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Abstract

The ideal-cache model, an extension of the RAM model, evaluates the referential locality

exhibited by algorithms. The ideal-cache model is characterized by two parameters-the

cache size Z, and line length L. As suggested by its name, the ideal-cache model practices

automatic, optimal, omniscient replacement algorithm. The performance of an algorithm

on the ideal-cache model consists of two measures-the RAM running time, called work

complexity, and the number of misses on the ideal cache, called cache complexity.

This thesis proposes the ideal-cache model as a "bridging" model for caches in the

sense proposed by Valiant [49]. A bridging model for caches serves two purposes. It can

be viewed as a hardware "ideal" that influences cache design. On the other hand, it can be

used as a powerful tool to design cache-efficient algorithms. This thesis justifies the pro-

posal of the ideal-cache model as a bridging model for caches by presenting theoretically

sound caching mechanisms closely emulating the ideal-cache model and by presenting

portable cache-efficient algorithms, called cache-oblivious algorithms.

In Chapter 2, we consider a class of caches, called random-hashed caches, which have

perfectly random line-placement functions. We shall look at analytical tools to compute

the expected conflict-miss overhead for random-hashed caches, with respect to fully asso-

ciative LRU caches. Specifically, we obtain good upper bounds on the conflict-miss over-

head for random-hashed set-associative caches. We shall then consider the augmentation

of fully associative victim caches [33], and find out that conflict-miss overhead reduces

dramatically for well-sized victim caches. An interesting contribution of Chapter 2 is that

victim caches need not be fully associative. Random-hashed set-associative victim caches

perform nearly as well as fully associative victim caches.

Chapter 3 introduces the notion of cache-obliviousness. Cache-oblivious algorithms



are algorithms that do not require knowledge of the parameters of the ideal cache, namely

Z and L. A cache-oblivious algorithm is said to be optimal if it has asymptotically optimal

work and cache complexity, when compared to the best cache-aware algorithm, on any

ideal-cache. Chapter 3 describes optimal cache-oblivious algorithms for matrix transpo-

sition, FFT, and sorting. For an ideal cache with Z = Q(L 2 ), the number of cache misses

for an rn x n matrix transpose is 0(1 +m In/L). The number of cache misses for either an

n-point FFT or the sorting of n numbers is 0(1 + (n/L)(1 + logzn)). Chapter 3 also pro-

poses a 0(mnp)-work algorithm to multiply an rn x n matrix by an n x p matrix that incurs

0(1 + (in + np + mp)/L + mnp/L Z) cache faults. All the proposed algorithms rely on

recursion, suggesting divide-and-conquer as a powerful paradigm for cache-oblivious al-

gorithm design.

In Chapter 4, we shall see that optimal cache-oblivious algorithms, satisfying the "reg-

ularity condition," perform optimally on many platforms, such as multilevel memory hi-

erarchies and probabilistic LRUcaches. Moreover optimal cache-oblivious algorithms can

also be ported to some existing manual-replacement cache models, such as SUMH [8] and

HMM [4], while maintaining optimality.
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CHAPTER 1

Introduction

As processor clock rates increase rapidly, computer throughput is increasingly limited by

memory bandwidth [41]. Main memory is typically much slower than the CPU. To im-

prove memory performance, computer architects add one or more levels of caches to the

memory hierarchy. Caches are small, fast memories close to the CPU which hold items

that the CPU is likely to access. Today, almost all computers include one or more levels of

on-chip or off-chip caches [28].

Among all mechanisms to improve computer performance, caches are arguably the

simplest and most effective. Extensive research has been done in academia and industry

to build faster, bigger, more concurrent, and smarter caches. Simulation studies of caching

mechanisms on memory traces generated by programs are the most popular and widely

accepted method of analyzing caches. Few theoretically sound caching mechanisms have

been implemented, however. Consequently, a need exists for a theoretical framework to

evaluate the worth of caching mechanisms.

While designing caches, computer architects tacitly assume that memory accesses made

by programs exhibit spatial and temporal locality. Unfortunately, most algorithms today

are engineered for efficient execution in flat memory models, such as the RAM [7] model.

These algorithms do not generally exhibit much locality of reference. Consequently, a need

exists for caching models that evaluate and reward referential locality displayed by algo-

rithms.
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This thesis proposes an extension of the RAM model, called the ideal-cache model, as

a "bridging" model for caches. Section 1.1 elaborates the notion of a bridging model, and

advocates the ideal-cache model as a bridging model for caches. The rest of the thesis justi-

fies this proposal, as summarized in Section 1.2, by providing theoretically sound caching

mechanisms and portable cache-efficient algorithms.

1.1 Ideal-cache model: a bridging model for caches

This thesis advocates the ideal-cache model as a bridging model for caches. In this sec-

tion, we discuss the what a bridging model for caches is, and we review related work in

modeling caches. This section then presents the ideal-cache model-an automatic, fully

associative cache model with optimal replacement.

What is a bridging model?

The notion of a bridging model is inspired by Valiant's bridging model for parallel compu-

tation [49]. Valiant's bridging model, called the BSP (Bulk-Synchronous Parallel) model,

aims at providing an abstraction for parallel computers. Algorithm designers optimize

their algorithms for the BSP model, while computer architects improve the BSP parame-

ters of their parallel computers.

In a similar vein, a bridging model for caches, as illustrated in Figure 1-1, provides a

framework for algorithm and cache design. In this thesis, the ideal-cache model is pro-

posed as a bridging model for caches. Algorithm designers develop algorithms that work

efficiently on the ideal-cache model. On the other hand, computer architects design mem-

ory hierarchies that perform nearly as well as the ideal cache.

Traditional cache models

Before looking at the ideal-cache model, we shall review previous work in cache model-

ing. The traditional approach to modeling caches is to propose a parameterized model

capturing the nonuniform memory access cost in memory hierarchies. HMM [4], BT [5],

and UMH [8] are examples of such parameterized models. An algorithm is optimized to

work efficiently for the parameters of the memory hierarchy. Cache designers are expected

to improve the parameters for their caches.

10
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----------------------- Ideal cache model

Figure 1-1: Bridging model for algorithm and cache design.

Figure 1-2: Memory hierarchies of typical modem processors.

Many traditional models suffer from a drawback, however. Traditional cache models

typically assume software control over caches [4, 5, 81. On the other hand, most practical

caches are transparent to the programmer [32, Section 2.4.2]. In fact, a programmer does

not have total control over caches in any of the architectures shown in Figure 1-2.

Given the legacy of automatically managed caches, we can appreciate that software

cache control only augments, but does not replace, automatic cache management. I believe

that providing complete software control over caches may result in complexity that hard-

ware designers may choose to avoid. Recently, the Computer-Aided Automation Group

at MIT Laboratory for Computer Science, started the Malleable Caches project [17] to re-

search limited cache-control directives.

The drawback of designing algorithms for cache models that assume software-managed

caches is twofold. Firstly, the algorithm designer must manage the memory hierarchy

11
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Pentium III 16K/16K 4-way associative 256K 8-way associative

AMD K6-III 32K/32K 2-way associative 256K 4-way associative
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UltraSparc 2 8K/8K direct-mapped 512K direct-mapped

Alpha 21164 8K/8K direct-mapped 96K 3-way associative
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manually. According to my experience, efficient manual management of a multilevel

memory hierarchy is a strenuous exercise. Secondly, efficient algorithms developed for

software-managed cache models cannot necessarily be easily ported to typical memory

hierarchies that are automatically managed. Consequently, the assumption of software-

managed caches degrades the usefulness of a cache model.

The assumption of manual memory management is reasonable for out-of-core memory

models, however. Using software environments such as TPIE [211, a programmer can exert

complete control over external memory. Shriver and Nodine [43], and Vitter [50] show

that memory models with explicit management aid the development of efficient external

memory algorithms.

Ideal-cache model

The ideal-cache model is a simple, two-level cache model with automatic replacement,

that evaluates the performance of algorithms using two complexity measures-the work

complexity and the cache complexity. We now look at the details of the ideal-cache model.

The ideal-cache model, which is illustrated in Figure 1-3, consists of a computer with

a two-level memory hierarchy consisting of an ideal (data) cache of Z words, and an ar-

bitrarily large main memory. Because the actual size of words in a computer is typically

a small, fixed size (4 bytes, 8 bytes, etc.), we shall assume that word size is constant; the

particular constant does not affect our asymptotic analyses. The cache is partitioned into

cache lines, each consisting of L consecutive words which are always moved together be-

tween cache and main memory. Cache designers typically use L > 1, banking on spatial

locality to amortize the overhead of moving the cache line. We shall generally assume in

this thesis that the cache is tall:

Z = Q(L(2

which is usually true in practice.

The processor can only reference words that reside in the cache. If the referenced word

belongs to a line already in cache, a cache hit occurs, and the word is delivered to the

processor. Otherwise, a cache miss occurs, and the line is fetched into the cache. The ideal

cache is fully associative [28, Ch. 5]: cache lines can be stored anywhere in the cache. If

the cache is full, a cache line must be evicted. The ideal cache uses the optimal off-line

12
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Figure 1-3: The ideal-cache model.

strategy of replacing the cache line whose next access is furthest in the future [10], and

thus it exploits temporal locality perfectly.

Unlike various other hierarchical-memory models [4, 5, 8, 11] in which algorithms are

analyzed in terms of a single measure, the ideal-cache model uses two measures. An algo-

rithm with an input of size n is measured by its work complexity W(n)-its conventional

running time in a RAM model [7]-and its cache complexity Q(n; Z, L)-the number of

cache misses it incurs as a function of the size Z and line length L of the ideal cache. When

Z and L are clear from context, we denote the cache complexity simply as Q(n) to ease

notation.

1.2 Contributions of the thesis

The rest of this thesis justifies the ideal-cache model as an apt bridging model for caches.

In this section, we look at various issues involved in adopting the bridging framework,

and a brief outline of results addressing these issues. The contribution of this thesis can

be broadly characterized into three categories. The first category of results, presented in

Chapter 2, relates to the design of theoretically sound caching mechanisms closely emulat-

ing the ideal-cache model. Results in this category justify the ideal-cache model as a hard-

13



ware "ideal" influencing cache design. The second category of results, presented in Chap-

ter 3, relates to the design of portable cache-efficient algorithms, called cache-oblivious

algorithms, that perform well on any ideal cache without any tuning whatsoever. Results

in this category justify the ideal-cache model as a powerful model for algorithm design.

The third category of results, presented in Chapter 4, relates to the portability of cache-

oblivious algorithms to more complicated cache models-such as multilevel caches and

some traditional cache models that assume software-controlled caches-without loss of

efficiency.

Ideal-cache model: a hardware ideal

Optimal replacement depends on the future accesses made by the algorithm [10]. Since

cache line replacement is an online problem, ideal caches cannot be implemented in prac-

tice. We therefore address the question,

How can we design caches that exhibit near-optimal performance?

in Chapter 2. Sleator and Tarjan [45] show that fully associative LRU caches are asymp-

totically competitive to proportionally smaller ideal caches. Unfortunately, fully associa-

tive caches do not have efficient practical implementations [28, pg. 568]. Cache design-

ers limit the associativity of caches to achieve fast lookup. Typical set-associative caches

have small associativity, as shown in Figure 1-2. Limiting cache associativity creates con-

flict misses [30], which are also called interference misses. The conflict-miss overhead for

set-associative caches has been studied extensively using simulation [29, 40, 41], and to a

restricted extent, using analytical techniques [2]. Recently, pseudorandom line placement

was proposed as a mechanism to reduce conflict misses [27]. In Chapter 2, we consider a

class of caches, called random-hashed caches, that have perfectly random line-placement

functions. We shall look at analytical tools to compute the expected conflict-miss over-

head for random-hashed caches, with respect to fully associative LRU caches. Specif-

ically, we obtain good upper bounds on the conflict-miss overhead for random-hashed

set-associative caches. We shall then consider the augmentation of fully associative victim

caches [33], and find out that conflict-miss overhead reduces dramatically for well-sized

victim caches. An interesting contribution of Chapter 2 is that victim caches need not be

fully associative. Random-hashed set-associative victim caches perform nearly as well as

14



fully associative victim caches. To summarize, Chapter 2 justifies the ideal-cache model as

a hardware ideal by suggesting practical designs for near-ideal caches.

Ideal-cache model: a powerful model for algorithm design

Usually, algorithms that perform efficiently on a parameterized cache model require the

knowledge of the cache parameters. We refer to such algorithms as cache-aware algo-

rithms. The ideal-cache model has two parameters, namely Z and L. A cache-aware

algorithm requires the values of these parameters to tune itself. In this thesis, we shall

focus on cache-oblivious algorithms, that do not require the parameters Z and L. In other

words, cache-oblivious algorithms exhibit good performance on all ideal caches. A cache-

oblivious algorithm is said to be optimal if it has asymptotically optimal work and cache

complexity, when compared to the best cache-aware algorithm, on any ideal-cache. Being

a subset of cache-aware algorithms, optimal cache-oblivious algorithms may be harder, if

not impossible to design. We therefore address the following questions:

How can optimal cache-oblivious algorithms be designed?

What are the applicable paradigms?

Do all problems permit optimal cache-oblivious algorithms?

Chapter 3, which presents research done jointly with Matteo Frigo, Charles Leiserson

and Harald Prokop, describes optimal cache-oblivious algorithms for matrix transposi-

tion, FFT, and sorting. For an ideal cache with Z = Q(L 2 ), the number of cache misses

for an m x n matrix transpose is 0(1 + mn/L). The number of cache misses for either

an n-point FFT or the sorting of n numbers is 0(1 + (n/L)(1 + logZn)). I shall also pro-

pose a 0(mnp)-work algorithm to multiply an m x n matrix by an n x p matrix that incurs

0(1 + (mn + np + mp)/L + mnp/L VZ) cache faults. All the proposed algorithms rely on

recursion, suggesting divide-and-conquer as a powerful paradigm for cache-oblivious al-

gorithm design. For the last question regarding the power of cache oblivious algorithms,

however, existing insight seems discouraging. Bilardi and Peserico [11] show that some

computation DAGs do not permit optimal cache-oblivious execution in the HRAM model.

Peserico believes that this result can be extended to the ideal-cache model [381. I have still

not encountered a practical problem that is not solvable by an optimal cache-oblivious al-

gorithm, however. The results presented in Chapter 3, I feel, justify the ideal-cache model

15



as a powerful model for algorithm design.

