Kw(X∗)β ≤ ε.

The following arguments adopt the convention that a node X̃ is fathomed by value
dominance only when minx∈X̃

ˇ
fX̃(x) > UBDk. In this situation, the stack is interpreted as

representing the subset of C that can possibly contain global minima. This convention
does not change the number of nodes processed by the branch-and-bound algorithm, it
will only affect the number of nodes remaining on the stack at termination.

Lemma 2.2. Define δ =
(

ε
K

) 1
β and consider any node X̃ ∈ IC with w(X̃) ≤ δ. Introduce the

following partition of C:

A = {x ∈ C : f (x)− f (x∗) > ε},
B = {x ∈ C : f (x)− f (x∗) ≤ ε}.

Then, any node X̃ ⊂ A will be fathomed by value dominance.

Proof. Suppose that X̃ ⊂ A so that minx∈X̃ f (x)−UBDk = minx∈X̃ f (x)− f (x∗) > ε. By
construction of X̃, even in the worst case, Eq. (2.1) implies that

min
x∈X̃

f (x)−min
x∈X̃ ˇ

fX̃(x) ≤ Kδβ = ε. (2.3)

Since

min
x∈X̃ ˇ

fX̃(x) ≥ min
x∈X̃

f (x)− ε > UBDk

it follows that X̃ will be fathomed by value dominance.

Note that this result indicates that any node X̃ ⊂ A will be fathomed when or before
w(X̃) = δ. On the other hand, consider a node X̃ such that X̃ ∩ B 6= ∅ and w(X̃) = δ with
δ as defined in Lemma 2.2. From X̃ ∩ B 6= ∅,

min
x∈X̃

f (x)−UBDk = min
x∈X̃

f (x)− f (x∗) ≤ ε
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2.1 Analysis of the cluster problem

so that in the worst case (2.3)

min
x∈X̃ ˇ

fX̃(x)−UBDk ≤ 0.

In the worst case, such nodes will not be fathomed by value dominance.
Any node X̃ containing x∗ will have X̃ ∩ B 6= ∅. In Lemma 2.1 it was argued that, when

the convergence order bound is sharp, the node containing x∗ must have width less than
or equal to δ to guarantee termination. That is, in the worst case, B must be covered by
nodes with w(X̃) = δ and none of them will be fathomed by value dominance.

2.1.1 Refinement of Neumaier’s argument for a bound on the number of boxes
necessary to cover B

Next, the number of boxes of width δ required to cover B is estimated. This argument
will follow the idea presented by Neumaier [129]. Since f is twice differentiable at x∗ and
x∗ ∈ int C, it follows that

f (x)− f (x∗) =
1
2
(x− x∗)T∇2 f (x∗)(x− x∗) + r(x− x∗),

so that B is given by

B =

{
x ∈ C :

1
2
(x− x∗)T∇2 f (x∗)(x− x∗) + r(x− x∗) ≤ ε

}
. (2.4)

Eq. (2.4) describes a nearly hyperellipsoidal region when |r(x− x∗)| � ε. This approxima-
tion becomes increasingly better for smaller ε because |r(x− x∗)| → 0 as ε→ 0. Neumaier
[129] compares the volume inside the hyperellipsoid, V, with the volume of a box to bound
the number of boxes N that cover the interior of the hyperellipsoid from below. Denote
∆ ≡ det(∇2 f (x∗)). Since

V(ε, n, ∆) = γn

√√√√det

[(
∇2 f (x∗)

2ε

)−1
]
= γn

√
(2ε)n

∆
,

where γn = π
n
2

Γ( n
2 +1) [80], it follows that

N ≈ V(ε, n, ∆)
δn =

γn

√
(2ε)n

∆(
ε
K

) n
β

= γnK
n
β

√
2n

∆
ε

n
(

1
2−

1
β

)
. (2.5)

This argument is valid only when boxes are able to approximate the volume inside the
hyperellipsoid well. Moreover, as n→ ∞, γn → 0 [79, 80]. For constant ∆ and ε, it follows
that V → 0 as n → ∞. Thus, this argument suggests that the cluster problem should
disappear for sufficiently large n for any fixed K, β, and ∆.
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Chapter 2 The cluster problem in global optimization

Consider the volume inside a slightly smaller hyperellipsoid by replacing ε in (2.4) with
ε− ξ where 0 < ξ � ε. It is easy to show that

V(ε, n, ∆)−V(ε− ξ, n, ∆)
V(ε, n, ∆)

= 1−

√(
1− ξ

ε

)n

→ 1 as n→ ∞.

For higher dimensions, nearly all of the volume inside the hyperellipsoid is close to its
surface and thus it is also distributed in space (i.e., not concentrated at the center). The
estimate for N, which was obtained by comparing volumes as suggested by (2.5), may not
lead to accurate results. A different analysis is necessary.

2.1.2 A new analysis of the cluster problem

A new argument for the number of boxes of width δ required to cover the volume inside
the hyperellipsoid B will be given. In particular, two cases will be considered here. First,
the simpler case of a hypersphere (i.e., ∇2 f (x∗) = I) will be treated. Second, the results
are then generalized to the case of a hyperellipsoid.

Assumption 2.3. Assume that there exists only one box X̃ visited by the branch-and-bound
algorithm such that w(X̃) = δ and x∗ ∈ X̃. Furthermore, assume that x∗ is in the center of
X̃.

Note that if x∗ is in the interior of the box, but not in the center, then it will become
necessary to use an apparent box width δ′ ≡ 2 mini=1,...,n{x̃U

i − x∗i , x∗i − x̃L
i } ≤ δ in the

following analysis instead.
For easier notation, a translated coordinate system y = x− x∗ will be used hereafter, in

which the considered approximation of B as the volume inside an hyperellipsoid is given
by

B̃ =

{
y :

1
2ε

yT∇2 f (0)y ≤ 1
}

.

Denote a box centered at y0 with width ω by �ω(y0) ≡ {y : ‖y− y0‖∞ ≤ ω
2 }.

Case 1: Hypersphere

Lemma 2.3. Suppose that ∇2 f (x∗) = I and let r =
√

2ε.

(a) If δ ≥ 2r, then let N = 1.

(b) If 2r√
m−1

> δ ≥ 2r√
m where m ∈N, m ≤ n, 2 ≤ m ≤ 18, then let

N =
m−1

∑
i=0

2i
(

n
i

)
+ 2n

⌈
m− 9

9

⌉
.
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2.1 Analysis of the cluster problem

(c) Otherwise let

N =

⌈
2r

δ
√

2

⌉n−1
(⌈

2r
δ
√

2

⌉
+ 2n

⌈
r− r√

2

δ

⌉)
.

Then, N is an upper bound on the number of boxes with width δ required to cover B̃.

Proof. By definition, B̃ =
{

y : 1
2ε yTIy = 1

2ε yTy ≤ 1
}

describes the region inside a hyper-
sphere about the origin with radius r =

√
2ε.

(a) Suppose that δ ≥ 2r. One finds immediately that N = 1 since y ∈ B̃ implies
y ∈ �δ(0) as ‖y‖∞ ≤ ‖y‖2 and δ ≥ 2r.

(b) Suppose that 1 < m ≤ 18 and δ ≥ 2r√
m . Place a box with width δ at the center

of the hypersphere. Let ei be any n-vector whose components are 0 except i of
the entries which are ± δ

2 . Such an ei represents the (n− i)-faces of the hypercube.
In particular, each ei is the midpoint of such a face and it is well known that an
n-dimensional hypercube has F(n, i) ≡ 2i(n

i ) of these. Hence, ei is representative of
F(n, i) directions.

It will be argued that, in addition to the central box, placing a single box along each
of the e1, . . . , em directions is sufficient to cover B̃.

If δ > 2r√
m then 2r

δ
√

m em 6∈ B̃. If δ = 2r√
m , then 2r

δ
√

m em ∈ �δ(0) and also 2r
δ
√

m em ∈ ∂B̃.
As a consequence, faces lower than the (n−m)-face need not be considered as they
do not intersect the hypersphere whereas additional boxes must be placed in the
direction of all faces from the (n−m + 1)-face up to the (n− 1)-face to cover B̃.

Set δ = 2r√
m , the width of the smallest permissible box. Next, consider the shortest

distance from 2r
δ
√

i
ei, which is a point on the surface of the hypersphere, to the surface

of the central box in the ∞-norm: r√
i
− δ

2 = r√
i
− r√

m . When this distance is smaller
than δ, then one box suffices to cover the remaining parts of the hypersphere in the
ei direction. This holds true for any i = 2, . . . , m and m ≤ 18. When m > 9, then two
boxes must be placed in each of the e1 directions, however.

(c) Otherwise, the central region inside the hypersphere cannot be covered by a single
box. Instead, a number of boxes that grows exponentially with n is necessary to fill
the central region. Additional boxes must be placed along the coordinate axes so that
N = mn + 2nmn−1

⌈
1
δ

(
r− r√

2

)⌉
where m is the smallest integer so that mδ ≥ 2r√

2
.

Thus, the result follows.

Note that the number of boxes presented for the second case in Lemma 2.3 is O(nm−1).
Also, while it is possible to construct tighter bounds on N for the case m > 18, it becomes
much more involved. In particular, it becomes necessary to place more than one box in the
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Figure 2.2: Illustration of different cases for a circle where dashed regions show boxes
required to cover B̃

ei, i > 1 direction, which complicates the geometry. Roughly speaking, these boxes will
only touch each other in a lower dimensional face leaving parts of B̃ uncovered, hence,
requiring additional boxes.

The different cases are illustrated for n = 2 and m = 2 in Figure 2.2.

Case 2: Hyperellipsoid

The results in Lemma 2.3 will now be generalized to a hyperellipsoid by dropping the
assumption that ∇2 f (x∗) = I.

Theorem 2.1. Let λ1 > 0 be the smallest eigenvalue of ∇2 f (x∗) and r =
√

2ε
λ1

.

(a) If δ ≥ 2r or, equivalently, if ( ε

K

) 1
β ≥ 2

√
2ε

λ1
,

then let N = 1.

(b) Suppose that 2r√
m−1

> δ ≥ 2r√
m where m ∈N, m ≤ n, 2 ≤ m ≤ 18 or, equivalently,

2
√

2ε√
(m− 1)λ1

>
( ε

K

) 1
β ≥ 2

√
2ε√

mλ1
.

Then let

N =
m−1

∑
i=0

2i
(

n
i

)
+ 2n

⌈
m− 9

9

⌉
.

(c) Otherwise, let

N =

⌈
2K

1
β ε

( 1
2−

1
β )λ
− 1

2
1

⌉n−1 (⌈
2K

1
β ε

( 1
2−

1
β )λ
− 1

2
1

⌉
+ 2n

⌈
(
√

2− 1)K
1
β ε

( 1
2−

1
β )λ
− 1

2
1

⌉)
.
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2.2 Discussion of Theorem 2.1
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Figure 2.3: Illustration of different cases for an ellipse where dashed regions show boxes
required to cover B̃

Then, N is an upper bound on the number of boxes with width δ required to cover B̃.

Proof. Suppose y ∈ B̃ so that yT∇2 f (0)y ≤ 2ε. By Rayleigh’s principle,

0 ≤ λ1yTy ≤ yT∇2 f (0)y ≤ 2ε

so that λ1yTy ≤ 2ε. Thus, B̃ ⊂
{

z : λ1
2ε zTz ≤ 1

}
, the volume inside a hypersphere with

radius r =
√

2ελ−1
1 . Hence, Lemma 2.3 with r =

√
2ελ−1

1 can be applied and it provides
an upper bound for N.

The different cases are illustrated for n = 2 and m = 2 in Figure 2.3.

2.2 Discussion of Theorem 2.1

Studying the expressions derived above for N, two characteristics are noteworthy:

• the variation of N with ε depends on the value of β and

• the influence of K on the behavior of N.

Both will be discussed in more detail. First, consider the functional dependence of N on ε
for different β.

1. When β = 1 and K not necessarily small, then N ∝
( 1

ε

) n
2 . The number of boxes

required to cover the hyperellipsoid will grow rapidly as the convergence tolerance ε
is decreased—the well-known cluster problem.

2. When β = 2, then N is independent of ε for any value of K, i.e., the number of boxes
required to cover the hyperellipsoid is insensitive to ε.
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Case N

K ≤ λ1
8 1

λ1
8 < K ≤ λ1

4 1 + 2n
λ1
4 < K ≤ 3λ1

8 1 + 2n2

3λ1
8 < K ≤ λ1

2 1 + 8
3 n− 3n2 + 4

3 n3

...
...

K > 9λ1
4

⌈
2
√

Kλ−1
1

⌉n−1 (⌈
2
√

Kλ−1
1

⌉
+ 2n

⌈
(
√

2− 1)
√

Kλ−1
1

⌉)
Table 2.2: Summary of results for number of boxes required to cover B̃ when β = 2

3. When β = 3 and K not necessarily small, then N ∝ ε
n
6 , and the number of boxes

required to cover the hyperellipsoid will decrease with decreasing ε. Note that this
does not necessarily mean that the total number of nodes required for termination
decreases with the tolerance, because this analysis only estimates the number of
nodes to cover B, which itself decreases in size as ε is decreased.

These observations agree with the results found in the literature [54, 129].
Second, assume that β = 2 and focus on how K parametrizes the behavior of N. Table 2.2

summarizes these results for the case β = 2. When K is sufficiently small, i.e., K ≤ λ1
8 ,

the cluster problem is completely absent (N = 1). Recall that λ1 denotes the smallest
eigenvalue of ∇2 f (x∗). When λ1 is small, this bound may only hold for K � 1. Depending
on the magnitude of K, N is polynomial (of varying degree) in n. For example, when
K ≤ λ1

4 , then N grows linearly with problem size and when K ≤ 3λ1
8 the number of boxes

grows quadratically with n. Both cases are remarkable as they suggest a fundamentally
different behavior of different relaxations with second-order convergence each depending
on these thresholds for K. Prior analyses of the cluster problem [54, 129] stop short of
explicitly drawing this conclusion.

2.3 Cluster problem for problems with non-differentiable
functions

Whereas the previous analysis and discussion focused on clustering occurring in the
vicinity of an unique unconstrained minimum of a twice differentiable function, here, the
differentiability assumption will be removed. It will be studied if the cluster problem
occurs in this setting, too. In particular, points of non-differentiability will be analyzed next
as otherwise a neighborhood of the minimum exists in which the function is differentiable.

Assumption 2.4. Suppose D ⊂ Rn and let f : D → R. Suppose C ⊂ D is convex and x∗ is
a global minimizer on C.
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2.3 Cluster problem for problems with non-differentiable functions

Note that no assumption regarding the regularity of f is made, in contrast to Assump-
tion 2.1, which is not assumed to hold in this Section.

It is easy to see that Lemma 2.1 still holds and, again, it suffices to look at

B = {x ∈ C : f (x)− f (x∗) ≤ ε},

the set of points in C for which fathoming by value dominance cannot be guaranteed,
cf. Lemma 2.2.

As before, we want to characterize B conservatively.

Lemma 2.4. Let conv B denote the convex hull of B and let
ˇ
f denote the convex envelope of f on

conv B. Set L = min‖d‖1=1 maxσ∈∂B
ˇ
f (x∗) σTd where ∂B

ˇ
f (x∗) denotes the Bouligand differential

of
ˇ
f at x∗. Then, we can approximate B conservatively as

B̌ ≡ {x ∈ C : L‖x− x∗‖1 ≤ ε} ⊃ B. (2.6)

Proof. Convexity of
ˇ
f and the definition of ∂B

ˇ
f imply that for all x ∈ conv B and for any

σ ∈ ∂B
ˇ
f (x∗)

σT(x− x∗) ≤
ˇ
f (x)−

ˇ
f (x∗). (2.7)

In the following, let d ∈ Rn so that ‖d‖1 = 1. We want to identify the direction d in
which

ˇ
f grows the slowest, i.e., a d that minimizes

ˇ
f ′(x∗, d), the directional derivative of

ˇ
f

at x∗. An equivalent characterization, cf. [82, p. 345], is

L = min
‖d‖1=1

max
σ∈∂B

ˇ
f (x∗)

σTd.

Since x∗ is a minimizer,
ˇ
f ′(x∗, d) ≥ 0 for all d ∈ Rn [82, Theorem VI-2.2.1] so that L ≥ 0.

Suppose that x ∈ B. Thus, there exists a t ≥ 0 and a d ∈ Rn, ‖d‖1 = 1 so that
td = x− x∗. Also,

ˇ
f (x∗ + td) ≤ f (x∗ + td) ≤ f (x∗) + ε. (2.8)

From the definition of L and (2.7), we have

Lt ≤
ˇ
f (x∗ + td)−

ˇ
f (x∗). (2.9)

Since C is convex and B ⊂ C, it follows that conv B ⊂ C. Since x∗ ∈ B minimizes f on C,
and thus also on conv B, and since

ˇ
f is the convex envelope of f ,

ˇ
f (x∗) = f(x∗). Combine

(2.8) and (2.9) and note that ‖x− x∗‖1 = t to see that x ∈ B̌.

Whereas Lemma 2.3 was applied to B̃ characterized by the 2-norm, B̌ is described by
the 1-norm. However, the analysis carries over after accounting for this change with L 6= 0
and we used r = ε

L instead. In Case (b), we simply need to change the condition from
δ ≥ 2r√

m to δ ≥ 2r
m and we need to require 1 < m ≤ 6 instead of 1 < m ≤ 18. In Case (c),

we can simply replace
√

2 by 2.
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Corollary 2.1. Suppose that L 6= 0. Let r = ε
L .

(a) If δ ≥ 2r or, equivalently, if ( ε

K

) 1
β ≥ 2

ε

L
,

then let N = 1.

(b) Suppose that 2r
m−1 > δ ≥ 2r

m where m ∈N, m ≤ n, 2 ≤ m ≤ 6 or, equivalently,

2ε

(m− 1)L
>
( ε

K

) 1
β ≥ 2ε

mL
.

Then let

N =
m−1

∑
i=0

2i
(

n
i

)
+ 2n

⌈
m− 3

3

⌉
.

(c) Otherwise, let

N =
⌈

K
1
β ε

(1− 1
β )L−1

⌉n−1
(⌈

K
1
β ε

(1− 1
β )L−1

⌉
+ 2n

⌈
1
2

K
1
β ε

(1− 1
β )L−1

⌉)
.

Then, N is an upper bound on the number of boxes with width δ required to cover B̃.
Remark 2.1. Note that, in contrast to the results in Section 2.2, the explicit dependence of N
on ε disappears already for β = 1. Therefore, even for relaxations with linear convergence
order only, N will not increase exponentially for decreasing termination tolerance. The
discussion of the dependence of N on K that originally considered β = 2 is valid for β = 1
now, cf. Table 2.2. Therefore, fundamentally different behavior of different relaxations
with first-order convergence depending on these thresholds for K is expected.
Remark 2.2. Consider the following cases where L = 0 so that Corollary 2.1 is not applicable.

• If f is differentiable on D and x∗ is the unique minimizer on C so that ∇ f (x∗) = 0
then L = 0. This case, however, is covered by the analysis in Section 2.1.2.

• If there are multiple minimizers of f on C, regardless of the regularity of f, then
L = 0. While for functions with a finite number of minimizers, the analysis can be
applied to sufficiently small neighborhoods of each minimizer on which L 6= 0, this
is not possible if the set of minimizers is connected. Examples of this case include
parameter estimation problems where parameters are not identifiable and an infinite
number of optimal solutions exists.

• If f is convex in a neighborhood of x∗ and there exists a direction, in which the
directional derivative of f at x∗ is zero, then L = 0. f (x) = max{x2, x} with x∗ = 0
is an example of this case.

Examples of functions, for which Corollary 2.1 is applicable, include cases such as
f (x) = |x| or f (x) = max{ f 1(x), f 2(x)} where f 1, f 2 are convex and the directional
derivative of f 1, f 2 at x∗ is nonzero for any direction.
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2.4 Conclusion

2.4 Conclusion

The analysis of the cluster problem has been revisited in this chapter. Prior results
that reveal the dependence of the cluster problem on the convergence order β and the
termination tolerance ε have been verified. Furthermore, even for relaxations with β = 2,
the new analysis indicates fundamentally different scaling behavior depending on the
value of K, the pre-factor in the convergence order. Thus, tighter relaxations can lead to
dramatic improvements in mitigating the cluster problem.

When the objective function is not differentiable at the minimum, then linearly conver-
gent relaxations are sufficient to avoid the cluster problem. The new analysis shows also
in this case that different regimes exists depending on K.
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Chapter 3

Factorable functions and methods to bound
their range

The notion of a factorable function is central for the remainder of this thesis. Early
references to the concept of the factorable function include [118, 136]. Conceptually, a
factorable function is any function that can be represented finitely on a computer without
resorting to IF or WHILE statements. For this particular class of functions, several bounding
methods have been developed previously. In this chapter, the focus lies on methods
based on interval analysis [122, 127] and McCormick’s composition result [118, 156], αBB
relaxations [1, 5] are also briefly mentioned. In particular, we will also report results on
the convergence order of the methods. In this chapter, we will mostly follow the notation
developed in [155].

3.1 Concept of factorable functions

In this section, we will formalize the definition of a factorable function and also show its
representation with a directed acyclic graph. Loosely speaking, a function is factorable
if it can be represented as a finite sequence of simple binary operations and univariate
functions.

3.1.1 Basic definition

Hereafter, a function will be denoted as a triple (o, B, R) where B is the domain, R is
the range, and o is a mapping from B into R, o : B → R. Permissible functions shall
include binary addition (+, R2, R) and multiplication (×, R2, R) as well as a collection of
univariate functions, cf. Definition 3.1.

Definition 3.1. Let L denote a set of functions (u, B, R) where B ⊂ R. L will be referred
to as a library of univariate functions.

It will be required that, for each (u, B, R) ∈ L, u(x) can be evaluated on a computer for
any x ∈ B. Additional assumptions will be introduced when necessary.

Without loss of generality, we can also consider the binary operations (−, R2, R) and
(/, R×R\{0}, R), which are contained in the framework discussed above by combining
the univariate functions u(x) = −x or u(x) = 1

x with the binary addition or multiplication,
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respectively. Sometimes more efficient calculations are possible though when subtraction
and division are considered directly.

Factorable functions will be defined in terms of computational sequences, which are ordered
sequences of the permissible basic operations defined above. Every such sequence of
computations defines a sequence of intermediate quantities called factors. In the following
definition, the factors are denoted by vk, and the functions πk are used to select one or two
previous factors to be the operand(s) of the next operation. Note that a computational
sequence is a specialization of a DAG because it allows binary and unary operations only.

Definition 3.2. Let ni, no ≥ 1. A L-computational sequence with ni inputs and no outputs is
a pair (S , πo), where:

1. S is a finite sequence of pairs {((ok, Bk, R), (πk, Rk−1, Rdk))}n f
k=ni+1 with every element

defined by one of the following options:

a) (ok, Bk, R) is either (+, R2, R) or (×, R2, R) and πk : Rk−1 → R2 is defined by
πk(v) = (vi, vj) for some integers i, j ∈ {1, . . . , k− 1}.

b) (ok, Bk, R) ∈ L and πk : Rk−1 → R is defined by πk(v) = vi for some integer
i ∈ {1, . . . , k− 1}.

2. πo : Rn f → Rno is defined by πo(v) = (vi(1), . . . , vi(no)) for some integers
i(1), . . . , i(no) ∈ {1, . . . , n f }.

A computational sequence defines a function fS : DS ⊂ Rni → Rno by the following
construction.

Definition 3.3. Let (S , πo) be a L-computational sequence with ni inputs and no outputs.
Define the sequence of factors {(vk, Dk, R)}n f

k=1 with Dk ⊂ Rni , where

1. for k = 1, . . . , ni, Dk = Rni and vk(x) = xk, ∀x ∈ Dk,

2. for k = ni + 1, . . . , n f , Dk = {x ∈ Dk−1 : πk(v1(x), . . . , vk−1(x)) ∈ Bk} and vk(x) =
ok(πk(v1(x), . . . , vk−1(x))), ∀x ∈ Dk.

The set DS ≡ Dn f is the natural domain of (S , πo), and the natural function (fS , DS , Rno) is
defined by fS (x) = πo(v1(x), . . . , vn f (x)), ∀x ∈ DS .

Definition 3.4. A function f : D ⊂ Rni → Rno will be called L-factorable if there exists a
L-computational sequence (S , πo) with ni inputs and no outputs such that the natural
function (fS , DS , Rno) satisfies D ⊂ DS and f = fS |D.

When we refer to as a function as L-factorable, we implicitly assume that Assump-
tions 3.1 and 3.3 hold. In certain cases, we also need Assumptions 3.2 and 3.4 to hold. This
will be noted where necessary.
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3.2 Interval analysis

k ok πk

1 x1
2 x2
3 x3
4 (·)3 π(v) = (v2)
5 − π(v) = (v1, v2)
6 log(·) π(v) = (v5)
7 × π(v) = (v4, v6)
8 + π(v) = (v1, v7)
9 ×0.25 π(v) = (v3)

10 exp(·) π(v) = (v9)
11 + π(v) = (v2, v10)
12 × π(v) = (v5, v11)
13 (·)2 π(v) = (v5)
14 − π(v) = (v4, v13)

Table 3.1: One possible representation of f in Example 3.1 as a L-computational sequence.

3.1.2 Representation as directed acyclic graph

Factorable functions can be represented as a directed acyclic graph. As its name implies, a
directed acyclic graph is a collection of vertices and directed edges. Vertices are connected
by these edges in such a way so that it is impossible to start at any arbitrary edge, to
travel from vertex to vertex along the direction of the edge and to return to the starting
point [43].

Example 3.1. Let D = {x ∈ R3 : x1 > x2}. Consider f : D → R3 given by

f1(x) = x1 +
(
x3

2 ln(x1 − x2)
)

,

f2(x) = x3
2 − (x1 − x2)

2,
f3(x) = (x1 − x2) (x2 + exp(0.25x3)) .

One possible representation of f as a L-computational sequence is given in Table 3.1 with
πo(v) = (v8, v12, v14). The directed acyclic graph corresponding to the computational
sequence is shown in Figure 3.1.

3.2 Interval analysis

Interval analysis was first introduced in the 1960s by Moore [122]. It has been used in a
variety of applications, but the main theme is either verifying floating-point calculations
performed with finite precision to account for possible round-off error or bounding the
range of a function on a domain. The main advantage of interval-based calculations is

45



Chapter 3 Factorable functions and methods to bound their range

Figure 3.1: Directed acyclic graph of the L-computational sequence given in Table 3.1 for
the L-factorable function f in Example 3.1

their small computational overhead, which is obtained at the expense of weak bounds
when used with wide intervals. The reader is referred to [3, 122, 127] for reviews of the
interval literature. Below, we will collect definitions and results necessary for this thesis.

Definition 3.5. For a, b ∈ R, a ≤ b define the interval [a, b] as the compact, connected set
{x ∈ R : a ≤ x ≤ b}. The set of all nonempty intervals is denoted as IR, and intervals are
denoted by capital letters, X ∈ IR. The set of n-dimensional intervals (Cartesian products
of n intervals) is denoted by IRn. Suppose X ∈ IRn. Then, the lower and upper bounds of X
are denoted as x and x, respectively. Suppose Z ⊂ Rn. The set of all interval subsets of Z
is denoted by IZ ⊂ IRn. Lastly, if Z is nonempty and bounded, then hull(Z) or �Z with
(hull Z)i = �Zi = [infz∈Z zi, supz∈Z zi], i = 1, . . . , n denotes interval hull of Z, the tightest
interval enclosing Z.

Note that (·)L and (·)U will be used in some instances for more complex expressions to
denote the respective lower and upper bound of an interval.

Definition 3.6. Suppose X, Y ∈ IRn. The midpoint of X is denoted by m(X) = 1
2 (x + x).

The width of X is denoted by w(X) = maxi{xi − xi}. The absolute value of X is denoted
by |X| = (|X1|, . . . , |Xn|) where |Xi| = max{|xi|, |xi|}. Denote the Haussdorff metric by
dH(X, Y) = maxi max{|xi − y

i
|, |xi − yi|}.

It is easy to show that dH defines a metric on IRn [e.g., 127, 1.7.2]. A sequence of
intervals {Xk} converges to X∗ if limk→∞ dH(Xk, X∗) = 0.
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3.2 Interval analysis

We will encounter functions that either return a vector of reals or the symbol NaN, or
“not a number”, which can be thought of as undefined or unspecified. It is convenient to
define R∅ = R∪ {NaN}. For the purposes of this thesis it is also necessary to extend the
definition of an interval to include unbounded intervals and empty intervals, which are
commonly excluded in the definition of IR [e.g, 95]. Here, ∅ is used to denote the empty
interval.

Definition 3.7. Let IR∅ ≡ IR ∪ {∅} and let the set of all interval subsets of Z ⊂ Rn

including the empty interval be denoted by I∅Z ⊂ IRn
∅. Similarly to Definition 3.5, define

the set of all extended intervals as ĪR = {[a, b] : a, b ∈ R∪ {+∞,−∞}, a ≤ b} ∪ {∅}, which
includes all unbounded intervals and also the empty interval. Lastly, the set of all extended
interval subsets of Z ⊂ Rn is denoted by ĪZ ⊂ ĪRn.

We will follow the conventions that real-valued operations involving NaN result in NaN,
that [NaN, NaN] = ∅, that NaN is an element of any interval, that every interval contains
the empty interval and that any interval operation involving the empty interval will again
result in the empty interval with the exception of the construction of the interval hull
where hull({X, ∅}) = X for any X ∈ ĪRn. Note that X = ∅ for X ∈ ĪRn if Xi = ∅ for
some i = 1, . . . , n. Otherwise, the operations of interval arithmetic extend naturally. For
any x ∈ R and ◦ ∈ {+,−, ·, /}, define x ◦ ±∞ = lima→±∞ x ◦ a.

Definition 3.8. Let f : D ⊂ Rn → Rm
∅ , and for any E ⊂ D, let f(E) denote the image of E

under f. A mapping F : D ⊂ ĪD → ĪRm is an inclusion function for f on D if f(X) ⊂ F(X),
∀X ∈ D.

While the concept of an inclusion function is very relevant to global optimization, a
simpler construction can yield this property as will be shown below.

Definition 3.9. Let D ⊂ Rn. A set D ⊂ ĪRn is an interval extension of D if D ⊂ ĪD and
every x ∈ D satisfies [x, x] ∈ D. Let f : D → Rm

∅ . A function F : D ⊂ ĪD → ĪRm is an
interval extension of f on D if D is an interval extension of D and F([x, x]) = [f(x), f(x)] for
every x ∈ D.

Definition 3.10. Let F : D ⊂ ĪRn → ĪRm. F is inclusion monotonic on D if

X1 ⊂ X2 ⇒ F(X1) ⊂ F2(X), ∀X1, X2 ∈ D.

Theorem 3.1. Let f : D ⊂ Rn → Rm
∅ and let F : D→ ĪRm be an interval extension of f. If F is

inclusion monotonic on D, then F is an inclusion function of f on D.

Proof. Choose any X ∈ D and any x ∈ X. Since x ∈ D, it follows that [x, x] ∈ D. Since
∅ ∈ F(X) is always true, if f (x) = ∅ then f (x) ∈ F(X). Otherwise, the result follows from
[155, Theorem 2.3.4].

Definition 3.11. Let F : D ⊂ IRn → IRm. F is locally Lipschitz on D if for every X̃ ∈ D there
exist δ, L > 0 such that dH(F(X), F(Y)) ≤ LdH(X, Y), ∀X, Y ∈ {Z ∈ D : dH(Z, X̃) < δ}.
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Theorem 3.2. Suppose F : D ⊂ IRn → IRm is locally Lipschitz on D. Then, there exists L > 0
so that w(F(X)) ≤ Lw(X), ∀X ∈ D.

Proof. Let λ f be as defined in [127, 2.1.2]. Set L = maxi λ f ,i and the result follows from [127,
2.1.2].

Lemma 3.1. Let f : D ⊂ R̄n → Rm and let F : D → IRm
∅ be an inclusion function of f. If F is

locally Lipschitz on D, then dH(�f(X), F(X)) ≤ w(F(X)) for any X ∈ D.

Proof. Since f(X) ⊂ �f(X) ⊂ F(X), this follows from [127, 1.7.3].

Define the typical inclusion functions for addition and multiplication: let the functions
(+, IR2

∅, IR∅) and (×, IR2
∅, IR∅) be defined by +(X, Y) ≡ [x + y, x + y] and ×(X, Y) ≡

[min(xy, xy, xy, x y), max(xy, xy, xy, x y)] and recall our convention1 that any operation
involving the empty interval results in an empty interval, i.e., +(X, ∅) = +(∅, X) = ∅ or
×(X, ∅) = ×(∅, X) = ∅ for any X ∈ IR∅.

Assumption 3.1. Assume that for every (u, B, R) ∈ L, an interval extension (u, I∅B, IR∅)
is known. Furthermore, assume that this interval extension is inclusion monotonic on I∅B.

Assumption 3.2. Assume that for every (u, B, R) ∈ L, the interval extension (u, I∅B, IR∅)
is locally Lipschitz on I∅B.

Define the typical inclusion functions for the negative and reciprocal: let the functions
(−, IR∅, IR∅) and ( 1

(·) , I∅(R− {0}), IR∅) be defined by −(X) ≡ [−x,−x] and by 1
X ≡

[ 1
x , 1

x ], respectively. Note that these definitions satisfy Assumptions 3.1 and 3.2. Below, for
convenience, we will write X−Y ≡ X + (−Y) for some intervals X, Y.

3.2.1 Natural interval extensions

Suppose that Assumption 3.1 holds and that (S , πo) is a L-computational sequence.
Then, to any element (ok, πk) of S a corresponding (ok, I∅Bk, IR∅) exists. Also, the func-
tions (πk, IRk−1

∅ , IR∅) or (πk, IRk−1
∅ , IR2

∅) with πk(V) = (Vi) or πk(V) = (Vi, Vj) extend
(πk, Rk−1, R) or (πk, Rk−1, R2) naturally.

Definition 3.12. For every L-computational sequence (S , πo) with ni inputs and no outputs,
define the sequence of inclusion factors {(Vk,Dk, IR∅)}

n f
k=1 where

1. for all k = 1, . . . , ni, Dk = IR
ni
∅ and Vk(X) = Xk, ∀X ∈ Dk,

2. for all k = ni + 1, . . . , n f , Dk = {X ∈ Dk−1 : πk(V1(X), . . . , Vk−1(X)) ∈ I∅Bk} and
Vk(X) = ok(πk(V1(X), . . . , Vk−1(X))), ∀X ∈ Dk.

The natural interval extension of (S , πo) is the function (FS ,DS , IR
no
∅ ) defined by DS ≡ Dn f

and FS (X) = πo(V1(X), . . . , Vn f (X)), ∀X ∈ DS .

1Hereafter, we will not make this distinction explicitly in expressions. Rather it is always assumed tacitly.
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Theorem 3.3. Let (S , πo) be a L-computational sequence with associated natural function
(fS , DS , Rno). The natural interval extension (FS ,DS , IR

no
∅ ) is an inclusion monotonic inter-

val extension of (fS , DS , Rno) on DS and an inclusion function for fS on DS . In particular, each
inclusion factor Vk of (S , πo) is an inclusion monotonic interval extension of vk on DS for all
k = 1, . . . , n f .

Proof. See [155, Theorem 2.3.11] together with Theorem 3.1.

Definition 3.13. Let f : D ⊂ Rn → Rm be a L-factorable function. Then, for any L-
computation sequence describing f, the natural interval extension (FS ,DS , IRm) is called a
natural interval extension of f. It will be denoted as (F,D, IRm).

Remark 3.1. Refer to [127, Sec. 2.1] or [155, Sec. 2.5.5] for conditions that imply that
the natural interval extension F of a L-factorable function f is locally Lipschitz on D.
If Assumption 3.2 holds, this is the case as shown in [155, Theorem 2.5.30]. In this
case, Theorem 3.2 and Lemma 3.1 indicate that the overestimation error of the range,
dH(�f(X), F(X)), is linear in w(X) for any X ∈ DS . In other words, the natural in-
terval extension of f has linear convergence order since minx∈X fi(x)−minx∈X Fi(X) =
minx∈X fi(x)− f

i
(X) ≤ dH( fi(X), Fi(X)). It is also possible to calculate a pre-factor K in

this case, cf. [127, Sec. 2.1].

Since the construction of natural interval extensions can be easily automated, different
software packages have been developed. One possible approach to implementing a library
for these computations is to use operator overloading in a object-oriented programming
language such as C++. Readily available implementations include PROFIL/BIAS [99] and
Boost [120]. Note that the cost of evaluating a natural interval extension is only a small
multiple of the cost of evaluating the real-valued function.

Two of the major downsides of interval arithmetic are the dependency problem and the
wrapping effect [91, 122]. The dependency problem refers to the fact that interval arithmetic
is a memory-less computation. This can be illustrated with a simple example. Consider
factor v7 in Example 3.1 that depends on the factors v4 and v6. Since both v4 and v6
depend on v2, they cannot vary independently of each other. However, interval arithmetic
presumes that this is indeed true and thus introduces overestimation on the range of
v7 when V7 is computed. The wrapping effect refers to the overestimation due to the
poor approximation of non-rectangular shapes with intervals. Since intervals are the
only objects available to describe more complex geometries within the realm of interval
analysis, considerable overestimation can be introduced this way. While extensions of
interval arithmetic have been introduced, e.g., affine arithmetic [161], these are not further
considered in this body of work.

3.2.2 Centered forms

Since the amount by which natural interval extensions overestimate the range of the func-
tion is linear in the width of the interval over which the interval extension is constructed,
see Remark 3.1, others have constructed and investigated interval methods with quadratic
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convergence order, sometimes referred to as the quadratic approximation property in the
literature [e.g., 138]. Centered forms were first suggested by Moore [122, p. 44f], also
see [18, 137]. These methods can be motivated by the mean value theorem in the real
numbers [145].

Theorem 3.4. Suppose D ⊂ Rn is open and f : D → R is differentiable on D. Then, for any
x, c ∈ D there exists a λ ∈ [0, 1] so that f (x) = f (c) +∇ f (ξ)(x− c) where ξ = λx + (1− λ)c.

This result motivates the following interval extension of f .

Definition 3.14. Suppose D ⊂ Rn, f : D → R and let D be an interval extension of D.
Assume that for each X ∈ D and some fixed c ∈ X there exists S(X, c) ∈ IRn so that for
all x ∈ X there exists a s(x) ∈ S(X, c) such that f (x) = f (c) + s(x)T(x− c) holds. Then,
Fc : D× D → R given by Fc(X, c) = f (c) + S(X, c)T(X− c) is called a centered form of f .

The following result establishes that the centered form is indeed an interval extension
and yields a first convergence order result.

Theorem 3.5. Suppose D ⊂ Rn is open and f : D → R is differentiable on D. Then, Fc(·, c) is
an inclusion function of f on D for any valid c. Furthermore, it holds that

dH( f (X), Fc(X, c)) ≤
n

∑
i=1

w(Si(X, c))|Xi − ci|, ∀X ∈ D, c ∈ X.

Proof. See [127, Theorem 2.3.3].

One method to obtain a suitable S is to use the mean value theorem directly. Assume
that D is open and that f is differentiable on D. Suppose ∇F is an interval extension of
∇ f on ID. Then, S can be replaced by ∇F. The obtained interval extension of f is called a
(generalized) mean value form. Under certain assumptions, quadratic convergence can be
established [104]. Hence, the mean value form possesses the desired property to mitigate
the cluster effect.

Theorem 3.6. Assume that D is open and that f is differentiable on D. Consider the mean value
form Fc of f . Suppose that ∇F is Lipschitz continuous on ID such that there exists L > 0 with
w(∇F(X)) ≤ Lw(X). Then, β = 2 and K = nL.

Proof. As shown in [127, 2.3.3], it holds that

min
x∈X

f (x)− Fc(X, c) ≤∑
i

w(∇Fi(X))|Xi − ci| ≤ nLw(X)2, ∀X ∈ ID, c ∈ X. (3.1)

Thus, β = 2 and an estimate for the convergence order pre-factor is given by K = nL.

Neumaier [127] noted that a bound on minx∈X f (x)− Fc(X, c) can be obtained imme-
diately a posteriori from Eq. 3.1, e.g., concurrent to the execution of a branch-and-bound
algorithm.
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Alternative methods have proposed to obtain S. For example, slope forms directly use
the definition of a centered form to construct S [103, 127]. Similar to the natural interval
extension, slopes can be constructed step-by-step for each element of the L-computational
sequence. In addition to the rules for the elementary binary arithmetic operations, Ratz
[139] describes how to carry out the necessary calculations for some univariate functions.
Hence, it is possible to automate the evaluation of a slope form so that an inclusion
function with quadratic convergence o rder is available. In practice, it is best to use
cheaper natural interval extensions on large host sets since the overestimation introduced
using centered forms can be considerable on large host sets. Only on small sets does the
quadratic convergence order provide a benefit that outweighs the additional computational
expense.

3.3 McCormick analysis

Let D ⊂ Rn be convex. A vector-valued function g : D → Rm is convex on D if each
component is convex on D. Similarly, it is called concave on D if each component is concave
on D. For any set A, let P(A) denote the power set, or set of all subsets, including the
empty set, of A.

Definition 3.15. Let D ⊂ Rn be a convex set and f : D → P(Rm). A function
ˇ
f : D → Rm

is a convex relaxation, or convex underestimator, of f on D if
ˇ
f is convex on D and

ˇ
fi(x) ≤

inf{ fi(x)}, ∀x ∈ D and i = 1, . . . , m. A convex relaxation g : D → Rm is called the convex
envelope of f on D if gi(x) ≥

ˇ
fi(x) for all convex relaxations of f, ∀x ∈ D and i = 1, . . . , m. A

function f̂ : D → Rm is a concave relaxation, or concave overestimator, of f on D if f̂ is concave
on D and f̂i(x) ≥ sup{ fi(x)}, ∀x ∈ D and i = 1, . . . , m. A concave relaxation g : D → Rm

is called the concave envelope of f on D if gi(x) ≤ f̂i(x) for all concave relaxations of f,
∀x ∈ D and i = 1, . . . , m.

Remark 3.2. Definition 3.15 allows that f(x) = ∅ for some x ∈ D. In this case, the inequality
defining a relaxation will hold for any function. However, the convexity and concavity
requirement must still be met by

ˇ
f and f̂, respectively, and this requirement constrains the

set of functions that satisfy the definition, as exemplified in Figure 4.7.

The following notation was introduced in [155]. While it differs from the previously
used notation for McCormick relaxations, it is more compact and very useful for the
proposed operations on computational sequences, and it also makes the relationship with
interval arithmetic more apparent. In the latter, information is passed from one operation
in the sequence of factors to the next in the forms of intervals. McCormick’s procedure to
construct relaxations [118], on the other hand, requires an interval X and a point x ∈ X as
input and returns three values: an interval Vk(X), which encloses the image of X under
vk, and two additional values

ˇ
vk(X, x) and v̂k(X, x), which represent the value of the

convex and concave relaxation of vk on X evaluated at x. After a recent generalization,
one can also consider mappings that take an interval and two relaxation values as input
and return an interval and two relaxation values; these are called generalized McCormick
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relaxations [156]. One advantage of this generalization is that it yields mappings with
conformable inputs and outputs, which are hence composable.

Definition 3.16. Let MRn ≡ {(ZB, ZC) ∈ IRn × IRn : ZB ∩ ZC 6= ∅}. Elements of MRn are
denoted by script capitals, Z ∈MRn. For any Z ∈MRn, the notations ZB, ZC ∈ IRn and
(z, z,

ˇ
z, ẑ) ∈ Rn will be commonly used to denote the intervals and vectors satisfying Z =

(ZB, ZC) = ([z, z], [
ˇ
z, ẑ]). For any D ⊂ Rn, let MD denote the set {Z ∈MRn : ZB ⊂ D}.

In this thesis, it is also necessary to consider unbounded and empty McCormick objects.
Analogously to Definition 3.7, define the sets MRn

∅ ≡ {(ZB, ZC) ∈ IRn
∅ × IRn

∅ : ZB ∩ ZC 6=
∅ ∨ ZC = ∅} and M̄Rn ≡ {(ZB, ZC) ∈ ĪRn × ĪRn : ZB ∩ ZC 6= ∅ ∨ ZC = ∅}, which are
extensions of MRn. Also, define M∅D and M̄D for any D ∈ Rn analogous to I∅D and
ĪD. Introduce Enc : M̄Rn → ĪRn defined by Enc(Z) = ZB ∩ ZC for all Z ∈ M̄Rn. This
function is necessary since for z ∈ Rn

∅, z ∈ Z is not well-defined whereas z ∈ Enc(Z) is.
Next, we formalize McCormick’s technique by defining operations on MRn

∅. We intro-
duce the concept of a relaxation function, which is analogous to the notion of an inclusion
function in interval analysis, and is the fundamental object that we want to compute for
a given real-valued function. Then, we show how relaxation functions can be obtained
through a simpler construction, just as inclusion functions can be constructed from in-
clusion monotonic interval extensions. First, however, some preliminary concepts are
necessary.

Definition 3.17. Let X ,Y ∈ M̄Rn. X and Y are coherent if XB = YB. A set D ⊂ M̄Rn is
coherent if every pair of elements is coherent. A set D ⊂ M̄Rn is closed under coherence if,
for any coherent X ,Y ∈ M̄Rn, X ∈ D implies Y ∈ D.

For any coherent X1,X2 ∈ M̄Rn with common interval part Q and for all λ ∈ [0, 1],
define

Conv(λ,X1,X2) ≡ (Q, λXC
1 + (1− λ)XC

2 )

where the rules of interval arithmetic are used to evaluate λXC
1 + (1− λ)XC

2 . For any
X1,X2 ∈ M̄Rn, the inclusion X1 ⊂ X2 holds iff XB

1 ⊂ XB
2 and XC

1 ⊂ XC
2 . Likewise, X1 ⊃ X2

iff X2 ⊂ X1. Also, define X1 ∩ X2 ≡ (XB
1 ∩ XB

2 , XC
1 ∩ XC

2 ).

Definition 3.18. Suppose D ⊂ M̄Rn is closed under coherence. A function F : D → M̄Rm

is coherently concave on D if for every coherent X1,X2 ∈ D, i.e., Q = XB
1 = XB

2 , F (X1)
and F (X2) are coherent, and F (Conv(λ,X1,X2)) ⊃ Conv(λ,F (X1),F (X2)) for every
λ ∈ [0, 1].

Definition 3.19. Let f : D ⊂ Rn → Rm
∅ . A mapping F : D ⊂ M̄D → M̄Rm is a relaxation

function for f on D if D is closed under coherence, F is coherently concave on D, and
f(x) ∈ Enc(F (X )) is satisfied for every X ∈ D and x ∈ Enc(X ).

Remark 3.3. Note that Definition 3.18 is a generalization of convexity and concavity, and
Definition 3.19 is a generalization of the notion of convex and concave relaxations. Convex
and concave relaxations of f can be recovered from a relaxation function of f as follows. Let
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3.3 McCormick analysis

X ∈ ID so that there exists Y ∈ D with X = YB. Define the functions U ,O : X → Rm
∅ for

all x ∈ X by ([f, f], [U (x),O(x)]) ≡ F ((X, [x, x])). Then, U and O are convex and concave
relaxations of f on X, respectively, as shown in [155, Lemma 2.4.11].

Similar to the notion of an inclusion function in interval analysis, the definition of a
relaxation function provides a construct with properties relevant in global optimization.
And again, the enclosure property of the relaxation function can be obtained with a simpler
construction as shown below.

Definition 3.20. Let D ⊂ Rn. A set D ⊂ M̄Rn is a McCormick extension of D if D ⊂ M̄D
and every x ∈ D satisfies ([x, x], [x, x]) ∈ D. Let f : D → Rm

∅ . A function F : D → M̄Rm

is a McCormick extension of f if D is a McCormick extension of D and F ([x, x], [x, x]) =
([f(x), f(x)], [f(x), f(x)]), ∀x ∈ D.

Definition 3.21. Let F : D ⊂ M̄Rn → M̄Rm. F is inclusion monotonic on D if X1 ⊂ X2
implies that F (X1) ⊂ F (X2) for all X1,X2 ∈ D.

Theorem 3.7. Let f : D ⊂ Rn → Rm
∅ and let F : D → M̄Rm be a McCormick extension of

f. If F is inclusion monotonic on D, then every X ∈ D satisfies f(x) ∈ Enc(F (X )) for all
x ∈ Enc(X ).

Proof. See [155, Theorem 2.4.14].

We conclude that an inclusion monotonic McCormick extension that is also coherently
concave is a relaxation function. Hence, it suffices to derive an inclusion monotonic,
coherently concave McCormick extension. As shown in [155, Lemmas 2.4.15, 2.4.17] the
composition of inclusion monotonic, coherently concave McCormick extensions yields
an inclusion monotonic, coherently concave McCormick extension. This motivates the
derivations of inclusion monotonic, coherently concave McCormick extensions of the basic
operations below.

Define the following relaxation functions for addition and multiplication: let the func-
tions (+, MR2

∅, MR∅) and (×, MR2
∅, MR∅) be given by +(X ,Y) = (XB + YB, XC + YC)

and ×(X ,Y) = (XBYB, [
ˇ
z, ẑ]) where

ˇ
z = max

((
yXC + xYC − xy

)L
,
(

yXC + xYC − x y
)L

, (XBYB)L
)

and

ẑ = min
((

yXC + xYC − xy
)U

,
(

yXC + xYC − xy
)U

, (XBYB)U
)

.

Note that this definition of multiplication ensures that [
ˇ
z, ẑ] ⊂ XBYB[155, Theorems 2.4.22,

2.4.23]. Furthermore, the standard rules for addition and multiplication of McCormick
relaxations are implied by these definitions, see [155, p. 69f], with the addition of the
intersection with the bounds from interval arithmetic in the case of the multiplication rule.
These functions are indeed relaxation functions and also inclusion monotonic as shown
in [155, Section 2.4.2].
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Chapter 3 Factorable functions and methods to bound their range

The following assumption is needed to construct relaxation functions for the elements
of L. For many univariate functions, objects satisfying these assumptions are known and
readily available [155, Section 2.8].

