
An Improved Segmentation Module for Identification

of Handwritten Numerals

by

Jibu Punnoose

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

-October 15, 1999

Copyright 1999 M.I.T. All rights reserved.

The author hereby grants M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Departmenit of Electrical Engineering and Computer Science

October 15, 1999

Certified by

Accepted by

Dr. Amar Gupta
Thesis Supervisor

Afthur C. SmithI--.

Chairman, Department Committee on Graduate Theses

ENG
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

An Improved Segmentation Module for Identification
of Handwritten Numerals

by
Jibu Punnoose

Submitted to the
Department of Electrical Engineering and Computer Science

October 15, 1999

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT:

The Winbank program is a segmentation-based recognition system for reading
handwritten numeral on bank checks. An improved segmentation algorithm, Extended
Drop Fall, has been incorporated into the system for proper segmentation of problematic
cases. An improved method of choosing between the different segmentation algorithms
has been introduced in order to utilize the Extended Drop Fall algorithm. The improved
system relies less on heuristic analysis and can properly segment cases that do no match
heuristic assumptions without compromising performance on more common cases. The
changes significantly improve the performance of the segmentation module and as a
result overall performance for the system is improved. Other modifications have also
been incorporated into both the segmentation and recognition modules to increase
performance and produce a more robust system

Thesis Supervisor: Dr. Amar Gupta
Title: Co-Director, Productivity From Information Technology (PROFIT) Initiative

Sloan School of Management

2

Acknowledgments

I would like to thank my parents, Chaluvelil M. Punnoose and Marykutty Punnoose, my
sister, Judy Punnoose, and the rest of my family for constant support and encouragement.

I would also like to thank Dr. Amar Gupta for supervising the project and providing
direction and guidance.

Finally, I would like to thank the members of the OCR group: Kirimania "Tim" Murithi,
Alfred Mutiso, Timothy Chien, and Ishan Sachdev. Special thanks to Ishan for
developing the testing program used to generate much of the results and statistics
reported in this thesis.

3

ABSTRACT:...2

ACK NO W LEDGM ENTS .. 3

1. INTRODUCTIO N .. 6

2. RELATED RESEARCH .. 12

2.1 SEGMENTATION STRATEGIES.. 12
2.1.1 Iterated Segmentation and Recognition ... 13
2.1.2 One Step Segmentation Reconsideration ... 14
2.1.3 Recognition Based M ethods... 15

2.2 SEGMENTATION ALGORITHMS .. 18

2.2.1 Basic methods... 18
2.2.2 Hit and Deflect Strategy.. 19
2.2.3 D rop Fa ll M ethods ... 20
2.2.4 Structural Analysis ... 21

3. TH E W INBANK SY STEM .. 25

3.1 CAB LOCATION AND BINARIZATION... 26

3.2 SEGMENTATION ... 27
3.3 RECOGNITION .. 28
3.4 FEEDBACK... 29
3.5 POST PROCESSING.. 30

4. SEGMENTATION WITH EXTENDED DROP FALL ... 31

4.1 DROP FALL .. 34
4.1 .1 Start Point .. 35
4.1.2 M ovement Rules ... 36
4.1.3 Orientation... 38

4.2 EXTENDED DROP FALL .. 41

4.3 RECOGNITION BASED PATH EVALUATION... 43
4.3.1 Heuristic Path Evaluation... 44
4.3.2 Path Selection Rules ... 46

5. OTHER IMPROVEMENTS TO THE WINBANK SYSTEM... 47

5 .1 M E R G IN G .. 4 7
5.1.1 Representation of the Courtesy Amount Block ... 48
5.1.2 Re-M erging Implementation ... 51

5.2 ITERATIVE TRAINING ... 53

5.3 SLANT CORRECTION ... 54

6. PERFO RM ANCE EVALUATION ... 55

6.1 THE SEGMENTATION ALGORITHM .. 56

6.2 OVERALL SYSTEM PERFORMANCE... 57

7. PO SSIBLE IM PROVEM ENTS..62

8. CO NCLUSIO N ... 67

REFERENCES ... 69

APPENDIX A : SEG M ENTATION CODE..71

APPENDIX B: H EADER FILES ... 93

4

LIST OF FIGURES

Figure 1.1: A sample check from Brazil 9
Figure 2.1: Iterated Segmentation and Recognition. 13
Figure 2.2: Self Organizing Integrated Segmentation and Recognition (SOISR). 17
Figure 2.3: An HDS Split 19
Figure 2.4: Drop falling algorithm 20
Figure 2.5: Contour Analysis Algorithm 22
Figure 3.1: Winbank System Overview 25
Figure 3.2: Thinning and Rethickening 29
Figure 4.1: Bad starting points for Drop Fall Segmentation 35
Figure 4.2: Selecting a good starting point for Drop Fall Segmentation 36
Figure 4.3: Stepwise movement of the Drop Fall Algorithm 37
Figure 4.4: Top-Right Drop Fall 38
Figure 4.5: Bottom-Left Drop Fall 39
Figure 4.6: Bottom-Right Drop Fall 40
Figure 4.7: Additional movement rules for Extended Drop Fall 41
Figure 4.8: Segmenting double zeros 42
Figure 4.9: Detection of cuts. 45
Figure 5.1: Internal Representation of Digits 49
Figure 5.2: The Block Iterator 51
Figure 7.1: Multiple segmentations for a tree structure 64

LIST OF TABLES

Table 6.1: Accuracy of Segmentation Algorithms 56
Table 6.2; Overall Accuracy of the System 58
Table 6.3: Incremental impact of each modification to the system 59
Table 6.4: Processing latency in the Winbank System 60

5

1. Introduction

A common goal in the field of artificial intelligence is to replicate the function of human

beings and automate tasks that normally require manual labor or at least supervision.

Optical Character Recognition (OCR) is a typical example of such a problem. OCR has

been the subject of a large body of research because there are numerous commercial

applications for this technology. The problem was once considered a simple and solvable

subset of the larger area of pattern recognition. However, after some preliminary success

in a few areas, the problem proved to be much more complex than initially imagined.

Character recognition can be divided into two categories: recognition of handwritten

characters and recognition of typeset or machine printed characters. Machine printed

characters are uniform in height, width, and pitch assuming the same font and size are

used. Also, location of characters on the page is somewhat predictable. Recognition of

machine printed characters is a relatively simpler problem and a number of low cost

solutions exist. In fact, most commercial scanners are now packaged with OCR software

that can read documents written in a number of standard fonts. [2]

Recognition of handwritten characters is a much more difficult problem. Characters are

non-uniform and can vary greatly in size and style. Even characters written by the same

person can vary considerably. In general, the location of the characters is not predictable,

nor is the spacing between them. In an unconstrained system, characters may be written

anywhere on the page and may be overlapped or disjoint. Furthermore, there is the

possibility of ambiguous or illegible characters. Very little information about the

6

characters is available in unconstrained recognition. A typical recognition system will

require some sort of constraints, or added information, about the data being processed.

Recognition systems fall into two broad categories: on-line and off-line systems. An

online system typically operates in real time and will recognize characters as they are

being written down. At a minimum, the system will record pen stroke information in real

time and analyze the information afterwards. Examples of online systems are the

recognition engines used in PalmPilots and the Apple Newton. Offline systems do not

have the benefit of this information and must recognize characters after they have been

written. At present, only online systems can read completely unconstrained documents.

Offline systems must impose some constraints to make recognition feasible. Many

systems require that the characters be consistent in size and position by using preprinted

boxes [2]. The software used by the US postal service to recognize zip codes exploits the

fact that a zip code consists of exactly five or numeric characters, or nine in the case of

extended zip codes [4]. In general, offline recognition is considered a much more difficult

problem. [2,3,6,10,11,12,13]

An important application for offline handwriting recognition is the reading and

verification of checks for processing in banks and other financial institutions. Verification

must be done offline because it is not possible to obtain pen-stroke information from a

paper check. In addition, the problem is nearly unconstrained; size and spacing can vary

greatly between checks and even the exact location of the writing is not constant.

However, by reading only the numerical value of the check, the scope of the recognition

7

problem is reduced to a limited set of character (i.e. numeric characters, and delimiters

such as $.) Even with this simplification, the problem is a difficult one; however,

processing costs in the financial industry make it well worth the effort.

Banks and other financial institutions process over 66 billion checks a year in the United

States alone [16]. The value of each of these checks must be entered manually by an

operator. Because this manual entry is sensitive to error, checks are usually entered

redundantly by more than one operator. Each operator requires approximately 5-10

seconds to process a check. Check verification is a labor-intensive process that costs

billions of dollars a year. Automating this process can save a great deal of money and

resources.

In order for a system to be commercially viable it must recognize a significant percentage

of the checks processed with an extremely low error rate. It is acceptable to reject a large

number of checks; even if half the checks processed are rejected as unreadable and must

be verified manually, the costs have still been reduced by 50%. On the other hand, it is

not acceptable to read even a small fraction of checks incorrectly. Checks that are read

incorrectly can have disastrous consequences and must be kept within hundredths of a

percent.

The paper will discuss modifications to improve the performance of the Winbank system

presented in [1] and [2]. The system was designed for automated verification of Brazilian

checks, using scanned-in images of the checks. All necessary information relating to the

8

amount of the check can be found in the Courtesy Amount Block (CAB) of the check, a

small box in which the amount is written numerically. Conceptually the system has three

stages: CAB Location, Segmentation, and Recognition. First, the CAB must be located.

This is not a trivial task because the CAB may vary in size and position. Specifications

vary from bank to bank and some conventions vary across countries. Once the CAB is

found the second step is segmentation, a process by which individual digits are separated.

The final step is recognition; a neural network classifier is used to identify each of the

digits.

103101 705150001516

I ~j~ijo igure 1.1: A sampeckfrm raId#
hNmdwisco

um3!PAN "EAZ3u :3Oa: 0-NJ

Figure 1.: A sample check from Brazil

The main focus of this paper is the segmentation module of the Winbank system.

Segmentation is done using the Hybrid Drop Fall algorithm described in [13, 1].

Conceptually, the algorithm replicates the motion of an object falling onto the digits from

above. The object rolls along the contour of the digit until it can fall no further. At this

point it cuts downward and continues. This algorithm uses the implicit assumption that

cuts should be very short. In general this assumption is valid and the Drop Fall algorithm

9

works well. However, this approach consistently causes errors in certain cases such as

connected zeros. In these cases, there are often a large number of overlapping pixels and

a long cut is required in order to separate the two characters. The Hybrid Drop Fall

algorithm will make errors in these cases because they do not conform to heuristic

assumptions.

Relying on heuristic assumptions results in error in cases were these assumptions are

incorrect. The modifications described in this paper are designed to reduce the degree of

reliance on heuristic methods and to consider more options for performing segmentation,

with the intention of finding the correct solution more often. The modifications affect the

system at two different levels. Recognition is used instead of heuristics analysis to choose

between the results of different segmentation algorithms. At a lower level a modified

segmentation algorithm, referred to as Extended Drop Fall, is developed to correctly

segment cases in which the standard heuristics assumptions do not apply. More

specifically, the Hybrid Drop Fall algorithm is modified to prolong the length of a cut in

order to segment digits that require a long cut.

The Extended Drop Fall Algorithm and the recognition based method for choosing

between segmentation algorithms are further described in Chapter Four of this document.

Other modifications to the Winbank system, designed to improve the accuracy of the

overall system, are presented in Chapter Five. Chapters Two and Three present

background material on the subject. The former presents related research in the field

while the latter provides an overview of the Winbank system. An evaluation of the

10

accuracy and performance of the modified system is presented in Chapter Six. Chapter

Seven describes possible extensions to the work presented in this paper and suggests

other modifications or research that may improve the performance of the Winbank

system. Finally, concluding remarks are presented in Chapter Eight.

11

2. Related Research

There is a long history of research in character recognition and segmentation

[3,4,6,10,11,13,17,18]. Several different approaches to character segmentation are in use

today [1,2,3,4,6,10,11,13,17,18]. Segmentation methods can be classified as either

structural or recognition-based techniques although several approaches have elements of

both types. Recognition based methods attempt to pick out recognizable digits from an

image whereas structural methods try to divide up a given image into individual digits.

All structural methods inherently depend on some sort of segmentation algorithm.

Increasingly effective and complex segmentation algorithms have been developed for the

purposes of structural segmentation. This chapter summarizes the major approaches to

segmentation and the various segmentation algorithms available. Section 2.1 will discuss

the most common strategies for segmentation and Section 2.2 describes specific

segmentation algorithms. Finally section 2.3 describes previous research involving the

Winbank Character Recognition System on which this thesis is based.

2.1 Segmentation Strategies

Segmentation is a necessary step in optical character recognition. It is performed either

explicitly using a segmentation algorithm or implicitly as a result of recognition. If done

explicitly, the image is first broken down into regions believed to contain digits and

recognition is done separately on each region. Alternately, recognition can be done on the

image as a whole and digits are separated out as a byproduct of recognition. This section

describes a few of the major segmentation strategies used.

12

2.1.1 Iterated Segmentation and Recognition

Congedo et al [4] and Dimuaro et al [5] both use a strategy that alternates segmentation

and recognition. An initial pass of segmentation is performed and the resulting segments

are passed to a recognition module. If a digit is not recognized it is split using a specific

segmentation algorithm and recognition is attempted on the resulting pieces. If neither

piece is recognized, segmentation is assumed to be incorrect and the digit is split using a

different algorithm. If one or both pieces are recognized, any unrecognized pieces

remaining are segmented using the same algorithm. The set of segmentation algorithms

employed are multiple variations of the "drop falling" algorithm (see Section 2.2).

plit IMage Into Btock

RegrZe Blacks

-- All Blocks AireRecognized Accept .1

No
Y RtThestrng

r= --- === --- None

(Blozek. Recognized? Oe Uneo 1

Figure 2.1: Iterated Segmentation and Recognition.

13

This approach is simple and straightforward but it has a number of drawbacks. The

strategy is inefficient. Recognition is attempted before any segmentation is done. Since

recognition is a computationally-intensive process, using other methods to detect

connected digits can save processing time. Another problem is that no attempt is made to

correct fragmented digits. Fragments are treated just like any other digit and will often

lead to rejection. Finally, the segmentation algorithms are applied in a fixed order. It may

be possible to exploit the fact that some algorithms offer better results in specific

situations.

Congedo et al [4] reports that 91% of all digits were segmented properly in a test set

consisting of U.S. zip codes. The results vary between 53% and 89% when using a single

segmentation algorithm to separate digits. The percentage of digits that require separation

using the segmentation algorithms is not reported in thier paper.

2.1.2 One Step Segmentation Reconsideration

Blumenstein and Verma [6] use a strategy that generates a number of paths and uses

neural networks to select the correct paths. All paths are generated simultaneously using

conventional heuristic methods and, a neural network selects the best ones. The system

presented in Lee et al [7] uses a similar strategy in which a set of paths is generated and

the combination of paths that result in the highest confidences in the recognition module

is selected.

14

Both strategies require a large number of paths to be considered and may be

computationally expensive. Also, no new paths are generated in later stages so the system

does not take advantage of possible feedback from the recognition module. If the correct

path was not generated in the original set, the system fails. Even if the path is slightly off,

confidence values will go down dramatically and the correct path will not be selected.

Blumenstein and Verma [6] tested their system on samples of handwritten text scanned in

from various sources. They report a correct segmentation rate of 86%. Lee et al [7]

reports a rate of 90% correct segmentation but the tests were restricted to machine printed

alphanumeric characters [7].

2.1.3 Recognition Based Methods

A simple example of a recognition based method is the Centered Object Integrated

Segmentation and Recognition System (COISR) described in [17]. The system uses a

sliding window that moves incrementally across a string of text. A neural network

attempts to recognize characters centered in the window. Ideally each character will be

recognized as it gets to the center of the window so explicit segmentation is not required.

Even the characters used to train the network are unsegmented; the network is trained to

recognize characters despite background noise.

Although this method performs segmentation and recognition in a single step, it is a

computationally expensive process. Each incremental movement of the window must be

analyzed by the neural network, which typically requires thousands of computations per

15

instance. Furthermore, many of these instances result in non-recognition (i.e. window is

between characters) or redundant recognition of the same character. It is possible to

increase the rate at which the window slides across the text. This can eliminate some

redundancy and reduce the amount of necessary computation but it is possible to "skip

over" characters if the slide rate is too fast.

An alternate method for reducing computational expense in such a system is presented by

Martin et al [9]. Instead of sliding across text, the window mimics the motion of the

human eye and moves in bursts called saccades. The window moves forward in ballistic

saccades and if necessary, jumps backward in smaller jumps called corrective saccades.

These movements are controlled by a neural network, which learns to jump from

character to character as well as recognizing individual characters.

Keeler and Rumelhart [18] describe another recognition-based approach, known as Self-

Organizing Integrated Segmentation and Recognition(SOISR.) Instead of using a sliding

window, the system searches all locations at once using a set of neural network "sheets".

There is one sheet for every possible character and the sheet covers the entire image. The

sheet searches the image for a particular character and activates in the areas where it

thinks it has found the character. The example in Figure 2.2 shows a connected "3" and

"5." If the system works properly, the sheet for '3' should activate where the '3' is found

and the sheet for '5' should activate where the '5' is found. All other sheets should

remain inactive.

16

9 . Sheets of _ SZ
Ad lW \ \ Exponontial 1Z + SZSUnits; Block

7

Summino Units:

Hidden

Block I

21

Grey-scale
In ut irnae

Figure 2.2: Self Organizing Integrated Segmentation and Recognition (SOISR).

Each self-organized neural network sheet is activated over the area of the image where its targeted
character lies. Figure reproduced from [17].

The SOISR approach can recognize characters regardless of position. Although training

the networks requires manual segmentation of the characters, no explicit segmentation is

required once the networks are trained. Unlike COISR, it recognizes characters in a

single pass and is therefore more efficient. However, recognition based approaches are

intrinsically computationally intensive and are difficult to implement where execution

time is a concern.

Both Martin et al [9] and Keeler and Rumelheart tested their systems on a database

provided by the National Institute of Standards and Technology. Both papers report

similar results, which vary between 90-95% accuracy with error rates between 4% and

17

8%. Depending on the number of connected digits, the average rejection rates varied

greatly between 15% and 45%. Both systems produce exceptionally high recognition

rates but low speed remains a major drawback.