Porting cache-oblivious algorithms

The ideal-cache model assumes a perhaps-questionable and overly simplified cost model.

We therefore address the question,

How do optimal cache-oblivious algorithms perform on complex memory hierarchies?

In Chapter 4, which presents research done jointly with Matteo Frigo, Charles Leiserson

and Harald Prokop, we shall see that optimal cache-oblivious algorithms on ideal caches

perform optimally on many platforms. These platforms include multilevel memory hierar-

chies and probabilistic LRU caches. Optimal cache-oblivious algorithms can also be ported

to some existing manual-replacement cache models, such as SUMH [8] and HMM [4],

while maintaining optimality. We shall also look at some automated memory manage-

ment routines that enable porting.

Chapter 5 contains my concluding remarks on this thesis along with open problems

that interest me. Two interesting open questions are the following:

Do the caching mechanisms proposed in this thesis have practical significance?

How do cache-oblivious algorithms perform on real computers with caches?

We shall look at preliminary results and related work addressing these questions in Chap-

ter 5.

16



CHAPTER 2

Building the impossible: an ideal cache

Building an ideal cache is impossible, since optimal replacement cannot be implemented

in an online setting such as caches [10]. Cache designers should, therefore, be satisfied

with caches that exhibit near-optimal performance. This chapter makes a strong case for

caches with random line-placement functions by proving that such caches are nearly ideal.

Fully associative LRU [28] caches are provably comparable to proportionally smaller

ideal caches [45]. Unfortunately, searching an item in a fully associative cache consumes

too much time, severely limiting their practical worth [28, pg. 568]. Cache designers prefer

set-associative caches due to their faster search times [30, 41]. A line-placement function

H is used to map a memory address to a set in the cache, as shown in Figure 2-1. Con-

flict misses [30] occur when too many data items map to the same set, causing potentially

reusable cache lines in the set to be flushed out, despite sufficient capacity in the overall

cache. Typically, the line-placement function is a simple modulo function implemented

by extracting bits from the memory address. Some computations are significantly slowed

down in set-associative caches having this naive line-placement function, however [25,27].

Intuitively, we can see that conflict misses are largely due to bad line placement rather

than low associativity. In this chapter, we theoretically and using simulation prove this

intuition. Specifically, we analyze caches with perfectly random line-placement functions,

17
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Cache, size = Z words
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Figure 2-1: Set-associative cache with line-placement function H.

called random-hashed caches. We bound the "conflict-miss overhead," which is the frac-

tion of memory accesses that are conflict misses, for random-hashed set-associative caches.

Cache designers add victim caches [331 to reduce conflict misses. In this chapter, we an-

alyze the benefits of adding victim caches, theoretically. If the victim cache is capable of

holding the expected number of "overflowing lines," the conflict-miss overhead is reduced

by a factor exponential in the size of the victim cache. We also look at random-hashed

set-associative caches as a scalable alternative to proportionally smaller fully associative

victim caches.

We now look at the notation used and assumptions made throughout the chapter. A

set-associative cache with a capacity of Z words and S-way associativity, such as that

shown in Figure 2-1, is partitioned into cache lines holding L words, each of which be-

longs to a set holding S cache lines. We are interested in caches with small associativity S.

The number of cache lines in the cache is denoted by nL = Z/L. The total number of sets

in the cache is denoted by ns = Z/SL. Cache lines in a set are maintained using LRU re-

placement. Since at most S cache lines belong to a set, maintaining LRU information takes

only [lg S1 bits. Hwang and Briggs [32, pg. 116] present some possible designs for small

LRU-managed sets. The main memory is also divided into lines of L contiguous words.

Each line is associated with a line address. Each set is assigned to a set address ranging

from 0 to ns -1. The line-placement function

H :0, 1, 2, ... } a e0r...,nse-1

maps a given line address to a set. We assume that the placement function H is a perfectly

18



random hash function, which satisfies the distribution

Pr{(H(ii) i)A -A (H(ik) jk)} 1nk

for any k > 0, valid line addresses 1, k... ik, and valid set addresses 11, ... ,

The rest of this chapter is as follows. We first discuss previous work related to this

chapter in Section 2.1. Section 2.2 presents an interesting class of randomized caches called

probabilistic LRU caches. An "absence" function P completely characterizes a probabilistic

LRU cache, also called, a P-LRU cache when the absence function P is known. Section 2.2

proves that the expected number of cache misses of a P-LRU cache has a conflict-miss

overhead of P(i) when compared to a fully associative cache with i cache lines. Proba-

bilistic LRU caches are valuable since random-hashed set-associative caches are P-LRU

caches for a computable absence function P. Section 2.3 deals with obtaining good upper

bounds and approximations for the absence function using the well-studied balls and bins

problem [36, Section 3.1]. Random-hashed set-associative caches augmented with victim

caches [33] are also probabilistic LRU caches. Section 2.4 evaluates the absence function

for such caches. In Section 2.5, we consider victim caches that are not fully associative. Set-

associative victim caches with random-hashed line placement can replace proportionally

smaller fully associative victim caches without considerable degradation in performance.

Section 2.6 presents simulation results predicting the expected cache misses incurred by

some SPEC95 floating point benchmarks on random-hashed caches. These results, plotted

in Figures 2-9 through 2-15, show that caches with small associativity can exhibit prov-

ably close performance to fully associative LRU caches, and that small victim caches can

remarkably reduce the miss rate. Section 2.7 presents my concluding remarks on this chap-

ter relating my work to previous and ongoing research on cache design.

2.1 Related work

The replacement algorithm used by a cache heavily influences its miss rate. Many re-

searchers have analyzed various cache replacement algorithms theoretically. Belady [10]

proved that the best replacement strategy is to replace the cache line accessed farthest in

the future. Due to its dependence on the future of the memory-access sequence, Belady's

algorithm cannot be used in an online setting.

19



Since optimal cache replacement is impossible, theoreticians have pursued algorithms

that could nearly match the performance of ideal caches.

Definition 1 A cache replacement strategy is said to be ri-competitive if there exists a constant b,

such that, on every sequence of requests, the number Q of cache misses is at most TjQ* + b, where

Q* is the number of cache misses on an optimal cache.

In 1985, Sleator and Tarjan [45] proved that an LRU cache with k lines is k/(k -k* + 1)-

competitive to an optimal cache with k* lines. They also proved that better bounds cannot

be achieved by deterministic caching algorithms. If we compare LRU and ideal caches of

the same size, the competitive ratio is

k k
k -k* +1 k-k+1

= k

which is not impressive. If we compare LRU caches with smaller ideal caches, however,

the competitiveness result can be attractive.

Lemma 2 Consider an algorithm that causes Qideal(n; Z, L) cache misses on a problem of size n

using a (Z, L) ideal cache. Then, the same algorithm incurs QLRU(n;Z, L) < 2Qideal(n; Z/2, L)

cache misses on a (Z, L) cache that uses LRU replacement.

Proof. The number k of lines in the LRU cache is k = Z/L. The number k* of lines in the

ideal cache is k* = Z/2L = k/2. Therefore, the competitive ratio is

k 2k*
k -k*+1 k* +

< 2.

Thus, from Definition 1, QLRU(n; Z, L) < 2Qidea(n; Z/2, L) + b, where b is a constant. If both

caches are empty initially, the constant b is 0 [45]. EZ

In other words, an LRU cache performs at most twice as many cache misses as an ideal

cache half its size. The importance of this result lies in the fact that the analysis is indepen-

dent of the access sequence. In practice, fully associative LRU caches perform much better

than the theoretical bound [54]. To summarize, fully associative LRU caches excel from a

theoretical and practical standpoint.

Apart from the miss rate, cache design involves other performance metrics such as hit

time and miss penalty. The hit time for a fully associative caches is dominated by the time

20



to perform an associative search. In the late 1980's, the use of caches with limited associa-

tivity was justified on the basis of their superior hit times, although their miss rates were

slightly inferior in simulations [29, 401. The cost of associativity is high even in current

practice [28].

If a modulo line-placement function is used, some programs experience inordinate con-

flict misses. A common class of such memory-access sequences is shown in [27, Section 3].

Even simple matrix computations can generate many conflict misses for certain dimen-

sions of a matrix [25, Figure 4 and 51.

As early as 1982, Smith's survey on caches [46] mentions the use of pseudorandom

line-placement functions to reduce conflict misses. At that time, the advantage of using

such functions did not justify the additional complexity in the cache. Recently, interest

has been revived in this area. Using simulation techniques, GonAlez, Valero, Topham, and

Parcerisa [27] extensively study the performance gains in using placement functions based

on XOR and polynomial arithmetic [42].

The well-studied random-replacement caches [36] differ slightly from random-hashed

caches. To locate an item with line address x, random-hashed caches search only the set

H (x). On the other hand, a random-replacement cache must perform an associative search.

Consequently, random-hashed caches can have better hit times than random-replacement

caches. There are differences in performance as well. Consider a memory-access sequence

of the form a, b, a, b,..., where a and b are two different line addresses. A random-hashed

cache with associativity S =1, places a and b in sets H(a) and H(b). Every access is a cache

hit if H(a) # H(b), and otherwise every access is a cache miss. A random-replacement

cache evicts a random cache line and may incur both cache hits and cache misses in the

sequence.

Numerous other techniques have been proposed to reduce conflict misses in direct-

mapped and set-associative caches. Jouppi [33, 34] proposed the addition of a victim cache

to hold items that are evicted from the limited-associativity cache. Hash-rehash caches [1]

and column-associative caches [3] use two hashing functions to avoid conflict misses.
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Figure 2-2: Example showing the rank of items in a fully associative LRU cache.

2.2 Probabilistic LRU caches

In this section, we describe probabilistic LRU caches, an interesting class of randomized

caches. A probabilistic LRU cache can be fully characterized by its absence function.

Random-hashed caches discussed in this thesis belong to the class of probabilistic caches.

We shall analyze the properties of probabilistic LRU caches in this section. Later, in Sec-

tions 2.3, 2.4, and 2.5, we shall show that some random-hashed caches are probabilistic

LRU caches, and we shall obtain approximations and bounds on their absence functions.

We first look at fully associative LRU caching in more detail. Let us consider the cache

misses made by algorithm A. During the execution of algorithm A, we can associate each

line in the memory with a rank that gives the number of other distinct cache lines accessed

after its most-recent access. The rank of a line x before the tth memory operation is given

by rankt (x). On the first access of a line x in A, its rank is oo, since the most-recent access of

x is undefined. Figure 2-2 shows the rank of items for a sample memory-access sequence.

In the example, the rank of item c at time t = 4 is 2. Items not displayed in the table have

rank oo.

Lemma 3 Let line x be accessed by the tth memory operation of algorithm A. Then, line x is held

in a fully associative LRU cache capable of holding i cache lines if and only if rankt (x) < i.

Proof. A fully associative LRU cache maintains the i most-recently accessed cache lines.
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Time Item accessed Items ordered by rankt

0 1 2 3tim Ite acse

t=1 a - --

t=2 b a - -

t=3 C b a -

t=4 b c b a -

t=5 a b c a -

t=6 d a b c -

t=7 a d a b c



The lemma follows from the definition of rank.

In order to simplify the forthcoming discussion, we define a function Val: {false, true} -

{0,1} as

Val(A) = 1 if A is true,

0 otherwise.

to simplify forthcoming mathematical presentation. The following corollary to Lemma 3

expresses the number of cache misses incurred on a fully associative cache using the Val

function.

Corollary 4 A memory-access sequence x1 ,..., xT incurs

T

QLRU (1) = Val (rank t(x t) > 1) (2.1)
t=1

cache misses on a fully associative LRU cache with i cache lines. Consequently, the function

QLRU(i) is monotonically decreasing, i.e., T = QLRU(0) QLRU( 1 ) > QLRU( 2 ) > E -

The characterization of fully associative LRU caches, as given by Lemma 3, can be

extended to incorporate randomized caches.

Definition 5 Consider a memory-access sequence x 1 , . . ,xT. Let P: {0,12, . . .} - [0,1] be a

monotonically increasing function. For all t > 0, a probabilistic LRU cache with absence func-

tion P misses xt on the tth access with probability (exactly)

1 - P(rankt (xt)) .

Any embodiment of a probabilistic LRU cache should include a random process, ex-

cept, of course, fully associative LRU caches. A fully associative LRU cache can be defined

as a probabilistic LRU cache with absence function P satisfying

P (1) =_ Val (i < Z),

for all i > 0.

Another possible embodiment of a probabilistic LRU cache is as follows. Consider a

cache capable of maintaining any set S of lines. We assume that the cache does not have

any capacity constraint on the cardinality of set S. Upon a cache hit, the set S remains

unchanged. Upon a cache miss on line x, a coin having success probability p is tossed. If
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Figure 2-3: Graph showing an exemplary absence function P.

the coin toss is a success, line x is added to the set, i.e., S - S U {x}. Otherwise, the cache

is flushed before incorporating x, i.e., S +- {x}. Let us analyze the probability that the tth

access in the memory-access sequence x 1,..., xT, is a cache hit. If rankt (xt) is oo, the cache

misses on xt, since xt has not been accessed previously. Otherwise, rankt(xt) distinct lines

are accessed after the most-recent access of xt. For each distinct line accessed, the cache

is not flushed with probability p. Therefore, the tth access is a cache hit with probability

prank, (x,). In other words, the cache under consideration is a P-LRU cache with absence

function

P(i) =I- p,

for all i > 0. Figure 2-3 shows the absence function of the above cache, for p = 1/21/50.

According to the figure, an access made to a line after 50 other distinct lines have been

accessed is a cache miss with probability exactly 1/2. An access made to a line with rank

100, is a cache miss with probability exactly 0.75. Although probabilistic, a P-LRU cache

exhibits very "predictable" behavior, since P is a function associated with the cache and

not the memory-access sequence.

The following lemma shows that the expected number of cache misses is a weighted

sum of the cache misses incurred in fully associative LRU caches of all possible sizes.