Assumption 3.3. Assume that for every (u, B, R) ∈ L, functions
ˇ
u, û : B̃ → R where

B̃ ≡ {(X, x) ∈ IB × B : x ∈ X} and xmin, xmax : IB → R are known such that
ˇ
u(X, ·)

and û(X, ·) are convex and concave relaxations of u on X ∈ IB, respectively, and xmin(X)
and xmax(X) are a minimum of

ˇ
u(X, ·) and a maximum of û(X, ·) on X, respectively.

Furthermore, assume that for any X1, X2 ∈ IB with X1 ⊂ X2,
ˇ
u(X1, x) ≥

ˇ
u(X2, x) and

û(X1, x) ≤ û(X2, x) for all x ∈ X1 and that
ˇ
u([x, x], x) = û([x, x], x) for all x ∈ B.

Let mid : R×R×R→ R return the middle value of its arguments. It can be shown [cf.
155, p. 76f] that a relaxation function of (u, B, R) ∈ L is given by (u, MB, MR) with

u(X ) =
(

u(XB),
[

ˇ
u(XB, mid(

ˇ
x, x̂, xmin(XB))), û(XB, mid(

ˇ
x, x̂, xmax(XB)))

]
∩ u(XB)

)
.

(3.2)
Note that if the convex and concave envelopes of u are known and used, then the intersec-
tion with u(XB) in (3.2) is redundant.

Assumption 3.4. Assume that for every (u, B, R) ∈ L, the relaxation function (u, MB, MR)
is locally Lipschitz on MB.

As reported in [156, Supplementary material], Assumptions 3.3 and 3.4 are satisfied for
the negative function with the definitions B = R, xmin(X) = x, xmax(X) = x,

ˇ
u(X, x) = −x

and û(X, x) = −x and for the reciprocal function with the definitions B = R − {0},
xmin(X) = x, xmax(X) = x

ˇ
u(X, x) =

{
1
x if x > 0,

1
x −

1
xx (x− x) if x < 0, and û(X, x) =

{
1
x −

1
xx (x− x) if x > 0,

1
x if x < 0.

Below, for convenience, we will write X −Y ≡ X + (−Y) for X ,Y ∈ M̄R.

3.3.1 Natural McCormick extensions

Just as there is a natural way in which to extend the real-valued calculations on the
sequence of factors of a L-computational sequence to interval arithmetic to obtain the
natural interval extension, this extension is also possible for the more complex McCormick
objects [155, 156].

Suppose that Assumption 3.3 holds and that (S , πo) is a L-computational sequence.
Then, for any element (ok, πk) of S , the preceding developments provide an inclusion mono-
tonic McCormick extension (ok, M∅Bk, MR∅) exists. Also, the functions (πk, MRk−1

∅ , MR∅)

or (πk, MRk−1
∅ , MR2

∅) with πk(V) = (Vi) or πk(V) = (Vi,Vj) extend (πk, Rk−1, R) or
(πk, Rk−1, R2) naturally.

Definition 3.22. For every L-computational sequence (S , πo) with ni inputs and no outputs,
define the sequence of relaxation factors {(Vk,Dk, MR∅)}

n f
k=1 where
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3.3 McCormick analysis

1. for all k = 1, . . . , ni, Dk = MR
ni
∅ and Vk(X ) = Xk, ∀X ∈ Dk,

2. for all k = ni + 1, . . . , n f , Dk = {X ∈ Dk−1 : πk(V1(X ), . . . ,Vk−1(X )) ∈M∅Bk} and
Vk(X ) = ok(πk(V1(X ), . . . ,Vk−1(X ))), ∀X ∈ Dk.

The natural McCormick extension of (S , πo) is the function (FS ,DS , MRno) defined by
DS ≡ Dn f and FS (X ) = πo(V1(X ), . . . ,Vn f (X )), ∀X ∈ DS .

Theorem 3.8. Let (S , πo) be a L-computational sequence with associated natural function
(fS , DS , Rno). The natural McCormick extension (FS ,DS , MR

no
∅ ) is a McCormick extension

of (fS , DS , Rno) and coherently concave and inclusion monotonic on DS . Thus, it is a relaxation
function for fS on DS . In particular, each relaxation factor Vk of (S , πo) is a inclusion monotonic,
coherently concave McCormick extension of vk on DS for all k = 1, . . . , n f .

Proof. Follows from [155, Theorem 2.4.32] together with Theorem 3.7.

Definition 3.23. Let f : D ⊂ Rn → Rm be L-factorable. Then, for any L-computational
sequence describing f, the natural McCormick extension (FS ,DS , MRm) is called a natural
McCormick extension of f.

3.3.2 Standard McCormick relaxations

Definition 3.24. Let f : D ⊂ Rn → Rm be L-factorable and let F : D ⊂ MRn → MRm

be a natural McCormick extension of f. For any X ∈ ID that is represented in D, define

ˇ
f, f̂ : X → Rm by

ˇ
f(x) ≡

ˇ
f((X, [x, x])) and f̂(x) ≡ f̂((X, [x, x])).

These functions are called standard McCormick relaxations of f on X.

Standard McCormick relaxations have been shown to converge quadratically [34] in the
following sense when convex and concave envelopes are used to construct relaxations of
univariate functions.

Theorem 3.9. Suppose that D ⊂ Rn is open. Let f : D → Rm be L-factorable and let F : D ⊂
MRn →MRm be a natural McCormick extension of f. Assume that f is twice differentiable on D.
Suppose that for each (u, B, R) ∈ L convex and concave envelopes

ˇ
u and û are used. Introduce

[f∗(X), f∗(X)] ≡ ∪x∈X[
ˇ
f(x), f̂(x)] for any X ∈ ID. Then there exists a K > 0 so that

dH(�f(X), [f∗(X), f∗(X)]) ≤ Kw(X)2, ∀X ∈ ID.

Proof. Note that f∗,i = infx∈X
ˇ
fi(x) and f ∗i = supx∈X

ˇ
fi(x). The conclusion thus follows

from the results in [34].

The automatic computation of natural McCormick relaxations of a factorable function
has been described in [121]. A C++ library, MC++ [40], which is the successor of the C++

library described in [121], is available to evaluate natural McCormick relaxations using
operator overloading. Additionally, this library provides means to evaluate a member
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Chapter 3 Factorable functions and methods to bound their range

of the subdifferential of
ˇ
fi and f̂i, i = 1, . . . , no using ideas similar to the forward mode

of automatic differentiation [70]. Others have presented similar libraries to compute
subgradients of the relaxations using either the forward [48] or the reverse mode of
automatic differentiation [21] that are based on source code transformation.

3.4 αBB relaxations

αBB relaxations [2, 5, 116] provide an alternative for constructing convex relaxations. The
underlying idea is not as strongly intertwined with the concept of a L-computational
sequence and its natural function. For this reason, it will only briefly be mentioned and
not further investigated in the remainder of the thesis.

Suppose D ⊂ Rn is open and f : D → R is twice differentiable on D. In the most
general case, αBB relaxations of f on X ∈ ID are defined as the function fα : X → R given
by

fα(x) = f (x) +
n

∑
i=1

αi(X)(xi − xi)(xi − xi), ∀x ∈ X

where αi(X) are non-negative reals that are sufficiently large to guarantee convexity of
fα on X. Different methods have been proposed to calculate αi [2, 116] and αi(X) can be
updated as X changes. When the method was first proposed, its quadratic convergence
order was demonstrated [116]. The main focus here is to establish a bound on the
convergence order pre-factor K, which can be obtained by the following result regardless
of the method.

Theorem 3.10. Consider αBB relaxations of f and suppose C is an interval. Let α ≡ maxi=1,...,n αi
where αi has been calculated on C. Then, β = 2 and K ≤ 1

4 αn.

Proof. It is easy to see that, for any X ∈ IC,

min
x∈X

f (x)−min
x∈X

fα(x) = min
x∈X

f (x)−min
x∈X

(
f (x) +

n

∑
i=1

αi(xi − xi)(xi − xi)

)

≤ min
x∈X

f (x)−min
x∈X

f (x)−min
x∈X

n

∑
i=1

αi(xi − xi)(xi − xi)

=
n

∑
i=1

αi

(
w(Xi)

2

)2

≤ 1
4

αn(w(X))2.

Thus, it follows that β = 2 and that K = 1
4 αn is a conservative estimate of the pre-factor.

In Section 2.2 it was remarked that K ≤ 9λ1
4 must hold in order to prevent the exponential

growth of N with n for a second-order relaxation. For αBB relaxations this condition
translates to α ≤ 9λ1

n . Recall that λ1 > 0 is the smallest eigenvalue of ∇2 f (x∗), not the
smallest eigenvalue of ∇2 f on C. Note also that Theorem 3.10 does not indicate whether
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3.5 Comparison of bounding methods

Method Complexity Convergence order

Natural interval extensions O(n f ) Kw(X)
Centered forms O(nn f ) nKw(X)2

McCormick relaxations O(n f ) Kw(X)2

αBB relaxations O(n2n f )
1
4 αnw(X)2

Table 3.2: Comparison of the computational complexity and the convergence order of
different bounding methods. For reference, the complexity of one evaluation of
the natural function is O(n f ).

αBB relaxations can achieve this criterion. Furthermore, the result assumes that αi does
not change with X.

Suppose now that we construct a new α on each interval visited. A note-worthy feature
of αBB relaxations is that α(X1) ≥ α(X2) for intervals X1, X2 such that X1 ⊃ X2. Hence,
when α is re-computed for each Xl in a sequence of nested intervals, the corresponding
sequence {αl}, and thus also the sequence of pre-factors {Kl}, is monotonically decreasing.
This explains the behavior reported in [34, Figures 1, 2] for αBB relaxations with variable α.
It is not possible, however, to argue that in general liml→∞ αl = 0, which would imply a
super-quadratic order of convergence, see [34, Figure 3] for a counter-example.

Lastly, note that αBB relaxations coincide with f on X when α(X) = 0 so that the lower
bound is exact in this case. In this case, convexity of f on X has been detected.

3.5 Comparison of bounding methods

In this chapter, different methods have been studied to bound the range of L-factorable
function. When the natural function is twice differentiable functions, all listed bounding
methods are applicable. When this strong regularity assumption is dropped, some—such
as αBB relaxations—are not defined any longer, while properties such as the convergence
order of others weaken.

Table 3.2 compares the different methods by the complexity of one evaluation and their
convergence order. Note that the cost of αBB relaxations is the cost to evaluate α when
using the method based on Greschgorin’s theorem [2], which is the most expensive step,
but it must be performed only once. Once α has been determined, any further relaxation
evaluation has complexity O(n f + n). Note that neither the complexity of an evaluation
of a standard McCormick relaxation nor of a αBB relaxation includes the evaluation of
(sub)gradients. In case of either relaxation technique, deriving a bound on the range
still necessitates solving a convex optimization problem so that derivative information
is necessary, too. Here, it should be pointed out that the adjoint mode of automatic
differentiation [70] should be used for efficient calculation of the derivative information.
A similar method is also available to efficiently calculate a subgradient of the standard
McCormick relaxation [21]. Lastly note that K serves as a placeholder in the convergence
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Chapter 3 Factorable functions and methods to bound their range

order column. For the precise forms of the convergence order pre-factor, see the results in
the previous sections.

At this point, one might question the benefit of nonconstant relaxations over centered
forms, which only provide a constant bound, as each method is second-order convergent.
When using interval methods to approximate conservatively the feasible set of (1.1) on
some Y ∈ IC, this problem results

f L,int(Y) = inf
y∈Y

f (Y)

s.t. g(Y) ≤ 0,

h(Y) ≤ 0 ≤ h(Y).

(3.3)

Note that no optimization problem needs to be solved in order to find the lower bound

f L,int(Y) =
{

f (Y) if g(Y) ≤ 0, h(Y) ≤ 0 ≤ h(Y)
+∞ otherwise.

Thus, (3.3) uses the constraints only to provide a certificate of infeasibility. On the other
hand, constructing a relaxation of (1.1) using nonconstant convex relaxations results in

f L,rlx(Y) = inf
y∈Y ˇ

f (y)

s.t.
ˇ
g(y) ≤ 0,

ˇ
h(y) ≤ 0 ≤ ĥ(y),

(3.4)

where each relaxation is constructed on Y. In (3.4), the relaxations of the constraints
(possibly) restrict the set of permissible y ∈ Y so that f L,rlx(Y) ≥ infy∈Y

ˇ
f (y). Consequently,

the wrapping effect supplies a plausible explanation why relaxations have been more
successful in global optimization than second-order convergent interval bounds.
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Chapter 4

Reverse propagation of McCormick
relaxations

Schichl and Neumaier [153] demonstrated that factorable functions can be represented
alternatively as a DAG1, see also Section 3.1.2, and discussed how this representation can
be used for calculations in interval analysis. Vu et al. [174] detailed how to propagate
interval information on DAGs to improve interval bounds. Their method can utilize the
information from equality and inequality constraints. We will refer to this idea as reverse
interval propagation. In this chapter, the idea is extended to convex and concave relaxations.

The class of factorable functions encompasses most functions that can be implemented
as computer programs without conditional statements. It is well-known that relaxations of
factorable functions can be computed using McCormick’s composition rule [118, 156]; the
obtained relaxations are often referred to as McCormick relaxations, see Section 3.3.2. Here, it
is proposed to use the DAG representation of the constraints to also propagate McCormick
relaxations backward. For the benefit of the reader we provide an interpretation of
relaxations in the context of constraint propagation. Suppose we partition the variables
into p and x. Whereas interval propagation yields a constant bound that all feasible (x, p)
must satisfy, reverse McCormick propagation yields bounds that are functions of p. For a
given p in the domain, all x so that (p, x) is feasible are bounded. Figure 4.1 illustrates
this interpretation. It shows that a domain (dash-dotted box) can be shrunk by interval
constraint propagation to find an outer approximation of the feasible region (dotted box).
However, the relaxations (solid and dashed lines) provide a tighter approximation that is a
function of p. For example, consider p1, for which a thick solid line shows all feasible x.
Given p1, the relaxations restrict x to the blue interval whereas the interval bounds only
constrain them to the larger green interval. Furthermore, since the bounds are convex and
concave functions of p, it is tractable, for example, to calculate cheaply a reduced interval
domain using affine relaxations based on the subgradients of the relaxations [121] or by
minimizing and maximizing the relaxations of each xi on the p domain.

The remainder of this chapter is organized as follows. Section 4.1 recapitulates the
important results for reverse interval propagation from [174], which are extended to
McCormick objects in Section 4.2. Section 4.3 discusses how the theoretical results from the
previous section can be applied to construct and improve relaxations of implicit mappings.
Section 4.4 describes how the method can be implemented and some case studies are given

1This representation of a factorable function is also used in the reverse mode of automatic differentiation [70].

59



Chapter 4 Reverse propagation of McCormick relaxations

p

x

p
1

Figure 4.1: Illustration of domain reduction by reverse interval and McCormick propaga-
tion. The gray area is the set of all feasible solutions, the dash-dotted line is the
original domain, the dotted line is the reduced domain using reverse interval
propagation. The solid and dashed lines are relaxations of the feasible region
that are functions of by p.

in Section 4.5. Section 4.6 summarizes the results and concludes the chapter.

4.1 Reverse interval propagation

In this section, we will focus on propagating interval bounds backwards through the
computational sequence, which is a particular form of a DAG. Since the reverse McCormick
propagation is similar in spirit, it is very instructive to first revisit the interval case. The
results, which are stated below, have been adapted from [174], though the notation is
introduced here.

Definition 4.1. Consider f : D ⊂ Rn → Rm. Let Frev : I∅D × ĪRm → IRn
∅. If for all

X ∈ I∅D and R ∈ ĪRm it holds that

{x ∈ X : f(x) ∈ R} ⊂ {x ∈ Frev(X, R)} ⊂ X, (4.1)

then Frev is called a reverse interval update of f.

Definition 4.2. Let (S , πo) be a L-computational sequence with ni inputs and no outputs
with natural interval extension (FS ,DS , Rno). Let X ∈ DS . Suppose that V1(X), . . . , Vn f (X)

have been calculated according to Definition 3.12. Let orev
k : I∅Bk × ĪR→ I∅Bk be a reverse

interval update of ok for each k = ni + 1, . . . , n f . Suppose Ṽ1, . . . , Ṽn f ∈ IR∅ are calculated
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4.1 Reverse interval propagation

for any X ∈ DS and R ∈ ĪRno by the following procedure:

(Ṽ1, . . . , Ṽn f ) := (V1(X), . . . , Vn f (X))

πo(Ṽ1, . . . , Ṽn f ) := πo(Ṽ1, . . . , Ṽn f ) ∩ R

for l := 1, . . . , n f − ni do

πn f−l+1(Ṽ1, . . . , Ṽn f−l) := orev
n f−l+1(πn f−l+1(Ṽ1, . . . , Ṽn f−l), Ṽn f−l+1)

end

The reverse interval propagation of (S , πo) is the function (Frev
S ,DS × ĪRno , IDS ) defined by

Frev
S (X, R) ≡ (Ṽ1, . . . , Ṽni).

Theorem 4.1. The reverse interval propagation of (S , πo) as given by Definition 4.2 is a reverse
interval update of (fS , DS , Rno). If the reverse update of ok is inclusion monotonic for each
k = ni + 1, . . . , n f then the reverse interval propagation of (S , πo) is inclusion monotonic.

Proof. Finite induction yields immediately that the second inclusion in (4.1) holds.
Let R ∈ ĪRno and X ∈ DS . If there does not exist a x ∈ X such that fS (x) ∈ R, then the

first inclusion in (4.1) holds trivially.
Let x ∈ X such that fS (x) ∈ R. Then, there exists a sequence of factor values {vk(x)}

n f
k=1

with v1(x) = x1, . . ., vni(x) = xni and πo(v1(x), . . . , vn f (x)) ∈ R. Also, since V1, . . . , Vn f are
inclusion functions (see Theorem 3.3), (v1(x), . . . , vn f (x)) ∈ (V1(X), . . . , Vn f (X)) so that
(v1(x), . . . , vn f (x)) ∈ (Ṽ1, . . . , Ṽn f ) prior to entering the loop. In the following, let Ṽ l

k denote
the value of Ṽk for the given X and R after the lth reverse update, l = 1, . . . , n f − ni. Since
orev

n f
is a reverse interval update, it follows that (v1(x), . . . , vn f−1(x)) ∈ (Ṽ1

1 , . . . , Ṽ1
n f−1).

Finite induction yields that (v1(x), . . . , vni(x)) ∈ (Ṽ
n f−ni
1 , . . . , Ṽ

n f−ni
ni ) ≡ Frev

S (X, R). Thus,
x ∈ Frev

S (X, R) and the first inclusion in (4.1) holds.
Assume now that orev

k is inclusion monotonic for each k = ni + 1, . . . , n f . Let X1, X2 ∈ DS
with X1 ⊂ X2 and R1, R2 ∈ ĪRno with R1 ⊂ R2. Then, (Ṽ1(X1, R1), . . . , Ṽn f (X1, R1)) ⊂
(Ṽ1(X2, R2), . . . , Ṽn f (X2, R2)) prior to entering the loop. Since orev

n f
is inclusion monotonic,

(Ṽ1
1 (X1, R1), . . . , Ṽ1

n f
(X1, R1)) ⊂ (Ṽ1

1 (X2, R2), . . . , Ṽ1
n f
(X2, R2)). Using finite induction over

l yields that (Ṽ
n f−ni
1 (X1, R1), . . . , Ṽ

n f−ni
ni (X1, R1)) ⊂ (Ṽ

n f−ni
1 (X2, R2), . . . , Ṽ

n f−ni
ni (X2, R2)).

Thus, it follows that Frev
S (X1, R1) ⊂ Frev

S (X2, R2).

Next, we will present a result very closely related to Theorem 4.1 that relies more on
standard concepts from interval analysis.

Theorem 4.2. Consider (S , πo) and assume that for each k = ni + 1, . . . , n f , the reverse interval
update of ok is inclusion monotonic. Define frev

S : D×Rno → R
ni
∅ for each x ∈ D and r ∈ Rno by

frev
S (x, r) =

{
x if fS (x) = r,
NaN otherwise.

(4.2)

Then, Frev
S is an inclusion function of frev

S on DS × ĪRno .
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Proof. Let r ∈ R̄no . First, consider x ∈ D so that fS (x) = r. Since FS is an interval extension
of fS , each factor is a degenerate interval after the forward evaluation with Vk([x, x]) =
[vk(x), vk(x)]. Since fS (x) = r, the intersections during the reverse interval propagation
return the degenerate intervals so that it is clear that Frev

S is an interval extension of frev
S for

such [x, x]. If x ∈ D such that fS (x) 6= r then πo(Ṽ1, . . . , Ṽn f ) := πo(Ṽ1, . . . , Ṽn f )∩ R results
in (Ṽ1 × · · · × Ṽn f ) = ∅. Any interval calculation involving empty intervals again yields
empty intervals so that Frev

S ([x, x], [r, r]) = ∅ = [NaN, NaN] = [frev
S (x, r), frev

S (x, r)]. Thus,
Frev
S is an interval extension of frev

S . Inclusion monotonicity of Frev
S has been established in

Theorem 4.1. The assertion follows then from Theorem 3.1.

4.1.1 Reverse interval updates of binary operations

It is sufficient to study addition and multiplication. Subtraction and division can be
considered by using the negative or reciprocal operators, which are in L, the library of
univariate functions.

Lemma 4.1. Consider (+, R2, R). The function (+rev, IR2
∅× ĪR, IR2

∅) defined for all X, Y ∈ IR∅
and R ∈ ĪR by

+rev((X, Y), R) = (R−Y, R− X) ∩ (X, Y)

is an inclusion monotonic reverse interval update of (+, R2, R).

Proof. Let X, Y ∈ IR∅, R ∈ ĪR. If +(X, Y)∩ R = ∅, then 6 ∃(x, y, r) ∈ X×Y× R : x + y = r.
Thus, r− y 6∈ X for all (y, r) ∈ Y× R so that (R−Y) ∩ X = ∅. Similarly, (R− X) ∩Y = ∅
so that (4.1) holds trivially.

Otherwise, pick (x, y) ∈ X × Y so that x + y ∈ R. Since r ≤ x + y ≤ r and (x, y) ∈
([x, x], [y, y]), it follows that x ≥ r− y ≥ r− y and x ≤ r− y ≤ r− y and that y ≥ r− x ≥
r− x and y ≤ r− x ≤ r− x so that (x, y) ∈ +rev((X, Y), R). Thus, (4.1) holds.

Inclusion monotonicity follows directly from inclusion monotonicity of subtraction and
intersection.

While it may appear to be more advantageous to use

+rev((X, Y), R) = (R−Y, R− ((R−Y) ∩ X)) ∩ (X, Y)

in fact there is no benefit, as the following argument shows. Let (X′, Y′) = +rev((X, Y), R)
and note that

x′ = max(r− y, x)
x′ = min(r− y, x)

y′ = max(r−min(r− y, x), y) = max(r− r + y, r− x, y) = max(r− x, y)

y′ = min(r−max(r− y, x), y) = min(r− r + y, r− x, y) = min(r− x, y),

where we have used the fact that r ≤ r.
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4.1 Reverse interval propagation

Next, we will study the reverse interval update for multiplication. Note that (x, x) ≡
{x ∈ R : x < x < x} denotes an open interval and that for two sets A, B, the relative
complement is denoted by A \ B ≡ {x ∈ A : x /∈ B}.

Proposition 4.1. [127, Proposition 4.2.1] Define the Gauss-Seidel operator (Γ, IR∅ × ĪR×
IR∅, IR∅) for all X, Y ∈ IR∅ and R ∈ ĪR by

Γ(X, R, Y) = hull{y ∈ Y : ∃x ∈ X, r ∈ R : xy = r}.

Then,

Γ(X, R, Y) =


(

R× 1
X

)
∩Y if 0 /∈ X,

hull(Y\(r/x, r/x)) if r > 0, 0 ∈ X,
hull(Y\(r/x, r/x)) if r < 0, 0 ∈ X,

Y otherwise.

Lemma 4.2. Consider (×, R2, R). The function (×rev, IR2
∅× ĪR, IR2

∅) defined for all X, Y ∈ IR∅
and R ∈ ĪR by

×rev((X, Y), R) = (Γ(Y, R, X), Γ(Γ(Y, R, X), R, Y))

is an inclusion monotonic reverse interval update of (×, R2, R).

Proof. Let X, Y ∈ IR∅, R ∈ ĪR. If ×(X, Y) ∩ R = ∅, there does not exist a x ∈ X, y ∈ Y so
that xy ∈ R, i.e., Γ(Y, R, X) = ∅. Thus, Γ(Γ(Y, R, X), R, Y) = ∅ so that ×rev((X, Y), R) = ∅
and (4.1) holds trivially.

Otherwise, pick (x, y) ∈ X × Y so that xy ∈ R. Note that Γ(Y, R, X) = {x̃ ∈ X : ∃ỹ ∈
Y, z ∈ R : x̃ỹ = z}, and hence x ∈ Γ(Y, R, X) ⊂ X. Likewise, Γ(Γ(Y, R, X), R, Y) =
{ỹ ∈ Y : ∃x̃ ∈ Γ(Y, R, X), z ∈ R : x̃ỹ = z}, hence y ∈ Γ(Γ(Y, R, X), R, Y). Thus,
(x, y) ∈ ×rev((X, Y), R) so that the first inclusion (4.1) holds. The second inclusion follows
from [127, 4.3.2].

Inclusion monotonicity follows directly from [127, 4.3.2].

Note that ×rev((X, Y), R) = (Γ(Γ(X, R, Y), R, X), Γ(X, R, Y)) is an alternative reverse
interval update of (×, R2, R). In particular, the sequential update of X and then Y
provides a benefit here whereas for (+, R2, R) it does not yield additional information.

4.1.2 Reverse interval updates of univariate functions

Lemma 4.3. Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L. Suppose
that (u, IB, IR) is exact, i.e., it maps to the image of the real-valued function for any X ∈ IB. The
function (urev, I∅B× ĪR, IR∅) defined for all X ∈ I∅B and R ∈ ĪR by

urev(X, R) = [min(u−1(t), u−1(t)), max(u−1(t), u−1(t))],

where T = R ∩ u(X), is an inclusion monotonic reverse interval update of (u, B, R).

Proof. Let X ∈ I∅B. Suppose that T = ∅, in which case urev(X, R) = ∅. Then, since
(u, IB, IR) is an inclusion function, there does not exist an x ∈ X so that u(x) ∈ R.
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Chapter 4 Reverse propagation of McCormick relaxations

Otherwise, since (u, B, R) is continuous and injective, it is invertible on u(B) and u−1

is continuous [145, Thm. 4.17]. Since T ⊂ u(B), u−1(t) and u−1(t) are defined. Since
u is invertible on X it is bijective as a mapping into T. This implies that u−1 is also
injective on T. Note that T ∈ IR. u−1 is monotonic on T so that t < t < t implies
that either u−1(t) < u−1(t) < u−1(t)) or u−1(t) > u−1(t) > u−1(t). Thus, x ∈ X so
that u(x) ∈ T implies that x ∈ [min(u−1(t), u−1(t)), max(u−1(t), u−1(t))] ⊂ X where the
inclusion follows from T ⊂ u(X).

Inclusion monotonicity follows directly from the monotonicity of (u−1, u(B), B).

Remark 4.1. Lemma 4.3 can be used to define the reverse interval update of −(·), (·)n for
odd n ∈ N, exp, log,

√
·, etc. It is also applicable to 1

(·) if B is restricted to either the
negative or positive reals.

Lemma 4.4. Let n ∈N be even. Consider (u, R, R) where u(x) = xn. The function (urev, IR∅×
ĪR, IR∅) defined for all X ∈ IR∅ and R ∈ ĪR by

urev(X, R) = hull
(

X ∩
[
− n
√

t,− n
√

t
]

, X ∩
[

n
√

t,
n
√

t
])

where T = R ∩ u(X) is an inclusion monotonic reverse interval update of (u, R, R).

Proof. Let X ∈ IR∅. Suppose that T = ∅, in which case urev(X, R) = ∅. Then, since
(u, IR, IR) is an inclusion function, there does not exist an x ∈ X so that u(x) ∈ R.

Otherwise, since the equation u(x) = r has two solutions for any positive r, namely
x = n
√

r and x = − n
√

r, any

x̃ ∈ X̃ = {x ∈ X : ∃r ∈ R, x = n
√

r ∨ x = − n
√

r}

will satisfy u(x̃) ∈ T. The argument still holds for r = 0. Intersecting
[
− n
√

t,− n
√

t
]

or
[

n
√

t, n
√

t
]

with X will not discard any x̃ ∈ X̃. Since these intervals may be disjoint,
constructing the interval hull will yield an interval.

Inclusion monotonicity follows directly since ( n
√
·, [0,+∞), R) is monotonic and from

the inclusion monotonicity of the intersection and hull operators.

Note that with a construction similar to Lemma 4.4 it is possible to find a reverse interval
update of the absolute value function.

4.2 Reverse McCormick propagation

In this section, the ideas for reverse interval propagation are extended to McCormick
objects. Again, the enclosure property will be established, but also coherent concavity and
inclusion monotonicity of the resulting relaxations will be proved.
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4.2 Reverse McCormick propagation

Definition 4.3. Suppose f : D ⊂ Rn → Rm. Consider F rev : M∅D× M̄Rm →MRn
∅. If for

all X ∈M∅D and R ∈ M̄Rm it holds that

{x ∈ Enc(X ) : f(x) ∈ Enc(R)} ⊂ {x ∈ Enc(F rev(X ,R))} (4.3)

and F rev(X ,R) ⊂ X , then F rev is called a reverse McCormick update of f.

Definition 4.4. Let (S , πo) be a L-computational sequence with ni inputs and no outputs
with natural McCormick extension (FS ,DS , Rno). Let X ∈ DS . Suppose V1(X ), . . . ,Vn f (X )

have been calculated according to Definition 3.22. Let orev
k : M∅Bk × M̄R → M∅Bk be a

reverse McCormick update of ok for each k = ni + 1, . . . , n f . Suppose Ṽ1, . . . , Ṽn f ∈MR∅

are calculated for any X ∈ DS and R ∈ ĪRno by the following procedure:

(Ṽ1, . . . , Ṽn f ) := (V1(X ), . . . ,Vn f (X ))

πo(Ṽ1, . . . , Ṽn f ) := πo(Ṽ1, . . . , Ṽn f ) ∩R
for l := 1, . . . , n f − ni do

πn f−l+1(Ṽ1, . . . , Ṽn f−l) := orev
n f−l+1(πn f−l+1(Ṽ1, . . . , Ṽn f−l), Ṽn f−l+1)

end

The reverse McCormick propagation of (S , πo) is the function (F rev
S ,DS × M̄Rno , M∅DS )

defined for any X ∈ DS and R ∈ M̄Rno by F rev
S (X ,R) ≡ (Ṽ1, . . . , Ṽni).

Theorem 4.3. The reverse McCormick propagation of (S , πo) as given by Definition 4.4 is a
reverse McCormick update of (fS , DS , Rno).

Proof. Let R ∈ M̄Rm and X ∈ DS . Finite induction yields immediately that F rev(X ,R) ⊂
X . If there does not exist x ∈ Enc(X ) such that fS (x) ∈ Enc(R), then (4.3) holds trivially.

Let x ∈ X satisfy fS (x) ∈ Enc(R). Then, there exists a sequence of factor values
{vk(x)}

n f
k=1 with v1(x) = x1, . . ., vni(x) = xni and πo(v1(x), . . . , vn f (x)) ∈ Enc(R). Also,

since V1, . . . ,Vn f are relaxation functions, (v1(x), . . . , vn f (x)) ∈ Enc((V1(X ), . . . ,Vn f (X )))

so that (v1(x), . . . , vn f (x)) ∈ Enc((Ṽ1, . . . , Ṽn f )) prior to entering the loop.
In the following, let Ṽ l

k denote the value of Ṽk for the given X and R after the
lth reverse update, l = 1, . . . , n f − ni. Since orev

n f
is a reverse McCormick update, it

follows that (v1(x), . . . , vn f−1(x)) ∈ Enc(Ṽ1
1 , . . . , Ṽ1

n f−1). Finite induction yields that

(v1(x), . . . , vni(x)) ∈ Enc((Ṽn f−ni
1 , . . . , Ṽn f−ni

ni )) ≡ Enc(F rev
S (X ,R)). It thus follows that

x ∈ Enc(F rev
S (X ,R)) and (4.3) holds.

Lemma 4.5. Consider (S , πo) and assume that for each k = ni + 1, . . . , n f , the reverse McCormick
update of ok is coherently concave and inclusion monotonic on M∅Bk × M̄R. Then, F rev

S is
coherently concave and inclusion monotonic on DS × M̄Rno .

Proof. Compositions of coherently concave and inclusion monotonic functions are coher-
ently concave and inclusion monotonic [155, Lemma 2.4.15]. The result thus follows from
finite induction, analogous to the proof of Theorem 4.3.
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Chapter 4 Reverse propagation of McCormick relaxations

Theorem 4.4. Consider (S , πo) and assume that for each k = ni + 1, . . . , n f , the reverse Mc-
Cormick update of ok is coherently concave and inclusion monotonic. Then, F rev

S is a relaxation
function of frev

S on DS × M̄Rno .

Proof. Let r ∈ R̄no . First, consider x ∈ D so that fS (x) = r. It is clear that F rev
S is a

McCormick extension of frev
S for such ([x, x], [x, x]) since FS is a McCormick extension

of fS and orev
k (B,R) ⊂ B for all (B,R) ∈ M∅Bk × M̄R by definition. If x ∈ D such that

fS (x) 6= r then πo(Ṽ1, . . . , Ṽn f ) := πo(Ṽ1, . . . , Ṽn f ) ∩ ([r, r], [r, r]) results in (Ṽ1, . . . , Ṽn f ) =
∅. Any calculation involving empty McCormick objects again yields empty McCormick
objects so that F rev

S (([x, x], [x, x]), ([r, r], [r, r])) = ∅. Thus, F rev
S is a McCormick extension

of frev
S . The assertion follows from Lemma 4.5 in conjunction with Theorem 3.8.

4.2.1 Reverse McCormick updates of binary operations

Lemma 4.6. Consider (+, R2, R) and its relaxation function (+, MR2, MR). The function
(+rev, MR2

∅ × M̄R, MR2
∅) defined for all X ,Y ∈MR∅ and R ∈ M̄R by

+rev((X ,Y),R) = (R−Y ,R−X ) ∩ (X ,Y)

is a reverse McCormick update of (+, R2, R).

Proof. Let X ,Y ∈ MR∅, R ∈ M̄R. If Enc(+(X ,Y) ∩ R) = ∅, then 6 ∃(x, y, r) ∈
Enc((X ,Y ,R)) : r − y = x. Thus, r − y 6∈ Enc(X ) for all (y, r) ∈ Enc((Y ,R)) so that
Enc(R − Y) ∩ Enc(X ) = ∅. Similarly, Enc(R − X ) ∩ Enc(Y) = ∅ so that (4.3) holds
trivially.

Otherwise, pick (x, y) ∈ Enc(X )× Enc(Y) so that x + y ∈ Enc(R). Since
ˇ
φ ≤ x + y ≤ φ̂

and (x, y) ∈ ([
ˇ
x, x̂], [

ˇ
y, ŷ]), it follows that x ≥

ˇ
φ− y ≥

ˇ
φ− ŷ and x ≤ φ̂− y ≤ φ̂−

ˇ
y and

that y ≥
ˇ
φ − x ≥

ˇ
φ − x̂ and y ≤ φ̂ − x ≤ φ̂ −

ˇ
x so that (x, y) ∈ Enc(+rev((X ,Y),R)).

Thus, (4.3) holds.

Definition 4.5. Define an extension of the Gauss-Seidel operator to MR, denoted as G : MR∅×
M̄R×MR∅ →MR∅, for all X ,Y ∈MR∅ andR ∈ M̄R by (G (X ,R,Y))B = Γ(XB, RB, YB)
and

(G (X ,R,Y))C =


(R′ × 1

X ′ )
C ∩ (Y′)C if 0 /∈ XB,

Γ(XB, RB, YB) ∩ (Y′)C if 0 ∈ XB, 0 /∈ RB,
(Y′)C otherwise,

where X ′ = (XB, XB ∩ XC), Y ′ = (YB, YB ∩YC) and R′ = (RB, RB ∩ RC).

Lemma 4.7. Suppose X ,Y ∈MR∅, R ∈ M̄R. Then, G (X ,R,Y) ⊂ B and

Enc(G (X ,R,Y)) ⊃ {y ∈ Enc(Y) : ∃x ∈ Enc(X ), r ∈ Enc(R) : xy = r}. (4.4)

Proof. Γ(XB, RB, BB) ⊂ BB follows from [127, 4.3.2] and it is also clear that (G (X ,R,Y))C ⊂
(Y′)C, hence G (X ,R,Y) ⊂ Y ′ ⊂ Y . Proposition 4.1 already established that

Γ(XB, RB, YB) = hull{y ∈ BB : ∃a ∈ XB, r ∈ RB : xy = r}.
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4.2 Reverse McCormick propagation

Next, note that

hull{y ∈ YB : ∃x ∈ XB, r ∈ RB : xy = r} ⊃
{y ∈ Enc(Y) : ∃x ∈ Enc(X ), r ∈ Enc(R) : xy = r}

since Enc(X ) ⊂ XB, Enc(Y) ⊂ YB, and Enc(R) ⊂ RB. Therefore, (4.4) holds for the
second and third case. Establishing (G (X ,R,Y))C ⊃ hull{y ∈ Enc(Y) : ∃x ∈ Enc(X ), r ∈
Enc(R) : xy = r} is sufficient to show that (4.4) holds in the first case.

Suppose that 0 /∈ XB. Consider y ∈ YC such that ∃x ∈ (X′)C, r ∈ (R′)C with xy = r,
noting that x 6= 0 by assumption. If such y does not exist then {y ∈ Enc(Y) : ∃x ∈
Enc(X ), r ∈ Enc(R) : xy = r} = ∅ and (4.4) holds trivially. If such y exists, then y = r× 1

x .
Also, 1

X ′ exists and 1
x ∈ Enc( 1

X ′ ). Since r × 1
x ∈ (R′ × 1

X ′ )
C, (G (X ,R,Y))C ⊃ {y ∈

Enc(Y) : ∃x ∈ Enc(X ), r ∈ Enc(R) : xy = r}.

Lemma 4.8. Consider (×, R2, R) and its relaxation function (×, MR2, MR). The function
(×rev, MR2

∅ × M̄R, MR2
∅) defined for all X ,Y ∈MR∅ and R ∈ M̄R by

×rev((X ,Y),R) = (G (Y ,R,X ), G (G (Y ,R,X ),R,Y))

is a reverse McCormick update of (×, R2, R).

Proof. Let X ,Y ∈MR∅, R ∈ M̄R. If ×(X ,Y) ∩R = ∅, there does not exist x ∈ Enc(X ),
y ∈ Enc(Y) so that xy ∈ Enc(R). Thus, (4.3) holds trivially.

Otherwise, pick (x, y) ∈ Enc(X ) × Enc(Y) so that xy ∈ Enc(R). By Lemma 4.7,
Enc(G (Y ,R,X )) ⊃ {x̃ ∈ Enc(X ) : ∃ỹ ∈ Enc(Y), z ∈ Enc(R) : x̃ỹ = z}, and hence
x ∈ Enc(G (Y ,R,X )). Likewise, {ỹ ∈ Enc(Y) : ∃x̃ ∈ Enc(G (Y ,R,X )), z ∈ Enc(R) : x̃ỹ =
z} ⊂ Enc(G (G (Y ,R,X ),R,Y)), hence y ∈ Enc(G (G (Y ,R,X ),R,Y)). Thus, (x, y) ∈
Enc(×rev((X ,Y),R)) and (4.3) holds.

Note that ×rev((X ,Y),R) = (G (G (X ,R,Y),R,X ), G (X ,R,Y)) is an alternative re-
verse McCormick update of (×, R2, R).

4.2.2 Reverse McCormick updates of univariate functions

Lemma 4.9. Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L. Furthermore,
assume that (u−1, u(B), R) ∈ L where u(B) refers to the image of the real-valued function u. The
function (urev, M∅B× M̄R, MR∅) defined for all X ∈M∅B and R ∈ M̄R by

urev(X ,R) = u−1(T ) ∩ X

where T = (RB ∩ u(XB), Enc(R∩ u(X ))) is a reverse McCormick update of (u, B, R).

Proof. Let X ∈M∅B. Suppose that Enc(T ) = ∅. Since (u, M∅B, MR) is a relaxation func-
tion, there does not exist an x ∈ Enc(X ) so that u(x) ∈ Enc(R). Otherwise, since (u, B, R)
is continuous and injective, it is invertible on u(B) and u−1 is continuous [145, Thm. 4.17].
Since (u−1, u(B), R) ∈ L, u(x) ∈ Enc(T ) implies x = u−1(u(x)) ∈ Enc(u−1(T )).
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Chapter 4 Reverse propagation of McCormick relaxations

Remark 4.2. Lemma 4.9 can be used to define the reverse McCormick update of −(·), (·)n

for odd n ∈ N, exp, log,
√
·, etc. It is also applicable to 1

(·) if B is restricted to either the
negative or positive reals.

Lemma 4.10. Let n ∈ N be even. Consider (u, R, R) ∈ L where u(x) = xn and assume that
( n
√
·, [0,+∞), R) ∈ L. The function (urev, MR∅ × M̄R, MR∅) defined for all X ∈ MR∅ and

R ∈ M̄R by

urev(X ,R) =


∅ if RB ∩ u(XB) = ∅,

n
√
T ∩ X if x ≥ 0,

− n
√
T ∩ X if x ≤ 0,(

urev(XB, TB),
[
− n
√

t̂, n
√

t̂
]
∩ urev(XB, TB)

)
∩ X otherwise,

where T = (RB ∩ u(XB) ∩ [0,+∞), Enc(R) ∩ Enc(u(X )) ∩ [0,+∞)) is a reverse McCormick
update of (u, R, R).

Proof. Let X ∈ MR∅. Suppose that RB ∩ u(XB) = ∅. Since (u, IR∅, IR) is an inclusion
function, there does not exist an x ∈ XB so that u(x) ∈ RB.

In the following, assume that RB ∩ u(XB) 6= ∅. Note that intersecting R with the
non-negative half space only ensures that no domain violation occurs. Let x̃ ∈ Enc(X )
so that u(x̃) ∈ Enc(R)}. If x ≥ 0 then x̃ ≥ 0. By definition of the relaxation function
of n
√
·, it follows that {x ∈ R : x ≥ 0 ∧ u(x) ∈ Enc(R)} ⊂ Enc( n

√
T ). Similarly, if x ≤ 0

then x̃ ≤ 0. Since u(−x̃) = u(x̃) ≥ 0 and u(−x̃) ∈ Enc(R), u(−x̃) ∈ Enc(T ) so that
x̃ = −(−x̃) = − n

√
u(−x̃) ∈ Enc(− n

√
T ). Hence, {x ∈ R : x ≤ 0 ∧ u(x) ∈ Enc(R)} ⊂

Enc(− n
√
T ). Otherwise, if 0 6∈ XB, it is easy to see that

{x ∈ R : u(x) ∈ Enc(R)} = {x ∈ R : ∃y ∈ Enc(R), x = − n
√

y ∨ x = n
√

y} ⊂
[
− n
√

t̂,
n
√

t̂
]

.

Intersecting with the reverse interval update does not discard any x̃ for which u(x̃) ∈
Enc(R) holds.

Note that a similar construction is possible to find the reverse McCormick update of the
absolute value function.

4.2.3 Inclusion monotonicity of the reverse McCormick updates

Next, it will be shown that reverse McCormick updates are inclusion monotonic while the
next subsection focuses on establishing coherent concavity. Note that [155, Lemma 2.4.15]
will be referenced multiple times hereafter to establish inclusion monotonicity of a finite
composition of inclusion monotonic functions. Though coherent concavity was also
assumed in that result, it is not necessary in order to establish inclusion monotonicity of a
finite composition of inclusion monotonic functions.

First, note that the intersection update is inclusion monotonic.
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4.2 Reverse McCormick propagation

Lemma 4.11. The mapping ∩ : M̄R × M̄R → M̄R defined by ∩(X ,Y) = X ∩ Y for all
X ,Y ∈ M̄R is inclusion monotonic on M̄R× M̄R.

Proof. Let X1,X2,Y1,Y2 ∈ M̄R. Then, X1 ⊂ X2 and Y1 ⊂ Y2 imply X1 ∩Y1 ⊂ X2 ∩Y2.

Next, the binary operations are considered.

Lemma 4.12. (+rev, MR2
∅ × M̄R, MR∅) is inclusion monotonic on MR2

∅ × M̄R.

Proof. This follows immediately since the negative univariate function [155, Theorem 2.4.29

together with Section 2.8], addition [155, Theorem 2.4.20], the intersection operator
(Lemma 4.11) as well as finite composition of inclusion monotonic mappings [155, cf.
Lemma 2.4.15] are inclusion monotonic.

It is helpful to study the extended Gauss-Seidel operator prior to looking at the reverse
update of multiplication.

Lemma 4.13. G is inclusion monotonic on MR∅ × M̄R×MR∅.

Proof. It was already shown that multiplication [155, Theorem 2.4.23] and the reciprocal
function [155, Theorem 2.4.29 together with Section 2.8] as well as finite composition [155,
Lemma 2.4.15] are inclusion monotonic. Also note that Γ is inclusion monotonic [127, 4.3.2].
Let (X1,R1,Y1), (X2,R2,Y2) ∈ MR∅ × M̄R×MR∅ so that (X1,R1,Y1) ⊂ (X2,R2,Y2).
If 0 6∈ XB

2 then (R′1 × 1
X ′1
)C ∩ (Y′1)

C ⊂ (R′2 × 1
X ′2
)C ∩ (Y′2)

C. Otherwise, if 0 6∈ XB
1 then

(R′1× 1
X ′1
)C ∩ (Y′1)C ⊂ Γ(XB

1 , RB
1 , YB

1 )∩ (Y′1)C ⊂ Γ(XB
2 , RB

2 , YB
2 )∩ (Y′2)C. Otherwise, if 0 ∈ XB

1

and 0 6∈ RB
2 then Γ(XB

1 , RB
1 , YB

1 ) ∩ (Y′1)
C ⊂ Γ(XB

2 , RB
2 , YB

2 ) ∩ (Y′2)
C. Otherwise, if 0 ∈ XB

1 and
0 ∈ RB

2 then Γ(XB
1 , RB

1 , YB
1 ) ∩ (Y′1)

C ⊂ (Y′1)
C ⊂ (Y′2)

C Thus, G is inclusion monotonic.

Lemma 4.14. (×rev, MR2
∅ × M̄R, MR∅) is inclusion monotonic on MR∅ ×MR∅ × M̄R.

Proof. Since G and finite composition [155, Lemma 2.4.15] are inclusion monotonic, the
result is immediate.

Next, the reverse updates of univariate functions are considered.

Lemma 4.15. Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L. Assume
that (u−1, u(B), R) ∈ L. Then, urev as defined in Lemma 4.9 is inclusion monotonic on M∅B×
M̄R.

Proof. Since (u−1, u(B), R) ∈ L, it follows that u−1 is inclusion monotonic [155, Theo-
rem 2.4.29].

Lemma 4.16. Let n ∈ N be even. Consider (u, R, R) ∈ L where u(x) = xn. Assume that
( n
√
·, [0,+∞), R) ∈ L. Suppose that the convex and concave envelopes of n

√
· are used in calculating

relaxations. Then, urev as defined in Lemma 4.10 is inclusion monotonic on MR∅ × M̄R.
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Proof. Note that the relaxation function of n
√
· and of the negative operator, the intersection

operator and finite composition is inclusion monotonic. Note that T is inclusion monotonic
by construction and so is urev(XB, TB). Let (X1,R1), (X2,R2) ∈ M∅B × M̄R so that
(X1,R1) ⊂ (X2,R2). If RB

1 ∩ u(XB
1 ) = ∅ or if x2 ≥ 0 or x2 ≤ 0 then urev(X1,R1) ⊂

urev(X2,R2). Otherwise, suppose x1 ≥ 0. Then n
√
T1 ∩ X1 ⊂ (urev(XB

1 , TB
1 ), [−

n
√

t̂1, n
√

t̂1] ∩
urev(XB

1 , TB
1 ))∩X1 ⊂ (urev(XB

2 , TB
2 ), [−

n
√

t̂2, n
√

t̂2]∩ urev(XB
2 , TB

2 ))∩X2. A similar argument
applies when x1 ≤ 0. In any other case, inclusion monotonicity follows directly from
the properties referenced above and the monotonicity of n

√
·, i.e., t̂1 ≤ t̂2 implies that

[− n
√

t̂1, n
√

t̂1] ⊂ [− n
√

t̂2, n
√

t̂2].

4.2.4 Coherent concavity of the reverse McCormick updates

Next, it will be shown that reverse McCormick updates are coherently concave. Note
that if either Enc(F (X1)) = ∅ or Enc(F (X2)) = ∅, then the subset condition for coherent
concavity holds trivially. Thus, in the proofs below, this case is never considered explicitly.

First, note that the intersection update is coherently concave.

Lemma 4.17. The mapping ∩ : M̄R × M̄R → M̄R defined by ∩(X ,Y) = X ∩ Y for all
X ,Y ∈ M̄R is coherently concave on M̄R× M̄R.

Proof. Suppose X1,X2 ∈ M̄R and Y1,Y2 ∈ M̄R are coherent. Let λ ∈ [0, 1]. Since XB
1 = XB

2
and YB

1 = YB
2 , it follows that XB

1 ∩ YB
1 = XB

2 ∩ YB
2 = (λXB

1 + (1− λ)XB
2 ) ∩ (λYB

1 + (1−
λ)YB

2 ). Thus, ∩(X1,Y1) and ∩(X2,Y2) are coherent.
We will show that ∩(Conv(λ, (X1,Y1), (X2,Y2))) ⊃ Conv(λ,∩(X1,Y1),∩(X2,Y2)). Let

z1 ∈ XC
1 ∩ YC

1 and z2 ∈ XC
2 ∩ YC

2 . Denote z = λz1 + (1− λ)z2. By construction, z1 ∈ XC
1 ,

z1 ∈ YC
1 and z2 ∈ XC

2 , z2 ∈ YC
2 so that z ∈ λXC

1 + (1− λ)XC
2 and z ∈ λYC

1 + (1− λ)YC
2 .

