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Abstract

This study assesses navigation performance for rendezvous and close approach
applications where on-board navigation must be accomplished through the use of angles-only
measurements by developing various relative motion orbital trajectories. Chaser vehicle
maneuvers designed to enhance the estimator’s observability of the downrange distance to the
target are considered. The target vehicle is assumed to be non-maneuvering and in a near-circular
orbit. The modeled system includes representative scenarios from the Orbital Express mission.

Although a wide array of angle measurement sensors are available, their use in orbital
rendezvous is generally limited by the fact that they are unable to provide direct target ranging
information which leads to significant downrange error accumulation in the navigation filter.
These navigation problems inherent to angles-only measurements in a natural motion
environment are first qualitatively studied both analytically and through linear covariance
modeling. It is shown that different target-chaser geometries lead to different navigation
uncertainties in target downrange distance. The conclusions drawn from considering natural
motion geometries are used to study candidate maneuver-assisted trajectories. The results from
this study are used to select and combine the most promising maneuver-assisted trajectories for
more in-depth consideration as potential scenarios for the Orbital Express mission. These
selected trajectories are then analyzed in depth to determine the interdependency of range
observability using angles-only navigation with angular sensor quality, inertial measurement
accuracy, attitude determination accuracy, and trajectory design. Using the Orbital Express
mission as a baseline, maneuver-assisted trajectories for angles-only navigation are tested with
realistic error models to validate the rules of thumb created for improved angles-only navigation
even in the presence of biases, misalignments, and degraded sensors. The results show that using
well-chosen trajectories leads to navigation error uncertainties acceptable for rendezvous
applications when only angular measurements are available.
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Introduction

1 INTRODUCTION

The purpose of this study is to make a qualitative and quantitative assessment of angles-only
navigation performance for orbital rendezvous and close approach applications through the
development and description of relative motion trajectories. This opening chapter addresses the
background of the problem and the motivation for an angles-only approach. The following
sections will present the major assumptions of the study and an overview of the remaining

chapters.

1.1 PROBLEM BACKGROUND AND MOTIVATION

Although orbital rendezvous has been a well-studied problem since the Gemini era, it has
generally taken place with the benefit of a man-in-the-loop. A new generation of planned
missions such as the NASA Mars Sample Return Mission, ASTRO Orbital Express Project, and
the Air Force’s XSS-11 are driving a demand for the ability to autonomously capture, inspect, or
dock with on-orbit objects. Effective space rendezvous requires a navigation system to measure
the relative position between the chaser and target vehicle. Measurement techniques used in the
past include relative GPS (which requires a high degree of cooperation from the target spacecraft)
or radar and lidar systems that can place significant power and weight requirements on the chaser.
Additionally, the use of active sensing techniques is a non-stealthy approach in the case of a non-

cooperative target.

In light of these drawbacks, angles-only relative navigation is an attractive alternative if
adequate accuracy in all components of relative position can be achieved. Many simple sensors
are capable of providing line-of-sight direction, such as optical or infrared cameras and trackers.
Another attractive alternative is a radio direction finder, which only requires a simple radio
frequency (RF) tone generator on the target. This technique, which has the potential to work at
very long ranges as well as short distances, uses multiple antennas on the chaser to measure the
direction to the target using interferometry. Although these sensors all provide line-of-sight
information, the use of angles-only measurements creates inherent problems in the ability of the

navigation system to determine the range to the target.
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This thesis first seeks to study relative motion orbital trajectories that make the use of
angles-only navigation feasible. In addition to trajectory design, though, there are a number of
other factors that potentially affect the ability of a navigation system to accurately determine
range along the line-of-sight including inertial measurement unit (IMU) accuracy, attitude
determination accuracy, and the accuracy of the angular measurements themselves. Thus, as a
secondary objective, the degrading effects of these error sources is examined using several

selected trajectory designs and realistic error models based on the Orbital Express mission.

1.2 THESIS OVERVIEW

The ability to determine the distance along the line-of-sight is enhanced by a combination of
two techniques. First, the relative motion trajectory between the chaser and target is designed to
create changes in the line-of-sight, thereby enhancing the observability of all relative position
components. Second, the chaser executes maneuvers which are designed to further enhance the

observability of the position component along the line-of-sight.

Chapter 2 presents the linear covariance analysis tool used for this study and briefly covers
the basic navigation filtering equations. Chapter 3 qualitatively examines the navigation
problems inherent to angles-only measurements in natural motion orbital trajectories. A wide
range of natural motion trajectories are considered across different operating ranges from meters
to hundreds of kilometers. The well-known problem of unbounded downrange uncertainty
growth in the navigation filter due to a lack of range observability when using only angular
measurements is demonstrated. It is shown that changes in target-chaser relative geometry can
decrease the navigation uncertainty of the target’s downrange distance. A study of the evolution
of the navigation uncertainties as functions of time shows their dependence on the line-of-sight
motion associated with natural orbital mechanics, and motivates the use of maneuvers to sever
this dependence. Additional factors such as measurement availability, measurement noise levels,
a priori uncertainty values based on delivery conditions, and system biases are examined with

regard to their interdependence and influence on the angles-only navigation problem.

Chapter 4 makes use of the conclusions drawn from considering natural motion trajectories
to develop candidate maneuver-assisted trajectories. The maneuvers that create these trajectories
are shown, and the trajectories themselves are briefly compared with results from dual-control
literature. Based on performance analysis and a brief consideration of the effects of un-modeled

accelerations, the most promising trajectories are selected for more in-depth consideration. Also,
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several hybrid trajectories are designed that combine the best characteristics of various

approaches and create the basis for eventual mission testing.

Chapter 5 develops and tests several maneuver-assisted trajectories designed for the Orbital
Express mission environment. The analysis takes the chaser from its anticipated initial conditions
through final approach using realistic specifications for sensor models. These selected
trajectories are then explored to better understand and quantify the sensitivity of the navigation
filter solution to different maneuver-assisted trajectories and un-modeled accelerations, as well as
to IMU, attitude determination, and angular measurement errors. The results show that using
well-chosen maneuver-assisted trajectories leads to navigation error uncertainties acceptable for

rendezvous applications even when only angular measurements are available.

Chapter 6 presents conclusions drawn from the overall study and discusses potential topics

for future work.

1.3 ASSUMPTIONS

For this study, it is assumed that the target and chaser vehicles are in nearly circular orbits
since the vast majority of current potential rendezvous missions involve circular or near-circular
orbits. Specifically, the author’s work on the Mars Sample Return Mission and ASTRO Orbital
Express Mission involved maximum eccentricity values of 0.04. Similarly, the current analysis
considers only Low-Earth orbits (LEO) although the conclusions should easily extend to higher
altitude orbits just as easily as they would extend to modestly elliptical orbits. The planetary
constants for earth come from [16] although once again the extension of the results to other

planetary central bodies would have no adverse effects.

The other major assumption is that higher order gravity terms, including J2, are not
considered in the current analysis. The differential effects of such terms on target and chaser
vehicles in close proximity are generally negligible. When this is not the case, the higher order
terms should improve the results since they will introduce additional motion into the relative
motion trajectory. There are a number of additional assumptions throughout this work that will

be mentioned as they are made and used.
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2 ANALYSIS TOOLS

This chapter covers the development of the tools that will be employed for analysis of the
angles-only navigation problem. First, a general review of the equations governing Kalman
filtering is presented, and then the topic is expanded to briefly explain the principles behind linear
covariance (LINCOV) analysis. Finally, some of the more specific implementation issues as they

pertain to this problem are addressed.

2.1 KALMAN FILTER FORMULATION

The concept of Kalman filtering was first put forward by R.E. Kalman in 1960. The idea is
to create a recursive algorithm that is capable of processing measurements that are corrupted by
errors. Ideally, one would like to know the exact values of state variables over time. However, in
practice this is usually not possible, so the next best option is to estimate these values in a least
squares optimal fashion. The Kalman filter equations provide a methodology to do exactly that in

the case of linear systems.

Kalman filtering caught on quickly as it had immediate applications to guidance and
navigation problems, specifically within the Apollo space program. Since then, the original
algorithm, along with many variations, has been applied to numerous situations where it is
desirable to know the state of a dynamic system in the presence of uncertainties. Although there
are many sources available detailing the development of the Kalman Filter equations and their use
(see [11][13][14]{17][21]), this section will be a short review of the development of the equations
in their general form as presented by Vander Velde [29].

One of the most common ways to approaching a filtering application is by thinking of the
process in terms of the evolution of a continuous time system augmented by discrete time
measurements. For the case of a linear system driven by zero-mean white Gaussian noise the

state equation can be written

=AW +B@)A 2.1
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where X is the state vector, A(t) is the state dynamics matrix, B(t) is the noise dynamics matrix,

and 7 is the noise with zero-mean and strength N, or alternatively:

E[A(®)]=0

. 2.2)
Elnt)n(r) 1=No(t—7)

where EJ ] is the expectation operator and § is the Dirac delta function. The measurements occur

at discrete intervals in the form

7, =H x(t )+, (2.3)
where Hy is the measurement sensitivity matrix at time k and V, is an unbiased, finite variance
random variable with

E[#,]1=0

2.4
E[v,7 1=R, @5

In the presence of uncertainty, the actual value X is not known so an estimate X is formed with

the error defined as:

E=%-Xx (2.5)
Further the state covariance matrix is defined as:
P=E [ééT ] (2.6)

These definitions will be the basis for the filtering equations.

2.1.1 State and Covariance Propagation and Updating

It is useful to think of the filtering process as shown in Figure 2-1. A process is evolving
over time and at discrete points in time (t.;, ty) measurements are available which provide

information about the state. The state estimate and covariance are propagated in time from t;; to

ty and the instant before the measurement they have values )ick_ and P, respectively. After the

measurement at t, is incorporated, improved estimates Xx; and P, are formed.
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Figure 2-1: State and covariance propagation and updating

For the continuous time case we can define the propagation equations for the state and state

covariance as:
2.7

A

¥ =AX
P=AP+PA” +BNB’

where the time dependence notation has been dropped for simplicity.
However, from an implementation standpoint, since it is usually more convenient to

propagate these variables to discrete times, specifically times where measurements are available,
an alternate formulation is useful. Defining the evolution of the true state in discrete time as:
2.8)

Xy = P X + W,
with @ being the state transition matrix satisfying the differential equation
&(,7) = AD(t,7) with ®(1,_,,1,,)=1 (2.9)

and w, being a zero-mean discrete white noise process with covariance Q or

W, = + ®(1,,,,7)B(7)N(7)dr
b (2.10)

E[ ] |= {oQk i‘#k

The state and covariance propagation equations become
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2o o,
Xen = DX,

i o (2.1D
Pk+l = (DkPk q)k +Qk

where

s

Q, =E[ w3 |= [ ®(1,,,,7)B(r)N(7)B(2) ®(t,,,,7)" dr (2.12)

With equation (2.11) providing a method to propagate the state estimate and state
covariance, the other half of the problem is to incorporate new measurements in order to improve
the state estimate. After a measurement is taken according to equation (2.3), the best estimate

will be a combination of the existing estimate and the new information or:
x, =x, +K, (Z, -H,X,) (2.13)

where K is, at this point, an undefined gain. Combining equations (2.13) with (2.5) and (2.6) the

state covariance update equation becomes:
P/ =(I-KH,)P; (I-K,H,) +K,R K’ (2.14)

The optimum estimate is defined to be the one which minimizes the trace of the covariance

matrix. Assigning this desire a cost function J =¢r(P) the optimum gain Ky will be such that

)
K,

= where 1r is the trace operator. The resulting optimum gain is termed the Kalman gain

and 1s written:
K, =PH! (H,P{H] +R,)" (2.15)

Equations (2.11) and (2.13)-(2.15) are typically called the filtering equations and are shown

in schematic form in Figure 2-2.
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Figure 2-2: Filtering equations flow diagram

2.1.2 Linearization

Although the Kalman filter was originally devised for linear systems, it has seen extensive
use in non-linear situations. Modifications to its basic form are utilized in order to apply the same
methodology to a non-linear problem. As explained in [11] one of two methods is generally used.
The first possibility is the development of an extended Kalman filter where the reference
trajectory is updated with the filter estimate forming a closed loop system. The second option,
and the one used in this work, is the linearized Kalman filter. In this case, a nominal state
trajectory is chosen independent of the measurements and filter estimates, and then the actual
trajectory is linearized about the nominal one. In addition, the angle measurements are non-linear
functions of the state variables and therefore must be linearized about the same nominal

trajectory.
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The first step is to handle the non-linear dynamics of the problem. The linearization process

proceeds as follows. The actual state trajectory, X, is represented as the nominal value, %, plus

some corrective term, OX as in:

I=X% +0% (2.16)

If the dynamics are non-linear then equation (2.1) becomes

X=f(X)+7 (2.17)

where fis a non-linear operator. Substituting equation (2.16) this is equivalent to
i*+§i:j(x*+5x)+ﬁ (2.18)

This non-linear equation can be linearized about the reference trajectory so that

SX=Ad%+i
where A = a—{ @19
X |
In discrete time, the state transition matrix in
8% =0(ten.1,)0 %, (2.20)

must satisfy the same conditions as in equation (2.9) and can then be approximated by a 4™ order

Taylor series expansion as

2 3 4
(bt ) =™ =T+ AAT+ ALy A3 AL | p+ AT

21 31 4! 221)

As shown in [14], the fourth order approximation introduces virtually zero error for time steps up

to sixty seconds over the course of one orbit.

For orbital motion, the non-linear dynamics represented by f can be simply written in terms
of position, velocity, and acceleration as
R=V
. . —uR 222
Vzagrav(R):—ft—3 ( )
A
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Recall that for this study, J2 effects are not being considered so the acceleration is simply
—~12
inversely proportional to IRl and proportional to the gravitational parameter, [l. A point-mass

gravity model is acceptable since the higher order terms have a negligible effect on the relative
motion. However, this formulation can be readily extended for a higher order gravity model if
desired. Combining equation (2.22) into one state, X, gives a form identical to equation (2.20)

where the state transition matrix is calculated according to equation (2.21) and

0 1
A=l9 (agm) o (2.23)
oR "

X

This transition matrix in equation (2.21) is used to propagate the state and its covariance.
Although the results are nearly identical, the interested reader is directed to [14] for the more

detailed formulation that is used in the actual program implementation.

Measurements

Since the measurements are also non-linear functions of the state variables, equation (2.3)

becomes:
Z=h(x"+6%)+v (2.24)

where A is a non-linear transformation between the state and measurement and Vis the

measurement noise as before. The time dependence has been omitted for notational ease. If a first

order Taylor expansion is performed about %" then the measurement can be expressed as [11]:

z2=hE)+ gg OX+ higher order terms + Vv (2.25)
X =5
where
(Oh Ok Oh |
ox, ox,  Ox,
oh, ok,
a—l_' =lox, 7 ox (2.26)
ox
an, an,
o o, |
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and the H matrix is then found by evaluating equation (2.26) along the nominal trajectory, X (¢),

or
dh
H=— (2.27)
0x |-
The evaluation of equation (2.27) is not a simple task so section 2.1.3 will deal with this topic
extensively.
2.13 Derivation of Measurement Sensitivity Matrix

The measurement sensitivity matrix, H, must be formed using equation (2.27). In order to
get to this point, though, it will be necessary to write the measurements as functions of the state

variables. This in itself is a non-trivial task and the preliminary steps are laid out here.

In the present problem, the measurements of azimuth, o and elevation, e, are taken from the
chaser vehicle as shown in Figure 2-3. Since the current study uses the chaser and target inertial
states to generate relative information, taking meaningful angular measurements implies that the
chaser vehicle has a sensor, such as a star tracker, to determine its inertial orientation.

z
A

Chaser

Figure 2-3: Angular measurements from chaser to target

The line-of-sight unit vector in the frame of the angular measurement sensor is written:

cosecosa

i* =|cosesina (2.28)

LOS

sine
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so that the target position vector is simply 7' = rf;s where r =177 | is the range to the target. If

the effects of potential measurement biases on the azimuth and elevation are also included, then

the new representation of relative range along the line-of-sight would be:

cos(e—b,)cos(a—b,) ,
cos(e-b,)sin(a—h,) (2.29)
sin(e—b,)

—s _ =
rrel_r

rel

25
'1os

where b, and b, are the measurement biases. Equivalently, the position vector in the sensor

coordinate frame can be written by transforming the inertial relative range vector through the

following:
Fa=Telen,Thei (Fo) (2.30)

where T, is the coordinate transformation matrix to take a vector expressed in the Y frame into

its equivalent representation in the X frame. In equation (2.30), T, _,is the transformation from
the true inertial frame to the measured inertial frame. The difference between the two being due

to an inertial attitude knowledge error, ©' produced by the star tracker, or other IMU. 7, _, is the

transformation from the measured ipertial frame to the spacecraft body frame, andT,_,is the
transformation from the spacecraft body frame to the angular measurement sensor frame. This
last transformation may include a body-fixed static alignment error, represented by £°, between

the actual sensor frame and the nominal sensor frame. Finally, 7., =R/ —R! where

rei

RI and fx’zl are the inertial position vectors for the target and chaser respectively.

The transformation matrices can also be written in an alternate form using the rotation

vector they are transforming through. For example, assuming that the sensor frame is nearly

aligned with the body frame, T,, , can equivalently be written as (I - E(g ) This notation comes

from a shorthand version of the cross-product operator where in general
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AxB=-BxA=AB=-B,A=(AB,-AB,)%+(AB —~AB,)5+(AB,-AB)?

0 -4, A 0 -B, B, 2.31)
where Ag =| A, 0 -A By =| B, 0 -B,
-A, A, 0 -B, B, 0

This reformulation of the transformation matrix is possible since the direction cosine matrix

for rotations through small angles about three axes is given by

1 A -A

T=-4 1 A (2.32)

Note that equation (2.32) is identical to / — Agand therefore, the relative position vector in the

sensor frame can be written in yet a third form as

-~

1o (2.33)

bel, Vel
%/—/

Ty ffa——

=181 (1-04)
-5)

This formulation is useful because it explicitly includes all of the filter states which will allow the
partial derivatives of the measurements to be calculated. For this study, the complete set of filter
states are

R,V RV b,b,, £, 0 (2.34)

e Yar

which are the inertial position and velocity vectors of the target and chaser respectively, the
angular measurement biases, the body-fixed static alignment bias, and the inertial attitude
knowledge error. Now using a technique from Battin [3] the partial derivative of the relative

position vector in the sensor frame with respect to itself gives
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a Trel a;;zl a ;-;'el ar;'el ae arrel aa
= = +
a rel rel ae arre’l aa arrel
— s a Fr‘el - Pb aa
“ a 7 g ml rel rel a_;:l
—sin{e—b
_ (e, Jeos(@—b,) (2.35)
where P’ =| —sin(e—b, )sin )
cos(e—b, )

—sin(a—b, )cos(e—b,)
P, =| cos(ax—b,)cos(e—b,)
0

A key result of this technique is that the vector coefficients, fLSOS,Izb,P; are actually

o\ ~\T 4 _\T

orthogonal unit vectors so that (PaﬁJ ) P’ = (Peb) o’ = (Rf ) e;’ =0 which will be a
LOS LOS

useful feature when trying to solve for partial derivatives with respect to filter states. Also note

that

(ﬁb)T o P! =cos*(e—b,)

o

(2.36)
=p T =b
(F) R =1

With these preliminaries aside, it is possible to finally begin solving for the partial
derivatives of the azimuth and elevation measurements with respect to different states in the
navigation filter. These partials are evaluated along the nominal reference trajectory as in
equation (2.26) to form the measurement sensitivity matrix, H. The states of interest are the
chaser and target inertial position and velocity vectors, the static misalignment of the angles-only

sensor in the chaser body frame, and the inertial attitude error produced by measurement error of

a star tracker, or equivalent sensor.

Partials with Respect to Target and Chaser Position

To begin with, the measurement partial derivatives with respect to the position vector of the

target are determined by first calculating
o7 (T, T, (R -RL))

= = - =T
oR/ oR/ seb

T,

be,, TI,,, I

2.37)
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Then using equation (2.29) and the technique in equation (2.35), it also can be found that

oF;,  OF), O|f,| OF de +8rre, da
OR' 9lr,| OR'  de OR Qe OR
- 2.38)
{s d rrel Pb a _ _‘b_a__q_
L0S aR rel aR] rel| " o aR][

Now solving for the partial of azimuth with respect to the target position state by setting the right

= \T
hand sides of equations (2.37) and (2.38) equal and multiplying through by (P; ) to produce

alr

rel

+ir

rel

() o1

a s R (Pb) oP ki —(P) T 0T

o ] seb 1,1
OR|

(B) o B

[21

rel

rel

0
cos ( )aai :( ) Ts(—~bTb<~—1 TI 1 (239)

da (P) T LT, _(Pf)r(l—"’)n(_, (1-05)
OR! cos’(e~b,) cos’(e—b,)

[4

rel rel

Evaluating this partial along a nominal error free trajectory, X, produces

dx | ( _of )T T;J(—I
OR/|.. | a|cos? (e

T
Jdo _
oR! -

The process is almost identical for the partial with respect to the chaser position state except

that

(2.40)

(7 )TT T 5
a be1I - TI(—bP

cos’(e) 7. |cos’(e)

rel rel

afrj, a(Tse—bTIx—-I TI I (R RI ))

1 seblver, tr, 1
OR] oR; T e
so that the resulting partial is only different by a negative sign
! 56
oo Ty (2.42)
oR; |.. |7..i|cos® () .

The next step is to compute the partial derivative of the elevation measurement with respect

to the target and chaser position vectors. The steps are identical to those used for the azimuth
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calculations. First set the right hand sides of equations (2.37) and (2.38) equal and multiply

through by (Izb )T

T 2 OJF, T =, Oe “\T = 0
BY) ot It 7 |(B) o B = +[iul(P) o P =5 =P T.,T,_,T,
( ) LOS aRlI ( ) aRlI ( ) a R}I ] beI 1«1
de T
Fol—==(P") T._,T,., T, _ (2.43)
’aR{ (e\) seblber, 1,1
o \T —\T _ —
ae _ (Pel ) ]1s<—b7;7<~1,,,T1,,,<—1 _ (Peb) (1 _Eé)Tme (I —@{E)
aRII ;:rel ;:rel
Evaluating along the nominal trajectory gives the desired forms:
T ~\T r _
o | ) [(B) Tei | 1P
aRII i ?;'el Frel
(2.44)
g b
ae —_ _Tu—bPe
aR;. 3z Frell

Partials with Respect to Velocity and Angular Measurement Biases

The partials of the angle measurements with respect to the target and chaser velocity are
simply zero since there is no explicit functional dependence between the measurements and

velocity.

de  de da da -
—=—=——=—-—=0 2.45
v vl 9V oV @4

The partials with respect to the measurement biases themselves are just equal to unity since

the biases are additive terms.

