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Abstract

This thesis describes the design of power-scalable digital adaptive equalizer for pulse
or quadrature amplitude modulation communication systems, using synthesis and
place-and-route tools. DSP based modem applications such as gigabit Ethernet
transceivers require channel equalization. Because of the high rate and computation
complexity involved, adaptive equalization filters consume a lot of power. Currently,
equalization is typically hardwired instead of using a digital signal processor. Yet,
there is a need for the equalization filters to be scalable to different channel and bit
rate requirements. Synthesis and place-and-route tools enables the designer to focus
on higher-level aspects of the design instead of at the transistor level. In this thesis,
we have used adaptive tap length and precision techniques to design a digital adaptive
equalizer whose power consumption is scalable to the precision requirements.
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Chapter 1

Introduction and Objective

1.1 Motivation

In recent years, power consumption in digital CMOS has become an increasingly

important issue. In portable applications, a major factor in the weight and size of the

devices is the amount of batteries, which is directly influenced by the power dissipated

by the electronic circuits. For non-portable devices, cooling issues associated with the

power dissipation has caused significant interest in power reduction.

1.1.1 Low Power Digital CMOS Methodologies

Several general low-power techniques for digital CMOS have been developed [5, 6,

15, 24, 33, 38, 22]. In [5], power reduction schemes for circuit, logic, architecture

and algorithmic levels were proposed. At the circuit and logic level, these techniques

include transistor sizing, reduced-swing logic, logic minimization, and clock-gating to

power-down unused logic blocks. At the architecture level, optimization techniques

include dynamic voltage scaling and pipelining to maintain throughput, minimizing

switching activity by a careful choice of number representation, and balancing sig-

nal paths. At the algorithm level, these techniques include reducing the number of

operations, and using algorithmic transformations.

In the area of low power filter design, some of the techniques that have been
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explored include the following. In [22] and [24], the idea of having the overall system

select, during run time, the number of stages required for a filter was introduced

and later demonstrated in [38]. [23] and [28] describe low-power FIR techniques

using algebraic transformations. [33] describes an energy efficient filtering approach

using bit-serial multiplier-less distributed arithmetic technique. [7] and [9] describes

low-power FIR techniques based on differential coefficients and input, and residue

arithmetic respectively.

1.1.2 A Power-Scalable Least Mean Squares Adaptive Filter

In this thesis, the system design of a power-scalable least means square (LMS)

adaptive filter is described. LMS adaptive filters are used for channel equaliza-

tion in modems and transceivers, which are becoming increasing important. These

transceivers require channel equalization because channels tend to disperse a data

pulse and cause Inter-Symbol Interference (ISI). Causes of dispersion include reflec-

tions from impedance mismatches in coaxial cables, filters in voiceband modems and

scattering in radios.

White Gaussian
Noise

Transmit Receive Waveform " or "O"
Fliter Filter Sampie&

hR(t) Symbol
Decision

Decision
Point

t

Figure 1-1: Typical PAM/QAM communications system.

Figure 1-1 shows the block diagram of a typical Pulse/Quadrature Amplitude

Modulation (PAM/QAM) system. At the transmitter, the digital data stream is

modulated into band-limited pulse shapes by a pulse shaping filter, shifted to the

carrier frequency by a mixer, and sent through the channel. At the receiver, the

received signal shifted down to baseband, sampled, passed through a matched filter,

and an optimum decision slicer and decoder. PAM and QAM systems can have

13



adjustable bit rates by varying the number of levels of the pulse height from 2(in

anti-podal signaling) to any power of 2. QAM systems pack a higher data rate than

PAM systems by modulating data streams on a set of two orthogonal waveforms -

the in-phase and quadrature components. The reader is refered to texts such as [29]

and [2] for further explanation of these two communication systems.

Input {Pk

f k

+ Detector

Output

Figure 1-2: Decision-feedback equalizer.

One of the commonly used equalizer is a decision-feedback equalizer [29], depicted

in Figure 1-2. It consists of a feed-forward section and a feedback section. The feed-

forward section attempts to remove precursor ISI and the feedback section attempts

to remove post-cursor ISI. Both sections use the least-means-square adaptive filter

algorithm [16]. Note that the difference between a decision-feedback equalizer for

QAM and PAM is that the input streams for QAM are complex numbers and the

multiplication and addition operations are complex, instead of real numbers.

Because of the high rate and computation complexity involved, adaptive equal-

ization filters consumes a lot of power. Currently, equalization is typically hardwired

instead of using a digital signal processor because of the large number of operations

required per second. [20] cites a requirement of 1440 million operations per second

14



for a decision feedback equalizer. Current DSPs are capable of about 500 million

operations per second. Yet, there is a need for the equalization filters to be scalable

to different channel and bit rate requirements.

1.2 Thesis Overview

In this thesis, we have used an adaptive tap length and precision technique to make the

power-consumption of a digital adaptive equalizer scalable to the precision require-

ments. Our design is a least-means-square (LMS) adaptive filter that can be used for

a PAM communication system. Designing it for PAM simplifies our study to focus on

one real stream instead of two real streams, and to have a single real multiplier per

tap, as opposed to four in a simple implementation of complex multiplication. The

evaluation system is a PAM system with ISI.

We have used synthesis and place-and-route tools for this design because they en-

able the designer to focus on higher-level aspects of the design instead of the transistor

level.

In the following chapter, I will give an background overview of LMS adaptive

filters and some recent implementations in Chapter 2.

In Chapter 3, I will discuss the signal processing issues involved in designing a

power-scalable adaptive filter, such as in designing a fixed point MATLAB model and

in choosing the precision of intermediate results. We will discuss some simulations to

study the power dissipation patterns of a base-line equalizer and of two's complement

signed-multipliers, and the performance of the LMS filter as tap precision and length

is reduced.

In Chapter 4, we will discuss the actual implementation of a power-scalable LMS

filter and our findings.

Finally, we conclude with a chapter on suggestions of future work.
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Chapter 2

Overview of Least Mean Squares

Adaptive Filters

This chapter gives an overview of Least Means Squares (LMS) adaptive filters, and

previous work on low-power implementations.

2.1 The Equalizer Problem and the Least Mean

Squares Stochastic Gradient Algorithm

Assuming that the channel frequency response is well-known and fixed in time, the

pulse shaping filter and matched filter in a QAM/PAM communication system can

be designed so that it satisfies the Nyquist Criterion for no ISI. However in many

communications systems, particularly in wireless applications, the channel is time

varying. Time-varying dispersion moves the zero crossings which are originally located

at the centers of all other symbols. Figure 2-1 shows a channel impulse response and

the data sampling points, illustrating ISI for a PAM system. The largest data sample

is used as a cursor to recover the original data, and the other samples are considered

to be ISI. The samples that come before the cursor are called "precursor ISI" and

those that come after are called "post-cursor ISI". The role of the channel equalizer

is to perform inverse filtering of the channel impulse response.
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MM=4

h 2 h3

Figure 2-1: Channel impulse response and data sampling points, illustrating Inter-
symbol interference. [Reproduced from [2]]

The equalizer [2] works in the following way. For the sake of discussion, consider

a Finite Impulse Response (FIR) equalization filter. Denote the filter taps as c

[c[O], c[1], c[2],...c[N - 1]]T and the impulse response matrix H defined as

hij = h[i-j+1] for 1 <i-j+1 < M, (2.1)
0 otherwise.

where M is the length of the sampled impulse response truncated. The ideal equalizer

should satisfy the following equation

H - c = d (2.2)

where d is the ideal impulse response, i.e. [..o, 0, 1, 0, 0, .. .]. Note that this set of

equations is over-determined. Therefore, it must be solved approximately, either by

zero-forcing or Least Mean Squares (LMS).