Thus, z ∈ (λXC
1 + (1− λ)XC

2 ) ∩ (λYC
1 + (1− λ)YC

2 ) so that λ(XC
1 ∩ YC

1 ) + (1− λ)(XC
2 ∩

YC
2 ) ⊂ ((λXC

1 + (1− λ)XC
2 ) ∩ (λYC

1 + (1− λ)YC
2 )).

In particular, note that the proof indicates that ∩(X1,Y1) 6= ∅ and ∩(X2,Y2) 6= ∅ imply
that ∩(Conv(λ, (X1,Y1), (X2,Y2))) 6= ∅.

Next, the binary operations are considered.

Lemma 4.18. (+rev, MR2
∅ × M̄R, MR∅) is coherently concave on MR2

∅ × M̄R.

Proof. Note that negative univariate function [155, Theorems 2.4.29 and 2.4.30 together
with Section 2.8], addition [155, Theorem 2.4.20] and the intersection operator (Lem-
mas 4.11 and 4.17) are inclusion monotonic and coherently concave, (+rev, IR2

∅ × ĪR, IR∅)
is inclusion monotonic and finite composition [155, Lemma 2.4.15] is coherently concave.
Thus, the result follows.

It is helpful to study the extended Gauss-Seidel operator prior to looking at the reverse
update of multiplication.

Lemma 4.19. G is coherently concave on MR∅ × M̄R×MR∅.
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4.2 Reverse McCormick propagation

Proof. Let X1,X2 ∈MR∅, R1,R2 ∈ M̄R and Y1,Y2 ∈MR∅ be coherent. Since XB
1 = XB

2 ,
YB

1 = YB
2 and RB

1 = RB
2 , it follows that Γ(XB

1 , RB
1 , YB

1 ) = Γ(XB
2 , RB

2 , YB
2 ) so that G (X1,R1,Y1)

and G (X2,R2,Y2) are coherent.
Suppose 0 6∈ XB

1 = XB
2 . It was already shown that multiplication [155, Theorems 2.4.23

and 2.4.24] and the reciprocal function [155, Theorems 2.4.29 and 2.4.30 together with Sec-
tion 2.8] are inclusion monotonic and coherently concave and finite compositions of inclu-
sion monotonic, coherently concave functions are coherently concave [155, Lemma 2.4.15].
Also, Lemmas 4.11 and 4.17 show that the intersection operation is coherently concave and
inclusion monotonic. Thus, G is coherently concave in this case.

Next, suppose 0 ∈ XB
1 and r1 = r2 > 0 or r1 = r2 < 0. Pick λ ∈ [0, 1] and let z1 ∈

Γ(XB
1 , RB

1 , YB
1 ) ∩YC

1 , z2 ∈ Γ(XB
2 , RB

2 , YB
2 ) ∩YC

2 . Consider z = λz1 + (1− λ)z2. Since z1 ∈ YC
1

and z2 ∈ YC
2 , z ∈ λYC

1 + (1− λ)YC
2 . Note that z ∈ Γ(XB

1 , RB
1 , YB

1 ) = Γ(XB
2 , RB

2 , YB
2 ). Thus,

z ∈ λ(Γ(XB
1 , RB

1 , YB
1 ) ∩ YC

1 ) + (1− λ)(Γ(XB
2 , RB

2 , YB
2 ) ∩ YC

2 ) and G is coherently concave in
this case.

In the last case, coherent concavity is immediate.

Lemma 4.20. (×rev, MR2
∅ × M̄R, MR∅) is coherently concave on MR∅ ×MR∅ × M̄R.

Proof. Since G is inclusion monotonic and coherently concave and finite compositions of in-
clusion monotonic, coherently concave functions are coherently concave [155, Lemma 2.4.15],
the result is immediate.

Next, the reverse updates of univariate functions are considered.

Lemma 4.21. Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L. Assume
that (u−1, u(B), R) ∈ L. Then, urev as defined in Lemma 4.9 is coherently concave on M∅B×
M̄R.

Proof. Let X1,X2 ∈MR∅ and R1,R2 ∈ M̄R be coherent, i.e., XB
1 = XB

2 and RB
1 = RB

2 . Note
that urev(X1,R1) and urev(X2,R2) are coherent. Since (u−1, u(B), R) ∈ L, it follows that
u−1 is coherently concave [155, Theorem 2.4.30].

Lemma 4.22. Let n ∈ N be even. Consider (u, R, R) ∈ L where u(x) = xn. Assume that
( n
√
·, [0,+∞), R) ∈ L. Then, urev as defined in Lemma 4.10 is coherently concave on MR∅× M̄R.

Proof. Let X1,X2 ∈MR∅ and R1,R2 ∈ M̄R be coherent, i.e., XB
1 = XB

2 and RB
1 = RB

2 . Note
that urev(X1,R1) and urev(X2,R2) are coherent.

By assumption, the relaxation function of n
√
· is coherently concave. Likewise, − n

√
· is

coherently concave which follows from coherent concavity of the negative operator and
the composition theorem [155, Lemma 2.4.15]. It follows that n

√
· and − n

√
· are relaxation

functions. As the intersection operator is coherently concave (Lemma 4.17), coherent
concavity for the cases x ≥ 0 and x ≤ 0 follows. Otherwise, we must consider two
potential roots. Define (ũ−1, [0,+∞), P(R)) for each x ∈ [0,+∞) by ũ−1(x) = {− n

√
x, n
√

x}
and note that u(y) = x for each y ∈ ũ−1(x) and x ∈ ũ−1(u(x)). It is easy to see that − n

√
·

and n
√
· are the convex and concave envelopes of ũ−1 so that we can use the construction

of the relaxation function of ũ−1 in Eq. (3.2). Furthermore, tmin(TB) = tmax(TB) = t and
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Chapter 4 Reverse propagation of McCormick relaxations

t ≥ t̂ in this case so that mid(
ˇ
t, t̂, tmin(TB)) = mid(

ˇ
t, t̂, tmax(TB)) = t̂. This is equivalent

to the relaxation we obtain by using Equation (3.2). It has already been established that
Equation (3.2) provides for a coherently concave relaxation function [155, Theorem 2.4.30]
so that, together with Lemma 4.17, coherent concavity of the last case follows.

4.3 Using reverse McCormick propagation in CSPs and in global
optimization

Consider a CSP with variables y = (y1, . . . , yn), domains D ∈ IRn and constraints

g(y) ≤ 0, (4.5)
h(y) = 0, (4.6)

where g : D → Rng and h : D → Rnh are L-factorable functions.
Suppose that the variables y ∈ D can be partitioned into independent and dependent

variables, p ∈ P ∈ IRn−m and z ∈ X ∈ IRm, respectively, where P× X = D. Consider
the set-valued map x : P → P(X) defined by: p 7→ {ξ ∈ X : g(ξ, p) ≤ 0, h(ξ, p) = 0}.
In words, this mapping returns for each p ∈ P all points in X that are feasible in the
constraints (4.5) and (4.6) and thus are solutions of the CSP.

Remark 4.3. It is not assumed that m = nh. The proposed method will work for any
choice of m. In particular note that is often not possible to find a closed form for x nor is
nonempty x(p) or x(p) a singleton immediate in many cases.

In this section, we will first discuss how reverse McCormick propagation can be applied
to utilize equality and inequality constraints. Next, we will compare different full-space and
reduced-space relaxations of nonlinear programs and we will conclude with a discussion
on how to partition the variables into independent and dependent ones.

4.3.1 Solving CSPs with equality and inequality constraints

For easier notation, define c : D → Rng+nh with ci(y) = gi(y) for i = 1, . . . , ng and
ci+ng(y) = hi(y) for i = 1, . . . , nh and introduceN ∈ M̄Rng+nh withNi = ((−∞, 0], (−∞, 0]),
i = 1, . . . , ng and Ni+ng = ([0, 0], [0, 0]), i = 1, . . . , nh. Let Y0 : P → MRn where
Y0

i = (Xi, [xi, xi]) for i = 1, . . . , m and Y0
i+m = (Pi, [pi, pi]) for i = 1, . . . , n−m.

Y0 can be interpreted as an a priori enclosure of the solution set of the CSP when
yi+m = pi, i = 1, . . . , n−m. Using the idea of constraint propagation on the DAG of c,
several avenues to tighten Y0 exist. First, it is possible to discard parts of D for which it
can be guaranteed that no y exists that satisfies Equations (4.5) and (4.6). Most easily, this
can be achieved by reverse interval propagation [174], which considers the bounds only.
Second, reverse McCormick propagation provides a means to improve the original bounds
and relaxations to find new bounds and relaxations that are at least as tight as the original
relaxations and possibly nonconstant.
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4.3 Using reverse McCormick propagation in CSPs and in global optimization

Let (S , πo) be a L-computational sequence corresponding to c. Recall the definition of
crev
S , cf. Equation (4.2), and note that for each p ∈ P and ξ ∈ x(p) there exists a n ∈ Enc(N )

so that crev
S ((ξ, p), n) = (ξ, p). Consider the reverse McCormick propagation of c:

Crev
S (((X, X), (P, [p, p])),N ) ≡ ((X̃, [

ˇ
x(p), x̂(p)]), (P̃, [

ˇ
p(p), p̂(p)])). (4.7)

Note that Crev
S is a relaxation function of crev

S by Theorem 4.4. As the following theorem
shows, one interpretation of Equation 4.7 is that it defines

ˇ
x, x̂ : P→ Rm, which are convex

and concave relaxations of x on P, respectively, (and, less interestingly,
ˇ
p, p̂ : P→ Rn−m ,

which are convex and concave relaxations of the identity function p on P).

Theorem 4.5. Consider Crev
S , a relaxation function of crev

S on (X× P)× R̄ng+nh . Let
ˇ
x, x̂ : P→

Rm be as defined by Equation 4.7. Then,
ˇ
x, x̂ are convex and concave relaxations of x on P,

respectively.

Proof. Let x ∈ X, p ∈ P and φ ∈ Enc(N ). Note that crev
S ((x, p), φ) = (x, p) if cS (x, p) = φ.

Since Crev
S is a relaxation function of crev

S , it follows for such (x, p) that

Enc(Crev
S (((X, X), (P, [p, p])),N )) ⊃ Enc(Crev

S (((X, [x, x]), (P, [p, p])),N )) ⊃ ([x, x], [p, p]).

In particular,
ˇ
x(p) ≤ inf{x(p)} ≤ sup{x(p)} ≤ x̂(p).

Pick p1, p2 ∈ P and λ ∈ (0, 1). Consider Y1 = ((X, X), (P, [p1, p1])) ×N and Y2 =
((X, X), (P, [p2, p2]))×N . Since Crev

S is coherently concave on (X× P)× R̄ng+nh , it follows
that

Crev
S (Conv(λ,Y1,Y2)) ⊃ Conv(λ, Crev

S (Y1), Crev
S (Y2)),

which implies that

ˇ
x(λp1 + (1− λ)p2) ≤ λ

ˇ
x(p1) + (1− λ)

ˇ
x(p2)

x̂(λp1 + (1− λ)p2) ≥ λx̂(p1) + (1− λ)x̂(p2).

Thus,
ˇ
x, x̂ are convex and concave relaxations of x on P, respectively.

In other words, given p ∈ P and ξ ∈ x(p), it holds that ξ ∈ [
ˇ
x(p), x̂(p)]. Also note that

a particular possible outcome of the reverse McCormick propagation is

Crev
S (((X, X), (P, [p, p])),N ) = ((X̃, ∅), (P̃, ∅))),

in which case x(p) = ∅.
The sequence of the calculations for the reverse update Crev

S is outlined in Figure 4.2.
In contrast to the evaluation of natural McCormick extensions, the forward evaluation of
the relaxation functions in Step (1) is initialized differently. The results of this evaluation
are interval bounds on g(X, P) and h(X, P) as well as a particular kind of relaxations
of g and h on P, here denoted by

ˇ
g(X, p), etc. From the properties of the relaxation

function it follows that
ˇ
g(X, ·) is convex on P and that

ˇ
gi(X, p) ≤ gi(x, p), ∀(x, p) ∈ X× P

and i = 1, . . . , ng. Similarly, ĝ(X, p) denotes an analogue concave relaxation of g. In
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((X, X), (P, [p, p]))

↓ 1

(G(X, P), [
ˇ
g(X, p), ĝ(X, p)])

(H(X, P), [
ˇ
h(X, p), ĥ(X, p)])

}
(

4
↙
)

2−→

((X̃, [
ˇ
x(p), x̂(p)]), (P̃, [

ˇ
p(p), p̂(p)]))

or ((X̃, ∅), (P̃, ∅))

↑ 3
(G(X, P), [

ˇ
g(X, p), ĝ(X, p)])

∩ ((−∞, 0], (−∞, 0])
(H(X, P), [

ˇ
h(X, p), ĥ(X, p)])

∩ ([0, 0], [0, 0])

Figure 4.2: Principle of forward-reverse McCormick update to construct relaxations of
the implicit set-valued mapping x(·): forward evaluation of relaxation func-
tions [156] to obtain a particular kind of relaxations of g and h on P (1), inter-
section with constraint information (2), and reverse propagation of additional
information (3). This procedure can be iterated on if desired (4).

Step (2), the constraint information is intersected with the relaxation functions of the
constraints. This tightens the relaxations without losing the convexity and concavity
properties. Step (3) propagates this information back to the variables so that we obtain
relaxations of x evaluated at p or the information that x(p) = ∅. It is also shown that the
procedure can be repeated in order to further improve the computed relaxations (Step (4)).

Let Y k+1 = Crev
S (Y k,N ), k = 0, 1, . . .. Note that the coherent concavity property of Y k is

guaranteed only for a fixed k so that it is important that the number of reverse updates is
equal for all p ∈ P.

Avoiding domain violations Definition 3.3 ensures that the natural function fS of a
computational sequence (S , πo), and, in particular, each participating univariate function,
is defined at each point of its natural domain DS and hence can be safely evaluated
there. However, the natural domain of a complicated computational sequence is not easily
obtained. If the natural function is evaluated at a point outside its domain, which is
possible due to difficulty in practically establishing the exact natural domain, the domain
of at least one univariate function will be violated. Definition 3.12 further restricts the
natural domains of the natural interval and McCormick extensions. Due to the inherent
conservatism of the interval and McCormick techniques, domain violations are also
potentially possible for X ∈ IDS or X ∈ MDS . In order to avoid either problem, the
following convention is used. Consider (u, B, R) ∈ L and suppose that B ∈ IR, which is
true for many common univariate functions. If x 6∈ B then set u(x) = NaN. For X ∈ IR or
X ∈ MR with X 6⊂ B or XB 6⊂ B, the evaluation of u(X) or u(X ) is undefined whereas
u(X ∩ B) or u(X ∩ (B, B)) is always defined if our convention u(∅) = ∅ is used. Given
any X ∈ IRni or X ∈ MRni , this approach continues to construct valid enclosures and
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4.3 Using reverse McCormick propagation in CSPs and in global optimization

relaxations of f̃ : Rni → R
no
∅ defined by

f̃(x) =
{

fS (x) if x ∈ DS ,
NaN otherwise.

Points outside the natural domain evaluate to NaN and, by our convention, NaN is an
element of any interval so that any interval-valued or McCormick-valued function satisfies
the inclusion property for such x. On the other hand, the natural interval or McCormick
extensions bound or relax the natural function at each point that is contained in the natural
domain by its usual properties. Overall, this convention allows us to circumvent difficulties
with domain violations without losing the inclusion or relaxation function properties. In
particular, it provides more directly useful information than throwing a flag indicating
that a domain violation occurred.

4.3.2 Constructing relaxations for reduced-space optimization problems

Consider

f ∗ = min
z∈X,p∈P

f (z, p) (P)

s.t. g(z, p) ≤ 0,
h(z, p) = 0

where f : X× P→ R, g : X× P→ Rng and h : X× P→ Rnh are L-factorable.
Define the set-valued mapping φ : P → P(R) for each p ∈ P by φ(p) = { f (z, p) : z ∈

X, g(z, p) ≤ 0, h(z, p) = 0}. It is obvious that f ∗ = minp∈P inf φ(p).
Let X̃ and P̃ denote the results of a reverse interval update as outlined above and

illustrated in Figure 4.2. First, note that X̃ × P̃ is a superset of the feasible region by
construction of the reverse interval update. Recall that the procedure described in the
previous section provides valid relaxations of the set-valued mapping x,

ˇ
x and x̂. These

can be used to calculate generalized relaxation functions of f . To this extent, let F denote
the natural McCormick extension of f and we will define

[
ˇ
φ(p), φ̂(p)] ≡ (F ((X̃, [

ˇ
x(p), x̂(p)]), (P̃, [p, p])))C.

Proposition 4.2. Consider

φ∗ = min
p∈P̃ ˇ

φ(p). (R1)

Then, (R1) is a convex program and f ∗ ≥ φ∗.

Proof. (R1) is a convex program since P̃ is a convex set and
ˇ
φ is convex on P̃. f ∗ ≥ φ∗

follows immediately from
ˇ
φ(p) ≤ inf φ(p) [155, Theorem 2.7.13].
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Proposition 4.3. Let
ˇ
f ,

ˇ
g and

ˇ
h denote the standard convex McCormick relaxations of f , g and h,

respectively, on X̃× P̃ and let ĥ denote the standard concave McCormick relaxation of h on X̃× P̃.
Consider

f1 = min
z∈X̃,p∈P̃ ˇ

f (z, p) (R2)

s.t.
ˇ
g(z, p) ≤ 0,

ˇ
h(z, p) ≤ 0 ≤ ĥ(z, p),

ˇ
x(p) ≤ z ≤ x̂(p),

Then, f ∗ ≥ f1 ≥ φ∗.

Proof. It is clear that (R2) is a relaxation of (P) so that f ∗ ≥ f1. Note that [
ˇ
f (z, p), f̂ (z, p)] =

(F ((X̃, [z, z]), (P̃, [p, p])))C holds for the standard McCormick relaxation of f on X̃ × P̃.
Inclusion monotonicity of the natural McCormick extensions implies that for any p ∈ P̃
and z ∈ [

ˇ
x(p), x̂(p)], F ((X̃, [z, z]), (P̃, [p, p])) ⊂ F ((X̃, [

ˇ
x(p), x̂(p)]), (P̃, [p, p])) and thus

ˇ
f (z, p) ≥

ˇ
φ(p) so that f1 ≥ φ∗.

Remark 4.4. (R1) and (R2) are valid relaxations of (P). It is known that McCormick
relaxations can be nonsmooth functions [121]. Thus, while (R2) is a tighter relaxation
of (P), it potentially requires the solution of a convex nonsmooth program with nonlinear
nonsmooth constraints. While methods to solve such programs have been proposed [e.g.,
82, 98, 115], the authors are not aware of robust commercial or freely available algorithms.
In order to solve (R2), constraints can be linearized using subgradients [121] to construct
an outer-approximation. In this case, the consequence of Proposition 4.3 is no longer
guaranteed to hold. On the other hand, convex nonsmooth programs with box-constraints
can be solved using the method provided in [113], so that a practical method is available
to solve (R1). Furthermore, (R1) requires the solution of a n−m-dimensional optimization
problem whereas (R2) is n-dimensional.

Remark 4.5. An alternative method to obtain a relaxation of (P) is the auxiliary variable
method which introduces additional variables and constraints for each factor that appears
in the DAG [159, 165–167]. Its relaxations, prior to linearization, are at least as tight
as McCormick relaxations [165, p. 127f] and are differentiable functions. However, the
dimension of the resulting nonlinear convex optimization problem is (much) larger. It
is typically linearized so that the more robust and more efficient linear programming
algorithms can be used. Again, no general comparison of the tightness of different
relaxations is possible once the linearization is performed. Also, this approach does not
include the constraint

ˇ
x(p) ≤ z ≤ x̂(p) in the relaxation so no direct comparison with (R1)

and (R2) in terms of tightness is possible.

Suppose it is known that UBD is a valid upper bound on the optimal objective function
value of (P), e.g., there exists a (z†, p†) feasible in (P) with f (z†, p†) = UBD. Similarly,
suppose that LBD is a valid lower bound on the optimal objective function value, e.g.,

76



4.3 Using reverse McCormick propagation in CSPs and in global optimization

there does not exists a (z†, p†) feasible in (P) with f (z†, p†) < LBD. Both cases are very
common in the context of a branch-and-bound algorithm. Consider

f ‡ = min
z∈X,p∈P

f (z, p)

s.t. g(z, p) ≤ 0,
h(z, p) = 0,
f (z, p)−UBD ≤ 0,
LBD− f (z, p) ≤ 0.

It is clear that f ‡ = f ∗ since (z†, p†) is feasible in (P). However, we can potentially
strengthen the relaxations

ˇ
x, x̂ and thus also φ∗ or f 1 by including f (z, p)−UBD ≤ 0 and

LBD− f (z, p) ≤ 0 in the reverse propagation outlined in Section 4.3.1.

4.3.3 Partitioning variables

A discussion on how to partition the variables into X and P concludes this section. We
begin by analyzing the two extreme cases: m = 0 and m = n.

First consider m = 0. Here, Y is initialized using a point, i.e., Y0
i = (Pi, [pi, pi])

for each i = 1, . . . , n, constructing the tightest relaxations of c(p) after the forward
evaluation. However, only two outcomes are possible after the reverse propagation, either
Y1

i = (P̃i, [pi, pi]) or Y1
i = (P̃i, ∅). While the latter case indicates that p violates at least one

of the constraints, it is not clear how this information can be exploited numerically. For
example, it is not clear how to obtain a hyperplane separating infeasible from potentially
feasible points.

Next consider m = n. In this case, Y is initialized using the interval bounds, i.e.,
Y0

i = (Pi, Pi) for each i = 1, . . . , n. This will yield looser relaxations of c after the forward
evaluation and since Y is constant, we will obtain Y1 = (P̃, P̆) after the reverse propagation
where P̆ ∈ I∅P is an interval. Actually, in this case the reverse McCormick propagation
yields the same information as the reverse interval propagation given that the exact image
for each univariate function is used as the interval extension and the envelopes are used
as the relaxations.

The advantages of the proposed method over interval methods are obtained for partitions
between the two extremes listed above. A partitioning with m = nh such that there exists a
unique implicit function x : P → X with h(x(p), p) = 0 for all p ∈ P is more favorable.
In our numerical experience, this partitioning gave results that were better compared to
interval reverse propagation. Interval Newton methods can be used to verify the existence
and uniqueness of x, see [127, Ch. 5]. Additional inequality constraints can be used to
reduce X and P further.
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4.4 Implementation

In this section, an implementation of the reverse interval and McCormick propagation in
C++ is presented. First, it is briefly discussed how the DAG of a factorable function can be
easily constructed. Next, it is shown how forward and reverse interval and McCormick
calculations can be performed on this DAG. Consider a factorable function f : Rn → Rm.
In this section, independent and dependent variables will refer to y and f(y), respectively.
The boost interval library is used for the interval calculations [120] and MC++ provides
the necessary routines for McCormick objects [40].

The first step is the parsing of the factorable function to construct the DAG. In C++ this
can be easily achieved using function and operator overloading. The DAG is stored as
an array. Each element of the array corresponds to one factor of the factorable function
including factors for the assignment of independent variables. Each element stores the
operation type as well as pointers to its parent element(s), an interval and a McCormick
object (as defined by MC++). Optionally, a constant parameter can be stored, which is
used to keep track of, for example, constant exponents or factors. While the first n array
elements correspond to the independent variables, pointers to the dependent variables
must be stored. Note that after the DAG has been constructed, all remaining operations
are performed on this DAG object.

Prior to a forward interval/McCormick pass, the interval/McCormick objects of the
independent variables are initialized. During the forward pass each factor is visited in
sequence and the factor’s interval/McCormick object is updated according to the operation
type using the pointers to parents’ values. After the forward pass, the interval/McCormick
objects of the dependent variables store the values, which could have been alternatively
calculated using traditional methods.

Prior to a reverse pass, the interval/McCormick objects of the dependent variables
are updated based on the information supplied by the constraints. Then, each factor is
visited in reverse order. A reverse interval/McCormick update is performed and the
parents’ interval/McCormick objects are updated accordingly. After the reverse pass, the
independent variables now store the updated interval/McCormick values. If during the
reverse pass one of the intervals or McCormick objects of a factor is set to the empty set
then the calculation can be aborted and the result of the reverse propagation is the empty
set.

Note that MC++ also provides functionality to calculate subgradients of the convex
and concave relaxations [121]. This functionality is essential when the relaxations are to
be used in convex optimization algorithms. The present implementation also provides
routines to update the subgradients during the reverse pass accordingly.

Additionally, the implementation allows the user to provide constraints on the domains
of intermediate factors. These can avoid domain violations as outlined at the end of
Section 4.3.1 and they are already taken into account during the forward interval or
McCormick pass.

Lastly, it is possible to generate code automatically, in any programming language,
that implements any combination of the discussed computations. Similar to source code
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transformation in automatic differentiation [70], the produced code can be executed to
efficiently evaluate

ˇ
x(·) and x̂(·), for example.

4.5 Case studies

In this section, we will present illustrative case studies that show how enclosures of the
solution sets can be obtained from the reverse McCormick propagation and that these
compare favorably to the enclosures computed with reverse interval propagation. In the
first case study, the constraints define a unique implicit function on P. It is taken from [164]
and the results are compared. The second case study compares the feasible region of the
relaxed program obtained using reverse McCormick propagation to the feasible region of
the standard McCormick relaxation. The third case study focuses on constraints defining a
non-unique implicit mapping. The fourth case study shows the effect of a reverse interval
propagation pre-processing step when there is no feasible z for some p. The fifth case
study shows that relaxations can be sensibly calculated even when there are no feasible z
for some p in the interior of P. The sixth case study demonstrates how information from
inequality constraints can be incorporated. The last case study illustrates how relaxations
of the objective function can be significantly improved by incorporating information from
the constraints.

We only consider univariate functions from the library L = {(·)l , l
√
·, log, exp}, l ∈

N. However, the method can be applied to any other univariate functions that satisfy
Assumptions 3.1 and 3.3.

4.5.1 Equality constraints

Example 4.1. Let X = [−0.8,−0.3] and P = [6, 9]. Consider h(z, p) = z2 + zp + 4 with
(z, p) ∈ X × P. Note that h(z, p) = 0 implicitly defines a set-valued mapping x : P →
P(X) : p 7→ {− p

2 +
√( p

2

)2 − 4} so that h(ξ, p) = 0 for all p ∈ P and ξ ∈ x(p). While
Figure 4.3(a) shows the result after one iteration of the reverse McCormick propagation,
Figure 4.3(b) depicts the effect of 10 reverse propagation iterations. In both figures the
relaxations are compared to those calculated using the method presented in [164]. Note
that the calculations for 60 different values of p take a total of 0.0021s, 0.0039s and 0.014s
in the case of one reverse propagation, ten reverse propagations and one iteration of the
parametric Gauss-Seidel method given in [164] with λ = 0.5, respectively. Thus, the new
method is faster and provides tighter relaxations.

Example 4.2. Let X = [−3, 5] and P = [−3, 4]. Consider h(z, p) = (
√

p + 4− 3)(log(p2 +
1)− z) with (z, p) ∈ X× P. Note that h(z, p) = 0 implicitly defines a set-valued mapping
x : P → P(X) : p 7→ {log(1 + p2)} so that h(ξ, p) = 0 for all p ∈ P and ξ ∈ x(p). The
results of a single reverse McCormick propagation are shown in Figure 4.4(a). Additionally,
we also show two different relaxations of the non-convex feasible space {(z, p) ∈ X× P :
h(z, p) = 0)} (shown in asterisks). A common way to relax constraints is the construction
of a convex outer-approximation of the feasible space by considering {(z, p) ∈ X × P :
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Figure 4.3: Result of reverse McCormick propagation for Example 4.1 showing the original
bounds (dashed-dotted lines), the improved bounds (gray box), the convex and
concave relaxations (solid red line, respectively) as well as results of the set-
valued mapping x(p) (asterisks). In (a) one iteration of the reverse McCormick
propagation was performed while in (b) the reverse propagation iterations was
repeated ten times. The dashed blue lines show convex and concave relaxations
calculated using one iteration of the more expensive method in [164].

ˇ
h(z, p) ≤ 0 ≤ ĥ(z, p)} where

ˇ
h, ĥ are standard McCormick relaxations of h on X× P. This

set can be traced by plotting the zero level sets of
ˇ
h, ĥ, i.e.,

ˇ
h(z, p) = 0 and ĥ(z, p) = 0.

An alternative, tighter outer-approximation can be found by computing
ˇ
h, ĥ on X̃× P̃ =

[0, 2.834]× [−3, 4] instead. In Figure 4.4(b), the same information is shown for smaller
original intervals, X = [−3, 3] and P = [−1, 1].

Example 4.3. Let X = [−10, 10] and P = [0, 3]. Consider h(z, p) = z2 − p with (z, p) ∈
X× P. Note that h(z, p) = 0 implicitly defines a set-valued mapping x : P→ P(X) : p 7→
{√p,−√p} so that h(ξ, p) = 0 for all p ∈ P and ξ ∈ x(p). The results of the reverse
McCormick propagation are shown in Figure 4.5. Here, no comparison with [164] is
possible due to non-uniqueness of x.

Example 4.4. Let X = [−10, 10] and P = [0, 3]. Consider h(z, p) = z4 − p2 + 1 with
(z, p) ∈ X× P. Note that h(z, p) = 0 implicitly defines a set-valued mapping x : [1, 3]→
P(X) : p 7→ { 4

√
p2 − 1,− 4

√
p2 − 1} so that h(ξ, p) = 0 for all p ∈ [1, 3] and ξ ∈ x(p).

While Figure 4.6(a) shows the result using the original bounds, Figure 4.6(b) depicts the
effect of using bounds obtained from reverse interval propagation. In the latter case, the
reverse interval propagation reduces both X and P to obtain X̃ and P̃. Then, the reverse
McCormick propagation is performed using the reduced intervals X̃ and P̃.

Example 4.5. Let X = [−10, 10] and P = [−3, 3]. Consider h(z, p) = z2 − (
√

p2 − p− 2)4

with (z, p) ∈ X × P. Note that h(z, p) = 0 implicitly defines a set-valued mapping
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(a) Relaxations for P = [−3, 4] and X = [−3, 5].
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(b) Relaxations for P = [−1, 1] and X = [−3, 3].

Figure 4.4: Result of reverse McCormick propagation for Example 4.2 showing the original
bounds (dashed-dotted lines), the improved bounds (gray box), the convex and
concave relaxations (solid red lines) as well as results of the set-valued mapping
x(p) (asterisks). Additionally, zero level sets of the McCormick relaxations of
h(z, p) constructed on X× P (short dashed green lines) as well as X̃× P̃ (dashed
blue lines) are shown except where they are outside the interval bounds. Here,
the results for different P× X are shown in (a) and (b).
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Figure 4.5: Result of reverse McCormick propagation for Example 4.3 showing the original
bounds (dashed-dotted lines), the improved bounds (gray box), the convex
and concave relaxations (solid red lines) as well as results of the set-valued
mapping x(p) (asterisks).
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Figure 4.6: Result of reverse McCormick propagation for Example 4.4 showing the original
bounds (dashed-dotted lines), the improved bounds (gray box), the convex
and concave relaxations (solid red lines) as well as results of the set-valued
mapping x(p) (asterisks). While in (a) the original bounds are used, in (b) the
result of the bounds obtained from reverse interval propagation is shown.

x : [−3, 0] ∩ [1, 3] → P(X) : p 7→ {(
√

p2 − p− 2)2,−(
√

p2 − p− 2)2} so that h(ξ, p) = 0
for all p ∈ [−3, 0] ∩ [1, 3] and ξ ∈ x(p). On the other hand, if p ∈ (0, 1) no feasible z exists
that satisfies h(z, p) = 0. The results of the reverse McCormick propagation are shown in
Figure 4.7. Here, the algorithm was supplied with the information that the argument of
the square root cannot be negative.

4.5.2 Inequality constraints

Example 4.6. Let X = [−10, 10] and P = [0, 3]. Consider h(z, p) = z2 − p and g(z, p) =
(p − 1)2 − z − 2.5 with (z, p) ∈ X × P. Note that h(z, p) = 0 and g(z, p) ≤ 0 im-
plicitly defines set-valued mappings x : [0, 2.03593] → P(X) : p 7→ {√p,−√p} and
x : (2.03593, 3] → P(X) : p 7→ {√p} so that h(ξ, p) = 0 for all p ∈ P and ξ ∈ x(p).
However, we are only interested in those (z, p) for which g(z, p) ≤ 0. The results of the
reverse McCormick propagation are shown in Figure 4.8.

4.5.3 Objective function

Example 4.7. Let Y = [−3, 3]× [−2, 2]2 and consider the optimization of the six-hump
camel back function [52]

min
y∈Y

f (y) =
(

4− 2.1y2
1 +

1
3

y4
1

)
y2

1 + y1y2 +
(
−4 + 4y2

2
)

y2
2

s.t. g(y) = y2
1 + (y2 − 0.5)2 − 0.5 ≤ 0
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Figure 4.7: Result of reverse McCormick propagation for Example 4.5 showing the original
bounds (dotted lines), the improved bounds (dashed lines), the convex and
concave relaxations (solid lines) as well as results of the set-valued mapping
x(p) (asterisks).
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Figure 4.8: Result of reverse McCormick propagation for Example 4.6 showing the original
bounds (dotted lines), the improved bounds (gray box), the convex and concave
relaxations (solid red lines) as well as results of the set-valued mapping x(p)
(asterisks).
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where an inequality constraint has been added. We are interested in constructing relax-
ations of f (y) which take the information from the constraint g(y) ≤ 0 into account. Here,
let y1 take the role of the independent and y2 the role of the dependent variable. The
reverse McCormick update will proceed as outlined in Section 4.3.1. Then, one last forward
evaluation will be performed to obtain improved relaxations of f . Figure 4.9 shows the
obtained relaxations. Clearly, the McCormick relaxations can be improved substantially by
incorporating the information from the constraint.

4.6 Conclusion

Reverse McCormick propagation, a new method to construct and improve McCormick
relaxations of implicitly defined set-valued mappings has been presented. It takes ad-
vantage of the directed acyclic graph representation of a factorable function, which has
been previously used for interval calculations [153, 174]. Bounds and relaxations of factors
can often be improved by using information about the permissible range of a factorable
function and propagating it backwards through the graph. In particular, this allows
the construction and improvement of relaxations of mappings that are only implicitly
defined. This is useful in the context of CSPs since it allows to construct convex relaxations
of non-convex solution sets defined by nonlinear equality constraints and non-convex
inequality constraints. Furthermore, McCormick relaxations of the objective function of an
NLP can be improved using information contained in the constraints. While Stuber et al.
[164] also put forward methods to construct relaxations of implicit functions, the method
presented here does not require existence nor uniqueness of the implicit function on all
or parts of the domain. Furthermore, it is less computationally intensive and does not
require a pre-processing step. It also provides a reduced-space relaxation for nonconvex
programs that can take constraints into account, but does not require convex optimizers
that can cope with general nonsmooth nonlinear constraints.
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Figure 4.9: Result of reverse McCormick propagation for Example 4.7. In (a) the original
bounds (dashed-dotted line), the improved bounds (gray box), the objective
function f (asterisks) and the convex relaxations (red line) are shown as well as
standard convex McCormick relaxations constructed on Y (green short dashed
line) and Ỹ (blue dashed line) in a section. In (b) f is shown as a mesh and
relaxations are shown as surfaces.
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Chapter 5

Second-order interval bounds for implicit
functions

Consider the problem of bounding the parameter dependent zeros of a function on a
given domain. In the context of global optimization, we are interested in this problem
for two reasons. First, it can be used as a means of domain reduction in the sense
of [24, 38, 149]. Second, and more importantly, when considering reduced-space problem
formulations [e.g., 56], it provides an initialization for the computation of composite
relaxations [156].

Branch-and-bound algorithms for deterministic global optimization [59, 88] require at
least quadratically convergent bounds to overcome the cluster problem [54, 178]. While
many relaxations for the original space formulation [5, 118, 166] possess this favorable
quadratic convergence order [34], this is not necessarily true for the reduced-space ap-
proach. When one deviates from the initialization used for standard McCormick relax-
ations [118], e.g., as indicated by the notion of generalized McCormick relaxations [156], it
is possible that this favorable property no longer holds.

The rules for generalized McCormick relaxations require that valid bounds and relax-
ations are provided for the arguments of a factorable function. Each argument can be
thought of as a linear function of all arguments, so that convex and concave relaxations
can coincide in this case—as they do in the case of standard McCormick relaxations [118].
Hence, these relaxations possess infinite convergence order in the pointwise sense im-
portant for theoretical convergence order considerations [34]. However, if relaxations of
implicit functions are to be calculated, e.g., as introduced in Chapter 4 or using the ideas
proposed in [162, 164], a different initialization strategy is used: the relaxations of the
arguments are initialized as the bounds, which, by definition, are also valid convex and
concave relaxations of the argument. As we will see below, many interval techniques
possess linear convergence order only, so the results in [34] imply that in this setting the
generalized McCormick relaxations will also have linear convergence order only.

If parametric interval methods for systems of equations can be constructed with a higher
convergence order, then this information can be used to initialize the generalized Mc-
Cormick calculations and, thus, to guarantee a higher convergence order of the constructed
convex and concave relaxations.

In the past, a variety of interval methods have been proposed for the non-parametric
version of bounding the zeros of a function, see [127, Chapter 5] for a review. For the
parametric case, Gay [66] proposed a method based on so-called majorizing equations of
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the continuous analogue of Newton’s method. Neumaier [126] and Rump [147] studied
the sensitivity analysis of systems of nonlinear equations with the goal to bound the error
rigorously, also see [127, Chapter 5.5]. Recently, Stuber [162, Chapter 3] extended the
non-parametric interval methods such as interval Newton and Krawczyk’s method to the
parametric case.

In this chapter, it is argued that the convergence order of the parametric Krawczyk’s
method for nonlinear equations is linear in the parameters only. Based on the sensitivities
of the nonlinear equations, a second-order convergent method is presented to bound
the zeros of a system of nonlinear functions. Also, an initialization strategy is provided
that computes initial bounds for the sensitivities, which can then be fed into a linear
Gauss-Seidel operator for refinement.

In Section 5.1, important definitions and relevant technical results are collected for
reference throughout the remainder of this chapter. In Section 5.2, the convergence of
Krawczyk’s method for parametric systems of nonlinear equations is studied and in
Section 5.3, it is shown how the sensivities can be used to obtain a second-order convergent
method. Case studies are reported in Section 5.4 and conclude the chapter.

5.1 Preliminaries

In this chapter, we will consider a L-computational sequence with nx + np inputs and nx
outputs in the sense of Section 3.1. Let D ⊂ Rnx+np be its natural domain and f : D → Rnx

its natural function.

Assumption 5.1. Assume that Dx ⊂ Rnx and Dp ⊂ Rnp are open and connected, that
Dx × Dp ⊂ D and that f is twice continuously differentiable on Dx × Dp.

Let Jf(y) denote the Jacobian matrix of f evaluated at y ∈ D. Often, we will explicitly
partition the arguments of f and write f(z, p) where z ∈ Dx and p ∈ Dp. Let Jxf(z, p)
denote the Jacobian matrix of f(·, p) evaluated at z ∈ Dx. Similarly, let Jpf(z, p) denote
the Jacobian matrix of f(z, ·) evaluated at p ∈ Dp.

We are interested in bounding the range of the mapping x : P ⊂ Dp → Rnx , which is
defined only implicitly by

P 3 p 7→ z ∈ X : f(z, p) = 0. (5.1)

Existence and uniqueness of such a function follows from the result below.

Theorem 5.1. Let E ⊂ Rnx+np be an open set and f : E → Rnx be a twice continuously
differentiable function so that f(z̃, p̃) = 0 for some (z̃, p̃) ∈ E. Assume that Jxf(z̃, p̃) is invertible.
Then, there exist open sets U ⊂ Rnx+np and W ⊂ Rnp , (z̃, p̃) ∈ U and p̃ ∈W, with the following
property: to every p ∈ W corresponds a unique z such that (z, p) ∈ U and f(z, p) = 0. If this
z is defined to be x(p) then x : W → Rnx is a twice continuously differentiable function with
x(p) = z and f(x(p), p) = 0 for all p ∈W.

Proof. Follows from [81, Theorem 4].
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5.1.1 Relevant definitions and results from interval analysis

For the purposes of this chapter, we extend Definitions 3.5 and 3.6 for interval vectors to
interval matrices.

Definition 5.1. We write A ∈ IRm×n to refer to a m× n matrix whose elements are intervals.
Define A, A, |A|, m(A) ∈ Rm×m for each i = 1, . . . , m and k = 1, . . . , n by [A]ik = aik,
[A]ik = aik, [|A|]ik = |Aik|, and [m(A)]ik = m(Aik); define w(A) = maxi,k{aik − aik}. When
A is a n× n interval matrix, we also define 〈A〉 ∈ Rn×n for each i, k = 1, . . . , n by

[〈A〉]ik =


0 if i = k and 0 ∈ Aik,
min{|aik|, |aik|} if i = k and 0 /∈ Aik,
−|Aik| otherwise.

For any matrix A ∈ IRn×m or A ∈ Rn×m we use the notation Aj and Aj to refer to the
jth column of A and A, respectively.

We will write ‖A‖ ≡ ‖A‖∞ for A ∈ Rn×n.

Definition 5.2. The l∞ norms are defined for X ∈ IRn and A ∈ IRn×n by ‖X‖ ≡ maxi{|Xi|}
and ‖A‖ ≡ maxi{∑k |Aik|}. Suppose u ∈ Rn with u > 0. We also define the scaled
maximum norm for X and A by ‖X‖u ≡ maxi{|Xi|/ui} and ‖A‖u ≡ maxi{∑k |Aik|uk/ui}.

If u = 1 the scaled maximum norm reduces to the standard l∞ norm.

Lemma 5.1. Let A ∈ Rn×n and X ∈ IRn. Then, w(AX) ≤ ‖A‖w(X).

Proof. This follows directly from w(AX) = maxi ∑j w(aijXj) = maxi ∑j |aij|w(Xj)
≤ maxi ∑j |aij|w(X) = ‖A‖w(X).

Lemma 5.2. [102, p. 191] Let A ∈ IRn×n and X ∈ IRn. If 0 ∈ X, then w(AX) ≤ 2‖A‖w(X).

Lemma 5.3. Let I denote the identity matrix in Rn×n, let A ∈ IRn×n and assume that m(A) is
invertible. Then ‖I−m(A)−1A‖ ≤ 1

2‖m(A)−1‖nw(A).

Proof. Set R = I−m(A)−1A. Let Y+, Y− ∈ Rn×n be element-wise non-negative matrices
so that at most one of corresponding elements is positive and m(A)−1 = Y+ − Y−. We
can write R = I− Y+A + Y−A and R = I− Y+A + Y−A. It follows that R = −R [cf. 105,
Lemma 9] since

R + R = I− Y+A + Y−A + I− Y+A + Y−A

= 2I− (Y+ − Y−)A− (Y+ − Y−)A

= 2I−m(A)−1(A + A)

= 2I−m(A)−12m(A) = 0.

This implies that ‖R− R‖ = ‖R‖+ ‖R‖ = 2‖R‖ = 2‖R‖ = 2‖R‖. Note that |m(A)−1| =
Y+ + Y−. Since R− R = (Y+ + Y−)(A−A) = |m(A)−1|(A−A) and ‖A−A‖ ≤ nw(A),
it follows that ‖R− R‖ ≤ ‖|m(A)−1|‖‖A−A‖ ≤ ‖m(A)−1‖nw(A) and the result follows.
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Lemma 5.4. Let A ∈ IRm×n. If 0 ∈ A then ‖A‖ ≤ nw(A).

Proof. ‖A‖ = maxi ∑k |Aik| ≤ maxi ∑k w(Aik) ≤ w(A)maxi ∑k 1 = nw(A).

Definition 5.3. Let A ∈ IRm×n. A is regular if every real matrix A ∈ A has rank n.
Suppose that A is a square matrix and that m(A) is regular then A is called strongly regular
if m(A)−1A is regular.

We will always tacitly assume that A strongly regular implies m(A) regular.

Definition 5.4. Let A ∈ IRn×n. If Aik ≤ 0 for all i 6= k and there exists some positive
u ∈ Rn such that Au > 0, then we call A an M-matrix. If 〈A〉 is an M-matrix, then A is
called an H-matrix.

See Section 3.6 and 3.7 in [127] for results that characterize M- and H-matrices. Here,
we shall only point out that any H-matrix is regular [127, 3.7.5].

Definition 5.5. The linear interval equation with coefficient matrix A ∈ IRm×n and right-
hand side B ∈ IRm is defined as the family of linear equations Ax = b for any A ∈ A and
b ∈ B. Its solution set1 is given by Σ(A, B) ≡ {x ∈ Rn : Ax = b for some A ∈ A and b ∈ B}.
If A is regular, define the hull of the solution set AHB = hull{Σ(A, B)} for any B ∈ IRn. If
A is additionally a n× n interval matrix, then define the hull inverse AH : IRn → IRn by
AHB = hull{A−1b : A ∈ A, b ∈ B} for any B ∈ IRn. The notation extends directly to the
case when B is a conformable interval matrix.

Definition 5.6. Let Γ : IR× IR× IR → IR for all A, B, X ∈ IR by Γ(A, B, X) = hull{x ∈
X : ∃a ∈ A, b ∈ B : ax = b}. Define the Gauss-Seidel operator Γ : IRn×n × IRn × IRn → IRn

for all A ∈ IRn×n and B, X ∈ IRn by Γ(A, B, X) = y where

yi = Γ

(
Aii, Bi −

i−1

∑
k=1

Aikyk −
n

∑
k=i+1

AikXk, Xi

)
, i = 1, . . . , k.

For a characterization of Γ : IR× IR× IR→ IR see Proposition 4.1.
Let Jxf : Dx ×Dp → IRnx×nx and Jpf : Dx ×Dp → IRnx×np denote inclusion functions of

Jxf and Jpf on Dx ×Dp, respectively.

Lemma 5.5. If Z ⊂ Rn is compact then IZ is compact.

Proof. Note that H2n = {(a, b) ∈ Rn ×Rn : a ≤ b} and IRn are a metric spaces [155,
p. 82]. Also, π : H2n 3 (a, b) 7→ [a, b] ∈ IRn is continuous since it is an isometry [155,
cf. Lemma 2.5.2]. Let ZH = {(a, b) ∈ H2n : [a, b] ∈ Z}, which is compact. Note that
π(ZH) = IZ. Since the image of a compact metric space under a continuous function is
compact [145, Theorem 4.14], the result follows.

1Note that the solution set of a linear interval equation is usually not an interval [127, p. 92] and often not
even a convex set.
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Lemma 5.6. Let X ∈ IRn and consider F : IX → IRm×m. If F is locally Lipschitz on IX and
m(F(X̃)) is invertible for any X̃ ∈ IX then there exists M′ ∈ Rm×m so that |[m(F(X̃))]−1| ≤ M′

for any X̃ ∈ IX.

Proof. m(F(·)) is continuous on IX since F is locally Lipschitz on IX, which implies
continuity, m(·) is continuous and the composition of continuous functions is continuous.
By assumption, [m(F(X̃))]−1 exists for any X̃ ∈ IX. Furthermore, the inverse operator
and the magnitude operator are continuous so that |[m(F(·))]−1| is continuous. Since X is
compact, IX is compact and |[m(F(·))]−1| is bounded on IX.

Definition 5.7. Suppose A ∈ Rn×n. The maximal magnitude of the eigenvalues of A
denoted by ρ(A) is called the spectral radius of A.

The reader is also reminded of results in Section 3.2.2 where centered forms and similar
inclusion functions are discussed. There, it is established that the centered form is a
second-order convergent inclusion function.

5.2 Convergence order of parametric interval Newton methods

Interval analysis provides several methods for the task of bounding the solution set of a
system of nonlinear equations. In their typical form, they are designed to enclose zeros
of functions or provide a guarantee that no zero exists on the considered interval [127,
cf. Chapter 5]. Parametric interval Newton methods are discussed in [162, Chapter 3]. As
an exemplar, we will look closer at the convergence order of Krawczyk’s methods; other
methods include the Hansen-Sengupta operator [73].

Definition 5.8. Let X ∈ IDx, P ∈ IDp, x ∈ X and Y(X, P) ∈ Rnx×nx . The parametric
Krawczyk operator K : Rnx × IRnx × IRnp → IRnx is defined as

K(x, X, P) = X ∩ (x− Y(X, P)F([x, x], P) + [I− Y(X, P)Jxf(X, P)] (X− x)) .

It is well known that the non-parametric Krawczyk operator (i.e., when P = [p, p]) has
quadratic convergence order.

Theorem 5.2. [cf. 123] Let X ∈ IDx. Assume that Jxf is non-singular in a neighborhood of the
solution, in particular m(Jxf(X̃)) is non-singular for any X̃ ∈ IX, that Jxf is locally Lipschitz
on IX and that Y(X̃) =

[
m(Jxf(X̃))

]−1
+ E(X̃) where ‖E(X̃)‖ ≤ Cw(X̃) with C ≥ 0 for any

X̃ ∈ IX. Then, the convergence of the non-parametric Krawczyk operator is quadratic, i.e., there
exists some q > 0 so that

w(K(z, X̃)) ≤ qw(X̃)2, ∀X̃ ∈ IX, z ∈ X̃.