O _oa_,

ob, ob,

P . (2.46)
ob, Ob,
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Partials with Respect to Static Misalignment

The next set of measurement partial derivatives are for the angular measurements with

respect to the static misalignment bias, £°. The steps are again identical to those used for the

partials with respect to position. Starting with

., O|F
2: = 'LSOS a;ml Fet P %4‘ Frel P %
(2.47)
a((l ) bel,, (I ©; ) rel lLOS )
- JE*
The final term of equation (2.47) is handled using
al:Tbe—l,,, (I - @{8) T {LIOS - %Twm (I - éé@) e leos]
0’
= 52_1,[(7&—1,,, (1 - @(’9) Ve ons )® gb} (2.48)

Tre

:|:Tb<—1,,, (I_C:)éa)

27
l }
1'eos |g

Setting this result equal to the middle term of equation (2.47) and multiplying through by

(P(f )T gives

Jda :(P;)T[ bel, (

b T cos ( b)

lLOS ]

Ty

(2.49)

rel

Evaluating along the nominal trajectory, and using the cross-product identities in equation (2.31)

gives

aa’l _ _[Tlu—l iZos ]® (Pof \)T _ ~(’beos )® (13; )T
A cos® (&) ~ cos¥(e)

oa | ’ _Pxil
08" |, cos’(e)

The partial of elevation with respect to static misalignment follows very much in the same

(2.50)

manner. Starting again with equation (2.47) and this time multiplying through by PeT gives

38



Analysis Tools

ai _ (peb )T [YIN—I,,, (IA* (:)ga) el leos ]® 251)
dé Tel
Then finally
2] (i), ()
o (2.52)
[% . J = Peb ><{Lbos

Partials with Respect to Inertial Attitude Error

The final set of partial derivatives then are for the measurements with respect to the inertial

attitude measurement error, ©’. The steps are very similar to those used for the previous partials

with respect to the static misalignment. Starting with

O _po Ml o 1w 00 1 o 0
a(_‘_‘)l " Clos a(:)l relj e aél retl e a@l (2.53)
_a((1~g‘g)n<—1,"(1_@l®)’7rel fL,OS ) .
N 00’
Where the last term of equation (2.53) becomes
O (1-88)Tr, Fulilos+ (1-82) Ty, (=00 )Fulidos |
00’
A=) (O lilr] O[T (ulits) ]
96! 00’
= (I - gg)ﬂu—zm |: T ;IfOS ]®
so that multiplying througil by (éf )T yields
afg _ (13,: )T (I - ES)EHM [ ;:rel {LIOS ]® (2.55)
00’ 7y|cos® (e-b,)

Evaluating along the nominal trajectory gives
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N _ (2.56)
_ag_ i B ”[lws ]@) T, F B P! XfLIOS
00’ | cos’(e) cos’(e)

=, \T
The partial for the elevation measurement comes from multiplying (Peb) through equation

(2.53) and evaluating along the nominal trajectory for

8 Te— (ﬁeb)rli?re {I ] a = \T
a@e' lx _ Tbet - 11°Los |g :_[,ZOS]®(1)€b) T, (2.57)
so finally
de | Y 4 .
£8@j’ ] = P Xy 2.58)

The entire H matrix can finally be constructed by combining equations (2.27), (2.40), (2.42),
(2.44), (2.45), (2.46), (2.50), (2.52), (2.56), and (2.58) to yield

[ 9e de de de de Ode de de
- aR{ BRZ' 8‘71' 8\72' ob, 0b, 0" 00’
| 3da 9a da da da da da da
(OR OR, V' 9V, b, b, o0& 0O .
_ I_:‘;I Pal — T
;:rel ;‘;el COSz(e)
Pl f)l
B Frel' B iel COSZ (e)
0 0
0l o 0
1 0
0 1
A PP xi®
I)ebxllf)os ~ 2 o
cos (¢)
18
P X;L’os B, Xy (2.59)
4 2
i cos"(e) .
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2.2 LINEAR COVARIANCE ANALYSIS

When it comes to simulation of a dynamic system there are two basic approaches that
provide insight to the designer. The first is a Monte Carlo study. In this case, multiple samples
of a stochastic process are generated and operated upon, and the results of these multiple samples
are characterized statistically. The statistics allow the designer to see how factors such as
measurement models, filter design, or initial conditions affect the actual state history. Although
fundamentally deterministic, the drawback to this approach is that generating an adequate number
of samples to make the statistical results meaningful can be very time consuming for complex

systems.

The alternative approach is the use of a technique called linear covariance (LINCOV)
analysis. The simplest way to conceptualize LINCOV is to consider it in terms of Monte Carlo
analysis. The end result of the Monte Carlo analysis was a statistical representation of the errors
on the states of interest. LINCOV takes the approach of developing this statistical representation
directly, without having to use large numbers of actual samples. Each sample of a Monte Carlo
run uses random number generators to introduce stochastic effects. However, these random
numbers can be described by a statistical distribution just as well. The idea then is that LINCOV
uses a single run where all the uncertainties are described statistically and then the statistics of the
state error are propagated in time. In the end, both methods generate the same product: a
statistical representation of the state errors of interest. Although LINCOV is a considerably faster
method of testing designs, it has the drawback of requiring both linearized models and Gaussian
distributions. Therefore, the results usually require verification using deterministic methods. The
details of LINCOV will now be examined. This section, along with section 2.1.3 is based largely
on a presentation given by Dr. David Geller {17] of the techniques that he used to develop a
baseline LINCOV program for the NASA/JPL Mars Sample Return project which was modified

for the current study by the author.

2.2.1 General Explanation and Setup

Fortunately, the heart of the LINCOV method has already been derived in the form of the
Kalman filter equations in section 2.1.1. These equations are what allow LINCOV to propagate
the statistics of a dynamic process in time. In order to fully develop the process some new

definitions are required. First, a truth model is required that includes both states and
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measurements. These are similar to equations (2.1)-(2.4), and (2.8), except this time the models

are non-linear and the ‘T’ subscript is added to represent the truth model

X=f(%)+w W~ N©0,Q.8(t-1))
+

- N - _ (2.60)
Zr =h (% )4V ¥ ~N(O,R,)

where, although a slight abuse of notation, ~N(a,b) represents a normal distribution with mean a

and covariance b.

Next, a reference trajectory, or nominal state history, is defined where the * superscript

refers to the reference values

X = £ (%) .6h
Zr = h (%))

and the initial condition for the truth state is
X)) =X (1) ~ N, ,Pp) (2.62)

The next step is to linearize the non-linear state dynamics and measurements about this
nominal trajectory as shown in sections 2.1.2 and 2.1.3. It is assumed that the linearized

equations have the form

8%, = (. 1,)0%, +i  A~N@©0,Q;) 5% ~N(O,P,)

2.63
87z, =H,; 6% +V  7~N(O,R,) (2639

At this point, the concepts of section 2.1.1 are used and a set of estimated states are
calculated using the filtering equations. Keep in mind that in many cases, the number of
estimated states may not be as large as the number of true states, and the filter models may not be
the same as the truth models. This is especially true when the truth model includes numerous
higher order terms. Using Figure 2-2 and the ‘F’ subscript to represent the filter states, the

filtering estimation equations of the linearized system become
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5’%“1 = ¢F (lkﬂ’tk )§§k

state & covariance propagation r
PF,“, = ¢FPFk o +Q;
5)%;:5§;+Kk((52n—Hﬂ§):c;) (2.64)

state & covariance update { P* (I—K,(HB)P (I—KkHFk )T+KkRFkKZ

F Fi

K =P H (H, P H +R, )

In order to generate truth and filtering data simultaneously, an augmented system is

constructed. First, the augmented state vector is defined

_ ox
X, :{ XT} (2.65)
dx

where again the size of the truth and estimated states are not necessarily the same. The
covariance matrix for the augmented state, P,, is constructed by calculating E [}? A)? g] The

augmented state propagation equation becomes

55571“ _ ¢T Oj| §iTk +[ﬁ:|
8% ) LO ¢l 6% | LO

~ (2.66)
- - n
X, =®X, +
AIml Ak l:ojl
and the augmented state covariance propagation equation is
P, =®P, &' +Q, (2.67)
where
0 0
b= o Q,= Q (2.68)
0 ¢ 0 0
The augmented state update equation is
556: I 0 5)?1‘ 0
. 1= R v
st | KM, I-KHp [ s3-1 K, (2.69)

X;k =Ak)?;k +K, ¥
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and the augmented state covariance update equation becomes
P =AP A K RK (2.70)

where

A I 0 K 0
‘K H, I-KH, A K,

Equations (2.67) and (2.70) are all that is needed to capture all of the statistics for a linear
covariance analysis. Rather than having to run multiple samples of a Monte Carlo analysis, the

time history of P, is recorded and then the performance can be easily evaluated.

Note that the (), matrix does not contain a (Jr term in equation (2.68) as one might expect it
should from looking at the covariance propagation expression in equation (2.64). This subtlety of
LINCOV merits some comment. Recall that the covariance of the true state which represents

trajectory dispersions is
P, =E [532, (8%, )T] .71)
so that it propagates in time according to

P, =6 P ¢ +Q, (2.72)

However, the covariance of the state estimate is
af on\T
P, = E[Jx(é‘x) } 2.73)
which propagates in time according to

P, =¢:P ¢p (2.74)

The covariance propagation expression that appears in equation (2.64) includes the Qf term solely
for calculation of the Kalman gain. However, the actual covariance associated with the estimated

state is simply given by equation (2.74).

In many cases, covariance analysis is used to evaluate the effectiveness of a filter design,
especially when the filter is of lower order than the truth model. In that situation, one could
compare the values of Pg, which is the filter’s guess as to the covariance of the state estimate, to

the actual state error covariance which is

44



Analysis Tools

o |
P, =[-1 I]PAl: . } (2.75)

This would quickly identify whether or not the filter design was ‘good’ in the sense that it
gives an accurate estimate of the state errors. Comparing the filter estimates of the error to the

actual errors would yield a variation of one of the three cases shown in Figuré 2-4 [17}].
A

Error

Filter overestimating errors

Error - L
Filter underestimating errors

Filter 30 estimate

Error
Properly tuned filter

time

Figure 2-4: Filter design using LINCOV analysis
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In this study, however, the only concern is how trajectories and maneuvers affect downrange
observability when only angular measurements are used. In light of this, trajectory dispersions
are not considered since the focus is only on the navigation performance. Additionally, the filter
models and states are identical to the truth model and states because filter tuning is not being
studied here. Therefore, the quantity of key concern will be Py, the filter covariance. The
presence or lack of range observability in the navigation filter will be apparent by simply

examining the behavior of the downrange position uncertainty.

2.2.2 LINCOY Models

One of the major assumptions behind LINCOV analysis is the fact that linearized models are
available to represent the system error sources in addition to the previously linearized dynamics
and measurements. Unfortunately, real-world interactions are rarely, if ever, linear. This section
briefly covers the development of some of the models that have not already been addressed (see

sections 2.1.2 and 2.1.3) that are used in LINCOV.

Un-modeled Accelerations

Un-modeled acceleration, or process noise as it is often referred to, represents the noise in
the state dynamics. The amount of process noise typically depends on the fidelity of the model
for the equations of motion. The lower the fidelity of the dynamics model is, the larger the
process noise should be to ensure that the covariance values stay large enough to capture the state
uncertainties. For example, typical effects that may be un-modeled for low-earth orbit (LEO)
vehicles are drag, higher-order gravity terms, thermal cycling, solar radiation pressure, un-
coupled jet firings, or spacecraft venting. Continuing with the simple model of just position and
velocity from equations (2.20) and (2.22), and assuming constant disturbance accelerations over

small time steps, AT, the un-modeled accelerations enter into the state through

AT?
_ |1 0 |
8 Xy = (Lt )0 X+ 2 g, (2.76)
0 IAT

where € is the constant acceleration term with units of m/s* and & ~ N(O, 0'52 ). Assuming the

acceleration disturbances are uncorrelated from one time step to another, the state noise

covariance is then
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4 A 3
[ATY AT
Q=o0; 4 2 Q.77
AT’ 5
I IAT

This process noise covariance matrix, Q, is used in the covariance propagation equation (2.67).

System Biases and First Order Markov Processes

More often than not, system biases appear in real problems. However, these systems rarely
have a truly constant bias, but rather there are biases that are functions of some time dependent
condition [14]{17]. In orbital applications, the time dependence may be related to the orbital
period for example. These time-varying biases (no oxymoron intended) can be incorporated into

the state model description as first order Markov processes:

-AT, ~2AT,
o, =€ Aak+cra I-e An (2.78)

where 77 ~ N(0,1) & ¢, ~ N(0,072) so that
P, =E|d |= e_m%e,k +02 (1 - e_ZA%) (2.79)

implying that the steady state variance approaches 0'§ in the absence of measurements.

Although equations (2.78) and (2.79) are scalar equations, the same formulations can be applied
to a vector valued random variable, @ . The value of the time constant, 7, is usually chosen based

on empirical experience. This same formulation can also be used to model a truly constant bias

(T = 00) as well as broadband noise (T << AT).

Maneuver Measurement Errors

A key piece of information used for navigation is the direction and magnitude of any
maneuvers, AV, executed. However, there is always some error in how well this can be

measured. The AV measurement errors are defined here as

AV, =k AV, i + AV,

measurement err nominal quantization

(2.80)

47



In this model, k, ~ N (0,0'kz! )represents a scale factor error which creates an error in the

magnitude of the measurement of the maneuver. The quantization term Aunmim,m ~N (0, o ; )
represents the error associated with mechanized devices such as accelerometers that have some
minimum threshold value that can be detected. There are no bias terms in the model since these

are easily calibrated out in mission practice by measuring the 0-g environment.

Each time a maneuver takes place, the true velocity vector of the chaser is altered.
Cormrespondingly, the covariance associated with that velocity should be adjusted to take into
account that there is new uncertainty entering the system. This is modeled by altering the 3x3

partition of the covariance matrix corresponding to chaser velocity according to

P’ =P +0.1,,+0; AV, AV,

nominal nominal

(2.81)

Vehaser Vehaser

where the - and + superscripts refer to the instant immediately before and after the maneuver

respectively.

2.2.3 Current Configuration

For the current study, actually running the LINCOV tool consists of two distinct steps. First,
a reference trajectory must be generated. Besides providing a time history of the actual states in
equation (2.34), the reference trajectory is used to calculate the state transition matrix used for
propagating the covariance matrix in time. Creating a particular reference trajectory is a matter of
selecting the initial orbital elements of both the target and chaser to induce the desired relative
motion. Additionally, maneuvers can be executed at fixed times to alter the natural motion.

These concepts will be covered in more detail in Chapters 3 and 4.

With a reference trajectory defined, the LINCOV parameters need to be specified in order to
perform a covariance analysis about the given trajectory. Initialization in the current version
includes setting the a priori navigation uncertainty values for the target and chaser vehicles, and
defining the variance values and time constants of error models such as angle measurements, AV
measurement, sensor alignment errors, attitude determination errors, and un-modeled
acceleration. Since the target and chaser vehicle states are propagated in inertial space, the un-
modeled acceleration term does not have to account for errors resulting from use of the C-W
relative motion equations. Finally, an epoch date is chosen. The actual date is not relevant to the
success of angles-only navigation, but it serves to provide a realistic model of the sun’s position

relative to the target and chaser vehicles. This sun position is used to determine lighting
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conditions on the vehicles for cases when measurement availability is limited to periods of solar

illumination and is further discussed in sections 3.4.2 and 5.2.

Each LINCOV run provides a variety of information relating to the navigation filter’s
estimation of state uncertainty. The figure that will be of primary concem in this study is the
uncertainty in the relative downrange position component. For the interested reader, the tool also
calculates time histories of the root sum square (RSS) inertial and relative position and velocity
uncertainties, the position and velocity component uncertainties, the relative frame error
ellipsoids as well as the altitude vs. downrange correlation coefficients, semi-major axis

uncertainty, bias value uncertainties, and the inertial observability matrix.
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3 NATURAL MOTION RANGE

OBSERVABILITY

The first step towards addressing the potential of angles-only navigation is to better
understand both its limitations and possibilities. It is generally well-known that relative
navigation without any range information is problematic in situations where the chaser is not
moving relative to the target. This situation leads to unbounded growth in downrange uncertainty
because the navigation filter has no range observability. However, the problem of generating
range observability is not as well understood when there are changes in the relative target-chaser
geometry due to natural orbital motion. The true three-dimensional freedom of the space
environment motivates the question of whether or not well-chosen orbital trajectories alone can

indirectly provide range observability through angular measurements.

3.1 BACKGROUND

The term observability is one that can potentially carry various meanings. In filtering and
control applications, observability typically means that the value of a state variable can be
determined to some level of accuracy. In a strict sense, and with no sensor errors, the estimation
uncertainty of an observable state would approach zero asymptotically. For the purposes of this
study, however, the concept of observability is used in a looser sense. Specifically, when a
trajectory is said to be more observable than another, this simply means that the filter is having
more success estimating the downrange state. It does not necessarily mean that the downrange

estimate will asymptotically approach its exact value.

From an intuitive standpoint, it would seem that using only angle measurements to
determine the position of a target will lead to an error, or uncertainty, ellipse with a cigar-like

shape due to the range ambiguity as shown in Figure 3-1
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Angle Accuracy

After measurements

Remaining
uncertainty

Initial a priori uncertainty

Figure 3-1: Uncertainty with angular measurements and no relative geometry

With no sensor available to help eliminate this ambiguity, the angles-only navigation
approach seems doomed to failure. However, following the same line of intuitive logic, Figure
3-2 shows how the uncertainty of the range value could potentially be reduced through relative

motion between the target and chaser vehicles.

Measurements with Geometry

Figure 3-2: Uncertainty with angular measurements and use of relative geometry

A qualitative evaluation of natural motion trajectories is helpful for a variety of reasons.
First, the simplest cases provide validation that the LINCOV tool is working correctly. Secondly,
not all mission phases require a high level of precision navigation. In these cases, the possibility
of trajectories that generate improved range observability without the use of any maneuvers is
worth study. Most importantly, the analysis of natural motion trajectories generates an
appreciation of characteristics that lead to improved range observability. These characteristics, or
rules of thumb, can be exploited when designing trajectories that have the benefit of using

maneuvers to improve the navigation uncertainties.

Since there are a wide variety of orbital trajectories that could be considered, the possibilities

are grouped by their relative motion characteristics as well as by the range regime they operate
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across. In general, the chaser vehicle can be either closing on the target or station-keeping around
some fixed relative offset point. Three different range regimes are defined, generally based on
the initial separation distance between the target and chaser: 1) long range (10-100km) 2) short

range (1-10km) and 3) proximity operations, or Prox Ops (<lkm).

3.2 REFERENCE TRAJECTORY DEVELOPMENT

As explained in section 2.2 using LINCOV as an analysis tool requires a nominal reference
trajectory. The number of relative natural motion trajectories that can result from placing two
vehicles in different orbits is potentially limitless. However, from the standpoint of mission
practicality as well as insuring the validity of analysis tools, a number of limitations are placed on

the possible reference trajectorics.

3.2.1 Constraints

The first constraint levied on the reference trajectories is that the target is in a circular orbit
and the chaser is itself in a nearly circular orbit. The reason for this is that when both vehicles are
in nearly circular orbits and the separation distance between them is small, the relative motion can

be described by the Clohessy-Wilthshire (C-W) equations, also called Hill’s equations as [28]:

i+2wz=f,
i-2wx-30'z = f, (3.1)
y+o'y=f,

where x, yand z are the components of the target in the positive local vertical horizontal local
vertical (LVLH) frame as shown in Figure 3-3. The specific force, f, represents non-

o . . . 27 .
gravitational accelerations, and @ is the orbital rate, @ = . The C-W equations

Orbital Period

represent a linear, although coupled, description of chaser vehicle motion.
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Figure 3-3: Target-centered LVLH coordinate frame

The next restriction on the trajectories of the chaser and target is an upper limit on the
difference in their inclinations, and thereby the relative cross-track motion. In practice, cross-
track motion could also be generated by a difference in the ascending node of the two orbits, but
for this study only inclination differences are used. This cross-track motion constraint is based on
the mission reality of the high fuel cost associated with performing plane change maneuvers.
Even if orthogonal orbital planes proved to be the most useful from a range observability
standpoint, it is very unlikely that any LEO spacecraft would have the capability to transfer into
the target orbit to affect a rendezvous with acceptable closing velocity. Assuming that a simple
plane change maneuver from one circular orbit to another at a different inclination through the

angle 0 is executed, then according to Sellers [22], the AV required will be
. [ ©
AV =2V, . sm(;] (3.2)

In order to keep the AV less than 100 m/s, the maximum plane change angle to consider
would be (using the initial velocity associated with a 500km circular orbit, 7.6km/sec) less than 1

degree and would be less than 7.5° to keep the AV below 1km/sec.
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3.2.2 Shifted Altitude Metric

Before actually looking at relative trajectories, the shifted altitude metric merits a brief
explanation. This measure was first proposed as a figure of merit by Stan Shepperd of The
Draper Laboratory regarding elliptic orbit rendezvous. In the current study, it is the method used
only in plotting trajectories that allows an easier visualization of the relative motion. For small
chaser-target separations and nearly circular orbits, the difference between this method and using
the LVLH frame is very small. The method is presented simply for completeness. Figure 3-4
shows exactly what the shifted altitude value refers to. The actual target is propagated backwards
in time until its velocity vector is parallel to the chaser velocity vector. The length of the normal
vector intersecting both the chaser and target velocity vectors is then termed the relative altitude

between the vehicles.

Y fictitious

{p Fictitious
arget

¥ sctitions

Figure 3-4: Shifted altitude method
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3.2.3 Station-keeping

The two potential types of station-keeping orbits are co-circular orbits and football type
orbits. Both of these can then be modified with the addition of out-of-plane, or cross-track,
motion. The co-circular orbit is the simplest possible relative trajectory. Inertially, both the
target and chaser are in identical orbits, and in the LVLH target centered frame the chaser is
motionless. In terms of orbital elements, the chaser and target are identical except for the true
anomaly, v, of the chaser being chosen to give the desired downrange separation between the

orbits.

An example of a co-circular orbit with cross-track motion is shown in the relative motion
plot in Figure 3-5. The relative motion plots are broken into three views from different
perspectives which are the side/in-plane profile (altitude vs. downrange), a front view (altitude vs.
cross-track), and a top view (cross-track vs. downrange). In addition, the downrange axis is
opposite of its actual value so that the plots are easier to read (e.g. 10km downrange in the plot
actually corresponds to the chaser being 10km behind the target). In this particular case, the
chaser is 10km away from the target and is oscillating 10km out-of-plane. Note that the

characteristic lack of motion for a co-circular orbit is clear in the in-plane plot.
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Figure 3-5: Co-circular station-keeping 10km away with 10km of cross-track motion

The second type of station-keeping is the football which gets its name because the shape of
the relative motion trajectory literally looks like a football. It is actually an ellipse where the
relative ellipse semi-minor axis lies along the relative altitude direction and the relative ellipse
semi-major axis, which is exactly twice the value of semi-minor axis, lies along the downrange
direction. This two by one shape is a result of the relative motion orbital mechanics in (3.1).
From an inertial point of view, the football orbit is created by introducing eccentricity, e, in the

chaser orbit according to:

_ desired vertical motion

chaser

3.3)

atarget

where a is the semi-major axis. Figure 3-6 shows a football which is centered 100m away from
the target and has 10m of vertical motion. Note that 10m of vertical motion refers to the altitude
going between —10m and +10m. This case also has 10m of cross-track oscillation which can be

added to any given orbit by modifying the chaser’s orbital inclination, i, according to:
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. . desired crosstrack motion
i =|i

chaser target -

a(arget

ra

3.4

Adding cross-track motion results in a relative ellipsoid shape that does not necessarily have a

two by one semi-major to semi-minor axis ratio, although the elliptical in-plane projection of the

ellipsoid will still retain this characteristic.
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Figure 3-6: Football station-keeping 100m away, 10m vertical motion with 10m of

cross-track motion

115 120

Another potential variation on the station-keeping football is the case where the target is

actually enclosed by the football itself. The football still maintains its characteristic shape as in

Figure 3-7. This shows the chaser in a football orbit with 1km of vertical motion centered on the

target.
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Figure 3-7: Football station-keeping centered on target, 1km vertical motion

The co-circular and football orbits were used as the basis for all of the natural motion

station-keeping trajectories.