Lemma 6 Let QLRU(i) be the number of cache misses incurred by algorithm A on an LRU cache

with i lines. Let T be the number of memory operations performed by A. Then, the expected number
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E [Q] of cache misses is given by

E [Q]= rP(0) + Y QLRU(i) (P(i) - P(i-1)) - (2.2)
i>0

Proof. The expected number of cache misses is

T

t=1

T rankt (xt)

= P(O) + Y P(i) - P(' - 1)
t=1 (i=1

= TP(0) + Val(rankt(x) > i)(P(i) - P(i-1))
t=1 i>O

T

= TP(O)+ (P(i) - P(i -1)) Val(rank(xt) > i)
i>O t=1

= TP(0) + QLRU (i) (P(i) -P(i-- 1))
i>O

from Equation (2.1) in Corollary 4.

We now look at a rigorous definition of conflict-miss overhead.

Definition 7 Consider any memory-access sequence x1 , .. . , XT. Let QLRU be the number of cache

misses on a fully associative LRLU cache capable of holding i lines. A random-hashed cache has

conflict-miss overhead (i) if, for every memory-access sequence, the number Q of cache misses

is at most QLRU + -(i)T.

Let us consider an example illustrating Definition 7. Consider a random-hashed cache

with expected conflict-miss overhead 0.01 with respect to a fully associative LRU cache

of half the size. Compared to the fully associative LRU cache, the random-hashed cache

incurs misses on an extra 1% of its memory accesses.

We now bound the conflict-miss overhead of probabilistic LRU caches.

Theorem 8 A P-LRU cache has an expected conflict-miss overhead /3(i) = P(i) with respect to a

fully associative cache capable of holding i cache lines.

Proof. Let T be the number of memory operations, and let QLRU (i) be the number of cache

misses in a fully associative cache capable of holding i cache lines. The expected number

of cache misses according to Lemma 6 is

E [Q] = P(0) + TQLRU (1) (P(I) - P(I - 1)),
i>O
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Definition 5 states that P is a monotonically increasing function. Furthermore, we have

T > QLRU(1) > QLRU( 2 ) > -

according to Corollary 4. Thus, we can bound the expectation of the number of cache

misses as

E [Q] < TP (Z)+ lim QLRU(Z)(P(i) - P(Z))

" T P(Z)+ QLRU(Z)(1 - P(Z))

" TP(Z)+QLRU(Z),

since P(i) < 1 for all i. E

Unlike Lemma 6, Theorem 8 makes no assumption about the QLRU function. In other

words, Theorem 8 gives a "competitive" analysis of the conflict-miss overhead. Although

the analysis made by Theorem 8 is not exact, the following lemma shows that it cannot be

made any tighter.

Lemma 9 There exists a memory-access sequence that incurs an expected conflict-miss overhead

of P(i) in a P-LRU cache with respect to a fully associative cache capable of holding i cache lines.

Proof. Consider an infinite sequence of the form

al sa2, ...- ai, a,, ..--. ai, aj, - -

where each a1 is distinct. Every element accessed after the first i accesses has rank i. There-

fore, the probabilistic LRU cache misses on these elements with probability P(i). A fully

associative cache capable of holding i lines does not miss after the first i accesses. Since we

consider an infinite sequence, the conflict-miss overhead tends to P(i). El

2.3 Balls and bins

In this section, we analyze the performance of random-hashed set-associative caches. First,

we prove that random-hashed set-associative caches are probabilistic LRU caches having

absence functions expressible as solutions to the balls and bins problem given in [36, Sec-

tion 3.1]. Then, the absence function for random-hashed caches with small associativity is
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approximated. Finally, Theorem 8 is used to evaluate conflict-miss overhead of random-

hashed set-associative caches.

Recall that for set-associative caches, we defined parameters nL as the number of cache

lines, ns as the number of lines in a set, and S as the associativity. A random hash function

H is used to map the line address to a set address. Cache lines in a set are maintained

using LRU replacement.

We now prove a crucial lemma showing that random-hashed caches are P-LRU caches

for some absence function P. But first, we develop a notation to represent the balls-and-

bins distribution.

Definition 10 Consider i balls thrown uniformly at random into n initially empty bins. The

random variable B B(i, n) denotes the number of balls in a given bin.

Lemma 11 A random-hashed set-associative cache having ns sets of associativity S is a probabilis-

tic LRU cache. The absence function P satisfies

P(i) =Pr{BB(i,ns) > S}

Proof. Consider a memory-access sequence x 1 ,..., x. When a line xt is accessed by the

tth operation, it is cached in set H(xt). Line xt can be evicted only by cache lines accessed

after its most-recent access. From the definition of rank, we know that rankt(xt) distinct

lines have been accessed after the most-recent access of xt. If less than S of these lines

map to H(xt), the access to xt hits the cache, an event which happens with probability

Pr{BB(i,ns) < S}. Thus, the random-hashed cache is a P-LRU cache satisfying P(i) =

Pr{BB(i,ns) > S}. E

Corollary 12 A random-hashed direct-mapped cache is a probabilistic LRU cache with absence

function

P(1) =1I- (I-- 1/ndi ,

for all i > 0. The expected conflict-miss overhead such a cache with respect to a fully associative

cache holding i cache lines is P(i).

Proof. We use the definition of P as in Lemma 11. The probability that at least one ball is

present in a given bin after placing i balls is given by

1 -(Pr {a ball is not placed in the given bin})=1 - (1 -1/n)i.
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The rest of the lemma follows from Theorem 8. El

The analysis done in Corollary 12 can be extended to random-hashed caches with small

set-associativity.

Corollary 13 A random-hashed cache having associativity S < ns is a P-LRUL cache, where

P(i) - e-l/"s. (i/ns)

j=0 J.

Proof. The probability of j balls falling in a bin is

( 1) I 1 " )n,-j (I/ns)

j ns ns 1! ns)

(i/ns)] -i/1s

for 1 < J< ns. The result follows from Lemma 11. l

For large S, we can use the Chernoff bound as follows.

Corollary 14 A random-hashed set-associative cache with nL cache lines and associativity S is a

P-LRL cache, where

P(i) <
1+( J

for = n/i-1.

Proof. The proof is similar to Corollary 12. The absence function is given by

Pr {less than S balls are placed in a given bin}

Let indicator random variable Xj be defined as

Xj = Val(Ball j is placed in the given bin)

The absence probability is given by

P(i) = Pr { Xj < S
j=0

which is a binomial random variable with expectation i/ns. A binomial random variable

X with expectation p satisfies the inequality

Pr{X > (1+6)p} < ( 6
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according to the Chernoff bound given in [36, pg. 681. We can apply this bound to yield

P(i) <

where = nsS/i-1 =n/i1. El

Curiously, Corollaries 12, 13, and 14 relate P(i) to functions of S and /nL that do not

require the value of i. Corollary 13 gives good approximations for P(i) function for typical

values of S and nL. Figure 2-4 plots the function P(i) versus i/nL for associativities S =

1,2,3,4,8, using Corollary 13. From Theorem 8, we have 0(i) = P(i). We can, therefore,

interpret this graph as the conflict-miss overhead 13(i) of a random-hashed set-associative

cache versus the ratio of the fully associative cache size i to the set-associative cache size

nL. For example, when we compare random-hashed caches with fully associative caches

of the same size, the conflict-miss overhead is around an unimpressive 60% for the curves

plotted in Figure 2-4. If we compare random-hashed caches with fully associative caches of

half the size, the conflict-miss overhead is around 5% for S = 4, and around 40% for S = 1.

Thus, higher associativity reduces the conflict-miss overhead if we look at proportionally

smaller LRU caches. On the other hand, if we compare random-hashed caches with LRU

caches bigger by a factor of more than 1.3, caches with smaller associativity exhibit better

conflict-miss overheads.

The conflict-miss overhead shown in Figure 2-4 is approximately tight for the worst-

case, from Lemma 9 and Corollary 13. These values are not impressive, however, for typ-

ical set-associativities between 2 and 4. In the next section, we shall remarkably improve

the worst-case conflict-miss overhead using victim caches. In Section 2.6, we shall see that

SPEC95 floating point benchmarks perform much better than predicted in Figure 2-4 on

random-hashed set-associative caches.

2.4 Victim caches

In this section, we analyze random-hashed set-associative caches augmented with victim

caches [33]. A victim cache is a small fully associative LRU cache that holds items knocked

out by the hashed set-associative cache. Let n v be the number of lines in the victim cache.

Intuitively, the advantage of adding a victim cache is to avoid thrashing caused by as

many as nv badly-mapped cache lines, which we refer to as overflowing lines. Victim
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Figure 2-4: Plot of P(i) versus i/nL for set associativity S =1,2,3,4,8. The random-hashed cache is

capable of holding nL lines. P(i) is also the worst-case conflict-miss overhead 0(i) of the random-

hashed cache with respect to a fully associative cache of size i.

cache do not help if all lines in the memory-access sequence are mapped to the same set.

Consequently, caches with deterministic line-placement functions perform only as well

as a fully associative cache of size ny + S, for certain tailored memory-access sequences.

In our cache model, however, victim caches have significant provable gains. Specifically,

for nV greater than a certain threshold, the conflict-miss overhead is reduced by a factor

exponential in nv.

The analysis of adding victim caches, presented in this section, works for a large class

of probabilistic LRU caches including random-hashed set-associative caches. The proba-

bilistic LRU caches belonging to this class satisfy the following technical condition.

Definition 15 A P-LRU cache is said to be negatively correlated on exclusion if during any

access, the probability that cache lines with ranks i1 , i2 , - , ik are not present in the cache is at most

P(ii)P(i2 ) . .. P(ik).

We now prove that random-hashed set-associative caches satisfy the technical condi-

tion given in Definition 15.
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Lemma 16 Random-hashed set-associative caches are negatively correlated on exclusion.

Proof. Let us consider cache lines with ranks i1 , i2 , .. , ik and estimate the probability that

all of them are excluded from the cache. Let event Ej denote the exclusion of the cache line

with rank ij.

Consider the probability Pr { Ej+I Ei A ... A E1j}. Let line x correspond to event Ej+1-

We are given that a particular set of j cache lines have been thrown out of the cache, even

though they have been accessed after x. Therefore, if x is mapped to any one of those sets,

it would be eliminated even if the j cache lines were not accessed. If x did not map to one

of those sets, the j accesses would not matter. Thus, if it is given that cache lines with rank

I1,2,... ,ij are excluded, we can ignore the j accesses, whence

Pr{Ej+1|E1A---AEj} P(Ij+1-])

<_P(ij+I)

= Pr{Ej+1  -

From Bayes' Rule [36, 440], we have

k-i

Pr{ElA---AEk} = 7 Pr{Ej+I El...Ej}
j=0
k-1

< fPr{Ej+1 j
j=0

< P(II)P(12) --. -Mik)d

We can now bound the number of overflowing lines and prove the worth of adding a

victim cache.

Lemma 17 Let C be a P-LRU cache negatively correlated on exclusion that is augmented with a

victim cache capable of holding nv lines. Then, C is a Pv-LRU cache satisfying

Pv(i) < P(i) - ( ) ) , (2.3)

where 1 + v = nv/T 14 P(j).

Proof. Let x be the element accessed in the tth memory operation, and let i = rankt(x).

Let Ej be the event that the cache line with rank j is not present in cache C. Let Xj be an
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indicator random variable defined as Xj = Val(Ej). Cache C augmented with the victim

cache does not hold the cache line with rank i if and only if

1. at least S lines map to H(x), and

2. at least n v cache lines with rank smaller than i are excluded from the P-LRU cache.

Therefore, we have

Pv(i)=Pr EiA (X;>nv }
which proves that C is a probabilistic LRU cache.

Since events E0, E1 ,..., Ei are negatively correlated, we can upper bound Pv(a) with

an analysis where all the events are independent. In particular, we can apply the Chernoff

bound on Y Xi having expectation T P(i). The result follows. El

Augmenting a victim cache to a P-LRU cache negatively correlated on exclusion re-

duces P(i) by a factor exponential in the size of the victim cache, provided the size of the

victim cache is greater than Y'_1 P(j). We refer to the expression T'_) P(j), as the expected

number of overflowing lines after i accesses. Lemma 17 applies to all probabilistic LRU

caches negatively correlated on exclusion, and consequently it applies to random-hashed

set-associative caches (from Lemma 16). A simple upper bound on this summation is iP(i).

For small values of S, however, we can obtain good approximations by numerically com-

puting the expected number of overflowing lines. Such an approximation, obtained by

numerical integration is shown in Figure 2-5. We can see that the function is concave.

Figure 2-6 shows the reduction in conflict-miss overhead caused by the addition of victim

caches for various values of v in (2.3). This graph is very impressive, since the multiplica-

tive factor reduces below a millionth for v =2, once the expected number of overflowing

lines is greater than 10.

Using the relations shown in Figures 2-4, 2-5, and 2-6, we can compute the absence

function Pv for common configurations of caches. An illustrative example is shown below.

Example 18 Consider a 16KB random-hashed 4-way set-associative cache with 32-byte

cache lines. The cache has nL = 512 cache lines. The absence function P associated with the

cache is shown in Figure 2-4. Let us augment the cache with an n v = 8 victim cache lines.
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the expected number a of overflowing lines after i accesses.
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Figure 2-7: Graph showing absence function P(i) versus i before and after adding an 8-line victim

cache to a 512-line 4-way set-associative random-hashed cache.

The ratio nvl/nL ~ 0.16. Consequently, for all i such that F~ -jP(j) < 0.16, we can apply

the victim cache reduction given in (2.3). Figure 2-7 shows how the addition of the victim

cache improves the P(i) function. We can see from Figure 2-7 that accesses to items with

rank less than 200 are almost certainly cache hits.

2.5 Random-hashed victim caches

A drawback of fully associative victim caches is their poor scalability. In today's architec-

tures, victim caches hold few cache lines, since they are fully associative. In this section, we

shall study victim caches that are not fully associative. Specifically, this section analyzes

the performance of random-hashed set-associative victim caches, thereby making a case

for set-associative victim caches.

Lemma 19 Let C be a P-LRU cache negatively correlated on exclusion, that is augmented with a

P'-LRU victim cache. Then, C is a Pv-LRU cache satisfying the condition that for any n v, we have

PV((i) < (i)-V v + P'(nv))
-(+ V)1+v)
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where 1 + v = nv/ YjI'O P(j).