Proof. Let X̃ ∈ IX and z ∈ X̃. Define R ≡ I− Y(X̃)Jxf(X̃) and note that w(K(z, X̃)) ≤
w(R(X̃ − z)) ≤ 2‖R‖w(X̃ − z) = 2‖R‖w(X̃) where the second inequality follows from
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Chapter 5 Second-order interval bounds for implicit functions

Lemma 5.2. Let L be the Lipschitz constant of Jxf so that w(Jxf(X̃)) ≤ Lw(X̃), cf. The-
orem 3.2. For shorter notation, set M =

[
m(Jxf(X̃))

]−1. Now, we have ‖R‖ ≤ ‖I −
MJxf(X̃)‖+ ‖E(X̃)Jxf(X̃)‖ ≤ 1

2‖M‖nxw(Jxf(X̃)) + ‖E(X̃)‖‖Jxf(X̃)‖ ≤ 1
2‖M‖nxLw(X̃) +

Cw(X̃)‖Jxf(X)‖ where the second inequality follows from Lemma 5.3. As |M| is bounded
on IX by some M′, see Lemma 5.6, q = nxL‖M′‖+ 2C‖Jxf(X)‖ is independent of z, X̃ and
it follows that w(K(z, X̃)) ≤ qw(X̃)2 for any X̃ ∈ IX and z ∈ X̃.

The result, and especially its proof, indicate that it will be impossible to establish a
quadratic convergence rate result for the parametric case in an analogue fashion. More
precisely, when P ∈ IDp is a non-degenerate interval, it is obvious that the interval hull
of x(P) ≡ {x ∈ Dx : ∃p ∈ P, f(x, p) = 0} is, in general, a non-degenerate interval as
well. Consequently, given a non-degenerate P, convergence to a degenerate interval is
impossible. This observation is formalized in the following theorem.

Theorem 5.3. Let X ∈ IDx and P ∈ IDp. Assume that Jxf is non-singular in a neighborhood of
the solution, in particular m(Jxf(X̃, P̃)) is non-singular for any X̃ ∈ IX, P̃ ∈ IP. Further, suppose
that F([x, x], ·) is locally Lipschitz on IP for each x ∈ X, that Jxf is locally Lipschitz on IX× IP
and that Y(X̃, P̃) =

[
m(Jxf(X̃, P̃))

]−1
+ E(X̃, P̃) where ‖E(X̃, P̃)‖ ≤ Cxw(X̃) + Cpw(P̃) with

Cx, Cp ≥ 0 for any X̃ ∈ IX, P̃ ∈ IP. Then, the convergence of the Krawczyk operator is quadratic
in X and linear in P, i.e., there exists some q1, q2 > 0 so that

w(K(z, X̃, P̃)) ≤ q1w(X̃)2 + q2w(P̃), ∀X̃ ∈ IX, P̃ ∈ IP, z ∈ X̃.

Proof. Let X̃ ∈ IX, z ∈ X and P̃ ∈ IP. For easier notation define R ≡ I− Y(X̃, P̃)Jxf(X̃, P̃)
and note that w(K(z, X̃, P̃)) ≤ w(Y(X̃, P̃)F([z, z], P̃)) + w(R(X̃ − z)). Lemma 5.1 yields
that w(Y(X̃, P̃)F([z, z], P̃)) ≤ ‖Y(X̃, P̃)‖w(F([z, z], P̃)). Lemma 5.2 implies that w(R(X̃−
z)) ≤ 2‖R‖w(X̃− z) = 2‖R‖w(X̃). Let LJx,1 and LJx,2 be the Lipschitz constants of Jxf on
IX× IP so that w(Jxf(X̃, P̃)) ≤ LJx,1 w(X̃) + LJx,2 w(P̃) and L fx and L fp be the Lipschitz con-
stants of F on IX× IP so that w(F(X̃, P̃)) ≤ L fx w(X̃) + L fp w(P̃), cf. Theorem 3.2. In partic-

ular, w(F([z, z], P̃)) ≤ L fp w(P̃). For shorter notation, set M =
[
m(Jxf(X̃, P̃))

]−1. Now, we
have ‖Y(X̃, P̃)‖w(F([z, z], P̃)) ≤ ‖M‖L fp w(P̃) + (Cxw(X̃) + Cpw(P̃))L fp w(P̃)) and ‖R‖ ≤
‖I−MJxf(X̃, P̃)‖+ ‖E(X̃, P̃)Jxf(X̃, P̃)‖ ≤ 1

2‖M‖nxw(Jxf(X̃, P̃))+ ‖E(X̃, P̃)‖‖Jxf(X̃, P̃)‖ ≤
1
2‖M‖nx(LJx,1 w(X̃) + LJx,2 w(P̃)) + (Cxw(X̃) + Cpw(P̃))‖Jxf(X, P)‖ where the second in-
equality follows from Lemma 5.3. As |M| is bounded on IX × IP by some M′, see
Lemma 5.6, q1 = ‖M′‖nxLJx,1 + 2Cx‖Jxf(X, P)‖ and q2 = ‖M′‖(L fp + nxLJx,2 w(X)) +

L fp(Cxw(X) + Cpw(P)) + 2Cp‖Jxf(X, P)‖w(X) are independent of z, X̃, P̃ and it follows
that w(K(z, X̃, P̃)) ≤ q1w(X̃)2 + q2w(P̃) for any X̃ ∈ IX, P̃ ∈ IP and z ∈ X̃.

Next, we provide an example where the parametric Krawczyk method (and the para-
metric Hansen-Sengupta operator) achieves linear convergence order only.

Example 5.1. [cf. 162, Example 4.5.3] Let nx = 5 and np = 3. Let Dx × Dp = R5 ×R3 and

92



5.2 Convergence order of parametric interval Newton methods

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

w(P)

d H
(X

* (P
),

x(
P

))

Figure 5.1: Empirical convergence order of the parametric Hansen-Sengupta operator (red
line) and the parametric Krawczyk operator (green asterisks) for Example 5.1

consider

f(z, p) =



0− z1 + ∆t
(

k1z4z5 − cO2(p1 + p2)z1 +
p1
K2

z3 +
p2
K3

z2 − k5z2
1

)
0− z2 + ∆t

(
p2cO2 z1 −

(
p2
K3

+ p3

)
z2

)
0− z3 + ∆t

(
p1cO2 z1 − p1

K2
z3

)
0.4− z4 + ∆t (−k1sz4z5)
140− z5 + ∆t (−k1z4z5)


where ∆t = 0.01, T = 273, K2 = 46 exp( 6500

T − 18), K3 = 2K2, k1 = 53, k1s = 10−6k1, k5 =
0.0012 and cO2 = 0.02. Let X = [0, 140]3× [0, 0.4]× [0, 140] and P = [10, 1200]2× [0.001, 40].
Let P1 = P and Pl

i = m(Pl−1
i ) + 1

4 [−w(Pl−1
i ), w(Pl−1

i )], i = 1, . . . , 3 and l = 2, . . . , 15. For
each Pl , the image of Pl under x was numerically estimated using BARON [150] in GAMS
by minimizing or maximizing zi while requiring (z, p) ∈ X × Pl and f(z, p) = 0 for
i = 1, . . . , 5. X∗(Pl) denotes the approximate limit of the parametric Krawczyk operator on
Pl , which is calculated by stopping the iteration when dH(Xk, K(m(Xk), Xk, Pl)) < 10−8.
Each inclusion function was evaluated using its natural interval extension. Y(X, P1) =
[m(Jx(X, P1))]−1 and Y(X, Pl) = [m(Jx(X∗(Pl−1), Pl))]−1, l > 1 were used as precondition-
ers.

In Figure 5.1, dH(X∗(Pl), x(Pl)) is plotted against w(Pl) showing that the convergence
order of the parametric Krawczyk operator (and the parametric Hansen-Sengupta operator)
is linear only.

We conclude this section with a convergence result for the parametric Krawczyk method
based on a theorem given in [162].

Theorem 5.4. Assume that we use the natural interval extensions as inclusion functions. Suppose
that {Pl} ⊂ IDp defines a nested sequence of intervals such that

⋂∞
l=1 Pl = [p∗, p∗]. Let X ∈ IDx

be such that there exists a unique solution x(p) ∈ X for every p ∈ P1. Suppose that m(Jxf(X̃, P̃))
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is non-singular for any X̃ ∈ IX and P̃ ∈ P1. Let {Xk(Pl)} ⊂ IX be the nested sequence of
intervals given by X1(Pl) = K(m(X), X, Pl) and Xk+1(Pl) = K(m(Xk(Pl)), Xk(Pl), Pl) with
Y(X̃, P̃) = [m(Jxf(X̃, P̃))]−1. Let λ∗ = ‖[m(Jxf(X, P1)]−1 Jxf(X, P1)− I‖. If λ∗ < 1

2 then

lim
k→∞

lim
l→∞

Xk(Pl) = lim
l→∞

lim
k→∞

Xk(Pl) = [x(p∗), x(p∗)].

Proof. Since λ∗ < 1
2 , Jxf(X, P1) is strongly regular [127, 4.1.1], which implies that Jxf(X̃, Pl)

is strongly regular for any l and X̃ ∈ IX [127, 4.1.3].

Next, we will argue that K : Dx × IDx × IDx → IRnx is continuous on its domain. Since
f is twice continuously differentiable on Dx × Dp, Jxf is continuously differentiable. As a
result, f and Jxf are locally Lipschitz on Dx × Dp and, in particular, locally Lipschitz on
any compact subset of their respective domains. This implies that F and Jxf are locally
Lipschitz on any compact subset of their respective domains [127, 2.1.1]. Furthermore,
[m(Jxf(X̃, P̃))]−1 is continuous on X× P1 as shown in the proof of Lemma 5.6. Thus, K is
locally Lipschitz on its domain [127, 2.1.1], and thus also continuous.

Continuity of K on its domain implies that Xk(·) is continuous on IP1. Consequently, it
follows that limk→∞ liml→∞ Xk(Pl) = limk→∞ Xk([p∗, p∗]) so that it suffices to consider con-
vergence of the non-parametric case. λ∗ < 1

2 implies that ρ(|[m(Jxf(X, P1)]−1 Jxf(X, P1)−
I|) < 1

2 [127, 3.2.3]. From strong regularity of Jxf(Xk([p∗, p∗]), [p∗, p∗]) we conclude that
limk→∞ Xk([p∗, p∗]) = [x(p∗), x(p∗)] [127, 5.2.2].

Let L fp be such that w(F(m(X̃), P̃)) ≤ L fp w(P̃) for all P̃ ∈ IP and X̃ ∈ IX, which is
guaranteed to exist as F is Lipschitz. By Lemma 5.6, there exists some M′ ∈ Rnx×nx

such that ‖Y(Xk(Pl), Pl)‖ ≤ ‖M′‖. Set R(Xk(Pl), Pl) = I− Y(Xk(Pl), Pl)Jxf(Xk(Pl), Pl)
to shorten notation. Note that m(R(Xk(Pl), Pl)) = 0. Thus, w(R(Xk(Pl), Pl)(Xk(Pl) −
m(Xk(Pl))) ≤ 2‖R(Xk(Pl), Pl)‖w(Xk(Pl)−m(Xk(Pl)). We have

w(Xk+1(Pl)) ≤ w(Y(Xk(Pl), Pl)F(m(Xk(Pl)), Pl) + R(Xk(Pl), Pl)(Xk(Pl)−m(Xk(Pl))))

≤ w(Y(Xk(Pl), Pl)F(m(Xk(Pl)), Pl))

. . . + w(R(Xk(Pl), Pl)(Xk(Pl)−m(Xk(Pl))))

≤ ‖Y(Xk(Pl), Pl)‖w(F(m(Xk(Pl)), Pl))

. . . + 2‖R(Xk(Pl), Pl)‖w(Xk(Pl)−m(Xk(Pl)))

≤ ‖M′‖L fp w(Pl) + 2λ∗w(Xk(Pl)).

Let k→ ∞ to find that w(X∗(Pl)) = limk→∞ w(Xk(Pl)) ≤ ‖M′‖L fp w(Pl) + 2λ∗w(X∗(Pl)).

Since 0 ≤ λ∗ < 1
2 , w(X∗(Pl)) ≤ ‖M′‖L fp

1−2λ∗ w(Pl). Thus, {X∗(Pl)} converges to a degenerate
interval as l → ∞. Since x(p∗) ∈ Xk(Pl), it follows that liml→∞ X∗(Pl) = [x∗(p∗), x∗(p∗)].
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5.3 Sensitivity-based bounding method

Theorem 3.5 indicates that centered forms are interval methods to bound the range of
a function with quadratic convergence order. Since we are interested in bounding the
range of x as defined in Equation (5.1) with quadratic convergence order, centered forms
suggest one such a method. For mean value forms, which are a particular kind of centered
form, it is necessary to bound the range of the Jacobian of x. Unfortunately, x is only
defined implicitly, so usually no closed, factorable expression for it exists from which
a locally Lipschitz inclusion function of ∂xi

∂pj
could be obtained by combining automatic

differentiation [70] with the rules of interval arithmetic. The following result demonstrates
a bound on x can be obtained instead.

Proposition 5.1. [cf. 126] Consider P̃ ∈ IP and X̃ ∈ IDx. Let p̃ ∈ P̃ and suppose there exists
z̃ ∈ X̃ so that f(z̃, p̃) = 0. Assume that Jxf(X̃, [p̃, p̃]) is a regular interval matrix and suppose
S ∈ IRnx×np encloses −Σ(Jxf(X̃, [p̃, p̃]), Jpf(X̃, P̃)). Then,

{z ∈ X̃ : ∃p ∈ P̃, f(z, p) = 0} ⊂ z̃ + S(P̃− p̃).

Proof. Let z ∈ X̃ such that there exists p ∈ P̃ so that f(z, p) = 0. For each i = 1, . . . , nx, the
mean value theorem guarantees that there exists λi, µi ∈ [0, 1] so that

fi(z, p) = fi(z, p̃) +
np

∑
k=1

∂ fi

∂pk
(z, p + µi(p̃− p))(pk − p̃k)

= fi(z̃, p̃) +
nx

∑
j=1

∂ fi

∂xj
(z + λi(z̃− z), p̃)(zj − z̃j) +

np

∑
k=1

∂ fi

∂pk
(z, p + µi(p̃− p))(pk − p̃k)

0 =
nx

∑
j=1

∂ fi

∂xj
(z + λi(z̃− z), p̃)(zj − z̃j) +

np

∑
k=1

∂ fi

∂pk
(z, p + µi(p̃− p))(pk − p̃k).

Let Jx,if and Jp,if refer to the ith row of Jxf and Jpf, respectively, so that we can write

Jx,if(z + λi(z̃− z), p̃)(z− z̃) + Jp,if(z, p + µi(p̃− p))(p− p̃) = 0.

Next, introduce J̃x ∈ Rnx×nx and J̃p ∈ Rnx×np where each row i = 1, . . . , nx is defined by
J̃x,i = Jx,if(z + λi(z̃− z), p̃) and J̃p,i = Jp,if(z, p + µi(p̃− p)). Since z + λi(z̃− z) ∈ X̃ for
each i, J̃x ∈ Jxf(X̃, [p̃, p̃]) so that J̃x is invertible and we have

z = z̃− J̃−1
x J̃p(p− p̃).

Note that J̃−1
x J̃p ∈ Σ(Jxf(X̃, [p̃, p̃]), Jpf(X̃, P̃)) and the result follows.

Remark 5.1. Interestingly, it is only necessary to take the interval extension of Jxf with
respect to z, but not to p, cf. the Hansen-Sengupta operator [73, 127]. Also, by changing
the order in which the mean value theorem is applied, one can alternatively obtain that S
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should enclose −Σ(Jxf(X̃, P̃), Jpf([z̃, z̃], P̃)). The disadvantage of this formulation is that
Jxf(X̃, P̃) ⊃ Jxf(X̃, [p̃, p̃]).

Next, we will consider the convergence order of the proposed inclusion function of x.

Proposition 5.2. Let P ∈ IDp. Suppose that S : IP× P → IRnx×np is given so that, for each
P̃ ∈ IP and p̃ ∈ P̃, S(P̃, p̃) ⊃ −Σ(Jxf(hull(x(P̃)), [p̃, p̃]), Jpf(hull(x(P̃)), P̃)). Assume that
there exists L > 0 so that w(S(P̃, p̃)) ≤ Lw(P̃) for all P̃ ∈ IP and p̃ ∈ P̃. Then, there exists some
q > 0 so that

dH(xi(P̃)), xi(p̃) + Si(P̃, p̃)(P̃− p̃)) ≤ qw(P̃)2, ∀i ∈ 1, . . . , nx, P̃ ∈ IP, p̃ ∈ P̃.

Proof. Since maxi |P̃i − p̃i| ≤ w(P̃) for any p̃ ∈ P̃, the result follows from Theorem 3.5.

Assumption 5.2. Assume that for each p ∈ Dp there exists exactly one z ∈ Dx so that
f(z, p) = 0.

For the remainder of the paper, we restrict our attention to P ∈ IDp. Furthermore,
assume that x(P) ⊂ X̌ for some X̌ ∈ IDx. Since the inclusion functions in Proposition 5.1
also depend on X̃ ∈ IDx, it proves convenient to consider a crude inclusion function of
x first. Let X : IP → IRnx be defined for any P̃ ∈ IP by X(P̃) = x(m(P̃)) + Š(P̃−m(P̃))
where Š ∈ IRnx×np so that −Σ(Jxf(X̌, P), Jpf(X̌, P)) ⊂ Š. Then, Proposition 5.1 implies
that x(P̃) ⊂ X(P̃) for any P̃ ∈ IP. Furthermore, it is immediately clear that there exists
L > 0 so that w(X(P̃)) ≤ Lw(P̃) for all P̃ ∈ IP. As an aside: the important property of X
is that its width is linear in w(P̃), in principle, any bounding method on x that satisfies
this property can be used.

Given Propositions 5.1 and 5.2, it remains to discuss how we can obtain S : IP→ IRnx×np

that bounds −Σ(Jxf(X(P̃), m(P̃)), Jpf(X(P̃), P̃)) and has the following property: there
exists L > 0 so that w(S(P̃)) ≤ Lw(P̃) for all P̃ ∈ IP. The definition of X presents an
opportunity to simplify our notation hereafter as we can drop the explicit dependence
of any inclusion function on X̃ and consider its dependence on P̃ only. To simplify
notation hereafter, we will discuss the following results in terms of interval functions
A : IP→ IRnx×nx and B : IP→ IRnx×np instead, which can be thought of as placeholders
for Jxf(X(·), m(·)) and −Jpf(X(·), ·), respectively.

5.3.1 Obtaining an initial enclosure of the sensitivities

Before Krawczyk’s method for linear systems [102] or the interval Gauss-Seidel opera-
tor [142] can be used to refine the enclosure of Σ(A(P̃), Bj(P̃)), j = 1, . . . , np, for a given
P̃ ∈ IP, it is necessary to obtain an initial valid bound for this enclosure. Theorem 4.4.10 in
[127] suggests a good initialization strategy when A(P̃) is strongly regular. Taking this
result in consideration, Neumaier proposed an algorithm, which has been adapted here
as Algorithm 5.1, for obtaining an initial enclosure of the solution set of a linear interval
equation. In our case, it requires solving np linear systems with nx equations each. The
obtained S0 can be improved, e.g., by using the preconditioned Gauss-Seidel operator as
discussed in the following section.
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Lemma 5.7. Assume that A(P̃) is strongly regular for any P̃ ∈ IP. Let Z̃ : IP→ Rnx×np be given
so that for each P̃ ∈ IP there exists some Ã(P̃) ∈ A(P̃) and B̃(P̃) ∈ B(P̃) with Ã(P̃)Z̃(P̃) =
B̃(P̃). Suppose that A and B are locally Lipschitz on IP. Let Y(P̃) = m(A(P̃))−1. Fix u, v ∈ Rnx

so that u, v > 0 and
〈
Y(P̃)A(P̃)

〉
u ≥ v for all P̃ ∈ IP. Set S0

j (P̃) = Z̃j(P̃) + ‖Y(P̃)(Bj(P̃)−
A(P̃)Z̃j(P̃))‖v[−u, u] for any P̃ ∈ IP and j = 1, . . . , np. Then, S0(P̃) ⊃ (A(P̃))HB(P̃) for
any P̃ ∈ IP. Also, there exists some LS > 0 so that w(S0

j (P̃)) ≤ LSw(P̃) for all P̃ ∈ IP and
j = 1, . . . , np.

Proof. Since A(P̃) is strongly regular, Y(P̃)A(P̃) is an H-matrix [127, 4.1.1]. By definition,〈
Y(P̃)P(Ã)

〉
is an M-matrix and by [127, 3.7.3] regular. Furthermore, the referred to u and

v exist [127, 3.7.1 and p. 112]. Since Y(P̃)A(P̃) is regular for any P̃ ∈ IP, we have

A(P̃)HBj(P̃) ⊂ (Y(P̃)A(P̃))H(Y(P̃)Bj(P̃))

⊂ Z̃j(P̃) + (Y(P̃)A(P̃))H(Y(P̃)Bj(P̃)− Y(P̃)A(P̃)Z̃j(P̃))

= Z̃j(P̃) + (Y(P̃)A(P̃))H(Y(P̃)(Bj(P̃)− A(P̃)Z̃j(P̃)))

⊂ Z̃j(P̃) + ‖Y(P̃)(Bj(P̃)− A(P̃)Z̃j(P̃))‖v[−u, u] = S0
j (P̃)

for any j = 1, . . . , np, where the first inclusion follows from [127, 4.1.5], the second from
[127, 4.2.1], the third line follows from [127, 3.1.2] since Y(P̃) ∈ Rnx×nx and the third
inclusion from [127, 4.1.9]. Let P̃ ∈ IP and pick j ∈ {1, . . . , np}. Note that Bj(P̃) −
A(P̃)Z̃j(P̃) =

[
Bj(P̃)− B̃j(P̃)

]
−
[
A(P̃)Z̃j(P̃)− B̃j(P̃)

]
and that 0 ∈

[
Bj(P̃)− B̃j(P̃)

]
, 0 ∈[

A(P̃)Z̃j(P̃)− B̃j(P̃)
]
, thus 0 ∈ Y(P̃)(Bj(P̃)− A(P̃)Z̃j(P̃)) as Y(P̃) is regular. Note that

Z̃j(P̃) is bounded since A(P̃) is regular and hence Σ(A(P̃), B(P̃)) 3 Z̃j(P̃) is bounded [127,
p. 93]. Also, ‖Y(P̃)‖ is bounded by Lemma 5.6. Since there exist positive LA and LBj

so that w(A(P̃)) ≤ LAw(P̃) and w(Bj(P̃)) ≤ LBj w(P̃) and since ‖Z̃j(P̃)‖ is bounded, it
follows with Lemmas 5.4 and 5.1 that there exists some Lj > 0 so that ‖Y(P̃)(Bj(P̃)−
A(P̃)Z̃j(P̃))‖ ≤ Ljw(P̃).

The result is a formalization of the argument in [127, p. 124f] and provides the the-
oretical foundation for Algorithm 5.1. It is important to point out that if u, v satisfy〈

Y(P̃)A(P̃)
〉

u ≥ v then they will also satisfy 〈Y(P′)A(P′)〉 u ≥ v for any P′ ⊂ IP̃. For
shorter notation, set B′(P̃) = Y(P̃)(Bj(P̃)− A(P̃)Z̃j(P̃)). For any ε > 0, v = |B′(P̃)|+ ε1 >
0. Thus, we can construct u > 0 by solving the linear system

〈
Y(P̃)A(P̃)

〉
u = v. It remains

to compute ‖B′(P̃)‖v. However, note that ‖B′(P̃)‖v ≤ 1
α is equivalent to |B′(P̃)| ≤ 1

α v [127,
p. 85]. Since v =

〈
Y(P̃)A(P̃)

〉
u, an estimate of ‖B′(P̃)‖v can be obtained by finding the

smallest α > 0 that satisfies
〈
Y(P̃)A(P̃)

〉
u ≥ α|B′(P̃)|. Note that α ≈ 1 if ε1� |B′(P̃)|.

Lastly, as pointed out in [127, p. 124], this procedure provides a crude enclosure only. In
the next section, more advanced interval methods will be applied to the task of refining
this enclosure.
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Algorithm 5.1: Obtaining an initial enclosure of the sensitivities [cf. 127, p. 150]

Input: X̃ ∈ IDx, P̃ ∈ IP, ε > 0
Output: Enclosure of the solution set S ∈ IRnx×np or A is not strongly regular

1 A← Jxf(X̃, P̃), B← −Jpf(X̃, P̃);
2 Y← [m(A)]−1;
3 Z̃← Ym(B);
4 A′ ← YA, B′ ← Y(B− AZ̃);
5 for j = 1, . . . , np do
6 Find u ∈ Rnx , u > 0 so that 〈A′〉 u = [|B′1j|+ ε . . . |B′nx j|+ ε]T;
7 if u does not exist then
8 return (A is not strongly regular);

9 Find smallest α > 0 so that 〈A′〉 u ≥ α|B′j|;
10 Sj ← Z̃j +

1
α [−u, u]

11 return (S);

5.3.2 Improving the sensitivity bound

We will use Algorithm 5.1 only to establish an initial bound S0(P). For any P̃ ∈ IP,
we can set S0(P̃) = S(P̃2) where S(P̃2) has been calculated for some P̃2 ∈ IP, P̃2 ⊃ P̃.
Preconditioned interval Gauss-Seidel [142] or Krawczyk’s method [102] can be used
directly to further improve S0(P̃). We will show that this provides a linearly convergent
bound on −Σ(A(P̃), Bj(P̃)). Since the iterates of the preconditioned interval Gauss-Seidel
are guaranteed to be tighter enclosures than those obtained from Krawczyk’s method [127,
4.3.5], showing that the latter yields a linearly convergent parametric bound suffices.

Lemma 5.8. Suppose that m(A(P̃)) is regular for any P̃ ∈ IP and there exists some L >
0 such that w(A(P̃)) ≤ Lw(P̃) for all P̃ ∈ IP. Then, there exists L′ > 0 so that ‖I −
m(A(P̃))−1A(P̃)‖ ≤ L′nxw(P̃) for all P̃ ∈ IP.

Proof. First, note that m(A(P̃))−1 exists for all P̃ ∈ IP. The midpoint operation, the
inverse of a regular real matrix and interval matrix multiplication are locally Lipschitz
functions so that there exists some L′ > 0 such that w(m(A(P̃))−1A(P̃)) ≤ L′w(P̃) for all
P̃ ∈ IP. Pick any P̃ ∈ IP. Note that 0 ∈ I−m(A(P̃))−1A(P̃) since I ∈ m(A(P̃))−1A(P̃).
Now, Lemma 5.4 provides that ‖I − m(A(P̃))−1A(P̃)‖ ≤ nxw(I − m(A(P̃))−1A(P̃)) =
nxw(m(A(P̃))−1A(P̃)) from which the assertion follows.

Lemma 5.9. Suppose that A(P̃) is strongly regular for any P̃ ∈ IP and that there exists some L > 0
such that w(A(P̃)) ≤ Lw(P̃) and w(B(P̃)) ≤ Lw(P̃) for all P̃ ∈ IP. Let Y(P̃) = [m(A(P̃))]−1.
Then, there exists some L′ > 0 such that w((Y(P̃)A(P̃))H(Y(P̃)B(P̃))) ≤ L′w(P̃) for all P̃ ∈ IP.

Proof. Note that the hull inverse is a sublinear mapping [127, 3.5.1] and each sublinear
mapping is locally Lipschitz as a consequence of [127, 3.5.3]. Then, apply Theorem 3.2 to
obtain the result.
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We will use the Krawczyk iteration for linear interval equations [127, Sec. 4.2] to improve
S0(P̃) for any P̃ ∈ IP. Let Sk+1

j (P̃) = Sk
j (P̃) ∩ (Y(P̃)Bj(P̃)− (Y(P̃)A(P̃)− I)Sk

j (P̃)) for any
k > 1 and j = 1, . . . , np where Y(P̃) = [m(A(P̃))]−1. Denote the limit of this iteration as
K∗(P̃).

Proposition 5.3. Suppose that A(P̃) is strongly regular for any P̃ ∈ IP and that there exists
some L > 0 such that w(A(P̃)) ≤ Lw(P̃) and w(B(P̃)) ≤ Lw(P̃) for all P̃ ∈ IP. Assume that
‖I−m(A(P̃))−1A(P̃)‖ = β(P̃) < 1 for all P̃ ∈ IP. Then, there exists some L′ > 0 such that
w(K∗(P̃)) ≤ L′w(P̃) for all P̃ ∈ IP.

Proof. Pick any P̃ ∈ IP. Note that Theorem 4.2.4 in [127] implies that w(K∗(P̃)) ≤
1+β(P̃)
1−β(P̃)w(A(P̃)HB(P̃)). Together with Lemma 5.9, it follows that w(K∗(P̃)) ≤ 1+β(P̃)

1−β(P̃) L′′w(P̃)

for some L′′ > 0. However, since β(P̃) is bounded for all P̃ ∈ IP by assumption, there
exists some L′ > 0 so that we have w(K∗(P̃)) ≤ L′w(P̃).

Note that Lemma 5.8 indicates that for each nested sequence {Pl} ⊂ IP that converges
to a degenerate interval, there exists some l1 > 0 so that β(Pl) < 1 holds true for all l > l1.

5.3.3 Second-order convergent bounding method

Lemma 5.7 already presented a first linearly convergent method, but the obtained enclo-
sures can be rather crude [127, p. 124]. In a practical implementation Algorithm 5.1 will be
executed only once for P and for any subsequent P̃ ∈ IP an iterative procedure to improve
S0(P̃) will be used.

Note that Proposition 5.3 is a result about the limit of the Krawczyk iteration. Any
implementation, however, will terminate finitely. Thus, it is also necessary to guarantee
w(Sk+1(P̃)) ≤ L′w(P̃) in this case, which results from the following proposition.

Proposition 5.4. Suppose that A(P̃) is strongly regular for any P̃ ∈ IP and that there ex-
ists some L > 0 such that w(A(P̃)) ≤ Lw(P̃) and w(B(P̃)) ≤ Lw(P̃) for all P̃ ∈ IP. Let
Y(P̃) = [m(A(P̃))]−1. Suppose Sk(P̃) denotes the kth iterate of the linear Krawczyk iteration and
assume that S0(P̃) ⊃ A(P̃)HB(P̃) is bounded for all P̃ ∈ IP. Then, there exists L′ > 0 so that
w(Sk+1(P̃)) ≤ L′w(P̃) for all k > 0.

Proof. Pick any k > 0 and j ∈ {1, . . . , np}. Sk+1
j (P̃) ⊂ A(P̃)HBj(P̃) + (Y(P̃)A(P̃) −

I)(Sk
j (P̃) − Sk

j (P̃)) holds [127, 4.2.3]. Consequently, w(Sk+1(P̃)) ≤ w(A(P̃)HBj(P̃)) +
w((Y(P̃)A(P̃) − I)(Sk

j (P̃) − Sk
j (P̃))). Lemma 5.9 implies that there exists L′ > 0 so

that w(A(P̃)HBj(P̃)) ≤ L′w(P̃) and w((Y(P̃)A(P̃)− I)(Sk
j (P̃)− Sk

j (P̃))) ≤ 2‖Y(P̃)A(P̃)−
I‖w(Sk

j (P̃)− Sk
j (P̃)) by Lemma 5.2. Now, w(Sk

j (P̃)− Sk
j (P̃)) ≤ w(S0

j (P̃)− S0
j (P̃)), which is

bounded by assumption, say by cj > 0. Lastly, Lemma 5.8 implies that there exists L′′ > 0
so that 2‖Y(P̃)A(P̃)− I‖ ≤ L′′w(P̃). Hence, w(Sk+1

j (P̃)) ≤ (L′ + L′′cj)w(P̃).

A first possible implementation of the proposed method is given as Algorithm 5.2. In
the beginning of Section 5.3, we pointed out the need for an inclusion function of x with
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w(X(P̃) ≤ Lw(P̃). Instead of the crude inclusion function given there, we will instead rely
on the method established thereafter.

By replacing the Krawczyk operator with the Gauss-Seidel operator for linear interval
equations, see Definition 5.6, which is known to yield tighter bounds than Krawczyk’s
method [127, 4.3.5] and by updating prior to each iteration of the Gauss-Seidel opera-
tor A and B, it is possible to further improve the resulting bounds at some additional
computational expense. This improved method is given as Algorithm 5.3.

The result below summarizes the important second-order convergence result of the
either method.

Theorem 5.5. Let P ∈ IDp and X ∈ IDx so that Jxf(X, P) is strongly regular. Furthermore, let
Jxf and Jpf be locally Lipschitz on IP× IX. Let S0(P̃) be given as in Lemma 5.7 and suppose that
some S̃0(P̃) ⊂ S0, S̃0(P̃) ⊃ −Σ(Jxf(hull(x(P̃)), m(P̃)), Jpf(hull(x(P̃)), P̃)) is used to initialize
Krawczyk’s method for linear interval equations. The iteration is terminated finitely. Let K†(P̃)
denote the result of the finite Krawczyk iteration for each P̃ ∈ IP. Then, there exists some q > 0 so
that

dH(xi(P̃), xi(m(P̃)) + K†
i (P̃)(P̃−m(P̃))) ≤ qw(P̃)2, ∀i = 1, . . . , nx, P̃ ∈ IP.

Proof. Since Jxf(X, P) is strongly regular and Jxf, Jpf are locally Lipschitz on IP× IX, the
assumptions of Proposition 5.4 are satisfied. Thus, the assumptions of Proposition 5.2 hold
and the result follows.

Algorithm 5.2: Second-order convergent bounding method for parametric nonlinear
equations

Input: X̃ ∈ IDx, P̃ ∈ IP, ε > 0, S ∈ IRnx×np [optional]
Output: Refined X and S or A is not strongly regular

1 if No S provided then
2 S← InitialBound(X̃, P̃, ε) ; // uses Algorithm 5.1

3 if InitialBound failed then
4 return (A is not strongly regular);

5 Find x ∈ X̃ so that f(x, m(P̃)) = 0;
6 A← Jxf(X̃, m(P̃)), B← −Jpf(X̃, P̃);
7 A← YA, B← YB;
8 repeat
9 X̃old = X̃;

10 for i = 1, . . . , np do
11 Si ← Si ∩ (Bi − (A− I)Si);

12 X̃ ← X̃ ∩ x + S(P̃−m(P̃));
13 until dH(X̃, X̃old) < ε;
14 return (X̃, S);
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Algorithm 5.3: Improved second-order convergent bounding method for parametric
nonlinear equations

Input: X̃ ∈ IDx, P̃ ∈ IP, ε > 0, S ∈ IRnx×np [optional]
Output: Refined X and S or A is not strongly regular

1 if No S provided then
2 S← InitialBound(X̃, P̃, ε) ; // uses Algorithm 5.1

3 if InitialBound failed then
4 return (A is not strongly regular);

5 Find x ∈ X̃ so that f(x, m(P̃)) = 0;
6 A← Jxf(X̃, m(P̃));
7 Y← [m(A)]−1;
8 repeat
9 X̃old = X̃;

10 A← Jxf(X̃, m(P̃)), B← −Jpf(X̃, P̃);
11 A← YA, B← YB;
12 for i = 1, . . . , np do
13 Si ← Γ(A, Bi, Si) ; // uses interval Gauss-Seidel

14 X̃ ← X̃ ∩ x + S(P̃−m(P̃));
15 until dH(X̃, X̃old) < ε;
16 return (X̃, S);
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5.4 Case studies

In this section, the convergence order of the sensitivity based bounding method is studied
numerically. To this effect, the method is implemented in MATLAB relying on the interval
arithmetic provided by INTLAB [146]. Additionally, parametric interval Newton methods
are implemented to provide a comparison.

Consider a sequence {Pl} ⊂ IP and construct Xl ≡ X∗(Pl) using the method proposed
in Section 5.3. We compare Xl with x(Pl), the image of Pl under x, in order to validate the
convergence order of the method numerically.

In each case study, let P1 = P and Pl
i = m(Pl−1

i ) + 1
4 [−w(Pl−1

i ), w(Pl−1
i )], i = 1, . . . , np

and l = 2, . . . , 15. If x is not known analytically, the image of Pl under x was numerically
estimated using BARON [150] in GAMS by minimizing or maximizing zi while requiring
(z, p) ∈ X × Pl and f(z, p) = 0 for i = 1, . . . , nx. X∗(Pl) denotes the approximate limit
of each bounding method on Pl , which was calculated by stopping the iteration when
dH(Xk+1(Pl), Xk(Pl)) < ε = 10−8. Each inclusion function was evaluated using its natural
interval extension. Y(X, P1) = [m(Jx(X, P1))]−1 and Y(X, Pl) = [m(Jx(X∗(Pl−1), Pl))]−1,
l > 1 were used as preconditioners.

Example 5.2. [163, Example 1] Let nx = 2 and np = 2. Let Dx × Dp = R2 ×R2 and
consider

f(z, p) =
[

z2
1 + z2

2 + p1z1 + 4
z1 + p2z2

]
.

Let X = [−1.5, 0] × [0, 0.5] and P = [5, 7]2. In this case, it is possible to construct the
implicit function x : P→ X as

x(p) =

 p2
√

p2
1 p2

2−16p2
2−16−p1 p2

2
2(p2

2+1)

1
2

(
p1 p2
p2

2+1 −
√

p2
1 p2

2−16p2
2−16

p2
2+1

)
 .

In Figure 5.2, dH(Xl , x(Pl)) is plotted against w(Pl) validating the second-order conver-
gence.

Example 5.3. [100, Example 4.1] Let nx = 3 and np = 2. Let Dx × Dp = R3 × (R− {0})2

and consider

f(z, p) =


3.25−z1

p1
− z3

x1
p2
− z3

z2 − z2
1

1+z2
1

 .

Let X = [−30, 30]2 and P = [1800, 2200]× [900, 1100]. In this case, it is possible to construct
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Figure 5.2: Empirical convergence order of the sensitivity based bounding method for
Example 5.2

10
−2

10
0

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

w(P)

d H
(X

* (P
),

x(
P

))

Figure 5.3: Empirical convergence order of the sensitivity based bounding method for
Example 5.3

the implicit function x : P→ X as

x(p) =


3.25p2
p1+p2
169p2

2
16p2

1+32p1 p2+185p2
2

3.25
p1+p2

 .

In Figure 5.3, dH(Xl , x(Pl)) is plotted against w(Pl) validating the second-order conver-
gence.

Example 5.4. [162, Example 4.5.3] Reconsider Example 5.1. In Figure 5.4, dH(Xl , x(Pl)) is
plotted against w(Pl) validating the second-order convergence. Here, we also show the rate
of convergence of the parametric Hansen-Sengupta operator and the parametric Krawczyk
operator initialized with X. While at the initial box, the overestimation is comparable, the
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Figure 5.4: Empirical convergence order of the sensitivity based bounding method (blue
line), the Hansen-Sengupta operator (red line) and the Krawczyk operator
(green asterisks) for Example 5.4

rate of convergence of the latter two methods is less than quadratic.

Example 5.5. [162, Example 4.5.3] Expanding on Example 5.4, we now consider 5 dis-
cretization elements. Let nx = 25 and np = 3. Let Dx × Dp = R25 ×R3 and consider

f(z, p) =



...
z5(i−1)+1 − z5i+1 + ∆t

(
k1z5i+4z5i+5 − cO2(p1 + p2)z5i+1 +

p1
K2

z5i+3+
p2
K3

z5i+2 − k5z2
5i+1

)
z5(i−1)+2 − z5i+2 + ∆t

(
p2cO2 z5i+1 −

(
p2
K3

+ p3

)
z5i+2

)
z5(i−1)+3 − z5i+3 + ∆t

(
p1cO2 z5i+1 − p1

K2
z5i+3

)
z5(i−1)+4 − z5i+4 + ∆t (−k1sz5i+4z5i+5)
z5(i−1)+5 − z5i+5 + ∆t (−k1z5i+4z5i+5)

...


where i = 1, . . . , 5, ∆t = 0.01, K2 = T = 273, K2 = 46 exp( 6500

T − 18), K3 = 2K2, k1 = 53,
k1s = 10−6k1, k5 = 0.0012 and cO2 = 0.02. Let X = ([0, 140]3 × [0, 0.4] × [0, 140])5 and
P = [10, 1200]2 × [0.001, 40]. Set [z−4, . . . , z0] = [0, 0, 0, 0.4, 140].

As demonstrated in [162, p. 128f], the structure of this problem can be exploited easily.
In Figure 5.5, dH(Xl , x(Pl)) is plotted against w(Pl) validating the second-order conver-

gence. Here, we also show the rate of convergence of the parametric Hansen-Sengupta
operator and the parametric Krawczyk operator initialized with X. While at the initial box,
the overestimation is comparable, the rate of convergence of the latter two methods is less
than quadratic.
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Figure 5.5: Empirical convergence order of the sensitivity based bounding method (blue
line), the Hansen-Sengupta operator (red line) and the Krawczyk operator
(green asterisks) for Example 5.5

5.5 Conclusion

In this paper, it was argued that the convergence order of the parametric Krawczyk method
for bounding the zeros of systems of nonlinear equations is linear in the parameters only.
Since second-order convergent bounds are necessary to overcome the cluster problem
in global optimization, a method based on the sensitivities of the systems of nonlinear
equations was studied. The estimate of the sensitivities were shown to converge linearly
so that a centered form of the implicit function is guaranteed to have second-order
convergence. Case studies validate that this method does indeed converge more rapidly
than the parametric Krawczyk method or the parametric Hansen-Sengupta operator.
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Chapter 6

Global optimization of bounded factorable
functions with discontinuities

Recently, McCormick’s method [118], which was originally defined for explicitly stated
factorable functions, has been extended to continuous functions that are not known
explicitly, e.g., when they result from algorithms [121, 156]. Discontinuities can appear, for
example, in algorithms with conditional statements (i.e., IF-THEN-ELSE), which have been
excluded in a previous paper [121, p. 593]. Hereafter, a class of discontinuous functions
is considered. Neither are the standard relaxation techniques, which are defined for
continuous functions, applicable in this case nor has it been considered in branch-and-
bound theory [88].

A closer look at McCormick’s composition theorem and its proof [118], however, in-
dicates that the result can be extended to discontinuous factorable functions if they are
bounded. It is, in addition, necessary to know valid relaxations of univariate discontinuous
functions. Since a discontinuity can be represented by a step function [182], for which
relaxations can be constructed easily, this requirement can be met when the factorable
representation of the function has a finite number of discontinuous univariate factors.
However, it is not clear if the properties of McCormick relaxations shown in [156] hold
true. In this chapter, the obtained relaxations for bounded factorable functions with
discontinuities are analyzed in detail. Such analysis is indispensable in order to establish
properties of the proposed relaxation technique required for its use in a branch-and-bound
method [88]. Furthermore, branch-and-bound theory must be extended as continuity is a
standing assumption throughout [88].

The proposed method is particularly well suited to solve optimization problems with
discontinuities depending on continuous variables. Examples of this case are discontin-
uous cost functions in process design: when a certain size is exceeded, two units need
to be used instead of one, causing a discontinuity in the investment cost (this starkly
contrasts with discrete decisions that require integer variables, e.g., when two exclusive
alternatives for one unit exist). Examples for such problems can be found in process
synthesis with discontinuous investment costs [168] as well as dynamic optimization
problems with discontinuities [14], in particular, hybrid systems [112]. Currently, mixed-
integer or complementarity constraint formulations are often used to model discontinuities
depending on continuous variables [20, 168]. In the former, binary variables are introduced
to model discontinuities whereas in the latter complementarity constraints take on this
role. Commercial global optimization algorithms are available for MINLPs [150], however,
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introducing binary variable to model the discontinuities can increase the number of vari-
ables drastically. This can lead to poor performance as branch-and-bound algorithms are
known to scale worst-case exponentially with the number of variables. MPECs are usually
reformulated as NLPs and are only solved locally at present [20, 61].

While this chapter focuses on global optimization of discontinuous factorable functions, it
should be noted that existing work on discontinuous optimization considered finding locally
optimal solutions. Aside from using the definition of a local minimum as a point attaining
the smallest value of the objective function in a neighborhood, no other characterization,
e.g., using gradients, is applicable when the function is not even continuous. In the
quest to derive local optimality conditions, the notion of derivatives is generalized to
nonsmooth and discontinuous functions by several authors [15, 16, 45, 58, 124, 183].
Recently, Rockafellar generalized derivatives have been used in direct search algorithms for
discontinuous functions [172] . Another prevalent idea in the literature is to approximate
the discontinuous function by convolving it with an appropriate mollifier resulting in
an averaged function. This operation leads to an integration problem, possibly of high
dimension, which is computationally expensive and is often evaluated using Monte Carlo
schemes [17, 57, 144, 183]. Conn and Mongeau [47] consider piecewise linear optimization
problems where the objective function and constraints have discontinuities on a set of
hyperplanes and propose an algorithm to identify local minima. In an approach more
closely related to the idea proposed in this chapter Zang [182] introduces step functions
to express the discontinuities and suggests a family of smooth approximations for these.
Similar ideas are used to smooth continuous functions at points of non-differentiability [e.g.,
55] and are prone to introduce inaccuracy and numerical instability.

Definition 6.1 ([cf. 175, p. 45]). A function f : D ⊂ Rn → R is called lower semi-continuous
if

lim inf
x→x0

f (x) ≥ f (x0), ∀x0 ∈ D

where lim infx→x0 f (x) = limδ→0 inf{ f (x) : x ∈ X, 0 < ‖x− x0‖2 < δ}.

It is well-known that lower semi-continuity of a function f is a sufficient property for f
to attain its infimum on a nonempty compact set; cf. [82].

Theorem 6.1. Suppose D ⊂ Rn nonempty and compact. If a function f : D → R is lower
semi-continuous on D, then f is bounded from below and it attains its minimum.

Remark 6.1. When the assumption of lower semi-continuity of f is replaced by boundedness
of f from below, one may still obtain a sequence converging to the infimum. Furthermore,
the method presented in this chapter will be able, as will be argued in Remark 6.6 and in
Section 6.2, to construct such a sequence for optimization problems involving factorable
functions.

The remainder of this chapter is organized as follows. First, McCormick relaxations [118]
are studied taking advantage of the formalization provided by [156]. In Section 6.1,
properties such as continuity and convexity of the obtained relaxations of certain bounded
functions are proved. Examples of the relaxations of discontinuous functions are provided.
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Furthermore, the behavior of the relaxations on sequences of intervals is investigated, after
the necessary assumptions required for these properties are made explicit. This leads up
to the results in Section 6.2, where it is argued that a branch-and-bound algorithm with
finite ε-convergence can be constructed. The chapter continues with some examples in
Section 6.3 which showcase the numerical feasibility and provide first promising examples
from different applications. The chapter is concluded with a summary of the obtained
results in Section 6.4.

6.1 Relaxations of bounded L-factorable functions

In this section, the construction of relaxations for factorable and bounded functions is
discussed. To this end, the well-known results for obtain McCormick relaxations [118, 156]
are extended. Then, discontinuous univariate intrinsic functions are studied more closely
and first examples of the constructed relaxations are given. A discussion about the behavior
of the relaxations on sequences of intervals is preceded by a collection of necessary
assumptions and concludes this section.

Here, the notions of L-computational sequences and L-factorable functions will be
extended by only requiring boundedness, but not continuity of the univariate functions
in L. While it was not assumed explicitly, Assumptions 3.2 and 3.4 stating that, for
any (u, B, IR) ∈ L, the corresponding interval extension and McCormick extension of u
is locally Lipschitz on IB and MB, respectively, also guaranteed continuity of the real-
valued univariate function on B. If we drop these assumptions, the resulting class of
computational sequences and functions are more general and will be called bounded L-
computational sequences and bounded L-factorable functions. The class of bounded L-factorable
functions includes most functions that can be represented finitely on a computer.

In the literature [e.g., 118, 121, 155, 156], a standing assumption is continuity of the
univariate functions (u, B, R) ∈ L and hence f . When C is compact, continuity of each
operation in Definition 3.2 guarantees compactness of f (C) [145]. Hence, continuous
factorable functions are always bounded factorable on a compact set X. As shown below, if
each univariate function is bounded, then the constructed function is bounded factorable.

Lemma 6.1. Suppose D ⊂ Rn is bounded. Consider a L-factorable function f : D → R. f is
bounded L-factorable if each univariate (u, B, R) ∈ L is bounded on B.

Proof. For 1 ≤ k ≤ n, the assertion holds trivially. Suppose the assertion holds for some
k where n < k ≤ n f . When vk is defined by Definition 3.2 (a), vk is certainly bounded.
When vk is defined by Definition 3.2 (b), vk is bounded since ok is bounded. From finite
induction, it follows that vn f is bounded and, hence, f is bounded L-factorable.

6.1.1 Extension of McCormick’s result to bounded L-factorable functions

McCormick [118] presented a recursive procedure to create relaxations of factorable
functions f on a nonempty convex set D. While in his exposition, McCormick restricted the
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result to continuous factorable functions, it can be easily extended to bounded factorable
functions.

Theorem 6.2. Let D ⊂ Rn be a nonempty convex set. Consider the composite function f = f2 ◦ f1
where f1 : D → R is bounded on D, let f1(D) ⊂ [a, b] and f2 : [a, b] → R. Suppose that
relaxations

ˇ
f1 and f̂1 of f1 on C as well as relaxations

ˇ
f2 and f̂2 of f2 on [a, b] are known. Let zmin

be a point at which
ˇ
f2 attains its infimum on [a, b], and let zmax be a point at which f̂2 attains its

supremum on [a, b]. Then

ˇ
f (x) =

ˇ
f2[mid{

ˇ
f1(x), f̂1(x), zmin}]

is a convex relaxation of f2 ◦ f1 on C, and

f̂ (x) = f̂2[mid{
ˇ
f1(x), f̂1(x), zmax}]

is a concave relaxation of f2 ◦ f1 on C, where mid : R×R×R→ R selects the middle value of
the three scalar arguments.

Proof. The original proof [119] remains valid after the continuity hypothesis on f1 is
replaced with a boundedness assumption as only f1(D) ⊂ [a, b] is needed.

As demonstrated in Chapter 3, Theorem 6.2 allows the construction of relaxations of
complicated functions by decomposing the function into factors for which relaxations are
known [118, 156]. A precise definition of this procedure was first given in [156] and is
listed in Chapter 3.