The mean square error is given by

E 21 -ET = (cTHT - dT) . (Hc - d)

cTHTHc- dTHc - cTHTd dTd (2.3)

A value of c can be derived analytically to minimize the mean square error by com-

pleting the squares

16 2 = (CT - dTH(HTH)-) - HTH - (c - (HTH)-lHTd) (2.4)

-dTH(HTH)lHTd + dTd

17



The optimal filter taps is then

Copt = HTHHTd (2.5)

Iterative adaptation to this solution can be achieved by the method of steepest de-

scent. The new tap values are calculated from the old values by

c - d = c - A2HT(Hc - d)C C- dc c (2.6)

A is known as the step size. H and d are not observable. However, if continuous data

is used, we note that

HTH = E[YTY] and HTd = E[YTa] (2.7)

where a is the data stream vector (assumed to be memoryless) and Y is the input

signal (to the equalizer) matrix defined as

yi,j = y[i - j + 1] (2.8)

Hence for a continuous data stream, the new taps are typically computed according

to

Ck+1 = Ck + AEkYk (2.9)

where the subscriptions represent time intervals and Yk is the kth row of Y and is

the input signal contents of the FIR at time kT and

= d - Hc (2.10)

is the expected output minus the output of the filter. In a more commonly used

notation, this is

(2.11)

where cj [k] is the jth tap at time kT. This is known as the LMS stochastic gradient

18

cj[k + 1] = cj[k] + Ac[k]y[k - ]



method. This kind of filter is also known as a linear equalizer. Figure 2-2 shows a

block diagram of the filter.

a[k]@ 0

e[k X -ek X e[k X e[k X

delta delta delta delta

y[k] + + *00 +

Figure 2-2: Least Mean Square Adaptive Filter.

The discussion so far is for PAM. For QAM, we treat the data streams as com-

plex numbers, where the in-phase stream is represented by the real part and the

quadrature-phase is represented by the imaginary part. The derivation remains the

same if we replace the transpose operator with the hermitian operator.

2.1.1 Fractionally-spaced Decision Feedback Equalizers

In modern communication systems, one of the commonly used equalizer is a decision-

feedback equalizer [29], depicted in Figure 2-3. It consists of a feed-forward section

and a feedback section. The feed-forward section attempts to remove precursor ISI

and the feedback section attempts to remove post-cursor ISI. The decision-feedback

equalizer differs from a linear equalizer in that the feedback filter contains previously

detected symbols, whereas in the linear equalizer the filter contains the estimates.

It has been suggested that a higher performance can be achieved if the equalizer

runs at a smaller spacing than the symbol interval [21, 31, 12]. This can be done by

sampling (refer to Figure 1-1) the received signal at a higher rate than the symbol

rate. This is known as Fractionally-Spaced Equalizers (FSE). Equalizers at symbol

rate will henceforth be called symbol-rate(T-spaced) equalizer (TSE).

It is known that FSE is able to realize matched filtering and equalization in one

device [12]. In addition, while the TSE is very sensitive to sampling phase, the FSE

19



Input Pk)

C. 3 C.2 C.CO

x

C1

C IC3

" x 
+ LDetector

+

Output

Figure 2-3: Decision-feedback equalizer. [Reproduced from [2]]

. ...........

-4 -3% -2x -z
T T T T

0 2x 3 4
TT T T

Figure 2-4: Spectrum of baseband signal input to a FSE and a TSE.
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is able to compensate for it. This can be understood by considering the baseband

signal in the frequency domain. This is illustrated in Figure 2-4. The baseband signal

is band-limited to to [-1/2T, 1/2T] after Nyquist Pulse shaping. T-spaced sampling

causes aliasing at the band edge, so the equalizer can only act on the aliased spectrum,

not the baseband signal itself. Fractionally-spaced sampling, for example at half the

symbol period (T/2), allows the equalizer to act on the baseband signal itself.

2.1.2 Convergence and Stability

The convergence rate, steady state mean square error and stability of the LMS

Stochastic Gradient equalizer is determined by the step size A in equation (2.11).

The results are summarized here and the reader is referred to [2, 29, 11, 30 for

details.

To ensure convergence for all sequences, the step size must be bounded by

Amax < 2 (2.12)
NAmax

where N is the length of the filter and Amax is the largest eigenvalue of HTH the

auto-correlation matrix of the channel. Convergence rate is maximized by a step size

of
1

AO= (2.13)
N(Amin+ Amax)

The final mean square error is given by

E2
62 1 in (2.14)0 1 - ANAmax/2

Fractionally spaced equalizers have a additional stability problem that is described

in [10]. FSE instability is due to the received signal spectrum being zero in the

frequency intervals (1 + a)/2T < If < 1/2T' where T is the symbol interval, a is the

roll-off factor of the Nyquist pulse, and T' is the fractional spacing of the equalizer

taps. Thus, the equalizer transfer function is not uniquely determined and tap-weights

can drift and take very large values. Various solutions have been suggested, such as
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Tap-leakage [10] and others [37, 19, 18].

2.1.3 Tap Precision

The effect of tap precision on the LMS algorithm is explored in [11] and reviewed in

[30]. Adaptation will stop when

Ac < 2 -B (2.15)

where each coefficient is represented over the range of -1 to 1 by B bits including the

sign and the PAM signal y is assumed to have unit power [2]. The step size required

for the final mean square error can be calculated from equation (2.14), i.e.

A 2(1 - 2f/00 (2.16)
NAmax

The precision required for the taps are then

B= - log 2 (A) (2.17)

2.1.4 Length of Equalizer

The previous subsection shows that the equalizer length N affects the optimum

step size and precision. For TSE, there are some heuristics for the choice of filter

length [36]. These heuristics suggest that the equalizer length need to be three to

five times the length of the delay spread of the channel which varies from channel to

channel. However, an analysis of the FSE using the zero-forcing criterion seems to

suggest that the FSE need not be longer than delay spread of the channel. Further

simulations in [36] reveal that the minimum filter order needed for a symbol error

rate of 10-6 does not correlate with estimates of the channel delay spread.

2.1.5 Training Sequences and Blind Equalization

The adaptation of filter coefficients in equation (2.11) is based on an assumed correct

decision about which symbol was received. This is true for equalizers with a training
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sequence. However for blind equalizers, the decision is not necessary correct. We will

not look into these issues, which are dwelt in [2, 13, 39]. It suffice to say that our

design should be made as flexible as possible.

2.2 Previous Work on Low Power Adaptive Deci-

sion Feedback Equalizers

In a series of papers, Nicol et al. [26, 25, 27, 1] considered low-power equalizer archi-

tectures for applications in broadband modems for ATM data rates over voice-grade

Cat 3 cables, and broadband Digital Subscriber Line (DSL) up to 52Mb/s. They

considered various filter architectures: direct, transposed, systolic, hybrid and time-

multiplexed [1, 26]. The disadvantages of the direct and transposed forms of a filter

are as follows. Direct implementation has a long critical path dependent on the

number of taps. The transposed form, if implemented directly in hardware, has a

large input capacitance when there is a large number of taps. In the systolic form,

additional registers are inserted in the direct implementation to reduce the critical

path length, but this results in long latency and a need for high clock frequency.

Hybrid forms combine the direct and transposed form. They are shown in Figure 2-5.

Because in a FSE, the output is decimated to symbol rate, the filter can make use

of time-multiplexed structure as shown in Figure 2-6. Nicol et al. further replaced

the registers by dual-port register files to achieve programmable delay and reduced

switching capacitances.

Data
input

wO w, XW2 W3 w0Xw X
Data
output +

ut

Figure 2-5: Two Hybrid Forms of an FIR Filter. [Reproduced from [1]]
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Figure 2-6: An FIR Filter using time-multiplexed multipliers. [Reproduced from [1]]

Nicol et al. also considered various optimizations at the circuit level. For example,

they propose using carry save adders, Wallace-tree multipliers and booth encoding.

Time multiplexing multipliers help reduce the number of multipliers. In addition,

Nicol et al. used the power-of-two updating scheme for the coefficient update in the

LMS. The error from the slicer circuit Ek is used to control the shifting of the sample

input Yk in a barrel shifter. The result is used to compute Ck+1. The most significant

bits of the taps are used for filtering while the full precision of the coefficient is used

in the updating.

12

Lower pow-2
10

S8

6 Lower pow-1
6

.L ,-' Fixed coefficients

2
0

0~
0 _ _ _ _ _ _ _ _ _ _ _ _

0 2 4 6 8 10 12
Amplitude of time-multiplexed input (bits)

Figure 2-7: Measured power per multiplier in FIR filter employing time-multiplexed
Booth recoded multipliers. [Reproduced from [1]]

During run time, power can be further reduced by having adaptive bit precision.

Nicol et al. illustrated that power consumed by a booth-recoded, time-multiplexed

multiplier increases with the amplitude of the input (see Figure 2-7.) Hence power

consumption can be reduced achieved by adding a programmable gain between the
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Figure 2-8: Programmable Gain. [Reproduced from [1]]

filter and the slicer as shown in Figure 2-8. This gain can be limited to power of 2

for simplicity.