Proof. This proof is similar to the proof for Lemma 17. Let x be the element accessed in

the tth memory operation, and let i = rankt(x). Let Ej be the event that the cache line

with rank j is not present in cache C. Let Xj be an indicator random variable defined by

Xj= Val (Ej). Similarly, let us define events E' for the victim cache. The cache C augmented

with the victim cache does not hold the cache line with rank i if and only if

1. at least S lines map to H(x), and

2. the victim cache does not hold the cache line with rank j, where j is the number of

cache lines evicted from C with rank smaller than i.

Then, we have

Pv(i) = Pr Ei / EiIX

which proves that C is a probabilistic LRU cache. We can upper bound Pv(i) as

i- I
Pv(i) = Pr Ei ( ( Xj > nv V E 1 ) }

(j=0

Since events E0 , E 1,..., Ei are negatively correlated, we can upper bound Pv(a) with an

analysis where all the events are independent. In particular, we can apply the Chernoff

bound on T Xi having expectation _ P(i), for any suitable nV.

In (2.4), the parameter n v is a free variable. In other words, (2.4) works for any value of

nv. The choice of an appropriate nv therefore becomes crucial in obtaining a good upper

bound on P(i). In (2.4), the factor attenuating P(i) consists of two terms. The first term

decreases with increasing nv, while the second increases with increasing nv. Due to the

presence of nv in the exponent of the first term, we can expect value of nv to be close to

F'11 P(j), for large victim caches.

The impact of Lemma 19 is illustrated in the following example.

Example 20 Consider a 512KB random-hashed 4-way set-associative cache with 32-byte

cache lines. The cache has nL = 16K cache lines. The absence function P associated with

the cache is shown in Figure 2-4. Let us augment the cache with an 8-way set-associative

random-hashed cache with 256 cache lines. In this example, we choose the optimal value

for nv. Figure 2-8 shows the P(i) function before and after adding the victim cache. Notice
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Figure 2-8: Graph showing absence function P(i) versus i before and after adding an 256-line 8-way

set-associative victim cache to a 16K-line 4-way set-associative random-hashed cache.

that the conflict-miss overhead, when compared to a same size LRU cache, is given by

P(16K) which has a very impressive improvement. Moreover, the size of the victim cache

is 1/64th the size of the primary cache. Since both caches are set-associative, such an

implementation seems possible.

2.6 Simulation results

Until now, the analysis of random-hashed caches has been independent of the memory-

access sequence, providing generic guarantees on performance. Such analysis accounts

for the worst-case memory-access sequences (given in Lemma 6), however, and tends to

be loose. We can tighten the analysis of expected cache misses using simulation studies

for certain memory-access sequences. In this section, we use Lemma 6 to determine the

expected number of cache misses for some SPEC95 benchmarks.

The strategy for evaluating good bounds on the expected number of cache misses is

as follows. Traces of benchmark programs are simulated to evaluate the cache misses

incurred on fully associative LRU caches of all sizes. This data can be plugged in (2.2) to
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Figure 2-9: Graph showing expected miss rate in random-hashed set-associative caches with 32

byte line length, for mgrid SPEC floating point benchmark, versus cache size.

give good estimates of the expected number of cache misses. I used the Hierarchical Cache

Simulator developed for the Malleable Cache Project [17] at MIT Laboratory for Computer

Science. Derek Choiu, a postdoctoral student in the Computer Structures Group, MIT LCS,

helped me perform the simulation. The simulator operates on pdt traces generated from

programs compiled on the simplescalar platform [16].

Figure 2-9 shows the expected number of cache misses during 100 million accesses

in the mgrid SPEC95 floating-point benchmark for various cache sizes and associativity

S = 1,2, and 4. The cache line length was assumed to be 32 bytes. With the addition of an

8-line fully associative victim cache, the expected cache misses are as shown in Figure 2-10.

Similar results are shown for some other SPEC95 floating point benchmarks in Figures 2-11

through 2-15. For the cache sizes considered, the performance of direct-mapped random-

hashed caches with the victim cache is usually better than 4-way set-associative random-

hashed caches of same size.

Figure 2-9 and Figure 2-10 exhibit a few anomalies. Firstly, some random-hashed

caches outperform fully associative caches for small cache sizes. This phenomenon is

caused by the abrupt absence of cache hits having ranks in the range 2K-5K. Random-
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Figure 2-10: Graph showing expected miss rate versus cache size for random-hashed set-

associative caches with 8-line victim cache and 32-byte line length for mgrid SPEC floating point

benchmark.

hashed caches that hold around 5K cache lines partially capitalize on cache hits of rank

larger than 5K, unlike fully associative caches of the same size. Secondly, for cache sizes

between 2K-4K, in Figure 2-10, the expected number of cache misses increases for increas-

ing associativity. Again, this behavior stems from the forbidden rank range 2K-5K. Fig-

ure 2-4 shows that smaller associativity caches have smaller absence probability P(i) for

i > nL. Since, for i > nL, P(i) weights cache hits with rank larger than 5K in (2.2) caches

with lower associativity tend to perform better.

2.7 Conclusion

In this section, we shall relate the results presented in this chapter to previous and ongo-

ing research on cache design, and we shall look at interesting open problems that deserve

scrutiny. Specifically, we shall compare our results with the analytical cache model pro-

posed by Agarwal, Horowitz, and Hennessy [2]. The independence of our analysis from

the memory-access sequence is both a strength and weakness. We shall discuss this issue.

We shall also look at other caching mechanisms that achieve similar performance, thereby
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an 8-line victim cache.
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citing the possibility of further improvement.

Random-hashed set-associative victim caches, presented in Section 2.5, is an interesting

offshoot of my research in random-hashed caches. I believe that set-associative victim

caches with pseudorandom line-placement functions may be useful for L2 and L3 caches,

which are typically large. I can foresee two practical difficulties, however. Firstly, the

gains in introducing such victim caches may be outweighed by the loss of valuable time

in moving data between the primary cache and its victim cache. Secondly, victim caches

added to ensure atomicity in memory-addressing instructions may not benefit from this

result.

Theoretical results related to random-hashed caches are available in the literature. In

their analytical cache model, Agarwal, Horowitz, and Hennessy [2] study the collision

probability, which is same as the expected conflict-miss overhead, in random-hashed caches.

Their analysis, however, makes assumptions regarding the memory-access sequence pre-

sented to the cache, such as the size of the working set. The weakness of this analysis lies

in the assumptions made on the memory-access sequence.

The analysis of conflict-miss overhead presented in this chapter is independent of the

memory-access sequence and can therefore be termed as competitive. To my best knowl-

edge, the results presented in this chapter are the first comprehensive competitiveness

study of caches with limited associativity with respect to fully associative caches. A draw-

back in competitive analysis is that the worst-case performance is used as the metric. Recall

that Lemma 9 and Corollary 13 show that our analysis of set-associative random-hashed

caches is tight for the worst-case, although Figures 2-9 through 2-15 exhibit much smaller

worst-case conflict-miss overhead shown in Figure 2-4. The analysis of fully associative

LRU suffers from the same drawback. Sleator and Tarjan's competitive analysis [45] is

loose for the average case [54].

Another drawback of our analysis is that conflict-miss overhead is defined with respect

to fully associative LRU caches. With this definition, conflict-miss overhead can be nega-

tive. For certain cache sizes, random-hash caches outperform fully associative LRU caches

of the same size for many SPEC95 floating point benchmarks including mgrid, hydro2d,

su2cor, and tomcatv. A arguably better definition of conflict-miss overhead will be with

respect to ideal caches. An interesting open problem is to obtain competitive analysis that

is better than the combination of the analysis of random-hashed caches with respect to
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LRU caches, and that of LRU caches with respect to ideal caches. Researchers working on

the Malleable Cache Project [17] believe that caching mechanisms better than LRU can be

designed if the algorithm provides appropriate directives to the cache. This opens up the

possibility of better theoretical analysis of caching mechanisms based on the assumption

that accurate directives are provided to the cache.

Finally, our analyses assume that the line-placement function H is a perfectly random

hash function. Typically only pseudorandom hash functions can be implemented in prac-

tice. I believe, however, that pseudorandom hash functions will exhibit expected per-

formance close to the theoretical predictions. Sacrificing "random behavior" of the hash

function for simplicity in implementation is an interesting tradeoff. Such a tradeoff is pre-

sented in [27], where the authors compare line-placement functions based on XOR with

more complicated ones based on polynomial arithmetic [42].

I believe that set-associative victim caches with pseudorandom line-placement func-

tions may be useful for L2 and L3 caches, which are typically large. I can foresee two

practical difficulties, however. Firstly, the gains in introducing such victim caches may be

outweighed by the loss of valuable time in moving data between the primary cache and

its victim cache. Secondly, victim caches added to ensure atomicity in memory-addressing

instructions may not benefit from this result.

Section 4.3 presents an alternative method of simulating LRU caches on direct memory.

This method only requires 2-universal hash functions and does not incur any conflict miss

overhead when compared to proportionally small LRU caches. I believe, however, that

this caching mechanism does not have practical hardware implementations, although it

hints the possibility of other caching mechanisms superior to random-hashed caches.
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CHAPTER 3

Cache-oblivious algorithms

In the previous chapter, we have looked at how caches with performance close to the ideal-

cache model can be designed, justifying the use of ideal-cache model as an abstraction

of caches. This chapter presents efficient, portable algorithms for matrix multiplication,

matrix transposition, FFT, and sorting. These algorithms are shown to be "optimal" for the

ideal-cache model using theoretical analysis, justifying the usefulness of the ideal-cache

model as a tool for algorithm design.

Resource-oblivious algorithms that nevertheless use resources efficiently offer advan-

tages of simplicity and portability over resource-aware algorithms whose resource usage

must be programmed explicitly. We define an algorithm to be cache aware if it con-

tains parameters (set at either compile-time or runtime) that can be tuned to optimize the

cache complexity for the particular cache size and line length. Otherwise, the algorithm

is cache oblivious. Historically, good performance has been obtained using cache-aware

algorithms, but we shall exhibit several optimal1 cache-oblivious algorithms.

To illustrate the notion of cache awareness, consider the problem of multiplying two

n x n matrices A and B to produce their n x n product C. We assume that the three matrices

are stored in row-major order. We further assume that n is "big," i.e., n > L, in order to

simplify the analysis. The conventional way to multiply matrices on a computer with

'For simplicity, we use the term "optimal" as a synonym for "asymptotically optimal," since all our analy-

ses are asymptotic.
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Figure 3-1: Blocked matrix multiplication: Iteration when i = 2, j= 3 and k = 4.

caches is to use a blocked algorithm [26, p. 451. The idea is to view each matrix M as

consisting of (n/s) x (n/s) submatrices Mi; (the blocks), each of which has size s x s, where

s is a tuning parameter. The following algorithm implements this strategy:

BLOCK-MULT(A, B,C,n)

1 fori+-1ton/s

2 do for j<-- 1 to n/s

3 do fork<-1ton/s

4 do ORD-MULT(Aik, Bkj, Cij,s)

The ORD-MULT (A, B, C, s) subroutine computes C +- C + AB on s x s matrices using the

ordinary O(s3 ) algorithm. This algorithm assumes for simplicity that s evenly divides n,

but in practice s and n need have no special relationship, yielding more complicated code

in the same spirit. A step of this algorithm is shown in Figure 3-1.

Depending on the cache size of the machine on which BLOCK-MULT is run, the param-

eter s can be tuned to make the algorithm run fast, and thus BLOCK-MULT is a cache-aware

algorithm. To minimize the cache complexity, we choose s to be the largest value such that

the three s x s submatrices simultaneously fit in cache. An s x s submatrix is stored on

0(s +s 2/L) cache lines. From the tall-cache assumption (1.1), we can see that s = Q (vfZ).

Thus, each of the calls to ORD-MULT runs with at most Z/L = 0(1+ s2/L) cache misses

needed to bring the three matrices into the cache. Consequently, the cache complexity of

the entire algorithm is 0(1+n 2/L +(n/V/Z) 3(Z/L)) = 0(1+n 2 /L+n 3/Lv/Z), since the

algorithm has to read n2 elements, which reside on [n2/L] cache lines.

The same bound can be achieved using a simple recursive cache-oblivious algorithm
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that requires no voodoo tuning parameters such as the s in BLOCK-MULT. Consider the

following recursive algorithm for matrix multiplication.

REC-MULT(A, B,Cn)

1 if n=1

2 then C-C+ AB

3 else A (All A 12  B_ B1 1 B12  ,C C11  C12

A 2 1 A 2 2  B2 1 B2 2 J C21 C22

4 for ij,k {1,2}

5 do REC-MULT(Aik,Bkj,Cij,n/2)

We shall now analyze the above algorithm in the ideal-cache model. Since the cache is

managed by optimal replacement, if all the three matrices fit in cache, they will be loaded

into the cache only once. Therefore, if n is smaller than s, the matrix multiply incurs only

0(1 + n 2 /L) cache misses. Notice that the optimal block size s is used only in the analysis

and does not appear in the algorithm. If n is larger than s, there is a constant number of

cache misses apart from the cache misses made by the recursive calls. Thus, the number of

cache misses is given by the recurrence

Q(n) 0(1+n 2 /L) if n < s,

8Q(n/2) + 0(1) otherwise;

implying that Q(n) = 0(1 + n2 /L + n3/(sL)), which matches the bound achieved by the

cache-aware algorithm. Chapter 3 gives an efficient cache-oblivious algorithm rectangular

matrix multiplication.

The rest of this chapter is as follows. Section 3.1 presents a simple algorithm for general

rectangular matrix multiplication. The problems of computing a matrix transpose and of

performing an FFT also succumb to remarkably simple cache-oblivious algorithms, which

are described in Section 3.2. Sections 3.3 and 3.4 present two sorting algorithms, one based

on mergesort and the other on distribution sort, both of which are optimal in both work

and cache misses. The results presented in this section represent joint work with Frigo,

Leiserson, and Prokop. [25].
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3.1 Matrix multiplication

This section describes and analyzes a cache-oblivious algorithm for multiplying an m x

n matrix by an n x p matrix cache-obliviously using 0(niip) work and incurring O(m +

n + p + (mn + np + mp)/L + mn p/L Z) cache misses. These results require the tall-cache

assumption (1.1) for matrices stored in row-major layout format, but the assumption can

be relaxed for certain other layouts. I shall also show that Strassen's algorithm [47] for

multiplying n x n matrices, which uses 0(n 7 ) work, incurs 0(1+ n2 /L +n '7/L Z) cache

misses.