Most importantly, allowing for discontinuous but bounded univariate functions in the
library L does not invalidate Theorem 2.4.32 in [155] as long as Assumption 3.3 holds for
all elements of L.

Theorem 6.3. Let (S , πo) be a bounded L-computational sequence. The natural McCormick
extension (FS ,DS , MRno) is a coherently concave, inclusion monotonic McCormick extension of
(fS , DS , Rno).

Proof. Follows from Theorem 2.4.32 in [155] in conjunction with Theorem 6.2.

Despite the discontinuity of fS , it is still possible to show that the standard McCormick
relaxations are continuous given a modification of Assumption 2.5.39 in [155].

Theorem 6.4. Assume that for each element u ∈ L with McCormick extension (u, MB, MR),
u(ZB, ·) is continuous on IB. Then, the standard McCormick relaxations of a bounded L-factorable
function f on X are locally Lipschitz on X for any X ∈ ID.

Proof. Follows from finite induction using the continuity assumption for each ok ∈ L
together with Lemma 2.5.38 in [155], which shows that (+, MR2, MR) and (×, MR2, MR)
are locally Lipschitz on MR2.
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6.1.2 Univariate piecewise continuous functions

From Definition 3.2, it is apparent that discontinuities of a bounded L-factorable function
must stem from discontinuities in some of elements of L. When there is only a finite
number of discontinuities, these functions can be reduced to products with a generic step
function, which incorporates the discontinuity, and continuous functions.

Suppose u : X → R is of the form

u(x) =
{

ϕ1(x) if x ∈ [x1, x1],
ϕ2(x) if x ∈ (x2, x2],

where X, X1, X2 ∈ IR, [x1, x1] = X1, (x2, x2] ⊂ X2, ϕ1 : X1 → R, ϕ2 : X2 → R, X = X1 ∪X2,
and x1 = x2 and let ϕ1, ϕ2 be continuous on their respective domains. Denote the step
function as ψ : R→ R, i.e.,

ψ(x) =
{

0 if x ≤ 0,
1 otherwise.

Then u(x) can be represented by

u(x) = ψ(x− x1)ϕ2(x) + [1− ψ(x− x1)]ϕ1(x). (6.1)

As a result, it is sufficient to analyze only ψ(x) in detail. The following result summarizes
the information relevant for the construction of McCormick relaxations.

Theorem 6.5. Consider ψ : R→ R as defined above. Then, (Ψ, IR, IR) given by

Ψ(X) =


[0, 0] if x ≤ 0,
[1, 1] if x > 0,
[0, 1] otherwise,

satisfies Assumption 3.1 and
ˇ
ψ(X, x), ψ̂(X, x) given by

ˇ
ψ(X, x) =


0 if x ≤ 0∨ (x > 0∧ x ≤ 0),
1 if x > 0,

x/x otherwise,

and

ψ̂(X, x) =


0 if x ≤ 0,
1 if x > 0∨ (x ≤ 0∧ x ≥ 0),

1− x/x otherwise.

as well as xmin(X) = x, xmax(X) = x satisfy Assumption 3.3 for all X ∈ IR and x ∈ X.
Consequently, a coherently concave, inclusion monotonic McCormick extension of ψ can be obtained
as defined by Equation (3.2). Furthermore, ψ(XB, ·) is continuous on IR for any XB ∈ IR.

Proof. It is easy to check the validity of the bounds and the inclusion monotonicity property.
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Similarly, the relaxations are easy to check when 0 /∈ X. If 0 ∈ X, consider the convex hull
of the epigraph of ψ which yields the convex underestimator given in the result. Similarly,
the concave overestimator is given by the convex hull of the hypograph.

Theorems 2.4.27, 2.4.29 and 2.4.30 in [155] are sufficient in light of Theorem 6.3 to
establish that (ψ, MR, MR) is a coherently concave, inclusion monotonic McCormick
extension.

Lastly, since the mid function is continuous and
ˇ
ψ(XB, ·) and ψ̂(XB, ·) are continuous

on R, it follows that ψ(XB, ·) is continuous on IR.

Remark 6.2. Strictly, ϕ1 and ϕ2 are defined on X1 and X2 only. When one defines oi(x) =
+∞ for x /∈ Xi and 0 ·+∞ = 0, the above statement also holds. Furthermore, when ϕ1 is
defined on X, an alternative to (6.1) is

u(x) = ψ(x− x1)[ϕ2(x)− ϕ1(x)] + ϕ1(x).

6.1.3 Examples of constructed relaxations

Next, it is demonstrated how more complicated functions with discontinuities can be
expressed using the previously introduced function ψ and the thus computed relaxations
are showcased. Example 6.1 shows how to model a function with multiple discontinu-
ities, including a point where the function attains neither its lower nor its upper limit.
Example 6.2 demonstrates that the discontinuity can depend on a factorable function of
the variables. In each case, the calculations are implemented using MC++, the successor of
libMC [41, 121], enhanced with functionality for ψ.

Example 6.1. Consider the lower semi-continuous function f1 : [1, 6]→ R with

f1(x) =


−(x− 2.5)2 + 4 if x ∈ [1, 3),
0 if x = 3,
e4−x + 3 if x ∈ (3, 4),
2x− 7 if x ∈ [4, 6].

It can be represented as

f1(x) =ψ(4− x)
{

ψ(x− 3)
[
e4−x + 3−

{
ψ(3− x)(−(x− 2.5)2 + 4− 0) + 0

}]
+
[
ψ(3− x)(−(x− 2.5)2 + 4− 0) + 0

]
− (2x− 7)

}
+ (2x− 7).

Its graph and a selection of the constructed relaxations are showcased in Figure 6.1. It is
worth while to point out several observations. First, the example shows that it is possible to
model functions with multiple discontinuities, including such where the function does not
attain either one-sided limit. Second, the generated relaxations are generally nonsmooth.
This is characteristic for McCormick relaxations and has been noted previously [121].
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(a) Graph of f1 (b) Graph of f1 and its relaxations

Figure 6.1: Graph of f1 (indicated by +) as well as convex relaxations (dashed line) and
concave relaxations (continuous line) constructed on several intervals. Note
that the scales on the vertical axes differ.

Example 6.2. Consider the lower semi-continuous function f2 : [0.5, 1.5]2 → R with

f2(x, y) =
{

0.5 sin(6y− 1)x2 if xy > 1,
2(x + y)− exy+1 if xy ≤ 1.

It can be represented as

f2(x, y) =ψ(1− xy)
[
2(x + y)− exy+1 − 0.5 sin(6y− 1)x2

]
+ 0.5 sin(6y− 1)x2.

Its graph and a selection of the constructed relaxations are showcased in Figure 6.2. Note
that ψ can take any arbitrary factor as argument, in this case a bilinear term, and thus the
discontinuity can depend on the variables nonlinearly.

6.1.4 Assumptions on f , ok and the interval and McCormick extension of ok

In Section 6.1.6, the convergence properties of standard McCormick relaxations of bounded
factorable functions will be investigated. Prior to this, some assumptions about the interval
extensions and the relaxations of the univariate functions will be made. This approach
allows a more general discussion compared to only studying a selection of univariate
intrinsic functions or particular factorable functions.

In addition to Assumptions 3.1 and 3.3, two additional assumptions will be made
subsequently. While the previous assumptions have also been introduced in [155] and
Assumption 6.1 is a less stringent assumption than Assumption 2.5.39 in [155], Assump-
tion 6.2 is newly introduced here and will be discussed in more detail below. In the setting
considered in [155], it can be taken for granted.
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(a) Graph of f2

(b) Graph of f2 and its relaxations

Figure 6.2: Graph of f2 as well as its convex and concave relaxations on [0.5, 1.5]2. Note
that the scales on the vertical axes differ.

Assumption 6.1. Assume that for each u ∈ L with McCormick extension (u, MB, MR),
u(ZB, ·) is continuous on IB for any ZB ∈ IB.

Note that is has been shown in Theorem 6.5 that the convex and concave relaxations of
ψ satisfy Assumption 6.1.

In order to streamline the presentation, the next assumption will be introduced, which
is sufficient to prove convergence of

ˇ
f to f . This assumption is discussed in more detail in

Section 6.1.5. There, more insight into prerequisites for convergence of the relaxations to
the function is given. Lastly, it should be pointed out that this assumption is imposed on
a given factorization of a bounded factorable function f while the previous assumptions
were imposed on L.

Assumption 6.2. Consider a nested sequence of intervals Xl → X∗ = [x∗, x∗], Xl ∈ DS ,
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i vi V l
i ˇ

vl
i v̂l

i

1 x [−l−1, l−1] x x

2 ψ(v1) [0, 1]
{

0 if x ≤ 0
xl otherwise

{
1 + xl if x ≤ 0

1 otherwise

3 v2 − v2 [−1, 1]
{
−xl − 1 if x ≤ 0
xl − 1 otherwise

{
1 + xl if x ≤ 0
1− xl otherwise

Table 6.1: Factorization of f = ψ(x)− ψ(x) on Xl = [−l−1, l−1].

Xl 6= X∗. For each ni < k ≤ n f , assume that for each n < k ≤ m

lim
l→∞

Vk(Xl) = [ lim
l→∞

inf
x∈Xl

vk(x), lim
l→∞

sup
x∈Xl

vk(x)]. (6.2)

Note that liml→∞ infx∈Xl vk(x) does not refer to lim infx→x∗ vk(x). Assumption 6.2 states
that, as Xl approaches the degenerate interval X∗, the bounds computed for each of the
factors become as tight as possible. Since the bounds on the step mappings vk are obtained
from interval arithmetic, this clearly holds when f is composed of continuous factors.
When f is discontinuous however, this is not necessarily true. For example, the dependency
problem in interval arithmetic is exacerbated and bounds do not necessarily converge to
the function as the host set converges to a degenerate interval. This is demonstrated in the
example below.

Example 6.3. Consider the continuous function f : [−1, 1]→ R with f (x) = ψ(x)− ψ(x).
It can be equivalently written as f (x) = 0. Consider the nested sequence of intervals
Xl = [−l−1, l−1] that converges to X∗ = [x∗, x∗] with x∗ = 0. It can be shown that the
relaxations do not converge in this case. Consider this factorization given in Table 6.1. For
all l, the relaxations of f constructed on Xl evaluated at x∗ yield

ˇ
vl

3(Xl , [0, 0]) = −1 and
v̂l

3(Xl , [0, 0]) = 1, i.e., liml→∞ ˇ
vl

3(Xl , [0, 0]) = −1 and liml→∞ v̂l
3(Xl , [0, 0]) = 1 whereas the

relaxations of f constructed on the degenerate interval X∗ are
ˇ
v∗3(Xl , [0, 0]) = f (0) = 0

and v̂∗3(Xl , [0, 0]) = f (0) = 0, also see Figure 6.3.

Note that, in this case, there exists a factorization that circumvents this dependency
problem, namely f (x) = 0. Thus, depending on the problem formulation, this limitation
may be avoided.

Similarly, applying a univariate function to a discontinuous factor may lead to bounds
that do not converge to the infimum/supremum as Xl → X∗. To see this, consider the
univariate function u(x) = cos(x− 0.75), the bounded factorable function f (x) = u(ψ(x))
and Xl = [−l−1, l−1], X∗ = [0, 0]. Again, Ψ(Xl) = [0, 1] and F(Xl) = [cos(−0.75), 1] while
Ψ(X∗) = [0, 0] and F(X∗) = [cos(−0.75), cos(−0.75)]. Furthermore, f (x) = cos(−0.75)
for all x ∈ [−1, 0] and f (x) = cos(0.25) for all x ∈ (0, 1]. Thus, the upper bound does not
converge to the supremum as desired. This is due to the fact that there exists a y ∈ (0, 1)
so that u(y) > max(u(0), u(1)). Again, this can be avoided when the problem is recast as
f (x) = ψ(x)(cos(0.25)− cos(−0.75)) + cos(−0.75). Similar examples can be constructed

115



Chapter 6 Global optimization of discontinuous functions

Figure 6.3: Graph of f (indicated by +) as well as five of its convex and concave relaxations
(indicated by dashed and continuous lines, respectively) for l = 1, 2, 4, 8, 16.

so that the lower bound does not converge to the infimum.

6.1.5 Discussion of sufficient conditions for convergence of the relaxations

Here, three lemmata will be given that present sufficient conditions for Assumption 6.2 to
hold for a given factor vk and thus can be used in a finite induction argument to establish
Assumption 6.2. In particular, they formalize the discussion in Section 6.1.4 and show that,
to establish Assumption 6.2, it is sufficient to exclude these cases from occurring. First,
overestimation in binary operations is considered. Here, two reasonably strong results can
be given. Then, attention will be directed to univariate functions where more restrictive
assumptions need to be made.

Lemma 6.2. Consider any k such that ni < k ≤ n f where vk is defined by a summation or
multiplication. Consider a nested sequence of intervals Xl → X∗ = [x∗, x∗], Xl ∈ ID, and Xl 6=
X∗. Suppose Assumption 6.2 holds for all i, j < k. Suppose that vi and vj are discontinuous with
respect to x at x∗ and that these discontinuities are introduced at earlier factors ki ≤ i and k j ≤ j,
i.e., vki = ψ ◦πki(v1, . . . , vki−1) and vk j = ψ ◦πk j(v1, . . . , vk j−1). Assume that vki and vk j are the
only discontinuous elements. Define subsets of Xl as Ξl

i = {x ∈ Xl : πki(v1(x), . . . , vki(x)) > 0}
and Ξl

j = {x ∈ Xl : πk j(v1(x), . . . , vk j−1(x)) > 0}. If there exists a L ∈N so that for all l > L,

Ξl
i ∩ Ξl

j 6= ∅, Ξl
i ∩ (Xl\Ξl

j) 6= ∅, (Xl\Ξl
i) ∩ Ξl

j 6= ∅, (Xl\Ξl
i) ∩ (Xl\Ξl

j) 6= ∅,

then Assumption 6.2 holds for k.

Proof. By assumption, there exist four sequences {xl
1}, . . . , {xl

4} converging to x∗ where
xl

1 ∈ Ξl
i ∩ Ξl

j, xl
2 ∈ Ξl

i ∩ (Xl\Ξl
j), xl

3 ∈ (Xl\Ξl
i) ∩ Ξl

j, and xl
4 ∈ (Xl\Ξl

i) ∩ (Xl\Ξl
j).

For any Xl with l > L, the image of vki is V l
ki
= [0, 1] as Ξl

i is a nonempty strict subset
of Xl , vki(x

l
q) = 1 for q = 1, 2 and vki(x

l
q) = 0 for q = 3, 4. Thus, V l

ki
is an exact bound of
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the range of vki . Consider the finite sequence of s + 1 continuous factors, say vi1 , . . . , vis , vi
with ki < i1 < . . . < is < i, that maps Vki to Vi. By assumption, other arguments involved
in the definition of the factors vi1 , . . . , vis , vi are continuous step mappings and, as a result,
their corresponding interval bounds converge to degenerate intervals as l → ∞.

Consider factor vi1 and let [v∗i1 , v∗i1 ] = liml→∞[vl
i1 , vl

i1 ]. If this step mapping is a binary
operation combining vki with a continuous factor, Vi1 will converge to a non-degenerate
interval and, without loss of generality, v∗i1 = liml→∞ vl

i1(x
l
q) for q = 1, 2 and v∗i1 =

liml→∞ vl
i1(x

l
q) for q = 3, 4. If this step mapping is a univariate operation, Assumption 6.2

guarantees that Vi1 will converge to the exact bounds, i.e., without loss of generality, v∗i1 =
liml→∞ vl

i1(x
l
q) for q = 1, 2 and v∗i1 = liml→∞ vl

i1(x
l
q) for q = 3, 4. Repeating this argument

for the factors vi2 , . . . , vis , vi, it follows without loss of generality that v∗i = liml→∞ vl
i(x

l
q)

for q = 1, 2 and v∗i = liml→∞ vl
i(x

l
q) for q = 3, 4 where [v∗i , v∗i ] = liml→∞[vl

i , vl
i ]. It can

be argued similarly that, without loss of generality, v∗j = liml→∞ vl
j(x

l
q) for q = 1, 3 and

v∗j = liml→∞ vl
j(x

l
q) for q = 2, 4 where [v∗j , v∗j ] = liml→∞[vl

j, vl
j].

Thus, each combination of the bounds of vi and vj is attained in the neighborhood of
x∗. In particular, in the case of addition, the sequences {vi(xl

1)}, {vj(xl
1)} and {vi(xl

4)},
{vj(xl

4)} converge to v∗i , v∗j and v∗i , v∗j , respectively. Thus, [v∗k , v∗k ] = [v∗i , v∗i ] + [v∗j , v∗j ]
is, in the limit, an exact bound. A similar argument can be presented for the case of
multiplication. Here, each combination of lower and upper bounds on vi and vj is realized
by a different sequence {xl

q}, q = 1, . . . , 4. Thus, Assumption 6.2 holds for k.

Remark 6.3.

• Lemma 6.2 considers the case of adding or multiplying vi and vj where vi and vj
are discontinuous in the limit x∗ and these discontinuities are introduced by exactly
one ψ function each. Then, the dependency problem in interval arithmetic can
be mitigated when there exist regions in each interval Xl so that all combination
of the lower and upper bounds of the factors vi and vj are attained. This can be
alternatively expressed as requiring that the intrinsic discontinuities do not coincide
in a neighborhood of x∗. A case where this hypothesis of Lemma 6.2 holds is
illustrated in Figure 6.4 (a).

• A counterexample can be given to show that Lemma 6.2 cannot be easily extended to
the case when more than n intrinsic discontinuities coincide at x∗ ∈ Rn. To see this,
consider f (x) = 1 + ψ(x1) + ψ(x2)− ψ(x1 + x2), X = [−1, 1]2 and Xl = [−l−1, l−1]2.
As shown in Figure 6.4 (b), three intrinsic discontinuities coincide at (0, 0). The
bounds of f on Xl obtained from the natural interval extension of f are F(Xl) = [0, 3].
They are not attained for any x ∈ Xl and any l and thus Assumption 6.2 does not
hold.

• Also note that, given Assumption 6.2, the exacerbated dependency problem of
interval arithmetic is not acute when there is only one discontinuity present in either
vi or vj at x∗. This has been exploited in the proof of Lemma 6.2.
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x1

x2
Ξ1

Ξ2

x2

x*

(a) Illustration showing a case where hypothesis
of Lemma 6.2 holds

x1

x2

x*

2

1

2

1

2
1

l-1

l-1-l-1
-l-1

(b) Counterexample showing when Assumption 6.2
does not hold. The digits indicate the value of
f (x) = 1 + ψ(x1) + ψ(x2)− ψ(x1 + x2) in the 6

subsets of Xl = [−l−1, l−1]
2, note that f = 0,

f = 3.

Figure 6.4: Illustrations for Assumption 6.2 when X ⊂ R2. The curves indicate discontinu-
ities introduced at previous factors.

• Lastly, observe that the hypotheses of Lemma 6.2 cannot be satisfied when Xl ⊂ R.
At most three subsets of X in the vicinity of x∗, {x : x < x∗}, {x : x = x∗} and
{x : x > x∗}, are conceivable where vi and vj could attain their lower and upper
bounds. To guarantee that Assumption 6.2 holds for vk, the interval arithmetic for
vi + vj or vivj needs to combine the bounds in such a way that vk attains both its
lower and upper bound. However, it is easy to conceive counterexamples where this
is not true, e.g., see the discussion prior to Lemma 6.2.

Though it was pointed out that there are counterexamples restricting the generaliza-
tion of Lemma 6.2 when more than 2 intrinsic discontinuities coincide at x∗ in R2, a
generalization is possible to n intrinsic discontinuities coinciding in Rn.

Lemma 6.3. Consider any k such that n < k ≤ m where vk is defined by summation or
multiplication. Suppose Assumption 6.2 holds for all i, j < k. Consider a nested sequence of
intervals Xl → X∗ = [x∗, x∗], Xl ∈ IC, Xl 6= X∗. Suppose that vi and vj are discontinuous with
respect to x at x∗ and that these discontinuities are introduced by q ≤ n earlier factors k1, . . . , kq,
i.e., vkq̃ = ψ ◦ πkq̃(v1, . . . , vrq̃) with vrq̃(x

∗) = 0 for q̃ = 1, . . . , q. Assume that vrq̃ is differentiable
with respect to x at x∗, for all q̃ = 1, . . . , q, and denote the gradient of vrq̃ at x∗ as ∇vq̃. If
∇v1, . . . ,∇vq are linearly independent, then Assumption 6.2 holds for k.

Proof. Define subsets of Xl as Ξl
q̃ = {x ∈ Xl : vrq̃ > 0}, q̃ = 1, . . . , q. Requiring linear

independence of ∇v1, . . . ,∇vq is a sufficient condition for the existence of 2q nonempty
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6.1 Relaxations of bounded L-factorable functions

subsets of Xl that realize all combinations of Ξl
q̃ with Ξl

q̂ or Xl\Ξl
q̂, q̂ = 1, . . . , q, q̂ 6= q̃, for

all l > L for some L ∈ N. Thus, the argument used in the proof of Lemma 6.2 can be
extended to show that each possible combination of the bounds on intermediate factors is
indeed realized.

Lemma 6.4. Consider any k such that n < k ≤ m where vk is defined by vk = ψ(vi). Consider a
nested sequence of intervals Xl → X∗ = [x∗, x∗], Xl ∈ ID, Xl 6= X∗. Suppose either

1. that vi(x∗) = 0 and that for all l > 0 there exists a x†
l ∈ Xl and a ε l > 0 so that vi(x†

l ) = ε l ,

2. that there exists a L1 > 0 so that vl
i ≤ 0 for all l ≥ L1, or

3. that there exists a L2 > 0 so that vl
i > 0 for all l ≥ L2.

Then, Assumption 6.2 holds for k.

Proof. Consider Case 1. By assumption, vl
k = 0 and vl

k = 1, ∀l so that liml→∞[vl
k, vl

k] = [0, 1].
Furthermore, it holds that

[ lim
l→∞

inf
x∈Xl

vk(x), lim
l→∞

sup
x∈Xl

vk(x)] = [ lim
l→∞

inf
x∈Xl

ψ(vi(x)), lim
l→∞

sup
x∈Xl

ψ(vi(x))]

= [ψ(vi(x∗)), lim
l→∞

ψ(vi(x†
l ))]

= [ψ(0), lim
l→∞

ψ(ε l)] = [0, 1].

Consider Case 2. By assumption, [vl
k, vl

k] = [0, 0] for all l ≥ L1. Thus, vk(x) = 0 for all
x ∈ XL1 so that [liml→∞ infx∈Xl vk(x), liml→∞ supx∈Xl vk(x)] = [0, 0] = liml→∞[vl

k, vl
k].

Consider Case 3. By assumption, [vl
k, vl

k] = [1, 1] for all l ≥ L1. Thus, vk(x) = 1 for all
x ∈ XL2 so that [liml→∞ infx∈Xl vk(x), liml→∞ supx∈Xl vk(x)] = [1, 1] = liml→∞[vl

k, vl
k].

Thus, Eq. (6.2) and, hence, Assumption 6.2 hold for factor k.

Lemma 6.5. Consider a nested sequence of intervals Xl → X∗, Xl ∈ IC, Xl 6= X∗ and a
continuous function f : X → R. Then,

lim
l→∞

inf
x∈Xl

f (x) = inf
x∈X∗

f (x) and lim
l→∞

sup
x∈Xl

f (x) = sup
x∈X∗

f (x).

Proof. Fix ε > 0. Let x∗min ∈ arg minx∈X∗ f (x), the infimum is attained since X∗ is compact
and f is continuous on X∗. Since Xl ⊂ X is compact and f is continuous on X, f
is uniformly continuous on Xl . Uniform continuity of f implies that ∃δ > 0 so that
| f (x) − f (y)| < ε for all x, y ∈ Xl for which ‖x − y‖2 < δ

√
n. Convergence of Xl to

X∗ implies that there is a L > 0 so that dH(Xl , X∗) < δ for all l > L. By definition of
the Hausdorff metric, xl

i > x∗i − δ and xl
i < x∗i + δ for all l > L and i = 1, . . . , n. Thus,

f (x†) + ε > f (x‡) where x† ∈ Xl\X∗ and x‡ ∈ ∂X∗ with ∂X∗ denoting the boundary
of X∗. By definition, f (x) ≥ f (x∗min), ∀x ∈ X∗ so that f (x‡) ≥ f (x∗min). As a result,
f (x) + ε > f (x∗min) for all x ∈ Xl with l > L. Since Xl ⊃ X∗, infx∈Xl f (x) ≤ f (x∗min) for all
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Chapter 6 Global optimization of discontinuous functions

l. ε is arbitrary so that liml→∞ infx∈Xl f (x) = infx∈X∗ f (x). An analogous argument can be
made to show that liml→∞ supx∈Xl f (x) = supx∈X∗ f (x).

Lemma 6.6. Consider any k such that n < k ≤ m where vk is defined by a continuous ok ∈ L.
Suppose Assumption 6.2 holds for all i < k. Consider a nested sequence of intervals Xl → X∗ =
[x∗, x∗], Xl ∈ ID, Xl 6= X∗. Let [v∗i , v∗i ] = liml→∞[vl

i , vl
i ]. Then, Assumption 6.2 holds for k if

min{ok(v∗i ), ok(v∗i )} = ok([v
∗
i , v∗i ]) and max{ok(v∗i ), ok(v∗i )} = ok([v∗i , v∗i ]).

Proof. First, suppose that vi is continuous with respect to x at x∗. Then, [v∗i , v∗i ] is a
degenerate interval. Since Ok is an interval extension, Ok([v∗i , v∗i ]) is also a degenerate
interval and, hence, Eq. (6.2) holds.

Next, suppose that vi is not continuous with respect to x at x∗. Since Assumption 6.2
holds for factor i, liml→∞[vl

i , vl
i ] = [liml→∞ infx∈Xl vi(x), liml→∞ supx∈Xl vi(x)] follows. Con-

sider the sequence V l
i = [vl , vl ] converging to V∗i = [v∗, v∗]. According to Lemma 6.5, it

holds that liml→∞ infz∈V l
i

ok(z) = infz∈V∗i ok(z) and liml→∞ supz∈V l
i

ok(z) = supz∈V∗i
ok(z).

The hypothesis of the lemma imply furthermore that ok([v∗i , v∗i ]) = infz∈[v∗i ,v∗i ] ok(z) and
that ok([v∗i , v∗i ]) = supz∈[v∗i ,v∗i ]

ok(z). Therefore it follows that

[ lim
l→∞

inf
x∈Xl

vk(x), lim
l→∞

sup
x∈Xl

vk(x)] = [ lim
l→∞

inf
z∈V l

i

ok(z), lim
l→∞

sup
z∈V l

i

ok(z)]

= [ inf
z∈V∗i

ok(z), sup
z∈V∗i

ok(z)] = Ok([v∗i , v∗i ]) = [v∗k , v∗k ],

i.e., Eq. (6.2) holds and, hence, Assumption 6.2 is established for factor k.

Remark 6.4. An example of a class of univariate functions u ∈ L that can meet the
hypotheses of Lemma 6.6 are monotone functions. However, the specific implementation
of the interval extension (u, IB, IR) will dictate if u indeed meets the hypotheses of
Lemma 6.6.

6.1.6 Relaxations on sequences of intervals

The use of the standard McCormick relaxations in a branch-and-bound algorithm requires
further investigation of their behavior with respect to the set on which they are defined. In
this section, some properties of the relaxations will be established in such a setting. While
the definitions are taken from Scott et al. [156], the facts established hereafter are novel
and are not immediate. In the following, it will be assumed that Assumptions 3.1,3.3 and
6.1 hold. As noted earlier, Assumption 6.2 will only be required to show convergence
of the bounding operation. It will be pointed out in the statement of the theorem when
it is necessary. In the following, a property of the relaxation is first defined and then
established by proof. Necessary intermediate results are stated as lemmas.

Definition 6.2. Let f : D → R be bounded on D ∈ IRn. An algorithm which generates
convex and concave relaxations

ˇ
f l and f̂ l , respectively, of f on any Xl ∈ ID is partition
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6.1 Relaxations of bounded L-factorable functions

monotonic if, for any subintervals Xl2 ⊂ Xl1 ⊂ C,
ˇ
f l2(x) ≥

ˇ
f l1(x) and f̂ l2(x) ≤ f̂ l1(x),

∀x ∈ Xl2 .

Theorem 6.6. Standard McCormick relaxations of bounded L-factorable functions are partition
monotonic.

Proof. As shown in [155, Theorem 2.6.5], this follows immediately from inclusion mono-
tonicity of the natural McCormick extension, Theorem 6.3.

Definition 6.3. An algorithm which generates convex and concave relaxations of f : D → R

is weakly partition convergent if, for any nested and convergent sequence of subintervals
of D, Xl → X∗, Xl 6= X∗, the sequences convex and concave relaxations of f on Xl , {

ˇ
f l}

and { f̂ l}, converge uniformly to continuous convex and concave relaxations of f on X∗,

ˇ
f ∗ and f̂ ∗, respectively.

Note that this definition deviates from the definition of partition convergent in [156].
Any continuous convex and concave relaxations of f ,

ˇ
f ∗ and f̂ ∗, meet the definition while

Scott et al. [156] require convergence of
ˇ
f l and f̂ l to the convex and concave relaxations

generated on X∗, respectively.

Lemma 6.7. Let { f l} be a sequence of functions defined on D ∈ IRn and suppose that { f l}
converges pointwise to f on D. If { f l} is nondecreasing, i.e., f l(x) ≤ f l+1(x), ∀x ∈ X, and each
f l is lower semi-continuous on X, then f is lower semi-continuous on X.

Proof. A function g : Rn → R∪ {+∞} is lower semi-continuous on Rn if and only if the
level sets {x ∈ Rn : g(x) ≤ γ} are closed for all γ ∈ R [82, p. 148]. This allows to extend
the proof of Theorem 5.27 in [68] to X ∈ IRn easily.

Lemma 6.8. Let f : D → R be bounded L-factorable. Suppose Xl → X∗ is a nested sequence
of intervals with Xl ∈ ID, Xl 6= X∗ and consider the sequence of convex standard McCormick
relaxations of f on Xl , {

ˇ
f l}. Then, {

ˇ
f l} converges pointwise on X∗ to an arbitrary function,

denoted as
ˇ
f ∗, that is continuous on X∗ and a convex relaxation of f on X∗.

Proof. For any x ∈ X∗ and l > 0,
ˇ
f l+1(x) ≥

ˇ
f l(x) by Theorem 6.6 and

ˇ
f l(x) ≤ f (x) by

Theorem 6.3. Thus,
ˇ
f l converges pointwise to some function on X∗. This establishes

existence of
ˇ
f ∗.

ˇ
f l is convex by Theorem 6.3. Let x, y ∈ X∗ and λ ∈ [0, 1]. Set z =

λx + (1− λ)y. Convexity of
ˇ
f l on X∗ for all l implies that

ˇ
f ∗ is a convex relaxation of f

on X∗ since

ˇ
f ∗(z) = lim

l→∞ ˇ
f l(z) ≥ λ lim

l→∞ ˇ
f l(x) + (1− λ) lim

l→∞ ˇ
f l(y) = λ

ˇ
f ∗(x) + (1− λ)

ˇ
f ∗(y).

As a result of Theorem 6.4, which establishes continuity of
ˇ
f l , Lemma 6.7 can be applied

to find that
ˇ
f ∗ is lower semi-continuous on X∗. Lower semi-continuity and convexity of

ˇ
f ∗

on X∗ imply continuity of
ˇ
f ∗ on X∗ [143, Theorems 10.2 and 20.5].
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Chapter 6 Global optimization of discontinuous functions

Theorem 6.7. Standard McCormick relaxations of bounded L-factorable functions are weakly
partition convergent.

Proof. Suppose Xl is a nested and convergent sequence of subintervals of X, Xl → X∗,
and Xl 6= X∗. The intervals Xl are closed and bounded by definition and hence compact.
Consider the sequence of convex standard McCormick relaxations {

ˇ
f l}. Lemma 6.8

and Theorem 6.6 establish that the relaxations converge pointwise monotonically to a
continuous function for each x ∈ X∗. Rudin [145, Theorem 7.13] shows that this is sufficient
for uniform convergence of {

ˇ
f l} to

ˇ
f ∗ on X∗. A similar argument can be made to show

f̂ l → f̂ ∗ uniformly and the theorem follows.

Definition 6.4. A procedure such as in Definition 6.2 is degenerate perfect if X∗ = [x, x] for
any x ∈ D implies that

ˇ
f ?(x) = f (x) = f̂ ?(x) where

ˇ
f ?(x) and f̂ ?(x) denote the convex

and concave relaxations of f on X∗, respectively.

Theorem 6.8. Standard McCormick relaxations of bounded L-factorable functions are degenerate
perfect.

Proof. This follows directly as natural McCormick extensions are McCormick extensions,
Theorem 6.3.

Remark 6.5. Note that Theorem 6.7 and Theorem 6.8 do not imply that, for any nested
sequence of subintervals of X with {Xl} → [x∗, x∗], Xl 6= [x∗, x∗] and x ∈ X, {

ˇ
f l(x∗)} →

f (x∗) and { f̂ l(x∗)} → f (x∗). While this was asserted in [156], the utilized Lipschitz
properties of

ˇ
f l and f̂ l do not hold here. Example 6.3 in Section 6.1.3 demonstrates that

there are bounded factorable functions where {
ˇ
f l(x)} →

ˇ
f ∗(x∗) 6= f (x∗).

Theorem 6.9. Assume f is a bounded L-factorable lower semi-continuous function derived from a
bounded L-computational sequence such that Assumption 6.2 holds. Suppose {Xl} is a sequence
of nested subintervals of D converging to X∗ = [x∗, x∗], Xl 6= X∗. Let

ˇ
f l : Xl → R be

standard McCormick relaxations of f : D → R on Xl and let xl
min ∈ arg minx∈Xl

ˇ
f l(x). Then,

liml→∞
ˇ
f l(xl

min) = f (x∗).

Proof. Fix ε > 0. Lower semi-continuity of f guarantees that f (x∗) ≤ lim infx→x∗ f (x). Note
that liml→∞ infx∈Xl\X∗ f (x) ≥ lim infx→x∗ f (x) as, for each l, Xl is a subset of a suitable
neighborhood of x∗ referenced in the definition of the lower limit. Therefore, it follows that
f (x∗) ≤ liml→∞ infx∈Xl\X∗ f (x). Furthermore, it is true that liml→∞ infx∈Xl f (x) = f (x∗)

since liml→∞ infx∈Xl f (x) = min
{

f (x∗), liml→∞ infx∈Xl\X∗ f (x)
}

.

Assumption 6.2 implies that liml→∞ f l = liml→∞ infx∈Xl f (x). liml→∞
ˇ
f l(x∗) exists, see

Lemma 6.8, and let it be denoted as
ˇ
f ∗(x∗). Since f l ≤

ˇ
f l(x∗), it holds that liml→∞ f l ≤

ˇ
f ∗(x∗). Pointwise convergence of

ˇ
f implies that there exists L1 ∈ N so that |

ˇ
f l(x∗) −

ˇ
f ∗(x∗)| ≤ ε, ∀l ≥ L1. Consequently,

f (x∗) = lim
l→∞

inf
x∈Xl

f (x) = lim
l→∞

f l ≤
ˇ
f ∗(x∗) ≤

ˇ
f l(x∗) + ε, ∀l ≥ L1.
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6.2 Branch-and-bound for bounded factorable optimization

Continuity of
ˇ
f L1 guarantees existence of δ > 0 with

|
ˇ
f L1(x)−

ˇ
f L1(x∗)| < ε, ∀x ∈ XL1 : ‖x− x∗‖2 < δ.

Since Xl → X∗, there exists L2 ∈N so ‖x− x∗‖2 < δ for all x ∈ XL2 .
Let L = max{L1, L2}. Theorem 6.6 and the previous argument imply that

ˇ
f L(x) ≥

ˇ
f L1(x) >

ˇ
f L1(x∗)− ε, ∀x ∈ XL.

Consequently,
ˇ
f L1(x∗)−

ˇ
f L(xL

min) ≤ ε. As a result,

f (x∗)−
ˇ
f L(xL

min) = [ f (x∗)−
ˇ
f L1(x∗)] + [

ˇ
f L1(x∗)−

ˇ
f L(xL

min)] ≤ 2ε.

Since ε was arbitrary, the theorem follows.

Remark 6.6. Note that dropping the assumption of lower semi-continuity of f in Theorem 6.9
results in a weaker statement. Since f (x∗) ≤ liml→∞ infx∈Xl\X∗ f (x) is not necessarily true
then, one can only show that

ˇ
f l(xl

min) converges to

min
{

lim
l→∞

inf
x∈Xl\X∗

f (x), f (x∗)
}

.

If x∗ is in the interior of Xl , ∀l, then one can prove convergence to

min
{

lim inf
x→x∗

f (x), f (x∗)
}

,

a statement that does not depend on the sequence of partition elements {Xl}. In this
sense it is more general, but it is also a weaker result since liml→∞ infx∈Xl\X∗ f (x) ≥
lim infx→x∗ f (x).

In this section, fundamental properties of the relaxations of bounded factorable functions
with discontinuities have been established and assumptions are clarified when these results
hold. These results are important when the relaxations are to be used in a branch-and-
bound algorithm.

6.2 Branch-and-bound for bounded factorable optimization

In this section, it will be shown that McCormick relaxations of bounded factorable functions
can be used to obtain a convergent branch-and-bound algorithm under mild assumptions.
Branch-and-bound methods can be used to find a global minimum of a nonconvex
nonlinear program. The standard reference for this class of algorithms, Horst and Tuy [88],
considers continuous functions only when a general theoretical framework is constructed
and convergence proofs are established. The work rests on several assumptions for the
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bounding, selection and refining operations [88]. The bounding operation is responsible
for generating lower and upper bounds on the optimal objective value on a partition
element, while the latter two are responsible for selecting a partition element for further
investigation and refining it. In the remainder of this section, the discussion will be focused
on the bounding operation.

The following definitions are adopted from Horst and Tuy [88] and Horst [87].

Definition 6.5 ([cf. 88, p. 117]). Suppose X ⊂ Rn and let I be a finite index set. A set
P = {Xl : l ∈ I} with nonempty Xl ⊂ X is called a partition of X with partition elements Xl

if X =
⋃

l∈I Xl and Xl1 ∩ Xl2 = ∂Xl1 ∩ ∂Xl2 , ∀l1 6= l2 ∈ I, where ∂Xl1 and ∂Xl2 denote the
relative boundaries of Xl1 and Xl2 , respectively.

Definition 6.6. Suppose Xl is an element of a partition P of X with Xl ∩ E 6= ∅ where E is
the feasible set of (1.1). α(Xl) is called an upper bound of (1.1) on Xl if α(Xl) = f (x) for some
x ∈ Xl ∩ E. Similarly, β(Xl) is called a lower bound of (1.1) on Xl if β(Xl) ≤ infx∈Xl∩E f (x).

Let k ∈ N denote the iteration of a branch-and-bound algorithm with partition Pk of
X and corresponding index set Ik. Set α0 = +∞. Then, αk = min

{
αk−1, minl∈Ik{α(Xl)}

}
and βk = minl∈Ik{β(Xl)} denote the current upper and lower bound of (1.1) at iteration k,
respectively.

Definition 6.7. Suppose X̃ is a partition element of a partition P of X. A procedure that
generates a partition P ′ of X̃ with at least two nonempty partition elements is called a
subdivision or refinement of X̃.

Definition 6.8. Suppose {Pk} is an infinite sequence of partitions of X. It is called
successively refined when, for each k, there exists a X̃ ∈ Pk and a K > k so that X̃ has been
refined in PK. A sequence {Xk} is called an infinitely decreasing sequence of successively
refined partition elements when {Pk} is successively refined, Xk ∈ Pk and Xk ⊃ Xk+1.

Definition 6.9 ([cf. 88, p. 136]). The “deletion by infeasibility” rule used in the branch-and-
bound algorithm is called certain in the limit if for every infinitely decreasing sequence of
successively refined partition elements {Xl} it holds that X̄ ∩ E 6= ∅ where X̄ =

⋂
l Xl .

Definition 6.10 ([cf. 88, p. 140]). Suppose X̃ is a partition element of a partition P of X.
Consider the sequence of all partition elements {X̃l}, X̃l ⊂ X̃, generated by repeated
subdivision of X̃. Let δ(X) denote the diameter of X, δ(X) = supx,y∈X ‖x − y‖2. The
subdivision of X̃ is called exhaustive if limq→∞ δ(X̃lq) = 0 for all nested subsequences {X̃lq}
of {X̃l}, i.e., X̃ ⊃ X̃l1 ⊃ X̃l2 ⊃ . . ..

Definition 6.11 ([88, p. 129]). Denote as Rk the set of partition elements of X that have
not been fathomed prior to iteration k. If infx∈X̃∩E f (x) ≥ limk→∞ αk for every X̃ ∈⋃∞

p=1
⋂∞

k=pRk, then the selection operation is called complete.

Definition 6.12 ([88, p. 130]). Suppose X̃ is a partition element of the partition Pk of X at
iteration k so that β(X̃) = βk. If X̃ (possibly among other partition elements) is selected
for refinement, the selection operation is called bound improving.
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6.2 Branch-and-bound for bounded factorable optimization

Definition 6.13 ([88, p. 128]). Suppose that, at every iteration k, any unfathomed partition
element X̃ ∈ Pk can be refined and that any infinitely decreasing sequence of successively
refined partition elements {Xl} satisfies

lim
l→∞

[αkl − β(Xl)] = 0

where kl denotes the iteration at which partition element Xl is refined. Then, the lower
bounding operation is called consistent.

Definition 6.14 ([cf. 87, p. 24]). Suppose that for any infinitely decreasing sequence of
successively refined partition elements {Xl} generated by an exhaustive subdivision and
satisfying liml→∞ Xl → {x†}, there exists a subsequence {Xlq} such that

lim
q→∞

β(Xlq) ≥ min
{

lim inf
x→x†

f (x), f (x†)

}
.

Then, the lower bounding operation is called strongly consistent.

In the remainder of the chapter, only partitions using intervals as partition elements
are considered. Note that the diameter of an interval X is given by δ(X) =

√
∑n

i=1 w(Xi)2.
Horst and Tuy point out that bisection of an interval at the midpoint of the longest edge is
an exhaustive subdivision [88, p. 144].

6.2.1 Convergence results when minimum is attained

First, it is assumed that f is lower semi-continuous or that f attains its minimum on E.
As remarked by Horst and Tuy, finiteness and convergence properties of the branch-

and-bound algorithm depend on the behavior of α(Xl)− β(Xl) in the limit [88, p. 128].
Whereas favorable behavior of the McCormick relaxations of factorable functions in this
spirit has been argued previously [156], it still needs to be established for the case of
bounded factorable functions. In the following, f is assumed to be bounded factorable
and the lower bound of (1.1) on a partition element X̃ ∈ IC, β(X̃), is found by constructing
the convex McCormick relaxation

ˇ
f on X̃ and minimizing it, i.e., β(X̃) = minx∈X̃

ˇ
f (x).

Theorem 6.10 ([cf. 87, p. 28f]). Suppose that Assumption 6.2 holds and that f is lower semi-
continuous. Assume that at every step any unfathomed partition element can be refined. Suppose
that the subdivision is exhaustive. Then, the lower bounds of (1.1) obtained by minimizing the
McCormick relaxations are strongly consistent.

Proof. It is sufficient to show that, for every decreasing sequence of successively refined
partition elements {Xl} generated by an exhaustive subdivision such that liml→∞ Xl =⋂

l Xl = X̄ = [x∗, x∗], there is a subsequence {Xlq} satisfying limq→∞ β(Xlq) = f (x∗). This
is guaranteed by Theorem 6.9 since β(Xlq) = minx∈Xlq

ˇ
f lq(x). Lower semi-continuity of f

implies that f (x∗) ≤ lim infx→x∗ f (x) and hence strong consistency follows.
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Consider the definition of β(Xl) and βk = minl∈Ik{β(Xl)} and denote as Lk an element
of the index set Ik such that β(XLk) = βk. Let xmin(Xl) ∈ arg minx∈Xl

ˇ
f l(x) and define

xk
min ≡ xmin(XLk). Similarly, denote as xk ∈ E a point corresponding to αk, i.e., αk = f (xk).

Horst [87, Theorem 2.1] proves that, for a continuous function f , a strongly consistent lower
bounding operation in combination with some additional assumptions is sufficient to show
that the lower bound βk converges to the optimal value of (1.1) and that accumulation
points of {xk

min} solve (1.1). The argument can also be applied to functions that attain their
minimum on E.

Theorem 6.11 ([cf. 87, p. 25f]). Suppose that the subdivision of partition elements is exhaustive,
that the selection operations is bound improving, that the lower bounding operation is strongly
consistent and that the “deletion by infeasibility” rule is certain in the limit. Assume that f attains
its minimum on E. Let Xmin be the set of accumulation points of {xk

min}. Then, it follows that
β = limk→∞ βk = minx∈E f (x) and Xmin ⊂ arg minx∈E f (x).

Proof. The proof is identical to the argument in [87] assuming that the minimum is attained
is sufficient. Also, the modification of the definition of strongly consistent bounding
operations is irrelevant for the proof.

On the other hand, providing an argument to prove consistency of the lower bounds
obtained by using the McCormick relaxations for lower semi-continuous functions is more
involved and requires an additional assumption. In the case of a continuous function f , it
is obvious that α(Xl) approaches f (x∗) as Xl → {x∗} for an infinitely decreasing sequence
of successively refined partition elements {Xl}. When the assumption of continuity of f is
dropped, the convergence of α(Xl) to f (x∗) cannot be asserted as α(Xl) is, by definition,
the function value at some feasible point in Xl . In particular, it cannot be guaranteed that
there exists a x ∈ E in a neighborhood of a minimizer of (1.1), denoted as xmin, so that
f (x) approximates f ∗ well. This is demonstrated well in Example 6.1 in Section 6.1.3. For
a practical implementation, a subset E′ of E in the neighborhood of xmin must exist so that
f (x) is close to f ∗ when x ∈ E′. Otherwise it may not be possible to identify numerically a
sufficiently good approximation of f ∗.

Assumption 6.3. Suppose there exists a xmin ∈ arg minx∈E f (x) with the following prop-
erty: xmin is not an isolated point of E and for every ε > 0 there is a δ > 0 and a cone E
with xmin at its apex such that Dδ = C ∩ {x ∈ D : ‖xmin − x‖2 < δ} has nonzero volume
and f (y) < f ∗ + ε for all y ∈ Dδ.

Remark 6.7. Note that Assumption 6.3 implies that f is upper semi-continuous at xmin
when the domain of f is restricted to a feasible subset of a neighborhood of xmin with
nonzero volume, e.g., a sphere with positive radius in R3, but not a plane in R3. However,
it does not necessarily imply upper semi-continuity of f at xmin.

Theorem 6.12. Suppose Assumptions 6.2 and 6.3 hold and that f is lower semi-continuous.
Assume that at every step any undeleted partition element can be further refined. Suppose that the
subdivision is exhaustive. Then, the lower bounds of (1.1) obtained by minimizing the McCormick
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relaxations, i.e., β(X̃) = minx∈X̃
ˇ
f (x) for some partition element X̃ ∈ IC and for the McCormick

relaxation
ˇ
f constructed on X̃, are consistent.

Proof. Fix ε > 0. If αk < f ∗ + ε at some iteration k, an ε-optimal solution has been found
so that, in combination with Theorem 6.10, consistency of the bounding operation follows.

Otherwise, let δ > 0 and the set Cδ as given by Assumption 6.3. Denote as X̃ the
partition element of partition Pk1 with X̃ ⊂ Cδ at some iteration k1. The existence of such a
partition element follows from the assumption of exhaustive subdivision and the fact that
β(X̃) < f ∗ + ε ≤ αk1−1 so that neither X̃ nor a partition element that contains X̃, due to
Theorem 6.6, could have been fathomed previously. By construction, α(X̃) < f ∗ + ε. Thus,
a feasible point x̃ ∈ E has been found so that f (x̃) is close to f ∗, i.e., αk1 ≤ α(X̃) < f ∗ + ε
or αk1 − f ∗ < ε holds. Consider an infinitely decreasing sequence {Xl}. Since it is infinitely
decreasing, it follows that β(Xl) < αk1 for all l > Lk1 where Lk1 corresponds to iteration k1;
otherwise the partition element would be fathomed hereafter contradicting the assumption
that {Xl} is an infinitely decreasing sequence. Theorem 6.10 established that {β(Xl)}
converges to f ∗ so that there exists a k2 with f ∗ − β(Xl) < ε for all l > Lk2 where Lk2

corresponds to iteration k2. Consequently, αkl − β(Xl) < 2ε for l > max{Lk1 , Lk2}. Since ε
was arbitrary, the bounding procedure is consistent.

Horst and Tuy [88] prove the convergence of the sequence of current best points of the
branch-and-bound algorithm to an optimal solution. Corollary IV.2 that they present can
be extended to lower semi-continuous functions.

Theorem 6.13 ([cf. 88, p. 132]). Let f be lower semi-continuous. Suppose that the bounding
operation is consistent and the selection operation is complete. Then every accumulation point of
{xk} solves (1.1).

Proof. Since E is compact, the sublevel set C( f (x0)) = {x ∈ E : f (x) ≤ f (x0)} is bounded
and, since f is lower semi-continuous, C( f (x0)) is closed; cf. [82, p. 148]. Thus, C( f (x0))
is compact. By construction, f (xk+1) ≤ f (xk), ∀k, so that {xk} ⊂ C( f (x0)). Hence, {xk}
possesses accumulation points. The assertion then follows from [88, Theorem IV.2].

In this section it was shown that the branch-and-bound algorithm converges under
some mild assumptions to a global optimum even in the presence of discontinuities.
The presented results assume either that f is lower semi-continuous or that f attains its
minimum on E. A discussion of the case when these hypotheses are not met can be found
in Appendix 6.2.2.