The full list of station-keeping trajectories is in Table 3-1. The

various cases were chosen to try to best isolate the characteristics that lead to improved range

observability. For example, the case of the co-circular

orbit with 1km separation is modified by

incrementally increasing the amount of cross-track motion in order to gain better insight into how

this particular geometric change will affect range observability at varying levels of extremity.
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Station-keeping Natural Motion Trajectories

Long Range o
Co-circular

10km away

10km away, 10km cross-track
10km away, 100km cross-track
100km away

100km away, 100km cross-track

Football

30km away, 10km vertical motion

130km away, 10km vertical motion, 100km cross-track
300km away, 100km vertical motion )
300km away, 100km vertical motion, 100km cross-track

Short Range
Co-circular

1km away

| 1km away, 1.7km cross-track
1km away, 1km cross-track
1km away, 577m cross-track
1km away, 268m cross-track
1km away, 87m cross-track

Footbali

Centered, 1km vertical motion

Centered, 1km vertical motion, 1km cross-track

1km away, 100m vertical motion

| Tkm away, 100m vertical motion, 1km cross-track

1km away, 1km vertical motion (encircles tgt) - -
1km away, 1km vertical motion, 1km cross-track (encircles tgt)
5km away, 100m vertical motion

5km away, 100m vertical motion, 1km cross-track

10km away, 100m vertical motion

10km away, 100m vertical motion, 1km cross-track

10km away, 1km vertical motion

10km away, 1km vertical motion, 1km cross-track

S—

Prox Ops

Co-circular

100m away
100m away, 10m cross-track
100m away, 100m cross-track

Football

100m away, 10m vertical motion
- 100m away, 10m vertical motion, 10m cross-track
100m away, 10m vertical motion, 100m cross-track

Table 3-1: Natural motion station-keeping reference trajectories

3.24 Closure

The major difference between closing and station-keeping trajectories is that there is a semi-

major axis difference between the chaser and target for the closing trajectories, and no semi-
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major axis difference for the station-keeping trajectories. This semi-major axis difference, which
appears as a non-zero average altitude difference, or Ah, in the relative motion trajectory, causes
the two orbits to have different periods, and therefore the chaser will close on or move away from
the target. There are three basic types of closing orbits including coelliptics, ‘V-bar hops,” and
traveling footballs. The first and simplest of these is the coelliptic. Mathematically, a coelliptic
is defined by requiring the product of the semi-major axis and eccentricity of both the chaser and

target orbits to be equal as in:

atarget etarge( = achaser erfhmer (3 . 5)

Note that the eccentricity is vector valued meaning that the direction of periapsis for both
orbits lies along the direction of the same unit vector, €. Physically, the coelliptic can be
visualized as the elliptical equivalent of concentric circles. The lower orbit has higher linear
velocity and therefore if the chaser is below the target it will close on it. In fact, at the very low
eccentricities dealt with in this study, the coelliptic is very nearly just a concentric set of circular

orbits. A relative motion plot for a coelliptic with 10km Ah is shown in Figure 3-8.
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Figure 3-8: Coelliptic with 10km Ah
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The next type of closing trajectory is a V-bar hop. In addition to the Ah used for the
coelliptic, eccentricity is also added to the chaser orbit to induce vertical motion according to
equation (3.3). By setting this vertical motion equal to the Ah, the relative motion trajectory
closes on the target while also ‘hopping’ up to the V-bar. An example is shown in Figure 3-9
which shows an average 1km Ah so the chaser bounces between —2km and O in altitude while also

closing on the target starting 30km behind it and winding up about 30km in front of it.
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Figure 3-9: V-bar hops with 1km Ah

The final type of closing trajectory is the traveling football. This is very similar to the V-bar
hop except that the vertical motion is greater than the Ah resulting in a traveling ellipse when
viewing the relative motion. Due to the closing velocity, the traveling football does not have the
two by one aspect ratio that was characteristic of the station-keeping case. Figure 3-10 shows a
traveling football with a 10m Ah and 100m of vertical motion resulting in altitude oscillations
between -110m and 90m. It also includes 10m of cross-track motion which can easily be added

to any of the closing trajectories by using equation (3.4).

62



Altitude (m)

Natural Motion Range Observability

! ! ' awfage motjon ! !
-150 1 1 L 1 1 I il
-500 -400 -300 -200 -100 0 100 200 300 400 500
Downrange(m)
100 T T
H 1
i 1
— 1
\E/ OF-~-= U7"1- -
@ frection! of
ksl P , 1
2 motion
B e
-200

-10

Crossrange {m)

-100
Downrange{m)

0 100 300 400 500

Figure 3-10: Traveling football with 10m Ah and 100m of vertical motion with 10m

of cross-track motion

These three basic types of closing trajectories form the basis for all of the various trajectories

that were studied. As was the case with station-keeping, the variations are chosen to provide

comparisons that will hopefully yield insight into the range observability problem. Combined

with the station-keeping cases, the complete listing of natural motion closing trajectories in Table

3-2 provides the basis for the natural motion range observability analysis.
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Closure Natural Motion Trajectories

Long Range o -
' Coelliptic
10km Ah
10km Ah, 100km cross-track
100km Ah
100km Ah, 100km cross-track
V-bar ’hops’

10km Ah, 10km vertical motion

10km Ah, 10km vertical motion, 100km cross-track

1100km Ah, 100km vertical motion

100km Ah, 100km vertical motion, 100km cross-track

 Traveling Football

5km Ah, 10km vertical motion

50km Ah, 100km vertical motion

Short Range -
Coelliptic
1km Ah
1km Ah, 1tkm cross-track
5km Ah, 10km vertical motion
5km Ah, 1km cross-track
V-bar 'hops’

334m Ah, 334m vertical motion

334m Ah, 334m vertical motion, 1km cross-track

1km Ah, 1km vertical motion

1km Ah, 1km vertical motion, 1km cross-track

Traveling Football

100m Ah, 1km vertical motion

100m Ah, 1km vertical motion, 1km cross-track

Prox Ops

Coelliptic

10m Ah

10m Ah, 10m cross-track

33m Ah

33m Ah, 10m cross-track

100m Ah

100m Ah, 100m cross-track

V-bar 'hops’

0.1m Ah, 0.1m vertical motion

1m Ah, 1m vertical motion

1m Ah, 1m vertical motion, 1m cross-track

5m Ah, 5m vertical motion

5m Ah, 5m vertical motion, 10m cross-track

33m Ah, 33m vertical motion

33m Ah, 33m vertical motion, 10m cross-track

200m Ah, 200m vertical motion, R-bar approx.

200m Ah, 200m vertical motion, 10m cross-track R-bar approx.

Traveling Football

10m Ah, 100m vertical motion

10m Ah, 100m vertical motion, 10m cross-track

10m Ah, 100m vertical motion, 100m cross-track

0.1m Ah, 0.5m vertical motion V-bar approx.

0.1m Ah, 0.5m vertical motion, 1m cross-track V-bar approx.

Table 3-2: Natural motion closure reference trajectories
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3.3 LINEAR COVARIANCE RESULTS

With the natural motion reference trajectories generated, the next step is to use the LINCOV
analysis tool to better understand range observability with angles-only measurements. As
explained in section 2.2.3 these reference trajectories are the nominal state trajectories that will be
used as the truth model. The LINCOV tool demonstrates what the navigation filter performance
would be if only angular measurements were taken and used to estimate the relative position and
velocity of the target. Examining the downrange uncertainty should provide insight as to which
types of behavior can potentially lead to successful angles-only navigation. As with the
development of the reference trajectories, the covariance results are best understood when
looking at the cases of station-keeping and closure separately. The results shown here are
representative examples of patterns that arose during the analysis of hundreds of trajectory

results.

3.3.1 Setup

Although the final goal of this study is to understand angles-only navigation performance in
the presence of all the error sources discussed in section 2.2.3, it is first necessary to build a more
intuitive understanding. In keeping with the spirit of performing only a qualitative analysis at this
point, nearly all of the error sources are eliminated for now in the covariance analysis. The only
exception is the placement of zero-mean uncorrelated random noise errors with 1°-3G, on the
angular measurements themselves, as described in Figure 2-3. These measurements are taken
every 60 seconds and are always available. The possibility of condition dependent measurement
availability is also considered later in section 3.4.2, but will be shown to not have any significant
effect on the results. The last assumption is that the chaser is always bore-sighted on the target.
Thus, attitude control issues are eliminated from the analysis, except in terms of the angle

measurement errors.

Another factor to consider is the setup of the a priori navigation uncertainties. For this
study, two different methods were used. The first method is to place identical position and
velocity uncertainties on both vehicles in the inertial frame regardless of their initial relative
position. This would be realistic in the real-world scenario where both vehicles were being
tracked and monitored by ground stations or using a form of GPS (Global Positioning Satellite)
on-board orbit determination. The second alternative is to assume that the initial position and

velocity uncertainties on the vehicles are a function of their initial relative separation. This has
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the advantage of lending itself to easier comparison of covariance results across different range
regimes. Also, it is more realistic in the sense that the absolute uncertainty values associated with
the first method would prohibit a number of the short-range and proximity operations cases. For
example, if 100m was selected to always be the initial inertial uncertainty this would be fine for
two vehicles starting 10km apart, but unacceptable for a prox ops case when they are only 100m
apart to begin with. For the results presented in sections 3.3.2 and 3.3.3, the latter method of
selecting a priori values was used. Specifically, the standard deviation of the a priori position
uncertainty is chosen to be 1% of the actual initial range, and the standard deviation of the
velocity uncertainty is 1/10,000™ sec™ of the position uncertainty. The 1/10000™ sec™ proportion
is representative of several applications such as GPS, Deep Space Network (DSN), or ground
tracking where the position uncertainty is on the order of 100m and the corresponding velocity

uncertainty is 1/10000® sec™

of the position uncertainty, on the order of lcm/sec. The first
method of setting a priori uncertainty will also be explored later but will be shown to have no

significant effects on the qualitative conclusions.

An important need that must be addressed before generating results is a method to normalize
the results across different target-chaser separation distances. Consider the problem of two
station-keeping footballs, one of which is 100m from the target and the other is 10km from the
target. They have similar geometries with 10m and lkm of vertical motion respectively.
However, the covariance results would show that the football 100m away has a lower absolute
value of range uncertainty than the one further away. This can be deceptive because the
difference is not caused by the geometry of the trajectory but rather the fact that the position
uncertainty produced by the noise on the angular measurements increases the further the chaser is
from the target. In order to normalize the results one possible approach would be to change the
noise level on the angles depending on the ranges involved. However, this would generally be an
unrealistic model. A simpler method, and the one used in this study, is to present the uncertainty
results as a percent of the true range. This effectively removes the range dependence in the

results and allows for more direct comparisons.

3.3.2 Station-keeping

The LINCOV tool is first applied to the station-keeping orbits. In looking at the results, it is
easiest to consider them grouped by the general type of relative motion trajectory the orbit falls

under: co-circular, or football.
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Co-circular Orbits

The most immediate result that came out of the station-keeping analysis was a demonstration
of the expected problem with angles-only navigation. When the chaser is in the same orbit as the
target, it is impossible for the chaser to gain any downrange information about the target so the
uncertainty grows with time. This can be seen in Figure 3-11 and Figure 3-12 which are the
results for a case of the chaser being in a co-circular orbit separated from the target by lkm.
Figure 3-11 shows that both the inertial and relative uncertainty is growing while Figure 3-12
shows that after the initial filter transient, the relative downrange error starts growing while the

other components approach zero.

As an aside, Figure 3-11 also demonstrates how the target and chaser root sum square (RSS)
inertial, or absolute, uncertainties grow to very large values compared to the relative RSS
uncertainty. This occurs because inertial uncertainty growth that takes place identically on both
vehicles does not affect the relative uncertainty. For example, if the absolute uncertainty on the
target is 105m in a given direction and the absolute uncertainty on the chaser is 100m in the same
direction, then the relative uncertainty is only Sm. The fluctuations in the inertial RSS
uncertainty correspond to the fact that the downrange error component has both linear and

periodic components.
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Figure 3-11: Inertial and relative RSS uncertainty for Co-circular station-keeping 1km away
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Figure 3-12: Relative position uncertainty for Co-circular station-keeping 1km away

The initial drop in downrange uncertainty during approximately the first half-hour is due to
two effects.  First, the navigation system initially undergoes transient behavior as the
measurements begin to provide additional information beyond the a priori knowledge. Secondly,
the level of a priori velocity uncertainty is mismatched with the a priori position uncertainty.
This means that during the transient period, the filter’s position uncertainty decreases while the
velocity uncertainty increases until the two values are balanced. This will be shown again in

section 3.3.3.

Clearly the lack of any relative motion by the chaser results in unbounded downrange error
growth. A simple method of introducing some line-of-sight stimulus between the chaser and
target is to use natural cross-track motion. Even the smallest amount of motion, in this nearly
perfect error environment, is enough to drive down the downrange uncertainty over a long
enough period of time. Figure 3-13 shows the case of the same co-circular orbit as before, 1km
away, except this time with the addition of 87m of cross-track motion. This is equivalent to

tan™ [13%) = 5% of motion.
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Figure 3-13: Relative position uncertainty for Co-circular station-keeping 1km away
with 87m cross-track motion

Note that the addition of the cross-track motion also introduced some oscillation into the

cross-track uncertainty channel that was not present in Figure 3-12. Although it does not appear

that the downrange uncertainty is decreasing, by extending the time period to four days, Figure

3-14 shows that it is in fact going down.
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Figure 3-14

By increasing the

More extreme geometry changes lead to the errors decreasing faster.
cross-track motion to 268m (15°) and further still to 1km (45°), Figure 3-15 and Figure 3-16

respectively show the downrange errors decreasing progressively more quickly. Again, though,

the decreasing downrange uncertainty comes at the cost of increasing the cross-track errors.
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06-Dec-2000, cocirc 1 kn'|>66n1'\c
Cocircular orbit 1hmaw ay w/268m cross-track for {5deg motion
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Figure 3-15: Relative position uncertainty for Co-circular station-keeping 1km away
with 268m cross-track motion
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Figure 3-16: Relative position uncertainty for Co-circular station-keeping 1km away
with 1km cress-track motion
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Station-keeping Football

The other type of station-keeping trajectory explored is the football, shown schematically in

Figure 3-17.

Target

+V-bar < 0
2l
L |

Y

4X

v
+R-bar

Figure 3-17: Station-keeping football relative motion schematic

Despite their vertical motion, football orbits actually wind up generating similar results to
the co-circular cases for equivalent amounts of motion normal to the line-of-sight to the target.
For example, the case shown in Figure 3-18 is a football centered 100m away from the target with
10m vertical motion. This is approximately the same amount of motion perpendicular to the line-
of-sight as for the case of the co-circular orbit 1km away with 87m of cross-track motion in
Figure 3-13. Even though one is a football orbit and one is co-circular, the results look somewhat
similar when comparing the downrange uncertainty. The one significant difference though is that
the football’s vertical motion introduces oscillation into the altitude uncertainty channel much as

the cross-track motion affected the co-circular orbit’s cross-track uncertainty.
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Stn-kping football 100m aw ay w/ +/-10m motion Compaonent efror as % of true range
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Figure 3-18: Relative position uncertainty for Football station-keeping 100m away
with 10m vertical motion

As the geometry provided by the football increases, the downrange errors decrease more
quickly, similar to the behavior of co-circular cases. The case of a football centered 300km from
the target with 100km of vertical motion and 100km of cross-track is shown in Figure 3-19. After
an initial filter transient the downrange errors do decrease although the significant amounts of

cross-track and altitude motion lead to uncertainty persisting in those components.
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Figure 3-19: Relative position uncertainty for Football station-keeping 300km away
with 100km vertical motion and 100km cross-track motion

The best results from the station-keeping football tend to occur when the target is enclosed
by the football. The result for a football centered on the target with 1km of vertical motion is
shown in Figure 3-20. Interestingly, as is the case with other footballs, even though there is no
cross-track motion, there is still an oscillation in the cross-track uncertainty. The oscillations in
the altitude and downrange directions are nearly 180° out of phase with one another. This is a

concept that will be more fully explored in section 3.4.1.
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05-Dec-2000, footbalt entered kmdeth

Stn-keeping football centered on target w/+- tkmmotion
n-keeping 9 Component error as % of true range
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Figure 3-20: Relative position uncertainty for Football station-keeping centered on
target with 1km vertical motion

The final point to be made regarding station-keeping footballs is that adding cross-track
motion to them does not have any positive effects unless that motion exceeds the existing vertical
geometry. For example, the previous case of a football centered on the target is modified to also
have 1km of cross-track motion. However, as the results in Figure 3-21 show, it is essentially
identical to the case with no cross-track. This is because the football is already providing 1km of
motion perpendicular to the line-of-sight so adding 1km of motion in another direction does not

have a significant impact.
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Figure 3-21: Relative position uncertainty for Football station-keeping centered on
target with 1km vertical motion and 1km cross-track motion

For the station-keeping cases, it would seem that motion perpendicular to the line-of-sight,
no matter how small, results in improving downrange uncertainty. This conclusion follows from
intuitive reasoning, considering that this motion can be thought of as similar to triangulating on
the target. As a reminder though, the results thus far are only qualitative and although they
provide the basis for trajectory comparisons, they are not representative of situations where more
realistic error sources and models are considered. With the qualitative knowledge of station-

keeping trajectories in hand, the next step is to consider the closure cases.

3.33 Closure

As with the station-keeping cases, the LINCOV results for closure trajectories are grouped

by the trajectory: coelliptic, V-bar hops, and traveling footballs.

Coelliptic Orbits

The simplest type of closing trajectory to visualize and implement is the coelliptic. Figure

3-22 serves as a reminder of what the relative motion plot looks like.
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Target
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Figure 3-22: Coelliptic relative motion schematic

The most interesting characteristic about the coelliptic trajectory is that the downrange
uncertainty is driven to its lowest level at the point when the chaser flies underneath the target.
This is clearly shown in Figure 3-23 which shows the actual uncertainty values, not the
percentages, for a coelliptic with a 100m Ah where flyby occurs at five hours. Including the
velocity uncertainties demonstrates a phenomenon that arises in all trajectories, due to orbital
mechanics, where the downrange uncertainty is coupled to the altitude rate uncertainty and the
altitude uncertainty is coupled to the downrange rate uncertainty. It also shows a clearer picture
of the filter transient due to the a priori values. During the transient period, the position
uncertainties initially decrease while the velocity uncertainties increase until a balance is struck

between the two.
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Coelliptic orbit w/100m deka h
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Figure 3-23: A ctual relative position & velocity uncertainty values for Coelliptic with
100m Ah

Although the errors for the coelliptic trajectory begin to immediately increase again after the
flyby, an important thing to notice is that they do not rise as fast as the chaser is actually moving
away from the target. The results with uncertainty as a percent of the actual range clearly show
this as the percent error remains at lower levels after the flyby. However, after longer time
periods the error will begin to grow again as it would if there were additional error sources.
Figure 3-24 shows the same 100m coelliptic, but using the percent errors to demonstrate the post

flyby error levels.
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05-Dec-2000, concentric,00m
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Coeliptic w/100m defia b Component error as % of true range
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Figure 3-24: Relative position uncertainty for Coelliptic with 100m Ah

Unlike the co-circular station-keeping case, the coelliptic orbits do not seem to benefit from
the use of cross-track motion. A large part of the reason for this difference is the difficulty in
picking the right amount of natural cross-track motion. For example, in the case of a 1km Ah
coelliptic, the chaser starts nearly 3km behind the target in order to pass under it at 5 hours. At
this distance, an additional 1km of cross-track motion would not be that significant in terms of
geometry. However, at the point of flyby, it would be extreme. Based on this line of thought, the
point where the uncertainty would be most improved from cross-track motion is at flyby,
however this is already the place that the coelliptic naturally does very well. Therefore, even if
the cross-track motion is aiding the range observability, it is difficult to pick that out of the results
without resorting to excessively large cross-track values that would improve the results when the
chaser was still hours away from flyby. Figure 3-25 and Figure 3-26 show the results for a 1km

Ah coelliptic with and without 1km of cross-track motion, respectively.

79



Component efror as % of true range

05-Dec-2000, concentric tkmne
Coelliptic w/1km delta h & tkmcrass-track

-t
—
o
T T T T T T T -
I | | | 1 ! = T T T T T T
| I I | i ' I = i ! ! ! ! !
: | | | 1 l | « ! ! ! ! ” !
. ' 1 1 ) )
| ! | | | 1 | - = X \ ‘ X _ _
X ! , ! ! t _ £ < | l l i | |
R e el ook ! |xtlﬂmxrllswx l ' l 1 1 1
! ! , _ X _ £ E T=---" r=---- [inlalaiaie Al Tomm r
' ! ! ' ! X ! / = = ) 1 1 I 1 ]
I | | | ) ' l v \ \ _ ~
l | | : t | | = " h \ _ _ \
§ 1 1 ) ' | l
S R R £ L
3 & = 5 % R 2° = _ : _ _ _ k
- - S S S ° & i N - « © -
n: -1 18 o - - o [=] a
(%) 4013 8Py S-4 18 2, m (o0} 1003 SprUARY Ot 19
o - o =
I T I - —_— o =4
q ! | H _ ! _ e 5[ “ “ “ u “ ! %
| | I 1 | | l ﬁw m g |! ! ! ! ! ! ! i
Hl 1 \ 1 ) 1 ) £ ! ' ' ! ! !
1 i [ | 1 ! t \x St w B! ! ! ! ! ! !
S S U R DS R ) S - B N N A A O N
oo | D Lo |, Lo f«fxﬂfl!»WltlH»PltSN - &4 ::::: R e - - R e 0
l l | | t T £ - 5 X X X X
| | 1 1 1 | B S o ow 5 ! ! !
| | 1 1 i 1 | ~ .nla. M L ! ! “ " “ _
e I ] I
i | ' | | : I - s
I | i | | ' I M St ﬂ mr ! ! ! ! ! ! !
\ \ | | | 1 | 4 ! ) ) 1 1 ! 1
o 1 1 1 | s —— © 4 EL I L 1 L L 4 e
= o - = e : o e = ©z o - 3 3 3 g @
() Jouz ¥9eNSS0ID) O-| "oy = (%) Jou3 yoenssnI) O-4 'ley
(=] lm T T T T T T T qu
1 T T T 1 T 7 - = i | | I i I “ J
! 1 | 1 | ¢ Y ! ! i i ! i
| ! ' [ | | | } Q [ ! { ! ! ! ! X
1 1 i | I | | \ w‘ 1 ! ! ! 1 ! J
) I 1 | | i ) 2 t ! 1 ! ' \_|\\\|\1\||\.b
| R @ N | i ( I b < T 1
” | “ _ , e £ = == roTo LR ELE LRSS cee s s R o
i e, et = | T ) ) ) '
I 1 E ] 1 e | i t 1 !
| | o T |
,v ” " £ 0 | 1 | T |
' (] & U \ h \ ILJHV ) °
! ) g3 & ~ - © © < o =)
p 34 g 3] 8g - - = =] = =
- o m m 3 (%) Jou3 ebueiumoq O-| "oy
o~
St
= 23
F <

th 1km Ah

Time (hrs)
1C W1

ty for Coellipti

in

Time (hrs)
ion uncerta
80

ti

Relative posi

Time {hrs)

Figure 3-26



Natural Motion Range Observability

V-bar Hop Trajectories

The next type of closing trajectory is the V-bar hop, shown in Figure 3-27.

Target

RSP \ 0 (\
\ 2Ah ] an
\\4/\ /\

A4
+R-bar

Figure 3-27: V-bar hop relative motion schematic

There is very little to say about these trajectories because the results are virtually identical to
those for the coelliptic orbits. The relative vertical motion caused by the eccentricity difference
does not appear to aid in improving downrange uncertainty, and in fact induces oscillation in the
altitude channel that was not present before, as the station-keeping football had also done. Cross-
track motion also has the same general effect on V-bar hops as it did on coelliptics. For
comparison, Figure 3-28 and Figure 3-29 below are for the case of a V-bar hop orbit that is
centered 1km below the V-bar and fluctuates between —2km and 0 in altitude. Figure 3-28 is the
case with 1km of cross-track motion and Figure 3-29 is the standard case with no cross-track
motion. Besides being similar to one another, they can also be compared to Figure 3-25 and

Figure 3-26 which were the equivalent cases for the coelliptic trajectory.
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Traveling Football Trajectories

The final type of natural motion closing trajectory considered was the traveling football

orbit shown schematically in Figure 3-30.