In [12], optimal divide-and-conquer algorithm for n x n matrix multiplication, contain-

ing no tuning parameters, was analyzed, but the authors did not study cache-obliviousness

per se. That algorithm can be extended to multiply rectangular matrices. To multiply a

ni x n matrix A and a n x p matrix B, the REC-MULT algorithm halves the largest of the

three dimensions and recurs according to one of the following three cases:

A, B = AB (3.1)
A2) A 2 B

Ai A 2  B) A 1 B1 + A 2 B2 , (3.2)
B2)

A (Bi B2 ) (AB 1  AB 2 ) (3.3)

In case (3.1), we have m > max{n, p}. Matrix A is split horizontally, and both halves are

multiplied by matrix B. In case (3.2), we have n > max{m, p}. Both matrices are split,

and the two halves are multiplied. In case (3.3), we have p > max{m, n}. Matrix B is split

vertically, and each half is multiplied by A. For square matrices, these three cases together

are equivalent to the recursive multiplication algorithm described in [12]. The base case

occurs when m = n = p = 1, in which case the two elements are multiplied and added into

the result matrix.

Although this straightforward divide-and-conquer algorithm contains no tuning pa-

rameters, it uses cache optimally. To analyze the REC-MULT algorithm, we assume that

the three matrices are stored in row-major order. Intuitively, REC-MULT uses the cache

effectively, because once a subproblem fits into the cache, its smaller subproblems can be

solved in cache with no further cache misses.
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Theorem 21 The REC-MULT algorithm uses O(mnp) work and incurs O(m + n + p + (imn +

np + mp)/L + mnp/L VZ) cache misses when multiplying an m x n matrix by an n x p matrix.

Proof. It can be shown by induction that the work of REC-MULT is e(mnp). To analyze

the cache misses, let a > 0 be the largest constant sufficiently small that three submatrices

of sizes m' x n', n' x p', and m' x p', where max{m', n', p'} < a Z, all fit completely in the

cache. Four cases arise based on the initial size of the matrices.

Case I: m, n, p > a Z. This case is the most intuitive. The matrices do not fit in cache,

since all dimensions are "big enough." The cache complexity can be described by the

recurrence

[((mn+np+mp)/L) if m,n,p c (a Z/2,av] ,

Qm p) < 2Q(m/2,np)+O(1) ow.ifm>nandm>p,

2Q(m,n/2,p)+O(1) ow. ifn > m andn > p,

2Q(m, n, p/2)+ O(1) otherwise .

The base case arises as soon as all three submatrices fit in cache. The total number of lines

used by the three submatrices is )((mn + np + mp)/L). The only cache misses that occur

during the remainder of the recursion are the 0((inn +np + mp)/L) cache misses required

to bring the matrices into cache. In the recursive cases, when the matrices do not fit in

cache, we pay for the cache misses of the recursive calls, which depend on the dimensions

of the matrices, plus 0(1) cache misses for the overhead of manipulating submatrices. The

solution to this recurrence is Q(m, n, p) = e(mn p/L Z).

Case II: (m < a and n, p > Z) or (n < a and m, p > Z) or (p < a /Z and

m,n > a Z). Here, we consider the case where m < a Z and n, p > a /Z. The proofs

for the other cases are only small variations of this proof. The REC-MULT algorithm always

divides n or p by 2 according to cases (3.2) and (3.3). At some point in the recursion, both

are small enough that the whole problem fits into cache. The number of cache misses can

be described by the recurrence{ (1+n + np/L+m) if n, p [av'Z/2,a ] vZ,

Q(m, n, p) < 2Q(m,n/2,p)+(1) otherwiseifn > p,

2Q(m,n,p/2)+O(1) otherwise;

whose solution is Q(m,n, p) =O(np/L +mnp/L v').
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Case III: (n, p < Zv and m > a ) or (i, p a and n > a Z) or (m,n < aZ and

p > a Z). In each of these cases, one of the matrices fits into cache, and the others do

not. Here, we consider the case where n, p < a Z and m > a Z. The other cases can be

proven similarly. The REC-MULT algorithm always divides m by 2 according to case (3.1).

At some point in the recursion, rn falls into the range a Z/2 < i < a Z, and the whole

problem fits in cache. The number cache misses can be described by the recurrence

Q(mi,n) { 0(1+im) if m E [ Z\/2, a Z] ,

2Q(ni/2,n, p)+ 0(1) otherwise;

whose solution is Q(m, n, p) =0(nmi+ mnp/L Z).

Case IV: i, n, p < a Z. From the choice of a, all three matrices fit into cache. The matri-

ces are stored on 0(1+ mn/L +np/L + mp/L) cache lines. Therefore, we have Q(m, n, p) =

0(1+ (mn + np + mp)/L). l

We require the tall-cache assumption (1.1) in these analyses, because the matrices are

stored in row-major order. Tall caches are also needed if matrices are stored in column-

major order , but the assumption that Z = Q(L 2 ) can be relaxed for certain other matrix

layouts. The s x s-blocked layout, for some tuning parameter s, can be used to achieve the

same bounds with the weaker assumption that the cache holds at least some sufficiently

large constant number of lines. The cache-oblivious bit-interleaved layout has the same

advantage as the blocked layout, but no tuning parameter need be set, since submatrices

of size 0( L) x 0(vL) are cache-obliviously stored on 0(1) cache lines. The advantages

of bit-interleaved and related layouts have been studied in [13, 14, 22]. One of the prac-

tical disadvantages of bit-interleaved layouts is that index calculations on conventional

microprocessors can be costly, a deficiency we hope that processor architects will remedy.

For square matrices, the cache complexity Q(n) =E(n +n 2 /L + n3 /Lv2) of the REC-

MULT algorithm is the same as the cache complexity of the cache-aware BLOCK-MULT

algorithm and also matches the lower bound by Hong and Kung [31]. This lower bound

holds for all algorithms that execute the 0(n3 ) operations given by the definition of matrix

multiplication
n

ci; = aikbk
k=1
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No tight lower bounds for the general problem of matrix multiplication are known.

By using an asymptotically faster algorithm, such as Strassen's algorithm [47] or one of

its variants [53], both the work and cache complexity can be reduced. When multiplying

n x n matrices, Strassen's algorithm, which is cache oblivious, requires only 7 recursive

multiplications of n/2 x n/2 matrices and a constant number of matrix additions, yielding

the recurrence

Q(1 +n + n2 /L) if n2 <; Z

7Q(n/2) + 0(n2/L ) otherwise;

where a is a sufficiently small constant. The solution to this recurrence is 0(n + n2/L +

n' 7 /L Z).

3.2 Matrix transposition and FFT

This section describes a recursive cache-oblivious algorithm for transposing an ni x n ma-

trix which uses 0(mn) work and incurs 0(1 + mn/L) cache misses, which is optimal. Us-

ing matrix transposition as a subroutine, we convert a variant [52] of the "six-step" fast

Fourier transform (FFT) algorithm [9] into an optimal cache-oblivious algorithm. This FFT

algorithm uses 0 (n lg n) work and incurs

0 (1 + (n/L) (1 +logzn))

cache misses.

The problem of matrix transposition is defined as follows. Given an m x n matrix stored

in a row-major layout, compute and store AT into an n x m matrix B also stored in a row-

major layout. The straightforward algorithm for transposition that employs doubly nested

loops incurs O(mn) cache misses on one of the matrices when m >> Z/L and n > Z/L,

which is suboptimal.

Optimal work and cache complexities can be obtained with a divide-and-conquer strat-

egy, however. If n > m, the REC-TRANSPOSE algorithm partitions

A = ( A, A2) ,B = B1
B2)

and recursively executes REC-TRANSPOSE(A 1 , B1) and REC-TRANSPOSE(A 2 , B2 ). Other-

wise, it divides matrix A horizontally and matrix B vertically and likewise performs two
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transpositions recursively. The next two lemmas provide upper and lower bounds on the

performance of this algorithm.

Lemma 22 The REC-TRANSPOSE algorithm involves 0(mn) work and incurs 0(1 + mn/L)

cache misses for an m x n matrix.

Proof. That the algorithm does O(mn) work is straightforward. For the cache analysis,

let Q(m, n) be the cache complexity of transposing an m x n matrix. We assume that the

matrices are stored in row-major order, the column-major layout having a similar analysis.

Let a be a constant sufficiently small such that two submatrices of size m x n and n x m,

where max{m, n} a L, fit completely in the cache even if each row is stored in a different

cache line. We distinguish the three cases.

Case I: max{m, n} aL. Both the matrices fit in 0(1) +2mn/L lines. From the choice of

a, the number of lines required is at most Z/L. Therefore Q(m, n) = 0(1 + mn/L).

Case II: m K aL < n or n <aL <m. Suppose first that m < aL < n. The REC-TRANSPOSE

algorithm divides the greater dimension n by 2 and performs divide and conquer. At some

point in the recursion, n falls into the range aL/2 < n < aL, and the whole problem fits

in cache. Because the layout is row-major, at this point the input array has n rows and m

columns, and it is laid out in contiguous locations, requiring at most 0(1 + nm/L) cache

misses to be read. The output array consists of nm elements in m rows, where in the worst

case every row lies on a different cache line. Consequently, we incur at most O(m + nm/L)

for writing the output array. Since n > aL/2, the total cache complexity for this base case

is 0(1 + m). These observations yield the recurrence

Q(m,n) { O(1+ m) if n C [aL/2, aLl ,

2Q(m, n/2) + 0(1) otherwise;

whose solution is Q(m, n) = 0(1+ mn/L).

The case n < a L < m is analogous.

Case III: m, n > aL. As in Case II, at some point in the recursion both n and m fall into

the range [aL/2, aLl. The whole problem fits into cache and can be solved with at most
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O(m + n + mn/L) cache misses. The cache complexity thus satisfies the recurrence

O(rn+n+mn/L) if m,n c [aL/2,al1,

Q(m,n) < 2Q(mn/2,n)+O(1) if m>n,

2Q(n,n/2)+O(1) otherwise;

whose solution is Q(m, n) = O(1+ mn /L). D

Theorem 23 The REC-TRANSPOSE algorithm has optimal cache complexity.

Proof. For an m x n matrix, the algorithm must write to mn distinct elements, which oc-

cupy at least [mn/Li = Q(1+ mn/L) cache lines. El

As an example of an application of this cache-oblivious transposition algorithm, in

the rest of this section we look at a cache-oblivious algorithm for computing the discrete

Fourier transform of a complex array of n elements, where n is an exact power of 2. The

basic algorithm is the well-known "six-step" variant [9, 52] of the Cooley-Tukey FFT algo-

rithm [181. Using the cache-oblivious transposition algorithm, however, the FFT becomes

cache-oblivious, and its performance matches the lower bound by Hong and Kung [31].

Recall that the discrete Fourier transform (DFT) of an array X of n complex numbers is

the array Y given by
n -1

Y~i =I X[jiw- , (3.5)
j=0

where W,= e2,v"1//n is a primitive nth root of unity, and 0 < i < n. Many algorithms eval-

uate Equation (3.5) in O(nlgn) time for all integers n [20]. We assume that n is an exact

power of 2, however, and compute Equation (3.5) according to the Cooley-Tukey algo-

rithm, which works recursively as follows. In the base case where n = 0(1), we compute

Equation (3.5) directly. Otherwise, for any factorization n = nin 2 of n, we have

n 2 -1 [(ni-

Y11+ 12n1]= l X[ in2+ j2]Wnilj n~~ n i"j . (3.6)
j2=0 _l j=0

Observe that both the inner and outer summations in Equation (3.6) are DFT's. Opera-

tionally, the computation specified by Equation (3.6) can be performed by computing n2

transforms of size ni (the inner sum), multiplying the result by the factors WnTij2 (called

the twiddle factors [20]), and finally computing n1 transforms of size n2 (the outer sum).

We choose ni to be 2 [lgn/21 and n2 to be 2 [lign/2. The recursive step then operates as

follows:
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1. Pretend that input is a row-major ni x n2 matrix A. Transpose A in place, i.e., use the

cache-oblivious REC-TRANSPOSE algorithm to transpose A onto an auxiliary array

B, and copy B back onto A. Notice that if ni = 2n 2, we can consider the matrix to be

made up of records containing two elements.

2. At this stage, the inner sum corresponds to a DFT of the n2 rows of the transposed

matrix. Compute these n2 DFT's of size nj recursively. Observe that, because of the

previous transposition, we are transforming a contiguous array of elements.

3. Multiply A by the twiddle factors, which can be computed on the fly with no extra

cache misses.

4. Transpose A in place, so that the inputs to the next stage are arranged in contiguous

locations.

5. Compute ni DFT's of the rows of the matrix recursively.

6. Transpose A in place so as to produce the correct output order.

It can be proven by induction that the work complexity of this FFT algorithm is 0 (n lg n).

We now analyze its cache complexity. The algorithm always operates on contiguous data,

by construction. Thus, by the tall-cache assumption (1.1), the transposition operations and

the twiddle-factor multiplication require at most 0(1+ n/L) cache misses. Thus, the cache

complexity satisfies the recurrence

Q(n) < 0(1+/L), if n < aZ (3.7)
nQ(n2 )+n 2Q(nl)+O(1+n/L) otherwise;

where a > 0 is a constant sufficiently small that a subproblem of size aZ fits in cache. This

recurrence has solution

Q(n) = 0 (1 + (n/L) (1 +logzn)),

which is optimal for a Cooley-Tukey algorithm, matching the lower bound by Hong and

Kung [311 when n is an exact power of 2. As with matrix multiplication, no tight lower

bounds for cache complexity are known for the general DFT problem.
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buffers

----- -k-merger

Figure 3-2: Illustration of a k-merger. A k-merger is built recursively out of v'k "left" v/k--mergers

L1, L2 , . . ., LI, a series of buffers, and one "right" Vk--merger R.

3.3 Funnelsort

Cache-oblivious algorithms, like the familiar two-way merge sort, are not optimal with

respect to cache misses. The Z-way mergesort suggested by Aggarwal and Vitter [6] has

optimal cache complexity, but although it apparently works well in practice [35], it is cache

aware. This section describes a cache-oblivious sorting algorithm called "funnelsort." This

algorithm has optimal O(nlgn) work complexity, and optimal O(1+(n/L)(1 + logzn))

cache complexity.

Funnelsort is similar to mergesort. In order to sort a (contiguous) array of n elements,

funnelsort performs the following two steps:

1. Split the input into n1/ 3 contiguous arrays of size n2/3, and sort these arrays recur-

sively.