2.2 Segmentation Algorithms

Structural approaches have dominated research in the field of character segmentation

because most recognition-based approaches were beyond the limits of available

computational resources. All structural approaches depend on a segmentation algorithm

to break up the image into individual characters. As a result, considerable research has

focused on the development of effective segmentation algorithms.

2.2.1 Basic methods

The most simple and straightforward segmentation algorithm is a vertical scan. The

algorithm binarizes the image into black and white pixels and simply looks for unbroken

columns of white pixels. This works well for machine-printed characters or handwritten

characters in which a prescribed amount of whitespace is guaranteed. Unfortunately,

normal handwritten characters are often slanted at different angles so vertical scans or

scans at any other set angle will fail.

A more robust technique is to isolate regions of connected black pixels. This method

separates the black pixels into sets in which each black pixel is adjacent to another black

pixel in the set. This method works very well for digits that are not overlapped, touching

or disjoint. However, two characters that are overlapped or touching will be treated as a

18

single mass of pixels, and a character that is disjoint (that is, not all pixels are adjacent)

will be treated as two or more characters. While it is straightforward to combine two

disjoint segments, it is a much more difficult problem to separate connected digits. All

the algorithms presented in this section use isolation of connected pixels as the first step

in processing and then attempt to separate connected digits.

2.2.2 Hit and Deflect Strategy

The Hit and Deflect Strategy (HDS) attempts to find an accurate path along which to

separate connected characters. The algorithm starts at an appropriate point in the image

and move toward it. When it 'hits' the black pixels in the image it 'deflects' and changes

its direction of motion. The algorithm follows a set of rules that maximizes the chances

that it will hit and deflect its way to an accurate path.

Figure 2.3: An HDS Split

19

One example of a hit and deflect Strategy was used by Shridhar and Badredlin [19] to

segment handwritten words. Their system first tried to segment using a vertical scan

along the center of the region of pixels. If the scan resulted in an unbroken column the

region was segmented along that path. If the scan resulted in 2 or more color transitions

(i.e., cutting through 2 or more lines), the algorithm assumed the characters were slanted

and reverted to the HDS rules. The algorithm started at a peak at the bottom contour of

the characters and attempted to move upward. It followed a set of rules designed to limit

the number of cuts along the segmentation path. When the algorithm reaches the top of

the image, the path is complete and segmentation is done.

2.2.3 Drop Fall Methods

Conceptually, a Drop Fall algorithm simulates an object, such as a marble or a drop of

water, falling from above the characters and sliding downward along its contours. The

basic algorithm is described by Congedo et al [4]. The object falls downward until it gets

stuck in a "well," at which point it cuts through the contour and continues downward.

Like Hit and Deflect strategies, the algorithm first selects a starting point and then

follows a set of rules. In fact, Drop Fall can be considered a special case of HDS.

IMi
VW) Aim

Figure 2.4:. Drpfligagrth'aWo et() otmlf opn ihd bto ih

20

Drop Fall algorithms can be oriented in one of four directions, top-left, top right, bottom-

left and bottom-right. Each version starts of in a specific corner of the image (as indicated

by the name) and proceeds to move towards the opposite corner. Variants that start at the

bottom of the image "fall" upward. They are equivalent to inverting the image about the

horizontal axis and performing drop fall from the top of the inverted image.

2.2.4 Structural Analysis

Another class of segmentation algorithms uses structural properties of the characters to

determine possible segmentation paths. These algorithms analyze the contours of

connected digits and use properties of the contour slope or the presence of local maxima

and minima to segment the digits. Abrupt changes in contour slope and pairs of relatively

nearby maxima and minima often indicate points through which the character should be

cut. Both [20] and [21] present examples of structural segmentation methods.

Strathy et al [21] presents an algorithm designed to find the start and endpoint of pen

strokes. The algorithm seeks terminal points of both normal strokes and strokes that are

overlapped or touching other characters. This is done by identifying points that are either

corner points, local minima, local maxima, or exit point generated by extending a contour

through a concave corner. These points are referred to as Significant Contour Points

(SCPs). The algorithm then selects two points from the set of SCPs and cuts the segment

along the line joining the two points. Segments are selected using the criteria listed

below.

21

Strathy et al reports accuracy between 48% to 98% using a set of US Zip codes as the

testing set. Their system exploits the fact that zip codes have a fixed number of digits to

improve accuracy. Also, zip codes are typically better spaced than other types of

handwritten material such as prose or the courtesy amount on a check.

Figure 2.5: Contour Analysis Algorithm

Min-max algorithms constitute a class of structural analysis algorithms that focus on

minima and maxima pairs [5, 22]. These algorithms divide the connected digits into

upper and lower contours and search for minima on the upper contour and maxima on the

lower contour. The algorithm selects a suitable pair of pints and cuts the region through

these two points. The choice of segmentation points is based on the distance between the

points, proximity to the center of the image, and the number of color transitions (cuts)

22

along the path. The Winbank system uses such an algorithm in addition to Hybrid Drop

Fall.

2.3 Winbank

This thesis is based on modifications to the Winbank Character Recognition System

developed at Sloan School of Management at MIT. A great deal of research work has

been done on various aspects of the system. This section describes the work most

relevant to the segmentation module.

Sparks [3] presents a linear segmentation and recognition architecture using a

segmentation analysis module for verification. The system normalizes a numeral string to

a standard size and then performs segmentation using contour analysis and a Hit and

Deflect Strategy. The results are modified using a "Segmentation Critic", which

compares the segments with stored structural primitives [3, 14] the Segmentation Critic

can veto classification of large segments as digits or force segmentation to be undone.

The analysis is performed using a decision tree method based on stored structural rules

and by template matching against stored structural rules. Although segmentation is

considered the system fundamentally consists of linear segmentation and recognition

because segments are not reconsidered after recognition.

Khan [13] presents an algorithm, called Hybrid Drop Fall, which combines all four

variants of the basic Drop Fall algorithm with heuristic analysis. Although a single

orientation will tend to make systematic errors, the other orientations will generally not

23

make the same error. By using all four orientations, there is an increased probability of

correct segmentation because one of the four is likely to have produced the right results.

Chapter Four describes an improvement to the Hybrid Drop Fall algorithm that allows it

to segment properly in frequently problematic cases. Further discussion of Drop Fall and

Hybrid Drop Fall algorithms can also be found in Chapter Four.

Dey [1] presents a modified feedback architecture that reconsiders segmentation using

the results of recognition. This architecture is based on the method presented by Congedo

[4] and uses recognition to take the place of the segmentation critic. The system passed

the entire string repeatedly through stages of segmentation and recognition using a

feedback mechanism. In the segmentation stage all segments that require segmentation

are separated and then passed to the recognition stage. Segmentation is done using

multiple algorithms including HDF. The best result is chosen as the proper segmentation.

Also, fragments are combined with their nearest neighbors.

The work described in the present document adds a new segmentation algorithm and a

new method of path selection to the system presented by Dey [1]. A more detailed

discussion of the feedback architecture is provided in Chapter Three. Testing and

accuracy results for this system are included in Chapter Six.

24

3. The Winbank System

Winbank [1,2,3,13] is a segmentation based character recognition system for the

automated reading of hand written checks. It is a sophisticated system designed to meet

the rigorous accuracy and performance requirements of commercial verification of check

values. A general overview of the system is necessary to better understand the

improvements presented in Chapters Four and Five. More detailed discussions of the

segmentation module is presented in those chapters.

The Winbank system operates in four stages: Courtesy Amount Block (CAB) location,

Segmentation, Recognition, and Post-Processing. In addition, there is a feedback

mechanism that repeats segmentation and recognition processes as necessary to improve

accuracy. The architecturee of the Winbank system is summarized by Figure 3.1. The

program takes in a check image, finds the CAB, segments the digits and then reads their

values. As a final step the system verifies that the value read is reasonable for a check.

CAB Loatin Segu.ntation MoEdue Regnitio Module Post Prtoc..ing

Input

Output

Figure 3.1: Winbank System Overview

25

3.1 CAB location and Binarization

The program begins with a grayscale image of a paper check. The first stages of the

process are binarization and Courtesy Amount Block (CAB) location. The image is first

filtered using a median filter to reduce noise. The system then attempts to find the

courtesy amount block using a set of heuristics designed to locate the delimiters of the

CAB. Delimiters may vary across countries and localities. For example, American checks

have a full box delimiting the CAB, but Brazilian checks have just two vertical lines on

either line. The CAB finding routine starts at prescribed location (in the upper right

portion of the check in most cases) and scans outward looking for horizontal lines and

vertical lines. The algorithm tries to find an enclosing box or at least part of a box (i.e.,

two vertical bars or two horizontal bars.)

Once the CAB is found, the contents of the CAB are binarized using dynamic

thresholding to separate the background of the check from the writing [1]. In dynamic

thresholding, a histogram of pixel intensities is generated and a threshold value between

the two highest peaks (which should correspond to background and writing) in the

histogram is chosen. All pixels above this value are considered black while all other

pixels are white. Ideally, this produces a good representation of the numbers present in

the check [2].

26

3.2 Segmentation

This image is then segmented. Connected regions of pixels (called segments) are located

and organized into "Blocks." Each block contains a set of pixels, the location of the

segment in the original image, and a classification for the segment. Segments are

classified as digit, fragment, multiple, punctuation, nonsense, or horizontal, based on the

height, width, weight (number of pixels), and location in the original image. Segments

classified as nonsense or horizontal are most likely noise or extraneous information

irrelevant to the value of the check. Segments classified as punctuation are either commas

or periods and are noted in the post processing stage. Segments classified as fragments

are most likely parts of a digit that were not connected to the rest of the region. These

segments are merged with nearby segments. Finally, segments classified as "multiple"

are most likely two or more digits that are touching and therefore seen as one connected

region; such segments must be separated further into separate regions.

Winbank generates a list of paths along which to segment connected digits. Nine paths

are generated using three different segmentation algorithms. The first path is generated

using a Min-Max Contour Analysis algorithm similar to the one described in [6]. Four

more paths, corresponding to the top-right, top-left, bottom-right, and bottom-left

orientations are generated using the Hybrid Drop Fall algorithm described in Section

2.2.3. Finally, a third set of four paths is generated using the Extended Drop Fall

algorithm, which will be presented in Chapter 4.

27

Once the paths are generated, they are ranked using a set of structural heuristics. The

system tries to find a path with exactly one cut near the center of the image. Paths with a

single cut are preferred to those with multiple cuts, and shorter cuts are preferred to

longer cuts. The rankings also take into account the aspect ratio of the resulting segments

and a long list of other characteristics.

Finally, the image is separated along each path and recognition is attempted on the

resulting segments. The correct path is determined based on the number of recognizable

digits. Ideally both will be recognized, and the segmentation process is assumed to be

correct. If multiple paths produce the same number of recognizable segments, preference

is given to the path with the higher rank. If none of the paths result in segments that are

not recognized, it is assumed that these segments need further segmentation. Path

selection based on recognition is a new addition to the Winbank system and will be

discussed in greater detail in Chapter 4.

3.3 Recognition

The segmentation process should result in a set of segments representing hand written

characters. These segments are then normalized and recognized individually.

Normalization is a process by which the segment is adjusted to correct slants, thinned to a

one-pixel wide skeleton, and rethickened to a standard width. This process eliminates

superficial variances and emphasizes the most important structural aspects of the

character.

28

33

Figure 3.2: Thinning and Rethickening

The normalized character is then classified as one of a set of possible characters using a

neural net classifier. The classifier must determine the identity of the digit with a high

degree of confidence; otherwise the segment is rejected. To increase accuracy, four

different networks are employed and an arbiter is used to make the final decision. In

addition the classification is verified using structural heuristics and may also be rejected

at this stage. Rejected segments could be ambiguous characters, or characters distorted by

noise or overlapping. They may also be the result of improper segmentation.

3.4 Feedback

Rejection caused by improper segmentation is corrected by feedback. Rejected segments

are segmented and recognized again with relaxed heuristic criteria for classifying a

segment as multiple digits. The feedback loop is iterated until all segments are recognized

or until a predefined maximum number of iterations have occurred. The more times a

29

segment is rejected the more likely it is to be classified as multiple digits and separated,

thereby giving the system more chances to correct segmentation errors. If errors still

remain after the maximum number of iterations have passed, the check is rejected and

must be recognized manually.

3.5 Post Processing

As a final processing step, recognized digits and punctuation are analyzed to determine

whether the value is a valid amount for a check. Winbank will accept the value "1.00" but

not "1,23,45" because the later shows punctuation that is unlikely on a check in Brazil

(and the U.S.) Post processing verifies the recognized amount against a set of rules to

eliminate obviously incorrect results.

30

4. Segmentation with Extended Drop Fall

The segmentation module of the Winbank system has been modified to include a new

segmentation algorithm that eliminates a number of weaknesses in the previous version

of the system. The algorithm, referred to as Extended Drop Fall (EDF), is a variant of the

Drop Fall (DF) method and is based on the Hybrid Drop Fall segmentation algorithm

presented by Khan [13]. It is designed to improve segmentation on the frequently

occurring case of connected zeros, which is often segmented incorrectly, as well as on

other cases that are peculiar to Brazilian checks.

Because checks are frequently written for round values such a "$100" or "$21.00" two

successive zeros are common. The two zeros are frequently connected or slightly

overlapped. In fact, a random sampling of over 400 checks shows that approximately 80-

85% of successive zeros are connected. Furthermore, 45-55% of all connected digits

consists of a pair of zeros. The previous version of the Winbank system used an HDF

algorithm to perform segmentation. Although the system was accurate in many case it

showed relatively poor performance on connected zeros. The HDF algorithm was able to

perform accurate segmentation for only 25% of the connected zeros in test cases.

Considering the frequency of connected zeros it is important to improve segmentation in

such cases. The Extended Drop Fall Segmentation algorithm doubles the number of

connected zeros segmented properly without compromising accuracy in other cases.

Connected zeros are problematic because of the structural properties of the joint between

the digits. The joint between connected zeros tends to be longer than the width of a pen-

31

stroke and slanted at an angle. For most other cases the joint is no longer than the width

of a stroke and can be separated by cutting down a straight vertical line at the joint. Drop

fall algorithms mimic the motions of a falling object that falls from above the digits, rolls

along the contour of the digits and cuts through the contour when it can fall no further.

The object follows a set of movement rules to determine the segmentation paths. These

rules follow the implicit assumption that cuts through a contour should be short and

straight through the contours.

When segmenting connected zeros these rules tend to cut into the loop of one of the

zeros. Once the path cuts into the loop it will also cut out leaving an open arc on one side

of the path, and a digit with a small piece of the broken zero on the other. This is a

particularly distressing problem because it leads to false recognition. The recognition

module is sophisticated enough to recognize zeros despite the extra fragment, however an

open arc can look like a number of other digits. An open arch on the right hand side can

look very much like a 7and in some cases it can be mistaken for a 2. Similarly an open

fragment on the left side can look like a six. Because of this error a frequently occurring

string "00" can be mistaken for "07", ''02'', or "06."

This type of problem is not unique to zeros a long junction near a loop can cause

problems for other looping digits. Similar problems can occur with digits such as

"9","8","6", and "2," depending on the writer and the nearby digits. In order to avoid

these problems, the algorithm needs to make a long cut through a diagonal joint.

However, in the general case, a long cut through a segment is a bad one.

32

In order to avoid such problems, segmentation paths need to cut along the junction and

not enter the loop. Drop Fall algorithms move downward on a binarized image by

seeking white pixels in order to avoid the contour. When a cut is made into a black pixel,

the algorithm continues to seek white and minimizes the length of a cut. In the general

case a short cut is more likely to be correct; however, for connected zero and other

special cases, the cut should be extended. Extended Drop Fall will seek black pixels

rather than white once a cut has been initiated (i.e., it is currently on a black pixel). This

results in longer cuts that follow the interior of the contour and are more likely to be

correct for connected zeros.

In order to use the Extended Drop Fall algorithm effectively, we must first identify cases

in which it is appropriate. In the general case, the EDF algorithm produces a path that is

less likely to be the correct one. EDF is only useful in cases where other Drop Fall

algorithms tend to fail. The system needs to be able to choose between different paths

generated using different segmentation algorithms. The HDF algorithm generates a set of

paths, using standard drop fall from four different orientations. The best segmentation

path is selected based on a heuristic analysis of each path. The EDF algorithm also

generates multiple paths using the four different orientations of the DF algorithm, but it

cannot rely on heuristic analysis to select the correct path because the algorithm is

designed for exceptional cases. Instead, all paths are evaluated using recognition. The

characters are segmented along all the paths and we look for a path that results in two

recognizable segments. If more than one path generates two different sets of recognizable

33

digits, we fall back to heuristic rankings. If none of the paths resulted in two recognized

digits, then one needs to pick the best path with one recognized digit. The recognized

digits and the identity of the segmentation algorithm that generated them can also be

useful. For example, two recognizable zeros that were produced by EDF are more likely

to be correct than a "0" and a "7" produced using the standard algorithm, because the

EDF algorithm is especially designed for this case.

Recognition based path evaluation is an improvement in its own right. It can improve

accuracy even without the EDF algorithm because it does not rely on heuristics. The fact

that recognition was successful is a strong indicator that segmentation was correct. When

the Extended Drop Fall algorithm is added, this method of evaluating paths becomes an

essential part of the segmentation module.

4.1 Drop Fall

Drop Fall is a simple algorithm that offers remarkably good results. The Hybrid Drop

Fall concept augments the algorithm by attempting DF in four different orientations. The

Extended Drop Fall algorithm developed in this paper is based on the HDF algorithm and

operates in essentially the same way. A detailed explanation of standard DF and HDF is

necessary in order to explain the differences in the EDF algorithm. Unless otherwise

stated, all references in this section refer to the standard DF algorithm using the top-left

orientation. The basic algorithm mimics a "marble" that falls from a starting point located

at the top left corner of the image and has a tendency to fall to the right if obstructed.

Variants using other orientations will be discussed in Section 4.1.2.

34

4.1.1 Start Point

One of the most important aspects of Drop Fall is the point at which the algorithm begins

to construct a path. The starting point should be above the image and toward the left side

because the simulated marble falls downward and to the right. If the starting point is

selected too far to the left, the marble can slide off the left side of the first character and

produce no segmentation. Similarly if the starting point is chosen too far to the right, the

marble can slide off the right side of the second character (see Figure 4.1).