6.2.2 More general convergence results for branch-and-bound algorithm

In the previous section, it was assumed that f is either lower semi-continuous or attains
its minimum on E. Results are outlined below that hold even when these assumptions are
generalized.
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Remark 6.8. When the assumption that f is lower semi-continuous is dropped in Theo-
rem 6.10, then one cannot appeal to Theorem 6.9. However, with Remark 6.6 in mind, one
can argue that

lim
q→∞

β(Xlq) = lim
q→∞

inf
x∈Xlq

f (x) ≥ min{ lim
q→∞

inf
x∈Xlq\{x∗}

f (x), f (x∗)} ≥ min{lim inf
x→x∗

f (x), f (x∗)},

which is sufficient to show that the lower bounding operation is strongly consistent.

Note that Remark 6.8 does not allow for the argument limq→∞ β(Xlq) = infx∈X∗∩E f (x),
and consequently limk→∞ βk = infx∈E f (x), when f is not assumed to be lower semi-contin-
uous. In particular, there may be an infinitely decreasing sequence of nested intervals
Xl so that there exists a y ∈ ∂E with y ∈ int Xl , ∀l, i.e., all partition elements contain an
element of the boundary of the feasible set in its interior. Suppose that f (y) = infx∈E f (x).
Thus, it is conceivable that there exists a ε > 0 and a sequence {zl} with zl /∈ E, zl ∈ Xl ,
∀l so that f (zl) < f (y)− ε. As a result, liml→∞ β(Xl) ≤ f (y)− ε.

To avoid this complication, another assumption is introduced.

Assumption 6.4. Suppose f (y) ≥ infx∈E f (x), ∀y ∈ X : y /∈ E.

This assumption can be satisfied by reformulating f as a penalty function, e.g., minimiz-
ing f̃ with

f̃ (x) =
{

f (x), if x ∈ E,
f (E), otherwise,

where f (E) denotes an upper bound, e.g., derived from interval analysis, of f on E.

Remark 6.9. When the assumption that f attains its minimum on D in Theorem 6.11

is removed and Assumption 6.4 holds, one can still argue that β = infx∈E f (x) using
Theorem 6.9 and Remark 6.6. However, the set of minimizers of f on E, arg minx∈E f (x),
is not defined in this case. Instead, consider the set

arg infx∈E f (x) ≡
{

x ∈ E : ∃{zl} ⊂ E with lim
l→∞

zl = x and lim
l→∞

f (zl) = inf
z∈E

f (z)
}

. (6.3)

In this case Xmin ⊂ arg infx∈E f (x). This can be shown as follows:
Assume that the algorithm does not terminate after a finite number of steps. Consider

the sequence of lower bounds {βk} with xk
min, Lk and XLk as defined previously. From

the construction of the algorithm it follows that {βk} is a nondecreasing sequence with
βk ≤ infx∈E f (x). Hence, β = limk→∞ βk exists and β ≤ infx∈E f (x). Let x†

min denote an
element of the set of accumulation points of the sequence {xk

min} and let {xkr
min} be a

subsequence of {xk
min} with subsequential limit x†

min. Since the partition subdivision is
exhaustive and the selection operation is bound improving, a finite number of partition
elements is visited in each iteration only. Consequently, a decreasing subsequence of suc-
cessively refined partition elements {Xq′} ⊂ {XLkr } exists such that limq′→∞ Xq′ = {x†

min}.
Since the lower bounding operation is strongly consistent, there exists a subsequence
{Xq} ⊂ {Xq′} such that limq→∞ β(Xq) ≥ min{lim infx→x†

min
f (x), f (x†

min)}. The “deletion
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by infeasibility” rule is certain in the limit so that x†
min ∈ E. Thus, infx∈E f (x) ≥ β ≥

min{lim infx→x†
min

f (x), f (x†
min)}. By assumption, f (y) ≥ infx∈E f (x) when y /∈ E so that

inf
x∈E

f (x) = min{lim inf
x→x†

min

f (x), f (x†
min)} = β.

Thus, the result follows.

Remark 6.10. Assumption 6.3, which implicitly presumes that f attains its minimum on
E, is used in Theorem 6.12. The latter can be modified when the minimum of f on E is
not attained: define x̃min ∈ E as the limit of a sequence {xl} ⊂ E with liml→∞ f (xl) = f ∗.
Suppose that, for every ε > 0, there exists a δ > 0 and a x ∈ E for which ‖x− x̃min‖2 < δ,
x 6= x̃min, f (x) ≤ f ∗ + ε hold. Under this assumption, consistency of the lower bounding
operation can be argued following a proof similar to the one of Theorem 6.12.

Remark 6.11. In Theorem 6.13 it was assumed that f is lower semi-continuous. This
assumption was utilized therein to assert that sublevel sets of f are closed. A similar
statement is not possible when the assumption of lower semi-continuity of f is dropped as
they are equivalent. Consider a discontinuous functions with the following property: there
exist two sequences {yl}, {zl} ⊂ E with limits y∗ 6= z∗, respectively, so that liml→∞ f (yl) =
f ∗ = liml→∞ f (zl) and let f (y∗) = f ∗ 6= f (z∗). The branch-and-bound algorithm is not
able to fathom any partition element that contains an infinite number of elements of {zl}.
Consequently, y∗ and z∗ are accumulation points of {xk}, whereas, in the strict sense, only
y∗ solves (1.1). However, z∗ is in the set arg infx∈E f (x) as defined by Equation (6.3). Using
the argument presented in this remark and asserting Assumption 6.4, one can show that,
for any accumulation point x† of {xk}, x† ∈ arg infx∈E f (x) holds.

6.3 Case Studies

In this section, results will be presented from applying the proposed relaxations to some
global optimization case studies. First, the discussed method will be applied to a problem
from process design and equipment sizing. The section concludes with an example
concerning a discrete-time hybrid system.

In the following a simple branch-and-bound algorithm will be used to converge lower
and upper bounds and thus find a global optimal solution. At iteration k with partition
element Xl ∈ Pk, upper and lower bounds are found as follows. In general, an upper
bound α(Xl) is obtained by evaluating the objective function at the solution of the lower
bounding problem (if feasible). To find this solution and a valid lower bound β(Xl),
different methods are employed. The first method uses only interval arithmetic whereas
the other ones use the convex relaxation and a subgradient of the relaxation. The reader is
referred to [121] for details on how to construct the subgradient of standard McCormick
relaxations.

Method 1 The bound from interval arithmetic, f , is used as β(Xl). The objective function
is evaluated at the midpoint of the interval Xl to find α(Xl). This procedure yields
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very efficient lower bounds at the expense of tightness.

Method 2 An affine approximation of the convex relaxation of the objective function is
constructed sequentially. First, a subgradient of

ˇ
f is evaluated at the midpoint of

Xl and an affine relaxation of
ˇ
f is thus constructed. Combined with the interval

bound, f , CPLEX is used to find a minimum of the affine relaxations. A subgradient
of

ˇ
f is evaluated at this solution, another affine relaxation is added and CPLEX

is used to solve this problem. To balance efficiency and accuracy, a total of five
minimization problems are solved with CPLEX. The last solution found is reported
as β(Xl). α(Xl) is obtained by evaluating the objective function at the last point
found by CPLEX.

Method 3 Since CPLEX adds considerable overhead, a simple algorithm is explicitly
implemented that mimics Method 2 for one-dimensional problems and constructs
only two affine relaxations.

Method 4 A bundle solver [113] with bundle size 15 is used to find the minimum of the
convex relaxation of the objective function. Note that the QP routines have been
modified to prevent an infinite loop in the inner QP. In this case the bundle solver
terminates with β(Xl) = −∞. α(Xl) is obtained by evaluating the objective function
at the point returned by the bundle solver.

In the remainder of this section the different methods will be referred to by these assigned
numerals for brevity. The open source C++ library MC++, the successor of libMC [41, 121],
is used to calculate the necessary convex relaxations, and it relies on the interval library
PROFIL [99] with outward rounding. MC++ and PROFIL are extended to include ψ, its
bounds and relaxations as well as subgradients. The global optimization problem is
considered converged at iteration k when either αk − βk ≤ εa or αk − βk ≤ εr|βk|, where
εa = 10−5 and εr = 10−5 (unless noted otherwise). The best bound heuristic is used to
determine the next node and the absolute diameter heuristic is used to select on which
variable to branch.

In the case of the more involved problems, the behavior of the proposed methods
is compared to the commercial global optimization software BARON [150] as part of
GAMS 23.9.5 with regard to number of nodes visited and solution times. Results for the
following cases will be presented:

BARON1 Literature model with equal branching priority for each variable.

BARON2 Literature model with branching on binary variables and subset of continuous
variables only.

BARON3 Literature model reduced by analytically replacing some equality constraints
and intermediate variables; equal branching priority for each variable.

BARON4 Literature model reduced by analytically replacing some equality constraints
and intermediate variables; branching on binary variables and subset of continuous
variables only.
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The same tolerances as listed above are used for BARON. The reader should take note that
the branch-and-cut algorithm implemented in BARON employs many features (e.g., range
reduction, constraint propagation, etc) that are not implemented in the methods proposed
above.

Lastly, a note on notation in this section: in tables containing the results, xmin always
denotes the approximate optimal solution, regardless of symbols used in the problem
definition, and f ∗ indicates the objective value at this point.

6.3.1 Process design and equipment sizing

A specific example from process design in chemical engineering is considered here. Heat
exchanger network synthesis problems have been studied extensively, see [65] for a review.
A heat exchanger is a device in which two or more fluid streams are brought into energetic
contact. Though they cannot exchange mass, the colder stream is heated by the hotter
stream and vice versa. The necessary area in the unit for this heat transfer depends on
the amount of heat transferred, the temperature difference and the so-called heat transfer
coefficient. In the process industry, a common task is to design and size a complex network
of heat exchangers to minimize investment and operational cost. Often, heating/cooling
utilities such as steam and cooling water are also available. In practice, different device
designs are used for different heat transfer areas. As a consequence, the capital cost
correlation that links area to cost for these units is not continuous. Also, there are upper
limits on the size of a single unit due to the difficulty of transporting large heat exchangers
to the plant site. In the present problem, it is assumed that smaller units can be operated
in parallel to circumvent this problem.

In the literature, Türkay and Grossmann [168] give a MINLP model that uses disjunctions
to model the discontinuity in the cost correlation. An alternative reduced formulation
is possible. First, the discontinuous cost correlation can be directly represented without
disjunctions or binary variables. Second, equality constraints, in particular energy balances
for each heat exchanger, can be used to eliminate variables in the model. Then, one
can identify a small number of temperatures that can be chosen independently. After
these temperatures are fixed, all remaining intermediate temperatures can be calculated
from energy balances. The area A required for each heat exchanger is determined by
A = Q

U×LMTD , where Q = Fcp,H(TH,in − TH,out) is the heat transfered, Fcp denotes the heat
capacity flow rate, Tin and Tout the in- and outlet temperatures of the hot and cold streams,
U the overall heat transfer coefficient, and LMTD the log mean temperature difference.
Instead of using the exact expression for LMTD, Chen’s approximation [42] is used,

LMTD =

(
(Tout,H − Tin,C)(Tin,H − Tout,C)

(Tout,H − Tin,C) + (Tin,H − Tout,C)

2

) 1
3

.

Depending on the heat transfer area, one can then choose from three different available
heat exchanger designs with different investment cost correlations, which are given in
Table 6.2. When the necessary area for one heat exchanger exceeds the maximum area of
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A [m2] investment cost [$/yr]

0 ≤ A ≤ 20 670A0.83+2000

20 < A ≤ 50 640A0.83+8000

50 < A ≤ 100 600A0.83+16000

Table 6.2: Equipment cost correlation for heat exchangers depending on required area

Figure 6.5: Structure of heat exchanger network 1

the largest heat exchanger design, the streams will be split and several heat exchangers
will be used. At most seven parallel heat exchangers will be allowed to always ensure
feasibility of the solution. Lastly, the operating expenses are found by calculating the cost
of cooling water (20 $/kW yr) and the cost of steam (80 $/kW yr).

Overall, a factorable representation of the objective function can be constructed as
outlined above. In the routine to calculate the convex relaxations of the objective function,
a priori known bounds on intermediate quantities, e.g., areas need to be nonnegative,
temperature differences in the heat exchangers cannot be negative and intermediate
temperatures must be between inlet and outlet temperatures of the respective stream, are
used to obtain tighter bounds for intermediate expressions.

Heat exchanger network 1

The first case study was taken from [168]. Consider the heat exchanger network depicted
in Figure 6.5 with stream data given in Table 6.3. Let the overall heat transfer coefficient of
the heat exchangers be given by (Ui) = (1.5, 0.2, 0.06, 1.6, 0.04, 0.3, 0.6, 1.7) kW/m2K.

There are seven unknown intermediate stream temperatures and two unknown utility
heat loads. Since one can write an energy balance for each of the eight heat exchangers,
the problem has one degree of freedom. The temperature of stream H3 at the outlet
of exchanger 6 was selected as the decision variable T. From requirements for feasible
heat exchange, i.e., no temperature crossover in the heat exchangers, it follows that
T ∈ [382.25, 499.36]K. Once this variable is fixed, the remaining intermediate temperatures,
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Stream Fcp [kW/K] Tin [K] Tout [K]

H1 30.0 626 586

H2 13.5 620 519

H3 20.0 528 353

C1 31.0 525 613

C2 5.0 405 576

C3 28.0 353 386

C4 11.0 313 545

steam — 650 650

cooling water — 293 308

Table 6.3: Data for process and utility streams in heat exchanger network 1

Method # LBPs # UBPs Runtime [s] f ∗ xmin [K]

1 399 205 0.2269 411, 809 418.103
2 63 42 0.2776 411, 809 418.104
3 67 41 0.076 411, 809 418.103
4 61 40 0.3334 411, 809 418.104

BARON1 48 iterations 3.96 411, 809 418.103
BARON2 91 iterations 4.92 411, 809 418.103
BARON3 46 iterations 1.97 411, 809 418.103
BARON4 18 iterations 1.22 411, 809 418.103

Table 6.4: Comparison of different methods with BARON for the first heat exchanger case
study

utility heat loads, areas and hence investment costs can be computed by a factorable
function as described before.

The solutions as found with the different methods are compared in Table 6.4 to the
solution obtained with BARON [150] using the MINLP model proposed in [168]. In the case
of the reduced model, the energy balances are solved for the intermediate temperatures,
which are subsequently substituted in the equation for LMTD. The expressions for LMTD
have not been substituted since the non-integer exponent is reformulated by GAMS using
the exponential function and the natural logarithm. During the model development,
GAMS aborted reporting domain violations so that this substitution is not feasible. In the
case of selective branching, BARON is instructed to branch on T and the binary variables
only.

All methods find the same solution; see Table 6.4 for more details. Lastly, it is instructive
to point out that the full disjunctive model introduces 168 binary and 360 continuous
variables.
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Figure 6.6: Structure of heat exchanger network 2

Stream Fcp [kW/K] Tin [C] Tout [C]

H1 22.4 400 150
H2 12.0 180 40
H3 26.0 150 45
H4 24.0 135 100
C1 15.0 105 360
C2 20.0 40 65
C3 22.0 90 190
C4 35.0 25 110
C5 16.2 30 150
steam — 400 400
cooling water — 15 30

Table 6.5: Data for process and utility streams in heat exchanger network 2

Heat exchanger network 2

Consider the heat exchanger network depicted in Figure 6.6 with stream data given in
Table 6.5. The goal is to optimize the network and size the equipment so that the combined
investment and operational cost is minimized. Let the overall heat transfer coefficient be
given by (Ui) = (1.0, 0.1, 2.1, 0.05, 1.0, 0.2, 1.5, 0.7, 4.0, 1.2, 0.1) kW/m2K. There are eleven
unknown intermediate stream temperatures and two unknown utility heat loads. Since
one can write an energy balance for each of the eleven heat exchangers, the problem has
two degrees of freedom. The temperature of stream H3 at the outlet of exchanger 3 and
the temperature of stream H2 at the outlet of exchanger 2 were selected as the decision
variables T′ and T′′, respectively. From requirements for feasible heat exchange, i.e., no
temperature crossover in the heat exchangers, it follows that T′ ∈ [129.81, 150.0]C and
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Method # LBPs # UBPs Runtime [s] f ∗ xmin [C]

1 > 100, 000 > 70, 836 > 92.0 — —
2 3, 290 1, 804 21.6 599, 740 (130.40, 160.49)
4 3, 661 2, 000 25.9 599, 740 (130.40, 160.49)

BARON1 65 iterations 8.55 599, 740 (130.40, 160.49)
BARON2 151 iterations 13.80 599, 740 (130.40, 160.49)
BARON3 389 iterations 33.18 599, 740 (130.40, 160.49)
BARON4 218 iterations 23.41 599, 740 (130.40, 160.49)

Table 6.6: Comparison of different methods with BARON for the second heat exchanger
case study

T′′ ∈ [124.17, 180.0]C; furthermore, it needs to hold that

26T′ + 15T′′ ≥ 5625
312T′ + 210T′′ ≤ 84565.

The solutions as found with the different methods are compared in Table 6.6 to the
solution obtained with BARON [150] using the model with disjunctions proposed in [168].
The reduced model is constructed as outlined in Section 6.3.1. In the case of selective
branching, BARON is instructed to branch on T′, T′′ and the binary variables only.

A few remarks are in order. First, the interval bounds do not converge to the solution in
100,000 iterations and consequently, the branch and bound procedure in Method 1 fails to
terminate with a guaranteed solution. Second, note that BARON requires fewer iterations
than Methods 2 and 4 to identify its solution, however, each iteration is significantly more
costly; see Table 6.6 for more details. Also note that the full disjunctive model used in
BARON introduces 231 binary and 496 continuous variables.

6.3.2 Discrete-time hybrid systems

A second class of problems with discontinuous behavior is considered. Hybrid systems
combine continuous dynamics, that are described by differential equations, and discrete
dynamics, which are discontinuous changes in state variables or switching of the dynamic
model triggered by so-called events [49, 67]. In discrete-time systems, the continuous
dynamics are discretized and described by difference equations. The problem below, which
concerns the optimal control of a linear discrete-time hybrid system, is slightly adapted
from [112]. Consider the global optimization problem with an embedded discrete-time
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Case Method # LBPs # UBPs Runtime [s] f ∗

1
1 > 100, 000 > 100, 000 > 30.0 —
2 1 1 0.0280 7.256
4 1 1 0.0114 7.261

2
1 > 100, 000 > 69, 712 > 28.2 —
2 1 1 0.0263 13.077
4 1 1 0.0112 13.049

Table 6.7: Comparison of different methods for both cases of the discrete-time hybrid
system. Note that Method 1 does not converge in either case after solving
100,000 iterations.

hybrid system

min
u0,...,uN−1

N

∑
k=1

(
xT

k Rxk + uk−1Quk−1

)
s.t. xk+1 = A(m(k))xk + B(m(k))uk, k = 1, . . . , N − 1,

m(k) =
{

1 if xk,1 ≤ xk,2,
2 otherwise,

, k = 1, . . . , N − 1,

with N = 10 and, for k = 1, . . . , N, uk−1 ∈ [−1, 1],

A(m(k)) =


[

0 0.2
−0.4 −0.06

]
if m(k) = 1,[

0.2 0.6
−0.2 0.4

]
if m(k) = 2,

B(m(k)) =


[

0
0.4

]
if m(k) = 1,[

0.2
0.1

]
if m(k) = 2,

R =

[
1.0 0.0
0.0 1.5

]
, and Q = 1.0.

Two cases are considered where the initial conditions differ: Case 1 with x0 = [4, 5]T and
Case 2 with x0 = [5, 4]T.

The objective can be calculated using a finite algorithm that takes u0, . . . , uN−1 as input
and returns the objective. The detailed results for both cases are shown in Table 6.7. Here,
the relative tolerance is set to εr = 10−1 initially. Note that in both cases, Methods 2 and 4

find the optimal solution at the root node while Method 1 does not converge the lower
and upper bound within 100,000 iterations, which is indicative of the weakness of only
using interval methods for multi-dimensional problems.

It is important to remark that, although both problems are solved at the root node, the
lower bound does not converge to the value of the optimal solution. Instead, a small but
finite discrepancy will remain indefinitely. This results from the presence of discontinuities;
cf. the discussion in Section 6.1.4. In this example, it does not impact convergence when
εr = 10−1. However, Methods 2 and 4 do not converge Case 1 within 100,000 iterations
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when εr = 10−2 and Case 2 when εr = 10−4.

6.4 Conclusion

A procedure to construct interval bounds and convex and concave relaxations of factorable
functions with discontinuities has been presented. McCormick’s composition theorem [118]
is extended to bounded, but not necessarily continuous, functions. The crux of the
proposed extension lies in the observation that discontinuities can be modeled using a
step function [182] and that convex and concave envelopes can be readily constructed for
this function. Furthermore, it was shown that most theoretical results developed for the
continuous case [156] hold even when the assumption of continuity is dropped. Only
establishing convergence of a sequence of relaxations to the function when a sequence of
intervals converging to a degenerate interval is considered requires additional assumptions.
Currently, some results are established to show when this assumption holds. Nevertheless,
this remains an active area of research for the authors as, e.g., examples shown in the
previous section indicate that the relaxations converge for problems of practical importance
or at least provide sufficiently tight relaxations. Also, these case studies show that the
proposed method may provide a very effective means to solve optimization problems
with discontinuities to global optimality without introducing binary variables. Thus
an increase in size of the global optimization problem can be avoided, which is very
desirable since known global optimization algorithms scale exponentially. Also note that
so far no range reduction techniques have been employed which considerably improve
convergence in BARON. There appears no distinct advantage of reducing the size of the
optimization problem in BARON. Also, it is not possible to deduce a general advantage
when branching on a subset of the continuous variables only. Lastly, the advantage of
convex relaxations over interval bounds is demonstrated for multi-dimensional problems.
While one-dimensional problems can be solved efficiently when only interval bounds are
available, the convex relaxations are key for efficiently finding the optimal solutions of
multi-dimensional problems.
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Chapter 7

Improving convergence of relaxations of
bounded L-factorable functions

In Chapter 6, a method to obtain relaxations for a class of discontinuous functions was
introduced. While incorporating a larger class of functions into the notion of a factorable
function allows formulation of more problems with a reduced number of variables visible
to the optimizer, cf. the idea of global optimization of algorithms introduced by Mitsos
et al. [121], it also introduces new challenges. For example, once the continuity assumption
on the functions present in (1.1) is dropped, standard results, e.g., in interval analysis, are
not necessarily true anymore. It is possible to construct Lipschitz interval extensions of
most continuous univariate functions and then use composition results to combine these to
obtain Lipschitz interval extensions of complex functions [122]. The Lipschitz property
guarantees that the interval extensions converge to the underlying real-valued function as
the host set converges to a degenerate interval. Certainly, a discontinuous function does
not possess a Lipschitz constant so that convergence of the interval arithmetic cannot be
established using this route.

Recall Example 6.3 which exemplified that convergence of the proposed relaxations
can not be taken for granted. One source of this behavior is the dependency problem in
interval analysis. Since rigorous bounds are calculated as a zeroth order approximation,
all information about interdependence of factors is lost. Thus, the worst-case must always
be accounted for, leading to overestimation. In the case of Lipschitz continuous functions,
the overestimation of the natural interval extensions can be shown to decrease linearly as
the host sets shrinks, cf. Theorem 3.2. This is no longer necessarily true for discontinous
functions. In Section 6.1.5 it was discussed under which conditions convergence of the
relaxations can be nevertheless guaranteed. However, these conditions are not easy to
verify for more complex problems.

In this chapter, a solution to overcome this behavior will be introduced in Section 7.1. In
Section 7.3, results for two case studies will be reported. The chapter closes with discussion
of the results in Section 7.4 and conclusions in Section 7.5.

7.1 Branching on discontinuous factors

In this section, a solution to this problem will be proposed to allow the use of the
relaxations of discontinuous factorable functions in global optimization algorithms. It will
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be argued that one can branch on an intermediate discontinuous factor. Factors with the
discontinuous univariate function ψ will be fixed at either 0 or 1 and both possibilities will
be added as new nodes to the branch-and-bound stack. This operation can be interpreted
as branching on binary variables during the solution of an equivalent mixed-integer
program.

This section will use many technical terms from the realm of branch-and-bound theory,
see 6.2 for precise definitions.

In this chapter, unless noted otherwise, lower bounds are obtained by using McCormick
relaxations [121, 156], i.e.,

β(Xk) = inf{
ˇ
f (x) : x ∈ Xk,

ˇ
g(x) ≤ 0}

where
ˇ
f and

ˇ
g are the convex standard McCormick relaxations of f and g on Xkq .

In the remainder of this section, it will be first shown that this new branching operation
continues to generate valid lower bounds. Then, it will be argued that this scheme is
applicable in a branch-and-bound procedure without tampering with convergence. Some
details regarding its implementation are given at the end of this section.

7.1.1 Validity of obtained lower bounds

Theorem 7.1. Suppose D ⊂ Rn is convex and let h : D → R be a bounded L-factorable
function. Suppose (S , ψ0) is a corresponding bounded L-computational sequence with factors
{(vk, Dk, R)}nh

k=1. Assume that ∃k̂, n < k̂ ≤ nh so that ok̂ = ψ. Consider h1 : X → R

and h0 : X → R which have the identical factorable representation as h except that vk̂ = 1 in
h1 and vk̂ = 0 in h0. Let

ˇ
h1 and

ˇ
h0 be convex relaxations of h1 and h0 on X ∈ ID. Define

h† = minx∈X
ˇ
h1(x) and h‡ = minx∈X

ˇ
h0(x). Then,

min{h†, h‡} ≤ inf
x∈X

h(x).

Proof. Surely, it holds that

h(x) =
{

h1(x) if πk̂(v1(x), . . . , vk̂−1) > 0,
h0(x) otherwise.

Since
ˇ
h1 and

ˇ
h0 are convex relaxations of h1 and h0 on X, respectively, and by definition of

h† and h‡, it holds for all x ∈ X that

h† ≤
ˇ
h1(x) ≤ h1(x) and

h‡ ≤
ˇ
h0(x) ≤ h0(x).

140



7.1 Branching on discontinuous factors

This implies for all x ∈ X that

min{h†, h‡} ≤ h1(x) and

min{h†, h‡} ≤ h0(x).

Thus, min{h†, h‡} ≤ h(x) for all x ∈ X so that the assertion follows.

An immediate consequence of Theorem 7.1 is the following:

Corollary 7.1. Suppose there is an unfathomed node identified by its host set X̃ in the
branch-and-bound tree used to solve (1.1). One discontinuous univariate factor of f or
g has been replaced as described in Theorem 7.1 to obtain f 1, f 0 and g1, g0. X̃ can be
replaced by two nodes, identified as X̃1 and X̃0, with X̃1 = X̃ and X̃0 = X̃ on which f
and g are replaced by f 1 and g1 and by f 0 and g0, respectively, in the lower bounding
problems. This manipulation is valid in the sense that

β(X̃) ≥ min{β(X̃1), β(X̃0)}.

Proof. This follows immediately from Theorem 7.1.

This manipulation of the nodes in the branch-and-bound tree will be called branching on
a discontinuous factor, though the host sets of the child nodes are identical to the one of the
parent node. Also, note that the functions f and g in the upper bounding problem will
remain unchanged.

Remark 7.1. It is important to point out that it is not necessary to branch on discontinuous
factors that are already uniquely determined on X ∈ ID, i.e., ones for which wk̂(X) > 0 or
wk̂(X) ≤ 0 where Wk̂(X) = πk̂ ◦ (V1(X), . . . , Vk̂−1(X)).

Remark 7.2. It follows by induction that the procedure outlined in Theorem 7.1 can be
repeated until all discontinuous factors have been branched on or are uniquely determined
in the lower bounding problem. More formally, let I be the index set that identifies each
discontinuous univariate factor of f and g, i.e., oi = ψ, i ∈ I where oi refers to factors of f
or g. Denote as fς : D → R and gς : D → R the continuous factorable functions derived
from f and g by branching on discontinuous univariate factors. Furthermore, introduce ς,
a vector that identifies if and which branch of f or g are chosen in fς or gς. It is defined as
follows: ςi = −1 if no branching occurred, ςi = 1 if vi = 1 and ςi = 0 if vi = 0 for each
i ∈ I. Lastly, let X ∈ ID and define

Yς(X) = {x ∈ X : wi(X) > 0 if ςi = 1, ∀i ∈ I and wi(X) ≤ 0 if ςi = 0, ∀i ∈ I},

the set of points at which ς chooses the correct branch of f and g in the limit of a degenerate
interval X.

Note that the factors refer to either the factorable representations of f or g. It is tacitly
assumed that the correct identification of the corresponding function is obvious.
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Definition 7.1. Let I and ς be as defined in Remark 7.2. Suppose x∗ ∈ D. It will be said
that the branch chosen by ς coincides with the evaluation of f and g at x∗ if vi(x∗) = ςi, ∀i ∈ I.

7.1.2 Consistency of bounding operation

Recall the definition of a consistent bounding operation (see Definition 6.13) that is useful
to establish convergence of the branch-and-bound algorithm, see Theorem 6.12 and [88,
Theorem IV.3]. One route to establish consistency of the bounding operation is to first
establish that it is strongly consist (see Definition 6.14). It is also important to establish
that the deletion by infeasibility rule used in the branch-and-bound algorithm is certain in
the limit (see Definition 6.9). In particular, note that this rule also applies to nodes that
are infeasible because the discontinuous factors are fixed to the incorrect branch of f or g.
Recall that E refers to the feasible set of (1.1).

Lemma 7.1. Suppose that {Xl} ⊂ D is a nested sequence of intervals with liml→∞ Xl = [x∗, x∗]
so that x∗ ∈ E. Assume that f is lower semi-continuous at x∗. Then,

f (x∗) = lim
l→∞

inf{ f (x) : x ∈ Xl , g(x) ≤ 0}. (7.1)

Proof. First, define the sets El ≡ {x ∈ Xl : g(x) ≤ 0}. Since x∗ ∈ E ∩ Xl , ∀l, it follows that
Dl 6= ∅, ∀l. In particular, this implies that

f (x∗) ≥ inf
x∈El

f (x), ∀l. (7.2)

Since Xl ⊃ Xl+1, it follows that El ⊃ El+1 so that infx∈El f (x) ≤ infx∈El+1 f (x). In combina-
tion with Eq. (7.2), this establishes the existence of the limit in Eq. (7.1).

Next, let δ > 0 be arbitrary and consider the ball Nδ(x∗) ≡ {x ∈ Rn : ‖x− x∗‖2 ≤ δ}.
Since El does not necessarily contain all points in a neighborhood of x∗, Nδ(x∗) ∩ El ⊂
Nδ(x∗). It follows that

min{ f (x∗), lim inf
x→x∗

f (x)} ≤ lim
l→∞

inf
x∈El

f (x). (7.3)

Lastly, note that lower semi-continuity of f at x∗ implies by definition that

f (x∗) ≤ lim inf
x→x∗

f (x). (7.4)

Thus, combining Eqs. (7.2), (7.3) and (7.4) yields Eq. (7.1), the desired result.

Lemma 7.2. Suppose that {Xl} is a nested sequence of intervals with liml→∞ Xl = [x∗, x∗] so that
x∗ ∈ E. Let I, ς and Yς(·) as defined in Remark 7.2. Suppose that fς : X → R and gς : X → R are
continuous factorable functions derived from f and g by branching on all discontinuous univariate
factors and assume that all remaining univariate functions are Lipschitz. Assume that ς coincides
with the evaluation of f and g at x∗. Let

ˇ
f l
ς and

ˇ
gl

ς denote the convex standard McCormick
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relaxations of fς and gς on Xl . Then,

f (x∗) = lim
l→∞

inf{
ˇ
f l
ς(x) : x ∈ Yς(Xl),

ˇ
gl

ς(x) ≤ 0}. (7.5)

Proof. As Xl converges to the degenerate interval [x∗, x∗] and since fς and gς are Lipschitz
continuous, the convex relaxations

ˇ
f l
ς and

ˇ
gl

ς converge to fς and gς at x∗ [156, Theorem 5].
Thus,

lim
l→∞ ˇ

f l
ς(x
∗) = fς(x∗). (7.6)

Define the sets E′l ≡ {x ∈ Yς(Xl) :
ˇ
gl

ς(x) ≤ 0}. By assumption, liml→Xl = [x∗, x∗],
x∗ ∈ E and the fact that ς coincides with the evaluation of f and g at x∗ imply that
liml→∞ E′l = {x∗} which yields together with Eq. (7.6) that

lim
l→∞

inf
x∈E′l ˇ

f l
ς(x) = lim

l→∞ ˇ
f l
ς(x
∗) = fς(x∗).

Lastly, fς(x∗) = f (x∗) so that Eq. (7.5) follows.

Remark 7.3. Suppose that there exists j so that gj(x∗) > 0. Hence, x∗ /∈ E. Lower semi-
continuity of gj at x∗ implies that there exists a δ > 0 so that gj(x) > 0 for all x with
‖x− x∗‖2 ≤ δ. Hence, f (x∗) < liml→∞ inf{ f (x) : x ∈ Xl , g(x) ≤ 0} = +∞.

Lemma 7.3. Assume that the partitioning is exhaustive and that the deletion by infeasibility rule
is certain in the limit. Suppose ς has been fixed, ςi = {0, 1}, i ∈ I and consider an infinitely
decreasing sequence of successively refined nodes, {Xkq}. Then, the branch chosen by ς coincides
with the evaluation of f and g at x∗, [x∗, x∗] =

⋂∞
q=1 Xkq .

Proof. Exhaustive partitioning of the nodes implies that X̄ =
⋂∞

q=1 Xkq = [x∗, x∗] for some
x∗ ∈ X. Note that X̄ is a degenerate interval and that interval extensions are exact on
degenerate intervals. Therefore, vi(X̄) = vi(x∗) = vi(X̄). Suppose that ς does not coincide
with the evaluation of f and g at x∗. In particular, let there exist an i ∈ I with vi(x∗) 6= ςi.
Without loss of generality assume that ςi = 1 and hence vi(x∗) = 0. It follows that
wi(x∗) ≤ 0 and thus wi(X̄) ≤ 0. Thus, x∗ /∈ Yς(X̄). Since X̄ = {x∗} and Yς(X̄) ⊂ X̄, it
follows that Yς(X̄) = ∅. This contradicts the assumption that the deletion by infeasibility
rule is certain in the limit.

Theorem 7.2. Suppose that f is lower semi-continuous. Assume that the partitioning is exhaustive
and that the deletion by infeasilibity rule is certain in the limit. Let {Xkq} be an infinitely decreasing
sequence of successively refined nodes and suppose there exists Q > 0 so that for all nodes Xkq

with q ≥ Q all discontinuous factors appearing in the factorable representation of f and g have
been branched on or are uniquely determined. Introduce ςq and Yςq

(Xkq) as defined in Remark 7.2.
Denote as f kq and gkq the functions obtained from f and g by branching according to ςq. Let
convex relaxations of f kq and gkq on Xkq be calculated using standard McCormick relaxations.
Furthermore, assume all remaining univariate functions appearing in the factorable representation
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of f and g are Lipschitz. Consider lower bounds obtained from

β(Xkq) = inf{
ˇ
f kq(x) : x ∈ Yςq

(Xkq),
ˇ
gkq(x) ≤ 0}

Then, this bounding operation is strongly consistent.

Proof. Let ς = ςQ and note that ςi = {0, 1}, ∀i ∈ I. Exhaustive partitioning of the nodes
implies that [x∗, x∗] =

⋂∞
q=1 Xkq and certainty in the limit of the deletion by infeasibility

rule implies that x∗ ∈ E. Lemma 7.3 implies that the branch chosen by ς coincides with
the evaluation of f and g at x∗.

Thus, the assumptions of Lemmas 7.1 and 7.2 are met and it follows that

lim
q→∞

β(Xkq) = inf
x∈X̄∩E

f (x).

Assumption 7.1. Assume that for every ε > 0, there exists a Q such that for all q > Q,
αkq ≤ f (x∗) + ε where [x∗, x∗] =

⋂∞
q=1 Xkq .

Theorem 7.3. [cf. 88, Lemma IV.5] Suppose that f is lower semi-continuous, Assumption 7.1
holds and the partitioning is exhaustive. Furthermore, assume that for every infinitely decreasing
sequence {Xkq} of successively refined nodes, there exists xkq ∈ Skq that satisfies xkq ∈ Xkq ∩ E.
Assume that for every ε > 0, there exists a Q such that for all q > Q, αkq ≤ f (x∗) + ε where
[x∗, x∗] =

⋂∞
q=1 Xkq . Then, every strongly consistent lower bounding operation yields a consistent

bounding operation.

Proof. Since the partitioning is exhaustive and the bounding operation is strongly con-
sistent, it follows that {Xkq} → [x∗, x∗] where x∗ ∈ E and limq→∞ β(Xkq) = infx∈X̄∩E f (x).
Assumption 7.1 implies that limq→∞ αkq = f (x∗) so that limq→∞(αkq − β(Xkq) = 0.

Remark 7.4. Assumption 7.1, which is necessary to establish the assertion of Theorem 7.3,
states that it is possible to identify feasible solutions with objective function value arbitrarily
close to the optimal solution on the given node once the nodes become small enough. This
is a much stronger assumption if f is not continuous.

7.1.3 Certainty in the limit of the deletion by infeasibility rule

Theorem 7.2 assumed that the deletion by infeasibility rule is certain in the limit. It is
necessary to argue that branching on discontinuous factors will still allow fathoming
infeasible nodes. Aside from infeasibility due to constraint violation, i.e., E ∩ X̃ = ∅, it is
also necessary to remove nodes on which the discontinuous branch does not coincide with
the function evaluation.

Lemma 7.4. Assume that the partitioning is exhaustive. Let {Xkq} be an infinitely decreasing
sequence of successively refined nodes and suppose there exists Q > 0 so that for all nodes Xkq

with q ≥ Q all discontinuous factors appearing in the factorable representation of f and g have

144



7.2 Implementation details

been branched on or are uniquely determined. Introduce I, ς = ςQ and Yς(Xkq) as defined in
Remark 7.2. Define

Ỹς(X̃) =
{

x ∈ X̃ : ∃i ∈ I : wi(X̃) ≤ 0 if ςi = 1 or wi(X̃) > 0 if ςi = 0
}

. (7.7)

It follows that Yς(X̄) ∪ Ỹς(X̄) = X̄ and Yς(X̄) ∩ Ỹς(X̄) = ∅ where X̄ =
⋂∞

q=1 Xkq .

Proof. Note that ςi = {0, 1}, ∀i ∈ I when q ≥ Q. Exhaustive partitioning implies that
X̄ = [x∗, x∗].

Suppose that x∗ /∈ Yς(X̄). Thus, there exists i ∈ I so that wi(X̄) ≤ 0 if ςi = 1 or
wi(X̄) > 0 if ςi = 0. Since X̄ is a degenerate interval, the interval extensions evaluated on
X̄ are exact so that wi(X̄) = wi(X̄) ≤ 0 if ςi = 1 or wi(X̄) = wi(X̄) > 0 if ςi = 0. Hence,
x∗ ∈ Ỹς(X̄).

Suppose that x∗ ∈ Yς(X̄). Then, wi(X̄) > 0 if ςi = 1 or wi(X̄) ≤ 0 if ςi = 0 for all i ∈ I.
It follows immediately that wi(X̄) > 0 if ςi = 1 or vi(X̄) ≤ 0 if ςi = 0 for all i ∈ I. Hence,
x∗ /∈ Ỹς(X̄).

Thus, the assertion follows.

Corollary 7.2. Suppose that a node X̃ is fathomed when X̃ = Ỹς(X̃) or when D ∩ X̃ = ∅.
This is deletion by infeasility rule is certain in the limit.

7.2 Implementation details

Remark 7.5. For a practical implementation, it will be necessary to introduce a small
nonnegative parameter ε and consider the set

Y′ς(X̃) = {x ∈ X̃ : wi(X̃) ≥ ε if ςi = 1, ∀i ∈ I and wi(X̃) ≤ −ε if ςi = 0, ∀i ∈ I}

instead of Yς(X̃) so that a practical deletion by infeasibility rule is certain in the limit.
While this cuts off (small) parts of the feasible set, it ensures that X̃\Y′ς(X̃) is guaranteed
to be feasible in the limit. Otherwise, it is not possible in a practicable implementation to
delete infeasible nodes with certainty as each element of a convergent sequence may be
feasible whereas the limit point is not.

Remark 7.6. Note that the branching heuristic is responsible for ensuring that eventually
all discontinuous factors have been branched on (or are uniquely determined so that
branching is not necessary, see Remark 7.1).

This functionality is added to MC++ [40], an open-source library that provides objects
to construct McCormick relaxations of factorable functions through operator overloading.
Three static private members are added to the class, a counter i and two binary vectors
p and q. i stores the number of calls to ψ, p stores if a discontinuous factor has been fixed
(pi = T) and q stores the branch (i.e, qi = T when ψ = 1 and qi = F when ψ = 0); it is
undefined if pi = F. Before a factorable function is evaluated, the counter must be reset
and the integer vectors are passed to the class. Public member functions are provided for
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these tasks. During the evaluation of the factorable function, the counter is incremented
each time ψ is executed. When ψ is called and there are no constraints on its value, i.e.,
pi = F, but the interval bounds indicate that only one branch is active, i.e., vj > 0 or vj ≤ 0,
pi and qi are updated accordingly. If pi = T then constraints on the assignment were set
and qi determines the returned value. Else pi = F and the relaxation are evaluated as
detailed in Theorem 6.5. After the factorable function is evaluated, the value of the vectors
can be obtained through additional public member functions, which is important when p,
q might have changed, i.e., when relaxations are evaluated on a host set for the first time
and some discontinuous factors are uniquely determined on the host set.

Lastly, an exception is used to handle the case when pi = T and the value of qi contradicts
the branch choosen according to vj or vj, e.g., qi = F and vj > 0. This exception has to be
caught by the user. It indicates that the lower bounding problem on this node is infeasible
and the node can hence be fathomed. Recall Remark 7.5 which said that a practical
implementation needs to modify the feasibility test which checks for the correct branch of
the discontinuous function. Here, the parameter is set to ε = 10−6.

7.3 Case studies

In this section, two case studies will be presented. First, Example 6.3, the motivating
example, will be revisited. Then, a more complicated case study will be considered.

Before the case studies are discussed, a few remarks regarding methods to solve the
convex minimization problem to find β(·), heuristics to determine feasible points, and
hence αk, branching and node selection heuristics, and the utilized tolerances are necessary.

Several methods are compared for solving the convex problem at iteration k on node Xk
and finding a feasible point.

Method 1 The bound from interval arithmetic, f , is used as β(Xk). The midpoint of the
interval Xk is added to Sk. This procedure yields very efficient lower bounds at the
expense of tightness.

Method 2 An affine approximation of the convex relaxation of the objective function is
constructed sequentially. First, a subgradient of

ˇ
f is evaluated at the midpoint of

Xl and an affine relaxation of
ˇ
f is thus constructed. Combined with the interval

bound, f , CPLEX is used to find a minimum of the affine relaxations. A subgradient
of

ˇ
f is evaluated at this solution, another affine relaxation is added and CPLEX

is used to solve this problem. To balance efficiency and accuracy, a total of five
minimization problems are solved with CPLEX. The last solution found is reported
as β(Xk). The last point found by CPLEX is added to Sk.

Method 3 A bundle solver [113] with bundle size 15 is used to find the minimum of the
convex relaxation of the objective function. The point returned by the bundle solver
is added to Sk.
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k xk xk qk β(Xk) Nk

1 −1.0 1.0 (−,−) −1 2

2 −1.0 0.0 (−,−) 0 1

3 0.0 1.0 (−,−) −1 2

4 0.0 0.5 (−,−) −1 3

5 0.5 1.0 (−,−) 0 2

6 0.0 0.25 (−,−) −1 3

7 0.25 0.5 (−,−) 0 2

8 0.0 0.125 (−,−) −1 3

9 0.125 0.25 (−,−) 0 2

10 0.0 0.125 (F,−) +∞ 1

11 0.0 0.125 (T,−) 0 0

Table 7.1: Nodes visited and bounds calculated for the motivating example

The best bound heuristic is used to determine the next node and the absolute diameter
heuristic is used to select on which variable to branch. Furthermore, another heuristic is
necessary to decide when to branch on discontinuous factors. Currently, the algorithm
branches on first discontinuous factors that have not been branched on if w(Xk) < εdw(X)
where εd = 0.1. Lastly, a node X̃ is deleted at iteration k if either αk − β(X̃) < 10−5 or
αk − β(X̃) < 10−1β(X̃). At most 200,000 iterations are undertaken.

7.3.1 Motivating example revisited

It is instructive to study the motivating example, i.e., f (x) = ψ(x)− ψ(x), more closely.
Consider the factorable representation of f as v1 = x, v2 = ψ(v1), v3 = ψ(v1), and
f = v4 = v2 − v3. In this formulation there are two discontinuous factors to branch on;
p1, q1 correspond to v2 while p2, q2 correspond to v3.

Recall that f (x) = 0 for any x. Hence, any feasible point yields an optimal solution and
αk = 0 for any k. In Table 7.1 the current node Xk is characterized by xk and xk for each
iteration and the state of qk is given where qk

i = − implies that pk
i = F. Also, the lower

bound on the node and the number of nodes remaining in the stack Nk are stated. The
following observations can be made. First, any node with x > 0 or x ≤ 0 can be deleted as
the lower bound on such nodes is at least as great as the optimal solution. Nodes of the
type [0, ς] remain undeleted since β([0, δ]) = −1. In particular, these are refined to obtain
nodes [0, δ

2 ] and [ δ
2 , δ], the latter of which can be deleted again.

Also, it is important to point out that the heuristic that determines when to branch on
discontinuous variables is important here. As soon as the first discontinuous variable is
branched on, the bounds can be brought up and the algorithm converges. This example
has the advantage that every other node can be deleted immediately thus keeping the
number of nodes in the stack from growing. In general, it may be possible that a large
number of undeleted nodes has been generated on which branching on discontinuous

147



Chapter 7 Improving convergence of relaxations of bounded L-factorable functions

factors occurs.
Lastly, it should be noted that each of the methods listed at the beginning of this section

visit the same sequence of nodes.

7.3.2 Parameter estimation with embedded dynamic model

The second example considers a parameter estimation problem with embedded dynamics
described by a discrete-time hybrid system. Consider a continuous stirred-tank reactor
(CSTR) with residence time τ = 5 in which a reaction that is characterized by Michaelis–
Menten kinetics converts substrate (S) into product (P) catalyzed by an enzyme (E). The
dynamics are discretized using N = 50 equally spaced time points with ti+1 = ti + ∆t,
i ∈ I = {1, . . . , N} where ∆t = 0.02. The feed stream to the reactor contains substrate with
concentration cS0 = 2. The enzyme is washed out of the reactor and it also deactivates
with rate a(T − T0)2 where a = 0.001 and T0 = 310 are empirical parameters. The
outlet concentration of P and E, cE,i and cP,i, respectively, are measured when i ∈ Is =
{10, 20, 30, 40, 50}. When the concentration drops below a threshold, i.e., if cE,i+1 < c0

E
for i ∈ Isample, additional enzyme is added to the reactor boosting enzyme concentration
by ∆cE where c0

E = 0.05 and ∆cE = 0.15. The measured concentration of P is used to
determine two unknown parameters, k∞ and T. The scaled activation energy E

k = 300
and reaction rate parameter K = 1 are known. Experimentally determined effluent
concentrations cexp

P,i , i ∈ Isample are available to estimate the parameters, see Table 7.2. Initial
values for the concentrations are cS,1 = cS0 , cP,1 = 0, cE,1 = 0.1 and bounds on the variables
are k∞ ∈ [70, 140], T ∈ [290, 320]. The optimization problem can be written as follows:

min
k∞,T

1000 ∑
i∈Isample

(
cP,i − cexp

P,i

)2

s.t. cS,i+1 = cS,i + ∆tgS(cS,i, cS,i, k0),
cP,i+1 = cP,i + ∆tgP(cP,i, cS,i, cS,i, k0),
c̃E,i = cE,i + ∆tgE(cE,i, T),

cE,i+1 = c̃E,i +

{
∆cE if i ∈ Is, c̃E,i < c0

E,
0 otherwise,

k0 = k∞ exp
(
− E

kT

)
.

where

gS(cS,i, cE,i, k0) = (cS0 − cS,i)τ −
k0cE,icS,i

K + cS,i
,

gP(cP,i, cS,i, cE,i, k0) = −cP,iτ +
k0cE,icS,i

K + cS,i
,

gE(cE,i, T) = −cE,iτ − a(T − T0)
2.
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7.3 Case studies

i cexp
P,i (ti)

10 0.16262
20 0.33426
30 0.43722
40 0.22993
50 0.34085

Table 7.2: Experimentally measured concentration of product in the reactor effluent
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Figure 7.1: Comparing the convergence behaviour of the upper and lower bounds without
and with branching on discontinuous factors for the parameter estimation
problem

The discontinuity is introduced in this problem by the decision if enzyme needs to be
added to the reactor which depends on the current enzyme concentration. If this addition
is triggered, the concentration cE jumps and consequently impacts subsequent substrate
and product concentrations. The objective function is shown in Figure 7.2 and clearly
exhibits multiple discontinuities and local minima that are not global minima.

The problem can be cast as an algorithm that calculates the objective given x = (k∞, T).
Events are represented as discontinuities using ψ. Bounds on the concentrations, which
are known from physical considerations, are utilized to strengthen the relaxations, i.e.,
cP,i ≥ 0, cS,i ∈ [0, CS0 ], cE,i ∈ [0, c0

E + ∆cE].
Consider Figure 7.1(a) which demonstrates that this problem also exhibits a finite con-

vergence gap. However, the identification of its source is not as simple as in the previously
considered example. In order to converge the bounds, branching on discontinuous factors
is used in this problem, too. Note that there are 5 discontinuous factors on which branch-
ing can occur. Figure 7.1(b) indicates that convergence can be achieved after allowing
branching on discontinuous factors. Additionally, the method to tighten bounds discussed
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Figure 7.2: Objective function of parameter estimation problem with embedded discrete-
time hybrid system
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Figure 7.3: Convergence behavior of lower bounds where interval and relaxations are used
to compute bounds

in Appendix A is used.
Detailed results comparing the different methods are reported in Table 7.3. As also

shown in Figure 7.3, solving the convex relaxations with Method 2 and 3 gives very similar
results though Method 2 is nearly twice expensive, see Table 7.3. Method 1 was not able to
converge the lower bound in the iterations alloted though an optimal solution has been
identified.