2. Merge the n 1/3 sorted sequences using a n1/3-merger, which is described below.

Funnelsort differs from mergesort in the way the merge operation works. Merging

is performed by a device called a k-merger, which inputs k sorted sequences and merges

them. A k-merger operates by recursively merging sorted sequences which become pro-

gressively longer as the algorithm proceeds. Unlike mergesort, however, a k-merger sus-

pends work on a merging subproblem when the merged output sequence becomes "long

enough" and resumes work on another merging subproblem.
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This complicated flow of control makes a k-merger a bit tricky to describe. Figure 3-2

shows a representation of a k-merger, which has k sorted sequences as inputs. Throughout

its execution, the k-merger maintains the following invariant.

Invariant Each invocation of a k-merger outputs the next k3 elements of the sorted sequence ob-

tained by merging the k input sequences.

A k-merger is built recursively out of k-mergers in the following way. The k inputs

are partitioned into Ak sets of k elements, which form the input to the k fk-mergers

LI, L2,..., Lv in the left part of the figure. The outputs of these mergers are connected to

the inputs of Ik buffers. Each buffer is a FIFO queue that can hold 2k3 /2 elements. Finally,

the outputs of the buffers are connected to the k inputs of the Vk-merger R in the right

part of the figure. The output of this final v/-merger becomes the output of the whole k-

merger. The intermediate buffers are overdimensioned, since each can hold 2k3/2 elements,

which is twice the number k3/ 2 of elements output by a A-merger. This additional buffer

space is necessary for the correct behavior of the algorithm, as will be explained below.

The base case of the recursion is a k-merger with k =2, which produces k3 = 8 elements

whenever invoked.

A k-merger operates recursively in the following way. In order to output k3 elements,

the k-merger invokes R k/ 2 times. Before each invocation, however, the k-merger fills all

buffers that are less than half full, i.e., all buffers that contain less than k3/2 elements. In

order to fill buffer i, the algorithm invokes the corresponding left merger Li once. Since Li

outputs k3/ 2 elements, the buffer contains at least k3/2 elements after Li finishes.

It can be proven by induction that the work complexity of funnelsort is 0 (n lg n) . We

now analyze the cache complexity. The goal of the analysis is to show that funnelsort on n

elements requires at most Q(n) cache misses, where

Q (n) = 0 (1 + (n /L) (1 +logz n)) .

In order to prove this result, we need three auxiliary lemmas. The first lemma bounds the

space required by a k-merger.

Lemma 24 A k-merger can be laid out in 0(k2 ) contiguous memory locations.
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Proof. A k-merger requires 0(k2 ) memory locations for the buffers, plus the space re-

quired by the fk-mergers. The space S (k) thus satisfies the recurrence

S(k) < (k+1)S(k)+ O(k2 )

whose solution is S(k) = 0(k2).

In order to achieve the bound on Q(n), the buffers in a k-merger must be maintained

as circular queues of size k. This requirement guarantees that we can manage the queue

cache-efficiently, in the sense stated by the next lemma.

Lemma 25 Performing r insert and remove operations on a circular queue causes in 0(1 + r/L)

cache misses as long as two cache lines are available for the buffer.

Proof. Associate the two cache lines with the head and tail of the circular queue. If a new

cache line is read during a insert (delete) operation, the next L -1 insert (delete) operations

do not cause a cache miss.

The next lemma bounds the cache complexity of a k-merger.

Lemma 26 If Z = Q(L 2 ), then a k-merger operates with at most

Qm(k) = (1+k + k3 /L+k 3 logzk/L)

cache misses.

Proof. There are two cases: either k < a Z or k > a Z, where a is a sufficiently small

constant.

Case I: k < a Z. By Lemma 24, the data structure associated with the k-merger requires

at most 0(k2 ) = O(Z) contiguous memory locations, and therefore it fits into cache. The

k-merger has k input queues from which it loads 0(k3 ) elements. Let ri be the number of

elements extracted from the ith input queue. Since k < av2 and the tall-cache assumption

(1.1) implies that L = O(v ), there are at least Z/L = Q(k) cache lines available for the

input buffers. Lemma 25 applies, whence the total number of cache misses for accessing

the input queues is
k

(0(1+ri/L) =O(k+k 3/L)
i=1
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Similarly, Lemma 24 implies that the cache complexity of writing the output queue is 0(1 +

k3 / L). Finally, the algorithm incurs 0(1 + k2 / L) cache misses for touching its internal data

structures. The total cache complexity is therefore QM(k) = 0(1 + k + k3 /L).

Case I: k> a Z. We prove by induction on k that whenever k > a Z, we have

QM(k) < ck3 logzk/L -A(k) , (3.8)

where A (k) = k(1 +2clogzk/L ) = o(k 3 ). This particular value of A (k) will be justified at the

end of the analysis.

The base case of the induction consists of values of k such that aZ1 / 4 < k < a Z. (It

is not sufficient only to consider k = (), since k can become as small as 0(Z1 / 4 ) in the

recursive calls.) The analysis of the first case applies, yielding QM(k) = 0(1 +-k-+ k 3 /L).

Because k2 > aC = Q(L) and k = Q(1), the last term dominates, which implies QM(k) =

0(k3 /L). Consequently, a big enough value of c can be found that satisfies Inequality (3.8).

For the inductive case, suppose that k > a Z. The k-merger invokes the x/k-mergers

recursively. Since aZ1 / 4 < v7k < k, the inductive hypothesis can be used to bound the

number QM( k) of cache misses incurred by the submergers. The "right" merger ( is

invoked exactly k3/ 2 times. The total number I of invocations of "left" mergers is bounded

by I < k3/ 2 + 2v7k. To see why, consider that every invocation of a left merger puts k3 / 2

elements into some buffer. Since k3 elements are output and the buffer space is 2k2 , the

bound I < k 3 /2 +2k follows.

Before invoking R, the algorithm must check every buffer to see whether it is empty.

One such check requires at most k cache misses, since there are k buffers. This check

is repeated exactly k3 / 2 times, leading to at most k2 cache misses for all checks. These

considerations lead to the recurrence

QM(k) < (2k3/2+2 ) Qm(V)+k2 .

Application of the inductive hypothesis and the choice A (k) = k(1 + 2clogzk/L) yields In-

equality (3.8) as follows:

QM(k) < (2k/2+2 Q,(v/ + k2

< 2(k3/2+V/7k) [ck3/2 lozk - A ) +k 2
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< ck 3logzk/L + k2 (1 + clogzk/L)

-(2k3/2+2 ) A( Vk)

< ck 3logzk/ L -A(k) .

Theorem 27 To sort n elements, funnelsort incurs 0(1+ (n/L)(+ logzn)) cache misses.

Proof. If n < aZ for a small enough constant a, then the algorithm fits into cache. To see

why, observe that only one k-merger is active at any time. The biggest k-merger is the top-

level n1 / 3 -merger, which requires O(n 2/3 ) < O(n) space. The algorithm thus can operate

in 0(1 + n/L) cache misses.

If N > aZ, we have the recurrence

Q(n) - n1 / 3 Q(n2/ 3 ) + QM (n1 / 3 )

By Lemma 26, we have QM(n1/ 3 ) 0(1 + n 1 / 3 + n/L +nlogzn/L).

By the tall-cache assumption (1.1), we have n/L = Q(n 1 /3). Moreover, we also have

n1/3 = Q(1) and lg n = Q(lg Z). Consequently, Qm(n1/ 3 ) = 0(nlogzn/L) holds, and the

recurrence simplifies to

Q(n) = n 1/ 3 Q(n 2 / 3 ) + 0(nlogzn/L) .

The result follows by induction on n. D

This upper bound matches the lower bound stated by the next theorem, proving that

funnelsort is cache-optimal.

Theorem 28 The cache complexity of any sorting algorithm is Q (n) = Q(1+ (n / L) (1+ logzn)).

Proof. Aggarwal and Vitter [61 show that there is an ((n/L)logz/L(n/Z)) bound on the

number of cache misses made by any sorting algorithm on their "out-of-core" memory

model, a bound that extends to the ideal-cache model. The theorem can be proved by

applying the tall-cache assumption Z = Q(L 2 ) and the trivial lower bounds of Q(n) = Q(1)

and Q(n) = i(n/L). El
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3.4 Distribution sort

In this section, we look at another cache-oblivious optimal sorting algorithm based on dis-

tribution sort. Like the funnelsort algorithm from Section 3.3, the distribution-sorting algo-

rithm uses O(n lgn) work to sort n elements, and it incurs 0(1 + (n/L) (1 + logzn)) cache

misses. Unlike previous cache-efficient distribution-sorting algorithms [4, 6, 37, 51, 52],

which use sampling or other techniques to find the partitioning elements before the distri-

bution step, our algorithm uses a "bucket splitting" technique to select pivots incremen-

tally during the distribution step.

Given an array A (stored in contiguous locations) of length n, the cache-oblivious dis-

tribution sort operates as follows:

1. Partition A into n contiguous subarrays of size n. Recursively sort each subarray.

2. Distribute the sorted subarrays into q buckets B1 ,..., Bq of size n1 ,..., ng, respec-

tively, such that

(a) max{x I x E Bi} < min{x I x E Bj+1} for = 1,2,..., q -1.

(b) ni <2v/-for i =1, 2...., q.

(See below for details.)

3. Recursively sort each bucket.

4. Copy the sorted buckets to array A.

A stack-based memory allocator is used to exploit spatial locality.

The goal of Step 2 is to distribute the sorted subarrays of A into q buckets B1, B2 ,... , Bq.

The algorithm maintains two invariants. First, at any time each bucket holds at most 2vn

elements, and any element in bucket Bi is smaller than any element in bucket Bi+1. Second,

every bucket has an associated pivot. Initially, only one empty bucket exists with pivot oo.

The idea is to copy all elements from the subarrays into the buckets while maintaining

the invariants. We keep state information for each subarray and bucket. The state of a

subarray consists of the index next of the next element to be read from the subarray and

the bucket number bnum where this element should be copied. By convention, bnum = oc

if all elements in a subarray have been copied. The state of a bucket consists of the pivot

and the number of elements currently in the bucket.
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We would like to copy the element at position next of a subarray to bucket bnum. If this

element is greater than the pivot of bucket bnum, we would increment bnum until we find

a bucket for which the element is smaller than the pivot. Unfortunately, this basic strategy

has poor caching behavior, which calls for a more complicated procedure.

The distribution step is accomplished by the recursive procedure DISTRIBUTE(i, j,m)

which distributes elements from the ith through (i + m - 1)th subarrays into buckets start-

ing from Bj. Given the precondition that each subarray i, i +1,. .. , i +m -1 has its bnum > J,

the execution of DISTRIBUTE (i, j, m) enforces the postcondition that subarrays i, i+1, .. . , i+

n -1 have their bnum > j+m. Step 2 of the distribution sort invokes DISTRIBUTE(1, 1, /n).

The following is a recursive implementation of DISTRIBUTE:

DISTRIBUTE(i, j, m)

1 ifm=l

2 then COPYELEMS(i,I)

3 else DISTRIBUTE (i, j, m/2)

4 DISTRIBUTE (i + m/2, j, m/2)

5 DISTRIBUTE (i, j+ m/2, m/2)

6 DISTRIBUTE (i+ m/2, j+ m/2, m/2)

In the base case, the procedure COPYELEMS(i, j) copies all elements from subarray i

that belong to bucket j. If bucket j has more than 2Vn elements after the insertion, it

can be split into two buckets of size at least In. For the splitting operation, we use the

deterministic median-finding algorithm [19, p. 189] followed by a partition.

Lemma 29 The median of n elements can be found cache-obliviously using O(n) work and incur-

ring 0(1 + n/L) cache misses.

Proof. See [19, p. 189] for the linear-time median finding algorithm and the work analy-

sis. The cache complexity is given by the same recurrence as the work complexity with a

different base case.

0(1+ m/L)

Q([m/5~) + Q(7m/1+O 6) + 0(1-+ m/L)

where a is a sufficiently small constant. The result follows.

if m < aZ,

otherwise

El

In our case, we have buckets of size 2/-n- +1. In addition, when a bucket splits, all
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subarrays whose bnuMn is greater than the bnum of the split bucket must have their bnum's

incremented. The analysis of DISTRIBUTE is given by the following lemma.

Lemma 30 The distribution step involves O(n) work, incurs 0(1 + n/L) cache misses, and uses

O(n) stack space to distribute n elements.

Proof. In order to simplify the analysis of the work used by DISTRIBUTE, assume that

COPYELEMS uses 0(1) work for procedural overhead. We will account for the work due to

copying elements and splitting of buckets separately. The work of DISTRIBUTE is described

by the recurrence

T(c) = 4T(c/2) + 0(1).

It follows that T(c) = O(c2 ), where c = # initially. The work due to copying elements is

also O(n).

The total number of bucket splits is at most n. To see why, observe that there are at

most n buckets at the end of the distribution step, since each bucket contains at least

n elements. Each split operation involves O( n) work. Consequently, the net con-

tribution to the work complexity is O(n). Thus, the total work used by DISTRIBUTE is

W(n) = 0(T(n)) + 0 (n) + 0(n)= 0 (n).

For the cache analysis, we distinguish two cases. Let a be a sufficiently small constant

such that the stack space used fits into cache.

Case I, n aZ: The input and the auxiliary space of size O(n) fit into cache using 0(1+

n/L) cache lines. Consequently, the cache complexity is 0(1 + n/L).

Case II, n > aZ: Let R(c, m) denote the cache misses incurred by an invocation of DIS-

TRIBUTE(a,b,c) that copies m elements from subarrays to buckets. We first prove that

R(c, m) = 0(L +c 2 /L +m/L), ignoring the cost splitting of buckets, which we shall account

for separately. We shall argue that R(c, m) satisfies the recurrence

O(L+m/L) if c <oL,

R(c,m) < 4 (3.9)
R(c/2,mi) otherwise;

where L_ 1 mi = m, whose solution is R(c, m) = O(L + c2 /L + m/L). The recursive case

c > aL follows immediately from the algorithm. The base case c < aL can be justified
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as follows. An invocation of DISTRIBUTE(a, b, c) operates with c subarrays and c buckets.