Drop Fall
started too Initialize d
far to the too far to
left falls of the right
the "front"
of the first Falls off
digit the back

of the
second
digit

Figure 4.1: Bad starting points for Drop Fall Segmentation

The starting point can be any position between the connected numbers and above the

connection (area to be cut). The system assumes that an appropriate starting point will

have black pixels on either side of it. Furthermore, the point should be close to the top of

the image. The system scans the image row by row, starting at the top, and works its way

down until it finds a black pixel with white space immediately to the right and another

35

black pixel in the same row, but further to the right (see Figure 4.2). The white pixel

immediately to the right of the left-hand boundary is used as the starting point.

Start p
Dro F

- urn. mu.

-I-oint for top-left Start poin't for
all top-right Drop Fall

Figure 4.2: Selecting a good starting point for Drop Fall Segmentation

4.1.2 Movement Rules

After selecting an appropriate start point, the algorithm "drops the marble." The

algorithm follows a set of rules that advances the marble one pixel at a time until the

bottom of the image is reached. The algorithm considers only five adjacent pixels: the

three pixels below the current pixel and the pixels to the left and right. Upward moves are

not considered, because the rules are meant to mimic a falling motion. (The marble does

not bounce back up.) Characters are treated as solid objects, the marble does not cut

through the boundaries (i.e., enter a black pixel) unless all other options are precluded.

The movement rules are depicted graphically in Figure 4.3.

36

Stepwise Xevement Rules
down right

*TT don 11DH111 lf

right *

- down rTTsl
left

Speci.J Case:
cuts rather than reversing direction

(Multiple moves shown)

Legend.
white pixel (occupied)
black pixel (unoccupied)
any pixel (black or white)

. segmentation path

Figure 4.3: Stepwise movement of the Drop Fall Algorithm

The marble will always move directly downward if that pixel is empty (white). If that

pixel is occupied then the marble will move down and to the right. If both the pixels

directly downward and down and right are occupied the marble will fall down and to the

left. If all three pixels at the lower level are occupied the marble move directly to the

right. If all pixels except for the one directly left of the marble are occupied then the

marble will move directly left. Finally if all pixels around the current point are occupied

the marble will do move downward, thereby cutting the contour.

Pseudo Code
IF (WHITE (down))
IF (WHITE (downRightt))
IF (WHITE (downLeft)) T
IF (WHITE (right))
IF (WHITE (left))
ELSE

for Movement Rules
THEN tGO (down) }
THEN {GO (downRightt) }
HEN {GO (downLeft) }
THEN {GO (right) }
THEN {GO (left)}
GO (down);

There is an additional restriction that the marble cannot move back to a position it has

already occupied. If the above rules specify a location that has already been occupied, the

marble will cut downward instead. This prevents the algorithm from getting stuck in a

cycle when it reaches a flat plane. If this rule were left out the marble could move right

37

across a flat section and run into a pixel directly to the right, and then enter a cycle. At

this point the rules specify movement to the left, but that puts it back where it started so

the pixel would just move back and forth on an infinite basis.

4.1.3 Orientation

The Drop Fall algorithm described above corresponds to the top-left orientation. Three

more orientations are possible and all four are used in the HDF algorithm. The term top-

left refers to the fact that the algorithm in this orientation starts at the top of the image and

toward the left side. Drop fall with the other three variants is similar except that they do

not start near the top left. Two of the orientation start at the bottom of the image and

"fall" upward.

Top Right Drop Fall: This variant is identical to the top-left orientation except that it

starts at the top of the image toward the right side. The marble still falls downward but

favors the left side instead of the right. Conceptually, the algorithm uses the same

movement rules on an image that is "flipped" (rotated 1800) along the vertical axis.

3 3 Flip ipE)

Figure 4.4: Top-Right Drop Fall

More specifically this flipping can be described by the following image transform:

38

(1) P'(X,Y)= P(w-X, Y)

In this expression, P is the array of pixels and P(X,Y) refers to the pixel in at the Xth

column of the Yth row and w is the width of the image. The segmentation path is found

by flipping the image, performing the DF algorithm described in the previous section,

and then flipping the resulting path.

Bottom-Right: This variant is similar to drop fall in the top-left orientation except that

the image starts out at the bottom of the image and moves upwards. Conceptually this

corresponds to flipping the image 180o degrees about the horizontal axis and performing

top-left Drop Fall.

~33 Flip Flip

Figure 4.5: Bottom-Left Drop Fail

More rigorously, the necessary transformation is described as follows:

(2) P'(X, Y)=P(X, h-Y)

Here h is the height of the image and the rest of the parameters are the same as the above.

The segmentation path is obtained by flipping the image, obtaining the segmentation path

using standard drop fall, and then flipping that path.

39

Bottom-Right: This variant of Drop Fall segmentation is similar to the other three except

that it starts at the bottom-right corner. Like Bottom-Left Drop Fall this algorithm falls

upwards, but the marble tends to move to the Left as in Top-Right Drop Fall.

Conceptually, this algorithm is equivalent to performing standard DF on an image that

has been flipped along both the horizontal and vertical axes.

Figure 4.6: Bottom-Right Drop Fall

The necessary transform is described as follows:

(3) P'(X,Y)=P(w-X, h-Y)

As with the Bottom-Left and top-right orientations flipping the image, performing

standard DF, and then flipping the resulting path will produce the correct path.

In practice, the HDF algorithm changes orientation by redefining directions rather than

flipping the image. For example, when performing top-right drop fall the implementation

redefines left to be a greater column number rather than a lower one. The code for the

movement rules remains the same. A similar adjustment is done for orientations that

"fall" upward. Finally, the HDF algorithm selects the best path by using the path

evaluation heuristics described in Section 4.3.1.

40

4.2 Extended Drop Fall

In order to correctly segment connected zeros and other problematic cases, the Extended

Drop Fall approach will extend cuts diagonally through a contour. The algorithm

considers the pixel it is on, as well as the five pixels surrounding it from the sides and

below. If the current pixel is white, the algorithm follows the movement rules specified in

Section 4.1.2. However, if the current pixel is black it follows the rules described below:

Extended Movement Rules for Cuts

(does not move lakerally when
down on ablack pixel)

right *Legen&
white pixel

down black pixel

le ft *any pixel
* segmentation path

Figure 4.7: Additional movement rules for Extended Drop Fall

The standard algorithm attempts to move the marble onto white pixels at all times. EDF

will seek black pixels when it is already on a black pixel. When these rules are in effect,

the "marble" will fall directly downward if there is a black pixel below. It will fall down

and to the left or right if there is no black pixel directly below (preference to the right.)

41

Extended Drop Fall Movement Rules:
Pseudocode

IF (ONWHITE) THEN

IF (WHITE(down))
IF(WHrTE(downRight))
IF(WHITE(downLeft))
IF (WHITE(right))
IF (WHITE(left))
ELSE

IF(BLACK(down))
IF(BLACK(downRt))
IF(BLACK(downLt))
ELSE

THEN
THEN
THEN
THEN
THEN

THEN
THEN
THEN

GO(down)
GO(downRight)
GO(downLeft)
GO(right)

(GO(left) }
{GO(down)

{GO(down)
{GO(downRt)
{GO(downLt)

(GO(down)

However, the pixel will always move downward; unlike the "white seeking" rules that

apply when the marble is on white, the "black seeking" rules do not move directly left or

right. The intent is to extend a diagonal cut, not to follow the contour. If all three pixel

below the current pixel are white, then the marble moves directly down and terminates

the cut.

...... V .K.... XOOLX

(b)

Figure 4.8: Segmenting double zeros (a) best results with Hybrid Drop Fall (b) Extended Drop Fall

42

f

}
ELSE
I

I

Figure 4.8 illustrates the difference between the two algorithms. Figure 4.8a shows the

best result using hybrid drop fall (top-right orientation in this case.) The other three

orientations produced similar results. The Extend Drop Fall approach correctly segments

the digits by following the diagonal junction all the way through (depicted in Figure

4.8b).

4.3 Recognition Based Path Evaluation

The goal of segmentation is to segment characters along the right segmentation path.

When multiple paths are possible, there must be a mechanism for selecting the best one.

The Winbank system now uses a recognition-based approach to select the path rather

than rely on heuristic analysis. Nine paths are generated using various algorithms: one

using contour analysis, four from Hybrid Drop Fall, and four more using Extended Drop

Fall. The paths are first ranked heuristically using the same criteria as in the previous

Winbank implementation. Characters are then separated along each path and recognition

is attempted on all sets of digits. The heuristic rankings are still used as tiebreakers.

Because some recognition is now performed in the segmentation module, the process

need not be repeated in the Recognition module. Winbank stores the recognized values of

the digits along with the separated image. After generating paths, the system separates the

character along each path and evaluates the results. Each evaluation is done using a fresh

copy of the original segment. When a path is selected, the copy of the segment

corresponding to this path and the new segments generated from it will replace the

original. Because the replacement segments have already been recognized, the

43

recognition module will not attempt to recognize on a redundant basis. This saving in

computational time recovers some of the performance penalty involved in recognizing

the results of each path. Furthermore, since recognized segments are most likely to be

correct, it saves extra passes through the Feedback loop.

4.3.1 Heuristic Path Evaluation

Paths are ranked heuristically using structural features of the path and the image. The

segmentation algorithm that generated the path is also considered. Features can be either

positive or negative, so a point based ranking issued. Paths are awarded points for each

positive feature and points are subtracted for negative features. If more than one path has

the same value, the two are ranked in the order they were evaluated.

The most important criteria is the number of cuts made by the segmentation path. In most

cases, only one cut is necessary. If more cuts are made, it is likely that the path is cutting

through a digit. The path value is unchanged if there is no cut or a single cut. Two points

are subtracted for every cut beyond the first. A cut is identified using transitions from

white to black and vice versa. A white to black transition signals the start of a cut and a

black to white transition indicated termination of the cut. If the space surrounding an

image is assumed to be whitespace, so a black pixel in the first or last row will also be

considered a color change. Finally, it is possible to cut a diagonal line without a color

transition if the marble is moving perpendicular to the diagonal. For example, if there is a

pixel immediately downward and immediately to the right of the reference point and the

44

path moves down and right to a white pixel, it has "squeezed" through these pixels and

cut the diagonal line.

No MEN

MM ME

* UNo EN

(A) (B) (C)

Figure 4.9: Detection of cuts.

Each of these paths cuts through two lines. (A) black-white transitions indicate cuts (B)
black pixels at the very top and bottom rows of the image are also treated as transitions. (C)

cuts that "squeeze through" diagonally without color transition

The junction between two characters is typically characterized by two corners, which are

normally convex corners. In some cases the junction can be flat, but a cut through a flat

region normally means a stroke is being broken incorrectly. A convex corner is very

unlikely. One point is awarded for each concave corner at a cut point. One point is

subtracted for every cut through a flat area and three points are subtracted in the event of

a convex corner.

The length of the cut is another important criteria. This length is the distance from the

initial cut point to the terminating cut point. For multiple cuts, the cut length is measured

from the start of the initial point of the first cut to the terminating point of the last cut.

45

Two points are subtracted from the score if this cut length is above an empirically

determined threshold.

Finally, the path evaluation score reflect characteristics of the segmentation algorithm

used. Drop Fall from the top-left and top-right orientations tend to make errors in the

lower half of the image, while bottom-right and bottom-left make errors in the top half.

One point is subtracted if the algorithm made cuts where it may cause errors. The order in

which paths are listed can also make a difference in the case of identical scores. If one

algorithm offers empirically better results than another, it should be listed ahead of it.

4.3.2 Path Selection Rules

The appropriate segmentation is done using the results of recognition. Obviously the

more blocks recognized the better. But when multiple of paths all result in the same

number of recognized block tiebreakers are necessary. The best path is chosen using the

following set of rules.

46

Path Selection Rules

1. If any of the EDF paths results in two recognized zeros, select the highest ranked of these paths.

2. Otherwise, if there are paths that produce two recognized digits select the highest ranked of
these paths.

3. Otherwise, if there are sets that produced one recognizable digit, select the highest ranked of
these paths.

4. Otherwise, select the highest ranked path in the set

5. Other Improvements to the Winbank System

The main focus of this thesis is on the Extended Drop Fall algorithm as well as the

recognition-based path selection mechanism necessary to utilize the algorithm correctly.

However, work has been done to improve other aspects of the Winbank system, as well.

The mechanism for reconnecting fragmented digits has been improved. Segments

identified as character fragments were previously merged to nearby segments only during

the first iteration of the feedback mechanism. The system has been improved to undo

merges and remerge fragments with different digits when merging fails.

The recognition module has also received some attention. The neural networks were

trained using an iterative approach in which mistakes made in testing are included in the

training set in each successive iteration. The scope of the slant correction algorithm, used

in normalizing segments before recognition, has been reduced to increase speed and

eliminate some types of recognition errors.

5.1 Merging

When a segment is identified as a fragment of a character, the system attempts to merge it

with a neighboring segment. A set of four neighboring segments is considered and the

best one is chosen based on criteria such as proximity, overlap and whether or not the

fragment has previously been merged to the segment. Segments that have been

previously merged will not be merged again because a correct merge is assumed to result

in recognition. Vertical overlap of segments takes precedence over proximity, because

although these factors tend to go hand in hand, the former can be more important in some

47

cases. A five with a disjointed top stroke is a common example of such a case. The top

stroke is often closer to another character in proximity but, the stroke starts directly above

the rest of the digit, which makes vertical overlap a much better indicator. If a suitable

segment is found, the fragment is merged with that neighbor for consideration by the

recognizer. If unrecognized, the two merged segments will be separated on the next

iteration of the feedback loop and a new option for merging will be attempted.

On each pass through the feedback loop, a fragment can have a different set of neighbors

for consideration. Segments can be separated or merged so that the neighbor segments

may not be the same on every iteration. Furthermore, the fragment could potentially be

placed in a different position in the "list" of segments. The set of neighbor segments

considered depends on the internal representation used to handle the check value. A

description of this representation is provided in Section 5.1.1, before presenting the

details of the implementation of the merging algorithm in Section 5.1.2.

5.].] Representation of the Courtesy Amount Block

The Winbank system repeatedly performs separation and merging of character segments.

These operations need to be done efficiently and, if necessary, undone efficiently as well.

To simplify these operations, the system uses a data structure with attributes of both a

linked list and a binary tree. Conceptually, the value of a check is made up of a string of

characters, which suggests a list structure or dynamic array. However, the feedback

mechanism requires that separation and merging need to be undone. This operation is

48

performed by backtracking on a tree-like structure. The representation chosen is a

compromise between the two requirements.

Initially, the image is separated into regions of connected pixels. Each of these regions is

placed in a block; blocks are connected together as a simple linked list. At this stage,

blocks do not necessarily hold individual digits. The region may be a multiple digit in

which case separation is necessary or it may be a fragment that needs to be merged.

When separation is performed, the newly formed segments are stored in blocks that

branch out from the original. Much of the information for the original segment is kept

intact so that the operation can easily be undone. Similarly when a merge is done, a new

block replaces the two merged blocks. However, the original blocks will branch out from

this new block so that the merging may be undone as necessary by flattening the tree.

Zxx

x

X X X ' X X - Xx xxx x x x

(A) (B) (C)

Figure 5.1: Internal Representation of Digits

Segments are stored in blocks (a) a simple block (b) separated blocks (c) two merged blocks

Each block can contain a segment, a normalized segment and two pointers to other

blocks. The normalized segments are required by the recognition module and are created

just before recognition. Normalizing the segment causes some loss of information so the

49

original segment is kept for future merging or separation. If a segment is not recognized,

the normalized segment is deleted. If the segment is recognized, the original is deleted

because it is no longer needed. Similarly, when segments are merged or separated, the

original blocks are kept but the normalized segments and unnecessary information are

deleted.

Each block is given a block type to keep track of the type of segments it represents. A

block can be classified as UNKNOWN, HOLD, MERGE, or SEPARATE. Blocks

containing a single character are classified as UNKNOWN until they are recognized. A

block of this type could be separated or merged in future iterations. Once a block is

recognized, it is classified as HOLD. This prevents further attempts to separate or merge

this block. Blocks that have been separated are classified as SEPARATE. This indicates

that the branches that the system should look to the branches of this block for further

processing. Finally a new block created by merging two older blocks is classified as

MERGE. This indicates that its component segments are available should merging need

to be undone.

Because of such merging and separation, the original linked list becomes a list of tree

structures. In order to reduce complexity, an iterator is used to traverse the structure as if

it were a list. Externally the data appears to be a string of segments organized as a linked

list, but backtracking is simple because of the internal representation scheme used in this

architecture.

50

X

IX X X X

X X "" X X

Figure 5.2: The Block Iterator

This representation is simplified when segments are recognized. If both child components

of a segmented bock are recognized, there is no further need for the original box so the

tree is flattened. Similarly if a merged block is recognized, its component blocks are

deleted since there is no further need for them.

5.1.2 Re-Merging Implementation

In order to redo merging, it is important to identify blocks to which a fragment has

already been merged. Otherwise, merging could be done repeatedly on the same block

and result in failure. Because, separation and merging can change the data structure at

each iteration of the feedback loop, the system must do more than just remember the

relative position of previously merged blocks. Instead, each block is given a unique

identification number (the block ID) and fragments keep a history of blocks to which they

have already been merged. Note that separation and merging operations create new

51

blocks, which have unique ID numbers, so a fragment can be merged with these blocks

even if merging with their component segments has already been attempted.

Unmerged fragments will always be placed at the top level linked list of the tree-list

structure. When merging is done, the system looks at the two list elements preceding the

fragment and two elements following it in the linked list. Each list element can be a

single block or a compound tree structure formed by previous separation or merging.

Only one block from each list element is considered. If it is a single block or a merged

block, the choice is obvious. If it is a separated block then one of the leaf nodes in the

tree is selected for consideration. This selection process ignores blocks that have already

been merged with the segment so other blocks in the tree may be considered in future

iterations.

The fragment is merged with the best match, based on the criteria described above. If

none of the candidate blocks is close enough to the fragment (maximum distance

threshold) then the fragment is deleted. Otherwise it is merged with the best candidate.

The new merged block replaces the block to which the segment was merged. The

fragment and the segment blocks are relocated to the branches of this new block. If the

resulting segment is not recognized, then the merge is undone in the next iteration of the

feedback loop. The fragment is placed at the top level linked list again. It is placed

immediately before or after the list entry to which it was joined, depending on what side

of the segment it was joined to.