7.4 Discussion

In this section, special focus will be put on the impact of allowing branching on discontin-
uous factors, deciding when a node can be fathomed and how to branch and a remark
regarding different methods to find the lower bounding problem.
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7.4 Discussion

Method # LBPs # UBPs Runtime [s] f ∗ xmin

1 > 179, 602 > 172, 537 > 294.3 0.1321 (97.86, 299.6)
2 96, 838 54, 960 619.9 0.1321 (97.83, 299.6)
3 97, 248 55, 179 337.5 0.1321 (97.89, 299.6)

Table 7.3: Comparison of different methods for the parameter estimation problem with
embedded discrete-time hybrid system.

Importance of branching on discontinuous factors Branching on discontinuous vari-
ables as introduced in Section 7.1 is a method to reduce the convergence gap. It replaces a
node on which f and g cannot be guaranteed (using interval arithmetic) to be continuous
with two nodes by fixing a discontinuous factor to either branch of the discontinuous
function. Initially, this may loosen the relaxation as argued in Corollary 7.1. However, once
all discontinuous factors have been branched on or can be guaranteed to be continuous, the
resulting factorable function is continuous. Now, standard results from interval analysis
guarantee convergence of relaxation and interval bounds to the constructed continuous
function.

In contrast to a formulation with binary variables [e.g., 19, 168], using a discontinuous
representation has several advantages. First, calculating an upper bound, and hence
finding a feasible solution, does not require fixing all binary variables to integer values.
For a box constrained problem, evaluating the objective at any point in the box yields a
valid, though not necessarily tight, upper bound. Second, to converge the bounds one may
not have to branch on all discontinuous factors in a practical problem (though this cannot
be ruled out in principle) as shown in the first case study in Section 7.3.1. In particular, this
formulation can take advantage of interval information to decide if discontinuous factors
are already uniquely determined on the current host set and eliminate the possibility of
branching on it subsequently.

Infeasibility test As already insinuated in Remark 7.5, the test for infeasibility needs to be
modified. This modification has analogues in nonlinear programming. Consider a general
constraint g(x) ≤ 0. Often, practical implementations that consider such constraints will
also introduce a small parameter which specifies the tolerance to which the constraint need
to be satisfied. For example, an algorithm based on active-set strategy needs to determine
which constraints are active and then will also need to solve a nonlinear equation. Both
steps can only be carried out numerically to within some small tolerance.

The necessary property of the deletion by infeasibility rule is given in Definition 6.9.
However, the statement of the test for infeasibility as given in Remark 7.2 does not have
the required property as first pointed out in Remark 7.5. It shall be reiterated here that
this modification is typically for actual implementations.

A clear consequence of this modification is the following. Consider h : X → R as a token
of f or gj. Suppose h is discontinuous at x‡ ∈ X so that ∃ε′ > 0 and for any ε′ > ε > 0
there does not exist a δ > 0 so that f (x)− f (x‡) < ε for all x ∈ X with ‖x− x‡‖2 < δ.
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ε−1
d # LBPs # UBPs

4 99, 003 56, 321
8 97, 274 55, 196

10 97, 248 55, 179
16 95, 378 53, 882
32 92, 789 51, 949
64 89, 168 48, 931

128 87, 826 48, 077
256 89, 607 48, 192
512 95, 804 48, 556

1024 118, 667 59, 366

Table 7.4: Influence of heuristic for discontinuous branching on convergence of second
case study using Method 3

Thus, h at (x‡) is lower than h at any point in its vicinity. In particular, it is lower by a
non-infinitesimal amount. While it may be difficult to identify such a (local) minimum with
numerical methods in general, the modification of the deletion by infeasibility rule can
remove x‡ from the feasible region. Thus, the algorithm would converge to a suboptimal
point but report that it found an optimal solution. However, for practical problems, one
would not be interested in optimal solutions that are not valid in a neighborhood of the
optimum as these are typically impossible to realize in practice anyway.

Branching heuristic As demonstrated with the first case study, the branching heuristic
that decides when to branch on discontinuous variables can have a large impact on the
convergence behaviour.

On the one hand, branching on discontinuous variables early, i.e., at a high level in the
branch and bound tree, will spawn only a small number of new nodes and the functions
that are relaxed are continuous early on. On the other hand, branching early will reduce
the possibility that interval bounds can rule out one branch of the discontinuous factor and
hence eliminate the need to branch on this factor. However, branching at deeper levels of
the branch and bound tree will require that the same discontinuous factor will be branched
on multiple times and thus enlarging the number of nodes to visit considerably. This is
especially important as the relaxations right after branching on a discontinuous factor
will result in looser bounds on at least one node than on the parent node. In Table 7.4,
it is shown how the number of considered lower and upper bounding problems change
when εd is modified. Note that multiplying εd by a factor of two means that branching
on discontinuous factors occurs when the width of the host set is twice as large. The
sensitivity study shows the trade-off discussed before. However, it is too early to generalize
these results. In general, the discontinuity branching heuristic will need to balance this
trade-off carefully.
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7.5 Conclusion

Methods for lower bounding problem A few remarks regarding Figure 7.3 are in order.
First, it demonstrates the value derived from convex relaxations over bounds from interval
arithmetic. Secondly, it shows that the bundle solver is able to provide tighter lower
bounds initially although slightly more nodes are visited overall. Also, as reported in
Table 7.3, the calls to CPLEX introduce significant overhead as evident by the increase in
runtime by 84% when compared to the bundle solver.

7.5 Conclusion

In Section 7.1, a method was introduced to overcome this convergence problem by allowing
branching on discontinuous factors. Theoretical results are established to guarantee that
branching on discontinuous factors continues to provide valid bounds. Furthermore, it
was established that the bounds convergence assuming the the deletion by infeasibility
rule is certain in the limit. Additionally, a result was given that allows to tighten bounds
without using dual information. Lastly, two case studies demonstrate that convergence
can be achieved.
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Chapter 8

Conclusion

This thesis contains original contributions to the field of global optimization as well as
process design and heat integration.1 Optimization is a key activity in any engineering
discipline. In chemical engineering, in particular, process models are often nonlinear and
nonconvex, e.g., due to the presence of multiple components, nonlinear thermodynamic
models and kinetic mechanisms. Deterministic global optimization algorithms are capable
of solving such process models even in the presence of non-optimal local solutions.
Unfortunately, the worst-case runtime of all known algorithms scales exponentially with
the problem dimension. To circumvent this behavior, it is suggested to reduce the number
of model variables visible to the optimizer, e.g., by using equality constraints to solve
for some of the variables. The reduced-space formulation leads to several complications
that were addressed here: the optimum of the resulting problem formulation is more
likely to be unconstrained potentially worsening the cluster problem; the information
contained in the constraints needs to be better exploited in the construction of bounds
and relaxations; standard regularity assumptions (differentiability and continuity) of the
resulting formulation cannot always be guaranteed.

The resulting reduced-space problem formulation is more prone to the cluster prob-
lem [54], the phenomenon that global optimization algorithms visit a large number of
boxes in the immediate vicinity of unconstrained global (and near global) solutions. In
this thesis, the previous analysis in [129] was revisited and improved. The importance of
second-order convergent bounding methods was confirmed and it was also shown that the
tightness of the bounding method significantly impacts the incidence of this phenomenon.

Based on the representation of the constraints as a directed acyclic graph, a method
analogue to constraint propagation for convex and concave relaxations was proposed
that extends a method for interval bounds [174]. The variables are partitioned into
independent and dependent variables. First, relaxations of the constraints are computed
using generalized McCormick relaxations. Next, these relaxations are intersected with the
constraint values. Then the graph is traversed in reverse order and the computations are
inverted in some sense. This technique provides relaxation of the set-valued mapping from
independent to dependent variables implied by the constraints. These relaxations were
shown to improve the standard McCormick relaxations of the feasible set. Compared to

1A formulation for the combined process optimization and heat integration for processes at subambient
conditions was proposed and a pinch operator for streams with non-constant heat capacity was introduced.
These are documented in Appendices B and C.
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prior methods [e.g., 164], existence and uniqueness of an implicit function implied by the
equality constraints is not presumed. Additionally, the information contained in inequality
constraints can also be incorporated in this procedure and repeated application of the
method can further improve the obtained relaxations.

Second-order convergent bounding methods are essential in mitigating the cluster
problem. It has been shown that standard McCormick relaxations are second-order con-
vergent [34]; this is true for generalized McCormick relaxations only if all relaxations
appearing in the arguments are also second-order convergent. When constructing relax-
ations of implicit functions implied by a system of nonlinear equations, interval bounds
obtained from parametric interval-Newton methods are used to initialize generalized
McCormick relaxations [e.g., 164]. It was argued in this thesis that these bounds are
first-order convergent only and a second-order convergent bounding procedure based on
the sensitivities of the system was discussed.

While the existing theory for McCormick relaxations required continuous functions,
an extension to a class of discontinuous functions was proposed. Previously, binary vari-
ables [e.g., 168] or equilibrium constraints [e.g., 20] were employed to model discontinuous
behavior in systems, which leads to a, sometimes significant, increase in the problem
dimension. The properties of the obtained relaxations were analyzed and, under certain
assumptions, convergence was established. Furthermore, branch-and-bound theory was
revisited and extended to this case. A further extension was presented to guarantee
convergence of the relaxation in a more general setting by allowing branching on the
discontinuous factors.

8.1 Future work

It is clear that bounding methods from the class of centered forms possess the same
convergence order as McCormick or αBB relaxations. Additionally, the former do not
require the solution of an optimization problem to bound the range. On the other hand,
bounding methods suffer from the wrapping effect when it comes to overestimating
the feasible region; see Section 3.5. Though the wrapping effect supplies a plausible
explanation why relaxations have been more successful in global optimization, extensive
numerical studies could confirm this or, otherwise, provide new insights for future research.
It is also a plausible conjecture that relaxations provide an easier avenue to perform domain
reduction, which is essential in any practical global optimization implementation.

Child nodes in a branch-and-bound tree are closely related to the parent node and much
information constructed for the parent node may be useful when solving the lower and
upper bounding problem on the child node. At the same time, passing on too much of
this information will significantly increase storage requirements of each node. It may be
interesting to explore possibilities to enable warm-starting the optimization procedures in
the bounding problems of the child node using information from the parent node. For
example, when a bundle method is used to minimize the convex relaxation of the objective
function, the bundle of the parent node should also be applicable to the child node.
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8.1 Future work

The bundle solver [113] used to minimize nonsmooth convex relaxations in this thesis
does not provide duality information, which can be a quite effective means in optimality-
based domain reduction methods [e.g., 149]. If the current solver can be replaced with
a different implementation that does provide duality information for the solution, more
effective domain reduction methods than those discussed in Appendix A are possible.

The auxiliary variable method as implemented in BARON relies on the linearization of
the convex and concave relaxations of the constraints since it uses LP algorithms in the
lower bounding problem. While LPs can be solved more reliably and, often, also more
efficiently than the original convex program, the resulting bounds are weaker. It would be
interesting to study this trade-off for McCormick relaxations numerically as it is difficult
to obtain theoretical results for the linearization.

The bounding method presented in Chapter 5 could be combined with either the reverse
McCormick propagation described in Chapter 4 or the method introduced in [164] to
construct relaxations of implicit functions.

While the bounding method presented in Chapter 5 is second-order convergent, first
case studies exhibit a clear dependence of the convergence order pre-factor on the number
of dependent variables. It is possible that this is due to the particular nature of the case
studies as systems of equations obtained by discretizing ODEs. On-going work in the
group focusing on the convergence order of McCormick relaxations of ODEs indicate
that the pre-factor grows rapidly as the ODE is integrated to longer times. Therefore,
the behavior of the bounding method is not unexpected. However, more studies may be
warranted. In general, it is expected, but not yet studied in detail, that the convergence
order pre-factors of the interval bounds and relaxations of factorable function grow with
the length of its computational sequence.

In similar spirit, when sparsity and block decomposition can be exploited as in some of
the case studies in Chapter 5, it is conceivable that interval bounding and McCormick re-
laxations benefit differently. The interval methods presented there have a clear dependence
on the size of the Jacobian matrix, which in turn depends on the dependent variables x.
In other words, the block structure allows to solve many smaller systems instead of one
large one leading to better bounds. On the other hand, it is anticipated that the tightness
of McCormick relaxations depends on the length of the computational sequence. In this
case, using reverse McCormick propagation on the complete, but very sparse system may
be more beneficial. This warrants more investigation in the future.

In order to develop the relaxation methods for discontinuous functions further, the rate
of convergence of the relaxations must be increased. While the extension presented in
Chapter 7 can guarantee convergence even when Assumption 6.2 does not hold, the rate of
convergence can be low and, consequently, full space problem formulations are currently
more efficient. Also, the constraint propagation technique developed in Chapter 4 could
be used in combination with branching on the discontinuous factors.
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Appendix A

Domain reduction using subgradients

An important feature of efficient branch-and-bound procedures for global optimization
are methods to reduce the search space by cutting regions that are known not to contain
an optimal solution, also known as range reduction [91, 148, 149, 166].

In the absence of dual information that is used in optimality-based range reduction
techniques [148, 149], one can utilize subgradient information.

Theorem A.1. Suppose UBD is a valid upper bound of (1.1) on C, X = [x, x] ∈ IC, x̃ ∈ X,
ˇ
f is

a convex relaxation of f on X and σ ∈ ∂
ˇ
f (x̃). Let i ∈ {1, . . . , n} so that σi 6= 0. Then, the bounds

can be updated as follows:

xi,new = max{xi, x̃i +
ωi

σi
} if σi > 0,

xi,new = min{xi, x̃i +
ωi

σi
} if σi < 0,

where
ωi = UBD−

ˇ
f (x̃)−∑

j 6=i
min{σj(xj − x̃j), σj(xj − x̃j)}.

Proof. Since
ˇ
f is a convex relaxation of f on X, it holds for any x ∈ X that

f (x) ≥
ˇ
f (x) ≥

ˇ
f (x̃) + σT(x− x̃).

Thus, adding the constraint

UBD ≥
ˇ
f (x̃) + σT(x− x̃)

to (1.1) will not change the solution of the optimization problem. In particular,

UBD−
ˇ
f (x̃)−∑

j 6=i
σj(xj − x̃j) ≥ σi(xi − x̃i).

It holds for all j ∈ {1, . . . , n} and xj ∈ [xj, xj] that

σj(xj − x̃j) ≥ min{σj(xj − x̃j), σj(xj − x̃j)}.

Hence, σi(xi − x̃i) ≤ ωi for all xi ∈ [xi, xi]. If σi > 0, then xi ≤ x̃j +
ωi
σi

. If σi < 0, then
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xi ≥ x̃j +
ωi
σi

. Lastly, the updated bounds need to satisfy xi,new ≤ xi and xi,new ≥ xi so that
the assertion follows.

Remark A.1. Theorem A.1 does not specify where to evaluate
ˇ
f and ∂

ˇ
f . As a first heuristic,

one can use the solution returned by the lower bounding problem. However, if x̃ is a
optimal solution of the lower bounding problem on X, then σ may not contain a non-zero
element, in which case the procedure will not yield any new information.

Remark A.2. To reduce computational effort at each iteration, one can choose to update
only the bound that correspond to the dimension with the largest absolute subgradient,
i.e., let i ∈ arg maxi{|σi|}. Note that this is a heuristic only.
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Appendix B

Synthesis of heat exchanger networks at
subambient conditions with compression
and expansion of process streams1

B.1 Introduction

The design of energy efficient processes received a lot of attention during the energy crises
of the 1970s, and has recently attracted new attention due to the current high cost of
energy, as well as the new goal of reduced CO

2
emissions to mitigate global warming.

Consequently, researchers have studied methodologies for the optimal design of heat
exchanger networks [65, 72, 92, 93]. One of the most successful tools to optimize energy
integration during process design is pinch analysis. By providing a rigorous lower bound
for the utilities needed by a given process design, it serves as a guideline for achievable
process integration during flowsheet synthesis [33, 111, 157, 158, 160].

The decomposition of the design process for chemical plants has been previously
illustrated by the Onion Diagram, which indicates the levels of process design as well as
the natural sequence of decisions. Commonly, at the core of the Onion Diagram is the
Reactor System (R), followed by the Separation System (S), the Heat Recovery System (H)
and the Utility System (U). In the first version of the Onion Diagram, however, Linnhoff
et al. [111] did not include the utility level, but more important, they included Compression
and Expansion (C&E) inside the Heat Recovery System (see Figure 1). This is interesting
and highly relevant to the present appendix, since expanders and compressors play a
significant role in the proposed methodology. Important “feedbacks” from outer to inner
layers exist, however, which complicate the simplified flow of information in one direction
indicated in Figure 1. One of these feedbacks is related to the interaction between setting
the pressure of separation equipment, such as distillation columns and evaporators, and the
design of the heat recovery system. By changing the pressure levels of such separators, the
corresponding temperature levels of important (large duties) heat sources and sinks will
change. This may have a significant impact on the scope for direct heat integration or heat
pumping. Figure B.1 shows an extended version of the traditional Onion Diagram where
compression and expansion of the process streams are taken to be separate operations

1This chapter, which has been published in AIChE Journal, 57(8):2090–2108, 2011, is joint-work with Audun
Aspelund and Truls Gundersen.
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isolated from the utility system. Use of the concepts underlying this extended Onion
Diagram is a central part of the ExPAnD methodology presented by Aspelund et al. [9].

UHS
C
&
E

R

Figure B.1: Illustration of the natural sequence in process design (Reactor system, Separa-
tion system, Compression and Expansion, Heat exchanger system, Utilities)

Pinch analysis (PA) covers the interface between the basic process (R, S) and the utility
system (U) with special focus on the heat recovery system (H). This methodology has
reached a mature level of industrial application over the years and has been successfully
applied to improve heat recovery, to design better heat and power systems and utility
systems, as well as in many other aspects of process design. An introduction to and
overview with references to original research are given in the textbook of Smith [160].
The major limitation with this methodology is that only temperature is used as a quality
parameter, thus neglecting pressure and composition. Over the last decades, PA has
been a source of physical insights, which have led to advances in the synthesis of heat
exchanger networks. Two thorough reviews of heat exchanger network synthesis (HENS)
were published by Gundersen and Naess [72] and by Jezowski [92, 93]. More recently in
[2002], Furman and Sahinidis [65] contributed a critical review and annotated bibliography
of 461 papers on the design of HENs.

Exergy analysis (EA) [101] can be used in all stages of process synthesis (PS), and
the advantage is the inherent capability of including all stream properties (temperature,
pressure and composition); however, a limitation is its focus on the equipment units,
rather than the flowsheet level. In addition, there is no obvious conversion from exergy
to cost; in fact, there is often a conflict between reducing exergy losses and reducing cost.
Nevertheless, Anantharaman et al. [4] tried to combine PA and EA in drawing so-called
Energy Level Composite Curves. The new Energy Level parameter was proposed by
Feng and Zhu [60]. Homvsak and Glavivc [85] suggested power availability curves to
visualize the effect of pressure changes, which are not taken into account in the traditional
composite curves of PA, in order to guide the appropriate placement of compressors and
expanders.

Optimization techniques, usually referred to as mathematical programming (MP), are
widely used in PS. One of the main challenges in their application is the fact that most
problems in process design feature discrete decisions between process alternatives in
addition to nonlinear process models as well as economic models with continuous variables.
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B.2 Problem statement

Thus, these problems need to be cast as Mixed Integer Nonlinear Programs (MINLP).
An inherent property of such problems, even for problems of relatively small size, is the
difficulty to guarantee that the global optimal solution has been found. Simultaneous
optimization and heat integration of chemical processes can be formulated using MP, and
several authors have contributed ideas [10, 12, 55, 71, 77, 131–134, 179–181]. The reader is
referred to the review by Furman and Sahinidis for additional references on the sequential
and simultaneous synthesis of HEN [65].

Although there have been extensive efforts to optimize heat exchanger networks, very
few papers have been published describing how the pressure of process streams can
be manipulated in order to achieve more energy- and cost-effective processes. This is
especially important in energy-intensive cryogenic processes, such as the liquefaction of
natural gas or hydrogen, where the temperature of process streams is very sensitive to
changes in pressure as the boiling or condensation temperature is a function of pressure.
Furthermore, expansion or compression of process streams changes both temperature and
pressure, and converts stream enthalpy into work or vice versa. For example, a pressurized
stream can be expanded to produce both thermal (cold) exergy and work from pressure
exergy. Earlier, efforts have been made to develop an Extended Pinch Analysis and Design
procedure (ExPAnD) and study the Attainable Regions (AR) for expansion of process
streams at subambient temperatures [6, 9]. However, these procedures rely on heuristics
and a graphical interpretation of pressure exergy. It would be beneficial to formulate
the problem using MP. Holiastos and Manousiouthakis [84] have shown the theoretical
potential for moving the composite curves closer together by using ideal heat and power
processes based on the second law of thermodynamics. This may provide interesting
theoretical insights; however, such processes cannot be implemented as real engineered
systems.

This appendix presents a process design tool that combines PA, EA and MP to find
heat exchanger networks with minimal irreversibility by varying pressure levels of process
streams. It is structured as follows. First the problem statement is given. Then the state
space approach to modelling the problem is described providing a detailed formulation
of the pressure operator, the pinch operator and the exergy operator. Two examples
highlight the application of the formulation: First, a simple example with one hot stream
and two cold streams is considered, where the pressure of one of the cold streams can
be manipulated. Then the methodology is applied to achieve a better design in a novel
process for liquefaction of natural gas using liquid CO

2
(LCO

2
) and liquid inert nitrogen

(LIN) as cold carriers [8].

B.2 Problem statement

The problem statement can be formulated as follows:

Given a set of process streams with a supply state (temperature, pressure and the
resulting phase) and a target state, as well as utilities for power, heating and cooling;
design a system of heat exchangers, expanders, pumps and compressors in such a way
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that an objective is minimized.

It should be emphasized that this problem definition is significantly more complex than
the standard heat recovery problem in PA. First, the issue of soft target temperatures is
now expanded to include also soft target pressures. Second, the thermodynamic process
from the initial to the final state is not specified, and the change in temperature and
pressure as well as phase may follow a large set of different routes. Third, the distinction
between process streams and utilities, as well as between hot and cold streams, is no
longer obvious. In fact, streams may change identity; for example, a cold process stream
may temporarily change to a hot stream, and vice versa. Some process streams act like
utilities by providing energy sources or sinks at temperatures outside the range spanned
by the available utilities. Additionally, stream properties such as phase can be changed by
manipulating the pressure. Finally, note that the actual problem considered will suggest
the objective. Typically, it will correspond to some representation of operating cost, but an
example will show that minimization of utility cost may be meaningless in some cases.
Another possible choice for the objective is the exergy efficiency of the process.

In this appendix, the typical assumptions that are made in PA are used. Process streams
are considered to have constant heat capacity, and pressure drops across heat exchangers
are neglected. Since the heat capacity varies with temperature, the assumption of constant
heat capacity may lead to significant error. This can be mitigated by splitting a stream into
several piecewise segments with different heat capacities depending on the temperature
interval. Recently, a formulation that allows for nonconstant heat capacities was presented
in [77] where an empirical cubic correlation is used. It should be pointed out that this
formulation is significantly more complex as it requires more variables and constraints.
When combined with varying process conditions (flowrates, temperatures and pressures),
the problem cannot be solved in reasonable time. Expansion and compression of streams
are modelled as isentropic processes, while an isentropic efficiency factor is introduced
to adjust for unavoidable losses in real processes. To model the thermodynamic behavior
of the fluid as the pressure changes, any equation of state can be used in principle [135];
here, for simplicity, the ideal gas model is used.

B.3 Description of the process model

B.3.1 A state space approach for design of heat exchanger networks including
compressors and expanders

The state space approach to mass and heat transfer network design was presented by Baga-
jewicz et al. [10]. The paper describes a way to divide the operations into mass and heat
transfer. On a similar basis, the state space realization of a HEN and compressor/expander
network is shown in Figure B.2.

The pinch operator locates the pinch point and thus infers the minimum utility require-
ments for the process streams. These are divided into two categories, fixed and variable.
The pressure of fixed streams is constant, while it can be changed through expansion
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The exergy operator

The pinch operator

The pressure operator

Fixed cold
streams

Fixed hot
streams

Variable hot
streams

Variable cold
streams

Figure B.2: State space realization of a heat exchanger and compressor/expander network
including the exergy operator that transforms energies into exergies to quantify
irreversibilities
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Appendix B Synthesis of heat exchanger networks at subambient conditions

and compression for variable streams. The former will contribute to the pinch operator
as in standard PA, while the latter also interact with the pressure operator. Typically,
fixed streams are represented using a constant heat capacity flowrate and the inlet and
outlet temperatures. To model phase changes occurring in single component streams, the
phenomena can be represented by dividing the stream into 3 substreams: two streams
with a constant heat capacity and a third with the latent heat of the phase change at
constant temperature. As shown in Figure B.2, the pressure of variable streams is allowed
to change through compressors and expanders. This has several implications. First, inlet
and outlet temperatures will vary so that the standard transhipment formulation will not
be able to solve the problem [55]. Instead, a nonlinear and nonconvex model needs to be
applied. Second, one stream can result in up to four contributions to the pinch operator
if a maximum of three pressure manipulation stages (compressors and/or expanders) is
allowed for each stream. This increases the complexity of the problem considerably as the
number of binary variables in the pinch operator scales with the square of the number of
streams.

B.3.2 A PA approach for the structure of the HEN and C&E system

In this section, arguments for the most favourable routes for compression and expansion
relative to heating and cooling are presented. It will be argued later in this appendix
that the appropriate placement of compression and expansion is above and below the
pinch, respectively, and with both pressure manipulations preferably starting at the pinch
temperature. As a result, an exit stream from a compressor should be cooled to the pinch
temperature if expansion (or another compression) is considered as the next step, thus
it is a hot stream. Similarly, an exit stream from an expander should be heated to pinch
temperature if compression (or another expansion) is considered as the next step, thus it is
a cold stream. This is illustrated in Figure 3 that shows the graphical representation of the
problem statement for one hot and one cold process stream where a total of three pressure
manipulations (e.g., one compressor and two expanders) are allowed for each stream. The
hot stream can be cooled, compressed, cooled, expanded, heated, compressed and cooled.
Similarly, the cold stream can be heated, expanded, heated, compressed, cooled, expanded
and heated.

When supply and target temperatures and pressures of a stream are fixed, there are
eight additional variables: three intermediate inlet temperatures, three intermediate
outlet temperatures and two intermediate outlet pressures. However, intermediate inlet
temperatures, or equivalently exit temperature of the expanders or compressors, are
related to the exit pressure of the expanders or compressors. Therefore, there are five
independent variables for each stream. The chosen route for compression and expansion
of hot and cold streams in Figure B.3 is not arbitrary. The pressure manipulations can be
treated as a series of process modifications. In PA, the general approach used to identify
process modifications that reduce the energy requirements is called the “plus–minus”
principle [110], which states that in general the hot and cold utility targets will be reduced
by:
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The pinch operator
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E-2
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TC1,in

TC2,in

TC3,in

TC4,in

TC1,out

TC2,out

TC3,out
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TH1,in

TH2,in
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TH1,out

TH2,out

TH3,out
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WE-1

WC-3

WC-2

WC-1

Figure B.3: Superstructure with heat exchangers, compressors and expanders for a hot and
a cold stream split into segments showing intermediate temperatures
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Appendix B Synthesis of heat exchanger networks at subambient conditions

• increasing hot stream (heat source) duty above the pinch or decreasing hot stream
duty below the pinch,

• decreasing cold stream (heat sink) duty above the pinch or increasing cold stream
duty below the pinch.

Furthermore, to avoid cross-pinch heat transfer that would result in an increase in con-
sumption of utilities beyond the target, the following applies:

• heat must not be transferred across pinch (from above to below),

• hot utility must not be used below pinch,

• cold utility must not be used above pinch.

One example that applies to the plus–minus principle is a heat pump. A heat pump, if
implemented correctly, will transfer heat from below pinch to above pinch, either through
an open cycle, such as vapour recompression in distillation, or in a closed heat pump with
an external working fluid. In this way, heat is removed below pinch and added above
pinch, and will, according to the plus–minus principle, decrease the need for both hot
and cold utilities at the expense of the work required in the compressor. Similar to the
open cycle heat pump, compression of a gas will increase the temperature of the gas,
and thereby either increase the duty of a heat source or decrease the duty of a heat sink.
Therefore, by applying the principles above, a stream should always be compressed above
pinch temperature. However, compression of a gas at a higher temperature will increase
the required work for the same pressure ratio. Although not incorporated here, it should
be noted that, from a capital cost point of view, it is beneficial to compress the gas at as
low temperature as possible, as the density is higher, and therefore the compressor can
be made smaller and less expensive. In some cases, a higher pressure ratio can also be
obtained, as the exit temperature will be lower.

An example that demonstrates the principles above is shown in Figure B.4. A hot
stream with a heat capacity flow rate of 2 kW/K is to be cooled from 130

◦C to -75
◦C, and

compressed from 0.1 to 0.2 MPa. Two cold streams are to be heated. The first cold stream
has a heat capacity flowrate of 5 kW/K and is to be heated from 15

◦C to 140
◦C. The

other cold stream has a heat capacity flowrate of 1 kW/K and is to be heated from -50
◦C

to 140
◦C. The hot stream is divided into two segments, H1 and H2, and a compressor

is inserted. In addition to the supply and target temperature of the hot stream, two
additional intermediate temperatures are introduced: the outlet temperature of segment
H1, TH1,out, and the inlet temperature of segment H2, TH2,in. The former corresponds to
the temperature at the intake of the compressor while the latter is the exit temperature of
the compressor. In this example the compressor intake temperature for the divided hot
stream, TH1,out, is varied systematically from the lowest possible temperature (-75

◦C) to the
highest possible temperature (130

◦C) in appropriate intervals. In Figure B.4, the composite
curves for each of the eight considered cases are shown. In Table B.1, the temperature
after compression TH2,in, the work W, the hot and cold utilities, QH and QC, respectively,
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Case TH1,out [◦C] TH2,in [◦C] QH [kW] QC [kW] W [kW] ψ [%]

1 — — 540.0 135.0 — 56.3
2 −75.0 −31.6 540.0 221.7 86.7 66.4
3 −50.0 −1.2 540.0 232.7 97.7 63.1
4 −28.5 25.0 540.0 242.0 107.1 61.1
5 0.0 59.8 470.4 185.0 119.6 67.0
6 25.0 90.3 409.5 135.0 130.5 73.2
7 50.0 120.7 398.5 135.0 141.5 71.8
8 130.0 218.3 363.5 135.0 175.5 67.6

Table B.1: Effect of compression of a hot stream at varying compressor intake temperatures
on utility requirements and exergy efficiency

and the exergy efficiency ψ, which will be formally defined in Section B.4.3, are given.
Figure B.5 shows the variation of W, QH, QC, and ψ as a function of compressor intake
temperature TH1,out. In the calculations, a minimum temperature approach ∆Tmin = 10◦C
and isentropic compression of an ideal gas with a polytropic exponent of κ = 1.4 are
assumed.

The first case (Figure B.4(a)) shows the composite curves (CCs) for the three streams
without compression. As can be seen from Table B.1, the hot and cold utilities are 540

and 135 kW, respectively, and the exergy efficiency is 56.3% for a hot stream pressure of
0.1 MPa (pressure-based exergy is not included). Since the heat capacity flow rate of the
CC for the cold streams is always larger than the CC for the hot streams above pinch, the
pinch temperature (15

◦C/25
◦C) does not change throughout the example.

In the second case, the hot stream is compressed at the lowest possible temperature.
As can be seen from Table B.1, the required work is only 86.7 kW, however, since it is
compressed solely below the pinch point, it leads to an increase in cold utility, which is in
accordance with the plus–minus principle. In contrast to the previous case, the pressure
exergy is utilized so that exergy efficiency is increased to 66.4%.

In Case 3, the compression temperature is increased to -50
◦C. As a result, the work is

increased to 97.7 kW and since the compressor exit temperature is below the pinch, there
is an equal increase in cold utility. It can therefore be concluded that if a stream has to be
compressed below the pinch, it should be compressed at as low temperature as possible.

In Case 4, the exit temperature (25
◦C) is exactly equal to the hot pinch temperature

resulting in the worst possible placement of the compressor and an exergy efficiency of
only 61.1%. This can be explained by the maximum amount of heat resulting from the
compression delivered below the pinch. It increases the cold utility without reducing the
hot utility, with an increase in work from Case 3.

In Case 5, the compression is performed across the pinch (from below to above) and
the temperatures before and after compression are 0.0 ◦C and 59.8 ◦C, respectively, which
means that a portion of the heat due to compression is provided above pinch. This will
reduce the hot and cold utilities duties, as the plus–minus principle states, and increase
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(f) Case 6: Compression at TH1,out =
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(g) Case 7: Compression at TH1,out =
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(h) Case 8: Compression at TH1,out =
130 ◦C

Figure B.4: Composite Curves resulting from compression of a hot stream at varying
compressor intake temperatures
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B.3 Description of the process model

the exergy efficiency when compared to Case 4.
Case 6 is the optimal configuration with an exergy efficiency of 73.2%. Here, the hot

stream is cooled to hot pinch temperature (25
◦C) before it is compressed to 0.2 MPa and

90.3◦C. Although the work has increased to 130.5 kW, all the heat from the compressor
is now provided above pinch and will therefore reduce the hot and cold utilities duty to
409.5 and 135 kW, respectively. As can be seen, the cold utility is now the same as in Case
1 where no compression took place. Furthermore, note that the CCs are close over a large
interval, which is an indication of the small irreversibilities in the HEN.

Increasing the compressor intake temperature further requires additional work, which
will be recovered as heat. However, since work is always worth more than heat above
ambient temperature, this process leads to a degradation of exergy. Therefore, the exergy
efficiency continues to decrease in Case 7 and is at its lowest value for compression above
pinch in Case 8. It could be argued that in the last case the hot utility could be provided at
a lower temperature since the temperature after compression is higher than the cold stream
outlet temperature plus the minimum internal temperature approach of 10

◦C. However,
even when accounting for this effect, the exergy efficiency will still be lower than for Case
6.

As demonstrated in Figure B.5, it is best to compress the hot stream beginning from
the pinch point than from any temperature below the pinch point if one strives for high
exergy efficiency. Cases 2 through 5 violate the plus–minus principle, they increase the hot
stream duty below the pinch. On the other hand, Cases 7 and 8 lead to a degradation of
exergy, that is, conversion from work to heat.

As already mentioned, for this example the heat capacity flowrate for the cold CC above
the pinch is larger than the heat capacity flowrate for the hot stream. Hence, the pinch
point remains the same throughout the example. In the opposite situation, the pinch point
will coincide with the compressor exit temperature and actually increase as the intake
temperature to the compressor is increased, thereby reducing the benefit of compression
above the pinch point. In addition, since in most problems several streams are involved,
the pinch point is likely to “jump” from one location to another when the pressure of
process streams is manipulated.

A similar analysis can be performed for the case of expansion. It will decrease the
temperature of the process stream, and thereby either decrease the duty of a heat source
or increase the duty of a heat sink. Applying the plus–minus principle, a stream should
always be expanded to an expander exit temperature that is below the pinch. This
is certainly the fact for all refrigeration cycles. However, similar to compression, the
expansion work will be greater at higher temperatures. Furthermore, a larger cold duty
will be produced. Therefore, it is obvious that expansion of a gas should start at the pinch
temperature and end below the pinch temperature. If the sole purpose of the expansion
is to produce work, it is favourable to expand the gas at as high temperature as possible,
which is clearly the case for power production plants. Nevertheless, in many processes
where heat integration is important, and especially for processes that require refrigeration,
generation of work is secondary to providing heat sinks. An example and a discussion of
expansion of a cold stream below the pinch can be found in [9].
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Figure B.5: Exergy efficiency, required work and utilities for the example

In general, a stream without phase change and with a supply pressure equal to the
target pressure should not be compressed or expanded. However, in some cases it may
be beneficial to expand, compress and expand (or vice versa) the same stream with
intermediate cooling and heating to take advantage of heat pockets created by other
process streams at higher or lower temperatures. To do so work must be available, of
course. One example of such a refrigeration cycle is the inverse Brayton cycle (expander
cycle) commonly used in air separation and peak-shave LNG plants.

For a liquid stream, there is no reason for manipulating the pressure as the effect is
marginal. However, for a stream with phase change, pumping in the liquid phase and
expansion in the gas phase is a very interesting option that should be investigated. A more
thorough discussion with heuristics for how to utilize pressure manipulations in process
design can be found in [9].

From the previous discussion, it can be concluded that the most beneficial way of
manipulating the pressure of a hot stream is to cool, compress, cool, expand, heat, compress
and cool it. Furthermore, the stream should always be compressed to temperatures above
the pinch point and expanded to temperatures below the pinch point. Compression and
expansion of a hot stream should preferably start at the hot pinch temperature. Therefore,
as shown in Figure B.3, an expanded stream will always be a cold stream, whereas a
compressed stream will always be a hot stream when further pressure changes are to
be made. Similarly, a cold stream can be heated, expanded, heated, compressed, cooled,
expanded and heated. Compression and expansion of a cold stream should preferably
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start at the cold pinch temperature. Note that during this process, a hot stream may
temporarily change to be a cold stream, and a cold stream may temporarily change to be
a hot stream. It is also worth noticing that the location of the pinch point is very likely
to change once pressure manipulations are introduced, since the shape of the composite
curve will change. This suggests the use of an optimization model to find the best trade-off
as even small problems become intractable.

B.4 Model formulation

The model consists of four parts: the pinch operator, the pressure operator, the exergy
operator and the objective function, recall Figure B.2. The pinch operator is responsible for
locating the pinch point and subsequently determining the minimum required utilities.
In the case of constant heat capacity flowrates, the pinch operator is linear. The pressure
operator uses equations of state in combination with isentropic changes of state to connect
streams at different pressure levels. With the thermodynamic model, nonconvex constraints
are introduced that cannot be reformulated. Typically, objective functions corresponding
to variable costs are linear. Together these operators form an MINLP involving nonconvex
functions.

B.4.1 The Pinch Operator

At the heart of the optimization model is the pinch operator, which calculates the minimum
required hot and cold utilities. Since stream pressure is allowed to change through
compressors and expanders, the inlet temperatures to the pinch operator will vary, thus
creating difficulties for the temperature interval model as first proposed by Linnhoff
and Flower [108] and modeled as a transhipment problem in [132]. Restructuring the
temperature intervals implies making discrete changes that lead to non-differentiabilities
in the model.

Duran and Grossmann proposed an optimization formulation to find the minimum
utility requirement for cases with variable stream data [55]. The pinch location method was
developed to optimize and heat integrate chemical processes simultaneously, and therefore
allows for variable inlet temperatures and heat capacity flowrates to the pinch operator.
The presented formulation locates the pinch point by comparing the hot utility required
for the subsystem of streams above each pinch candidate. It yields a small model without
binary variables, but uses nonsmooth functions. Thus, the problem cannot be solved
with standard optimization algorithms and smooth approximations were introduced. A
reformulation of this model based on disjunctive programming was presented in [71].
This reformulation removes the nonsmooth constraint at the expense of binary variables,
which distinguish if a stream is always below a candidate pinch point, above it or crosses
it. A candidate pinch point can be any stream inlet temperature. Hence, each hot or cold
stream is regarded as a possible pinch candidate. This model is a MILP if heat capacity
flowrates are non-varying; otherwise, it leads to a MINLP.
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Another pinch operator that allows variable temperatures was presented in a series
of three papers in [179–181]. Here, a superstructure is proposed that matches each hot
and cold stream at different stages. It uses binary variables to assign a possible heat
exchange between hot and cold streams in addition to heat balances and temperature
constraints. Although more complex than the pinch point location model, this pinch
operator has the advantage of calculating the required area as part of the optimization
routine. Unfortunately, this leads to a very large number of binary variables and the model
can therefore not be used for the considered purposes.

Recently, the model by Yee et al. was extend by Ponce-Ortega et al. [134] to include
isothermal process streams and by Hasan et al. [77] for process streams with nonconstant
heat capacity. In the latter case, a significant number of binary variables is added to the
model rendering it too complicated for this application.

It has been found in this present research that the formulation given by Grossmann
et al. [71] is the most tractable MINLP formulation currently available for the pinch
operator. Their model can also include the case of isothermal streams, which is neglected
in the presentation here. As in the original paper, the big M formulation is used. For
completeness, it can be described as follows.

Given is a set of hot process streams H and a set of cold process streams C. Let S = H∪C
be the set of all process streams. For each s ∈ S, Ts,in, Ts,out, Fs, and cp,s denote the inlet
and outlet temperature, the flowrate and the heat capacity of the stream, respectively.
Let k ∈ H and l ∈ C be indices of pinch candidates. Let QHOTi be the energy to be
transferred from hot stream i, QCOLDj the energy to be transferred to cold stream j. Let

qhp
ki and qcp

li be the energy available from hot stream i above hot pinch candidate k and cold
pinch candidate l, respectively. Likewise, let qhp

kj and qcp
lj be the energy required by cold

stream j above pinch candidate k and l, respectively. The hot and cold utilities used are QH
and QC. The minimum approach temperature between hot and cold streams is given by
∆Tmin. Lastly, binary variables w1

ki, w2
ki and w3

ki denote if hot stream i is completely above,
crosses or is completely below hot pinch candidate k, respectively. z1

kj, z2
kj, z3

kj, u1
li, u2

li, u3
li,

v1
l j, v2

l j and v3
l j denote analogous cases for the other combinations of streams and pinch

candidates as indicated by the indices. U and M are upper bounds on the heat transfer
and temperatures, ε is a small parameter introduced to distinguish numerically if a stream
crosses the pinch candidate or is below the pinch candidate.

QH + ∑
i∈H

QHOTi = QC + ∑
j∈C

QCOLDj,

QH ≥ ∑
j∈C

qhp
kj − ∑

i∈H
qhp

ki , ∀k ∈ H,

QH ≥ ∑
j∈C

qcp
lj − ∑

i∈H
qcp

li , ∀l ∈ C,

QHOTi = Ficp,i(Ti,in − Ti,out), ∀i ∈ H,
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QCOLDj = Fjcp,j(Tj,out − Tj,in), ∀j ∈ C,

qhp
ki −QHOTi ≤ U(1− w1

ki), ∀(i, k) ∈ H × H,

Ti,in ≥ Tk,in −M(1− w1
ki), ∀(i, k) ∈ H × H,

Ti,out ≥ Tk,in −M(1− w1
ki), ∀(i, k) ∈ H × H,

qhp
ki − Ficp,i(Ti,in − Tk,in) ≤ U(1− w2

ki), ∀(i, k) ∈ H × H,

Ti,in ≥ Tk,in −M(1− w2
ki), ∀(i, k) ∈ H × H,

Ti,out ≤ Tk,in − ε + M(1− w2
ki), ∀(i, k) ∈ H × H,

qhp
ki ≤ U(1− w3

ki), ∀(i, k) ∈ H × H,

Ti,in ≤ Tk,in − ε + M(1− w3
ki), ∀(i, k) ∈ H × H,

Ti,out ≤ Tk,in − ε + M(1− w3
ki), ∀(i, k) ∈ H × H,

w1
ki + w2

ki + w3
ki = 1, ∀(i, k) ∈ H × H,

qhp
kj −QCOLDj ≥ −U(1− z1

kj), ∀(j, k) ∈ C× H,

Tj,in ≥ Tk,in − ∆Tmin −M(1− z1
kj), ∀(j, k) ∈ C× H,

Tj,out ≥ Tk,in − ∆Tmin −M(1− z1
kj), ∀(j, k) ∈ C× H,

qhp
kj − Fjcp,j(Tj,out − (Tk,in − ∆Tmin)) ≥ −U(1− z2

kj), ∀(j, k) ∈ C× H,

Tj,in ≤ Tk,in − ∆Tmin + M(1− z2
kj), ∀(j, k) ∈ C× H,

Tj,out ≥ Tk,in − ∆Tmin − ε−M(1− z2
kj), ∀(j, k) ∈ C× H,

qhp
kj ≤ U(1− z3

kj), ∀(j, k) ∈ C× H,

Tj,in ≤ Tk,in − ∆Tmin − ε + M(1− z3
kj), ∀(j, k) ∈ C× H,

Tj,out ≤ Tk,in − ∆Tmin − ε + M(1− z3
kj), ∀(j, k) ∈ C× H,

z1
kj + z2

kj + z3
kj = 1, ∀(j, k) ∈ C× H,

qcp
li −QHOTi ≤ U(1− u1

li), ∀(i, l) ∈ H × C,

Ti,in ≥ Tl,in + ∆Tmin −M(1− u1
li), ∀(i, l) ∈ H × C,

Ti,out ≥ Tl,in + ∆Tmin −M(1− u1
li), ∀(i, l) ∈ H × C,

qcp
li − Ficp,i(Ti,in − (Tl,in + ∆Tmin)) ≤ U(1− u2

li), ∀(i, l) ∈ H × C,

Ti,in ≥ Tl,in + ∆Tmin −M(1− u2
li), ∀(i, l) ∈ H × C,

Ti,out ≤ Tl,in + ∆Tmin − ε + M(1− u2
li), ∀(i, l) ∈ H × C,

qcp
li ≤ U(1− u3

li), ∀(i, l) ∈ H × C,

Ti,in ≤ Tl,in + ∆Tmin − ε + M(1− u3
li), ∀(i, l) ∈ H × C,

Ti,out ≤ Tl,in + ∆Tmin − ε + M(1− u3
li), ∀(i, l) ∈ H × C,

u1
li + u2

li + u3
li = 1, ∀(i, l) ∈ H × C,
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qcp
lj −QCOLDj ≥ −U(1− v1

l j), ∀(j, l) ∈ C× C,

Tj,in ≥ Tl,in −M(1− v1
l j), ∀(j, l) ∈ C× C,

Tj,out ≥ Tl,in −M(1− v1
l j), ∀(j, l) ∈ C× C,

qcp
lj − Fjcp,j(Tj,out − Tl,in) ≥ −U(1− v2

l j), ∀(j, l) ∈ C× C,

Tj,in ≤ Tl,in + M(1− v2
l j), ∀(j, l) ∈ C× C,

Tj,out ≥ Tl,in − ε−M(1− v2
l j), ∀(j, l) ∈ C× C,

qcp
lj ≤ U(1− v3

l j), ∀(j, l) ∈ C× C,

Tj,in ≤ Tl,in − ε + M(1− v3
l j), ∀(j, l) ∈ C× C,

Tj,out ≤ Tl,in − ε + M(1− v3
l j), ∀(j, l) ∈ C× C,

v1
l j + v2

l j + v3
l j = 1, ∀(j, l) ∈ C× C.

B.4.2 The Pressure Operator

Let ps be the pressure of stream s where s ∈ S. The pair (s1, s2) ∈ EX ⊂ (S× C) denotes
that the outlet of stream s1 from the pinch operator is connected to the inlet of stream
s2 to the pinch operator with an expander. Likewise, the pair (s1, s2) ∈ CO ⊂ (S× H)
denotes connection with a compressor. Note that in- and outlet of the streams refer to
the heat exchanger, not the compressor or expander. T̃s2 denotes the exit temperature of a
reversible process, κ is the polytropic exponent, ηC and ηE are the isentropic efficiencies of
the compressors and expanders, respectively. Ws1 denotes the work required or released
by compression or expansion of stream s1. The reversible and adiabatic compression or
expansion of an ideal gas can be formulated as follows.

(κ − 1) ln ps1 + κ ln T̃s2 = (κ − 1) ln ps2 + κ ln Ts1 , ∀(s1, s2) ∈ CO ∪ EX, (B.1)(
Ts1 − T̃s2

)
= (Ts1 − Ts2) ηC, ∀(s1, s2) ∈ CO,(

Ts1 − T̃s2

)
ηE = (Ts1 − Ts2) , ∀(s1, s2) ∈ EX,

Ws1 = Fs1 cp,s1 (Ts2 − Ts1) , ∀(s1, s2) ∈ CO,
Ws1 = Fs1 cp,s1 (Ts1 − Ts2) , ∀(s1, s2) ∈ EX.

The logarithmic terms in Eq. (B.1) involve positive, physical quantities for which tighter
bounds are established to avoid the logarithm becoming undefined. Note that compressor
and expander work are both defined as nonnegative quantities. Hence, the net work
produced equals the sum of the expansion work minus the sum of the compression work.
In the general case when the thermodynamic properties of the streams are described
with a volume-explicit equation of state, the equations are to be rewritten accordingly. A
detailed discussion on how to compute the unknown exit temperature and the work for
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B.4 Model formulation

an isentropic process can be found in Prausnitz [135]. Lastly, it should be noted that in the
case studies no pressure drop is considered in the heat exchangers, although a constant
pressure drop can be easily considered in the given model.

B.4.3 The Exergy Operator

The exergy operator has two purposes: to calculate the exergy of the process streams
and the utilities and to find the exergy conversion efficiency. According to Kotas [101],
work is defined as 100% exergy, whereas the exergy of the hot and cold utilities depends
on the ambient temperature as well as the utility temperature and duty. For a utility
with constant temperature, the Carnot efficiency can be used to find the exergy content.
Note that we have assumed the hot utility to be above the ambient temperature and the
cold utility to be below ambient temperature. Let T0 and p0 be ambient temperature and
pressure, respectively. Th

U and Tc
U are the temperatures at which hot and cold utilities are

provided. One can interpret the exergy operator as a pricing tool to derive cost coefficients
for the different utilities thermodynamically so that the optimal solution corresponds to
minimum irreversibility.