Further power reduction can be achieved by having burst-mode update and adap-

tive filter lengths. In burst-mode update, as long as the mean square error stays below

a certain level, the update section is frozen. Filter lengths are adaptively changed to

achieve a given performance. Tail taps are usually small, thus setting them to zero

will not significantly change the transfer function. When a tap is disabled, it is not

updated and it is replaced by 0. The delay line still needs to operate because other

non-zero taps still need to be updated.

Power in FIR (MW/MAC) Power in update (mW/MAC),

31 34

Carry-save FIR 18 10.3 Power-of-2 update

Grouped multipliers 12.5 10.3

Booth encoding coefficients 7.6 10.3

Reduced switching Booth encoding 5.1 j 0.3

Adaptive bit prevision 3.6 10.3 4- Worst-case environ

3.61 1 Burst-mode updating

Reduce filter length Reduce filter length

meni

Figure 2-9: Power reduction techniques. [Reproduced from [1]]

Figure 2-9 shows a cumulative benefits of each power reduction approach described

by Nicol et al..
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A second series of work is done by Shanbag et al. [32, 14]. In [32], they described

a reconfigurable filter architecture with a variable power supply voltage scheme and

a coefficient update block that shuts off certain taps according to an optimal trade

off between power consumption and mean square error. Taps with small values of

Icj 2 /E(cj) where cj is the filter coefficient and E denotes the energy. When taps are

shut down, the critical path length is reduced, and the supply voltage can be reduced

to further reduce power. Additional power savings can be achieved by changing the

precision of the input signal and the coefficients. This is done by forcing the least

significant bits to zero. Note the difference between this approach and that taken by

Nicole et al.

In [14], Shanbag et al. described algebraic transformations for low-power. By

reformulating the algebraic expression so that it has more additions and fewer multi-

plications than before, the power consumption can be reduced because multiplication

are more expensive not only in terms of power but area as well. This is known as

strength reduction. The DFE for QAM shown in Figure 1-2 requires complex multi-

plications. This allows strength reduction methods to be easily used. Shanbag et al.

suggests that this method has a potential of up to 25% power savings.

The second optimization considered in [14] is pipelining with relaxed lookahead.

Essentially this method allows the adders in the LMS algorithm to be pipelined by

applying a lookahead in time domain. Thus throughput of the LMS is increased. To

achieve low-power, one can reduce the power supply, for example.

A third set of work is done by Samueli et al. [17, 35, 20]. In these papers, Sammueli

et al. studied algebraic transformation and relaxed lookahead pipelining techniques

that enable power-supply voltage to be reduced, while maintaining the same through-

put.
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Chapter 3

Scalable Adaptive Filter: Signal

Processing Issues

This chapter describes the signal processing issues in the design of a scalable LMS

adaptive filter.

3.1 Design Overview

3.1.1 Design Objective

The goal of the design in this thesis is an LMS adaptive filter that is able to trade off

power-dissipation and quality of its computation in real time using the same piece of

hardware. The quality of its computation is measured by the standard deviation of the

error on the output, after sufficiently long time has been allowed for the adaptation

to converge.

3.1.2 Design Approach

The filter will be scalable in two aspects:

1. The length of the filter will be adjustable in real time.

2. The tap-precision will be adjustable in real time.
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3.2 Fixed Point MATLAB Model

We begin our discussion on the signal processing issues with an fixed point model of

a six tap adaptive filter.

3.2.1 Architecture

Figure 3-1 shows a six tap adaptive filter and Figure 3-2 show its implementation in

MATLAB Simulink using the fixed-point library.

- - Tap Update
elk X elk X elk X elk X Multiplier

Tap Update

apa aps aps aps aps aps

ytk + + +++

Tap Multiplier Sum

Figure 3-1: Basic six tap LMS adaptive filter.

The basic structure consists of

1. five 10-bit registers labeled "Dtl" to "Dt5" for the delay line,

2. six 10-bit registers labeled "Taps" for the taps,

3. six multipliers labeled as "Tap Multiplier" to form the tap products,

4. five adders shown as labeled "Sum" to form the sum of the products,

5. six multipliers labeled "Tap Update Multiplier" for to compute the coefficient

update, and

6. six adders labeled "Tap Update" to add the update to the previous tap.

The inputs and taps have 10 bit precision. Precision issues will be in the next section.

Note that in simulink, variables can be multiplexed to form a vector, and multiplica-

tion and addition operators act component by component if two vectors are presented

at the input of the operator.
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Basic Six Tap LMS Adaptive Filter Integer Model
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Figure 3-2: Basic six tap LMS adaptive filter in MATLAB Simulink.
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The noteworthy components of the MATLAB model are the "normalizing" gain

elements, labeled "Normalize 1" and "Normalize 2". These elements extract the

significant digits of the previous computation and throws away the less significant

digits. The decision of how much precision to maintain for intermediate results is

important and will be discussed in a later section.

The coefficient update is calculated according to equation 2.11. The gain element

labeled "step size" is the step size A for the adaptation as discussed in section 2.1.

In this design, A = 2- can be easily implemented by shifts without the use of

multipliers.

The evaluating system is a simple PAM communication system with inter-symbol

interference (ISI). The "transmitter" is a two-level discrete memoryless source. The

ISI of the channel is modeled in simulink using "Direct Form II Transpose Filter".

Since we know at the "receiver" end what the transmitted symbols are, we can easily

compute the error stream for the LMS filter.

3.2.2 Data Representation

The filter uses data represented in two's-complement. While two's complement ad-

dition of signed integers requires no modification from unsigned addition, signed

multiplication is significantly different from unsigned multiplication [8]. There are

various kinds of multipliers that can be chosen, including array, Wallace-tree and

booth-encoded. We have chosen to use the Synopsys synthesis default, which is two's

complement. This thesis does not attempt to compare the trade-offs between the

various representations, and the arithmetic blocks used.

3.2.3 Dynamic Range and Precision:

Input, Output, Taps, and Intermediate Results

In implementing a fixed-coefficient digital filter in hardware, with a given the spec-

ification of the input and output dynamic range and bit precision, the designer can

determine the precision of the intermediate results and design for worst case. In an
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adaptive filter, because the taps are adapted, we need to set a dynamic range for the

taps. It is conceivable that for a set dynamic range in a design, a worst case scenario

can be devised so that the taps will overflow. This is a very catastrophic situation

for the adaptive filter algorithm [10].

In this implementation, I have chosen to think about the variables as fixed point

numbers and represent them in the form P.Q where P represents the integer part and

Q represents the fractional part. For example, I have chosen the inputs to be 10 bits,

with 3 bits representing the integer portion, and 7 bits representing the fractional

part. Hence the binary representation 0100000001 is interpreted as 010.0000001 and

equals 21. Since we are using two's-complement, note the most significant bit of the

binary representation is the sign bit. We also note that although the position of the

"decimal point" of all the variables in the filter can be shifted together by the same

amount without changing the functionality, it is convenient to fix the position of the

"decimal point" for an arbitrary variable. An alternative way of keeping track of the

position of the "decimal point" is as follows. The fixed point number is multiplied by

the smallest power of two 2S until it becomes an integer R. We must keep track of S

for all intermediate results.

Table 3.1: Representation of input, taps, intermediate results and outputs, and the
normalization needed before the next operator. The representation p.q means that the
integer portion has p bits and the fractional portion has q bits, and the representation
s#r represents that the variable has s bits, and the actual value the s-bit integer
multiplied by 2-
Variable Representation Normalization needed
Input 3.7 or 10#7 -

Taps 2.8 or 10#8 -

Result of "Tap Multiplier" 5.15 or 20#15 Discard two most significant
and eleven least significant bits
Gain of "Normalize 2" = 2-"

Input to Sum 3.4 or 7#4
Error Ck 3.7 or 10#7
AEk 10#12
Result of "Tap Update 1.19 or 20#19 Discard eleven least significant bits
Multiplier" and sign-extend 2 bits

Gain of "Normalize 1" 2-11
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Table 3.1 summarizes the representation and precision of the inputs, taps, inter-

mediate results, and the outputs. In the table, the representation p.q means that the

integer portion has p bits and the fractional portion has q bits, and the representa-

tion s#r represents that the variable has s bits, and the actual value the s-bit integer

multiplied by 2-. p.q represents the same thing as p + q#q.

Note that when two numbers with the precision pl.qi is multiplied by another p2.q2 ,

the result has the precision (P1 + P2)- (qi + P2). When two numbers with the precision

rl#sl is multiplied by another r 2#s 2, the result has precision (r, + r 2)#(si + s2).

3.2.4 Rounding off Intermediate Results

Because multiplication increases the bit length after each operation, full precision

cannot be carried throughout the entire filter. In this implementation, we have cho-

sen to round down instead of rounding to zero because of ease of implementation.