52

5.2 Iterative Training

A somewhat different training method was employed to improve the results of the

recognition module. The method is based on an algorithm presented by Rowley [nl] for

the purpose of face detection. The neural networks in Rowley's system were trained

iteratively in a series of stages. At each training stage, errors from the previous stage

were included in the training set for the current stage. In this way, common errors are

reduced because the network. Rowley's method for training face detection networks is

summarized below:

Iterative Training

I. Train the network using standard training set.

2. Test the resulting network on a different set, including randomuly generated
images as negative examples.

3. Identify cases where it makes an error, and retrain using these cases in the
training set.

4. Repeat steps 2 and 3 until the desired accuracy is achieved

This algorithm was implemented with some modifications in the Winbank system. The

existing networks were retrained using properly segmented characters that were not

recognized. The method improved accuracy results drastically; however this is

misleading because the testing set now contains characters used in training and is

somewhat small in size. The networks could have "memorized" these cases rather than

developing accuracy in the general case. The system was then tested on a completely

distinct set of checks. In the original set the results went from 24 checks read correctly

and 49 incorrect to 50 correct and 20 incorrect. The second set showed improvement

53

from 7 correct and 36 incorrect to 13 correct and 18 incorrect. The second set

showsimprovement similar to the original testing set. The improvements were significant

but not as drastic as the improvement in the earlier scenario. Iterative training does

indeed improve the accuracy of the system, although the results may be exaggerated

when using the original testing set.

5.3 Slant correction

Winbank uses slant correction to normalize digits and improve the likely hood of

recognition. However slant correction is a computationally expensive process; the entire

image is copied over repeatedly with incremental changes in rotation. The proccess is

time consuming and requires significant resources. Furthermore, it can cause incorrect

recognition by overcorrecting digits. A common error is that connected zeros are read as

heavily slanted eights.

The degree to which the image is slant corrected has been reduced. The new value is 450

on either side. This modification has been shown empirically to decrease errors while

maintaining the rate of correct recognition. Reducing slant correction decreases overall

error by 0.3% while the false positive rate is improved by 0.9%. This modification also

improves the speed of the system because the number of caparisons needed is reduced.

Test results show an average improvement of 6.1% in time. These results are explained in

more detail in Section 6.2.

54

6. Performance Evaluation

The Winbank system was tested using several different techniques to determine the

accuracy and speed of the system. This thesis focuses on the segmentation module and,

specifically, segmentation algorithms such as Extended Drop Fall (EDF) and Hybrid

Drop Fall (HDF). One set of tests was designed specifically to determine the performance

of these algorithms. The scope of these tests is limited to those cases in which segments

were properly identified as multiple digits and separation was attempted. Errors in CAB

location, merging and recognition are not considered in these tests. The results of this set

of tests are presented in Section 6.1.

The second set of tests, presented in Section 6.2, evaluates the accuracy and speed of the

entire system. The ultimate goal of the system is to read checks rather than simply

segment numbers. The EDF algorithm is implemented to increase overall performance

via the segmentation module. Chapter 5 describes other modifications employed for the

same purpose. In order to determine overall performance, the system was tested on

several sets of check images taken from a real life application (i.e. images of checks that

were actually issued). The tests were performed using Winbank in a number of different

configurations, so that the results indicate the incremental improvement of each of the

modifications as well as their cumulative effect. Because several of these modifications

involve additional computation, the speed of the system is also tested. The results of these

tests are presented in Section 6.2.

55

6.1 The Segmentation Algorithm

In order to gauge the accuracy of a segmentation algorithm, we must consider

performance on a per segment basis, rather than on a per-check basis. Both the HDF

algorithm used in the previous implementation of Winbank and the new EDF algorithm

were tested using a set of 145 checks containing 910 digits. The segmentation algorithm

was used to separate digits in 162 cases. The EDF algorithm was found to have

consistently better results than HDF. The results are presented in Table 6.1.

162 72 44.4% 162 94 58.0%

86 22 25.6% 86 44 51.2%

76 50 65.8% 76 50 65.8%

Table 6.1: Accuracy of Segmentation Algorithms

Note that over half (53%) the cases requiring segmentation involved connected zeros.

This is typical of bank checks and is the key factor in the increased accuracy from HDF

to EDF. The HDF algorithm properly segments only about a quarter of the connected

zeros (25.6%). The EDF algorithm is specifically designed for this case and doubles the

number of accurate separations. Furthermore performance on cases other than connected

zeros is identical. However, performance on individual cases is not identical. EDF

segments some cases that HDF does not, and vice versa.

56

In practice, the overall performance of the system is higher than the 44.4% and 58%

listed in the tables because the recognizer is robust enough to handle digits that were not

perfectly segmented. Only cases in which no flaws could be detected on manually

inspection were considered correct. Although recognition by the system is a more

practical indicator, it depends on the performance of the recognition module, which can

bias the results. Using "perfect" segmentation as the criteria allows us to focus on the

performance of just the segmentation algorithms.

6.2 Overall System Performance

The overall performance of the system is measured by examining accuracy per check,

rather than per digit. The system was tested on several sets of authentic checks obtained

from a Brazilian bank (because Winbank is optimized for syntax and grammar

conventions used in Brazil.) The primary testing set contains 320 paper checks that were

scanned in by hand using a flatbed scanner and stored as bitmapped images. In addition

to the paper checks there are several sets, of approximately 300 images each, stored in a

compressed JPEG format. The secondary sets are of relatively low quality; they contain

an unusually high level of background noise and many segments are difficult to separate

and recognize. The majority of the results discussed in this section use the primary set.

The secondary sets are used to verify the results, particularly when using iteratively

trained neural networks.

Table 6.2 summarizes test results that compare the most recent version of the program

with the pre-existing Winbank system. The pre-existing ("Unmodified") system is

57

compared with the most recent version of Winbank which implements all the

modifications described in this thesis. The iterative training method described in Section

5.2 is treated separately because these results require further analysis to decide whether or

not they represent the true accuracy of the system. (See the discussion in section 5.3). In

order to differentiate the two cases the proceeding discussion "trained" will refers to the

use of iterative training and untrained refers to the use of a standard neural network in the

proceeding discussion.

Untrained Trained
Reject Read Error False pos. Reject Read Error False pos.

Winbank
Unmodified 76.9% 7.6% 15.5% 67.1% 77.9% 15.8% 6.3% 28.6%

Winbank
Modified 78.1% 10.0% 11.9% 54.3% 73.0% 19.5% 7.5% 27.9%

Table 6.2: Overall Accuracy of the System

Table 6.2 lists the four most significant statistics for each test: the reject rate, the read

rate, the error rate, and the false positive rate. Rejects rate indicates the percentage of

checks that could not be recognized by the system; such checks will need to be read by a

human operator. The read rate refers to the percentage of checks that were recognized

correctly. Finally, the error rate is the percentage of all checks that were recognized

incorrectly and the false positive rate is the percentage of recognized checks that were

read incorrectly.

The modifications resulted in a marked improvement for both trained and untrained

versions of the system. The untrained system rejects more cases but correctly reads a

greater percentage of the checks and makes errors on a smaller percentage, when the

58

modifications are included. As a result, the false positive rate is significantly lower at

54.3%. The trained version shows a 1.2% increase in the overall error rate when the

modifications are implemented. However, this increase is outweighed by greater

improvements in the correct-read rate, the false positive rate and the reject rate. The

overall change in performance from the untrained, unmodified version of Winbank to the

trained, modified version is considerable. The read rate has more than doubled, the error

rate is less than half as much, and the false positive rate falls from 67.1% to 27.9%.

The results presented in Table 6.2 shows the cumulative effects of all the modifications

performed on the system. It is useful to note the incremental improvement for each

modification employed. Table 6.3 lists test results using independent implementation of

each modification, so that the impact of each change can be considered individually. All

tests were performed using the same set of 320 checks that was used in Table 6.2. The

same set of iteratively trained neural networks was used for each test.

Table 6.3: Incremental impact of each modification to the system

59

EDF and RBPS indicate implementation of Extended Drop Fall and the Recognition

based path selection, respectively, as described in Chapter 4. "Redo Merging" indicates

that merges are reconsidered at every iteration of the feedback loop (see Section 5.1.)

Finally, "Reduce Slant" indicates that the scope of slant correction has been narrowed

down to eliminate rare false positives (see Section 5.3.)

Another important consideration is the speed of the system. Several of the mechanisms

employed in the system are considered computationally expensive processes. Neural

networks inherently entail many mathematical calculations. Similarly, slant correction

makes numerous copies of the same image in order to minimize the aspect ration. The

recognition based path selection method, used with EDF segmentation, forces the system

to perform recognition, for up to eight cases, every time segmentation is attempted. This

has a significant impact on the speed of the system, however, it still performs within

previously established performance boundaries.

A human operator typically takes 5 to 10 seconds on average to process a check [13]. An

automated system should operate well within these limits. The goal of this project has

been to keep processing time below one second per check.

Average time Maximum time Minimum time
(sec. / check) (sec) (see)

Unmodified System 0.33 0.80 0.11

Modified System 0.60 1.88 0.15

Optimal System 0.31 0.75 0.08

Table 6.4: Processing latency in the Winbank System

60

Three different versions of Winbank are presented in Table 6.4. Unmodified refers to the

previously implemented system. The Modified configuration includes all modifications

described in this paper including, EDF, RBPS, reduced slant correction, redoing merging,

and use of iteratively trained networks. The Optimal configuration is designed to be most

efficient in speed. It is simply the unmodified configuration with reduced slant correction,

because this is the only modification that decreases time needed to process each check.

The Modified version is considerably slower than both the Unmodified and Optimal

configurations. On average it takes twice as long to process a check. However, the

average processing time of 0.6 seconds per check is still well within acceptable

performance limits for the system. Although these modifications leave less flexibility for

future modifications, the associated improvement in accuracy are certainly worth the

added latency, especially since latency is still at acceptable levels.

61

7. Possible Improvements

Winbank is a sophisticated system with relatively good results in terms of performance

and accuracy. However, further improvement may be possible with additional

modifications. This section describes a set of modifications that should be considered for

future research and further development of the Winbank system.

As noted in Chapter 2, segmentation is made easier if the system has a priori knowledge

of exactly how many characters are present in the image. Although this is generally not

possible with bank checks, the system may be able verify the number of segments

distinguished using contextual information such as punctuation. Grammatical rules for

American checks dictate that commas are used to separate three digits at a time and that

only two digits follow a decimal point. In Brazil, the functions of the comma and the

period are reversed, but the grammatical rules are similar. In either case the placement of

punctuation in the image can be used to adjust the likelihood of segmentation. The

Winbank system is somewhat restrictive in the early iterations of the feedback loop to

prevent unnecessary segmentation. Punctuation can be used to segment the characters

more aggressively. Segmentation criteria should be relaxed when punctuation suggests

there should be more digits than detected and more restrictive if this is not the case. Other

information, such as delimiters or horizontal lines, which are currently discarded, might

also be used in a similar manner.

Another possible improvement is to discard similar paths. In general, it is difficult to

determine whether or not two paths are similar. Even small deviations could make the

62

difference between correct segmentation and failure. However, paths that make the same

cuts are identical for purposes of segmentation. Checking paths for identical cuts and

eliminating these duplicate paths could improve the performance of the system.

It may also be useful to extend connected pixel extraction beyond the boundaries of the

CAB. Some digits tend to hang down below the lower border of the CAB. This is

particularly common for digits with a long straight lower stroke such as "4","7" and '9."'

By extending pixel extraction, these digits are not truncated and are more likely to be

recognized. Similarly, segments that extend well outside the CAB may not be part of the

numerical value of the check. Writing from the Legal Amount Block (where the value of

the check is written out in text) frequently extends into the CAB. These fragments are

often treated as punctuation or unrecognized digits by the segmentation module. By

eliminating all fragments that extend beyond a threshold distance outside of the CAB,

segmentation errors can be reduced.

Also, improvements can be made in the way Winbank deals with segments composed of

more than two digits connected together. When a segment containing three or four

characters is separated, the original segment is separated in two and the resulting

segments are separated further as necessary. The result is a tree structure with the first

separation as the root and further separations branching downward. Currently, separation

lower in the tree is reconsidered more often than earlier separation.

63

Figure 7.1: Multiple segmentations for a tree structure

Figure 7.1 illustrates an example. The "234" block is separated first into the "2" bock

and the "34" block. The "34" block is then further separated. If the segments are not

recognized, the first separation will not be reconsidered until all possibilities for the "34"

block are exhausted. It might be more productive to reconsider the first separation,

especially if the "2" block is not recognized.

A number of improvements can be made in the recognition module. The iterative training

method described in Chapter 5 should be explored further. Iterative training should be

done more rigorously, using more incorrectly recognized segments and more rounds of

training. The networks should be trained using a larger training set and a number of

distinct sets for testing the results. The results presented in this thesis reflect a limited use

of iterative training, but they suggest that considerable improvements in accuracy can be

achieved using this method.

The recognition module could also be improved by allowing a larger set of possible

outputs. There are a number of symbols that the system is not currently trained to

64

recognize. For example, the dollar sign ("$") was not included in the set of possible

classifications because the system was designed for Brazilian checks in which "#' is a

common delimiter. The delimiters "RS" and "R$" are also common in Brazilian check

but the system does not recognize them. The current system will simply reject checks

with these characters. Adding these cases will improve the accuracy and the versatility of

the system. However, this requires a change to the network topology, so it may not be

possible to reproduce current accuracy levels with the new characters included.

In addition to an expanded character set, it may be useful to have the recognizer find

special cases such as double zeros or connected digits. Because segmentation is

conservative on the first pass, connected digits are routinely passed to the recognition

module several times before they are segmented. If the recognizer could indicate

"connected digit" rather than simply "not recognized" the segmentation module can then

force segmentation on the second pass regardless of the aspect ratio. Connected zeros are

so common that it would be useful to recognize this case separately from connected

digits. Once a region is identified as two connected zeros, there is no need for further

segmentation because the value is already known.

Another possible improvement involves CAB location. Although CAB location works

well in the majority of cases, the system will occasionally miss part of the CAB. The

borders of the CAB are located by looking for straight horizontal or vertical lines. The

straight stroke of the digits such as 1,9 and 7 can be "straight enough" to be mistaken for

a vertical CAB border. In these cases any number digits to the left of the straight stroke

65

will not be found. In theory, this can also happen with horizontal lines but, it is very

unlikely that the system will find a straight horizontal stroke long enough to be mistaken

for a border.

A possible solution to this type of CAB location problem is to consider a number of

candidate lines for borders. Currently, the system begins at a hard coded starting point

inside the CAB and scans outward looking for straight vertical and horizontal lines.

When a straight line is found, the system stops scanning in that direction. An improved

system could continue scanning and identify all possible lines or, at least, all possible

vertical lines. The most likely CAB borders can then be determined using heuristic

analysis with such factors as the aspect ratio of the CAB, the thickness of the lines

detected, and the distance from other elements. Most checks will have CABs of roughly

the same aspect ration. Brazilian checks typically have only thick vertical lines to delimit

the CAB. There will be some whitespace between the handwritten characters and the

CAB borders. The system can use all these properties to determine the CAB location in

cases of uncertainty.

66

8. Conclusion

The modified segmentation module described in this paper is designed to overcome some

of the weaknesses of heuristic analysis. The system also pursues many more possible

options in order to select the correct division of pixels into characters. The performance

of the module is much improved on several cases that were frequently segmented

incorrectly using earlier techniques. Such cases were consistently segmented improperly

because heuristic analysis techniques rate the correct segmentation paths lower than other

options. The modified system works better because the reliance on heuristics has been

reduced. The new system also unmerges and remerges to correct previous errors in

merging. In addition improvements to the recognition module were included to allow

better performance of the overall system.

The Extended Drop Fall algorithm, described in Chapter 4, works well for cases in which

the correct path should make a long cut through the connected characters. It works

particularly well for connected zeros, a case that occurs frequently and is routinely

separated incorrectly. In order to utilize this algorithm, the segmentation module also

incorporated recognition based path selection. The Extended Drop Fall approach adds a

set of paths to the list of possible separations. However, heuristic analysis would rank

these paths very low because short cuts are better than long cuts in the general case. By

using a recognition-based approach, the system can determine when these new paths are

better than the normal set because, ideally, only the correct path will result in recognition

of both parts of the image.

67

Recognition based path selection is an improvement in its own right. It can improve

accuracy results even without Extended Drop Fall. The new module shows definite

improvement over the previous system in terms of accuracy. Although the module is

significantly slower than the previous version, it still runs well within performance

limitations, so the improvement in accuracy certainly out weighs the cost.

In the previous implementation of the segmentation module, merging was done only on

the first pass through the system. This reduced complexity while still attempting to

correct fragmented characters. The improved module can do merging on every pass

through the loop. Like the new segmentation algorithm, merging now attempts more

cases and catches a number of common errors.

These improvements are combined with a new training method that improves the

accuracy of the recognition module. The result is a significant improvement in the overall

performance of the system. Although, reading of all types of handwritten material with

the Winbank system is still far from perfect, one has come closer to the goal of imitating

human ability to read characters!

68

References

[1] Dey, S. (1999) Adding Feedback to Improve Segmentation and Recognition of
Handwritten Numerals. Masters Thesis, Massachusetts Institute of Technology.

[2] Sinha, A. (1999) An Improved Recognition Module for the Identification of
handwritten Digits. Masters Thesis, Massachusetts Institute of Technology.

[3] Sparks, P., Nagendraprasad, M.V., Gupta, A. (1992) " An Algorithm for
Segmenting Handwritten Numeral Strings." Second International Conference on
Automation, Robotics, and Computer Vision. Singapore, Sept. 16-18, 1.1.1 - 1.1.4.

[4] Congedo, G., Dimauro, G., Impedovo, S., Pirlo, G. (1995) "Segmentation of
Numeric Strings." Proceedings of the Third International Conference on Document
Analysis and Recognition, Vol. II 1038-1041.

[5] Dimauro, G., Impedovo, S., Pirlo, G., Salzo, A. (1997) "Automatic Bankcheck
Processing: A New Engineered System." International Journal of Pattern
Recognition and Artificial Intelligence 11 (4) 467-504.

[6] Blumenstein, M. and Verma, S. (1998) "A Neural Based Segmentation and
Recognition Technique for Handwritten Words". IEEE International Conference on
Neural Networks Vol. 3, 1738-1742.

[7] Lee, S.-W., Lee, D.-J., Park, H.-S. (1996) "A New Methodology for Gray-Scale
Character Segmentation and Recognition." IEEE Transactions on Pattern Analysis
and Machine Intelligence 16 (10) 1045-1050.