A
+V-bar o \ X &
. | v 1 Ah
| f

A J
+R-bar

Figure 3-30: Traveling football relative motion schematic

The traveling football trajectories are similar to the other closing trajectory results with one
notable exception. Although the traveling footballs do not decrease the downrange uncertainty to
lower levels than the other cases in an absolute sense, they do succeed in maintaining the errors at
a lower level for a longer period of time. Due to the drifting nature of the football it provides
several flybys of the target from above and below, as the relative motion of the chaser encircles
the target multiple times. The results for the case of a traveling football with 10m Ah and 100m
of vertical motion are shown in Figure 3-31. The sudden downrange uncertainty drop near two
hours corresponds to the time when the chaser first goes under the target and then the uncertainty

fluctuates as the chaser sees the target from different perspectives.
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Figure 3-31: Relative pesition uncertainty for Traveling football with 10m Ah and
100m vertical motion

Similar to the past trends for other trajectories, adding cross-track motion to the traveling

football does not make a significant difference unless the motion exceeds the geometry already

being provided. Simply adding 10m of cross-track motion to the case just considered does not

improve the downrange uncertainty in any significant way as shown in Figure 3-32. Increasing

the cross-track motion to 100m makes a noticeable difference, but still not a significant

improvement as shown in Figure 3-33.
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Component error as % of true range
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34 ADDITIONAL ANALYSIS CONSIDERATIONS

After completing the LINCOV analysis on the natural motion trajectories, there remain a
few issues that merit additional consideration. The majority of these involve validating
assumptions that were made in the natural motion analysis to show that the qualitative
conclusions would remain the same. First, though, a more intuitive understanding of the

evolution of the navigation uncertainties will be developed.

3.4.1 Error Ellipse Behavior

At the start of the chapter, Figure 3-2 showed one concept of how angles-only navigation
might be able to determine range using natural motion geometry. If this concept is correct, then
over time the downrange uncertainty should asymptotically approach zero. The results thus far
have shown that geometry changes can help keep the downrange uncertainty from growing
unbounded, but has not shown the uncertainty actually being driven all the way to zero. At issue,
then, is whether these trajectories were not run for long enough periods of time to see the
uncertainty reach zero, or if in fact some other effect is preventing the uncertainty from

decreasing according to Figure 3-2.

Conventional wisdom in the field says that navigation with angles-only measurements does
not work in a maneuver free situation. Since the majority of the natural motion trajectories
exhibit a good deal of relative motion, the question arises as to why this motion in and of itself is
not enough to stimulate range observability. To answer this question an attempt is made to
demonstrate intuitively and pictorially the evolution of the navigation uncertainty over time in a
maneuver free environment. The best way to watch the development of the uncertainty is by
looking at error ellipses that represent a two-dimensional picture of the 16 altitude vs. downrange
navigation uncertainty. It is possible to actually use three-dimensional ellipsoids including the
cross-track uncertainty, but since this motion is uncoupled from the in-plane relative motion it

only complicates the picture.

To quickly review how these error ellipses are formed recall that the covariance analysis
generates a series of covariance matrices, P. If only the inertial position and velocity of each

vehicle makes up the state X then the relative inertial state is:
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’xrel = r‘x

. (3.6)
T= [sts T sts]

Furthermore, the relative state can be rotated into any arbitrary frame through the use of a
rotation matrix C. In this case, the frame is the target LVLH frame. As long as these are linear

transformations, the covariance matrix can be transformed into the relative LVLH frame using [5]
P,,, =CTPT'C’ (3.7

The 2x2 partition of the covariance matrix corresponding to altitude and downrange
uncertainty can then be removed and turned into an ellipse representing the 1c position
uncertainty. Calling the 2x2 partition, m, and the correlation coefficient between altitude and

downrange uncertainty, P, then the matrix will have the form

2
m= O-dwn—rng po.dwn—zmg Uall (3_8)
po-dwn—mg O'ull o}

alt

The axes of the error ellipse will correspond to the eigenvectors, v;,v,of m and the semi-major

and semi-minor axes lengths correspond to the square root of the eigenvalues, A,,A4, of m, as

shown in Figure 3-34 [29].

Altitude

{k

alt| \/Z /

» Downrange

A
N

O.dwn —~rng

v

Figure 3-34: Two dimensional error ellipse dimensions
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The next step is to examine the error ellipses for some of the natural motion trajectories that
have been presented in an attempt to show why gaining downrange observability requires the

chaser to perform a maneuver.

Centered Station-keeping Football

The first case examined is the station-keeping football centered on the target. If the behavior
shown in Figure 3-2 is the correct explanation of how natural motion geometry provides
downrange observability, then one would expect the error ellipses to evolve as shown in Figure
3-35. The chaser is continuously slicing down the error ellipse to smaller sizes as it proceeds

around the football. Recall the LVLH coordinate frame is defined in Figure 3-3.

0, A priori
uncertainty

ar

4
+V-bar < a6 g stf---—--—-———-—————-
e
2
1l Chaser

'

+R-bar

Figure 3-35: Incorrect expected error ellipse behavior for Centered station-keeping football

Unfortunately, based on the results already shown from the covariance analysis in Figure
3-20 it is apparent that the downrange uncertainty does not continue decreasing with time, but
rather it develops a steady-state oscillation. The hypothesis as to why this happens is that the
error ellipse in fact follows the line-of-sight between the chaser and the target around the football

itself moving at orbital rate as shown in Figure 3-36.
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A priori

+V-bar <

v
+R-bar

Figure 3-36: Expected error ellipse behavior for Centered station-keeping football

Extracting data from the existing covariance results shows that this is in fact exactly what
happens. Figure 3-37 shows the correlation coefficient relating the altitude and downrange
uncertainty. The X axis is marked in %2 orbit increments. The first few hours the filter is
undergoing transient behavior, but after approximately 2 hours, the oscillations synchronize
themselves with the orbital period. At the top, bottom, and sides of the football shape, the
correlation is zero meaning the semi-major/minor axes of the error ellipse are aligned with the V-
bar/R-bar axes. The sign of the correlation coefficient indicates that the orientation of the ellipse
follows the line-of-sight between the vehicles. Another way of making this point is by looking at
Figure 3-38 which are the actual error ellipses overlaid on one another at approximate %2 hour

intervals during the last 5 hours of the trajectory.
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Offset Station-keeping Football

Since the centered football is a unique case, it would seem sensible to verify this concept of

If the

an error ellipse following the line-of-sight with a more conventional offset football.
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hypothesis were to hold true, one would expect the error ellipse to simply “wobble” back and

forth rather than rotate completely around as shown in Figure 3-39.

Chaser

v
+R-bar

Figure 3-39: Expected error ellipse behavior for Offset station-keeping football

Looking at the time history of the correlation coefficient in Figure 3-40 there is once again
oscillation that is related to orbital motion. Again, the actual covariance results show that the
error ellipse does move as expected. Once the transient has passed, the maximum correlation
values correspond to the times when the chaser is at the top and bottom of the football because
the line-of-sight is the most “tilted” here. When the chaser crosses through the V-bar the
correlation is 0, as it was for the centered football case. The wobbling motion of the ellipse can

be seen more clearly in Figure 3-41 looking at the ellipses overlaid for the last 5 hours of the

trajectory.
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These two station-keeping cases demonstrate why using maneuvers would be ideal in order
to improve downrange observability with angles-only measurements. Even though both cases
have relative motion that seems to be providing adequate measurement geometry, the fact that the
error ellipse is also moving at the natural motion orbital rate defeats much of the potential
improvement. In other words, the intuition that lead to Figure 3-2 and Figure 3-35 is incorrect,
the chaser does not slice down the size of the error ellipse using natural motion. By introducing a
maneuver, however, the line-of-sight would be moving faster relative to the error ellipse’s natural

motion and provide the desired slicing effect in the form of additional downrange information.

Coelliptic

Although it has just been shown that for station-keeping cases the error ellipse follows the
line-of-sight when natural motion is relied upon, the question of whether or not this occurs for
naturally closing trajectories is still unanswered. If in fact the error ellipse does follow the line-
of-sight, Figure 3-42 shows a view of how the ellipses would evolve. A key indicator that this is
taking place is that the steady state downrange-altitude correlation value should switch signs

abruptly at the point of flyby as the orientation of the ellipse switches direction.

Ah

+R-bar

Figure 3-42: Expected error ellipse behavior for Coelliptic

The closing nature of the trajectory required some modifications to the original covariance
results in order to test whether the error ellipse was tracking the line-of-sight. The transient time
of the navigation filter is even longer than the station-keeping cases so in order to allow the
correlation coefficient to reach a steady state value, the coelliptic was run over 4 days. However,
running it this long implied that the chaser started much farther away from the target and hence
the noise on the angle measurements was decreased so that the early uncertainty ellipses would
not be overly large. With these changes, the results showed that once again the error ellipse

followed the natural motion of the line-of-sight between the chaser and target. Figure 3-43 shows
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Coefipic w/100m deka h over 48 hrs and 0Sdeg ang acc.

The overlaying of the error ellipses throughout the run in Figure 3-44 also shows how the ellipses

the correlation coefficient time history, and the tell tale sign change at 24 hours, the flyby point.
are oriented primarily along two directions corresponding to being on either side of the target.
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Another method of demonstrating the same phenomenon for the coelliptic is by examining
the growth of the altitude uncertainty at the point of flyby. As indicated in Figure 3-45, two
coelliptics with different Ah values can have identical line-of-sight time histories. At the point of
flyby, the downrange uncertainty component will be at a minimum, although the altitude
uncertainty will be at a maximum since there is ambiguity as to exactly which coellipse the chaser
is on. In section 3.3.3 the effect was not as noticeable due to the a priori values, but Figure 3-46
more clearly illustrates what happens at flyby by setting the a priori values to much higher values
of 500m and 50 c/sec for a 100m Ah coelliptic. At this level, although unrealistic in mission
practice, the a priori position uncertainty is actually larger than the coelliptic Ah, and this results
in over 15%-10 altitude uncertainty at the flyby point. In other words, the navigation filter only

knows that the chaser is somewhere between 85m and 115m below the target, but can not tell
these two extremes apart.
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Figure 3-45: Identical line-of-sight history for different coelliptic orbits
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Figure 3-46: Relative position uncertainty for Coelliptic with 100m Ah and
increased a priori uncertainty

The analysis of the error ellipse over time for the coelliptic shows that, like the station-
keeping cases, the natural motion closure trajectories could gain improved range observability by

using maneuver-assisted trajectories.

3.4.2 Measurement Availability

One of the assumptions used in the covariance analysis was that angular measurements were
always available, but this may not always be a realistic assumption. In a number of potential
mission scenarios, the availability of measurements could be dependent on factors such as solar
illumination for power generation or heat signature, sensor range specifications, or spacecraft
pointing requirements to name a few. To verify that non-constant measurement availability
would not adversely affect any of the qualitative results from the natural motion analysis, the
majority of the trajectories were run through the LINCOV model again with measurements only
available when the target was illuminated by the sun. As expected, the trends and comparisons
between trajectories remained the same. Somewhat unexpectedly though, the modified results
actually look remarkably similar to the case where measurements are always available. In many

cases, the only difference is a spike in navigation uncertainty early in the run that occurs because
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the filter is still in its transient period when the target goes into eclipse. Even in these situations
though, the difference in uncertainty between cases with limited and limitless measurement
availability is not even noticeable after a few hours. As an example, a comparison is shown for a
traveling football trajectory with 100m Ah, lkm of vertical motion, and lkm of cross-track
motion. Figure 3-47 shows the case where measurements are only available when the target is in
sunlight and yet the errors look very similar to the case where measurements are always available

as shown in Figure 3-48.
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Figure 3-48: Measurements always available — Actual relative position and velocity uncertainty
values for Traveling football with 100m Ah and 1km vertical motion with 1km cress-track
motion

Based on a number of comparisons similar to this, it is validated that the assumption of
constant measurement availability does not significantly alter the conclusions drawn from the

qualitative covariance analysis.

34.3 Noise Vs. Number of Measurements

Another potential concern regarding the covariance analysis setup is whether the
measurement noise level or measurement frequency has an effect on the results. The two are
implicitly tied to one another since a system with a higher level of noise is countered with more
measurements. Specifically if one increases the noise level by \/r; while at the same time taking
n times as many measurements, there will be no change in the results. As a demonstration of this

consider the case of a V-bar hop relative motion trajectory with a 1km Ah. Figure 3-49 shows the
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results with the normal noise levels (1°-30) and measurements every minute. Following this is

o
the same trajectory but this time with \/5 —30 noise on the angular measurements which are

taken every 20 seconds. As expected Figure 3-49 and Figure 3-50 are identical. For both cases,

measurements are only available during sunlight which is why there is an uncertainty spike due to

eclipse near one hour.
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Figure 3-49: Actual relative position and velocity uncertainty values for V-bar hops

with 1km Ah
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Figure 3-50: Increased noise and measurement frequency — Actual relative position
and velocity uncertainty values for V-bar hops with 1km Ah

344 Biases

The last item explored in more detail is the fact that no biases were considered in the natural
motion analysis. In order to verify that this would not significantly alter the results, a number of
cases were run with bias terms added to isolate their effects. Biases were added in the forms of a
static alignment error as well as an angle measurement bias on the azimuth and elevation angles
(see sections 2.2.2 and 5.2 for details on how these were actually implemented). In general, the
tests showed that although the filter was not able to estimate all components of the bias values it
did not have an adverse effect on the navigation’s relative position uncertainty values. This
results because the bias elements that are unobservable to the filter are ones that do not impact the
relative uncertainties. The one exception to this statement is the case of a co-circular orbit in

which the biases cause much faster downrange error growth. In actual practice these non-
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observable bias elements would not be a problem because a simple attitude maneuver, rolling the

chaser about the line-of-sight vector, would allow the filter to calibrate the biases out.

An example is shown in the next few figures for the case of a station-keeping football
centered 100m away from the target with 10m of vertical motion. The static alignment bias is
1°/axis-30 and the measurement biases on the azimuth and elevation angles are 0.35°-3c. Figure
3-51, Figure 3-52, and Figure 3-53 show a comparison between the filter’s relative uncertainty
values for the case with just the static alignment bias, with both biases, and with zero biases,

respectively. It is very difficult to detect any changes between the cases.
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Figure 3-51: Actual relative position and velocity uncertainty values for Football
station-keeping 100m away with 10m vertical motion - With one bias
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Figure 3-52: Actual relative position and velocity uncertainty values for Football
station-keeping 100m away with 10m vertical motion — With both biases
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Figure 3-53: Actual relative position and velocity uncertainty values for Football
station-keeping 100m away with 10m vertical motion — Without biases
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Finally, Figure 3-54 and Figure 3-55 show the filter error in estimating the bias values. This
demonstrates that although the filter is not improving its estimate of the biases very quickly, or at
all in the case of one static alignment component, it is not adversely affecting the overall results.
Another point that these last two figures illustrate is the effect of having mulitiple biases. The
uncertainty of the static alignment bias (Figure 3-54) is driven to lower levels when it is the only
bias present, whereas in the presence of additional biases, the uncertainty stays at a higher value
(Figure 3-55). Similarly, if the measurement bias had been isolated, the filter would have more
success in estimating its value. This difference occurs because when multiple biases are present,
the linear combination of them that affects the results is estimated quite effectively. However,
there will also be a linear combination of the errors that do not effect the navigation results, and

this is the same combination that will not be observable to the navigation filter.

11-Apr-2001, football'OOrrback‘Dmdelhesﬁerr
Stn-kping football 100m aw ay w/+/-10mvert.molion, 1 deg/axis 3sig. static alignment error

1 ; 0.35 ; 5 1 .
G t o)) \ﬂl 1 [} t
@ ' D k=2
g | $oap b > |
Z 05 ' z ' £ 05 )
or---""=-"=-7T-=-=-=-=-=--=-4 f g B0 e |
@ : '50254-‘\' ————— J’“ ——————— b g }
[ 1 @ vy 1 8 1
§ ! § 02Fp-==-~ Femmm oo S '
]
%) 0 i < ' I; 1 _&_ 0 ! o
@ | © 015+ - — = — == =4 '
o ' < | \ | o 1
@ ! ) R € t
.05 - ------to | 5 0lp o7 ‘ 8§ 05F -l
s : 5 S s |
3 I 3 005F-C--->p---—- -1 Q )
& ! T e HRNE i J ‘
g_ 0 ! E :
0 5 10 0 5 10 0 5 10
Time (hrs) Time (hrs) Time (hrs)
1 T 1 7 T\g 1— T
S ' P ) = !
@ 1 E | |
: ' : ' '
_§0.5———4»~——% ———————— = 05—————-——% ———————— 30.5————————:— ————————
8 i g i 2 )
> ) Py 1 =4 |
3 | 5 t 2 i
5 0 ! P ! 8 0 !
B [ < [ el [
B 1 o 1 © i
' 1 = |
g t §’ H g 1
£ 05L — - Lt __) @95k ---_- Lo b o5k~ - ---~ [
%05 . g o5 ‘ $-05 .
B 3 = 1 I
g i 72 1 C(E i
[ t w t o t
-1 ) -1 ] = -1 ]
0 5 10 0 5 o"% o 5 10
Time (hrs) Time (hrs) Time (hrs)

Figure 3-54: Filter bias value uncertainty for one bias - Football station-keeping
100m away with 10m vertical motion
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Figure 3-55: Filter bias value uncertainty for both biases - Football station-keeping
100m away with 10m vertical motion

3.5 GENERAL CONCLUSIONS

In addition to the explanations accompanying the previous results, some of the key
conclusions from the natural motion analysis are presented here. Keep in mind that these
statements stem from LINCOV analysis in a virtually error free environment and therefore are

idealized versions of angles-only navigation performance.

First and foremost for the station-keeping cases, it is clear that the downrange errors will
grow unbounded if there is no changing geometry, and the chaser is just following the target
around the same orbit. Adding geometry in the form of either footballs or relative cross-track
eliminates this effect and prevents the errors from growing. In a perfect situation, any amount of
deviation from the exact co-circular case will eventually lead to decreasing downrange estimation
errors. However, the less extreme the geometry, the more time it takes for this decrease to occur.
Also, the direction of the geometry does not make a difference. For example, cross-track motion

will yield approximately the same gains as the vertical motion of a football orbit. Along a similar
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line of thought, if there is already one source of geometry variations, adding in more in another
direction does not necessarily improve the results. This concept can be visualized by way of a
cone emanating from the target as shown in Figure 3-56. Regardless of the range from the target,
a given angular deviation due to orbital motion will result in the same percent downrange error.
The lower bound of how low the error can be driven is a function of the angular measurement
accuracy and potentially the sensor’s field of view. Using the idealized analysis to this point, 5°
of geometric motion in terms of the cone angle was adequate to keep the error from growing
beyond the a priori uncertainties over a 10 hour period while increasing this to 15° yields much

more favorable results with the uncertainty decreasing within this same time period.

Vertical motion

Cross-track motion

R-bar

Figure 3-56: Cone of equivalent relative motion geometries

The most prominent conclusion from the closure trajectories is that for both the coelliptic
and non-coelliptic cases, the navigation uncertainty of the downrange position to the target is at a
minimum at the point of target flyby. This is true regardless of whether there is also cross-track
motion or not. This implies, similar to the concept in the station-keeping conclusions, that
additional geometry is not always helpful when other factors are already providing it. In this
case, the closing motion of the chaser leads to sufficient angular variation to cause the downrange
errors to decrease. The only difference cross-track motion makes is how quickly the initial errors
start going down. A similar effect comes from using a traveling football approach. Although it
does not provide any better absolute performance than what is normally achieved at flyby, it does
drive the downrange percent uncertainty to lower levels earlier than the other cases. In general
then, inclination or additional geometry changes will only have an effect on how quickly the

initial errors decay but will not improve upon the best values achieved.
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To ensure that these conclusions are truly qualitative and not sensitive to the conditions used
to generate the LINCOV results (other than the use of zero error sources) a few more checks are

warranted.

3.5.1 Effects of Measurement Noise

One of the first questions drawn from the conclusions and results is whether the numerical
values of downrange uncertainty achieved in different cases have an absolute lower limit due to
the trajectory itself or if it is truly just a function of the angular measurement noise. For example,
if the noise were increased, would the corresponding minimum percent error values achieved
correspondingly increase? The answer to this question, as one might expect, is yes, they are
correlated. To show this, Figure 3-57 and Figure 3-58 compare the results for the case of chaser
in a co-circular orbit 1km from the target with 1km cross-track motion, for 1° and 5° per axis 36
angle measurement noise values respectively. The results are clearly related to this noise value
because the minimum downrange percent uncertainty no longer reaches 0.2% but rather only gets
to 0.6%. Going the other direction, Figure 3-59 shows the results when the noise is only 0.1°/axis

and the downrange percent error now stays well below 0.2% steadily.
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Figure 3-57: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 1km cress-track, 1°/axis 3o angular measurement noise
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Figure 3-58: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 1km cross-track motion, 5°/axis 36 angular measurement noise
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Figure 3-59: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 1km cross-track motion, 0.1°/axis 3¢ angular measurement noise
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3.5.2

Another question arising from the conclusions is how dependent the ability of geometry to
reduce downrange uncertainty errors is on a priori navigation uncertainties.
concern is whether the uncertainty will still improve if the magnitude of the geometry changes
due to relative motion is less than the initial a priori magnitude. Figure 3-60 shows the LINCOV
results for a case where the chaser is 1km away from the target in a co-circular orbit with 87m of
cross-track motion, and the a priori downrange uncertainty is on the order of 10m. Following
this in Figure 3-61 is the same scenario except with an a priori uncertainty of 100m so the cross-
track motion is smaller than the uncertainty. Despite the larger a priori values, the downrange

uncertainty curve takes on the same trend. However, the uncertainty values for the increased a

A Priori Effects on Benefits of Geometry

priori case are not as low as they were in the previous case at the end of the 10 hour period.
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Figure 3-60: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 87m cross-track motion, normal a priori uncertainty
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Figure 3-61: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 87m cross-track motion, increased a priori uncertainty

Recall that it was shown that any changing geometry will eventually lead to error reduction,

but that small variations may take very long to have an effect. With that in mind, Figure 3-62

shows the results running the previous case over 4 days instead of 10 hours. The downrange

uncertainty is now down to 1.3% which is not yet as low as in Figure 3-60, but the error is still

steadily decreasing and would eventually reach the same level. Therefore, it seems that larger a

priori uncertainty translates (for a fixed geometry) into longer times to reach the same error level

as for a case with lower a priori values.
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Cocircular 1km aw ay w/87m cross-track motion, spherical ICs over 4 days Component emor as % of true range
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Figure 3-62: Relative position and velocity uncertainty over 4 days for Co-circular

station-keeping 1km away with 87m cross-track mot
To ensure that this phenomenon always occurs due to the poorer a priori uncertainty, and

not just as a result of that particular trajectory having geometry which was less than the
uncertainty, another case is examined where the a priori uncertainty is again 100m, but the cross-

track motion is 268m. Figure 3-63 shows the results with the a priori values at their original

levels and Figure 3-64 shows the increased a priori results.



Natural Motion Range Observability
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Figure 3-63: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 268m cross-track motion, normal a priori uncertainty
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Figure 3-64: Relative position and velocity uncertainty for Co-circular station-keeping
1km away with 268m cross-track motion, increased a priori uncertainty
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Since the lowest downrange uncertainty value increases from ~0.4% to 1.2% this indicates
that it is the poor a priori knowledge itself and not the fact that the cross-track motion does not

exceed the a priori information that causes the results to degrade.

The rules of thumb that come out of the natural motion angles-only navigation analysis in an

error-free environment then are as follows:

First, relative motion geometry with any components normal to the line-of-sight will
eventually drive down the downrange uncertainty value. Higher or lower amounts of geometry

simply equate to shorter or longer times for this reduction to take place.