Rounding down of a number represented in two's complemented can be easily done

by truncating the lower order bits. However, using rounding down has a significant

impact on the performance of the filter, which we will discuss in the following chapter.

It is important to note that "rounding down" must be specified in the gain elements

in the MATLAB model as "Round toward: Floor" for generating the appropriate test

vectors.

3.2.5 Simulation Results

Figure 3-2 shows the simulation of the basic six tap LMS adaptive filter in MATLAB

simulink for a sampled channel impulse response of h[n] = 1 + 0.6z- 1 .

The first plot shows the data transmitted, and the second shows how it inter-

symbol interference after the data has gone through the channel. The third plot

shows the output from the LMS adaptive filter as it adapts its coefficients, and the

fourth shows the difference between the transmitted and the filtered signal.

32



Transmitted

Received

Li I-

I I I I I

Output from Filter

-2

Error

. . . . .. . . . .. . .. . . .

50 100 150 200 250 300 350 400

Time offset: 0

Figure 3-3: Simulation of the basic six tap LMS adaptive filter.
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3.3 Performance of LMS Adaptive Filter

3.3.1 Convergence Issues

Having studied the performance of a six tap filter, we proceed to investigate the

performance of a finite length and a finite precision LMS filter.

From the discussion in section 2.1.4, there is no known correlation between the

tap length required for a small error rate and the delay spread. Our first simulation

attempts to investigate the effect of having a finite length filter, and a finite precision

finite length filter.

The simulation set up is as follows. A Simulink model for a 20-tap LMS adaptive

filter with a step size of 2- is set up. It is run with a set of randomly generated

channel impulse responses:

ao6[n] + a,6[n - 1] + a26[n - 2] (3.1)
h[rn] = (3.1)_________S2 2 2a0 + al + a3

where ao=1, a1 and a2 are uniformly generated random numbers between 1 and -1.

The denominator is to "normalize" the energy of the channel response. The data.

we collect is the mean-square-error of the output after some time has been given for

convergence.

The same experiment is repeated with a finite precision 20-tap filter, with a tap

precision of 16 bits, inputs, outputs, and final sum of 10-bits.

Note we do not attempt to replicate any real channel in this investigation. Our

goal is to study the limitations of a finite length filter, and the effect of having finite

precision. We will then identify a set of channel impulse response converges with a

finite-length filter, and study the trade off between tap length, and precision, and the

mean square error at the output.

Figure 3-4 shows the frequency distribution of the standard deviation of the error

(expected-output) for a infinite precision and finite precision 20-tap filter. Note that

even for a channel response that has two samples of post-cursor ISI, the finite-length

infinite-precision filter does not converge satisfactory and still has over 48% of the
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Figure 3-4: Performance comparison of a infinite precision versus finite precision filter.

simulated channel responses that has a error standard deviation of greater than 0.1.

We note that the finite precision filter have a similar performance, with the exception

that it experiences overflow and becomes unstable for some channel responses.

Table 3.2: Examples of channel responses
Behavior Channel response
Converge 0.88282 - 0.1415z- 1 + 0.447890z-2
to error std dev <0.1 0.85715 + 0.40270z- 1 + 0.32113z-2
Does not converge 0.82922 - 0.37904z-1 - 0.41075z-2

0.74100 + 0.54183z- 1 - 0.39666z-2
Causes tap overflow 0.67690 + 0.39913z- 1 + 0.61847z-2

0.74744 + 0.56169z- 1 + 0.35474z-2

Table 3.2 shows a snap shot of the channel responses that converges, does not

converge, or causes tap-overflow. Note that there does not seem to be any discernible

pattern why some converges, some do not, and some causes tap overflow.

3.3.2 Steady State Output Error, Filter Length and Tap Pre-

cision

Given the set of channel impulse response that will converge with 20 tap filter, we

proceed to see the effects of shortening the filter, and reducing the precision of the

taps.
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Using 3 channel responses, we simulated the performance of the filter with varying

tap length, tap precision and adder precision. Figure 3-5 shows plots the standard

deviation of the error as tap length, tap precision and adder precision is varied.

Refering to the top left graph in Figure 3-5, we make the following observations.

First, given the number of taps, and the precision of the final sum, a higher tap

precision leads to a smaller error and better performance. Second, a larger number

of taps may lead to poorer performance, especially with low precision taps (10,11

and 12). Finally, comparing the three graphs in Figure 3-5, we observe that the

precision of the final sum only improves the performance of the filter when the taps

have high-precision (in this case 16 bits).

When we performed performed the same experiment with ISI that covers three

time samples as shown in Figure 3-6, we found that a larger number of taps led to

better performance most of the time.

When we performed the same simulation with round-toward-zero instead of round-

down, the performance of the filter is better, as shown in Figure 3-7. Surprisingly, it

is much less dependent on the tap precision, except when the precision of the sum is

high.

3.4 Power Consumption of the Baseline LMS Adap-

tive Filter

The power consumption of a baseline six tap filter in Section 3.2 is estimated using

Powermill. The precision of the input, taps, intermediate results and outputs were

discussed in Table 3.1 and summarized in Figure 3-8. Since the LMS algorithm

computes the next tap based on the difference between the current computed output

and its expected value, (see equation 2.11) the critical path is from the input a to

the tap register, through the output y and the external operation that computes

the difference between y and its expected value, and feeds that back as err. Using

the results in Table 3.3, assuming that the computation of err requires no time,
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the maximum clock rate estimated by Synopsys, using a conservative delay model is

7.196.21 GHz=74.6 MHz.

Table 3.3: Critical path delays.
From To Time (ns)
a[3] (input) y[ 6] (output) 7.19
err[2] (error input) taps.reg[1][9] (tap register) 6.21

We found correct functionality when clocked at 100MHz. With a power supply

of 1.8 volts, the average power consumption is 6.16 milliwatts. The break-down of

the power dissipation is shown in Table 3.4. Since we can reduce power consumption

in general by decreasing power supply voltage and clock frequency, a more useful

metric is to consider the total switched capacitance. The total switched capacitance

is calculated using

C = (3.2)
ffV

and equals 19.00 pF. Table 3.5 shows the break down of switched capacitances. We

noted that the total switched capacitance of the clock has the same value as the

extracted SPICE netlist.

to Dtl Dt2 DO3 Dt4 Dt5

10
ek X + ek X elk X e k X +ek X elk X

10

y[kl : 0

Figure 3-8: Six tap Baseline filter.

3.4.1 Power Dissipation in a Signed Multiplier

In this simulation, we investigate if it is sufficient just to wire the lower-order bits

of the inputs to a signed-integer multiplier to zero, if we want to conserve power

dissipation by using lower precision taps.
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Table 3.4: Breakdown of power dissipation.
Element

Total power consumption is 6.16 mW.
[ Percentage I

Table 3.5: Breakdown of capacitances.
Element pF
Clock 0.36
Delay line registers 0.91
Tap registers 1.08
Tap update multiplier 5.20
Tap update adder 2.11
Tap multiplier 6.69
Final sum 2.64

7 8 9 10 11 12 13 14 15 16
bits

6 7 8 9 10 11 12 13 14 15 16
bfts

Figure 3-9: Power consumption of signed-multipliers of various bit-length given the
same 6-bit input.
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Using Synopsys, we synthesized 6, 8, 12 and 16-bit two's-complement signed mul-

tipliers. The multipliers were simulated with inputs from a set of 6-bit uniformly

generated random numbers. For the 8, 12, and 16-bit multiplier, the 6-bit numbers

were placed in the 6 most-significant bits as well as in the 6 least-significant bits (refer

to Figure 3-10) When clocked at 100 MHz, with a power-supply of 1.8V, the power

consumption, and the total switched capacitance is graphed in Figure 3-9. The results

show that in the design of a variable tap-precision filter, using the same multiplier

wastes unnecessary power even when the lower-order bits are zeroed. In this case,

the power dissipation of a bigger multiplier is bigger because of glitching within the

multiplier. In the case of using the least-significant bits of a multiplier, the power

dissipation is even greater. This is because the multipliers are two's complement

multipliers, so all the higher order bits need to switch when computing the sign and

the magnitude of the result.

In the power-scalable filter design to be discussed in the following section, we will

allow tap precision to vary in real time. Table 3.6 compares the power dissipation of

a 10 by 11 bit multiplier versus a 10 by 16 bit multiplier (using the most-significant

bits) given the same set of uniformly distributed 10 bit and 11 bit inputs. By using

two different multipliers, when the tap precision changes from 16 to 11, 11% of the

energy dissipation can be saved'.