[8] Hong, T., Hull, J., Srihari, S. (1996) "A Unified Approach Towards Text
Recognition." Proceedings of SPIE: The International Society for Optical
Engineering Vol. 2660 27-36.

[9] Martin, G., Mosfeq, R., Pittman, J. (1993) "Integrated Segmentation and
Recognition Through Exhaustive Scans or Learned Saccadic Jumps." International
Journal of Pattern Recognition and Artificial Intelligence 7 (4) 831-847.

[10] Feliberti, V. and Gupta, A. (1991) A New Algorithm For Slant Correction of
Handwritten Characters, Masters Thesis, Massachusetts Institute of Technology.

[11] Nagendraprasad, M.V., Wang, P.S.P., Gupta, A. (1993) "Algorithms for Thinning
and Rethickening Binary Digital Patterns." Digital Signal Processing 3, 97-102.

[12] Sparks, P. (1992) A Hybrid Method for Segmenting Numeric Character Strings.

[13] Khan, S. (1998) Character Segmentation Heuristics for Check Amount Verification.
Masters Thesis, Massachusetts Institute of Technology.

69

[14] Nagendraprasad, M., Sparks, P., Gupta, A. (1993) "A Heuristic Multi-Stage
Algorithm for Segmenting Simply Connected Handwritten Numerals." The Journal
of Knowledge Engineering & Technology 6 (4) 16-26.

[15] Zhao, B., Su, H.,Xia S. (1997) "A New Method of Segmenting Unconstrained
Handwritten Numeral Strings." Proceedings of the Fourth International Conference
on Document Analysis and Recognition. (ICDAR '97) Vol. II 524-527

[16] The Green Sheet, Inc. United States Check Study:Results of 1997 Research,
(Pentaluma, CA Published Report, 1998)

[17] Martin, G. (1993) "Centered-Object Integrated Segmentation and Recognition of
Overlapping Handprinted Characters." Neural Computation 5, 419-429.

[18] Keeler, J., Rumelhart, D. (1992) "A Self Organizing Integrated Segmentation and
Recognition Neural Network." Proceedings of SPIE: The International Society for
Optical Engineering Vol. 1710 744-755.

[19] Shridar, M. and Badrelin, A. "Recognition of Isolated and Simply Connected
Handwritten Numerals." Pattern Recognition. 19(1). 1986.

[20] R. Fenrich and K. Krishnamoorthy.(1990) "Segmenting diverse quality handwritten
digit strings in near real-time." Proceedings of the 4 th Advanced Technology Conf.
523-580

[21] N.W. Strathy, C. Y. Suen and A. Kryzak. "Segmentation of handwritten digits using
contour features". Second Int. Conf. On Document Analysis and Recognition.
Montreal, August 14-16, 1995, pp. 10 3 8-10 4 1

[22] R. G. Casey, E. Lecolinet.(1996) "A Survey of Methods and Strategies in Character
Segmentation." IEEE transactions on pattern analysis and machine intelligence.
18(7), pp.6 9 0

[23] Rowley, H. A Trainable View-Based Object Detection System. Thesis Proposal,
Carnegie Mellon University. 1996

70

Appendix A: Segmentation Code

This section contains the source code for the segmentation module. Only the major functions are
reproduced here. Higher level functions are presented firsty then the more detailed functions. The reader
should be able to follow the progression of the code. Descriptions of all functions and datastructures can be
found in the header files, which are listed in Appendix B.

// Function: SegmentAndRecognize
//
// Purpose: Iterates through segmentation and recognition until nothing else
// can be done.
//
// Arguments: [in] image B/W image to be segmented and recognized
//
// Returns: NULL if an error occurred. Otherwise returns a set of processed
// segments.
// Notes:
//
CABValue* SegmentAndRecognize(BWlmage* image, DDDNet* nnl, PosNet* nn2, DDDNet* nn3,
PosNet* nn4,

StructProcessor* sp, Arbiter* arb)

CABValue* CAB = new CABValue;
if (!CAB) return NULL;

// Separate out all of the connected regions in the image and classify them.
if (CAB->CollectConnectedRegions(image) == SEGERROR) {

delete CAB;
return NULL;

}

// Write the initial CAB to the log
WriteLog(O,

WriteLog(O, "INITIAL CONNECTED REGIONS");
WriteLog(O,

CAB->Log(O);
char itermessage[100]; // A handy variable for logging
strcpy(itermessage, "Iteration: ");

// Remove all "isolated" characters, which are probably side effects of bad CAB location
CAB->RemovelsolatedRegions(image);

/ Iterate through segmentation and recognition until everything is recognized
// or until we go through enough times.
int iterationcounter = 0;
while (!CAB->DoneRecognizing() && iterationcounter < MAXITERATIONS) {

iterationcounter++;

// Adjust classifications to catch mistakes. This is the meat

71

// of the feedback system.
CAB->AdjustClassifications(iterationcounter);

// Write the current CAB to the log
WriteLog(O,

sprintf(itermessage+1 1, "%d", iterationcounter);
WriteLog(O, itermessage);
WriteLog(O,

CAB->Log(O);

// Evaluate all unrecognized segments and make changes as necessary.
CAB->DoSegmentation(nnl, nn2, nn3, nn4, sp, arb);

// Normalize segment sizes, thicknesses, slants, etc.
CAB->PrepareForRecognition();

// Attempt to recognize all unrecognized segments
for (Segment* seg = CAB->IterateSegments(true, true);

seg != NULL;
seg = CAB->IterateSegments(false, true))

// We filter out segments which are classified "NONSENSE" and "HORIZ"
// because they are most likely the result of a bad segmentation.

// if (!seg->Classls(SCNONSENSE) && !seg->Classls(SCHORIZ))
if (seg->Classls(SCNONSENSE) I seg->Classls(SCHORIZ)

I seg->ClassIs(SC-FRAGMENT) I seg-
>Classls(SCFRAGMENTERROR)) {

seg->digit = NOTRECOGNIZED;
else I

if (!gisGUlI) {
Segment* sseg=RecognizeSeg(nnl, nn2, nn3, nn4, sp, arb,

seg);
//if(sseg==NULL){WriteLog(O,"RecognizeSeg returned

null");}
/else{WriteLog(O,"RegonizeSeg valid");

else{
if (g-gatherSegs) {

HumanRecognize(seg); // TEST RECOGNIZER
else {

RecognizeSeg(nnl, nn2, nn3, nn4, sp, arb, seg);
seg->LogConfidences(3);

// Get rid of old data we don't need anymore.
CAB->CleanupAfterRecognitiono;

// Finalize everything, recognized or not

72

CAB->CleanupWhenDoneo;

// Write the final CAB to the log
WriteLog(O,

WriteLog(O, "FINAL RESULT");
WriteLog(O,

CAB->Log(O);

return CAB;

// Function: DoSegmentation

// Purpose: Performs any necessary separations and merges.
// Arguments:

void CABValue::DoSegmentation(DDDNet* nnl, PosNet* nn2,DDDNet* nn3, PosNet* nn4,
StructProcessor* sp, Arbiter* arb)

Segment* seg = NULL;
bool first;
Block* block = NULL;
bool changed;

/Undo Merges. Each time through undo unsucessfull merges and merge to other candidates
if(gjedoMerging) { UndoMergingo; }

// Each time through this loop we look at the list of regions and make
// one change to get rid of one character classified as fragmented or
// multiple. (This is because once a change has been made we should start
// over looping from the beginning.) We keep looping until no more changes
// are made.

/**/
// MERGING LOOP
do {

changed = false;

// Attempt to paste a fragment to its most reasonable neighbor.
for (block = head; (!changed) && (block != NULL); block = block->next) {

first = true;
while (!changed && ((seg = block->IterateSegments(first)) != NULL)) {

first = false;
// if (seg->Classls(SCFRAGMENT) I seg->Classls(SCHORIZ) I seg-
>Classls(SCPUNCT)) {

if (seg->Classls(SCFRAGMENT) I seg->Classls(SCHORIZ)) {
WriteLog(O, "MERGE");
if (Merge(block, seg) == SEGOK) {

WriteLog(O, "MERGE SUCCEEDED");
changed = true;

else if (seg->Classls(SCFRAGMENT))
WriteLog(O, "MERGE FAILED");
seg->SetClass(SCFRAGMENTERROR);

73

I else {

to keep HORIZ and PUNCT

than once...

// FIXLATER: SHOULD DO SOMETHING HERE

// segments from being merged (unsuccessfully) more

WriteLog(O, "MERGE FAILED -- horiz or punct");
}

}

// Do nothing for other cases.

} while (changed);

// SEPARATION LOOP
do {

changed = false;

// Process all multiple-character regions
for (block = head; (!changed) && (block != NULL); block = block->next) {

// Attempt to separate multiple characters.
first = true;
while (!changed && ((seg = block->IterateSegments(first)) != NULL))

first = false;
if (seg->Classls(SCMULTIPLE)) {

WriteLog(O, "SEPARATE");
if (Separate(nnl, nn2, nn3, nn4, sp, arb, block, seg)==

SEGOK) {

} else {

}
I

I

WriteLog(O, "SEPARATE SUCCEEDED");
changed = true;

WriteLog(O, "SEPARATE FAILED");
seg->SetClass(SCMULTIPLEERROR);

I

I while (changed);

// Function: (CABValue::)Separate
/-
// Purpose: Separate segment seg within block into two different parts.
// This function is really just a wrapper for Block::Separate,
// with the addition that it maintains the head and tail pointers.
//
// Arguments:
//
//-
//I
//
//

[in] block Block containing segment to be separated
[in] seg Segment to be separated
[in] nnl,nn2,nn3 Neural net recognizers
[in] sp A structural Processor
[in] arb The arbiter to decide between networks

74

}

}

}

// Returns: SEGERROR if an error occurred or if separation was
// unsuccessful.
// SEGOK if separation was successful.
//
// Notes:
//
Status CABValue::Separate(DDDNet* nnl, PosNet* nn2,DDDNet* nn3, PosNet* nn4, StructProcessor*
sp, Arbiter* arb, Block* block, Segment* seg)
{

// Perform the separation
if (block->Separate(nnl, nn2, nn3, nn4, sp, arb, seg, vmid)== SEGERROR)

return SEGERROR;

// Reset iterator for safety
iterloc = NULL;

return SEGOK;
}

// Function: (Block::)Separate
//
// Purpose: This is the real meat of the segmentation. Separate two (or
// more) joined characters into two distinct connected regions, so
// that one is a single, complete character. Replace the old segment
// in RegionList with two separate segments. Uses vmid to
// critique segmentation done.
//
// Maintains the classification for each segment.
// Makes no changes to image.
//
// Arguments: [in] s Segment being separated
// [in] vmid Vertical midline of image
// [in] nnl,nn2,nn3 Neural net recognizers
// [in] sp A structural Processor
// [in] arb The arbiter to decide between networks
//
// Returns: SEGERROR if an error occurred or if separation was
// unsuccessful.
// SEGOK if separation was successful.
//
// Notes:
//
Status Block::Separate(DDDNet* nnl, PosNet* nn2,DDDNet* nn3, PosNet* nn4, StructProcessor* sp,
Arbiter* arb, Segment* s, int vmid)

// Find the block that s came from
if (s != seg) {

if ((type != BTSEPARATE) II (!bListl) II (!bList2))
return SEGERROR;

Status result = bListl->Separate(nn1, nn2, nn3, nn4, sp, arb, s, vmid);
if (result == SEGOK)

return result;
return (bList2->Separate(nnl, nn2, nn3, nn4, sp, arb, s, vmid));

75

Path* path;

// Get the paths.
if (!paths) {

// First perform contour analysis.
path = GetContourPath(vmid);
if (path) AddPath(path);
else WriteLog(O, "Countour Failed");
if (path) LogPath(3); // REMOVE LATER

// Then do a hybrid drop-fall analysis.
for (int dir = 0; dir < 4; dir++) {

path = GetDropFallPath(dir, vmid, SEGDROPFALLNORMALCASE);
if (path) AddPath(path);
if (path) LogPath(3); // REMOVE LATER

// Then do an Extended drop-fall analysis.
if (g-useEDF){

for (dir = 0; dir < 4; dir++) {
path = GetDropFallPath(dir, vmid,

SEGDROPFALLSPECIALCASE);
if (path) AddPath(path);
if (path) LogPath(3); // REMOVE LATER

// Rank the paths.
RankPaths(vmid);

//char* rr= new char[10];
//sprintf(rr, "+++%d,%d",g-segmentByRecognizing, numpaths);
//WriteLog(O,rr);

bool success=false;
if (g-segmentByRecognizing){

/Get the best path (segments that will be recognized)
Path* bestPath=SegmentByRecognizing(nnl, nn2, nn3, nn4, sp, arb, seg);
if (bestPath) {

success = (SeparateRegionAlongPath(bestPath)== SEGOK);
}

//free memeory alocated for paths
while ((numpaths > 0) && !success) {

numpaths--;
delete paths[numpaths];
paths[numpaths] = NULL;

else{

76

// LogPath(3);

// Divide along the best path. (the best path is the highest-numbered one)
//bool success = false;
while ((numpaths > 0) && !success) {

numpaths--;
success = (SeparateRegionAlongPath(paths[numpaths])== SEGOK);
delete paths[numpaths];
paths[numpaths] = NULL;

1///matches if(gSegmentBYRecognizing)

/ If we had no successful paths, flag an error
if ((numpaths == 0) && !success) {

return SEGERROR;
I

// Otherwise, separation was successful, so set the proper classifications
type = BTSEPARATE;
if (success){

// Just one block in each list here
bListl->seg->Classify(vmid);
bList2->seg->Classify(vmid);

WriteLog(0, "RESULT:");
bListl->Log(6);
bList2->Log(6);

// Reset iteration for safety
iterloc = NULL;

return SEGOK;

// Function: (Block::)SegmentByRecognizing

// Purpose: Selects one of several segmentation paths by attempting
// to recognize the two resulting segments. Assumes paths have already
// been generated and ranked. Returns the firsty path that recognizes
// both segments. If no such path exists returns the firs path that
// results in recognition of one segment. If no sergments are
// recognized for any path the first path is returned
//

// Maintains the classification for each segment.
// Makes no changes to image or segment.
//
// Arguments: [in] seg Segment being separated
// [in] nn 1,nn2,nn3 Neural net recognizers
// [in] sp A structural Processor
// [in] arb The arbiter to decide between networks
//
// Returns: NULL if an error occurred or if separation was
// unsuccessful. The most sucessful Path* otherwise

77

//
// Notes: Allocates an array of Blocks so that the Cabvlue is unaffected by
// function. cleans up afterward. Assumes Paths have already been
// generated and ranked

Path* Block:: SegmentByRecognizing(DDDNet* nn 1, PosNet* nn2,DDDNet* nn3, PosNet* nn4,
StructProcessor* sp, Arbiter* arb, Segment* seg){

if (!pathsInumpaths==O) return NULL;//sanity check
//Allocate a new array of blocks used to test the paths
Block** blocks= new Block*[numpaths];
if (!blocks) { return NULL; }

WriteLog(O, "##

//create each block with the current segment
//seperate along diferent paths, and recognize
int oneRecognized=-l;
int twoRecognized=- 1;
bool edfPath;
for(int i=O;i<numpaths;i++) {

edfPath=(paths[i]->type==PTEDFTOPLEFT)I /are we using an EDF path
(paths[i]->type==PTEDF_TOPRIGHT)I
(paths[i]->type==PTEDFBOTTOMLEFT)l
(paths[i]->type==PTEDFBOTTOMRIGHT);

if(twoRecognized==- 1 IledfPath){

blocks[i]=new Block(seg, true);
Segment* segl;
Segment* seg2;

if(blocks[i]->SeparateRegionAlongPath(paths[i])==SEGOK){

char* ss= new char[l00];
blocks[i]->type=BTSEPARATE;
blocks[i]->PrepareForRecognitiono;
seg I=blocks[i]->bListl ->segnorm;
seg2=blocks[i]->bList2->segnorm;

if (!segl I !seg2){continue;}

sprintf (ss,"Hello %d -> %d, %d", segl->digit, numpaths, i);

WriteLog(O,ss);

RecognizeSeg (nnl, nn2, nn3, nn4, sp, arb,segl);

RecognizeSeg (nnl, nn2, nn3, nn4, sp, arb,seg2);
//if(sseg==NULL){WriteLog(O,"Recognize seg returned null");}

blocks[i]->Log(3);
//blocks [i]->Log(5);
if(seg 1 ->digit !=NOTRECOGNIZED && seg2->digit

!=NOTRECOGNIZED){

78

/Both recognized
WriteLog(O, "-->Both recognized");
if (edfPath && segI->digit==ZERO && seg2-

>digit==ZERO) {
return paths[i];

}else{
if (twoRecognized==- 1) {twoRecognized=i;}

if ((oneRecognized==-1) &&
(seg I->digit !=NOTRECOGNIZED Ilseg2->digit

!=NOTRECOGNIZED)){

/record the first path for which one segment is recognized

WriteLog(O, "-->One recognized");
oneRecognized=i;

}//matches if (paths[i]-type....

}//matches for (int i=O...

//cout<<"\n";

WriteLog(O, "###

if (twoRecognized "1) return pathstwoRecognized];
if (oneRecognized !=-1){ return paths[oneRecognized];}
else {return paths[0];}

Path* ConstructPath(Segment* region, Point start, int direction, bool special-case)

// Set up the new path
Path* path = new Path(region->height);
if (!path) {

// Out of memory
return NULL;

}

// Assign it the correct type
if (special-case){

switch (direction) {
case SEGFALLTOPLEFT:

path->type = PTEDFTOPLEFT;
break;

case SEGFALLTOPRIGHT:
path->type = PTEDFTOPRIGHT;
break;

79

case SEGFALLBOTTOMLEFT:
path->type = PTEDFBOTTOMLEFT;
break;

case SEGFALLBOTTOMRIGHT:
path->type = PTEDFBOTTOMRIGHT;
break;

default:
path->type = PTUNKNOWN;

}
}else{

switch (direction)
case SEGFALLTOPLEFT:

path->type = PTDROPTOPLEFT;
break;

case SEGFALLTOPRIGHT:
path->type = PTDROPTOPRIGHT;
break;

case SEGFALLBOTTOMLEFT:
path->type = PTDROPBOTTOMLEFT;
break;

case SEGFALLBOTTOMRIGHT:
path->type = PTDROPBOTTOMRIGHT;
break;

default:
path->type = PTUNKNOWN;

// Now find the drop-fall path which divides the character into two pieces.
// Whatever is on the path or falls to the left of the path is in the first piece;
// anything to the right is in the second piece. If there is filled-in space above
// (or below, depending on drop-fall direction) the start point, move around it.