Since there are Q(L) cache lines, the cache can hold all the auxiliary storage involved and

the currently accessed element in each subarray and bucket. In this case there are 0(L +

m/L) cache misses. The initial access to each subarray and bucket causes O(c) = O(L)

cache misses. Copying the m elements to and from contiguous locations causes 0(1 +m/L)

cache misses.

We still need to account for the cache misses caused by the splitting of buckets. Each

split causes 0(1 + n/L) cache misses due to median finding (Lemma 29) and partitioning

of n contiguous elements. An additional 0(1 + n/L) misses are incurred by restoring

the cache. As proven in the work analysis, there are at most n split operations. By adding

R(Vn, n) to the split complexity, we find the total cache complexity of the distribution step

to be O(L +n/L + n(1+ n/L)) = 0(n/L). E

The analysis of distribution sort is given in the next theorem. The work and cache

complexity match lower bounds specified in Theorem 28.

Theorem 31 Distribution sort uses O(nlgn) work and incurs 0(1+ (n/L)(1+logzn)) cache

misses to sort n elements.

Proof. The work done by the algorithm is given by

q

W(n) =n W( n)+ W(ni)+ O(n),
i=1

where each ni 2 /n and ni = n. The solution to this recurrence is W(n) = 0(n lg n).

The space complexity of the algorithm is given by

S(n) < S(2 n)0+ O(n),

where the O(n) term comes from Step 2. The solution to this recurrence is S(n) = O(n).

The cache complexity of distribution sort is described by the recurrence

Q(n) < 0(1+n/L) if n <aZ,

V- Q(V+) ± Q(ni)+ 0(1+n/L) otherwise

where a is a sufficiently small constant such that the stack space used by a sorting problem

of size aZ, including the input array, fits completely in cache. The base case n < aZ arises

when both the input array A and the contiguous stack space of size S (n) = 0(n) fit in 0(1+
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n/L) cache lines of the cache. In this case, the algorithm incurs 0(1 + n/L) cache misses

to touch all involved memory locations once. In the case where n > o'Z, the recursive

calls in Steps 1 and 3 cause Q( 'n)+ j1 Q(ni) cache misses and 0(1+ n/L) is the cache

complexity of Steps 2 and 4, as shown by Lemma 30. The theorem follows by solving the

recurrence.

3.5 Conclusion

This chapter has introduced the notion of cache obliviousness and has presented asymp-

totically optimal cache-oblivious algorithms for fundamental problems. Figure 3.5 gives

an overview of the known efficient cache-oblivious algorithms. Except for matrix addi-

tion, Jacobi update [39] and LUP-decomposition [481, all these algorithms are presented in

this thesis. For matrix addition, a simple iterative algorithm turns out to be cache-optimal

if the matrix elements are read in the same order in which they are stored in memory.

The algorithm for LUP-decomposition, due to Toledo [48], uses cache-aware algorithms

as subprocedures. By applying the cache-oblivious algorithms presented here, however,

his algorithm can be converted into a cache-oblivious one. We shall now look at previous

work related to cache obliviousness and cache-efficient divide-and-conquer algorithms.

Then, we shall discuss the related work done in proving a gap in asymptotic complexity

between cache-aware and cache-oblivious algorithms.

My research group, the Supercomputing Technologies Group at MIT Laboratory for

Computer Science, noticed as far back as 1994 that divide-and-conquer matrix multiplica-

tion was a cache-optimal algorithm that required no tuning, but we did not adopt the term

"cache-oblivious" until 1997. This matrix-multiplication algorithm, as well as a cache-

oblivious algorithm for LU-decomposition without pivoting, eventually appeared in [12].

Shortly after leaving the research group, Toledo [48] independently proposed a cache-

oblivious algorithm for LU-decomposition with pivoting. For n x n matrices, Toledo's

algorithm uses 0(n3 ) work and incurs 0(1+ n2 /L +n 3 /Lv/Z) cache misses. More recently,

my group has produced an FFT library called FFTW [24], which in its most recent incar-

nation [23], employs a register-allocation and scheduling algorithm inspired by our cache-

oblivious FFT algorithm. The general idea that divide-and-conquer enhances memory lo-

cality has been known for a long time [44]. Several researchers [14, 22] have also observed
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Algorithm Cache complexity Optimal?

Matrix Multiplication 0(m + n + p + (mn + np + mp)/L tight lower

+rnnp/L vZ) bound unknown

Strassen's Algorithm 0(n + n2/L + n 10927 /L /Z) tight lower

bound unknown

Matrix Transpose 0(1 + n2 /L) yes

Matrix Addition 0(1 + n2 /L) yes

LUP-decomposition [48] 0(1+ n2 /L + n3 /L Z) tight lower

bound unknown

Discrete Fourier Transform 0(1 + (n/L) (1 +logzn)) yes

Distribution sort 0(1 + (n/L)(1 +logzn)) yes

Funnelsort 0(1 + (n/L)(1 +logzn)) yes

Jacobi multipass filter [39] 0(1 + n/L + n2 /ZL) yes

Figure 3-3: Overview of the known cache-oblivious algorithms.

that recursive algorithms exhibit performance advantages over iterative algorithms for

computers with caches.

Recently, Bilardi and Peserico [11] proved that there are problems that are asymptoti-

cally harder to solve using cache-oblivious algorithms than with cache-aware algorithms.

Their work is based on the HRAM model which is similar to the HMM model [4]. Pe-

serico [38] believes that the result can be extended to the ideal-cache model, too. Although

my intuition agrees with him on this account, I feel that the class of cache-oblivious algo-

rithms is interesting and largely unexplored.
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CHAPTER 4

Cache-oblivious algorithms on other

cache models

In the previous chapters, we have looked at the aspects of algorithm and cache design us-

ing the ideal-cache model as a bridging model for caches. The ideal-cache model, however,

incorporates four major characteristics that deserve scrutiny: optimal replacement, ex-

actly two levels of memory, automatic replacement, and full associativity. How do cache-

oblivious algorithm perform in models without these characteristics? In this chapter we

show that optimal cache-oblivious algorithms perform optimally on weaker models, such

as multilevel memory hierarchies, probabilistic LRU caches, SUMH [8], and HMM [4].

Consequently, all the algorithmic results in Chapter 3 apply to these models, matching

the best bounds previously achieved. Thus, the ideal-cache model subsumes many other

cache models, if cache-obliviousness is used as a paradigm for algorithm design.

First, recall the competitiveness result about fully associative LRU caches given in Lem-

ma 2. Let an algorithm A incur Q*(n;Z, L) cache misses on a problem of size n using a

(Z, L) ideal cache. Then, algorithm A incurs Q(n; Z, L) < 2Q* (n; Z/2, L) cache misses on a

(Z, L) cache that uses LRU replacement.

We define a cache complexity bound Q(n; Z, L) to be regular if

Q(n; Z, L) = O(Q(n;2Z, L)) . (4.1)

65



All algorithms presented in this thesis have regular cache complexities. I believe that most

algorithms have regular cache complexity if the input does not fit in the cache. The follow-

ing lemma shows that LRU is competitive with ideal replacement for the same cache size

if the regularity condition is satisfied.

Lemma 32 For algorithms with regular cache complexity bounds, the asymptotic number of cache

misses is the same for LRU and optimal replacement.

Proof. By the regularity condition (4.1), the number of misses on the (Z/2, L) ideal-cache

is at most a constant times more than the number of misses on a (Z, L) ideal-cache. The

result follows from Lemma 2. E

The rest of this chapter is as follows. Section 4.1 proves that optimal cache-oblivious

algorithms perform optimally on multilevel caches. Section 4.2 contains a similar proof for

probabilistic LRU caches. Using 2-universal hashing [36, p. 216], Section 4.3 ports optimal

cache-oblivious algorithms to memories with manual replacement, such as SUMH and

HMM, without compromising optimality.

4.1 Multilevel caches

Although models incorporating multiple levels of caches may be necessary to analyze

some algorithms, for cache-oblivious algorithms, analysis in the two-level ideal-cache model

suffices. Specifically, this section proves that optimal cache-oblivious algorithms also per-

form optimally in computers with multiple levels of LRU caches.

We assume that the caches satisfy the inclusion property [28, p. 723], which says that

the values stored in cache i are also stored in cache i +1 (where cache 1 is the cache closest

to the processor). We also assume that if two elements belong to the same cache line at

level i, then they belong to the same line at level i + 1. Moreover, we assume that cache

i + 1 has strictly more cache lines than cache i. These assumptions ensure that cache i +1

includes the contents of cache i plus at least one more cache line.

The multilevel LRU cache operates as follows. A hit on an element in cache i is served

by cache i and is not seen by higher-level caches. We consider a line in cache i + 1 to be

marked if any element stored on the line belongs to cache i. When cache i misses on an

access, it recursively fetches the needed line from cache i + 1, replacing the least-recently
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accessed unmarked cache line. The replaced cache line is then brought to the front of cache

(i + 1)'s LRU list. Because marked cache lines are never replaced, the multilevel cache

maintains the inclusion property. The next lemma, whose proof is omitted, asserts that

even though a cache in a multilevel model does not see accesses that hit at lower levels, it

nevertheless behaves like the first-level cache of a simple two-level model, which sees all

the memory accesses.

Lemma 33 A (Zi, Li)-cache at a given level i of a multilevel LRU model always contains the same

cache lines as a simple (Zi, Li)-cache managed by LRU that serves the same sequence of memory

accesses. l

Proof. By induction on the cache level. Cache 1 trivially satisfies the statement of the

lemma. Now, assume that cache i satisfies the statement of the lemma.

Assume that the contents of cache i (say A) and hypothetical cache (say B) are the same

up to access h. If access h + 1 is a cache hit, contents of both caches remain unchanged. If

access h + 1 is a cache miss, B replaces the least-recently used cache line. Recall that we

make assumptions to ensure that cache i +1 can include all contents of cache i. According

to the inductive assumption, cache i holds the cache lines most recently accessed by the

processor. Consequently, B cannot replace a cache line that is marked in A. Therefore, B

replaces the least-recently used cache line that is not marked in A. The unmarked cache

lines in A are held in the order in which cache lines from B are thrown out. Again, from

the inductive assumption, B rejects cache lines in the LRU order of accesses made by the

processor. In addition, A replaces the least-recently used line that is not marked. Thus,

cache i +1 satisfies the statement of the lemma. 1

Lemma 34 An optimal cache-oblivious algorithm whose cache complexity satisfies the regularity

condition (4.1) incurs an optimal number of cache misses on each level' of a multilevel cache with

LRU replacement.

IAlpern, Carter, and Feig [8] show that optimality on each level of memory in the UMH model does not

necessarily imply global optimality. The UMH model incorporates a single cost measure that combines the

costs of work and cache faults at each of the levels of memory. By analyzing the levels independently, our

multilevel ideal-cache model remains agnostic about the various schemes by which work and cache faults

might be combined.
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Proof. Let cache i in the multilevel LRU model be a (Zi, Li) cache. Lemma 33 says that the

cache holds exactly the same elements as a (Zi, Li) cache in a two-level LRU model. From

Lemma 32, the cache complexity of a cache-oblivious algorithm working on a (Zi, Li) LRU

cache lower-bounds that of any cache-aware algorithm for a (Zi, Li) ideal cache. A (Zi, Li)

level in a multilevel cache incurs at least as many cache misses as a (Zi, Li) ideal cache

when the same algorithm is executed. Eli

4.2 Probabilistic LRU caches

This section proves that optimal cache-oblivious algorithms perform optimally on proba-

bilistic LRU caches.

Lemma 35 If A is an optimal cache-oblivious algorithm having regular cache complexity, A is

asymptotically optimal in expectation for probabilistic L RU caches.

Proof. Let QLRU (n L) be the number of cache misses incurred by algorithm A on an LRU

cache with nL lines. Let T be the number of memory operations performed by A. Then,

according to Lemma 6, the expected number E [Q] of cache misses is

E [Q] = TP(O) + QLRU(i) (P(i) - P(i - 1)). (4.2)
i>O

Let Qideal(i) be the number of cache misses on an ideal cache with nL lines. From the

definition (4.1) of regularity and competitiveness result Lemma 2 on fully associative LRU

caching, we have QLRU(i) < kQideal(i) for a suitable k = 0(1). Therefore, we can upper-

bound the expected cache misses of A, given in (4.2) by

E [Q] < kT P(0) +k Qidea1(i) (P(i) - P(i -1)) . (4.3)
i>O

Let A* be the best possible algorithm on the probabilistic LRU cache. We define QLRU(nL)

as the number of cache misses incurred by algorithm A* on an LRU cache with nL lines,

and r* as the number of memory operations performed by A*. From Lemma 6, the ex-

pected number E [Q*1 of cache misses is

E [Q*] = T*P(O) + Y QL*RU(i) (P(I) - P(i - 1)) . (4.4)
i>O
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Let A* incur Qideal (n L) cache misses on an ideal cache of size n L. Since ideal caches outper-

form LRU caches of the same size, Qideal(nL) < QLRU(nL), and we can lower-bound E [Q*],

given in (4.4), by

E [Q*] > r* P(O) +j Qideai() (P(i) - P(i - 1)) - (4.5)
i>o

Let W and W* denote the work complexities of algorithms A and A*, respectively. In

the ideal-cache model, each operation accesses the memory 0(1) times. Thus, we have

T = O(W) and T* = E(W*). Since algorithm A is an optimal cache-oblivious algorithm,

there exists a constant c satisfying W < cW* and Qideal(i) = CQideal(l), for all i. From (4.3)

and (4.5), we have

E [Q] < kr7 P (0) + k Y_ Qideal (i) (P (i) -- Pi -- 1))

i>O< kc(W)P()+k Y Qieal( (P(i) -P(i 1))

i>O

" kc0(T)P(0) +kcy Qideal(i) (P(i) - P(i 1))
i>O

O(E [Q*]).

4.3 Memories with manual replacement: SUMH and HMM

In this section, we port optimal cache-oblivious algorithms to caches with manual replace-

ment, without loss of optimality. We shall then apply this technique to SUMH [81 and

HMM [4], which are existing memory models with manual replacement.

First, we shall see how a fully associative LRU cache can be maintained in ordinary

memory with no asymptotic loss in expected performance. Recall that Chapter 2 presents

a method of simulating LRU caches with a conflict-miss overhead. In the following lemma,

the simulation technique is competitive to LRU, but it may not be applicable in practice,

due to the use of linked list data structures.