Table 3.6: Comparison of power consumption of a 10 by 11 bit multiplier versus a
10 by 16 bit multiplier given the same set of 10 bit and 11 bit inputs, at a clock
frequency of 100MHz.

10 by 11 bit 10 by 16 bit
Average power [mW] 1.53 1.72
Total switched capacitance [pF] 4.72 5.31

'In our design, we have chosen not to vary the precision of the delay line, as we shall see in the
next section. If we chose to vary the precision of the delay line, we would get greater power savings.
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Figure 3-10: Comparing using large multipliers for small inputs when inputs are
placed at the least significant and most significant bits.

3.5 Power-Scalable Adaptive Filter Architecture

Our simulation shows that the major sources are power are the multipliers, followed

by the adders and the registers.

This suggest that we should use burst-mode update of the coefficients, and use

power-of-two update. This finding is similar to Nicol et al. [26, 25, 27, 1] as discussed

in section 2.2

In addition to dissipating less energy when not needed, we saw that a shorter

length can sometimes lead to a smaller standard deviation of error at the output.

We will focus this thesis on making the filter power-scalable. Our findings suggest

that significant power can be saved if number of taps and the precision can be varied

when necessary.

The design in this thesis will have four levels of adjustability:

1. Level 0 : Five 11-bit taps

2. Level 1 : Ten 11-bit taps

3. Level 2 : Ten 16-bit taps

4. Level 3 : Fifteen 16-bit taps
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We have chosen to keep the precision of the delay line constant for this design. We

could have reduced the precision of the delay line and this would have given us greater

power dissipation reduction.

Based on this discussion, we came up with the following fifteen-tap adaptive filter

architecture. Figure 3-11 shows the block diagram of the design. It consists of three

5-tap LMS adaptive filter blocks. Each filter block accepts three inputs: 10-bit input

a[k], 10-bit error input e[k], and a 10-bit sum y'[k] from another block. The output

y[kl is the sum of y'[k] and the convolution computed in that block. Each filter block

also outputs a delayed a[n] for the next block. Note that this is simply dividing a

15-tap filter into 3 sections. The three sections are not exactly identical. The first

section contains only 4 register banks for the delay line because the first tap does

not require a register. The second and third all have 5 register banks. The final

filter block does not require to have to have a input y'[n] from another block, so it

saves one adder as well. This implementation allows us to shut down the latter two

blocks when only 5 or 10 taps are required. In addition, within each block, we can

adjust the precision of the taps. We will discuss the implementation of adjustable

tap precision in the next chapter. The precision of inputs, taps, intermediate results,

and output summarized in Table 3.7. Here we have chosen to increase the tap and

output precision from the six tap filter discussed in the beginning of the chapter.
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Figure 3-11: Block diagram of a power-scalable LMS adaptive filter.

Table 3.7: Representation of input, taps, intermediate results and outputs, and the
normalization needed before the next operator.
Variable Representation Normalization needed
Input 3.7 or 10#7 -

High Precision Taps 2.14 or 16#14 -

Low Precision Taps 2.9 or 11#9 -

Result of "Tap Multiplier"
High Precision 5.21 or 26#21 Discard two most significant

and fourteen least significant bits
Gain of "Normalize 2" = 2-14

Low Precision 5.16 or 21#16 Discard two most significant
and nine least significant bits
Gain of "Normalize 2" = 2-

Input to Sum 3.7 or 10#7
Error Ek 3.7 or 10#7
Aek 10#12 -
Result of "Tap Update 1.19 or 20#19 Discard eleven least significant bits
Multiplier" and sign-extend 2 bits

Gain of "Normalize 1" = 2-11
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Chapter 4

Scalable Adaptive Filter:

Implementation and Results

4.1 Overview

This section describes the implementation process in this thesis. The CAD tools

used in the design flow are: Synopsys Design Analyzer, Cadence Silicon Ensemble,

Cadence Design Framework II, Cadence Dracula, and EPIC Powermill. The function

of these tools is summarized in Table 4.1.

Table 4.1: CAD Tools in a digital design flow
Tool I Function
Synopsys VHDL Debugger
Synopsys Design Analyzer

Cadence Silicon Ensemble

Cadence Design Framework

Cadence Dracula
EPIC Powermill

Behavioral description and simulation
Behavioral synthesis using standard-cell libraries
Static Timing Analysis
Automatic place-and-route using standard-cell
front-end views

Integrating back-end cell views with placement
and routing

Extraction to SPICE netlist for back-annotation
Design functionality and timing verification
Power estimation

The steps in our design flow is summarized in Table 4.2 and will be described in

the following subsections. The scope and organization of this section is as follows.
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It will summarize the steps of the flow but the detailed commands for each tool will

be described in Appendix B (using a simpler example). Appendix C will explain the

process of setting up of the cell libraries and the technology files for the tools.

Table 4.2: A digital design flow
Input Step Output

1. Design architecture Behavioral description VHDL description
Test vectors and simulation

2. VHDL description Logic synthesis Structural Verilog netlist
Standard-cell back-end views

3. Verilog netlist from synthesis Preliminary verification Power estimation
Standard-cell CDL netlist and power estimation

4. Verilog netlist from synthesis Place and route Placed-and-routed design
Silicon Ensemble abstract views in GDSII without

front-end views
5. GDSII file from place-and-route Incorporating Full layout in Design

Standard-cell front-end views front-end views Framework
6. Full layout in GDSII Design-rule check SPICE netlist

Verilog netlist from synthesis and extraction with annotation
Standard-cell CDL netlist
Dracula rules

7. SPICE netlist from extraction Verification Power estimation
Test vectors and power-estimation
SPICE Models

4.1.1 Behavioral Description, Simulation, and Synthesis

The first step in implementation is to translate the integer model design into VHDL

description. In this thesis, we have chosen a mixture of behavioral and structural

VHDL, to simplify the process of implementing adders and multipliers. The VHDL

description is first verified with VHDL Debugger using the test vectors from the

MATLAB model, and a test bench written in VHDL. Finally, the VHDL description

is then synthesized using Design Analyzer. The standard-cell back-end views is needed

for design analyzer. The result from this step is a Verilog netlist containing structural

instantiations of the standard-cells. From the synthesized schematic, Synopsys can

perform static timing analysis of the critical path.
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4.1.2 Preliminary Verification and Power Estimation

Using Epic Powermill, we can perform an initial verification of the functionality and

perform a power estimation. Because the Verilog netlist from synthesis retains its

hierarchical nature, we can perform power analysis of individual blocks in the filter:

the multipliers, adders and registers. This step requires the SPICE or CDL (a SPICE-

like but Cadence proprietary) netlist of the standard-cells which are provided by

the standard-cell provider for Layout-Versus-Schematics (LVS) checks. Powermill

provides a utility vlog2e which will compile the Verilog netlist and standard-cell netlist

into an Epic proprietary format that can be used in Powermill.

4.1.3 Place and Route, Incorporating Front-end Cell Views,

and Extraction to SPICE

The next step is to place and route the Verilog netlist. Using an abstract view contain-

ing information of pin location (places in a standard-cell that the router contacts to),

Silicon Ensemble places and routes the netlist. The design can be saved as a GDSII

(stream) file. This is imported to Cadence Design Framework, where the complete

front-end views of each cell has been loaded into a library. In the process of import-

ing, Cadence automatically incorporates the cell views of each standard-cell into the

design. Following this, we perform extraction to SPICE netlist for back-annotation.

The files required for Dracula to perform the last step are the CDL netlist for the

standard-cells and the LPE (layout parasitic extraction) rules, in addition to the

Verilog netlist from synthesis.

4.1.4 Design Verification and Power Estimation

Finally, with a SPICE netlist, we can perform final design verification and power

estimation. This is done using Epic Powermill. The SPICE models for the devices

are required by Powermill in this step.
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4.2 Implementation

This section describes the actual implementation of the fifteen tap scalable adaptive

filter. Figure 4-1 shows the overall architecture. As discussed in the previous section,

clk
Control

level[1:0]

4

err[9:0] clk lclk rst lrst arr[9:0] - - clk lclk rst Irst err[9:0] clk icik rst lrst

a[9:0]

y[9:0]

....................................... .....................................

a[k-51

e[k X [lk) X .1k) X .[k) X .1) X

10
11 or 16

11 6r 16 -7
+~k ++ y'[k]

Figure 4-1: Overall architecture.

the filter has four levels of adjustability which is encoded in the level signal. The

filter consists of three sub-blocks, which are controlled by the control block. The

function of the control signal to each sub-block is summarized in Table 4.3 and will

be explained in the following subsections.