Point current;

// Start with a straight line above and below the start point.
for (current.row = 0; current.row < region->height; (current.row)++)

path->AddPoint(current.row, start.col);

// Perform the drop-fall.
current.row = start.row;
current.col = start.col;
Point prev;
if ((direction == SEGFALLTOPLEFT) 11 (direction == SEGFALLTOPRIGHT)) {

// Do one move at a time until we reach the bottom.
while ((current.col >= region->bbox.left) && (current.col <= region->bbox.right) &&

(current.row < region->height - 1)) {
prev.row = current.row;
prev.col = current.col;
if (DropFallOneMove(region, ¤t, direction, special_case) ==

SEG_ERROR) {
delete path;
return NULL;

// Special case to make sure we don't get stuck in "flat" minima

80

if (prev.row == current.row) {
if (direction == SEGFALLTOPLEFT)

if ((current.col + 1 <= region->bbox.right) &&
(region->pixel[current.rowl[current.col + 1] == 1)) {
// We have already been at this corner; cut

downwards.
(current.row)++;

else if (current.col == region->bbox.right) {
// We pushed all the way to the side of the segment --

make a cut
(current.row)++;

} else if (direction == SEGFALLTOPRIGHT) {
if ((current.col - 1 >= region->bbox.left) &&

(region->pixel[current.row][current.col - 1] == 1)) {
// We have already been at this corner; cut

downwards.
(current.row)++;

} else if (current.col == region->bbox.left)
// We pushed all the way to the side of the segment --

make a cut
(current.row)++;

}}

/If we moved, record in the path
if (prev.row < current.row) {

Point* p = path->GetPoint(current.row);
p->col = current.col;

}

/ If we didn't reach the bottom, an error occurred.
if (current.row < region->height - 1) {

delete path;
return NULL;

else if ((direction == SEGFALLBOTTOMLEFT) II (direction ==
SEGFALLBOTTOMRIGHT)) {

// Do one move at a time until we reach the top.
while ((current.col >= region->bbox.left) && (current.col <= region->bbox.right) &&

(current.row > 0)) {
prev.row = current.row;
prev.col = current.col;
if (DropFallOneMove(region, ¤t, direction, special-case) ==

SEGERROR){
delete path;
return NULL;

// Special case to make sure we don't get stuck in "flat" maxima
if (prev.row == current.row) {

if (direction == SEGFALLBOTTOMLEFT)
if (current.col == region->bbox.right) {

81

// We pushed all the way to the side of the segment --
make a cut

(current.row)--;
} else if ((current.col + I <= region->bbox.right) &&

(regi on->pixel [current.row] [current. col +
1] == 1)) {

// We have already been at this corner; cut upwards.
(current.row)--;

} else if (direction == SEGFALLBOTTOMRIGHT)
if (current.col == region->bbox.left) {

// We pushed all the way to the side of the segment --
make a cut

(current.row)--;
I else if ((current.col - 1 >= region->bbox.left) &&

(region->pixel [current.row][current.col -
1] == 1)) {

// We have already been at this corner; cut upwards.
(current.row)--;

/If we moved, record in the path
if (prev.row > current.row) {

Point* p = path->GetPoint(current.row);
p->col = current.col;

/If we didn't reach the top, an error occurred.
if (current.row > 0) {

delete path;
return NULL;

} else {
/Invalid direction
delete path;
return NULL;

// Adjust the path score based on algorithm-specific criteria
AdjustPathScore(path, region);

return path;
}

// Function: DropFallOneMove
//
// Purpose: Move from the current point to the next point in the region according to
// the drop-fall algorithm for this direction.
//
// This function embodies the rules of the drop-falling algorithms.
//
// Arguments: [in] region Region moving through

82

[in/out] current
[in] direction

Location to begin drop-fall
Direction of drop-fall (SEGFALLTOPLEFT,

SEGFALLTOPRIGHT, SEGFALLBOTTOMLEFT,
//

SEGFALLBOTTOMRIGHT)
//
// Returns: SEGERROR if an error occurred or a new point could not be found.
// (current may be modified in this case)
H/ SEGOK if the move was successful.
// Notes:
//
Status DropFallOneMove(Segment* region, Point* current, int direction, bool special-case)

// Define the array of neighbors
Point cell[8] = {

-1, 0,
-1, 1,
0, 1, // 701
1, 1, // 62
1,0, // 543
1,-i,
0,-i,
-1,-i

// This chunk of code might seem confusing, but its purpose is to "reverse"
// all directions so that we can always think of our drop-fall as coming from
/the top left. This simplifies the code a lot (no dumb replication) and
// makes it easier to comprehend (once you get past this following chunk).
// Previously some people have implemented drop-falls other than the top left
// variety by flipping the array being scanned. Here we leave the array alone,
// but we pretend that left is right, or that up is down, or both.

int right, downRt, down, downLt, left; // directions -- indices into the cell array
bool rowles, colgrt, colles; / tests to see if the row & col are within bounds
switch (direction) {
case SEGFALLTOPLEFT:

right = 2; downRt = 3; down = 4; downLt = 5; left = 6;
colgrt = (current->col > 0);
rowles = (current->row + 1 < region->height);
colles = (current->col + 1 < region->width);
break;

case SEGFALLTOPRIGHT:
/ left & right are switched
right = 6; downRt = 5; down = 4; downLt = 3; left = 2;
colgrt = (current->col + 1 < region->width);
rowles = (current->row + 1 < region->height);
colles = (current->col > 0);
break;

case SEGFALLBOTTOMLEFT:
// up & down are switched
right = 2; downRt = 1; down = 0; downLt = 7; left = 6;
colgrt = (current->col > 0);
rowles = (current->row > 0);
colles = (current->col + 1 < region->width);

83

//
//
//

break;
case SEGFALLBOTTOMRIGHT:

// everything is switched
right = 6; downRt = 7; down = 0; downLt = 1; left = 2;
colgrt = (current->col + I < region->width);
rowles = (current->row > 0);
colles = (current->col > 0);
break;

default:

}

// bad direction
return SEGERROR;

// Macros to make the code below simpler
#define WHITE(i) !region->pixel[current->row + cell[i].row] [current->col + cell[i].col]
#define GO(i) current->row += cell[i].row; current->col += cell[i].col; return SEGOK

#define BLACK(i)
#define ONBLACK

region->pixel [current->row + cell [i].row] [current->col + cell [i].col]
region->pixel[current->rowl [current->col]

// Lookup table of drop-falling rules for single steps.
// See BWlmage::FindNextContourPixel() for explanations of abbreviations
// and for beautiful ASCII art.

if (!special-casell!ONBLACK){
///This is the standard drop fall
/special cases are handled in the else clause

// Signal if we can't go any farther down.
if (!rowles)

return SEGERROR;

// First look down
if (WHITE(down)) { GO(down);

// Down & right
if (colles && WHITE(downRt))

// Down & left
if (colgrt && WHITE(downLt))

// Directly right
if (colles && WHITE(right))

// Directly left
if (colgrt && WHITE(left))

{ GO(downRt);

{ GO(downLt);

{ GO(right);

{ GO(left);

// Otherwise we are stuck in a hole - cut downward!
GO(down);

/Special case:
/ If we are on a black pixel we are making a cut
// extend the cut by staying in black
// This is a bad idea in genertal but it may help in casess such as connected zeros

}
else[

84

}

}

}

}

}

// Signal if we can't go any farther down.
if (!rowles)

return SEGERROR;

// First look down
if (BLACK(down))

// Down & right
if (colles && BLACK(downRt))

// Down & left
if (colgrt && BLACK(downLt))

{ GO(down);

{ GO(downRt);

{ GO(downLt);

// Do Not go Directly right or left
/ terminate the cut if all spaces below are white
/if (colles && WITE(right)) {

/if (colgrt && WITE(left))

GO(right);

{ GO(left);

// end of cut
GO(down);

I

Status CABValue::Merge(Block* block, Segment* seg)

{
Block* newBlock = block->Merge(seg, vmid);
if (newBlock == NULL)

return SEGERROR;

// Adjust the head and tail pointers.
for (head = newBIock; head->prev; head = head->prev);
for (tail = newBIock; tail->next; tail = tail->next);

return SEGOK;
}

// Function: (Block::)Merge
//
// Purpose: Merges the segment (which is within this block) with that of
// the most logical other block within the list. Replaces
// the two blocks with one composite block.
//
// Arguments:
//
//
// Returns:
//
//

[in] s Segment to be merged
[in] vmid Vertical midline of image

NULL if an error occurred or if merge was unsuccessful.
Otherwise returns a pointer to the new block.

/Author: Susan Dey 1/19/99
I-
// Notes:
//

85

}

}

}

}

}

}

Block* Block::Merge(Segment* s, int vmid)
{

// Make sure s is within this block
/ It ALWAYS should be there... Right?
//////////////JIBU (additional comments)
///s==seg because BTSeperate blocks do not contain fragments in subblock
///Seperate does not allow fragments broken off. If this is no longer the
///case then s may be in a subblock and s != seg
if (s != seg)

return NULL;

LogPath(3);

// Choose a block to merge with.
// This algorithm assumes that you will want to merge with blocks no
// farther than 2 away in the list. It does not look farther away in the
/ list than that.

//bool usePrev = true;
//bool usePrev2 = true;
//bool useNext = true;
//bool useNext2 = true;

Block* prevl=NULL;
Block* prev2=NULL;
Block* nextl=NULL;
Block* next2=NULL;

Block* vertOverlap = NULL;
Block* closest = NULL;
double minDist;

//
// Test 1: Evaluate based on type.
//

// Don't merge with recognized digits
// or with blocks it's already been merged to
/if (!prev II (prev->type == BTHOLD)IIAlreadyMerged(prev->GetBlockIDo))
// usePrev = false;
/if (!prev 11 !(prev->prev) ii (prev->prev->type == BTHOLD)lAlreadyMerged(prev->prev-

>GetBlockID())
// usePrev2 = false;
/if (!next 11 (next->type == BTHOLD)lAlreadyMerged(next->GetBlockIDo))
// useNext = false;
/if (!next 11 !(next->next) II (next->next->type == BTHOLD)lAlreadyMerged(next->next-

>GetBlockID())
// useNext2 = false;

if (prev && (prev->type != BTHOLD)&&!AlreadyMerged(prev->GetBlockIDo))
prev I= GetMergeCandidate(prev);

if (prev && (prev->prev) && (prev->prev->type != BTHOLD)&& !AlreadyMerged(prev->prev-
>GetBlockID())

prev2= GetMergeCandidate(prev->prev);

86

if (next && (next->type != BTHOLD)&& !AlreadyMerged(next->GetBlockIDo))
next 1= GetMergeCandidate(next);

if (next && (next->next) && (next->next->type != BTHOLD) && !AlreadyMerged(next->next-
>GetBlockIDO))

next2= GetMergeCandidate(next->next);

// Check to see if we have any options remaining
/if (!usePrev && !usePrev2 && !useNext && !useNext2)
// return NULL;

// Check to see if we have any options remaining
if (!prevl && !prev2 && !nextl && !next2)

return NULL;

//
// Test 2: Evaluate based on vertical overlap.
//

/ FIXLATER: Try to incorporate vertical overlap with other classes?

if (seg->ClassIs(SC_HORIZ)) {

// Evaluate based on vertical overlap. Make sure the other regions overlap
// enough, vertically. If one does, assign vertOverlap to point to that
// region. In doing this we assume that we will assign vertOverlap only once,
// which is not unreasonable because it would be very unlikely for a horizontal
/to be near the center of more than one other region. (And they could be
// merged on the next time around if necessary.)

int centerCur = (int) ((seg->pos.left + seg->pos.right) / 2.0);
int centerOther;

// This order (prev2, next2, prev, next) is used to bias the results.
if (prev2) {

centerOther = (int) ((prev2->seg->pos.left + prev2->seg->pos.right) / 2.0);
if (abs(centerOther - centerCur) < SEGMERGEHORIZDISTMAX)

vertOverlap = prev2;

if (next2) {
centerOther = (int) ((next2->seg->pos.left + next2->seg->pos.right) / 2.0);
if (abs(centerOther - centerCur) < SEGMERGEHORIZDISTMAX)

vertOverlap = next2;

if (prevl) {
centerOther = (int) ((prevl ->seg->pos.left + prevl->seg->pos.right) / 2.0);
if (abs(centerOther - centerCur) < SEGMERGEHORIZDISTMAX)

vertOverlap = prev1;
}
if (nextl) {

centerOther = (int) ((nextl ->seg->pos.left + next I ->seg->pos.right) / 2.0);
if (abs(centerOther - centerCur) < SEGMERGEHORIZDISTMAX)

vertOverlap = next 1;
}

87

}

//
// Test 3: Evaluate based on distance between regions.
//

// First get the distances.
double distP, distP2, distN, distN2;
distP = distP2 = distN = distN2 = 0;
if (prevl) distP = prevl->seg->FindClosestDistance(seg);
if (prev2) distP2 = prev2->seg->FindClosestDistance(seg);
if (nextl) distN = seg->FindClosestDistance(nextl ->seg);
if (next2) distN2 = seg->FindClosestDistance(next2->seg);

// Then choose the closest segment to merge with.
minDist = distP + distP2 + distN + distN2;
if (prev2) { // prev2 first to bias towards other options in a tie

minDist = distP2;
closest = prev2;

}
if (next2 && (distN2 <= minDist)) { // next2 first to bias towards other options in a tie

minDist = distN2;
closest = next2;

}
if (prevI && (distP <= minDist))

minDist = distP;
closest = prevl;

}
if (next 1 && (distN <= minDist)) {

minDist = distN;
closest = nextl;

I

// Test 4: A bunch of hacks

// Follow up on our vertical overlap test for horizontals.
if (seg->Classls(SCHORIZ)) {

// Allow horizontals to merge with overlapped regions that are farther away
if (vertOverlap && (closest == vertOverlap) && (minDist < 2 *

SEGMERGEDISTMAX))
minDist = SEGMERGEDIST_MAX;

/ If we overlap with something, we merge with it or nothing.
if (vertOverlap && (closest != vertOverlap))

// return NULL;
closest = vertOverlap;

/ If we don't overlap, we'd better be darned close
if (!vertOverlap && (minDist > 0.6 * SEGMERGEDISTMAX))

return NULL;

88

// Prevent bad merging of symbols
if (seg->ClassIs(SC_PUNCT) && (minDist > 0.6 * SEGMERGEDISTMAX))

return NULL;

//
// Now merge with the best block
//

// Make sure it's not too far away
if (minDist > SEGMERGEDISTMAX)

return NULL;

/ If we were unsuccessful finding a block to merge with, quit now.
if (closest == NULL)

return NULL;

closest->LogPath(3);

// Merge the blocks
Block* merge = NULL;
if ((closest != next) II (next && (closest != next->next)))

merge = new Block(closest, this);
else

merge = new Block(this, closest);
if (!merge) {

// Out of memory
return NULL;

}
AddToMergeHistory(closest->GetBlockIDo);
merge->LogPath(3);

// Evaluate the new merged region
if (closest->seg->Classls(SCHORIZ) && seg->Classls(SCHORIZ))

// Special case merging two horizontals - an equal sign
merge->seg->SetClass(SCEQUALS);

else
merge->seg->Classify(vmid);

// Make sure we are not creating a multi-character.
if (merge->seg->Classls(SCMULTIPLE)) {

// Merging was bad -- restore the original state
merge->FlattenKeepBlockso;
delete merge;
return NULL;

// Reset iterator for safety
iterloc = NULL;

return merge;

// Function: (Block::)GetMergeCandidate
//

89

// Purpose: Takes a block and retrns the subblock (if any) that are suitable for
// merging with a fragment
// Arguments: [in] block Block to check for subblocks
//
// Returns: NULL if an error occurred or if merge was unsuccessful.
// Otherwise returns a pointer to the new block.
//
// Author: Susan Dey 1/19/99
//
// Notes:
//
Block* Block::GetMergeCandidate(Block* block){

if (!gjredoMerging) {return block;}
if (!block){ return NULL; //exit if an empty block was chosen

Block* temp;
if (block->type==BTSEPARATE){

//HFIXLATER: searches the tree left to right
// change this so it goes right to left if the segment is to the right
temp=GetMergeCandidate(block->bList 1);
if (temp) {return temp;}
temp=GetMergeCandidate(block->bList2);
if (temp) {return temp;}

if (AlreadyMerged(block->GetBlockID())){ return NULL;}
if (block->type==BTHOLD){return NULL; I

//Default case, BTUNKNOWN, BTMERGE
return block;

// Function: (CABValue::)Undomerge
//
// Purpose: Goes through the entire data structure and undoes Merges
// merged blocks that were recognized are ignored.Works recursivly
// sublists.
//
// Arguments: none
//
// Returns: void.
//
// Author: Jibu Punnoose 10/06/99
//
// Notes:
//
void CABValue::UndoMergingo {

bool changed;
Block* current;
do{

changed=false;
current=head;

while (!changed){
if (current==head){

90

/adjusts head if it is Merge block
head=current->Unmerge(current,&changed);
/in case it placed a fragment in front of current
while (head->prev){head=head->prev; I

} /flatten and fix the head
else{

current=current->Unmerge(current, &changed);//just flatten head does
not need fixing

if (current-> next){
current=current->next;//advance pointer

}else{ return;} I/end of list,we're done

} while (changed);
//BTHold and BT_UNKNOWn are ignored

// Function: (Block::)Unmerge
//
// Purpose: undoes merged blocks.Places the fragment at the nearest

in the top level linked list. the other psegment replaces the
MERGE block in the tree-list structure

// Arguments: [in] block Block to check for subblocks
//
// Returns: void

Block* Block::Unmerge(Block* root, bool* changed){

if (*changed){ return this;} I/error should not have enterd the function

Block* result=NULL;
//If it is a merge block do Unmerging
if (type==BTMERGE)

/AT Top level
if (root==this){ I/top level just flaten the list

result=FlattenKeepBlockso;
return result;

/not at top level
Block* temp=FlattenKeepBlocks 0;
if (temp->seg->Classls(SCFRAGMENT))

/remove and place in front of the root node
if (temp->next){

result = temp->next;//fix the pointer from the parent
temp->next->prev =temp->prev;// if for some reason

/we are in the middle of a list

/place in front of root node
if (root->prev){root->prev->next= temp;}
temp->next=root;
temp->prev= root->prev;

91

root->prev= temp;
}
else if (temp->next && temp->next->seg->ClassIs(SCFRAGMENT)){

//Place behind the rot node
result= temp;
temp=temp->next;
if (temp->prev) { temp->prev->next=temp->next;}

if (root->next){root->next->prev=temp;I
temp->prev=root;
temp->next=root->next;
root->next=temp;

}
*changed=true;
return result;

}
//If it's a seperate block there may be a merge in the subblocks
/ iterate through them! stop if a change is made!
else if (type==BTSEPARATE){

bool done=false;
Block* current=NUJLL;
if (bListi){current=bListl;}
else if (bList2){

current=bList2;
done=true;

}
else {return this;}

while (!(*changed)){
//if first element may need to update Blist (if first element is a merge block)
if(current==bList 1) { bList I=current->Unmerge (root,changed); }
else { current->Unmerge(root, changed); }/otherwise just call Unmerge

if (current->next) { current=current->next; }/advance pointer
else if (bList2 && !done){

current=bList2;
done=true;

}
else{ return this; I

return this;

return this;
}

92

Appendix B: Header Files

All header files for the Winbank system are reproduced here. They are presented in alphabetical order by
file name.