Secondly, angular measurement noise will not alter the qualitative results. Regardless of the
noise level the downrange error will eventually decrease, assuming the trajectory contains some
relative motion line-of-sight geometry changes. The larger the magnitude of the angular
measurement noise, the longer it will take to decrease the downrange uncertainty, similar to the
relationship between the magnitude of geometry and the time required to decrease the

uncertainty.

Finally, there is an independent relationship between the a priori uncertainty and angle
measurement noise. If the a priori uncertainty is larger than the angular spheroid due to the
measurement noise, then initially the downrange uncertainty will decrease very rapidly since the
measurements are providing much better information than the a prioris. If, on the other hand, the
a priori uncertainty is smaller than the angular spheroid due to measurement noise then the
downrange uncertainty will increase very quickly to the level that is measurable by the angle
sensor. The behavior after these initial transients is then governed by whether or not there is

relative motion line-of-sight geometry.

Although these conclusions are valid for the qualitative results obtained from the idealized
LINCOV analysis, the error ellipse analysis in section 3.4.1 clearly demonstrates the need for
maneuvers to further improve angles-only navigation performance. Whether or not these
maneuvers will create downrange observability in the strict sense is still an unanswered question
despite several unsuccessful attempts by the author to determine this analytically. Regardless of
this uncertainty though, the previous conclusions are still valid and lend themselves towards
designing natural motion trajectories that generate better range observability (in the loose sense).
However, as more error sources are modeled, the need for maneuvers in addition to natural

motion aids will become more apparent.
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Maneuver-Assisted Trajectory Analysis

4 MANEUVER-ASSISTED

TRAJECTORY ANALYSIS |

After considering a wide variety of natural motion orbital trajectories in Chapter 3, the next
logical step is to develop orbital trajectories with maneuvers to improve range observability using
angles-only measurements. By removing the constraint of requiring only natural relative motion,
it is possible to model an accelerating chaser vehicle capable of altering its trajectory. The
previous analysis will hopefully prove useful as it guides the choice of maneuvers that will yield
better range observability. This chapter will first review results from dual control literature
before explaining the various maneuver-assisted trajectories that were developed and their
analysis. Finally, elements of the most promising trajectories are combined to form hybrid

trajectories that are later used as a basis for Orbital Express mission design.

4.1 COMPARISON TO PREVIOUS WORK

There are essentially two areas in the existing literature that relate to the issues of angles-
only navigation. The first is work done on bearings-only tracking applications, typically for earth
based dynamic systems. The second area involves the field of dual control. Although neither
area directly addresses the problem in this study, it is useful to examine their results in order to

add this to the knowledge gleaned from chapter 3.

The field of bearings-only tracking derives heavily from naval applications as well as work
on homing missiles. In either case, the necessary use of maneuvers to gain target observability
has been a fact re-discovered in a variety of methods. Chang [7][8] takes the approach of
formulating the dynamics of a system where the range, azimuth, and elevation angles themselves
are the states. Alternatively, Nardone [20] uses the conditions from the solution of a complex
differential equation while Aidala and Hepner [1][10] construct matrices they use to generate
similar conditions. The end results in all cases are analytic conditions that require the chaser to
initiate a maneuver in order to generate navigation filter observability of the range. However,

Hepner and Nardone [10][20] also show that blindly executing a maneuver without regard to its
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direction will not necessarily lead to improved observability. Specifically, the ideal maneuver is
normal to the line-of-sight between the chaser and target while a maneuver parallel to the line-of-

sight will not yield any observability improvements.

The other field that relates to the problem of angles-only navigation is dual control. As
explained in [27], A.Fedlbaum first put forth the concept of dual control in 1960. Put simply,
dual control is a recognition that a given control signal serves two purposes. It affects the state
directly, but also will affect future estimation of that state. From a qualitative standpoint, the
method of generating an appropriate control algorithm is similar to the Linear Quadratic
Regulator (LQR) problem. In the LQR case, a cost function that has penalties on both the state
error and amount of controller energy is minimized [9]. For the dual control problem, the cost
function would include the state error, the controller energy, and also a measure of the future
filter uncertainty. The interested reader can find various solution approaches to the dual control
problem for non-linear stochastic systems in {6] or [26], but in all cases the numerical results are
very similar to the angles-only analysis. For target intercept applications, the dual control laws
introduce some amount of motion normal to the line-of-sight in order to improve the observability

of the target.

Although these two areas give helpful results, they are limited in terms of direct application
to the angles-only orbital navigation problem of interest here. First of all, the dynamics
associated with orbital motion makes the problem more complex than most of the cases
previously examined. Also, solving the dual control problem is a computationally intensive
approach that makes its potential use in a real-time feedback system questionable. The more
practical solution is to use maneuvers to create relative motion orbital trajectories that, while they
may not be mathematically optimal, enable the navigation filter to perform effectively with
angles-only measurements. Even though the results of dual control and bearings-only analysis
did not involve orbital dynamics, their insight that maneuvers normal to the line-of-sight provide
target observability is consistent with the lessons learned in Chapter 3. In some sense then, the
analytic results provided by these fields verify the conclusions that will now be used to form

actual maneuver-assisted trajectories for angles-only navigation.

4.2 REFERENCE TRAJECTORY DEVELOPMENT

As with the natural motion trajectories, the maneuver-assisted trajectories are classified as

either station-keeping or closure cases. These characterizations make it easier to compare results
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as well as being practical from the standpoint of an end-user who may be only concerned with

one phase or the other for mission design.

Within this section the relative motion plots are broken down into four sub-plots in order to
highlight the effects of the maneuvers. The top-left plot is the relative in-plane motion. The
remaining three plots are the time histories of the downrange, altitude, and cross-track
components of relative motion. The following sections describe in detail the various trajectory

designs as well as explaining the actual calculations for the maneuvers used.

4.2.1 Station-keeping

Similar to the natural motion cases, the station-keeping category contains co-circular and
football type orbits. Unlike the natural motion study, however, maneuver-assisted trajectories are
not developed for all the possible range regimes. Rather, the focus lies in prox ops and short
range cases, since these are the areas generally of most interest for rendezvous and close approach
operations. Also, it has already been shown that quantifying uncertainty results in terms of
percentages of the actual range removes the range dependence. Hence, many of these maneuver-
assisted trajectories at short ranges can be extrapolated to longer ranges, as will be shown in

section 4.3.2.

Although the maneuver-assisted co-circular and football station-keeping orbits start in
exactly the same manner as their natural motion counterparts, they are modified with maneuvers
that introduce cross-track motion in one of two ways. In both cases, the cross-track motion is
intended to generate a stimulus perpendicular to the line-of-sight that will be useful in improving

range observability.

The first method is shown in Figure 4-1 which is the case of a football shaped relative
trajectory centered 10m away from the target with 1m of vertical motion. The induced cross-
track motion involves doing a maneuver at 5 hours that introduces natural cross-track motion into
the trajectory through the use of a plane change maneuver. The motion is allowed to continue
without modification for 2.5 orbits when it is nulled with a second maneuver. For the purposes of
this study, this type of maneuver will be referred to as ‘slow cross-track motion.” Specifically,
slow cross-track motion is any maneuver pair where the first maneuver induces natural cross-

track motion and the second maneuver takes place a %2 orbit multiple later to null this motion.
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Figure 4-1: Football station-keeping 10m away with 1m vertical motion, 2.5 orbits of
1m cross-track motion starting at 5 hours, AV=2mm/s

This type of maneuver is the simplest to actually implement. The inertial direction of the AV
is determined by calculating the umit vector in the cross-track direction which is opposite the

direction of the angular momentum vector or:

5 ~(Ry, ><V,,)
Leysirke = % gl (4.1)

where R , and V . are the inertial position and velocity vectors of the target respectively. The

corresponding magnitude of the maneuver is based on the desired amount of slow cross-track

motion and the magnitude of the position and velocity vectors [22]

¢ =desired crosstrack motion

inertial

N%

2{170|sin
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The slow cross-track motion can be nulled at any %2 orbit increment corresponding to the
intersection of the target and chaser orbital planes, and the maneuver is exactly equal in
magnitude to the initial AV. Another example of slow cross-track motion is shown in Figure 4-2

which is the co-circular station-keeping case with the chaser 100m away.
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Figure 4-2: Co-circular station-keeping 100m away, 2.5 orbits of 1m cross-track
motion starting at 5 hours, AV=2mm/s

The second type of cross-track maneuver is referred to as an ‘observation maneuver’ which
creates and nulls cross-track motion in an arbitrary time. Unlike slow cross-track motion, the
observation maneuver is not constrained to performing maneuvers only at %2 orbit intervals.
Figure 4-3 shows an example where a station-keeping football is centered on the target and is
augmented by observation maneuvers that move the chaser out approximately 10m in the cross-

track direction over 10 minutes every hour beginning at 5 hours.
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Figure 4-3: Football station-keeping centered on target with 100m vertical motion,
10m observation maneuvers every hour starting at 5 hours, AV=0.3m/s

Although the observation maneuver can occur at any arbitrary time, the disadvantage is that
three maneuvers are required to bring the chaser back to its original position since the natural
oscillation of cross-track motton is no longer being taken advantage of. The direction of the
burns is determined using (4.1) and the magnitudes are calculated by manipulating the C-W

equations to give:

_ cw
' sin(w Ar)
AV, = ZLCS@AD) _ \y os(wAr) = AV, (1+cos( A)) 4.3)
sin(w At)

2
cwcos (w Ar) —AV

AV, = corsin(w At) + —
sin(w Ar)

where ¢ is again the desired cross-track motion, ® is orbital rate, and At is the desired time it
should take for the chaser to extend ¢ meters. The first maneuver, AV,, takes place at a user-
selected time=t, while the chaser is in the target orbital plane. The second maneuver, AV,, takes

place at time= to+At when the chaser is at its user-selected maximum out-of-plane point. Finally,
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the third maneuver, AV, takes place at time= t,+2At when the chaser is once again in the target

orbital plane. AVs3nulls the cross-track velocity.

The complete list of station-keeping maneuver-assisted trajectories generated is shown in
Table 4-1 along with the associated AV requirements. The baseline cases, without any
maneuvers, are also shown so they can be used for comparison. For all cases, the cross-track
maneuvers took place according to the same schedule as the examples presented previously in
this section. Specifically, ‘XX observation maneuvers’ refers to observation maneuvers moving
the chaser out XX meters in the cross-track direction over 10 minutes every hour starting at five
hours, and ‘YY revs ZZm cross-track’ means that slow cross-track motion moving the chaser out

Z7 meters started at five hours and continued for YY orbits when the motion was nulled.

Station-Keeping AV (em/sec)
Cocircular, 100m separation 0
2.5 revs 1m cross-track 0.2
1m observation maneuvers 3
2.5 revs 10m cross-track 2
10m observation maneuvers 30
2.5 revs 100m cross-track 22
100m observation maneuvers 320
Cocircular, 1km separation 0
2.5 revs 100m cross-track 22
100m observation maneuvers 320
Football, Centered w/100m vert.motion 0
2.5 revs 10m cross-track 2
10m observation maneuvers 32
2.5 revs 100m cross-track 22
100m observation maneuvers 320
Football, 10m away w/1m vert.motion 0
2.5 revs 1m cross-track 0.2
1m observation maneuvers 3.2
2.5 revs 10m cross-track 2.2
10m observation maneuvers 32

Table 4-1: Maneuver-assisted station-keeping reference trajectories
4.2.2 Closure

The various maneuver-assisted closure trajectories include V-bar and R-bar approaches as
well as modified coelliptic and traveling football orbits. In addition to the in-plane maneuvers
that create the closing trajectory, all of these trajectories are also further modified with the
addition of slow cross-track motion and observation maneuvers. Although the principle is the
same as the station-keeping trajectories, the implementation of cross-track maneuvers must

change for reasons of practicality. For the closing scenarios, it does not seem realistic to have a
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fixed value of cross-track motion since the chaser no longer has a constant downrange distance to
the target. For example, if the chaser started 100m away from the target on the V-bar with an
additional 100m of cross-track motion there might not be any problems. However, by the time
the chaser is only 5m away from the target, 100m of cross-track motion is more than excessive
and would create the potential for unwanted collisions. To address this problem, the magnitude
of both slow cross-track motion and observation maneuvers must be changed based on the range

between the target and chaser.

The first type of closing trajectory shown in Figure 4-4 is the V-bar approach. The chaser
starts 360m away from the target and is closing on it at lem/sec (10hr total closing time). This
case also shows an example of how the slow cross-track motion is reduced in magnitude every %2

orbit as the range to the target decreases.
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Figure 4-4: V-bar approach from 360m at 1cm/sec with damped cross-track
oscillations, AV=1.59m/s
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A true V-bar approach is possible only with continuous thrust. However, a V-bar approach
may be approximated by executing a maneuver at each time step. The magnitude of the first
maneuver is simply the value of the desired closing rate applied in the V-bar direction which is in

the direction of the target velocity vector or:

. | }’I ' (4.4)
gt

. R
[ ==% 4.5)
R
Where the magnitude is calculated according to:
AV =2w(Closing Rate)ot (4.6)

where & is the time step interval being used in propagating the trajectory. This approximation to
the true continuous thrust approach is the reason for the small oscillations in the altitude of Figure

4-4.

Another possible closure trajectory is an R-bar approach. Figure 4-5 shows an example
where the chaser is closing on the target at lcm/sec from 360m below and uses several
observation maneuvers during the approach. Note that these maneuvers grow smaller as the

chaser gets nearer to the target.
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Figure 4-5: R-bar approach from 360m at 1cm/sec with multiple observation
maneuvers, AV=27.1nmv/s

The maneuvers required for the R-bar approach are more complicated than the V-bar
approach because the continuous thrust case actually requires a AV in two different directions.
The first maneuver must initiate the closing rate as well as null the downrange relative velocity
between the two vehicles. The start of closure is handled by simply applying a AV in the radial
direction defined by (4.5) equal to the desired closing rate. The initial downrange relative
velocity exists due to the altitude difference between the two vehicles and is eliminated by

executing a maneuver in the V-bar direction defined by (4.4) equal to

AV =—1.5wAh @7

where Ah is the altitude difference. After this initial maneuver, each later time step requires one
maneuver in the V-bar direction (4.4) whose magnitude is calculated identically to (4.6) which
maintains the R-bar closing rate. The other maneuver is executed in the radial direction (4.5) in

order to maintain the chaser at a fixed downrange location so that the total maneuver is
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AV =(30*Ahét)i, +[2w(Closing Rate)d1]i, (4.8)

Similar to the V-bar approach plots, the downrange oscillation in the R-bar relative motion plots

in Figure 4-5 is due to the continuous thrust approximation.

Although the fuel use associated with the R-bar approach shown in Figure 4-5 seems
high, this is primarily because the approach rate is rather slow and the chaser is initially so far
from the target. Figure 4-6 shows the non-linear relationship between the approximate AV
required (for 500km circular target orbit) and the initial altitude separation for R-bar approaches

at three different rates.

Delta V Required for R-bar approach
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Figure 4-6:AV required for R-bar approaches with varying closing
rates & initial separations

The third type of closing trajectory considered is the modified coelliptic. In this case, the
coelliptic naturally generates the closing rate, the maneuvers are used simply to create either slow
cross-track motion or observation maneuvers. Figure 4-7 shows the case of a 100m coelliptic
which has slow cross-track motion that begins and ends at 2 and 8 hours respectively. The cross-
track oscillations are sized based on the range to the target and are symmetric on both sides of the

target flyby, which occurs at 5 hours.
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Coelliptic w/100m defa h, damped cross-track motion from 2-8hrs, DV=8. 85nvs
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Figure 4-7: Coelliptic with 100m Ah and damped cross-track oscillations symmetric
with respect to flyby point from 2-8 hours, AV=8.85m/s

The final group of closing trajectories considered are modified traveling footballs. As
explained in the natural motion analysis, these are very similar to coelliptic orbits except for an
eccentricity difference that generates relative altitude motion. There are three variations of the
traveling football used to approach the target. As with the cross-track motion, the motivation for
these cases is that the vertical oscillations in the football should decrease as the chaser approaches
the target. Additionally, altering the in-plane natural motion involves maneuvers that may

improve observability.

All of the modified traveling footballs are created by using Hohmann transfer type burns in
order to shift the chaser’s apoapse and periapse heights. Since they are Hohmann burns, the

maneuvers are in or opposite the direction of the V-bar, defined by (4.4). By performing a

maneuver of magnitude

AV = —jl (height change) 4.9)
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in the direction of the V-bar at apoapse, the periapse height will be correspondingly shifted up.
Similarly, using the same magnitude burn at periapse, but opposite the V-bar direction, will shift

the apoapse altitude down.

The first and simplest possible modification to the traveling football is to reduce the
magnitude of the vertical oscillations while maintaining the same semi-major axis difference, Ah.
Figure 4-8 shows an example of this where the traveling football maintains a 10m Ah while
reducing its vertical motion from 100m to O over 10 hours. Note that this case also exhibits

damped slow cross-track motion as it approaches the target.
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Figure 4-8: Traveling football with fixed 10m Ah and shrinking vertical oscillations
with damped cross-track oscillations, AV=1.85m/s

The second type of modified traveling football decreases both the vertical oscillations as
well as the Ah as it closes on the target. The shrinking Ah has the added benefit of reducing the
closing rate between the chaser and target as the range decreases. This is very appealing for
docking or close approach type missions since slow closing rates are usually preferred. A case

similar to the previous one is shown in Figure 4-9 except this time the Ah is also shrinking. There

is no cross-track motion in this case.
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Traveling football w /10m shrinking delta h, shrinking vert.motion from 100m, DV=5.5cnvs
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Figure 4-9: Traveling football with shrinking Ah and shrinking vertical oscillations,
AV=0.055m/s

The final variation of a traveling football is the spiral case which is shown in Figure 4-10.
The only difference between this case and the previous one is that the first burn takes place at
apoapse rather than periapse, and the resulting relative motion spirals in towards the target. This
case begins with 100m of vertical motion and 10m Ah and also makes use of multiple observation

maneuvers whose magnitude decreases as the spiral moves closer to the target.
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Figure 4-10: Traveling football/spiral with shrinking Ah and shrinking vertical
oscillations with multiple observation maneuvers, AV=1.55m/s

The complete listing of maneuver-assisted closure trajectories is shown in Table 4-2. Note
that some of the associated AV values are extremely high. Although these cases may not be
useful from a direct practical standpoint, the insights they provide will prove useful later. The
table lists the actual values used for the cross-track maneuvers as well as the times they occurred.
For example, the case of the V-bar approach with damped slow cross-track motion states
“Damped cross-track, burn every 1/2 rev start at 360m and reduce by 30m each burn” which
means that the trajectory starts with a maneuver to introduce 360m of slow cross-track motion
and then each ¥z orbit increment after that it nulls 30m of the motion until it reaches 0. As
another example, the case of the R-bar approach with multiple observation maneuvers states
“Mult.obs.man. At(2, 4, 6, 7, 8, 9, 9.5) hr going out (200, 200, 200, 100, 30, 10, 10)m in (20, 20,
20, 10, 10, 10, 10)min” which lists the times when the maneuvers start (2, 4...) hours, how far
each corresponding maneuver goes in the cross-track direction (200, 200 ...) meters, and finally
what the At value is for each case (20, 20 ...) minutes to go. In this example case, the first

maneuver takes place at 2hr, the chaser goes 200m in 20 minutes at which point the second
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maneuver is executed, and another 20 minutes later (40 minutes from the first maneuver) the final

null maneuver is executed.

Closure AV (m/sec)
V-bar approach from 360m, 1cm/s 0.81
2revs 100m cross-track starting at 5hr 1.03
Damped cross-track, bum every 1/2 rev start at 360m and reduce by 30m each burn 1.59
Mult.obs.man. At(2,4,6,7,8,9,9.5)hr going out {200,200,200,100,30,10,10)m in (20,20,20,10,10,10,10)min 3.47
30m cross-track 1/2 rev before end 0.86
50m cross-track 1/2 rev before end 0.84
R-bar approach from 360m, 1cnvs 24.4
2revs 100m cross-track starting at Shr 24.7
Damped cross-track, bum every 1/2 rev start at 360m and reduce by 30m each bum 24.96
Mult.obs.man. At(2,4,6,7,8,9,9.5)hr going out (200,200,200,100,30,10,10)m in (20,20,20,10,10,10, 10)min 271
Coelliptic, 100m Ah 0
Damped cross-track, bum every 1/2 rev start at 2.9km and reduce by 483m each bum to 0, increase after flyby 9.63
Damped cross-track from 2-8hrs, bum every 1/2 rev start at 2km and reduce by 667m to 0, increase after flyby 8.85
Mult.obs.man. At (1,2,3,4,4.5,5.5,6,7,8 9)hr going out (2.4,1.8,1.2,.6,.3,.3,.6,1.2,1.8,2.4)km in (20,20,10,10,10,10,10,10,20,20)min 50.72
Coelliptic, 1km Ah 0
Damped cross-track, bum every 1/2 rev start at 20km and reduce by 4.8km each bum to 0, increase after flyby 96.3
Trav. Football, standard 0
Shrinking Trav. Football, fixed Ah 0.051
Damped cross-track, bum every 1/2 rev start at 830m and reduce by 69m each bum 1.85
Mult.obs.man. At (2,4,6,7,8,9,9.5)hrs going out (500,500,500,250,150,75,30)m in (20,20,20,10,10,10,10)min 7.53
Shrinking Trav. Football, shrinking Ah 0.055
Damped cross-track, bum every 1/2 rev start at 600m and reduce by 50m each bum 1.35
Mult.obs.man. At (2,4,6,7,8,9,8.5)hrs going out (350,350,350,200,150,100,30)m in (20,20,20,10,10,10,10)min 6.1
Spiral 0.055
Damped cross-track, bum every 1/2 rev start at 200m and reduce by 16.7m each burn 0.46
1.55

Mult.obs.man. At (2,4,6,7,8,9,9.5)hrs going out (100,100,100,50,30,10,10))m in (20,20,20,10,10,10,10)min

Table 4-2: Maneuver-assisted closure reference trajectories

4.3 LINEAR COVARIANCE RESULTS

Following the generation of the maneuver-assisted reference trajectories, the LINCOV tool
was used to analyze the downrange uncertainty. As with the case of the natural motion analysis,
the results are considered separately for the station-keeping and closure cases. In order to ensure
that the maneuvers were in fact significantly improving the navigation results, the a priori
uncertainties were increased beyond those used in the natural motion analysis. The actual values
used for the initialization were dependent on the specific trajectory. For station-keeping and
approaches along the V-bar or R-bar, the standard deviation of the position uncertainties in every
direction was 10% of the actual range. The standard deviation of the velocity uncertainties was
1/1000™ sec™ of the corresponding position uncertainties. For example, if the actual range was

1,000m then the position uncertainty would be 100m, and the velocity uncertainty would be
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10cm/sec. For the cases of coelliptics and traveling footballs, the a priori uncertainties were no
longer spherical. The downrange position uncertainty was 10% of the actual downrange value
while the altitude and cross-track uncertainties were 10% of the actual altitude. Again, the
velocity uncertainties were 1/1000" sec’ of the corresponding position uncertainty. This
methodology was used because the spherical a prioris were not always appropriate. For example,
in the case of a 100m coelliptic, the chaser starts approximately 3km behind the target in order to
pass under it at 5 hours. If the a priori uncertainty for all position components was 10% (or
300m) then the altitude uncertainty would be significantly larger than the desired Ah. It is
unlikely that in actual practice, the chaser would be placed on a 100m coelliptic when the
navigation’s altitude uncertainty is three times larger. Therefore, the a priori uncertainty was
selected to be both large enough to test the maneuver-assisted trajectories as well as to be more

realistic based on the specific trajectory.

It is still assumed that applied AV is being measured perfectly. Clearly, errors in measuring
AV will adversely affect the navigation performance. However, as in chapter 3, the results of this
chapter are more focused on investigating angles-only navigation from a qualitative standpoint.
The effects of modeling IMU errors as discussed in section 2.2.2 will be more fully explored in
chapter 5. A related concem is the ability of the IMU to actually sense the mm/sec level
maneuvers that some of the trajectories use. This is handled through the use of thrust modeling,

and will be discussed in section 5.2.