Table 4.3: Control signals for each sub-block. When the sub-block is turned off, all
clock signals are gated, and resets are set high.

Signal Function
clk clock for the block except the least-significant tap bits
lclk clock for the least-significant tap bits
rst asynchronously resets all registers except the least-

significant tap bits
lrst asynchronously resets all the least-significant tap bits

activates low-precision mode for the sub-block
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4.2.1 Implementing Adjustable Length

To shut off the latter two filter blocks when not needed, we have chosen to gate the clk

signal of those blocks. For these blocks not to consume significant power when turned

off, the inputs to the tap-update multiplier must be latched, since the err[9 : 0] is still

changing. In addition, all the registers are asynchronously reset so that when these

blocks are restarted, they do not contain any old values. The latter two behavior is

implemented by having a rst signal to tell the sub-block when the latches should hold

and the registers should be reset. Figure 4-2 summarizes this implementation.

reset when block is turned off latch input to multiplier when block is turned off

rst

I I~[kJ

clk

a[k1 a[k-51

e x e x ek x ek x ek x

x x x x x

rst
Ax

reset when block is turned off

Figure 4-2: Turning off a block by gating the clocks, reseting the registers, and
latching the input to multipliers.

4.2.2 Implementing Adjustable Tap-precision

The second aspect of scalability is the tap-precision. We shutdown the bits in the

tap registers when they are not being used by gating the clock. wek is the clock for
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the lower-order tap bits that is gated by the control block when the filter is running

in low-precision. This is shown in Figure 4-3

In addition, we employ a simple bit-length adjustable multiplier to conserve power

when running in low-precision mode. The simple bit-length adjustable multiplier is

shown in Figure 4-3. It consists of two multipliers of different input bit-length. When

a[k-5]

ek x e x emk x ek x ek x

xx -,' x xx

y[k] + '-+ / + + y[k]

rst Irst-rs
trst

[15:54
[15:0] 4_x: 11x10

elk lcle

reset the lower bits when low-precision mode is on [15:5]

Irst

Use a smaller multiplier when low-precission mode is on

Figure 4-3: Low-precision mode by gating the clock to the lower precision bit registers
and using lower precision multipliers.

a higher precision is needed, the longer bit-length multiplier is turned on and the

inputs to the other is latched so they are not affected by the inputs.

4.2.3 Control Logic

The control logic performs two functions. First, it decodes the level[1 : 0] signal into

a signal for whether each block should be turn on or off (shut), and whether each

block should be running high tap precision mode or low tap precision mode (lowpre).

Second, the control logic translates this into the clk, icik, rst, and lrst signals for
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each sub-block. This is summarized in Figure 4-4

sh-- clkl
sow__. clock-gating

clk irst

lope.clock-gating lclki

level[1:0] drstl
decode

- --- --- --- ---

------ ----- --- -

clk

level[1:0] Co ro

Figure 4-4: Architecture of control logic.

The first portion is a simple combinational logic that computes the shut and

lowpre signal for each sub-block. The second portion is slightly more elaborate be-

cause we allow the level[1 : 0] signal to be asynchronous. Hence the clock-gating logic

must only start gating gclk and setting rst high at the next suitable time.

The clock-gating logic works as follows. It takes a clk, rst, and shut signal and

derives a inverted clk and rst signal for a filter sub-block when shut is is low. When

shut goes high, derived clock is held high at the subsequent rising clk edge. It is held

high until the first rising clk edge after shut goes low again. During the time between

the missed clock edges, the reset of the sub-blocks are held high to reset the internal

registers and to latch the inputs to the tap-update multiplier.

The following VHDL code describes the behavior of the clock-gating circuit.

Figure 4-5 illustrates the behavior of the clock-gating circuit. The example shows

the shut signal going high at 35ns, and the derived clock, ngclk, is held high at the

next rising edge of the original clock, clk. The derived clock, ngclk, is gated until

the rising edge of the clk following shut going low, which happens at 55ns and 45ns

respectively. During the missing edges of ngclk, the derived reset, nrst is held low.

Figure 4-6 shows the schematic for the clock-gating circuit. Note that in this

implementation, glitching is avoided in ngclk because glitches can only happen when
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entity tapctrl is
port( clk: in std-logic; -- clock and reset of the entire circuit

rst: in stdjlogic;

shut: in stdjlogic; -- a signal for shutting a particular block

ngclk: out stdlogic; -- inverted clock that is generated

grst: out stdjlogic); -- reset signal that is generated

end tapctrl;

architecture behavior of tapctrl is

signal shutn,shutp,nshut: stdlogic;

begin
process(clk,shut) begin

if rising-edge(clk) then

shutp<=shut;

end if;

end process;

process(rst,clk,shut) begin

if rst='1' then

shutn<='O';

elsif falling-edge(clk) then

shutn<=shut;

end if;

end process;

grst<=(shutn and shutp) or rst;

nshut<=not shutn;

ngclk<=not(clk and nshut);

end behavior;

53



Wme %r,*,1 _'top length clock goting control logic
DOIAO - --- -- r-, --

1. - J - + - j

1 . . - -4 .... L- ... .- .. I.. ..... -- .!.-- - I
I . I I . . . I I I . I I I I i

0 in 10. 15n 20. a. 30. 35. 4n 4n 50. 55n wan 7n 0n Tin Wn
Time (lin) (TIME)

wm S"al hplength clock gmtIng control logic
DVOwvgshui X--

-. 1.11-

- - -. . -. ;.

i I I . . I .I . I I I 
o in 10n 15m 20n 2n 3. 35n 40. 50.n 55. an Sn TAn 75n n

Tim (lin) (TIME)

Wn m bal lap length clock gating control logic

M omf i 2....... . . . . .. . .

I ' I . . . I ' . ' In I In

o in 1n 15n 20 an 3o. 35. 4a 4. 50n . 55 n an 70n 75n eon
Tine (fin) (TIME)

Wave y 'plength clock gutIng control logic
Dj~onfl) -

1.5

0 in In 15n 20. 2 . 35. n Sn 50n 55. Wn n TOn 75n Wn
Tine (in) (TIME)

Figure 4-5: Behavior of Clock-gating Circuit.
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clk is '1' and shutn is transitioning. However, shutn only transitions when register

R2 is clocked, i.e. at the falling edge of clk. Clock-skew is minimized by having the

same clock-gating circuit for each block.

R1
c Ik > shutp

shut"- -> shutn ngclk

DQ

rst g rst

R2

Figure 4-6: Clock-gating Circuit.

4.2.4 VHDL Description of Filter Structure

The filter is described using behavioral VHDL. The full code is listed in Appendix A.

The design is done hierarchically, according to Figure 3-11. For each five-tap filter

block, the signals involved are first defined in the architecture section, and then then

the relationship between them respect to the clock is described. The regular structure

of the FIR filter enables the use of arrays easily. The code makes use of the Design

Analyzer to synthesize the signed-integer adders and multipliers. Normalization is

implemented by writing a loop to "shift the index of the array". Particular attention

is drawn to sign-extension. This happens in the adder for the tap coefficient update.

While the tap itself may be large in magnitude, the update is often small, so sign

extension is needed so that both inputs to the adder has the same number of bits.

The sign-extension is required was discussed in Table 3.1
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4.3 Results

4.3.1 Synthesis and Layout

The design is synthesized and laid out.

Using the design analyzer command "report timing", the maximum delay from

the input to the output, and from the error input to the tap registers are summarized

in Table 4.4. Since the LMS algorithm computes the next tap based on the difference

between the current computed output and its expected value, (see equation 2.11) the

critical path is from the input a to the tap register, through the output y and the

external operation that computes the difference between y and its expected value, and

feeds that back as err. Using the results in the table, assuming that the computation

of err requires no time, the maximum clock rate estimated by Synopsys, using a

conservative delay model is 9721628 GHz=62.5 MHz.

Table 4.4: Critical path delays.
From To Time (ns)
input y[9] (output) 9.72

err[0] (error input) taps-reg[4][15] (tap register) 6.28

The final layout has a transistor count of 117,315 and dimensions of 743pm by

7 73 pm in 0.18pm technology, excluding the pads. Figure 4-7 shows the layout in

Cadence. When clocked at 33MHz with a power supply of 1.8 volts, the power

consumption is summarized in Tables 4.5 and 4.6.