ExW = ∑
(s1,s2)∈CO

Ws1 − ∑
(s1,s2)∈EX

Ws1

ExQhu = QH

(
1− T0

Th
U

)

ExQcu = QC

(
T0

Tc
U
− 1
)

The thermo-mechanical exergy of the process streams consists of the temperature-based
exergy and the pressure-based exergy. Since we assume that the process streams are
non-isothermal, a logarithmic expression must be used to calculate the exergy content as
shown in Equation (B.2). The pressure exergy is defined by Equation (B.3). The expressions
can be derived using the first and second laws of thermodynamics and the ideal gas model
with constant heat capacities. A derivation of the exergy expressions can be found in [101].

E(T)
s = Fscp,s

[
Ts − T0

(
1 + ln

(
Ts

T0

))]
(B.2)

E(p)
s = FsT0R ln

(
ps

p0

)
= Fs

(
κ − 1

κ

)
cp,sT0 ln

(
ps

p0

)
(B.3)

When calculating the exergy conversion efficiency it is important to exclude contributions
that do not change during the process in order to get a representative measure. The chem-
ical exergy is therefore excluded from the calculations and only the thermo-mechanical
exergy is included.
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Appendix B Synthesis of heat exchanger networks at subambient conditions

E(tm)
s = E(T)

s + E(p)
s

A more thorough discussion about thermo-mechanical exergy for subambient process
streams can be found in [9]. The exergy conversion efficiency is defined as the useful
outlet exergy divided by the inlet exergy. The inlet exergy is defined as the sum of the
thermo-mechanical exergy of inlet process streams and utilities and the net work required,
whereas the outlet useful exergy is the sum of the thermo-mechanical exergy in the outlet
streams and the net work produced as stated in Equation (B.4).

ψ =
E(tm)

outlet streams + ∑(s1,s2)∈EXWs1

E(tm)
inlet streams + ∑(s1,s2)∈COWs1 + ExQcu + ExQhu

(B.4)

Streams with fixed temperatures contribute only temperature-based exergy as the pressure
remains constant throughout the process, whereas the streams with variable temperature in-
clude both the pressure- and temperature-based exergy, that is, the total thermo-mechanical
exergy. The exergy input from the utilities is included in Equation (B.4). The net required
work and net generated work are also included in the exergy efficiency. If the heat capacity
flowrates, supply and target temperatures and pressures of the process streams are fixed,
the highest exergy efficiency can be found by minimizing the exergy input of the required
work, hot and cold utilities.

B.4.4 The Objective Function

The objective function combines the results from pinch, pressure and exergy operators
into one measure. For example, when the stream heat capacity flowrates and the inlet and
outlet pressure and temperatures are constant, the exergy required by the design can be
minimized resulting in a solution with minimal irreversibilities.

min ExW + ExQhu + ExQcu (B.5)

If flowrates are allowed to vary, more care needs to be taken in order to ensure that the
exergy of the streams with variable flowrate is accounted for.

Alternatively, it is possible to assign different costs for the utilities and work than those
obtained from thermodynamical considerations.

B.5 Examples

All problems were solved in GAMS 23.2 using BARON with CPLEX and SNOPT on a
Intel Xeon W3570 workstation using one core at 3.20GHz and 4 GB RAM under Linux
2.6.28. The relative termination tolerance in GAMS, OptCR, was set to 10−4, while the
absolute termination tolerance in GAMS, OptCA, was not changed and the default value
given by BARON, 10−9, was used. No deviating tolerances were set for either SNOPT
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Stream Fscp,s[kW/K] Ts,in [K] Ts,out [K] ps [MPa]

H1 3 288 123 0.1
C1 2 213 288 0.1
C2 1.7 113 — 0.4
C3 1.7 — — —
H2 1.7 — — —
C4 1.7 — 288 0.1

Table B.2: Given information for stream in simple example

H1
cold utility

hot utility

C1
C2
C3

C4

H2

Figure B.6: Possible arrangement of streams in the simple example

or CPLEX. Since BARON is used, bounds on the variables need to be given. Bounds on
temperatures are given by the available utility temperatures, bounds on pressures are
specified individually in the examples.

B.5.1 A simple example

In this example the benefits of using the model formulation presented in this appendix
are illustrated. One hot stream (H1) and one cold stream (C1) are at constant pressure,
a second cold stream (C2) is to be expanded from 0.4 MPa to 0.1 MPa. In light of the
discussion earlier, C2 could potentially be expanded, compressed and expanded with
necessary cooling and/or heating. In this example, the heat capacity flowrates of all
streams are constant. The data for each stream are given in Table B.2, the connection and
labelling of streams are shown in Figure B.6.

Furthermore, ∆Tmin = 4 K, T0 = 288 K, p0 = 0.1 MPa, Th
U = 383 K, Tc

U = 93 K, κ = 1.352
and ηC = ηE = 1. Unknown inlet temperatures can be varied between 103 to 373 K, the
pressure of stream C3 is restricted to 0.1–0.4 MPa, the pressure of H2 to 0.1–0.6 MPa.
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Appendix B Synthesis of heat exchanger networks at subambient conditions

Stream Ts,in [K] Ts,out [K] ps [MPa]

C2 — 155.56 —
C3 126.85 201.56 0.183
H2 244.21 233.00 0.382
C4 164.39 — —

Table B.3: Result for decision variables for Case 2 of the simple example

Several different cases are studied. First, no expanders and compressors are used. Then,
to contrast the possible benefits of adjusting pressure levels of intermediate streams, three
additional cases are presented where the objective and some constraints are modified.

The CCs and GCC for the base case without pressure manipulation are shown in Case
1 in Figure B.7. No work is produced and the heating and cooling utilities are 64.5 and
112 kW, respectively, giving a thermo-mechanical exergy efficiency of 68.1%. The change in
pressure exergy for stream C2 is ignored in these initial calculations. If a valve is used and
the pressure change in C2 is accounted for, the exergy efficiency will be as low as 39.2%.
As can be seen from the GCC, the pinch point is at 217 K/213 K.

In Case 2, the model formulation is used to find the minimum irreversibilities given
the possible path from Figure B.6. This is formulated using the objective function given
by Equation (B.5). It is found to be optimal that stream C2 is expanded to 0.183 MPa,
recompressed to 0.382 MPa and finally expanded down to 0.1 MPa. The net work produced
by the process is 92.96 kW, the hot utility requirement is reduced to 45.46 kW and no cold
utility is necessary. The resulting exergy efficiency is 91.4% if one assumes that the net
work produced can be utilized elsewhere. Results for the intermediate state variables are
listed in Table B.3. The problem was solved in 4 hours and 42 minutes. There are four pinch
points, at 130.85 K/126.85 K, at 168.37 K/164.37 K, at 217 K/213 K and at 244.21 K/240.21 K.
Note that the GCC seems to indicate an additional pinch point at 117 K/113 K. However,
this is a result of the fact that the designed process requires no cold utility and, therefore,
it does not indicate the existence of an additional pinch point. This large number of pinch
points corresponds to the objective of minimizing irreversibilities and therefore decreasing
the gap between hot and cold composite curves as far as possible. It is worth mentioning
that this configuration and the most favorable intermediate temperature for expanding
this stream could also have been found by the ExPAnD methodology [9]. The advantage
of the optimization approach of this appendix is time saving and assurance of optimality.
It is also worth noticing that the result from Case 2 is in agreement with the proposed
model in Figure B.6. At first sight, this example seems innocuous. However, it is indeed a
difficult global optimization problem as the ideal gas model introduces nonconvexities
and the pinch operator introduces 108 binary variables. Furthermore, the existence of
multiple pinch points at the optimal solution introduces degeneracy that slows the solution
algorithm significantly.

In Case 3, the system is evaluated on an energy basis where hot and cold utility duties
as well as the work provided to the process are minimized. The objective function is given
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Stream Ts,in [K] Ts,out [K] ps [MPa]

C2 — 197.18 —
C3 142.71 263.99 0.116
H2 304.76 123.47 0.201
C4 103.00 — —

Table B.4: Result for decision variables for Case 3 of the simple example

Stream Ts,in [K] Ts,out [K] ps [MPa]

C2 — 180.07 —
C3 125.52 251.65 0.100
H2 296.71 121.44 0.188
C4 103.00 — —

Table B.5: Result for decision variables for Case 4 of the simple example

by
min W + QH + QC. (B.6)

Here, it is optimal to expand stream C2 to 0.116 MPa, recompress to 0.201 MPa and then
expand to 0.1 MPa. Results for the intermediate state variables are listed in Table B.4. The
total net work produced is 58.08 kW and the cold and hot utilities are 0 kW and 10.58 kW,
respectively, giving an exergy efficiency of 84.9%. The problem was solved in 7 seconds.
In this case, there are two pinch points, one at 217 K/213 K and one at 288 K/284 K.

In Case 4, the minimal irreversibilities are found while fixing the hot and cold utilities
to zero. In this case, minimizing irreversibilities is the same as maximizing net work
produced. Stream C2 is expanded from 0.4 MPa to 0.1 MPa, recompressed to 0.188 MPa
and expanded to 0.1 MPa. Results for the intermediate temperatures are listed in Table B.5.
The total net work produced is 47.5 kW and the hot and cold utilities are both 0 kW, giving
an exergy efficiency of 83.2%. In this case, the problem is completely balanced by the hot
and cold streams and sub-streams so that there is no need for hot or cold utilities. The
problem was solved in less than 2 seconds. There exists one pinch point at 288 K/284 K and
a near pinch at 217 K/213 K. Again, the GCC touches the temperature axis two additional
times at both ends which indicates that neither cold nor hot utility is required.

By adding additional passes of C2 through the heat exchanger, expanders and com-
pressors, the exergy efficiency can be further increased; however, the investment cost
would be increased significantly while the benefits diminish. It is also possible to set the
isentropic efficiencies for the compressors and expanders to a value less than 100%. This
will reduce the exergy efficiency, but lead to a more realistic process model. Furthermore,
the model allows for changes in the heat capacity flowrate of the process streams. In this
way, constraints on the utilities as well as the net produced work can be set, forcing them to
be zero. This is done in the next example, where an LNG process, which is self-supporting
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(a) Composite Curves for Case 1

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0  20  40  60  80  100  120  140

T
 [
K

]

Q [kW]

(b) Grand Composite Curve for Case 1
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(c) Composite Curves for Case 2
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(d) Grand Composite Curve for Case 2
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(e) Composite Curves for Case 3
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(f) Grand Composite Curve for Case 3
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(g) Composite Curves for Case 4

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0  20  40  60  80  100  120  140

T
 [
K

]

Q [kW]

(h) Grand Composite Curve for Case 4

Figure B.7: Composite and Grand Composite Curves for the different cases in the simple
example
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Figure B.8: The Liquefied Energy Chain

with power and utilities using the cold exergy from liquid carbon dioxide and liquid
nitrogen, is optimized.

B.5.2 Design of an LNG process using LCO2 and LIN as cold carriers

The Liquefied Energy Chain (LEC) [7] is a novel energy- and cost-effective transport chain
for stranded natural gas that is utilized for onshore power production with CO

2
capture

and offshore enhanced oil recovery (EOR). It includes an offshore section, a combined gas
carrier, and an integrated receiving terminal, see Figure B.8. In the offshore section, natural
gas is liquefied to produce LNG while Liquid Carbon Dioxide (LCO

2
) and Liquid Inert

Nitrogen (LIN) act as cold carriers. The reheated nitrogen is emitted to the atmosphere at
ambient conditions while the CO

2
is transferred at high pressure to an offshore oilfield

for EOR. LNG is transported to the receiving onshore terminal in the combined carrier.
There, the cold exergy of the LNG is recovered in a liquefaction process for carbon dioxide
and nitrogen. In this transport chain, CO

2
can be provided by industrial sources such as

cement production, petrochemical plants or any power plant with CO
2

capture.
In a fully integrated energy chain, the onshore process is connected to an air separation

unit that produces nitrogen for the offshore process and oxygen for an oxy-fuel power
plant where natural gas is combusted to produce electricity as well as carbon dioxide and
water. Water is removed from the flue gas. The CO

2
is compressed to a pressure above the

triple point and liquefied by vaporization of the remaining LNG.
The LEC has better exergy efficiency and it is reasonable to believe that it will have

lower investment costs than existing technology for dedicated transport of LNG and LCO
2
.

Furthermore, the concept shows potential for utilization of stranded natural gas with CO
2

sequestration on a commercially sound basis [7, 8].
In this example, it is shown how the ExPAnD methodology [9] and the previously

discussed optimization formulation can be used to improve the design and optimize the
operation of the offshore LNG process shown in Figure B.9. The goal is to design a process
that is self-sufficient in the sense that it does not require the supply of utilities or work
because space is at a premium in any offshore process.
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Case LNG [kg/s] LIN [kg/s] LCO
2

[kg/s] W [kW] QH [kW] QC [kW] Ψ [%]

I 1.0 1.83 2.46 820.2 888.6 0.0 57.9
II 1.0 1.29 2.46 −15.43 172.8 0.0 74.4

IIIa 1.0 0.0 2.46 114.05 15.99 467.76 52.1
IIIb 1.0 0.30 2.46 0.0 136.19 385.19 59.3
IIIc 1.0 0.90 2.46 0.0 24.359 0.0 84.9
IIId 1.0 0.90 2.46 0.0 0.0 0.0 84.6

Table B.6: Main results for LNG case study. I refers to the base case design, II after appli-
cation of the ExPAnD methodology, IIIa–d refer to the different optimization
scenarios. W > 0 indicates that work needs to be supplied while W < 0 means
that work is generated.

Natural gas at 7 MPa and 15
◦C is to be liquefied and let down to 0.1 MPa and -

164.1 ◦C. The state of LCO
2

is to be changed from 0.55 MPa and -54.5 ◦C to 10
◦C and

15 MPa, whereas LIN at 0.6 MPa and -177
◦C is to be heated, vaporized and vented to the

atmosphere at 0.1 MPa; the outlet temperature is not specified. The gas composition of
the natural gas stream, ambient conditions and equipment data are as in [8]. The process
design calculations are based on a production rate of 1 kg/s LNG. In the case of complete
carbon capture, combustion of this natural gas stream will result in 2.73 kg/s CO

2
. If

one assumes that a practically feasible solution may capture 90% of the generated carbon
dioxide, the flowrate of LCO

2
to the offshore LNG process is equal to 2.46 kg/s.

The process is simulated with HYSYS using the SRK equation of state. Figure B.10(a)
shows the composite curves (CCs) for the process before any pressure manipulation is
performed, which is referred to as Case I. Note that it is necessary to supply hot utility,
which is provided by sea water available at ambient conditions. At 57.9%, the exergy
efficiency of this process is low due to the large driving forces between the CCs and the
energy intensive compression of CO

2
in the gas phase. The flowrate of LIN is minimized

while meeting the requirement of no cold utility usage. Two reasons lead to this change
in the considered objective. Firstly, the process is to operate on an offshore platform
where space restrictions favor a process design that does not require utilities. These
constraints, that are introduced in the studied cases below, lead to a meaningless objective
if Equation (B.5) were still used. Secondly, the only task liquid nitrogen performs in this
process is to provide exergy to the liquefaction train, but, at the same time, it takes up
space in the cold carrier that could otherwise be used to ship CO

2
. Additionally, a lot of

power is required to produce liquid nitrogen in the onshore process. Thus, minimizing the
nitrogen flowrate while meeting utility constraints leads to the most economical solution.

For completeness, the flowrates of the various streams, the required or produced work as
well as the exergy conversion efficiency are shown in Table B.6. Note the sign convention
for W: A positive value indicates that work needs to be supplied while a negative value
means that work is generated.

The first step in the design procedure is to use the ExPAnD methodology [9] for streams
that undergo a phase transition to develop an improved initial design, referred to as Case II.
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Figure B.9: Process flow diagram of the base case offshore LNG process before pressure
manipulation
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(a) CC before pressure manipulation (Case I)
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(b) CC after application of ExPAnD (Case II)

Figure B.10: Composite curves for the offshore LNG process before pressure manipula-
tion (a) and after application of the ExPAnD methodology (b)
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Figure B.11: Process flow diagram of the offshore LNG process after applying the ExPAnD
methodology

The heuristics suggest that LCO
2

should be pumped to avoid compression. Likewise, the
LIN should be pumped to 10 MPa to avoid the large driving forces in the heat exchanger,
thereby transforming temperature-based exergy to pressure-based exergy. The nitrogen
stream is then expanded and fed back to the heat exchanger to transform the pressure
exergy into work and cold duty at a more appropriate temperature level. Finally, it can
be shown that the natural gas should be compressed to 10 MPa before entering the heat
exchangers to decrease the heat capacity flow rate of the natural gas stream in the pinch
region. The new PFD and CCs are found in Figure B.11 and Figure B.10(b), respectively.
Again, the process is simulated with HYSYS using the SRK equation of state. The required
amount of LCO

2
and LIN, the net work produced and the exergy conversion efficiency

are found in Table B.6. As the composite curves show, the varying heat capacity curve of
the natural gas can be tracked much more efficiently leading to a steep increase in exergy
efficiency to 74.4% while decreasing the nitrogen flowrate by 29.5%. For future reference, it
should be noted that pumps P-100, P-101 and P-102 require 15.32 kW, 17.61 kW/(kg/s) FN

2

and 40.04 kW, respectively, and compressor K-101 uses 58.69 kW.
In the next step, the expansion of N

2
will be optimized to provide cold utility at the

temperature levels necessary in order to reduce the required nitrogen flowrate again (Case
III). Following the discussion earlier in this article, a cold stream with varying pressure
levels is to be heated, expanded, heated, compressed, cooled, expanded and heated, as
this will result in the best trade-off between increases in capital investment and process
efficiency. The presented optimization formulation will be used to find the intermediate
temperatures and pressures that will result in the smallest nitrogen flowrate.

The stream data for this initial design (inlet and outlet temperatures as well as averaged
heat capacity values) are collected from the HYSYS model for Case II. Since the natural
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Figure B.12: Final process flow diagram for the offshore LNG process

gas consists of several components, mostly methane, ethane and propane, condensation
will occur over a temperature interval. In the process, the natural gas stream is cooled at a
pressure that is above the critical point. The temperature/enthalpy curve will therefore not
have the flat condensation region normally found when condensing a single component
fluid. However, the heat capacity is still far from constant. Therefore, the stream is divided
into three individual streams (H1–H3), which yield a reasonably good fit to the actual
cooling curve. Similarly, the heat capacity flowrate of the high-pressure liquid nitrogen and
liquid CO

2
streams are not constant either. The liquid carbon dioxide stream is divided

into two individual streams (C1–C2). Its inlet and outlet temperatures as well as the
pressure and flowrates remain fixed. The high-pressure nitrogen stream to be expanded is
treated as a variable stream according to Figure B.3 allowing for two expansion cycles and
one compression cycle with intermediate heating and cooling, resulting in three possible
cold streams and one possible hot stream. The initial cold nitrogen stream is split into
three streams (C3–C5) to get more accurate fit of the averaged heat capacities. Expansion,
compression and expansion result in streams C6, H4 and C7, respectively. The outlet
temperature of the nitrogen stream is variable. Overall, the process is modeled using a
total of four hot and seven cold streams with three possible pressure manipulations; see
Figure B.12.

Due to the high pressure and low temperature of the nitrogen stream, the first expansion
is far from ideal; hence a non-ideal polytropic exponent of κ = 1.51 together with an
efficiency factor for the work of ηC = 0.7 are used for the first expansion, based on a
comparison with the HYSYS simulation. For the possible expansions and compressions
below 4 MPa the pressure operator, which is based on the ideal gas model, is accurate.
The hot and cold utility temperatures are set to 383.15 K and 93.15 K, respectively. Here,
∆T = 4 K, κ = 1.352, ηC = ηE = 1.0, M = 400 K, U = 1300 kW and ε = 0.1 K. The pressure
of C6 is constrained to be between 0.3 and 1 MPa, while the one of H4 can vary between
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Stream Fs [kg/s] cp,s [kJ/kg] Ts,in [K] Ts,out [K] ps [MPa]

H1 (NG-2–NG-4) 1.0 3.46 319.8 265.15 10.0
H2 (NG-2–NG-4) 1.0 5.14 265.15 197.35 10.0
H3 (NG-2–NG-4) 1.0 3.51 197.35 104.75 10.0
H4 (N

2
-8–N

2
-9) — 1.15 — — —

C1 (CO
2
-2–CO

2
-3) 2.46 2.11 221.12 252.55 6.0

C2 (CO
2
-2–CO

2
-3) 2.46 2.48 252.55 293.15 6.0

C3 (N
2
-2–N

2
-4) — 2.48 103.45 171.05 10.0

C4 (N
2
-2–N

2
-4) — 1.80 171.05 218.75 10.0

C5 (N
2
-2–N

2
-4) — 1.18 218.75 — 10.0

C6 (N
2
-5–N

2
-7) — 1.07 — — —

C7 (N
2
-10–N

2
-12) — 1.04 — — 0.1

Table B.7: Given data for the optimization of the offshore LNG process

1.0 and 3.5 MPa. The flowrates of the nitrogen streams are equal throughout the flowsheet;
similarly, streams consisting of carbon dioxide have equal flowrate. Table B.7 shows the
stream data for the optimization model. There are seven decision variables: the nitrogen
flowrate (FN

2

), the intermediate outlet temperatures (TH4,out, TC5,out, TC6,out) and pressures
(pH4, pC6) of the nitrogen streams as well as the outlet temperature of the nitrogen stream
(TC7,out). The goal is to design a process that is self-sustained, i.e., that does not require
utilities or work, with the minimal nitrogen flowrate. Thus, the objective function is to
minimize the flowrate of nitrogen.

The following cases are investigated:

• Case IIIa: minimize flowrate of nitrogen,

• Case IIIb: minimize flowrate of nitrogen so that W ≤ 0,

• Case IIIc: minimize flowrate of nitrogen so that QC = 0 and W ≤ 0,

• Case IIId: minimize flowrate of nitrogen so that QC = QH = 0 and W ≤ 0.

In Case IIIa, the minimal N
2

flowrate is found using one hot and one cold utility
available at 383.15 K and 93.15 K, respectively, in accordance with the previously described
optimization model. As can be expected in the presence of utilities and external sources of
work, no nitrogen is required to support the process. As can be seen from the composite
curves, which are not balanced with utilities, in Figure B.13(a), CO

2
provides only a very

narrow temperature interval heat sink for the natural gas stream. Since there is no N
2

stream, no work is produced by expanding it and the process requires that 114.05 kW
of work is supplied. Overall, these factors lead to a low exergy efficiency of 52.1%; see
Table B.6. The problem was solved in 5 seconds. It should be pointed out that the
optimization formulation in this case does not find the given utilities. Instead, due to
degeneracy with respect to the objective of minimizing the nitrogen flowrate, it reports
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B.5 Examples

Variable Unit Case IIIa Case IIIb Case IIIc Case IIId

FN
2

[kg/s] 0.0 0.296 0.898 0.898
TH4,in [K] 319.9 383.15 365.01 365.00
TH4,out [K] 319.8 383.15 225.12 226.56
pH4 [MPa] 3.50 3.50 2.677 2.743
TC5,out [K] 218.75 383.15 222.55 221.11
TC6,in [K] 97.89 210.39 95.66 95.66
TC6,out [K] 188.23 383.15 221.12 221.15
pC6 [MPa] 0.457 1.00 0.390 0.400
TC7,in [K] 123.73 210.39 95.66 95.66
TC7,out [K] 315.7 261.05 383.15 357.05

Table B.8: Results for the decision variables for Case III of the LNG offshore process design

results that are increased by an arbitrary constant. However, the minimum utility needed
can be calculated easily. The values of the decision variables for all Cases IIIa–IIId are
shown in Table B.8.

In Case IIIb, an additional constraint is added requiring that the process does not require
work, i.e., W ≤ 0. As a result, the flowrate of nitrogen at the optimal solution is increased
though still only a fraction of what had been found in cases I and II. The required cold
utility is decreased in comparison to the previous result, see Table B.6. In this case, at the
found solution, both pC6 and pH4 are at their upper bounds, see Table B.8. In order to
provide the required work, the inlet temperature of the second expander on the nitrogen
stream is chosen as large as possible. This is achieved by heating C5 with utility and by not
cooling stream H4. Overall, the exergy efficiency of the design increases to 59.3%, which is
still below the results found in Cases I and II. The solution was found in 143 seconds.

Case IIIc solves the problem with an additional constraint forcing QC = 0. To make up
for the lack of cold utility, the flowrate of N

2
supplied to the process is increased over

the previous two cases. Only a small amount of hot utility is required which is basically
used only to heat the vented nitrogen stream to its high outlet temperature. As can be
seen from Figure B.13, the cold composite curve is able to track the cooling curve of the
natural gas nicely. Additionally, the exergy efficiency is increased to 84.9% and surpassed
the values found in the early designs (Cases I and II). The solution was found in 13 hours
and 8 minutes.

Case IIId adds the constraint that no hot utility may be used, i.e., QH = 0. The resulting
process design is very similar to the results from the previous case, as can be seen in
Table B.8. This can be explained as follows: The objective function is not impacted when
TC7,out is varied a within certain range, but the necessary hot utility QH changes, thus
creating a degenerate optimal solution. Fixing QH = 0 removes this degeneracy from the
problem and reduces the computational effort, too. The solution was found in 3 hours
and 26 minutes. Note that the exergy efficiency is slightly smaller than in the previous
result. This results from the reduced exhaust temperature of the vented N

2
stream, which

189



Appendix B Synthesis of heat exchanger networks at subambient conditions

 80

 120

 160

 200

 240

 280

 320

 0  400  800  1200

T
 [
K

]

Q [kW]

(a) Case IIIa: minimum N
2

flowrate

 80

 120

 160

 200

 240

 280

 320

 360

 400

 0  400  800  1200

T
 [
K

]
Q [kW]

(b) Case IIIb: minimum N
2

flowrate
with W ≤ 0

 80

 120

 160

 200

 240

 280

 320

 360

 400

 0  400  800  1200

T
 [
K

]

Q [kW]

(c) Case IIIc: minimum N
2

flowrate
with W ≤ 0 and QC = 0

 80

 120

 160

 200

 240

 280

 320

 360

 0  400  800  1200

T
 [
K

]

Q [kW]

(d) Case IIId: minimum N
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with W ≤ 0 and QC = QH = 0

Figure B.13: Compositive curve for the offshore LNG process resulting from the different
optimization cases
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B.6 Discussion

exergy content can be considered lost anyway and is only included for completeness. In
comparison to Case II, the nitrogen flowrate could be reduced by 30.4%; in comparison to
Case I, it is reduced by 50.8%. Furthermore, the process does not require any supplied
utility or work, see Table B.6.

Due to the simplifications used in the model formulation, the results cannot directly be
implemented in HYSYS when a more rigorous physical property model is selected in the
process simulator. For example, given the same pressure difference across an expander
and the same temperature at the expander inlet, a reversible process with an ideal gas will
result in a different outlet temperature than a reversible process modeled with a cubic
equation of state. Similarly, the hot and cold streams are modeled to have constant heat
capacities, while HYSYS models the streams more accurately where heat capacity is a
function of temperature. Thus, it is necessary to change the intermediate temperatures
and pressures found by the model slightly to obtain a feasible result upon implementation
of the optimization results in HYSYS.

B.6 Discussion

It is shown that by expanding and compressing process streams appropriately (according
to the plus–minus principle in PA) the requirements for hot and cold utilities may be
significantly reduced. A superstructure for such pressure manipulations is developed,
showing that a hot stream may change to a cold stream after expansion and that a cold
stream may shift to a hot stream upon compression. If possible, a process stream should
be compressed or expanded from the pinch temperature given that the pinch point does
not change. Since it is likely that the pinch point will change, however, optimization is
required.

Allowing for compression and expansion of the process streams will increase the com-
plexity of traditional PA significantly as one stream will result in several streams with the
possibility for expansions and compressions. Furthermore, as the inlet temperatures to the
pinch operator will vary, it is necessary to use the pinch operator suggested by Grossmann
et al. [71]. This pinch operator is nonlinear in the case of varying heat capacity flowrates.
To model the second law constraints in the pinch operator, it requires a large number of
binary variables leading to a nonconvex MINLP. In addition, a pressure operator and an
exergy operator are developed, both are based on ideal gas assumptions. The pressure
operator introduces additional nonlinear and nonconvex terms, hence combining the
operators (pinch, pressure, exergy) forms a nonconvex MINLP, which needs to be solved
by a global solver. By combining the operators, the minimal irreversibilities for a heat
exchanger network that allows for compression and expansion can be solved. Due to the
nonconvexity of the MINLP formulation, however, only small problems can be solved at
present.

In the examples, a maximum of three pressure manipulations are allowed; however, by
adding more heat exchanger passes, compressors and expanders, even higher thermody-
namic efficiencies can be obtained. The marginal effect of adding additional expanders
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Appendix B Synthesis of heat exchanger networks at subambient conditions

and compressors is not expected to justify the additional capital investments. If the process
inlet and outlet specifications are constant, it is possible to find the minimal irreversibilities
by minimizing the net exergy input from the hot and cold utilities and maximizing the
work produced, as done in the first example. If the heat capacity flowrates of the process
streams are allowed to vary, the exergy conversion efficiency, including the inlet and outlet
exergy of the process streams must be maximized to obtain good results.

From the first studied example it can be seen that it is possible to obtain a solution (Case
4) where both hot and cold utilities are avoided; such a solution cannot be expected for
every problem, though. If ∆Tmin in Case 2 had been increased it would not have been
possible to find a solution without hot or cold utilities and no net work. The exergy
efficiency would decrease due to the increased temperature differences (and thereby larger
irreversibilities), however, the costs (area) of the heat exchangers would also decrease.
For ideal expansions and compressions it is difficult to obtain a solution without utilities
and with no net work without changing the flowrate of the process streams. This is
easier to achieve with compressor and expander isentropic efficiencies less than 100%, as
there will be losses in each compressor/expansion cycle which are dependent on the inlet
temperature.

As can be seen from Table B.6, the proposed process of using liquid nitrogen and liquid
CO

2
to liquefy natural gas will have a very low thermodynamic efficiency if the pressures

of the process streams are not manipulated. The most important contribution to increase
the efficiency comes from using sound engineering knowledge formalized in the ExPAnD
methodology. However, the selection of the intermediate pressure and temperature levels
in the nitrogen loop is not so straightforward. It is here where the optimization formulation
delivers additional value. It suggests a process design that satisfies the constraints of no
utility usage and further lowers the N

2
flowrate.

Producing hot and cold utilities as well as work can be very expensive in an offshore
process; hence it is shown how these utilities can be avoided by compression and expansion
of process streams. Also, since the net work produced cannot necessarily be used at a
field site location, it should not be accounted for as useful exergy. Therefore, in Case IIId,
constraints are added so that the process is to be self-sustained, that is, without hot or cold
utilities and without producing or consuming power. A more thorough description of the
processes in the liquefied energy chain can be found in [8].

There are three main challenges with the proposed model. Firstly, since the problem is a
nonconvex MINLP, a global solver, such as BARON or nonconvex outer approximation [97]
must be used to find the global optimum. This has the implication that only small problems
such as those considered here can be solved within a reasonable time at present, even
with reasonable upper and lower bounds for the variables. Secondly, it is not easy to set
appropriate bounds without having in-depth knowledge of the process to be optimized;
hence the design tends to be an iterative process. Finally, due to the simplifications
required for the model, e.g., constant heat capacity flowrate and ideal gas assumptions,
the solution found by the global solver may prove not to be feasible in HYSYS simulations,
since HYSYS has access to more rigorous thermodynamic models, and thereby gives a
more accurate estimate for the process to be designed in the real world. On the other hand,
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minor adjustments can be made to eliminate this infeasibility.

B.7 Conclusions

An optimization formulation for heat and power integration is developed and imple-
mented in GAMS using BARON as the global solver. In this extended problem definition,
the process streams are allowed to undergo pressure changes as well as phase and tem-
perature changes. The procedure is particularly suited for subambient processes where
pressure-based exergy can be transformed into temperature-based exergy and vice versa
by expansion and compression. The resulting design consists of heat exchangers, pumps,
compressors and expanders integrated in a way that minimizes total irreversibilities. To de-
sign less complex and less costly processes, constraints can be added that disallow (if at all
possible) the use of external heating and cooling as well as external power. The proposed
approach combines Pinch Analysis, Exergy Analysis and Mathematical Programming (a
nonconvex MINLP model). It should be stressed that the problem addressed and solved
by this new Process Synthesis tool is significantly more complex than the traditional Heat
Exchanger Network Synthesis problem. The examples show that manipulation of stream
pressures can significantly reduce the total irreversibilities in Heat Exchanger Networks.
An industrial application related to LNG shows that the optimization formulation is
capable of suggesting a reasonable initial design for realistic problems.

Although the proposed optimization model can give a reasonable design for new
processes, the formulation can be improved and expanded to be even more general. First
of all a more sophisticated pressure operator based on more accurate equations of state, for
example SRK, should be implemented to achieve more accurate results for non-ideal gases.
Also, equations for liquid pumping and liquid expansion should be included. Finally,
equations for phase transitions should be added. However, since the model already has
reached the limit for how large problems one can solve, this is not considered at the current
stage.
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Appendix C

Pinch operator for streams with non-constant
heat capacity

Two problems in heat exchanger network synthesis are considered, the utility targeting
problem and heat exchanger network synthesis problem. In contrast to most literature
methods, constant heat capacity is not assumed here.

Let S denote the set of process streams. A process stream i ∈ S is a stream with flowrate Fi,
heat capacity cp,i(T), and in- and outlet temperature Tin,i and Tout,i, respectively. A process
stream i is a hot process stream when Tin,i ≥ Tout,i; similarly, it is termed a cold process stream
if Tin,i ≤ Tout,i. Let nH and nC be the number of hot and cold process streams and denote
their respective sets by H and C; H ∩ C = S. Furthermore, assume that a hot and a cold
utility is available.

The utility targeting problem [e.g., 83, 108, 109, 132] can be described as follows: Given
a set of hot and cold streams, H and C, determine the minimum hot and cold utility
heat loads, QH and QC, respectively, so that first and second law constraints are satisfied.
Additionally, a minimum temperature difference ∆Tmin between hot and cold streams is
enforced. In the case of constant heat capacity considered in the referenced papers, this
problem leads to a linear program.

The heat exchanger network synthesis problem [44, 62, 77, 134, 179–181] is more complex.
Given a set of hot and cold streams, H and C, determine the optimal network of heat
exchangers that leads to minimal cost in some cost measure, which typically includes
both investment and operating expenses. Here, in addition to finding the necessary utility
duties, it is also necessary to identify matches between hot and cold streams, to determine
if process streams need to be split, and to size the equipment. This problem leads to a
mixed-integer nonlinear program.

C.1 Utility targeting for streams with non-constant heat capacity

In this section, a novel method to obtain utility targets is described. In contrast to
previous methods, it is able to provide targets for problems where the heat capacity of
streams are non-constant. In literature formulations, it is assumed that the heat capacity is
constant [e.g., 83, 108, 109, 132].

Pinch analysis popularized by [108, 109] aggregates the information of the individual
streams into composite curves for the hot and cold streams, TH(Q) and TC(Q); cf. Fig. C.1.
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Appendix C Pinch operator for streams with non-constant heat capacity

Figure C.1: Illustration of the basic concept of pinch analysis in the case of constant heat
capacity flowrates

Then, one shifts one of the curves horizontally so that each point on the cold composite
curve is always at least ∆Tmin below the hot composite curve in order to guarantee second
law feasibility. The point, at which the distance TH(Q)− TC(Q) ≥ 0 is minimal, is termed
pinch point. The key insight that enabled efficient methods was discovered by Hohmann
[83]. He pointed out that the pinch point can only occur at the inlet temperature of process
streams if the heat capacity of the streams are constant. Thus, optimization formulation for
this problems need only guarantee second law feasibility at a finite number of points.

Throughout the literature it is argued that nonconstant heat capacities can be approx-
imated by splitting the stream into parts with constant heat capacities [55]. However,
Castier and Queiroz [39] remark that nonlinear behavior is not just a pathological case and
Hasan et al. [76] point out that streams undergoing phase changes or close to the critical
point also lead to varying heat capacities. Here, a optimization formulation is proposed
that allows for process streams with varying heat capacities.

Define the respective aggregated hot and cold stream inlet and outlet temperatures as
Tin,H = max{Tin,i|i ∈ H}, Tout,H = min{Tout,i|i ∈ H}, Tin,C = min{Tin,i|i ∈ C}, and
Tout,C = max{Tout,i|i ∈ C}. Furthermore, define the aggregated hot and cold stream flowrate
and heat capacities as

FH(T) = ∑
i∈H|T∈[Tout,i ,Tin,i ]

Fi, cp,H(T) = ∑
i∈H|T∈[Tout,i ,Tin,i ]

cp,i(T),

FC(T) = ∑
i∈C|T∈[Tin,i ,Tout,i ]

Fi, and cp,C(T) = ∑
i∈C|T∈[Tin,i ,Tout,i ]

cp,i(T).

The notation states that, for each T, the summation includes process streams which are
present at T.

The first law constraint for the heat exchanger network is straightforward to obtain. An
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C.1 Utility targeting for streams with non-constant heat capacity

overall energy balances yields that

QC +
∫ Tout,C

Tin,C

FC(T)cp,C(T) dT = QH +
∫ Tin,H

Tout,H

FH(T)cp,H(T) dT. (C.1)

Clearly, it determines a linear relationship between QH and QC. Similarly, a second law
constraint can be formulated. It is necessary to guarantee that the heat exchange is feasible,
i.e., heat is always transfered from a higher to lower temperature and from hot to cold
stream. Appealing to the often used depiction from pinch analysis, see Fig. C.1, the
hot stream always needs to be above the cold stream. Since typically available data is
heat capacity as a function of temperature, consider a figure where abscissa and ordinate
are reversed, see Fig. C.2. This figure also illustrates the formulation for the second
law constraints. First, note that FH(T)cp,H(T) can be interpreted as the slope of the hot
composite curve in this illustration. Since only energy differences are important in this
context, suppose that (Tout,H, 0) is a point on the hot composite curve. Let (Tin,C, QC) be
a point on the cold composite curve. Feasibility implies that the cold composite curve is
always above the hot composite curve. Thus, one needs to find the minimal QC, i.e., the
smallest vertical shift of the cold composite curve, so that the feasibility requirement is
met. This requirement can formally be written as

∆Q(T∗) ≡ QC +
∫ T∗

Tin,C

FC(T)cp,C(T) dT −
∫ T∗+∆Tmin

Tout,H

FH(T)cp,H(T) dT ≥ 0, ∀T∗ ∈ Θ,

(C.2)
where Θ = [max{Tin,C, Tout,H − ∆Tmin}, min{Tout,C, Tin,H − ∆Tmin}]. Thus, the targeting
problem can be formulated as

min
QH ,QC

cHQH + cCQC (TP)

s.t. (C.1),
(C.2),
QH, QC ≥ 0,

where cH and cC are the specific costs of cold and hot utility. This is a semi-infinite program
(SIP) due to constraint (C.2) which needs to hold for each T in an interval.

Obviously, the definition of aggregated flowrates and heat capacities leads to piecewise
linear and piecewise smooth functions, respectively. It is advantageous to consider each
temperature interval, on which FH and FC are constant and cp,H and cp,C are smooth,
individually. Therefore, divide Θ into subintervals at each Tin,i, Tout,i ∈ Θ where i ∈ C
and Tin,i + ∆Tmin, Tout,i + ∆Tmin ∈ Θ where j ∈ H. This leads to at most 2nH + 2nC − 2
subintervals Θj, j = 1 . . . , l. Let θj = inf{T|T ∈ Θj}, j = 1, . . . , l and define qH,1 =
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Appendix C Pinch operator for streams with non-constant heat capacity

Figure C.2: Illustration of the second law constraint for feasibility of the heat exchange for
process streams with nonconstant heat capacity. If for all T∗ the cold composite
curve is above the dotted curve, which is the hot composite curve shifted left
by ∆Tmin, then the heat exchange is feasible for a given QC. Note that ordinate
and abscissa are swapped here in contrast to the traditional construction in
Figure C.1.

∫ θ1
Tout,H

FH(T)cp,H(T) dT and qC,1 =
∫ θ1

Tin,C
FC(T)cp,C(T) dT. Let

qH,j+1 = qH,j +
∫ θj+1

θj

FH(T)cp,H(T) dT, j = 1, . . . , l − 1 and

qC,j+1 = qC,j +
∫ θj+1

θj

FC(T)cp,C(T) dT, j = 1, . . . , l − 1.

Note that these parameters can be computed in advance.
Thus, the semi-infinite constraint for ∆Q(T), (C.2), can be reformulated as l semi-infinite

constraints

∆Qj(T∗) ≡ QC + qC,j +
∫ T∗

θj

FC(T)cp,C(T) dT − qH,j −
∫ T∗+∆Tmin

θj

FH(T)cp,H(T) dT ≥ 0,

(C.3)
which need to hold for all T∗ ∈ Θj, j = 1, . . . , l. In contrast to ∆Q, the integrands are
continuous functions now and their functional description does not change, e.g., one has
FH(T) = FH,j and FC(T) = FC,j for each T ∈ Θj.

C.1.1 Reformulating the targeting problem

In the previous section, it was shown that the targeting problem can be formulated as a
SIP when the assumption of constant heat capacity is dropped. Bhattacharjee et al. [32]
describe a method to find a global minimum of a SIP.
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C.1 Utility targeting for streams with non-constant heat capacity

Finding global optimal solutions of SIPs using the method in [32] requires the construc-
tion of a lower-bounding and an upper-bounding problem. A valid lower-bound can be
found by replacing the interval Θj with a finite set, Ξj ⊂ Θj. The lower bounding problem
can be written as

min
QH ,QC

cHQH + cCQC (LBP)

s.t. (C.1),
∆Qj(T∗) ≥ 0, ∀T∗ ∈ Ξj, j = 1, . . . , l,

QH, QC ≥ 0.

Since only a finite number of constraints of (TP) are present in (LBP), the feasible space of
the latter problem is a superset of the feasible space of the former problem, which indicates
that it is indeed a lower-bounding problem.

Constructing an upper-bounding problem is more involved, see the discussion in [32]. It
requires finding an inclusion bound ∆QL

j (Θj) ≤ minT∈Θj ∆Qj(T) where ∆QL
j (Θj) depends

on the lower and upper bound of Θj. The upper bounding problem can be written as

min
QH ,QC

cHQH + cCQC (UBP)

s.t. (C.1),

∆QL
j ≥ 0, j = 1, . . . , l,

QH, QC ≥ 0.

For the purpose of the following discussion, it is assumed that cp(T) = a + bT + cT2 +
dT3, which is also the functional form1 for which ideal gas heat capacity data is collected
in [141]. Let aH,j and aC,j denote the first parameter in the aggregated heat capacity of the
hot and cold stream, respectively. Similar symbols are introduced for the other parameters.
Given a cubic expression for cp, the analytical solution of the integrals in (C.3) is

FC,j

∫ T∗

θj

cp,C(T) dT − FH,j

∫ T∗+∆Tmin

θj

cp,H(T) dT

= FC,j

[
1
12

T(12aC,j + T(6bC,j + T(4cC,j + 3dC,jT)))
]T∗

θj

− FH,j

[
1
12

T(12aH,j + T(6bH,j + T(4cH,j + 3dH,jT)))
]T∗+∆Tmin

θj

.

(C.4)

A valid lower bound for this expression needs to be constructed. Inclusion bounds for
the factorable function that result from the integration as demonstrated in (C.4) can be

1It should be noted however that the method discussed here is not restricted to this choice. On the contrary,
it is only required that it is possible to find the analytical solution of the integrals in (C.3).
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Appendix C Pinch operator for streams with non-constant heat capacity

constructed using these expressions

vj,1 = 4c + 3 min{dT, dT}, vj,1 = 4c + 3 max{dT, dT},
vj,2 = 6b + min{T vj,1, Tvj,1, Tvj,1, Tvj,1}, vj,2 = 6b + max{T vj,1, Tvj,1, Tvj,1, Tvj,1},
vj,3 = 12a + min{T vj,2, Tvj,2, Tvj,2, Tvj,2}, vj,3 = 12a + max{T vj,2, Tvj,2, Tvj,2, Tvj,2},

vj,4 =
1
12

min{T vj,3, Tvj,3, Tvj,3, Tvj,3}, vj,4 =
1
12

max{T vj,3, Tvj,3, Tvj,3, Tvj,3}.

Note that the indices for the parameters for cp are dropped to ease notation. It should be
clear from the context which indices are meant.

Then, for all T∗ ∈ [θj, θj+1],

FC,j

∫ T∗

θj

cp,C(T) dT ≥ FC,j

[
vj,4 −

1
12

θj(12aC,j + θj(6bC,j + θj(4cC,j + 3dC,jθj)))

]
(C.5)

where T = θj and T − θj+1 and the parameters for the cold aggregate heat capacity are
used. Similarly, for all T∗ ∈ [θj + ∆Tmin, θj+1 + ∆Tmin],

FH,j

∫ T∗

θj

cp,H(T) dT ≤ FC,j

[
vj,4 −

1
12

θj(12aH,j + θj(6bH,j + θj(4cH,j + 3dH,jθj)))

]
(C.6)

where T = θj + ∆Tmin and T− θj+1 + ∆Tmin and the parameters for the hot aggregate heat
capacity are used. Using the inequalities (C.5) and (C.6) in (C.2), a valid lower bound ∆QL

j
for the feasibility constraint is obtained.

C.2 Heat exchanger network synthesis for streams with
non-constant heat capacity

While in the previous section only the utility targeting problem was considered, here a
formulation for the synthesis of heat exchanger networks for streams with non-constant
heat capacity will be presented. It uses the superstructure introduced by [179] that
considers stages at which, in principle, each hot stream can contact each cold stream.

In addition to the variables introduced in the beginning of this Chapter, some additional
definitions are necessary. Let K be the set of stages of heat exchangers. At stage k ∈ K,
hot stream i can possibly be contacted with cold stream j to transfer heat qijk. If this
contact occurs, it is indicated by the binary variable zijk = 1, otherwise zijk = 0. Also,
heat exchange with the utilities are considered: qcui is the heat transfered from the hot
stream i to the cold utility, zcui = 1 indicates if this occurs; qhuj is the heat transfered to
the cold stream j from the hot utility, zhuj = 1 indicates if this heat transfer occurs. The
temperature of process stream i ∈ S between stage k and k + 1 is ti,k+1. Lastly, Ω and Γ
denote upper bounds on the transferred energy and temperature differences, respectively.

In the model isothermal mixing is assumed, since flow rates through each heat exchanger

200



C.2 Heat exchanger network synthesis for streams with non-constant heat capacity

in the stages need to be tracked otherwise which leads to a more complicated problem
formulation.

An overall energy balance for each of the process streams yields∫ Tin,i

Tout,i

Ficp,i(T) dT = ∑
k∈K

∑
j∈C

qijk + qcui, ∀i ∈ H,

∫ Tout,j

Tin,j

Fjcp,j(T) dT = ∑
k∈K

∑
i∈H

qijk + qhuj, ∀j ∈ C.

An energy balance of a process stream at each stage results in∫ ti,k

ti,k+1

Ficp,i(T) dT = ∑
j∈C

qijk, ∀i ∈ H, k ∈ K,

∫ tj,k

tj,k+1

Fjcp,j(T) dT = ∑
i∈H

qijk, ∀j ∈ C, k ∈ K.

The consumed utilities are calculated from∫ ti,|K|+1

Tout,i

Ficp,i(T) dT = qcui, ∀i ∈ H∫ Tout,j

tj,1

Fjcp,j(T) dT = qhuj, ∀j ∈ C.

The inlet temperatures of the process streams are assigned to the stage temperatures

tin,i = ti,1, i ∈ H,
tin,j = tj,|K|+1, j ∈ C,

and the outlet temperatures provide bounds on the stage temperatures

Tout,i ≥ ti,|K|+1, ∀i ∈ H,

Tout,j ≤ tj,1, ∀j ∈ C.

The stage temperatures decrease with increasing stage number

ti,k ≥ ti,k+1, ∀i ∈ H, k ∈ K,
tj,k ≥ tj,k+1, ∀j ∈ C, k ∈ K.
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Appendix C Pinch operator for streams with non-constant heat capacity

The following logical constraints are used to set the binary variables.

0 ≤ qijk ≤ Ω zijk, i ∈ H, j ∈ C, k ∈ K,

0 ≤ qcui ≤ Ω zcui, i ∈ H
0 ≤ qhuj ≤ Ω zhuj, j ∈ C.

Feasibility of the heat exchange requires at the in- and outlet of the heat exchanger that

ti,k ≥ tj,k − Γ(1− zijk), ∀i ∈ H, k ∈ K,

ti,k+1 ≥ tj,k+1 − Γ(1− zijk), ∀i ∈ H, k ∈ K,

Furthermore, no temperature cross-over may occur in the heat exchanger. Following the
mathematical description developed in Section C.1, this can be guaranteed by

∆Qijk(T∗) ≡
∫ T∗

tj,k+1

Fjcp,j(T) dT −
∫ T∗+∆Tmin

ti,k+1

Ficp,i(T) dT ≥ −Ω(1− zijk), ∀T∗ ∈ [tj,k+1, ti,k],

which is a generalized semi-infinite constraint since the set depends on the variables tj,k+1
and ti,k.

Lastly, it will be necessary to compute required areas for heat exchange. Suppose that
the area can be calculated as A = Q

U∆T where U is the heat transfer coefficient and log
mean temperature difference

∆T =
(tin,1 − tout,2)− (tout,1 − tin,2)

ln tin,1−tout,2
tout,1−tin,2

.

Thus, one can calculate the necessary areas Aijk, Acui, and Ahuj.
The objective can be written as

min ∑
i∈H

(ccu qcui + cfcui zcui + cacui Acui)

+ ∑
j∈C

(chu qhuj + cfhuj zhuj + cahuj Ahuj)

+ ∑
i∈H

∑
j∈C

∑
k∈K

(cfij zijk + caij Aijk)

where ccu and chu are the unit costs of cold and hot utility, respectively, cfcui, cfhuj, and
cfij are the respective fixed costs for each heat exchanger and cacui, cahuj, and caij are the
respective area dependent costs for each heat exchanger.
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