4.3.1 Station-keeping

As expected, maneuvers made an immediate and noticeable improvement in the downrange
uncertainty for station-keeping cases which included co-circular and football orbits. The first
demonstration of this, in Figure 4-11, shows the case of a football centered on the target with
100m of vertical motion. At 5 hours, a maneuver is executed to start 10m of slow cross-track
motion that is nulled after 2.5 orbits. These two maneuvers require a total of 2cm/sec of AV. The
maneuver immediately reduces the error level although the oscillatory nature of the downrange

and altitude errors still exists due to the error ellipse behavior explained in section 3.4.1.
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Figure 4-11: Relative position uncertainty for Football station-keeping centered on
target with 100m vertical motion and 2.5 orbits of 10m cross-track motion starting at
5 hours, AV=0.02m/s

The next point, again as expected, is that the addition of a maneuver and the corresponding
additional geometry leads to improvements in downrange knowledge. The series of plots in
Figure 4-12, Figure 4-13, and Figure 4-14 are all for the case of a co-circular orbit that is 100m
away from the target. At 5 hours, a maneuver introduces 1, 10, and 100m of slow cross-track
motion respectively for 2.5 orbits. For purposes of fuel practicality, a key piece of information to
notice here is that the improvement in downrange uncertainty going from 10m to 100m of slow
cross-track motion is not nearly as dramatic as that from 1m to 10m. This indicates that the
relationship between the amount of cross-track motion and downrange uncertainty is non-linear,
but more importantly there is a principle of diminishing returns at work. Although it is possible
to expend 22cm/sec of fuel to generate 100m of slow cross-track motion, the results from using
only 2cm/sec for slow 10m of cross-track motion are still a marked improvement over the initial
condition. Therefore, even in fuel-constrained missions, smaller maneuvers still yield very useful
information, and in some cases larger maneuvers may just be wasting fuel while not noticeably

improving the navigation results.
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Figure 4-12: Relative position uncertainty for Co-circular station-keeping 100m away
with 2.5 orbits of 1m cross-track motion starting at 5 hours, AV=2mm/s
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Figure 4-13: Relative position uncertainty for Co-circular station-keeping 100m away
with 2.5 orbits of 10m cross-track motion starting at 5 hours, AV=.02mv/s
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Figure 4-14: Relative position uncertainty for Co-circular station-keeping 100m away
with 2.5 orbits of 100m cross-track motion starting at 5 hours, AV=.2m/s

The effect of observation maneuvers on downrange uncertainty for station-keeping cases
actually tums out to be very similar to the simpler method of adding slow cross-track motion.
This could be anticipated since the two methods become identical as the length of the observation
maneuver approaches the length of natural cross-track motion. In other words, if the total time
for the observation maneuver is ¥2 orbit then its first and third maneuvers are identical to the case
of slow cross-track motion, and the second maneuver that occurs 1/4™ orbit after the first one will
be zero. The only real advantage provided by the observation maneuvers then is their ability to
be executed in an arbitrary time period. However, this flexibility has a cost in terms of higher AV
use. The two plots below show the results for the case of a football centered 10m away from the
target with 1m of vertical motion. In Figure 4-15, 2.5 orbits of 10m slow cross-track motion
begins at 5 hours while in Figure 4-16, 10m observation maneuvers (20 minutes total for each
maneuver) are performed every hour starting at 5 hours. Although the effects on downrange
uncertainty are extremely similar, the observation maneuvers use 0.32m/s of AV compared to

only 2.2cm/s for the slow cross-track motion.
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Figure 4-15: Relative position uncertainty for Football station-keeping 10m away with 1m
vertical motion and 2.5 orbits of 10m cross-track motion starting at 5 hours, AV=0.02m/s
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Figure 4-16: Relative position uncertainty for Football station-keeping 10m away with 1m
vertical motion and 10m observation maneuvers starting at 5 hours, AV=0.32m/s
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There 1s one more potential benefit to using observation maneuvers, and that is the case
when the chaser is subjected to un-modeled accelerations. Up to this point, the process noise
parameter has not been used in the LINCOV analysis. If the process noise is non-zero, the
downrange uncertainty will grow rather than just staying at a steady value. ‘For example, in the
case of Figure 4-13 and Figure 4-14, the single maneuver executed at 5 hours reduced the
downrange uncertainty and it stayed nearly constant. However, Figure 4-17 shows the same case
of a co-circular station-keeping orbit 100m away, but this time with process noise added to the
analysis. At 5 hours, a maneuver s executed to start 100m of slow cross-track motion and the
uncertainty drops, but then begins to rise again until the nulling maneuver is executed 2.5 orbits
later. Compare this to Figure 4-18 which uses 100m observation maneuvers every hour also
starting at 5 hours. The difference is clear and illustrates that each maneuver provides some
range observability. Using the observation maneuvers uses more fuel, 3.2m/s compared to
22cm/s in this case, but provides better downrange uncertainty in the face of un-modeled

accelerations.
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Figure 4-17: Relative position uncertainty with process noise for Co-circular station-
keeping 100m away with 2.5 orbits of 100m cross-track motion starting at 5 hours,
AV=0.22m/s
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Figure 4-18: Relative position uncertainty with process noise for Co-circular station-
keeping 100m away with 100m observation maneuvers every hour starting at S hours,
' AV=3.2m/s

The preceding results and conclusions are representative of the other trajectories as well.
Table 4-3 lists the required AV and the value of downrange percent error that the navigation filter
was able to achieve for the station-keeping cases with no process noise. In cases where the

uncertainty value was oscillatory, the peak value of the oscillation was recorded.
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Case Best % Errors AV (m/s)
Cocircular, 100m separation 9.49 0
2.5 revs 1m cross-track 5.65 0.002
1m obs.man. 6.86 0.03
2.5 revs 10m cross-track 0.78 0.02
10m obs.man. 1.04 0.3
2.5 revs 100m cross-track 0.157 0.22
100m obs.man. 0.22 3.2
Cocircular, 1km separation 9.49 0
2.5 revs 100m cross-track 0.84 0.22
100m obs.man. 1.13 3.2
Football, Centered w/100m vert.motion 9.49 0
2.5 revs 10m cross-track 1 0.02
10m obs.man. 1.45 0.32
2.5 revs 100m cross-track 0.15 0.22
100m obs.man. 0.21 3.2
Football, 10m away w/1m vert.motion 9.45 0
2.5 revs 1m cross-track 0.71 0.002
1m obs.man. 0.97 0.032
2.5 revs 10m cross-track 0.14 0.022
10m obs.man. 0.18 0.32

Table 4-3: Maneuver-assisted station-keeping trajectory LINCOYV results summary

This data can also be visualized by showing the best performing trajectories, in terms of AV

and percent error, as in Figure 4-19.
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Figure 4-19: Maneuver-assisted station-keeping trajectory LINCOYV results
summary
4.3.2 Closure

For the case of closure maneuver-assisted trajectories, the results are considered for each

general type of trajectory: V-bar, R-bar, coelliptic, and traveling football.

V-bar Approaches

First, the V-bar approach is very similar to the co-circular station-keeping case in the sense
that the downrange errors grow unbounded if no cross-track maneuvers take place. Figure 4-20
shows the case of the V-bar approach from 360m behind the target at lcm/sec. The errors are
rising until a maneuver is executed at 5 hours to start 100m of slow cross-track motion. This

succeeds in reducing the downrange uncertainty for 2.5 orbits when the motion is nulled and the

errors immediately begin to grow again.
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Figure 4-20: Relative position uncertainty for V-bar approach from 360m at 1cm/sec
with 2 orbits of 100m cross-track motion starting at 5 hours, AV=1.03nv/s

R-bar Approaches

Unlike the V-bar approach, the R-bar approach does an excellent job of decreasing the
downrange uncertainty. Using slow cross-track motion or observation maneuvers in this case
does not make any difference simply because the baseline approach does so well on its own. The
key that makes the R-bar approach so successful lies in the C-W equations. The range along the
line-of-sight to the target can be determined based on the amount of AV expended to stay directly
below the target according to equation (4.8). Measuring the maneuvers is indirectly providing a
very accurate range estimate to the target. The major disadvantages to this approach are the large
amount of fuel required as well as the potential sensitivity to IMU errors in measuring the
maneuvers. Although an R-bar approach may be ideal for the terminal phase of a rendezvous, it
is not practical for long range approaches or station-keeping. Figure 4-21 shows an example of
the baseline R-bar approach in which the chaser closes on the target at lcm/s from 360m below.

The improvement over the V-bar approach results in Figure 4-20 is dramatic.
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Figure 4-21: Relative position uncertainty for R-bar approach from 360m at
1cm/sec, AV=24.4m/s

Modified Coelliptics

The third type of maneuver-assisted trajectories considered are the modified coelliptics. In
general, the results were not significantly improved by the addition of cross-track maneuvers
before the point of flyby. Figure 4-22 shows an overlay that has the results for a normal coelliptic
with a 100m Ah as well as those for a case with damped slow cross-track motion. Although the
downrange uncertainty is slightly improved by the slow cross-track motion, the cross-track
uncertainty is much larger before flyby (5 hours). However, after the flyby point the
characteristic first noted in the natural motion analysis appears again as the downrange percent
uncertainty grows very slowly. Also, the cross-track uncertainty is no longer as large
demonstrating that coelliptics with cross-track maneuvers tend to exhibit their best performance

in the time following a flyby of the target.
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Figure 4-22: Relative position uncertainties for Coelliptic with 100m Ah case with no
cross-track motion overlaid on case with damped cross-track oscillations symmetric
with respect to flyby point, AV=9.63m/s

As an aside, the modified coelliptics are used to verify that scaling the distances involved in
the trajectories does not have an impact on the results in terms of percent uncertainty. By
comparing two coelliptics, one with 10m Ah and the other with 100m Ah shown in Figure 4-23
and Figure 4-24 respectively, it is clear the results are in fact nearly identical. In both cases,
maneuvers are being executed to induce slow cross-track motion approximately equal to the
downrange distance. The 100m Ah case has maneuvers that are exactly ten times the value of the
10m Ah case. This fact is what allows all of the results from various closing trajectories to be
extrapolated to different range regimes without actually having to generate different reference

trajectories and run the LINCOV tool.
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Figure 4-23: Relative position uncertainty for Coelliptic with 100m Ah case with
damped cross-track oscillations symmetric with respect to flyby point, AV=9.63m/s
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Figure 4-24: Relative position uncertainty for Coelliptic with 1km Ah case with
damped cross-track oscillations symmetric with respect to flyby point, AV=96.3m/s
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Modified Traveling Footballs

The last type of maneuver-assisted closing trajectory is the modified traveling football.
From a range uncertainty standpoint, these trajectories are not that much more attractive than
their natural motion equivalent. It is difficult to notice any significant difference between a
typical traveling football that does not require any maneuvers, Figure 4-25, and one that has in-
plane maneuvers to reduce its Ah and vertical motion, Figure 4-26. However, the modified
traveling footballs may still be attractive because of other characteristics such as their naturally

slowing closure rate or spiraling motion towards the target.

26-Jan-2001, lravlootba\l’()n'delh‘mnwenrmtbn

Traveling football w/10mdelta h, 100m vert.motion, 0DV Component error as % of true range

14 T 25 T 2.5 T
| i 1 |
I i !
Br-----= FToo o ) I
i ) t
i t l
12k - e - - - - - \ '
' ' ]
i 2Fp=--~--- 4 ——— = 2F -~~~ - - - b - — ==~ - o
L e Rl 1 [
1 1 )
) b '
L e t i
[ t !
[ ] do o= 4 1 = |
= ' = ' 2 '
S 1 S 15Fr--—---- 4 - T 15F---- it
W ok --- Loee w0 ! g !
[ ! x 1 w 3
2 i 9 ' @ 1
§ 7 B £ ! | !
§ ) 2 1 p= 1
<3 ! 2 | < 1
] +-—==—-= © | <] 1
P ! e qb_o_____ O —— AolREY S A
- s | - \ 3 [
3 e B il ° 1 o I
< t [ 1 i
1 1 [ h
4fF--~---- T T T 7T l 1
) ' 1 i
P IR B 1 1
! 05F------ d e e o 05 ~—---—-—-+-
l ! ! J& ' /,
! 1
2\:_*1339;7\:_:,\;—\&/*\* h i, |
s i I
S U 1 !J
f !
1 ¥
0 L 0 1 0 L
¢} 5 10 0 5 10 o 5 10
Time (hrs} Time (hrs) Time (hrs)

Figure 4-25: Relative position uncertainty for Traveling football, unmodified, with
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Figure 4-26: Relative position uncertainty for Traveling football with shrinking Ah
and shrinking vertical oscillations, AV=0.055m/s

Generally, the addition of damped slow cross-track motion did not aid the modified traveling
footballs. The downrange and altitude uncertainties exhibit oscillatory motion, similar to the case
of the centered station-keeping football, so the additional cross-track oscillations induced by
maneuvers seemed to not only add uncertainty to the cross-track channel but the other
components as well. On the other hand, the observation maneuvers did tend to improve the
downrange uncertainty in all cases although this difference would disappear as the length of the
maneuvers approached slow cross-track motion as discussed earlier. The best performing case is
the spiral from Figure 4-10 with multiple observation maneuvers. The results in Figure 4-27
clearly show the impact of the first maneuver at 2 hours. The sudden error growth at the very end
of the run is due to fact that the range between the chaser and target is approaching O so the

percent range error approaches oe.
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Figure 4-27: Relative position uncertainty for Traveling football/spiral with shrinking
Ah and shrinking vertical oscillations with multiple observation maneuvers,
AV=1.55m/s

Effects of Process Noise

One last concept remains to be checked for the closure cases and that is the effect of process
noise/un-modeled accelerations. For the station-keeping cases, it turned out that although the
observation maneuvers were more fuel costly, they provided better results in cases where un-
modeled accelerations were present. For the closure cases, the damped slow cross-track motion
requires maneuvers every ¥z orbit in order to keep the magnitude proportional to the downrange
separation. This more frequent maneuvering removes the advantage the observation maneuvers
had so that for closure cases the two are very similar in terms of results although the observation
maneuvers are still more fuel costly. The cases below are both for a 100m Ah coelliptic in the
presence of un-modeled accelerations. Figure 4-28 uses maneuvers between 2 and 8 hours to
maintain slow cross-track motion proportional to downrange distance while Figure 4-29 uses
multiple observation maneuvers. Although the observation maneuvers require considerably more
fuel than the damped slow cross-track motion (50.7m/s compared to 8.9m/s), the downrange

uncertainty is not significantly improved.
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Figure 4-28: Relative position uncertainty with process noise for Coelliptic with 100m
Ah and damped cross-track oscillations symmetric with respect to flyby point from 2-8
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26-Jan-2001, concentric 00m, uk bs, rocess oise

Coelptic w/100m delta h, mult observation man.. £0.72m's Component r as % of true range
1

5 ) T a5 T
Iq I I
¥ 1 ¥
45 ~ =~ = i Iy oo} ~ -~~~ oo ) G R
) i
lt 1
ap = 1 it |
08p ~ - — = —fb — - -~ 35— - = - = - - - — -
i T
(i t
a5k —-— -~ R '
[ o7k ~ - — - = Lo [} U | AR
g l £ ! _
S oabo-_- | g I 3
g i B | 5
‘§, [ Yosf ~- - - o - - - f T ] Sy | R
2 3 1 s
25 - = =~ — H— -~ - H i El I
4 ! H
a G058k - - — — - — - — - — p 2~ H---- -
[ I3 p
i o < z
3 2 * !
04 ~ - — - - 16k — =~~~ -~ - - —1
15— — - - — tHi— — — — — )
i
03 — 1k -- d -
I Lo ____] o°3~--- i Rindid in Relalolainh
I 1
/\4 ! 1
A \ 1 ]
05~ f\f L CVT/ 02 \)w R bl T
| | L\/v\/’\ '
0 L 0.1 L [ L
0 5 10 [ 5 10 [ 5 10
Time {hrs) Time {tws) Time {hrs)

Figure 4-29: Relative position uncertainty with process noise for Coelliptic with 100m
Ah and multiple observation maneuvers, AV=50.72m/s
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Results Summary

The previous sections have shown samples representative of all the cases considered. Table
4-4 shows the results for all closure cases in terms of AV use and the value of downrange percent
error that the navigation filter was able to achieve for the closure cases with no process noise. In

cases where the uncertainty value was oscillatory, the peak value of the oscillation was recorded.

Case Best % Errors AV (m/s)
V-bar approach from 360m, 1cm/s 14.14 0.81
2revs 100m cross-track 0.22 1.03
Damped cross-track 1.1 1.59
Mult.obs.man. 0.22 3.47
30m cross-track 1/2 rev before end 0.3 0.86
50m cross-track 1/2 rev before end 0.25 0.84
R-bar approach from 360m, 1cm/s 0.095 24.4
2revs 100m cross-track 0.097 24.7
Damped cross-track 0.112 24.96
Mult.obs.man. 0.085 27.1
Coelliptic, 100m Ah 0.229 0
Damped cross-track 0.056 9.63
Damped cross-track from 2-8hrs 0.074 8.85
Mult.obs.man. 0.084 50.72
Coelliptic, 1Tkm Ah 0.229 0
Damped cross-track 0.057 96.3
Trav. Football, standard 0.167 0
Shrinking Trav. Football, fixed Ah 0.27 0.051
Damped cross-track 1 1.85
Mult.obs.man. 0.23 7.53
Shrinking Trav. Football, shrinking Ah 0.28 0.055
Damped cross-track 0.7 1.35
Muit.obs.man. 0.14 6.1
Spiral 0.63 0.055
Damped cross-track 2 0.46
Mult.obs.man. 0.27 1.55

Table 4-4: Maneuver-assisted closure trajectory LINCOYV results summary

This data can also be visualized by showing the best performing trajectories, in terms of AV

and percent error, as in Figure 4-30.
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Figure 4-30: Maneuver-assisted closure trajectory LINCOV results summary

4.4 GENERAL CONCLUSIONS AND HYBRID

TRAJECTORY DEVELOPMENT

In addition to the maneuver-assisted trajectories in the previous sections, several hybrid
trajectories are designed in order to combine the best characteristics of different maneuvers. For
instance, it was mentioned earlier that the R-bar approach provides excellent range observability
to the navigation filter, but the high fuel use makes long approaches costly. An improved
technique would be to use other methods to get closer to the target and then transition to an R-bar

final approach. Three trajectories are proposed as an example of how to create complete
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maneuver-assisted trajectories. Both the trajectories and LINCOV results, tested under the same

conditions as in section 4.3.2, are shown.

These hybrid trajectories are also representative of the general conclusions that can be drawn
from this chapter in the sense that they represent techniques for maneuver-assisted trajectories
that improve downrange observability. Although the maneuver-assisted trajectories may not
yield downrange observability in the strict sense, the results clearly showed that using maneuvers
to augment natural orbital motion significantly helps navigation filter performance. However, it
was also shown that the simple addition of a maneuver without regard to its direction is not
recommended. Specifically, the V-bar approach demonstrated that maneuvers leading to motion
paralle] to the line-of-sight can actually make the downrange uncertainty worse. The analytical
results in the dual control field support the qualitative conclusion in this chapter that motion
normal to the line-of-sight generally yields significant improvements in downrange uncertainty.
Also, the principle that downrange uncertainty is greatly reduced during chaser flybys of the
target is still a useful technique in maneuver-assisted trajectories even though it was first

established in the natural motion analysis.

The first hybrid trajectory is shown in general schematic form in Figure 4-31. The chaser
starts in a co-circular station-keeping orbit a fixed distance from the target. At some point, a
maneuver induces slow cross-track motion to keep the chaser oscillating and drive down the
downrange errors. The second maneuver transfers the chaser to a coelliptic that takes the chaser
past the target to a third maneuver point. At this point, the chaser can either transition to the V-
bar or to a coelliptic on the opposite side of the target. If the chaser comes in along its final
approach on the V-bar, it damps out any remaining cross-track motion as it approaches the target.
In the case where it transfers to another coelliptic, at the next flyby point the chaser nulls all
cross-track motion and begins a final approach along the R-bar. Although the approach along the
V-bar does not offer range observability, it is a typical approach used in many current rendezvous

applications and so is considered herein.
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Figure 4-31: Hybrid trajectory 1- Co-circular station-keeping to coelliptic to final

approach

The reference trajectory and linear covariance results for hybrid case 1, with a final R-bar

approach, are shown in Figure 4-32 and Figure 4-33. In this case, the coelliptic Ah is 100m and

the R-bar approach is from 100m at a closing rate of Scm/sec. The results with a final V-bar

approach at Scm/sec from approximately 250m away are shown in Figure 4-34 and Figure 4-35.

Total AV usage for the R-bar variation is 3m/s and 2.97m/s for the V-bar approach case.

As expected, the R-bar approach performs quite well. The use of the hybrid helps to

improve the V-bar approach’s normally poor range observability. However, the downrange

uncertainty begins to grow dramatically as the chaser gets near the target. The LINCOV results

do not show the last 17m of the V-bar approach to preserve the scaling.
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The second hybrid trajectory makes use of the spiral, or modified traveling football, along
with a final approach along the V-bar or R-bar. As shown in general form in Figure 4-36, the
chaser begins in a spiral orbit closing on the target. Throughout the approach, several observation
maneuvers are performed and timed to occur during the V-bar crossings since these are points of
poor range observability. At either a V-bar or R-bar crossing, the chaser transitions to a final

approach and moves to intercept the target.

5) Obsgrvatiof 3) Observation
maneuver

2) Observati
maneuver

+V-bar

4) Otgervation
1) Start in spiral

+R-bar

Figure 4-36: Hybrid trajectory 2— Spiral to final approach
The reference trajectory and linear covariance results for this second hybrid case with a final
R-bar approach from 55m at Scm/sec are shown in Figure 4-37 and Figure 4-38. The spiral
altitude shifts approximately from —110m to 90m to —80m to 70m and then to the point where
final approach is initiated. The results with a final V-bar approach from 108m at Scm/sec are
shown in Figure 4-39 and Figure 4-40. Total AV usage for the R-bar variation is 1.12m/s and
1.01m/s for the V-bar approach case.

In this case, the final approaches do not perform as well as they did for the first hybrid. This
is due to the fact that the first hybrid has larger R-bar burns since it approaches from a further
distance. Also, since there is no process noise, the benefits of using observation maneuvers in the
second hybrid compared to the slow cross-track motion in the first may not be as apparent. The
R-bar LINCOV results stop when the chaser is 8m away from the target and the V-bar results

stop 32m away to preserve the scaling of the plots since the final errors grow very large.
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The third and final hybrid trajectory is a combination of a centered station-keeping football
followed by an R-bar or V-bar approach. The schematic in Figure 4-41 shows how the chaser
starts in a centered football and executes a maneuver to induce slow cross-track motion. This is
done to improve the downrange uncertainty so that a second maneuver can be made to transition
the chaser into either a V-bar or R-bar approach. As in the first hybrid trajectory, the cross-track
motion is damped out for V-bar approach while for the R-bar case it is nulled completely when

the final approach begins.