Table 4.5: Breakdown of power dissipation (mW) for scalable 15 tap filter.
Element Level 0 Level 1 Level 2 Level 3

5 11-bit Taps 10 11-bit Taps 10 16-bit Taps 15 16-bit Taps
Clock 0.06 (0.9%) 0.13 (1.1%) 0.19 (1.3%) 0.27 (1.3%))
Delay line registers 0.12 (1.9%) 0.26 (2.3%) 0.26 (1.8%) 0.40 (1.8%)
Tap registers 0.12 (1.9%) 0.23 (2.2%) 0.35 (2.3%) 0.53 (2.3%)
Update multiplier 2.25 (35.0%) 3.85 (34.0%) 3.45 (23.0%) 4.21 (18.4%)
Tap update adder 0.50 (7.7%) 0.94 (8.3%) 1.34 (8.9%) 1.86 (8.1%)
Tap multiplier 2.51 (38.3%) 3.97 (35.0%) 7.17 (47.7%) 9.99 (43.6%)
Final sum 0.67 (10.4%) 1.46 (12.9%) 1.64 (11.0%) 2.69 (11.7%)
Total 6.45 11.33 15.00 22.92
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Figure 4-7: Layout of Circuit.

Table 4.6: Breakdown of capacitances(pF) for scalable 15 tap filter.
Element Level 0 Level 1 Level 2 Level 3

5 11-bit Taps 10 11-bit Taps 10 16-bit Taps 15 16-bit Taps
Clock 0.6 1.2 1.7 2.5
Delay line registers 1.1 2.4 2.5 3.8
Tap registers 1.1 2.3 3.2 4.9
Update multiplier 20.9 47.2 31.9 39.0
Tap update adder 4.6 8.7 12.3 17.2
Tap multiplier 23.2 36.7 50.2 92.5
Final sum 6.2 13.5 15.2 24.8
Total 59.7 104.9 138.8 192.0
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We noted that power consumption of is approximately linear with tap length, when

tap-precision is kept constant, and the power consumption of tap-multiplier is linear

with tap-precision. The latter is not surprising from our simulations in Section 3.4.1.

Figure 4-8 shows the trade-off between power consumption and standard deviation

of error of the filter.
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Figure 4-8: Trade-off between power and standard deviation of error at output.
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Chapter 5

Conclusions and Future Work

In this thesis, a trade-off between power dissipation and the quality of ISI-cancellation

of an LMS adaptive filter has been demonstrated, with a design using synthesis and

place-and-route tools. The circuit designed demonstrated a power scalability from 6.4

to 20.4 mW with the corresponding output quality measured by standard deviation

of error ranging typically from 0.28 to 0.1. The techniques used were adaptive filter

length and adaptive tap precision. Our simulations show that shorter filter length

and smaller tap precision lead to larger standard deviation of error, but also consume

less power.

The next step would be to design a LMS filter for QAM demodulation, using real

data. Simulation with real data will enable the designer to choose the number of taps

and tap precision. In designing the adaptive filter for QAM demodulation, two data

streams, one for each quadrature, are needed. Since each tap is complex, it requires 2

register banks. The addition and multiplication has to be replaced by their complex

counterparts.

Another interesting investigation is the choice of data representation in filters.

Two's complements makes addition implementation easy but probably consumes more

power for multiplication. For scalable bit-precision multipliers, it is not clear what

encoding of the input is the most power efficient.

59



Appendix A

Design Documentation:

Scalable Fifteen Tap Adaptive

Filter

A.1 Top Level

-- Behavioral/Structural VHDL of Scalable Fifteen Tap Adaptive LMS Filter

-- A Power-scalable Digital Least Means Square Filter

-- Design Using High-level Design Tools

-- Thesis submitted in partial fulfillment of the requirements

-- of the degree of Master of Engineering and Computer Science

-- at the Massachusetts Institute of Technology

-- CheeWe Ng <cheewe~alum.mit.edu>

-- December 2000

library IEEE;

use IEEE.std-logic_1164.all;

use IEEE.stdjlogic-signed.all;

use IEEE.stdjlogic-arith.all; -- conv routines

-- adjutable 15 tap filter

entity lms6 is

generic( inPre: integer 10;

outPre: integer 10);

-- m=log2e=5

T=tapPre=10;
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-- M=outPre=10;
-- Notation: p.q represents p bits, decimal and q bits.

-- a 3.7
-- err 3.8

-- h 2.8

y 3.7

port( clk: in std_logic;

rst: in stdlogic;

level: in std-logic-vector(1 downto 0);

a: in std-logic-vector(inPre-1 downto 0);

err: in stdlogic-vector(inPre-1 downto 0);

y: out stdlogic-vector(outPre-1 downto 0)

end lms6;

architecture structure of lms6 is

signal delayed-al: stdjlogic-vector(inPre-1 downto 0);

signal delayed-a2: std-logic-vector(inPre-1 downto 0);

signal delayed-a3: std-logic-vector(inPre-1 downto 0);

signal part-yl: std-logicvector(outPre-1 downto 0);

signal part-y2: std-logic-vector(outPre-1 downto 0);

signal nclkl, nclk2, nclk3, rst2, rst3: stdlogic;

signal y-zeros: std-logic-vector(outPre-1 downto 0);

signal shut2,shut3: std-logic;

signal nlclkl, nlclk2, nlclk3: stdlogic;

signal lrstl, lrst2, lrst3: std-logic;

signal lowpre: std-logic;

component lms5T1

generic( nTap: integer:= 5;

inPre: integer := 10;

outPre: integer := 10;

tapPre: integer : 16;

lowPre: integer := 11;

log2e: integer := 5);

port( nclk: in std_logic;

nlclk: in std-logic;

rst: in stdlogic;

lrst: in stdlogic;

a: in stdjlogic-vector(inPre-1 downto 0);

err: in stdlogic-vector(inPre-1 downto 0);

part-y: in std-logic-vector(outPre-1 downto 0);

delayed-a: out std-logic-vector(inPre-1 downto 0);

y: out std-logic-vector(outPre-1 downto 0)

end component;

component lms5T2

generic( nTap: integer:= 5;
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inPre: integer : 10;
outPre: integer : 10;

tapPre: integer 16;

lowPre: integer 11;

log2e: integer 5);
port( nclk: in std-logic;

nlclk: in std-logic;

rst: in stdlogic;

lrst: in std-logic;
a: in stdlogicvector(inPre-1 downto 0);
err: in stdlogic-vector(inPre-1 downto 0);
part-y: in std-logic-vector(outPre-1 downto 0);
delayed-a: out stdlogic-vector(inPre-1 downto 0);

y: out stdlogic-vector(outPre-1 downto 0)

end component;

component lms5T3

generic( nTap: integer:= 5;
inPre: integer : 10;

outPre: integer := 10;
tapPre: integer := 16;

lowPre: integer := 11;

log2e: integer := 5);
port( nclk: in std_logic;

nlclk: in std-logic;

rst: in stdlogic;

lrst: in std-logic;

a: in stdlogic-vector(inPre-1 downto 0);
err: in stdlogic-vector(inPre-1 downto 0);
delayed-a: out stdlogic-vector(inPre-1 downto 0);
y: out stdlogic-vector(outPre-1 downto 0)

end component;

component tapctrl

port( clk: in stdlogic;

rst: in stdlogic;
shut: in std-logic;

ngclk: out std-logic;

grst: out std-logic);
end component;

begin

y-zeros<=conv stdlogic-vector(0,y-zeros'length);

process(level) begin

if level="00" then
shut2<='1';
shut3<='11;

lowpre<='1';
elsif level="01" then
shut2<='0';
shut3<='1';
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lowpre<='1';
elsif level="10" then
shut2<='0';

shut3<='1';
lowpre<='0';

else

shut2<='O';

shut3<='0';

lowpre<='O';

end if;
end process;

nclkl<=not clk;
C2: tapctrl port map(clk=>clk, rst=>rst, shut=>shut2,

ngclk=>nclk2, grst=>rst2);
C3: tapctrl port map(clk=>clk, rst=>rst, shut=>shut3,

ngclk=>nclk3, grst=>rst3);

P1: tapctrl port map(clk=>clk, rst=>rst, shut=>lowpre,
ngclk=>nlclkl, grst=>lrst1);

P2: tapctrl port map(clk=>clk, rst=>rst, shut=>lowpre,
ngclk=>nlclk2, grst=>lrst2);

P3: tapctrl port map(clk=>clk, rst=>rst, shut=>lowpre,
ngclk=>nlclk3, grst=>lrst3);