Lemma 36 A (Z, L) LRU-cache can be maintained using 0(Z) memory locations such that every

access to a cache line in memory takes 0(1) expected time.
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Proof. Given the address of the memory location to be accessed, we use a 2-universal

hash function [36, p. 2161 to maintain a hash table of cache lines present in the memory.

The Z/L entries in the hash table point to linked lists in a heap of memory that contains

Z/L records corresponding to the cache lines. The 2-universal hash function guarantees

that the expected size of a chain is 0(1). All records in the heap are organized as a doubly

linked list in the LRU order. Thus, the LRU policy can be implemented in 0(1) expected

time using 0(Z/L) records of 0(L) words each. 1:1

Theorem 37 An optimal cache-oblivious algorithm whose cache-complexity bound satisfies the

regularity condition (4.1) can be implemented optimally in expectation in multilevel models with

explicit memory management.

Proof. Combine Lemma 34 and Lemma 36. l

Corollary 38 The recursive cache-oblivious algorithms for matrix multiplication, matrix trans-

pose, FFT, and sorting are optimal in multilevel models with explicit memory management.

Proof. Their complexity bounds satisfy the regularity condition (4.1). E

In 1990 Alpern et al. [8] presented the uniform memory hierarchy model (UMH), a

parameterized model for a memory hierarchy. In the UMH, 0 ,b(l) model, for integer con-

stants a, > 1, the size of the ith memory level is Zi = ce and the line length is Li= .

A transfer of one yl-length line between the caches on level I and I + 1 takes pl/b(l) time.

The bandwidth function b(l) must be nonincreasing and the processor accesses the cache

on level 1 in constant time per access. Figure 4-1 illustrates the UMH model. An algorithm

given for the UMH model must include a schedule that, given for a particular set of in-

put variables, tells exactly when each block is moved along which of the buses between

caches. Work and cache misses are folded into one cost measure T(n). Alpern et al. prove

that an algorithm that performs the optimal number of I/O's at all levels of the hierarchy

does not necessarily run in optimal time in the UMH model, since scheduling bottlenecks

can occur when all buses are active. In the more restrictive SUMH model [511, however,

only one bus is active at a time. Consequently, we can prove that optimal cache-oblivious

algorithms run in optimal expected time in the SUMH model.
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Figure 4-1: Illustration of the UMH model showing three levels.

Lemma 39 A cache-oblivious algorithm with W(n) work and Q(n; Z, L) cache misses on a (Z, L)-

ideal cache can be executed in the SUMH,,,b(1) model in expected time

r-1 i

T(n) = O(W(n )+ 0'Q(n;O(Zi), Li)),

where Zi = ap2 , Li = p, and Zr is big enough to hold all elements used during the execution of

the algorithm.

Proof. Use the memory at the ith level as a cache of size Zi - a p2i with line length Li =

Q. and manage it with software LRU described in Lemma 36. The rth level is the main

memory, which is direct mapped and not organized by the software LRU mechanism. An

LRU-cache of size E(Zi) can be simulated by the ith level, since it has size Zi. Thus, the

number of cache misses at level i is 2Q(n;e(Zi), L1), and each takes g'I/b(i) time. Since only

one memory movement happens at any point in time, and there are O(W(n)) accesses to

level 1, the lemma follows by summing the individual costs. El
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Lemma 40 Consider a cache-oblivious algorithm whose work on a problem of size n is lower-

bounded by W*(n) and whose cache complexity is lower-bounded by Q*(n; Z, L) on an (Z, L)

ideal-cache. Then, no matter how data movement is implemented in SUMHa,9,b(), the time taken

on a problem of size n is at least

r

T(n) = Q (W* (n) + Y 'Q* (n, 0(ZI.), Li))
i=1 bi

where Zi = a p2', Li = g 'and Zr is big enough to hold all elements used during the execution of the

algorithm.

Proof. The optimal scheduling of the data movements does not need to obey the inclusion

property, and thus the number of ith-level cache misses is at least as large as for an ideal

cache of size Z__ Zi = O(Zi). Since Q*(n, Z, L) lower-bounds the cache misses on a cache

of size Z, at least Q*(n, O(Zi), Lj) data movements occur at level i, each of which takes

Q'/b(i) time. Since only one movement can occur at a time, the total cost is the maximum

of the work and the sum of the costs at all the levels, which is within a factor of 2 of their

sum. l

Theorem 41 A cache-oblivious algorithm that is optimal in the ideal-cache model and whose cache-

complexity is regular can be executed optimal expected time in the SUMHa,p,b (I model.

Proof. The theorem follows directly from regularity and Lemmata 39 and 40. l

Aggarwal, Alpern, Chandra and Snir [4] proposed the hierarchical memory model

(HMM), shown in Figure 4-2, in which an access to location x takes f(x) time. The au-

thors assume that f is a monotonically nondecreasing function, usually of the form [log x]

or [x"].

Lemma 42 Consider a cache-oblivious algorithm with W(n) work and Q(n; Z, L) cache misses on

a (Z, L) ideal cache. Let Z1 < Z 2 < ... < Zr be positive integers such that a cache of size Zr can

hold all of the data used during the execution of the algorithm. Then, the algorithm can be executed

in the HMM model with cost function f in expected time

r

O(W(n)f(s)+ Zf(si)Q(n;E(Zi),1))
i=2

where si = O(Z 1 ), S2 = s 1 + O(Z 2 ), . sr = sr-1 + O(Zr).
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Figure 4-2: Illustration of the HMM model.

Proof. Using Lemma 36 we can simulate a ((ZI,1), (Z2,1),..., (Zr,1)) LRU cache in the

HMM model by using locations 1,2,... ,s, to implement cache 1, locations si + 1,si +

2,.. . ,s2 to implement cache 2, etc. The cost of each access to the ith cache is at most f(si).

Cache 1 is accessed at most W(n) times, cache 2 is accessed at most Q(n;a(Z2 ), 1) times,

and so forth. The lemma follows. El

Lemma 43 Consider a cache-optimal algorithm whose work on a problem of size n is lower-bounded

by W* (n) and whose cache complexity is lower-bounded by Q*(n; Z, L) on an (Z, L) ideal cache.

Then, no matter how data movement is implemented in an HMM model with cost function f, the

time taken on a problem of size n is at least

r

i=1

for any ZO = 1 < Z, < < Zr such that a cache of size Zr can hold all of the data used during the

execution of the algorithm.

Proof. The memory of the HMM model can be viewed as a cache hierarchy with arbi-

trary parameters Zo = 1 < Z < -... < Zr, where the memory elements are mapped to fixed

locations in the caches. The processor works on elements in the level 0 cache with E(1)

cost. The first Z 1 -1 elements of the HMM memory are kept in the level 1 cache, the first

Z2 -1 elements in the level 2 cache, etc. One element in each cache is used as a "dynamic

entry" which allows access to elements on higher levels. Accessing a location at level i is

73



then done by incorporating the memory item in the dynamic element of each of the caches

closer to the processor. This "cache hierarchy" obeys the inclusion principle, but it does

not do any replacement. As in HMM, memory elements are exchanged by moving them

to the processor and writing them back to their new location.

If we charge f(Zi_1 -1) -f(Zi 2 -1) to a cache miss on cache i, an access to element at

position x in cache at level k costs E iaf(Zi 1 - 1) -f(Zi- 2 -1) =f(Z 1 -1) -f(O), which

is at most f(x). Thus, the access cost for accessing element x is the same in the HMM as

in this "cached" HMM model. The cost T(n) of an algorithm in the HMM model can be

bounded by the cost of the algorithm in the multilevel model, which is at least

r

A (W(n)+ (f(Zi -1) -f(Zi- 1 -1))Q(n;Zi,1))
i=1

Since W(n) > W*(n) and Q(n;Zi,1) > Q*(n;Zi1), the lemma follows.

Theorem 44 A cache-oblivious algorithm that is optimal in the ideal-cache model and whose cache

complexity is regular can be executed in optimal expected time in the HMM model, if the cost

function is monotonically nondecreasing and satisfies f (2x) =e(f (x)).

Proof. Assume that the cache at level r is big enough to hold all elements used during

the execution of the algorithm. We choose ZI --- , Zr such that 2f(Zi_1 - 1) < Zi - 1 =

O(Zi_ 1 -1) for all 1 < i < r. Such a sequence can be computed given that f is monotonically

nondecreasing and satisfies f(2x) = O(f(x)).

We execute the algorithm as described in Lemma 42 on the HMM model with 2Zi,

2Z 2 ,..., 2Zr. The cost of warming up the caches is L1 i O(Zr)f(i) =e(Zrf(Zr)) which is

asymptotically no greater than the cost of the algorithm even if it accesses each input item

just once. The result follows from Lemmata 2, 42, and 43. E

4.4 Conclusion

This chapter showed that cache-oblivious algorithms that are optimal on the ideal-cache

model perform optimally on many other platforms provided the regularity condition (4.1)

is satisfied. A weakness of our analysis is the assumption of the regularity condition (4.1).

Although all algorithms presented in Chapter 3 are regular if the input does not fit in cache,
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we can conceive of algorithms that are not regular. Some SPEC95 floating point bench-

marks, such as mgrid (see Figure 2-9), hydro2d (see Figure 2-13), su2cor (see Figure 2-14),

and tomcatv (see Figure 2-15), exhibit sharp decreases in cache misses for certain ranges

of the LRU cache size. Halving the cache size considerably increases the cache complexity

of such programs. Consequently, the constants involved in the regularity condition (4.1)

may turn out to be large, rendering the asymptotic analyses in this chapter loose.

Intuitively, we can see that cache-oblivious algorithms perform well on each level of

a multilevel cache. For probabilistic LRU caches, optimal cache-oblivious algorithms per-

form well for all LRU ranks of the memory location accessed. Similarly in nonuniform

memory access cost models such as HMM, cache-oblivious algorithms perform well at all

distances of the memory location from the CPU.
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CHAPTER 5

Conclusion

This thesis presented an algorithmic theory of caches by proposing the ideal-cache model

as a bridging model for caches. In Chapter 2, we discussed the design of practical caches

that show near-ideal performance, justifying the ideal-cache model as a "hardware ideal."

In Chapter 3, we looked at some efficient cache-oblivious algorithms, whose performance

is shown in Figure 3.5, justifying the use of the ideal-cache model as a model for algo-

rithm design. Except for matrix addition, Jacobi update [39] and LUP-decomposition [48],

all these algorithms are presented in this thesis. In Chapter 4, we ported optimal cache-

oblivious algorithms to more complex memory hierarchies with multiple levels, random-

ization, and manual replacement, without loss of optimality. Consequently, the ideal-cache

model subsumes more complicated models if cache-obliviousness is used as a paradigm

for algorithm design. In this section, we shall discuss the myriad of open problems that

still need to be addressed to make the ideal-cache model a practically suitable bridging

model for caches. We shall now present preliminary results relating to the practical worth

of results presented in this thesis.

Hashed line-placement functions are widely recognized as a method of reducing con-

flict misses. Gondlez, Valero, Topham, and Parcerisa [27] claim that "for current workloads

and cache organizations, the advantages [of using pseudorandom line-placement func-

tions] can be very large." Currently, the Power PC architecture has an undocumented use

of hash functions for line placement [15].
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Figure 5-1: Average time to transpose an N x N matrix, divided by N2

A comprehensive empirical study of cache-oblivious algorithms is yet to be done, how-

ever. Do cache-oblivious algorithms perform nearly as well as cache-aware algorithms in

practice, where constant factors matter? Does the ideal-cache model capture the substan-

tial caching concerns for an algorithms designer? An anecdotal affirmative answer to these

questions is exhibited by the popular FFTW library [23, 24], which uses a recursive strat-

egy to exploit caches in Fourier transform calculations. FFTW's code generator produces

straight-line "codelets," which are coarsened base cases for the FFT algorithm. Because

these codelets are cache oblivious, a C compiler can perform its register allocation effi-

ciently, and yet the codelets can be generated without knowing the number of registers on

the target architecture.

A practical benefit of cache-oblivious algorithms is that they perform well at the regis-

ter level too. If the base case of a recursive cache-oblivious algorithm is coarsened using

inlining, the compiler exploits locality of reference during register allocation. Determining

an effective compiler strategy for coarsening base cases automatically is a good research

problem.

Figure 5-1 compares per-element time to transpose a matrix using the naive itera-

tive algorithm employing a doubly nested loop with the recursive cache-oblivious REC-

TRANSPOSE algorithm from Section 3.2. The two algorithms were evaluated on a 450

megahertz AMD K6111 processor with a 32-kilobyte 2-way set-associative Li cache, a 64-

kilobyte 4-way set-associative L2 cache, and a 1-megabyte L3 cache of unknown associativ-

ity, all with 32-byte cache lines. The code for REC-TRANSPOSE was the same as presented
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Figure 5-2: Average time taken to multiply two N x N matrices, divided by N3

in Section 3.2, except that the divide-and-conquer structure was modified to produce ex-

act powers of 2 as submatrix sizes wherever possible. In addition, the base cases were

"coarsened" by inlining the recursion near the leaves to increase their size and overcome

the overhead of procedure calls.

Although these results must be considered preliminary, Figure 5-1 strongly indicates

that the recursive algorithm outperforms the iterative algorithm throughout the range of

matrix sizes. Moreover, the iterative algorithm behaves erratically, due to conflict misses

caused by bad line placement. Curiously, the recursive algorithm avoids this problem,

which I think is due to coarsened base cases. For large matrices, the recursive algorithm

executes in less than 70% of the time used by the iterative algorithm, even though the

transpose problem exhibits no temporal locality.

Figure 5-2 makes a similar comparison between the naive iterative matrix-multiplication

algorithm, which uses three nested loops, with the O(n3 )-work recursive REC-MULT algo-

rithm described in Section 3.1. This problem exhibits a high degree of temporal locality,

which REC-MULT exploits effectively. As the figure shows, the average time used per inte-

ger multiplication in the recursive algorithm is almost constant, which for large matrices, is

less than 50% of the time used by the iterative variant. A similar study for Jacobi multipass

filters can be found in [39].

I believe that the ideal-cache model opens up many avenues for research in the theory

and practice of algorithm and cache design. With sufficient support from the academia

and industry, I hope that the ideal-cache model will soon be accepted as a bridging model
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for caches.
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