1) Induce cross-track
otion

Damp cross-track motion
during final approach on V-bar

3) R-bar
approach

Chaser

2) Null cross-track
motion

A 4
+R-bar

Figure 4-41: Hybrid trajectory 3— Centered football station-keeping to final
approach

The trajectory and LINCOV results for hybrid trajectory 3 with an R-bar approach are
shown in Figure 4-42 and Figure 4-43, and the final V-bar approach results are given in Figure
4-44 and Figure 4-45. For both variations, the relative motion football has +/-100m of vertical
motion and +/-200m of downrange motion. This hybrid does a good job of maintaining the
downrange uncertainty at low levels throughout the run. Initially the downrange and altitude
uncertainty is oscillating, characteristic of the football shape, but the first cross-track maneuver
has a very noticeable effect. The V-bar approach expectedly begins to cause downrange error
growth as it approaches the target and the LINCOV results stop when the chaser is still 8m from
the target. Total AV usage for the R-bar variation is 0.81m/s and 0.85m/s for the V-bar approach

case.
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The hybrid trajectories demonstrate that using well-chosen maneuvers can lead to excellent
performance in rendezvous and close approach scenarios using angles-only navigation. As
expected, the lessons learned from natural motion analysis paid dividends as they helped to create
maneuvers that effectively stimulated line-of-sight changes. Thus, while maneuver-assisted
trajectories may not lead to strict observability, they decrease downrange uncertainty to levels
acceptable for close approach applications. However, these results came using ideal conditions in
terms of error sources and measurement availability. The next step will be to use these hybrid
trajectories, along with other selected maneuver-assisted trajectories, to form the basis for the

next phase of testing, eventually leading to trajectories which are useful in actual mission

scenarios.

158



Mission Analysis

S MISSION ANALYSIS

Although the previous chapter provided a number of potential trajectories that would be
useful in an angles-only navigation situation, the results came primarily from idealized scenarios
in terms of the error models that were used. In order to verify that these maneuver-assisted
trajectories work in practice, the Orbital Express mission is explored as a typical mission that
could benefit from the techniques presented in this work. This chapter will briefly explain the
background of the Orbital Express mission, present some of the error parameters that are
reasonably expected, utilize selected maneuver-assisted trajectories to accomplish the mission
goals in the face of more complete error modeling, and show a sensitivity analysis of how these

errors affect navigation performance.

5.1 MISSION OVERVIEW

The ASTRO (Autonomous Space Transport and Robotic Orbital) Orbital Express mission is
a DARPA (Defense Advanced Research Projects Agency) Advanced Technology Program. As
shown in Figure 5-1, the long-term goal of the program is to eventually have modular spacecraft
that can be serviced on-orbit by an ASTRO spacecraft [19]. This will allow spacecraft to have
their lifetimes extended by being refurbished with new supplies such as fuel or avionic unit
replacements. These supplies would be placed in bulk into a parking orbit where they would be
later retrieved, on demand, by the ASTRO vehicle. The ASTRO vehicle would then rendezvous
with the spacecraft being re-supplied. The target vehicle would not have the capability to aid in
the rendezvous so the burden is on ASTRO to perform all relative navigation, and execute the
corresponding maneuvers. Additionally, ASTRO must be able to act autonomously and have the

capability of achieving rendezvous without ground control monitoring.
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Figure 5-1: Orbital Express system elements

The concept of using ASTRO serviced spacecraft could eventually extend to a broad array of
vehicles and orbits, but for the purposes of this study only the near-term demonstration mission
will be considered. This demonstration involves a number of aerospace design teams competing
for the chance to do an actual flight demonstration in the 2003-2004 time-frame. In one scenario,
the simulated ASTRO vehicle, or chaser, must first move from a position 20km downrange and
1km above/below the target to a station-keeping point 50m downrange as in Figure 5-2. Then,
the chaser must show the ability to maintain this station-keeping position for an extended period
of time. The question, though, is how should the chaser proceed from its initial position to the
terminal offset point. There are obviously a number of systems and events that play a role in
mission success; however, this portion of the study will only examine the impact of the ASTRO
pavigation system on mission success. More precisely, the question is whether an angles-only
navigation system, using maneuver-assisted trajectories, can accomplish the desired mission of
placing the ASTRO at the desired point(s) with acceptable error uncertainties. For this study, the
desired uncertainty value is less than 10%-1c downrange error at the 50m offset point. This

equates to a navigation downrange 1o error of 5m or less by the time the chaser reaches its final

targeted position.
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Figure 5-2: Orbital Express mission endpoints
5.2 INCORPORATION OF MISSION SPECIFICATIONS

The Orbital Express mission is expected to take place in low to medium altitude earth orbits.
Specifically, the target orbit was designated to be circular at 800km altitude. The actual
inclination is unspecified so a value of 45° was selected. In practice, the absolute orbital element
values of the target and chaser vehicle have little, if any, impact on the results reported here. The

more important values are the differences between them.

The first mission related constraint is that angular measurements are only available when the
target is illuminated by sunlight. Even though the exact sensor suite for the Orbital Express
mission is unknown, the general constraint of selective measurement availability is realistic for a
variety of different scenarios such as optical sensors requiring lighting, infrared sensors requiring
a deep space background, a modified star tracker requiring the earth and sun to be outside the
field of view, or a solar-powered target beacon. Although section 3.4.2 discussed how
measurement availability did not significantly change navigation performance, that conclusion
was for cases with no process noise. The present addition of error models including process noise
may turn out to have adverse effects on navigation where measurement updates are not

consistent.

Selecting actual error parameter values for navigation performance evaluation is a rather
subjective process that is dominated by two considerations. The error sources must be chosen so
that the results are broad enough to be generally applied to other missions. Although the Orbital
Express construct is being used to generate initial and final conditions for the trajectories, simply

applying all of the expected mission values to the present study would strip away its generality
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for future use. Secondly, the list of errors must not be so long that the dimensionality of the
problem becomes overwhelming, but must be long enough that the final results are a reasonable
representation of reality. With this in mind, four different error sources are modeled as described

below, and implemented in the linear covariance analysis according to section 2.2.2.

The first error model affects the angular measurements themselves. For a typical line-of-
sight sensor, the measurement error comes largely from two sources. The first source of angular
measurement error is simply the noise on the measurements which was the sole error being
modeled in previous chapters. This noise is independent of target-chaser position and is therefore
fixed at 0.03°-1c. This is representative of a simple 1,000x1,000 pixel measurement array with a
15° field of view. Assuming the target is a point source that occupies one pixel (two if it falls
onto a neighboring one as well) the error to fully displace the target would be 0.03°. Although
this model is realistic at distances where the target appears to be a point source, at shorter ranges,
most angular measurement sensors will have errors relating to finite body effects. As the chaser
approaches the target, taking accurate angular measurements implies that the centroid of the
target is known perfectly which is not usually the case. In fact, even if the centroid were known,
there would still be errors since the center of gravity of the target vehicle would not be known
perfectly. To account for these effects, it is assumed, for the current testing, that the sensor has a
10% error determining the center of a target that can be contained inside a 2.5m radius sphere.

Thus, the standard deviation of the angular measurement error resulting from finite body effects

i (0.25 +180

) , 1o where r is the relative range between the target and chaser. For different
r A

sized target vehicles or errors, the results are still valid by scaling the range, e.g. 10% error
centering a 2.5m target at 25m is the same as 10% error centering a Sm target at 50m or 30%
error centering a 2.5m target at 75m, etc. Also, this finite body effect is not necessarily white
noise but may rather appear as a time-varying bias due to varied lighting conditions. Assuming
that this occurs about once every half orbit due to lighting constraints, this error is modeled as a
first order Markov process with a time constant, T=1/2*Period (see section 2.2.2). Thus, the total

error model for angular measurements includes both a range independent noise value and a range

dependent dynamic bias.

The second error model accounts for the IMU inaccuracies in measuring maneuvers
implemented by the chaser vehicle. Since the previous chapter dealt with the benefits of using
maneuver-assisted trajectories to aid in angles-only navigation, the measurement of these

maneuvers is a key parameter. As with the angular measurement error model, the AV
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measurement error model consists of two portions. For maneuvers that are larger than 2cm/sec,
the measurement error is Imm/sec-16 which is representative of the quantization error of an
IMU [12]. For smaller maneuvers on the order of mm/sec used in proximity operations,
spacecraft may use thrust models rather than attempting to actually measure the maneuver with an
IMU. In this study, maneuvers smaller than 2cm/sec have an associated modeling error equal to
5% of the AV magnitude. Both the quantization error and modeling error are added in the linear
covariance tool as spherical measurement errors according to equation (2.81). Note that the
modeling error for small burns is being added spherically, as opposed to along the direction of the
burn, because for such small maneuvers it would be very impractical to align the spacecraft in the
direction of each maneuver. Rather a combination of thrusters would impulsively fire for
maneuvers less than 2cm/sec, and the resulting thrust model error would be closer to a spherical

shape rather than directed along a particular direction.

The next error modeled is the ability of the chaser to determine its inertial attitude. The
angular measurements of the line-of-sight to the target are referenced to inertial attitude and
therefore errors in the chaser’s inertial attitude will enter into the relative navigation uncertainty
values. It is reasonable to assume that star tracker updates will be frequent enough that the details
of a gyrometer model are not required for this study. Instead, two forms of error will be placed
on the inertial attitude measurements. The first is a bias of 0.01°/axis-10o that is representative of
a static misalignment between the star tracker and the chaser spacecraft. The second is a time-
varying or dynamic attitude bias, conservatively set to 0.1°/axis-10, and modeled as a first order
Markov process with a time constant, t=300 seconds, based on the time increment between star

tracker measurements [24].

The final error source model for the mission analysis is process noise, or un-modeled
accelerations. The level of un-modeled acceleration that is important is not the absolute values of
process noise on each vehicle, but rather the difference between them. For example, if the gravity
field is poorly modeled it will have a similar effect on both the chaser and the target so the effect
on relative navigation will be small. The level of un-modeled acclearation is then driven by the
assumed effective differences between the two vehicles. It is assumed that the target is

essentially a passive non-maneuvering vehicle and has a process noise variance of

cm
2
1x107> m 3 ora standard deviation of 0.0019 A , which equates to approximately 1/2m

Jhr

of error per orbit [15]. The chaser vehicle, however, is active and will potentially be subject to

more un-modeled accelerations in the form of un-coupled jet firings or venting. Also, the chaser
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process noise value should account for differential effects between it and the target such as drag,
solar radiation pressure, or other perturbations that affect the vehicles unequally. In light of these

variables, two different values of process noise are used to represent a ‘quiet’ and ‘noisy’ chaser

. _ 2
vehicle. The quiet vehicle has a process noise variance of 9x107'°M / , or a standard
S

cm
deviation of 0.18% , which translates into slightly more than S0m of error per orbit. The
r

2
. . . - . -9 - .
noisy chaser vehicle’s process noise variance is 7x107 7 / , or a standard deviation of
s

0.5 A

\/___ ., which is about 150m of error per orbit and is nearly on the order of un-modeled
’

accelerations experienced by the space shuttle, which is an extremely noisy vehicle.

Although not an actual error model, another important factor to consider for linear
covariance testing is the a priori initialization of the covariance matrix. Although the Orbital
Express mission does not yet have set values, it does have a mission concept and associated
expected values that are still general enough to handle other potential missions. For closure
scenarios, the chaser vehicle is assumed to have GPS measurement capability and therefore have
an initial a priori 16 uncertainty of 30m and 3cm/sec. The target vehicle is assumed to have been
tracked with ground based systems, and thus have an initial a priori 16 uncertainty of 100m and
10cm/sec. These values are clearly too large to be used for station-keeping cases since the initial
position of the chaser is only 50m from the target. For these station-keeping cases, both vehicles
have a priori uncertainties such that the relative position uncertainty values are initially 10%, the
meet-or-beat goal of the closure trajectories. This equates to 3.5m and 3.5mm/sec of inertial

position and velocity uncertainty initially placed on each vehicle.

5.3 DESIGN OF MISSION TRAJECTORIES

The next step for mission analysis is to design the actual maneuver-assisted trajectories
subject to Figure 5-2 taking the chaser vehicle from its starting point to the 50m offset in addition
to station-keeping trajectories that maintain the chaser near the 50m point. Besides combining
the techniques of Chapter 4, several other considerations come into play. Maneuvers must be

realistic in the sense that they could actually be executed based on the current navigation state
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estimate. For example, the chaser could not perform a maneuver going from a lkm coelliptic to a
100m coelliptic if the 1o altitude uncertainty was much more than 30m. In addition, the final
portion of the closure trajectories should ideally be during a period of sunlight illumination.
Since the final minutes of the trajectory are the most crucial, it would be unwise to attempt to
reach the 50m point without the benefit of any angular measurements. Associated with this
concept is the idea that in actual practice it would be desirable to only execute maneuvers during
sunlight. This is generally the case for the closure and station-keeping trajectories that will be
considered. However, in a few instances maneuvers are executed during eclipse periods.
Although this is not recommended for actual mission operations, the results from this practice are

used as an illustrative tool in this study.

The maneuver-assisted trajectories for the Orbital Express mission presented in this section
are shown in ‘cartoonish’ format. Since the actual scaling involved would make it prohibitive for
the reader to note key characteristics if looking at actual data, all key dimensions, times, and
maneuvers are noted within the schematics. For notational convenience, observation maneuvers
are labeled in the format “t=X.XXhr, start obs.man., At=Y Ymin, ZZm” which means that the
observation maneuver initiates at X. XX hours and goes out ZZ meters in the cross-track direction
in YY minutes before returning to O YY minutes later. In other words, the entire three-burn
sequence described by equation (4.3) takes (2¥*YY) minutes. There are a total of four closure
trajectories designed to bring the chaser to the 50m offset point and three station-keeping

trajectories designed to hold this position for an extended period of time.

5.3.1 Closure

The first closure trajectory, shown in Figure 5-3, beings with a lkm coelliptic flyby.
Transferring from the 1km coelliptic above the target to a lower coellipitic 100m below the target
is ideal since the flyby point is the point of best downrange error. Once the chaser is directly
below the target on the 100m coelliptic, it begins final approach along the R-bar at 10cm/sec.
The reason for choosing to close only 75m of the 100m along the R-bar is two-fold. First, the
desired final position is 50m on the V-bar, not actual rendezvous. It would be possible to simply
fly past the target 50m on the lower coelliptic and then move directly up along the radial
direction. However, this approach is not as effective as the approach from directly below since
the angular measurements once again begin to form a ‘cigar-shaped’ uncertainty ellipse due to the
downrange offset. The other reason to stop short during the R-bar approach is that, unlike the

error free cases, the downrange percent uncertainty begins to increase at the end of an R-bar

165



approach. By only approaching to within 25m of the target, the benefits of the R-bar approach
are gained without getting close enough to see degradation of the navigation uncertainty. The

transfer from the R-bar approach to the V-bar offset point is done using a Lambert transfer

maneuver. This Lambert calculation determines the required initial and final velocity, 170", Vs

required to take a spacecraft from an initial to a final position, I_i‘; g R; , in a fixed amount of time,

t

wansfer - 1 D€ Interested reader can find extensive coverage of the mechanics of calculating these
maneuvers in [3] and [4]. The Lambert maneuver is used as opposed to a %2 orbit Hohmann type
transfer because at such close range to the target, the effects of process noise are much more
pronounced in terms of percent downrange error .growlh. Waiting 2 orbit between maneuvers is
much less effective than using a Lambert maneuver pair whose burn times are much closer

together. The total fuel use for this trajectory is 1.63m/s.

The thickened gray portions of the trajectory schematics represent times when measurements

are not available due to periods of eclipse.

t=3.57hr,
1=0, Chaser begins t=3.25hr, 100m transferto
in coelliptic cross-track lower, coelliptic
ver >
1.7km
Ikm Ah =8.46hr, e
+V-bar transfer 50m Target 23k P
<— maneuver % <
i 3
25m
Y
A
=8.39hr,
transfer
maneuver 1
75m
t~7.15-7.75hr, t~5.5-6.1hr,
— eclipse eclipse
t=38. , start
up R-bar @ +=7.45hr. mull B t=4.41hr, enter
e lower coelliptic
2k Menuxee 100m cross- P
track
+R-bar

Figure 5-3: Orbital Express trajectory option 1 schematic
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Mission Analysis

The second closure trajectory is similar to the first except that it makes use of a V-bar final

approach, as shown in Figure 5-4. Although V-bar approaches suffer from poor angles-only

observability characteristics, they are a common method of spacecraft rendezvous and therefore

one was incorporated into the current study. Note that unlike the R-bar approach, observation

maneuvers are used to compensate for the loss of observability due to approaching the target

along the line-of-sight. The maneuver from the lower coelliptic to the V-bar is once again a

Lambert transfer and is applied directly below the target to take advantage of the low navigation

errors at that point. Two observation maneuvers are performed before beginning the 10cm/sec V-

bar approach during which the target reaches the 50m point at 8.93hrs. This scenario was also

used to examine navigation ability at closer offset points by allowing the chaser to close to within

10m of the target. Fuel use for this trajectory, including the approach to 10m, is 3.91m/s.

t~4.05-4.6hr,

1=3.57hr,
t=0, Chaser begins t=3.25hr, 100m transferto
in coelliptic cross-track lowercoelliptic
.___b yver
A
P 1.7km
1kmi Ah -
;;:3:; 16:“1“‘ t=8.79-9.1hr, V-bar
At=Smin, 40m approach @ 10cm/sec
+V-bar \A“ 0m__, 50m Target e
d Y "
h 1=8.3%r, \
transfer
maneuver’? t=8.86hr, start t=0hr, start
obs.man, obs.man, 3
At=2min, 25m At=2min, 10m eclipse
t=8.93hr, start
obs.man,
At=2min, 10m 100m
t~7.4-7.95hr, t~5.73-6.28hr,
eclipse eclisse _
1=8.18hr, transfer to|  =7.45hr, null * t=4.41hr, enter
20km V-bar 100m cross- lower coelliptic
track
A\ +R-bar

Figure 5-4: Orbital Express trajectory option 2 schematic
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The third Orbital Express trajectory uses a spiral approach to place the chaser directly at the

desired offset point as shown in Figure 5-5.

In addition to the in-plane motion, observation

maneuvers are also used at V-bar crossing points. Note that two of these maneuvers take place in

eclipse periods. As discussed earlier, this is not the most desirable situation, but they are used

here to see the effects of employing maneuvers during periods of unavailable measurements. The

in-plane maneuvers are all simply Hohmann type transfers and the resulting total fuel use for this

trajectory is 1.69m/s.

=3, hl' st
t=0, Chaser begins / :m:‘:]ssfﬁer .
in coelliptic @n S /
~13km t=5.24hr, 37 t~3.8-4.4hr,
m:nsfer eclipse
t~5.5-6.1hr, B
- N
- elipme t=3.81hr, start b,
t=5.55hr, start obs.man, N
obs.man, At=12.5min, 50m
At=12.5min, 25m
=,
+V¥-bar 50m Target
>, A 4 i
-
t=06.92hr, Stop,
on V-bar

\ t=4.66hr, start

obs.man,
At=12.5min, 50m

300m

bs.man,

At=12.5min, 25m

20km

t=6.0%hr, 4%
transfer

+R-bar

800m

Figure 5-5: Orbital Express trajectory option 3 schematic
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Mission Analysis

The fourth and final closure trajectory transitions from the initial coelliptic to a temporary

station-keeping football to a final approach along a glide-slope as shown in Figure 5-6. The

initial transfer from the lkm coelliptic is done above the target to a coelliptic 50m below the

target. As the chaser passes directly below the target it places itself into a football orbit centered

on the target. After two orbits on the football with observation maneuvers to maintain the

navigation accuracy, the chaser transitions to a ~20cm/sec glide-slope approach towards the

target. This glide-slope is accomplished by combining the maneuvers associated with both R and

V-bar approaches to achieve a closing velocity along an angle relative to the target, 30° in this

case. As with closure trajectory option 2, this case is used to examine the ability of angles-only

navigation to function beyond the 50m offset point. The glide-slope approaches the target to

within 10m at 14.25hr. The total fuel use for the entire trajectory is 2.42m/s.

X t~.88-1.45hr,
t=0, Chaser begins / eclips ower coelliptic
in coelliptic . > / e -
t~10.95-
11.55hr, &
t=14.14hr, begin 12.65-13.25hr
glide slope & i
start obs.man,
At=1.2min, 10m
Ikm Ah
t=11.18 & 12.86 50m
t=14.25hr, hr, start obs.man, A
A=12.5min, 25m
t=14.19hr, start 1 Eway
obs.man, At=2min, S0m
+v'baL y 10m
< N

t=1.34hr, transfer

t=10.34, 12.03, &
13.71hr, start
obs.man,
At=12.5min, 25m

S~ 300
S

t=10.13hr, transfer

to football eclipse

~7.5km

1~0.25- t~5.9-6.5hr
> 9.85hr, 8.2hr, eclipse
A4 eclipse  eclipse
+R-bar

Figure 5-6: Orbital Express trajectory option 4 schematic
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5.3.2 Station-keeping

In addition to the four trajectories designed for the closure portion of the Orbital Express
mission, three methods of station-keeping are proposed for maintaining the chaser at the 50m V-
bar offset. Since the underlying assumption of station-keeping is that the chaser can not deviate
from a given point relative to the target, all three methods are similar in nature and are considered

at once as shown in Figure 5-7.

The first station-keeping technique is for the chaser to simply stay in a co-circular orbit with
the target with 50m of separation. As demonstrated in Chapters 3 and 4 this type of station-
keeping is far from ideal from an angles-only navigation standpoint, but it is a common method in
actual practice since it is the only point where zero relative motion can be maintained indefinitely
with zero fuel use (in an idealized situation). To overcome the problem of navigating in a co-
circular orbit, observation maneuvers are used three times per orbit to keep the navigation
uncertainty errors at acceptable levels. The times of the observation maneuvers, along with
eclipse periods, are shown along with the trajectory in Figure 5-7. The fuel use over
approximately five orbits is 4.97m/s. As in the previous section, the At listed for an observation

maneuver refers to the time it takes the chaser to reach the maximum out-of-plane point.

The next type of station-keeping trajectory is very similar to the first except that instead of
using a co-circular orbit for zero relative motion, the chaser is in a small football centered on the
50m offset point. The chaser gets as close as 40m to the target and is 60m away at its farthest
separation. The observation maneuvers are identical to those used for the co-circular case which
take place three times per orbit and are timed to avoid eclipse periods. Since these observation

maneuvers are the same, the fuel use for this trajectory over five orbits is still 4.97m/s.

The third and final station-keeping trajectory also makes use of a relative motion football,
but uses maneuvers to stop and start the football motion. Since maneuvers generally tend to
improve observability, this trajectory replaces some of the cross-track observation maneuvers
used in the first two methods with in-plane maneuvers that induce and then null a football. In
between the footballs, the chaser is in a co-circular orbit sitting motionless at the 50m offset
point. The chaser performs two observation maneuvers during every football as shown in Figure
5-7. Note that for this third trajectory, some of the maneuvers take place during eclipse periods
which is done only for illustrative purposes and is not usually desirable in practice. The fuel use
over four cycles is 1.32m/s where a cycle consists of waiting on the V-bar for ¥ hour, inducing a

football and then nulling it one orbit later.
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Chaser

+V-bar ¢ 9Tar et Eclipse periods(hrs) for
g all station-keeping cases:
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observation Option 3: : ‘
maneuvers AV=1.32m/s, Elapsed time~8hrs +R-bar

Figure 5-7: Orbital Express station-keeping trajectory schematics
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5.4 RESULTS

With several potential Orbital Express trajectories designed, the next step is to gauge the
ability of angles-only navigation to achieve mission success. This simply requires a LINCOV
analysis of the problem as specified by the reference trajectories and the error models given in
section 5.2. However, a more useful set of results would include not only the navigation
performance in the presence of all the errors sources but also a demonstration of the sensitivity to
these errors. The underlying motivation to this approach is that the current study would be much
more useful to future mission design if a potential user could easily judge whether or not a given
trajectory might work subject to their mission specific error models. In light of this desire, the
following test plan was used for generating LINCOV results with the trajectories in the previous

section.