// Arbiter.h: interface for the Arbiter class.
// Arbitrates between different recognizers and maintains an
// outfile to measure results if given an actual answer.
//

#if !defined(AFXARBITER_H__65B1 1026_7CB9_1 1D2_8AC4_00609702ADF5__INCLUDED_)
#define AFXARBITERH__65B1 1026_7CB91 I1D2_8AC4_00609702ADF5_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif // _MSCVER >= 1000

#include "Segment.h"

class Arbiter
{
public:

Arbiter(int num);
Arbiter(char* filename, int num);
virtual -Arbitero;

/functions
void arbitrate(Segment* s);
void inputAnswer (int d);
void reseto;
int getValueo;

/member variables
int digit;

private:
/member variables
int numNets; /the number of Nets being used

double* confidence;
double CorrectConfAvg;
double IncConfAvg;
int ncount; /count of number in test set
int *count; /array of the number of each possible value/integer, indexed

by digit
int numCorrect; /count of total correct
int *correct; /array of number correct for each possible value/integer
int FalsePos; /count of total False Pos
int *fpos; /number of false positives for each integer
int **resultmap; /maps actual value vs. value guessed
/can calculate NoRec from this data

93

/outfile
FILE* outfile;

1;

#endif// !defined(AFX ARBITERH_65B11026_7CB91 1D2_8AC4 00609702ADF5_INCLUDED-)

// Block.h: interface for the Block class.
//

// Must #include before Block.h:

#if !defined(AFXBLOCK_H_57020CClA71E_1 1D2_AB8A_00105A155AE1_IINCLUDED_)
#define AFXBLOCKH_57020CCl _A7lE_1 ID2_AB8A_00105A155AE __INCLUDED-

#if _MSCVER >= 1000
#pragma once
#endif// _MSCVER >= 1000

#include "Segment.h"
#include "Path.h"

#include "PosNet.h"
#include "DDDNet.h"
#include "MeshNet.h"
#include "Arbiter.h"
#include "StructProcessor.h"

//Global variable
/used to give each new block a unique id number
/increments when a new block is created
/int gNewBlockIDNum= 0;

typedef enum {
BTSEPARATE, BTMERGE, BTHOLD, BTUNKNOWN

I BlockType;

// On a high level, a block is a doubly-linked list element with information about
// several segments inside it.
class Block
{
public:

// Constructors/Destructors
Blocko;
Block(Segment* s);
Block (Segment* s, bool copy); I/clean copy
Block(Block* bl, Block* b2); / Merging
virtual -Blocko;

// Functions
Segment* GetSeg(bool use-norm = false);
Segment* IterateSegments(bool start, bool usenorm = false, bool use-completed = false);
void AddPath(Path* p);

94

Status Separate(DDDNet* nnI, PosNet* nn2,DDDNet* nn3, PosNet* nn4, StructProcessor* sp,
Arbiter* arb, Segment* s, int vmid);

Path* SegmentByRecognizing(DDDNet* nnl, PosNet* nn2,DDDNet* nn3, PosNet* nn4,
StructProcessor* sp, Arbiter* arb, Segment* seg);

Block* Merge(Segment* s, int vmid);
Block* Block::UndoMerging(Block* head,Block* root, bool &changed); /undo sublists
Block* Unmerge(Block* root, bool * changed); /undo individual blocks
bool IsIsolated(bool lookright);
void PrepareForRecognitiono;
Block* CleanupAfterRecognitiono;
Block* ForceFlatten(bool markAsDone);
bool DoneRecognizingo; // used for intermediate tests during feedback
bool IsRecognizedo; // used for intermediate tests during feedback
boo] IsBeingTestedo; // used for intermediate tests during feedback
void Log(int indent);
void LogPath(int indent);

int GetBlockID(;//accessor function

// DEBUG PRINT -- REMOVE LATER
void PrintPathToFileO;

// Accessor Functions
bool IsFragmento; // REMOVE THIS HACK!!

// Data
Block* next;
Block* prev;

private:
// Private Functions
Path* GetDropFallPath(int dir, int vmid, bool specialcase);
Path* GetContourPath(int vmid);
void RankPaths(int vmid);
Status SeparateRegionAlongPath(Path* path); // Separation
Status SeparateRegionAlongPath(Path* path, int overlap);
Block* FlattenKeepSegmento;
Block* FlattenKeepBlockso;
void DeleteBlockList(Block* list);

int GetUniquelDo; /used to retrieve and increment the global variable
bool AlreadyMerged(int id);
void AddToMergeHistory(int id);
Block* GetMergeCandidate(Block* block);

// Private Data
// On a low level, a block is 2 Seg pointers, 2 Block pointers, and a set of paths.
BlockType type;
Segment* seg;
Segment* seg-norm;
Block* bListl;
Block* bList2;
Path** paths;
int numpaths, paths_alloc;

double iterloc; // used to keep track of iteration

95

int block_id; lthe unique id number for this block
int* inergeHistory;
int mergeHistorySize;

1;

#endif // !defined(AFX BLOCK H_57020CC1_A71E- 1 D2_AB8A_00105A155AE _INCLUDED_)
// BWImage.h: interface for the BWImage class.
//

// Must #include before BWImage.h:
// Winbank.h

#if !defined(AFXBWIMAGE_H__C4620598_4F06_1 1D2_AB7A_00105A145DC0__INCLUDED_)
#define AFXBWIMAGE_H__C4620598_4F06_1 1D2_AB7A_00105A145DC0_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif // _MSCVER >= 1000

class BWImage
{
public:

// Constructors/Destructors
BWImage(;
BWImage(int h, int w);
BWImage(char* filename, int h, int w);
BWlmage(BIT** pix, int h, int w);
BWlmage(BWlmage* img); /copy constructor
virtual -BWImage(;

// Functions
void AddPixel(int row, int col);
void RemovePixel(int row, int col, bool adjustBBox = false);
Status GetConnectedRegion(char regionNum, BWImage* region, Dimension* pos);

// DEBUG PRINT -- REMOVE LATER
void PrintToFile(char* filename);

// Accessor Functions
int Widtho { return width; }
int Heighto { return height; }
int Weighto { return weight;
int BBoxL({ return bbox.left;
int BBoxR({ return bbox.right; }
int BBoxT({ return bbox.top; }
int BBoxB({ return bbox.bottom;

char operatoro (const int& row, const int& col) { return pixel [row] [col];
char operatoro (const Point& p) { return pixel[p.row][p.col]; }

int FindVerticalMidlineo;
int CornerType(Point* p, int dir);
Status FindNextContourPixel(ClockDir dir, Point* prev, Point* cur);

// Public normalization routines
BWImage* Normalizeo;
BWImage* NormalizeSizeo;
BWImage* TruncateSizeo;

96

BWlmage* NormalizeSlanto;
B'WImage* NormalizeThickness();
BWlmage* BWlmage::CenterWidtho;
Status ScaleUp(int newHeight, int newWidth,

bool fillHeight = true, bool fillWidth = true, double maxScaleDiff =
3);

Status ScaleDown(int newHeight, int newWidth,
bool fillHeight = true, bool fillWidth = true, double

maxScaleDiff = 3);
int NeedToScaleWidtho;
void ScaleWidth(int newHeight, int newWidth);

protected:
void ComputeBBoxo;
int ComputeWeighto;

public: // make this protected later...
// Data
BIT** pixel; // 2d array of Is & Os representing image
int width, height;
Dimension bbox; // used to keep track of bounding box of writing within image
int weight;

private:
// Private segmentation functions
void Fill(int row, int col, char regionNum, Dimension* boundary);

// Private normalization routines
BWlmage* ThickenLineso;
BWImage* ThinLineso;
bool ContourCheck(int row, int col);
bool DeleteCheck(int row, int col);

};

BIT** AllocatePixels(const int height, const int width);
void DeallocatePixels(BIT** *pixel, int height);

#endif //
!defined(AFX BWIMAGEHC4620598_4F06_11D2_AB7A_00105Al45DCOINCLUDED_)
// BWPixel.h: BWPixel Class Declaration
//

#if !defined _BWPIXELHH
#define _BWPIXELHH

#include "Pixel.h"

class BWPixel : public Pixel
{
public:

// constructors

97

BWPixel();
BWPixel(int _height, int _width);

// destructor
virtual -BWPixel();

// accessors
virtual unsigned char r(int row, int col);
virtual unsigned char g(int row, int col);
virtual unsigned char b(int row, int col);

virtual void setR(int row, int col, unsigned char val);
virtual void setG(int row, int col, unsigned char val);
virtual void setB(int row, int col, unsigned char val);

virtual void AllocatePixel(int _height, int _width);
virtual void DeallocatePixel();
virtual void LoadSignal(TUCharSignal& signal);

private:
BWPIXEL** pix;

1;

#endif

// CABValue.h: interface for the CABValue class.
//

// Must #include before CABValue.h:
// Winbank.h

#if !defined(AFXCABVALUE_H_C462059A_4F06_1 1D2_AB7A_00105A145DC0_INCLUDED_)
#define AFXCABVALUE_H_C462059A_4F06_1 1D2_AB7A_00105A145DC0_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif// _MSCVER >= 1000

#include "Block.h"
#include "PosNet.h"
#include "DDDNet.h"
#include "MeshNet.h"
#include "Arbiter.h"
#include "StructProcessor.h"

class CABValue

{
public:

/ FIXLATER: Remove this!
friend class NeuralNet;

// Con structors/Destructors
CABValueo;
virtual -CABValueo;

// Functions

98

Segment* IterateSegments(bool start, bool usenorm = false, bool usecompleted = false);
void OutputSegments(char* filename);
void OutputSegmentsToOpenFile(ofstream& file);
char* ComputeValueo;
void Log(int indent);

// Functions for gathering connected regions
Status CollectConnectedRegions(BWlmage* image);
Status AddSegment(Segment* seg);
void RemovelsolatedRegions(BWlmage* image);
void ReclassifySegments(BWlmage* image);

// Segmentation Functions
void DoSegmentation(DDDNet* nnI, PosNet* nn2,DDDNet* nn3, PosNet* nn4,

StructProcessor* sp, Arbiter* arb);
Status Separate(DDDNet* nnI, PosNet* nn2,DDDNet* nn3, PosNet* nn4, StructProcessor* sp,

Arbiter* arb, Block* block, Segment* seg);
Status Merge(Block* block, Segment* seg);
void CABValue::UndoMergingo;

// Feedback Functions
void PrepareForRecognitiono;
void CleanupAfterRecognitiono;
void CleanupWhenDoneo;
bool DoneRecognizingo;
void AdjustClassifications(int iternum);

// DEBUG PRINT -- REMOVE LATER
void PrintToFile(char* filename, bool usenorm = false);
void PrintToOpenFile(ofstream& file, bool usenorm = false);
void PrintToFileHoriz(char* filename, bool usenorm = true);
void PrintToOpenFileHoriz(ofstream& file, bool usenorm = true);

// Data
Block* head; // front of list
Block* tail; // end of list

private:
// Private Functions
void DeleteSegments();

// Private Data
Block* iterloc; // Current block being polled by iterator
int vmid; /Vertical midline of the original image (-1 if not yet

calculated)
int imageHeight, imageWidth; // Height and width of the original image
int* value; /the recognized value of text

1;

#endif //
!defined(AFX CABVALUEH C462059A 4F06 1 1D2_AB7A_00105A145DC0_INCLUDED_)
I/ DDDNet.h: interface for the DDDNet class.
II

99

#if !defined(AFXDDDNET_H_C150EA43_EC75_ 1D2_93E2_97C5FA26B430_INCLUDED)
#define AFXDDDNET_H_C150EA43_EC75_1I 1D2_93E2_97C5FA26B430__INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif// _MSCVER >= 1000

#include "NeuralNet.h"

class DDDNet : public NeuralNet
{
public:

DDDNet(int numIN, int numl-HIDDEN, int numOUT);
DDDNet(char* filename);
virtual -DDDNetO;

int getValue(double arr[]);
void ExtractFeature(Segment* s);

};

#endif // !defined(AFX DDDNETHC150EA43_EC75_1-D2_93E2_97C5FA26B430_INCLUDED)
// Feedback.h: Globals for Feedback
//

// Must #include before Feedback.h:
// WinBank.h
// CABValue.h

// Function declarations
CABValue* SegmentAndRecognize(BWlmage* image, DDDNet* nn 1, PosNet* nn2,DDDNet* nn3,
PosNet* nn4,

StructProcessor* sp, Arbiter* arb);
// Image.h: Image Class Declaration
//

// Must #include before Image.h:
// WinBank.h

#if !defined _IMAGEHH_
#define _IMAGEHH_

#include "Pixel.h"

class Image
{

public:

// constructors
Imageo;
Image(const char* fileName);

// Destructor

100

-Image ();

/ load contents of filename into image
void open(const char* fileName);
void close(;
bool is-open() { return (ens ? true : false); };

// Accessors
unsigned char r(int row, int col);
unsigned char g(int row, int col);
unsigned char b(int row, int col);
void setR(int row, int col, const unsigned char _r);
void setG(int row, int col, const unsigned char _b);
void setB(int row, int col, const unsigned char _g);
int getWidtho{return hsize;};
int getHeighto{return vsize; };
int getBWWidthO{return width;};
int getBWHeighto{return height; };
const Dimension& GetCab(;

Status Binarize(;
void CleanUpO;

Pixel* pixel;

// grrrr... these are exposed so that BWImage and Image don't have to know each other
BIT** bwPixel;// binarized pixel array
int width, height; // height and width of binarized image

private:

// CAB location and Binarization Functions
int GetRegionThreshold(Dimension& box);
Status LocateCABO;
bool DetectHorizontalLine(int row, Dimension& box);
bool DetectVerticalLine(int col, Dimension& box);
Status FindCABTopAndBottom(Dimension& box, Dimension& CAB);
Status FindCABLeftAndRight(Dimension& box, Dimension& CAB);
Status FindRowLimits(Dimension& dims, Dimension& CAB);
void BuildProfiles(Dimension& box);
void BuildColumnProfile(Dimension& box);
int FindVerticalLine(Dimension& box, char direction);

/ In the end, there can be only one... filtering function.
// For now there are three. FIXLATER
void MeanFilter(Dimension& box);
void MedianFilter(Dimension& box);
void SelectiveMedianFilter(Dimension& box);

// CAB Location and Binarization Data
Dimension CAB; /location of CAB
int thresh; // pixel binarization threshold value
int* vprof; // vertical profile
int* hprof; // horizontal profile
int* cprof; / Column profile of Is, Os, -Is

// (v-line, unsure, whitespace)

101

// Image Data

int bitCode; // stores the image type e.g. 8-bit or 24-bit Image

void Init(const char* fileName);
TSignalsEnsemble* ens;
int hsize; // width (horizontal size)
int vsize;
bool isOpen;

// height (vertical size)
// flag indicating whether a file is currently open

1;

#endif
// MeshNet.h: interface for the MeshNet class.
//

#if !defined(AFXMESHNET_H_C150EA44_EC75_1 1D2_93E2_97C5FA26B430_INCLUDED_)
#define AFXMESHNET_H_C150EA44_EC751 I1D2_93E2_97C5FA26B430_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif// _MSCVER >= 1000

#include "NeuralNet.h"

class MeshNet: public NeuralNet
{
public:

MeshNet(int numIN, int numHIDDEN, int numOUT);
MeshNet(char* filename);
virtual -MeshNeto;

int getValue(double arr[]);
void ExtractFeature(Segment* s);

#endif //
!defined(AFX MESHNETHC150EA44 EC751 1D2_93E2_97C5FA26B430_INCLUDED_)
// NeuralNet.h: interface for the NeuralNet class.
//

#if !defined(AFX_NEURALNET_H__4AC286A0_5723_1 1D2_93E2_C150380CB199_INCLUDED)
#define AFXNEURALNET_H__4AC286A0_5723_1 1D2_93E2_C150380CB199_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif// _MSCVER >= 1000

#include "Node.h"

class NeuralNet

102

{
public:

// Friends
friend class PosNet;
friend class DDDNet;
friend class MeshNet;

/constructors/destructors
NeuralNeto;
virtual -NeuralNeto;

/data members
bool initialized;

/functions
void trainer(char* filename);
void recognize(Segment* s, int array-num);
void setConfidences(double arr[]);
double test(char* infile, char* outfile);
virtual int getValue(double arr[])=0;
void saveWeights(char* filename);
float randomweight(unsigned seed);
void convertSNNS(char* infilename, char* outfilename);
virtual void ExtractFeature(Segment* s)=O;

private:
/functions
int setDigit(char* s);
void init (FILE* infile); //might have to make this public?????
void train(int digit, double rate);
void propogateo;

/data members
int nInputs;
int nHidden;
int nOut;
int type;

/arrays for the layers of the network
double* inputs;
Node** hiddenNodes;
Node** outNodes;

};

#endif //
!defined(AFX NEURALNETH_4AC286A0_5723_1 D2_93E2 C150380CB199_INCLUDED-)
// Node.h: interface for the Node class.
//

#if !defined(AFX_NODE_H__4AC286A1_5723_1 1D2_93E2_C150380CB199__INCLUDED_)
#define AFXNODE_H_4AC286A1_5723_1 1D2_93E2_C150380CB199__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

103

class Node
{
public:

Nodeo;
Node(int num, double b);
virtual -Nodeo;

/data members
double* weights;
double* inputs;
double output;
double bias;
double error; /for training only

/methods
void setNumInputs(int num);
void setOutputo;

private:
int nInputs;

};

#endif // !defined(AFX NODE H_4AC286A1_5723_11D2_93E2_C150380CB199_INCLUDED_)
I/ Path.h: interface for the Path class.
// This class is overloaded and "secretly" used for Contour as well.
// When Path is used, it should be exclusively used as a Path or as
// a Contour. Don't mix the two... The storage is different inside!
//

#if !defined(AFXPATH_H_6AB658C0_92DD_1 1D2_AB89_00105A155AE1_INCLUDED_)
#define AFXPATH_H_6AB658C0_92DD_1 1D2_AB89_00105A155AE1_INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

// PathType used to keep track of what segmentation algorithm was used.
typedef enum {

PTDROPTOPLEFT,
PTDROPTOPRIGHT,
PTDROPBOTTOMLEFT,
PTDROPBOTTOMRIGHT,
PTCONTOUR,
PTUNKNOWN,
PTEDFTOPLEFT,
PTEDFTOPRIGHT,
PTEDFBOTTOMLEFT,
PTEDFBOTTOMRIGHT,

// The next two types are used to hide the fact that the Contour class
// is just Path... No true paths should have these types!
CTTOP,
CTBOTTOM

} PathType, ContourType;

104

// Constants to keep track of right and left inside Contour
#define CONTOURLEFT 0
#define CONTOURRIGHT 1

class Path
{
public:

// Constructors/Destructors
Patho;
Path(int alloclen);
virtual -Patho;

// Functions
Status AddPoint(int row, int col);
Point* GetPoint(int index);
Point* IteratePoints(bool start);
int GetLengtho;
void Log(int indent);

// DEBUG PRINT -- REMOVE LATER
void PrintToFile(char* filename, Segment* s);

// Contour Functions & Data
CTOUR(CTOUR& c, int pointsToCopy);
CTOUR(int num, ContourType t);
Status AddPoint(Point& p, int end);
int centerIndex; // Index of center of point array
int leftIndex; / Index of left side of point array
int rightIndex; / Index of right side of point array

// Data
PathType type; // Algorithm used to create the path (handy for debugging or maybe

ranking)
int score; // Path score used for ranking

private:
// Data
int alloc_length; // Allocated length
int length; // Length of actual data
Point* point; // Array of points
int iterloc; / Iteration counter

1;

#endif// !defined(AFX PATH H_6AB658C0_92DD_11D2_AB89_00105A155AE1 INCLUDED_)
// Pixel.h: Pixel Class Declaration
//

#if !defined _PIXELHH_

#define _PIXELHH_

#include <zmstall.h>

105

class Pixel
{
public:

// constructors
Pixel();
Pixel(int _height, int _width);

// destructor
virtual -Pixel();

// accessors
virtual unsigned char r(int row, int col) = 0;
virtual unsigned char g(int row, int col) = 0;
virtual unsigned char b(int row, int col) = 0;

virtual void setR(int row, int col, unsigned char val) = 0;
virtual void setG(int row, int col, unsigned char val) = 0;
virtual void setB(int row, int col, unsigned char val) = 0;

virtual void AllocatePixel(int height, int width) = 0;
virtual void DeallocatePixel() = 0;

virtual void LoadSignal(TUCharSignal& signal);
virtual void LoadSignal(TRGBSignal& signal);

protected :
int height;
int width;

};

#endif
// PosNet.h: interface for the PosNet class.
//

#if !defined(AFXPOSNET_H_CI50EA40_EC75_1 1D2_93E2_97C5FA26B430_INCLUDED)
#define AFXPOSNETH__C150EA40_EC75_1 1D2_93E2_97C5FA26B430_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif// _MSCVER >= 1000

#include "NeuralNet.h"

class PosNet : public NeuralNet
{
public:

PosNet(int numIN, int numHIDDEN, int numOUT);
PosNet(char* filename);
virtual -PosNeto;

int getValue(double arr[]);
void ExtractFeature(Segment* s);

106

};

#endif// !defined(AFX POSNETHC150EA40_EC75_11D2_93E2_97C5FA26B430_INCLUDED_)
// Process.h: processing segment stuff
//

// Function Declarations

double FirstHitAvg(BWlmage* s, int SR, int ER);
double LastHitAvg(BWlmage* s, int SR, int ER);
void OutputPixel(BIT** pix, char* temp);
// Recognize.h: Globals for Segmentation
//

// Must #include before Segmentation.h:
// WinBank.h
// CABValue.h

// Function Declarations

Segment* RecognizeSeg(DDDNet* nnl, PosNet* nn2, DDDNet* nn3, PosNet* nn4,StructProcessor* sp,
Arbiter* arb, Segment* seg);
void TotalTest(char* filename,DDDNet* nnl, PosNet* nn2,DDDNet* nn3, PosNet* nn4, StructProcessor*
sp, Arbiter* arb);
void NormDigitFile(char* infile, char* outfile);
int Train(char* fileloc, char* weightfile);
int setDigit(char*s);

// RGBPixel.h: RGBPixel Class Declaration
//

#if !defined _RGBPIXELHH
#define _RGBPIXELHH_

#include "Pixel.h"

class RGBPixel : public Pixel

public:

// constructors
RGBPixel();
RGBPixel(int -height, int _width);

// destructor
virtual -RGBPixel();

// accessors
virtual unsigned char r(int row, int col);
virtual unsigned char g(int row, int col);
virtual unsigned char b(int row, int col);

107

virtual void setR(int row, int col, unsigned char val);
virtual void setG(int row, int col, unsigned char val);
virtual void setB(int row, int col, unsigned char val);

virtual void AllocatePixel(int _height, int _width);
virtual void DeallocatePixel();
virtual void LoadSignal(TRGBSignal& signal);

private:
RGBPIXEL** pix;

1;

#endif
// SegContour.h: Globals for Contour Segmentation
//

// Must #include before SegContour.h:
// WinBank.h
// CABValue.h
// Segmentation.h

// Function declarations
Block* SeparateUsingContours(BWImage* image, Segment* region);
// SegDropFall.h: Globals for Drop-Fall Segmentation
//

// Must #include before SegDropFall.h:
// WinBank.h
// CABValue.h
// BWImage.h
// Segmentation.h

// Types

// Variables
#define SEGFALLTOPLEFT 0
#define SEGFALLBOTTOMLEFT 1
#define SEGFALLTOPRIGHT 2
#define SEGFALLBOTTOMRIGHT 3
#define SEGUP 0
#define SEGDOWN 1

// Function declarations
Block* SeparateUsingDropFall(BWImage* image, Segment* region);
// Segment.h: interface for the Segment class.
//

// Must #include before Segment.h:
// WinBank.h

#if !defined(AFX SEGMENT_H_C4620599_4F06_11D2_AB7A_00105A145DC0__INCLUDED_)
#define AFXSEGMENTH__C4620599_4F06_ I D2_AB7A_00105A145DC0_INCLUDED_

108

#if _MSCVER >= 1000
#pragma once
#endif / _MSCVER >= 1000

#include "BWlmage.h"

// SegClass: used to classify segments during segmentation
typedef enum {

SCUNKNOWN, // default: hasn't been classified
SCNONSENSE, // segment should be discarded
SCFRAGMENT, // segment is an incomplete character
SCFRAGMENTERROR, // previously classified incomplete -- merge failed
SCMULTIPLE, // segment is more than one character
SCMULTIPLEERROR,!! previously classified multiple -- separation failed
SCPUNCT, // segment is a comma or period
SCEQUALS, // segment is an equal sign
SCHORIZ, // segment is a horizontal line
SCDIGIT // segment is a single digit

} SegClass;

class Segment: public BWImage
{
public:

// Friends
friend class Block;

// Constructors/Destructors
Segment(int h = NORMY, int w = NORMX);
Segment(BWImage* image);
Segment(Segment* s); /copy constructor
virtual -Segmento;

// Accessor Functions
bool ClassIs(const SegClass& c) { return (classification == c); };
void SetClass(const SegClass& c) { classification = c; };
void SetPos(Point topLeftCorner);
void Log(int indent);
void LogConfidences(int indent);
int DistFrom(int col); // hack... remove later?

// Segmentation Functions
void Classify(int vmid);
void RelaxClassification(int iternum);
double FindClosestDistance(Segment* s);

Segment* Normalizeo;
Segment* Truncateo;

// Data
// height, width, bbox, pixel inherited from BWImage
double ConfM[NUMPOSSIBLE];
double Confl [NUM_POSSIBLE];
double Conf2[NUMPOSSIBLE];
double Cont3[NUMPOSSIBLE];
double ArbConf[NUMPOSSIBLE];
int digit; // value determined by recognizer
Dimension pos; / to keep track of original position of segment within image

109

int numexaminations; // small hack to allow classification relaxation

private:
// Private data
SegClass classification;

// Private segmentation routines
Status RankPathso;

1;

#endif //
!defined(AFX SEGMENTHC4620599_4F06_11D2_AB7A_00105A145DC0_INCLUDED_)
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#if !defined(AFX_STDAFX_H_FBA443E8_CAB2_1 1D2_AB8E_00105A155AE _INCLUDED_)
#define AFXSTDAFX_H__FBA443E8_CAB2_1 1D2_AB8E_00105A155AE1_INCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif // _MSCVER >= 1000

#define VCEXTRALEAN // Exclude rarely-used stuff from Windows headers

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC OLE automation classes
#ifndef _AFXNOAFXCMNSUPPORT
#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFXNOAFXCMNSUPPORT

//I{ {AFXINSERTLOCATION I
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX STDAFXHFBA443E8_CAB2_1 1D2_AB8E_00105A155AE1 INCLUDED-)
// StructProcessor.h: interface for the StructProcessor class.
//

#if
!defined(AFXSTRUCTPROCESSORHA7FC2OE3_B1341 1D2_93E2_8B899EA9553BINCLUDE
D_)
#define
AFXSTRUCTPROCESSOR_H_A7FC2OE3_B134_11D2_93E2_8B899EA9553BINCLUDED_

#if _MSCVER >= 1000
#pragma once
#endif // _MSCVER >= 1000

class StructProcessor
I

public:

110

StructProcessoro;
virtual -StructProcessoro;
StructProcessor(char* filename);

/functions
int checkO();
int checkl();
int check2();
int check3();
int check4();
int check5();
int check6();
int check7();
int check8();
int check9();

void SetSeg(Segment* s);
Segment* PreProcess(Segment* s);
void ScaleWidtho;
int PostProcess(Segment* s);
void inputAnswer(int ans);

/data members
double AvgWidth;
int initguess; /the guess given to the post processor
int digit; /the digit that the post processor will set for the input

private:
Segment* seg;
FILE* outfile;
int numSamples; /number of samples tested
int numCorrect; /number of segments that the structprocessor has correctly evaluated
int numToWrong; /number incorrectly evaluated
int* total; /total number evaluated for each value
int** InitRight;//array representing that actions of the structprocesor when the

/Iintial guess is correct. dimension = NUMPOSSIBLEx2.
/the first element is the count of each digit initially guessed
/the second element is a count of the number that had their

value
/switched to NR

int** InitWrong;//array representing that actions of the structprocesor when the
/Iintial guess is incorrect. dimension = NUMPOSSIBLEx2.
/the first element is the count of each digit initially guessed
/the second element is a count of the number that had their

value
/switched to NR

bool processed; //value that keeps track of a digit has been handle by the post processor

/private member functions
double FirstHitAvg(int SR, int ER);
double LastHitAvg(int SR, int ER);
int Num2ndTrans(int SR, int ER);
Point HoleDetect(int SR, int k);
Point getBound(int top,int bot);
bool IsLoopClosedTop(int toprow);

111

bool IsLoopClosedBottom(int botrow);

};

#endif //
!defined(AFXSTRUCTPROCESSOR_H_A7FC2OE3_B134_1 D2_93E2_8B899EA9553B__INCLUDE
D_)
// WinBank.h: Globals for WinBank program
//

// This prevents conflicts from including this file more than once.
#if _MSCVER >= 1000
#pragma once
#endif / _MSCVER >= 1000

// Athena compatibility
#define ATHENA 0 // Set to 1 for compatibility with Athena, 0 for Windows
#if (ATHENA)
#include "Athena.h"
#else
#include <windows.h>
#endif
#include <fstream.h>
#include <stdio.h>

// This variable indicates whether we're in "gather segment" mode -> human recognizer
extern bool g-gatherSegs;
// This variable indicates what file to put segments into when we're in "gather segment" mode
extern FILE* g-gatherSegsFile;

// WINBANK PROGRAM PARAMETERS

/ ----------------------------
//l T I T = CABTOPMARGIN
/ I------ I = index of top row of CAB
/I H I I R I R = CABRIGHTMARGIN

I ----- I = index of rightmost column of CAB
/ll W I H = CABHEIGHT
// I I = number of rows in CAB
/I I W = CABWIDTH
// I I = number of columns in CAB
/--------------------------

extern double CheckSizeFactor;
#define CSF CheckSizeFactor

// CAB Location
#define SEGCABRIGHTMARGIN (int)(10*CSF) // Width of right margin >
#define SEGCABTOPMARGIN (int)(10*CSF) // Width of top margin > see diagram
#define SEGCABWIDTH (int)(265*CSF) // Width of CAB > above
#define SEGCABHEIGHT (int)(70*CSF) // Height of CAB >
#define SEGCABMINHEIGHT (int)(10*CSF) // Min height of detected CAB
#define SEGCABMINWIDTH (int)(10*CSF) // Min width of detected CAB

112

#define SEGCABPADDING (int)(3*CSF)
estimated

// Connected region extraction and classification
#define SEGTHRESHLIGHTNESS 0.8
white, 1->black
#define SEGREGIONDISTANCEMAX (int)(25*CSF) /
the CAB
#define SEGVERYLOWWEIGHTTHRESH 14*CSF*CSF
away
#define SEGLOWWEIGHTTHRESH 35*CSF*CSF
incomplete
#define SEGASPECTMIN 0.25
horizontal line
#define SEGASPECTCUT 0.65
as multi or horiz -- increased on relaxation
#define SEGASPECTMAX 1.54
aspect ration relaxation
#define SEGMAXLINEHEIGHT 9*CSF
horizontal line
#define SEGMAXRELAXATIONS 2
classification relaxations allowed

// Merging
#define SEGMERGEHORIZDISTMAX 8*CSF
centers are closer than this
#define SEGMERGEDISTMAX 7*CSF
than this are not merged

// Extra space left when line is

// Thresh control: 0->image all

A region spaced away this far is outside

// Below this a region is thrown

// Below this a region is judged

// Below this a region is a

// Used to classify region

// Maximum limit of

// A region taller than this is NOT a

// Max # of

// Horizontals are merged if their

// Regions which are farther apart

// Separation
#define SEGCONTOURFRACTION 1.0 /
Fraction of top/bottom contour to look at
#define SEGCONTOURPOINTHORIZONTALDISTANCELIMIT 3*CSF // Max horizontal
distance between critical points
#define SEGCONTOURPOINTABSOLUTEDISTANCELIMIT 5*CSF // Max distance
between critical points
#define SEGMINCUTANGLE 0.2

// Min angle allowed along a path before score is reduced
#define SEGMAXCUTLENGTH 4*CSF // Max
cut length before the score is reduced
#define SEGCONTOURCENTERDISTANCELIMIT 10 // Max distance
of critical point from center
#define SEGMAXPATHS 5

// Max number of paths used in feedback
#define SEGCUTPOINTS -2

// Path score modifier for a cut
#define SEGCONCAVE CORNERPOINTS +1 // Path
score mod for concave corner
#define SEGNONCORNERPOINTS -I

// Path score mod for cut on straight line
#define SEGCONVEXCORNERPOINTS -3

// Path score mod for convex corner
#define SEGCUTANGLEPOINTS -1

// Path score mod for low-angle cuts
#define SEGCUTLENGTHPOINTS -2 // should be -1? FIXLATER // Path score mod for long cuts

113

#define SEGDROPFALLPOINTS -1
// Drop fall-specific path score mod

#define SEGDROPFALLSPECIALCASE true
special case drop fall
#define SEGDROPFALLNORMALCASE false
standard drop fall
// Normalization
#define NORMY 16
#define NORM_X 16
#define SEGMENT_WEIGHTMINIMUM 10
weight

// Recognition
#define NUMPOSSIBLE 12
recognizer
#define ZERO 0
#define ONE 1
#define TWO 2
#define THREE 3
#define FOUR 4
#define FIVE 5
#define SIX 6
#define SEVEN 7
#define EIGHT 8
#define NINE 9
#define POUND 10
#define CONNZEROES 13
#define CONNDIGITS 12
#define NOTRECOGNIZED 11
#define RS 14
#define COMMA 15

These 3 are recognized
#define EQUALSIGN 16
segmentor, not
#define MINUS 17

by the recognizer.
#define THROWAWAY 20

/for traingin nets
extern bool gtrainmode;

/for segment files
#define WRITEDIGITNUM 1

// Feedback
#define MAXITERATIONS 5

/use recognition to determine the best segmentation path
extern bool g-segmentByRecognizing;
extern bool g-jedoMerging; //redoes merges
extern bool guseEDF; /uses Extended Drop Fall

// Input/Output file extensions and printing information
#define PIXELEXT ".pix"

// for

// for

// Normalized Height Dimension
// Normalized Width Dimension

// Scaling failed if a segment is below this

// Number of values output by

// Pound or star symbol

// Comma or period >>

// Equal sign

// Minus sign

// Obsolete?

>> by the

// Max feedback iterations

114

#define VALEXT ".txt"
#define LOGEXT ".log"
extern char** gArgs;
extern char g-valO I[];

// Other values
#if (!ATHENA)
#define NULL 0
#endif

extern bool g-isGUI;

// Simple types
#define BIT unsigned char
typedef enum { SEGOK, SEGERRORI Status;
typedef enum {CLOCKWISE, COUNTERCLOCKWISE} ClockDir;
#define CTOUR Path

// Dimension: used during segmentation
// Dimensions taken in pixels with origin at top left corner
struct Dimension {

int left, right, top, bottom;
I;

struct Point {
int row;
int col;

} ;

#define SEGDEBUG TRUE

// setumo
typedef struct RgbPixel

unsigned char r, g, b;
} RGBPIXEL;

#define BWPIXEL unsigned char

115