Each of the station—keepingvz'md closure trajectories was tested in the presence of sixteen
different error model combinations designed to span as much of the study space as possible. The
results provide useful information about the individual effects of error sources as well as
reference trajectory dependencies. First, the value of process noise/un-modeled accelerations was
set for the chaser vehicle. The first LINCOV run then uses zero error sources in order to establish
a baseline for the trajectory for its given a priori information and un-modeled accelerations. The
next three runs consist of turning on each error model individually while leaving the others at
zero (e.g. the AV measurement error model is used while still using error free attitude
determination and angular measurement models). These results show the relative effects of each
error source compared to the baseline error free results. The fifth run is a case with all three error
sources set at their nominal values, and is considered the anchor point, or most realistic
representation, of what the Orbital Express mission results would actually be like. The sixth
through eighth cases are stress tests to examine the sensitivity of the trajectories to higher error
values. Each error model is increased by three times its nominal value while leaving the other
two error sources at their nominal values. For example, the attitude error stress case would set
the static misalignment bias to 3x0.01°=0.03°/axis-16 and the attitude measurement noise to
3x0.1°=0.3°/axis-10 while leaving the angular and AV measurement errors at their nominal non-
zero values. These same eight runs are then repeated for a different value of chaser vehicle un-

modeled accelerations.
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Mission Analysis

For the closure trajectories, the final downrange percent uncertainty upon arrival at the 50m
offset point was the key value to focus on. Again, though, simply recording this value and
moving on would remove the generality from this study that could make it potentially useful to
future missions. The presence of eclipse periods means that there are portions of each trajectory
where the downrange percent error values may be of interest. Therefore, in ?ddition to recording
the downrange percent uncertainty at the end of each trajectory, the highest value encountered
during the entire trajectory is also recorded. In almost all cases, this occurs during an eclipse
period. An additional figure of merit recorded for closure trajectories 2 and 4 only is the
downrange percent uncertainty when the chaser reaches a point 10m away from the target. For
the station-keeping trajectories, there are really only two values of interest. One is the highest
value of downrange percent error experienced. This value always occurs during an eclipse
period. Since other missions may have more constant measurement availability, the highest value
of downrange percent error during a sunlight period is also recorded. All of these values were

recorded for each of the above tests.

The results for the quiet and noisy chaser vehicle are tabulated in Table 5-1 and Table 5-2
respectively. Preceding these results is Figure 5-8 which illustrates how to extract data of interest

from the tables. The data is also shown in a more graphical form following the tables.
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Figure 5-8: Orbital Express trajectory testing results legend
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"QUIET" PROCESS NOISE - CHASER

Closure1 Closure2 Closure3d Closure4 SK1 SK2 SK3
Final 0.3 0.75 0.6 1 0 error Sun 1.3 1 2
0 error High 1.4 2.5 0.9 6 Eclipse 6.5 7.5 7
at 10m 5.6 3.5
Final 0.5 4 1.2 1.7 AV Meas Sun 1.5 1.25 3
AV Meas. [High 1.5 3.2 1.2 6.5 " |Eclipse | 6.75 8 9
at 10m 29 11
Final 0.5 1.2 1.1 1.75 Sun 1.5 1.5 3.5
Ang.Meas. [High 2.25 35 1.25 9 Ang-Meas. Ie icse |8 95 85
at 10m 7 5.4
Final 0.5 1.5 1.2 1.8 Att.Err Sun 1.5 1.25 3
Att.Err. High 3.4 5.5 2.5 10 T Eclipse 8 9.5 9
at 10m 7.9 5.2
Final 1 4.8 1.75 2.7 All Errors Sun 2.5 2 4.5
All Errors  |High 3.5 6 2.6 12 Eclipse 11 13.5 11
at 10m 32 12.5
Final 1.4 12 2.5 4.6 3y AV Sun 3.25 3 8
3x AV High 4 8 3.25 16 Eclipse 14 18.5 22
at 10m 94 32
Final 1.5 5 2.4 3.6 Sun 3.5 4 10
3x Ang.Err [High 4 6.5 2.75 17 Sx Ang.Brr e ose | 1475 |18 14
at 10m 38 15
Final 1.5 5 2.7 3.75 Sun 3.25 3 6
ax ALErr [High 7 10 6.2 19 S ALEM IE ipse | 15 18 15
at 10m 36 18
AV required (m/s) 4.97 4.97 1.32
AV required (m/s) 1.63 3.9 1.69 2.42
Nominal 15 Error Values:
AV measurement error: Burmn>2cm/sec-->1mmy/sec spherical; Else 5% spherical Process noise on target: 1x10A-13 (m"\2/s"3)~0.5m/rev
Angular measurement noise: 0.03°; Measurement bias: 0.25/Range rad, T=1/2*Period Process noise on chaser: 9x10/-10(mv\2/sA3)-50m/rev

Attitude error: 0.01%/axis static misalignment; 0.1%/axis attitude error (1=300sec)

Table 5-1: Summary of results for Orbital Express trajectories with quiet chaser
vehicle
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Q error

AV Meas.

Ang.Meas.

Att.Err.

All Errors

3x AV

3x Ang.Err

3x Att.Err

“NOISY" PROCESS NOISE - CHASER

AV required (m/s)

Nominal 1o Error Values:

Closure1 Closure2 Closure3 Closure 4

Final 0.75 2.1 1.7 2.75
High 4 6.75 2.6 16
at 10m 15 10
Final 1 4.5 2.25 3.2
High 4 7 2.7 16.5
at 10m 32 14.75
Final 1 2.5 2.3 3.7
High 5 8.5 2.75 20
at 10m 16 12
Final 1 3 2.5 3.9
High 6.8 10.8 3.2 20
at 10m 17 12.1
Final 1.2 5.2 3 4.5
High 7 11 3.4 22
at 10m 33 17
Final 1.8 12.5 3.8 6.2
High 7 12.5 4.2 24
at 10m 95 35
Final 1.9 6 3.5 5.5
High 7.5 12 3.9 275
at 10m 39 19
Final 1.9 6 3.75 5.6
High 10.5 16 7 29
at 10m 39 19

1.63 3.91 1.69 242

AV measurement error: Burn>2cm/sec-->1mm/sec spherical; Eise 5% spherical

Angular measurement noise: 0.03%; Measurement bias: 0.25/Range rad, t=1/2*Period

Attitude error: 0.01%axis static misalignment; 0.1°/axis attitude error (1=300sec)

Table 5-2: Summary of results for Orbital Express trajectories with noisy chaser
vehicle
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0 error

AV Meas.

Ang.Meas.

Att.Erm.

All Errors

3x AV

3x Ang.Err

3x Att.Err

AV required {m/s)

SK1 SK2 SK3
Sun 2.75 2.75 6
Eclipse | 17.8 20.9 18
Sun 2.9 3 6.5
Eclipse | 182 21.2 19
Sun 3.2 3.1 7.5
Eclipse | 19.5 225 21
Sun 3.25 3 7
Eclipse| 19.5 22.75 21
Sun 3.4 3.25 7.5
Eclipse 21 24.5 22.5
Sun 3.9 3.8 9
Eclipse | 22.75 27.5 28
Sun 4.6 4.5 11
Eclipse | 24.1 28 25
Sun 4.1 4 8
Eclipse | 24.1 29 26

4.97 4.97 1.32

Process noise on target: 1x10A13 (mA2/s"3)~0.5m/rev
Process noise on chaser: 7x10/-9(m"2/s/3)~140m/rev




Mission Analysis

Although the tables are complete, an alternate and perhaps easier way of quickly viewing the
data is through time histories of the LINCQOV results for the various trajectories. The following
pages show the results of the error sensitivity studies. For each trajectory, the results with all
errors at their nominal values are overlaid with the stress cases where two errors are at their
nominal values and one is at 3x its nominal value. Refer to Figure 5-3 through Figure 5-6 for the
key times and maneuvers in the closure trajectories. Figure 5-9 is a collection of the results for
all four closure trajectories with a quiet chaser vehicle, and Figure 5-10 is the same set of
trajectories except using the noisy chaser vehicle. Following this are the results for the station-
keeping cases. Refer to Figure 5-7 to compare the trajectories to the results. Figure 5-11 shows
the results for all station-keeping trajectories with quiet un-modeled accelerations on the chaser

vehicle while Figure 5-12 contains the results for the noisy un-modeled accelerations.

The time histories for the closure trajectories begin at 3.5 hours since the early portion of the
runs is generally of little interest. The square wave at the top of each plot represents the solar
illumination and eclipse periods. Also, only the downrange component of navigation uncertainty
(as a percent of range) is shown since estimating the other components is not problematic using
angles-only measurements. In the case of closure trajectories 2 and 4, the plots terminate when

the chaser is 50m away from the target in order to better preserve the scaling of the figures.
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The results show that the maneuver-assisted trajectories are quite effective at making angles-
only navigation successful. For the chaser vehicle with quiet un-modeled accelerations, only
closure trajectory 4 did not reach the 50m offset point with less than 10% downrange uncertainty
with all errors at their nominal values. In fact, the first three closure trajectories were able to
maintain this performance even under the higher stress case error values. Increasing the un-
modeled accelerations to the noisy case eliminates closure trajectory 2 from being able to meet
the success criteria. However, trajectories 1 and 3 again maintain the downrange error values

below 10% even in the presence of the largest error models.

For the station-keeping trajectories, the results are largely dominated by the combination of
un-modeled accelerations and eclipse periods. Regardless of whether the trajectory maintains
downrange uncertainty at low levels during sunlight, the amount of un-modeled accelerations
greatly degrades navigation performance during eclipse. A quick thought experiment explains
why. If the noisy chaser vehicle experiences on the order of 150m of error growth per orbit due
to un-modeled accelerations, then it would only take 1/3™ of an orbit for this error alone to create
100% error while station-keeping at a SOm offset point. During eclipse periods, measurements
are not available to keep this growth in check. Despite these problems, though, all three station-
keeping trajectories came very near to maintaining less than 10% downrange uncertainty for the

case of a quiet chaser vehicle with all errors at their nominal values.

Finally, the results illustrate the danger of blindly placing maneuvers into a trajectory in the
hopes of improving navigation performance. As mentioned ecarlier, several maneuvers were
intentionally executed in eclipse periods to examine the effects of this practice. In a sense, the
difference in executing a maneuver in eclipse versus sunlight is similar to executing commands in
an open versus closed loop system. Performing a maneuver initially adds to the navigation
uncertainty due to AV measurement error. In sunlight, however, this additional uncertainty is not
only eliminated, but the original uncertainty is reduced thanks to angular measurements of the
target, in effect closing the loop. In eclipse, though, the uncertainty from the maneuver is not

removed since there are no measurements available.

5.4.1 End-to-End Testing

As an additional test, one end-to-end trajectory was created that merged a closure and
station-keeping trajectory to form one large maneuver-assisted trajectory for LINCOV analysis.

Station-keeping trajectory 3 was added to the end of closure trajectory 3 with several slight
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modifications. First, all maneuvers were timed to occur during periods of sunlight, as would be
desirable for actual mission operations. Second, the station-keeping point was shifted during the
course of the run from 50m to 30m to 10m progressively at 6.92hrs, 17.2hrs, and 24.7hrs
respectively. This was to investigate the performance of angles-only navigation at closer
distances than the 50m offset. Finally, the LINCOV analyis was conducted under varying
measurement availability conditions. Besides the standard case of solar illumination dependence,
one case was run with constant measurement availability, and another case had constant
availability only during the station-keeping phase. The trajectory is shown in detail in Figure
5-13 with the accompanying LINCOV results in Figure 5-14. Total fuel use for the trajectory

was 5.35m/s and the entire scenario lasts approximately 32 hours.
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Figure 5-13: Orbital Express end-to-end trajectory schematic
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The results for the end-to-end trajectory shown below are for the case of all error sources at

their nominal values and the quiet chaser vehicle.
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Figure 5-14: End-to-end trajectory results for quiet chaser with all errors at nominal
values and varying measurement availability conditions
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Once again, the results are extremely encouraging in showing that angles-only navigation
can be effective when using well designed maneuver-assisted trajectories. Except for eclipse
periods, the navigation filter maintains downrange uncertainty values to less than 10% even while
at the 10m offset point. Eliminating the eclipse periods makes the results even more attractive.
The results also serve to highlight the effectiveness of observation maneuvers. Note that the
downrange uncertainty grows during eclipse times even when measurements are always
available. This is because the trajectory was originally designed to avoid maneuvers during these
periods. For potential missions where constant measurement availability was assured these
navigation uncertainty growth periods would be eliminated by simply scheduling observation

maneuvers to maintain the uncertainty at a lower steady state level.

Dispersions Due to Velocity Uncertainty

One aspect of angles-only navigation performance that has not been discussed in detail up to
this point is the effect of velocity uncertainties. Although some of the LINCOV results in
previous chapters showed relative velocity uncertainty values, it is difficult to visualize their
effects on estimating the target position. In mission practice, the presence of velocity
uncertainties during maneuver execution would lead to future trajectory dispersions. Thus, a
better method of quantifying the effects of velocity uncertainties on angles-only navigation is to

examine the dispersions they would cause after maneuvers.

The end-to-end trajectory shown in Figure 5-13 is used to briefly demonstrate how velocity
uncertainties turn into position dispersions. As mentioned in section 2.2.1, the current study deals
with filter performance rather than dispersion analysis. In light of this, the analysis of dispersions
due to velocity uncertainties is significantly simplified and proceeds as follows. At a given
maneuver execution time, it is assumed that the position is known perfectly. The current velocity
uncertainty values along with their cross-correlations are then propagated forward one hour using
the C-W equations (3.1) to create a time history of the position dispersion as a percentage of the

range to the target.

Figure 5-15 shows a sampling of the relative position dispersions resulting from six different
maneuvers. The maneuver times are selected from various portions of the trajectory. The first
maneuver shown at 3.5 hours is an observation maneuver that takes place while the chaser is still
on the initial incoming coelliptic. The second example is at 5.24 hours which is the third transfer

burn in the spiral approach. The third maneuver corresponds to 6.92 hours when the chaser
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arrives and stops on the V-bar 50m from the target. The last three maneuver times all correspond

to the start of station-keeping footballs at the 50, 30, and 10m offset points respectively.
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Figure 5-15: Relative position dispersions resulting from velocity uncertainty at
maneuver execution times for Orbital Express end-to-end trajectory

As was the case for position uncertainties, the position dispersions due to velocity

uncertainties grow worse the closer the chaser is to the target, when comparing percent values.

Another key point that this analysis demonstrates is the potential need for mid-course correction

maneuvers when the time between normally scheduled maneuvers is greater than 30 minutes, or

about one-third of the orbital period. Figure 5-15 shows that when the time between maneuvers

is approximately less than thirty minutes, the trajectory dispersions generally stay at acceptable

levels near 10%. However, if a given maneuver is not followed by another maneuver within
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thirty minutes, the dispersions begin to grow to unacceptable levels. In actual practice, this

problem could be mitigated by using mid-course corrections.

Geo-Synchronous Test Case

Another area of interest is the potential of angles-only navigation to work at higher orbital
altitudes, specifically geo-synchronous orbits. The same end-to-end trajectory shown in Figure
5-13 was adapted slightly for geo-synchronous use. The relative motion shape is exactly the
same although the key times are shifted, and the chaser initially starts 1.4km downrange of the
target rather than 20km since the relative motion at geo-synchronous altitude is much slower.
The spiral approach now begins at 3.43 hours and ends at 51.3 hours (~2.1 days) when the chaser
reaches the 50m offset point. Following five station-keeping footballs at the 50m offset point, the
chaser arrives at the 30m offset point at 193 hours (~8 days). After another three station-keeping
footballs here, the chaser finally arrives at the 10m offset point at 296.4 hours (~12.3 days) where

it does an additional three station-keeping footballs.

Besides these timing changes, many more observation maneuvers were used for the geo-
synchronous case. In the LEO case, there were generally about two observation maneuvers per
orbit. However, at geo-synchronous altitude this would mean doing observation maneuvers
nearly 12 hours apart. In the presence of all the error models this was not sufficient to keep the
downrange error at acceptable levels. Observation maneuvers are begun at 37.6 hours starting
approximately every 1.25 hours and extending 25m with a At=1/2 hour. Once the chaser reaches
the station-keeping point, the frequency of observation maneuvers is increased. From 51.3 hours
through the end of the trajectory, observation maneuvers begin every 48 minutes. Each one
extends 25m with the At=12 minutes. This repeating 48 minute pattern essentially mimics how
often observation maneuvers occurred in the LEO case. All of these additional maneuvers wind
up increasing the total fuel use to 52.8m/s which seems rather large. Considering this is used
over a 16 day period, though, the number is not that high since it equates to roughly 3.3m/s per
day.

The downrange percent uncertainty for the end-to-end geo-synchronous trajectory with all
errors at their nominal values and the quiet chaser vehicle is shown in Figure 5-16. Additionally,
constant measurement availability is assumed. This is a reasonable assumption since the chaser
and target are now at geo-synchronous altitudes and neither encounters the earth’s shadow. The
results show that the navigation filter successfully keeps the downrange error below 10% until the

chaser moves to the 10m offset point. At this closer distance, the observation maneuvers are not
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frequent enough to further reduce the error. However, this can be easily fixed by simply adding
more observation maneuvers, and the more important conclusion is that angles-only navigation
was largely successful in a geo-synchronous orbit using a trajectory originally designed for use in

LEO.
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Figure 5-16: Geo-synchronous end-to-end trajectory results for quiet chaser with all
errors at nominal values and constant measurement availability
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Conclusions

6 CONCLUSIONS

6.1 SUMMARY OF RESULTS

This study addressed the use of angles-only navigation in orbital rendezvous and close
approach situations. There are currently several potential missions which demand sensor suites
that can safely and robustly achieve autonomous orbital rendezvous. Although there are a variety
of sensors that can provide line-of-sight information to a target vehicle, relative navigation with
line-of-sight sensors is usually not considered feasible since the range to the target along the line-
of-sight can not be directly measured. This study proposes enhancing the performance of the
relative angles-only navigation filter, specifically generating improved range observability,
through a combination of two techniques. First, natural motion relative trajectories that involve a
changing target-chaser line-of-sight improve estimation of all relative position components.
Second, maneuvers are used to augment these trajectories to improve range observability, even in
the presence of typical navigation error sources. The results show that, although there is still
much work to be done, angles-only navigation using maneuvers-assisted trajectories is a

promising method of achieving autonomous orbital rendezvous.

6.1.1 Natural Motion Navigation

The first set of results corresponded to the study of natural motion orbital trajectories.
These showed that a lack of relative motion leads to unbounded downrange uncertainty growth
when navigating with angles-only measurements. Relative line-of-sight geometry changes
between the chaser and target allow this downrange error to be reduced over time, although this
did not account for models such as un-modeled accelerations, attitude determination errors, or
angular measurement biases. It was also shown that motion normal to the line-of-sight has
similar effects on range observability regardless of the direction normal to the line-of-sight.
Specifically, cross-track motion is just as effective as vertical motion and is actually more
desirable since it is decoupled from in-plane motion. Another key observation from this study
was that downrange navigation errors were reduced the most during flybys of the target. A study
of the evolution of the navigation uncertainty ellipses over time also showed that they followed

the natural motion of the line-of-sight between the target and chaser vehicles. This fact, coupled
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with the positive effects of geometry changes lead to the conclusion that introducing maneuvers

into the relative motion trajectory would improve angles-only navigation performance.

6.1.2 Maneuver-Assisted Navigation

The next set of results came from studying trajectories that incorporated maneuvers. The
maneuvers were used to create typical rendezvous trajectories, such as R and V-bar approaches;
as well as more un-conventional trajectories such as cross-track oscillations that shrank as the
chaser approached the target, cross-track observation maneuvers, traveling footballs with
naturally slowing closing rates, and even spirals. The results clearly demonstrated the benefit of
performing maneuvers. Besides showing the trade-offs between navigation performance and fuel
use, several suggested hybrid trajectories were created that combined the best characteristics of

several different approaches.

6.1.3 Orbital Express Mission Analysis

The last portion of this study applied maneuver-assisted trajectories to the Orbital Express
mission in the presence of realistic error models, in order to judge whether angles-only navigation
was a viable method of helping to achieve orbital rendezvous. Several trajectories were designed
and used for error sensitivity analyses. These cases demonstrated that well-chosen trajectories
could lead to excellent navigation performance, even when subjected to large errors introduced in
the form of process noise, IMU AV measurement, attitude determination, and angular
measurements. In light of these results, the final conclusion is that angles-only navigation is an
extremely promising method of relative navigation for rendezvous and close-approach

applications.

6.2 FUTURE WORK

Although angles-only navigation seems to be viable, actually using the suggested maneuver-
assisted trajectories in mission practice will require future studies involving higher fidelity
modeling. This study attempted to capture the error sources that might be primary drivers of
angles-only navigation degradation, but only additional study will ensure there are no un-
discovered problems. In the near-term, four areas could be explored that could offer more insight

into the problem and hopefully confirm that the techniques of maneuver-assisted trajectory design

are sound.
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6.2.1 Dispersion Analysis

As described in section 2.2.1, the LINCOV tool not only provides the navigation filter’s
uncertainty as to the state estimates, but can also provide the actual dispersions about the nominal
states. This study focused only on the filtering aspects of angles-only navigation and used
maneuver-assisted trajectories to make it effective. However, another part of the overall problem
is the dispersions that would develop in real use. To fully characterize the performance of angles-
only navigation, the maneuver-assisted reference trajectories need to be modeled with dispersions
added onto them to ensure that the navigation performance is not significantly changed, and that

the mission can be achieved in a dispersed environment.

6.2.2 Monte Carlo Analysis

Another, and arguably most definitive, verification technique is Monte Carlo analysis. The
concepts and results put forth up to this point have been based on the results of LINCOV analysis.
Therefore, a significant concern is whether or not there are potential non-linearities in the

problem that may nullify some of the LINCOV results.

A Monte Carlo analysis could be performed by constructing a three degree-of-freedom
simulation including an orbital environment model and sensor models corresponding to those
used in the LINCOV tool. Rather than exhaustively studying all of the trajectories considered for
LINCOV analysis, one or two of the trajectories used for the Orbital Express mission analysis
could be subjected to Monte Carlo analysis. The results could readily support the LINCOV
analysis’ accuracy, or illustrate the need to revisit some of the assumptions made for this

problem.

6.2.3 Formulation of problem in relative frame

Another attractive technique to approaching the angles-only problem would be to formulate
the dynamics purely in a relative motion framework. In this study, both the target and chaser
vehicle states were handled in inertial frames, and then the relative results were derived from this.
An alternative approach would be to use the Clohessy-Wiltshire relative motion equations as the
system dynamics, and then formulate the measurements and other error models in terms of these
relative states. In mission practice, though, implementing a relative navigation filter would also
require some type of sensor to determine the exact direction of the local vertical, just as the
current study relies on a star tracker to determine inertial attitude. The motivation for this relative

approach is the hope that it might lend itself to reducing the angles-only navigation problem to a
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few analytic conditions that would need to be satisfied in order to guarantee range observability.
This approach is similar to some of the methods discussed in section 4.1. Despite several brief
attempts by the author to do exactly this, the desired results never materialized, but the potential

ways to approach this problem are far from exhausted.

6.2.4 Observability Calculation

If the concept of having a purely analytic method of determining range observability in an
angles-only environment does not work, another alternative is a semi-analytical method of
calculating the observability matrix. As shown in [17], the observability matrix for a system can

be calculated using

f
M(t,,1) 2 [® (7,6, HT () H(7) ® (7.1, )dT (6.1)

1
Where the rank of the matrix M determines the number of observable states. Therefore, a non-
full rank observability matrix M implies that one or more states is unobservable. This calculation
is currently performed in the LINCOV analysis, however, the result is a 12x12 M matrix
corresponding to the inertial position and velocity of both target and chaser vehicles.
Unfortunately, this matrix can not be manipulated into an equivalent 6x6 relative motion form.
However, by reformulating the entire problem in a relative frame as described in section 6.2.3 and

generating new @ and H matrices over the course of a relative motion trajectory, the

corresponding M matrix may contain useful information as to the observability problems in an
angles-only system. Specifically, looking at the null space of the matrix M would provide insight

as to vector(s) in the state space would make the system strictly observable.
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