Li: lms5T1 port map(nclk=>nclkl, nlclk=>nlclkl, rst=>rst, lrst=>lrstl,
a=>a, err=>err, part-y=>part-yl, delayed-a=>delayed-al,

y=>y);
L2: lms5T2 port map(nclk=>nclk2, nlclk=>nlclk2, rst=>rst2, lrst=>lrst2,

a=>delayed-al, err=>err, part-y=>part-y2, delayed-a=>delayed-a2,
y=>part-yl);

L3: lms5T3 port map(nclk=>nclk3, nlclk=>nlclk3, rst=>rst3, lrst=>lrst3,
a=>delayed-a2, err=>err, delayed-a=>delayed-a3,
y=>part-y2);

end structure;

A.2 Clock-gating

-- Behavorial/Structural VHDL of Scalable Fifteen Tap Adaptive LMS Filter

-- A Power-scalable Digital Least Means Square Filter

-- Design Using High-level Design Tools

-- Thesis submitted in partial fulfillment of the requirements
-- of the degree of Master of Engineering and Computer Science
-- at the Massachusetts Institute of Technology

-- CheeWe Ng <cheewe@alum.mit.edu>

-- December 2000
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library IEEE;

use IEEE.std-logic-1164.all;
use IEEE.stdjlogic-signed.all; -- for aldec sim
use IEEE.std-logic-arith.all; -- conv routines

-- control logic

entity tapctrl is

port( clk: in stdlogic;
rst: in stdlogic;
shut: in std-logic;
ngclk: out std-logic;
grst: out std-logic);

end tapctrl;

architecture behavior of tapctrl is

signal shutn, shutp,nshut: std-logic;
begin

process(clk,shut) begin
if rising-edge(clk) then

shutp<=shut;

end if;
end process;

process(rst,clk,shut) begin
if rst='1' then
shutn<='O';

elsif falling-edge(clk) then
shutn<=shut;

end if;

end process;

grst<=(shutn and shutp) or rst;

nshut<=not shutn;

ngclk<=not(clk and nshut);
end behavior;

A.3 Five-tap buiilding block

-- Behavorial/Structural VHDL of Scalable Fifteen Tap Adaptive LMS Filter

-- A Power-scalable Digital Least Means Square Filter

-- Design Using High-level Design Tools

-- Thesis submitted in partial fulfillment of the requirements

-- of the degree of Master of Engineering and Computer Science
-- at the Massachusetts Institute of Technology
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-- CheeWe Ng <cheewe~alum.mit.edu>

-- December 2000

library IEEE;

use IEEE.std-logic_1164.all;
use IEEE.stdjlogic-signed.all; -- for aldec sim

use IEEE.std.logic-arith.all; -- conv routines

-- 5 tap filter

entity lms5T1 is

generic( nTap: integer:= 5;
inPre: integer 10;

outPre: integer 10;
tapPre: integer 16;

lowPre: integer 11;

log2e: integer 5);

-- m=log2e=5
-- T=tapPre=10;
-- M=outPre=10;

-- Notation: p.q represents p bits, decimal and q bits.
-- a 3.7
-- err 3.8

-- h 2.8

-- y 3.7

port( nclk: in std-logic;

nlclk: in std-logic;
rst: in stdlogic;

lrst: in std-logic;

a: in stdlogic-vector(inPre-1 downto 0);
err: in stdlogic-vector(inPre-1 downto 0);
part-y: in std-logic-vector(outPre-1 downto 0);
delayed-a: out stdlogic-vector(inPre-1 downto 0);
y: out stdlogic-vector(outPre-1 downto 0)

end lms5T1;

architecture behavior of lms5T1 is
subtype a-type is stdjlogic-vector(inPre-1 downto 0);
subtype err-type is stdjlogic-vector(inPre-1 downto 0);
subtype y-type is std-logic-vector(outPre-1 downto 0);

type a-chain-type is array (0 to nTap-1) of a-type;

type tap-type is array (0 to nTap-1) of stdlogic-vector(tapPre-1 downto 0);
type tapupdate-type is array (0 to nTap-1) of std-logic-vector(inPre*2-1 downto 0);

type tapL-type is array (0 to nTap-1) of std-logic-vector(lowPre-1 downto 0);

type hy-type is array(O to nTap-1) of

std-logic-vector(tapPre+inPre-1 downto 0);
subtype shynorm-type is std-logic-vector(outPre-1 downto 0);
type hynorm-type is array(O to nTap-1) of shynorm-type;

65



type hyL-type is array(O to nTap-1) of
std-logic-vector(lowPre+inPre-1 downto 0);

signal achain: achain-type;
signal tapupdate: tapupdate-type;

signal tapupdatenormL, tapupdatenorm, taps, nexttaps: tap-type;

signal lerr: errtype;

signal hy: hy-type;

signal hyL: hyL-type;
signal hynorm: hynorm-type;

signal mulA, LmulA: achaintype;
signal mulB : tap-type;
signal LmulB: tapL-type;

begin
-- for synthesis, place it outside the loop
achain(0) <=a;
delayed-a<=achain(nTap-1); -- delay should be in the next block

process (a,rst,nclk,achain) begin
-- achain(0)<=a; -- for simulation, put it inside

if rst='1' then -- reset

ga: for i in 1 to nTap-1 loop
achain(i)<=conv-std-logic-vector(0,achain(i) 'length);
end loop ga;

elsif falling- edge(nclk) then
regachain: for i in 0 to nTap-2 loop
achain(i+1)<=achain(i);

end loop regachain;

end if;

end process;

-- ## coefficient multiply accumulate structure ##
-- multiplier

if rst='0' then

lerr=err; -- latch err signal

end if;

multapup: for i in 0 to nTap-1 generate
tapupdate(i)<=lerr*achain(i);

end generate multapup;

-- normalize by factor of 2^(T-2-m-14)

-- tapupdate has 2*inPre bits

-- tapupdatenorm has tapPre bits

-- need to sign extend

tapnl: for i in 0 to nTap-1 generate

tapn2: for k in 2*inPre-1+tapPre-2-log2e-14 downto 0 generate
tapupdatenorm(i)(k) <=tapupdate(i)(k-tapPre+2+log2e+14);
end generate tapn2;
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tapn3: for j in tapPre-1 downto 2*inPre-1 + tapPre-2-log2e-14 +1 generate
tapupdatenorm(i)(j)<=tapupdate(i)(2*inPre-1); -- sign extend

end generate tapn3;
end generate tapnl;

-- tap update adder

- if lrst='1', low-order bits to tap update adder is zeroed -- > low power

process (lrst,tapupdatenorm) begin
if lrst='O' then
for i in 0 to nTap-1 loop
tapupdatenormL(i)<=tapupdatenorm(i);
end loop;

else

for i in 0 to nTap-1 loop
tapupdatenormL(i)(tapPre-1 downto tapPre-lowPre)<=

tapupdatenorm(i)(tapPre-1 downto tapPre-lowPre);
tapupdatenormL(i)(tapPre-1-lowPre downto 0)<=

conv-stdjlogic-vector(0,tapPre-lowPre);

end loop;
end if;
end process;

tapupadd: for i in 0 to nTap-1 generate
nexttaps(i)<=taps(i)+tapupdatenormL(i);
end generate tapupadd;

-- tap update registers. asynchronous reset if rst='1'
process (rst,nclk,nexttaps) begin
if rst='1' then
gt: for i in 0 to nTap-1 loop
taps(i) (tapPre-1 downto tapPre-lowPre)<=conv-std-logic-vector(0,lowPre);
end loop gt;

elsif falling-edge(nclk) then
for i in 0 to nTap-1 loop
taps(i) (tapPre-1 downto tapPre-lowPre)<=
nexttaps(i)(tapPre-1 downto tapPre-lowPre);

end loop;
end if;

end process;

-- low-order bits of tap-update registers
process(lrst,nlclk,nexttaps) begin
if lrst='1' then

gtL: for i in 0 to nTap-1 loop
taps(i) (tapPre-lowPre-1 downto 0)<=conv-std-logicvector(0,tapPre-lowPre);
end loop gtL;

elsif falling-edge(nlclk) then
for i in 0 to nTap-1 loop
taps (i) (tapPre-lowPre-1 downto 0)<=nexttaps(i)(tapPre-lowPre-1 downto 0);
end loop;
end if;
end process;

- ## filter multiplier ##
-- need a latch to keep bits in multiplier from glitching
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process (achain,taps, lrst) begin
if lrst='O' then
for i in 0 to nTap-1 loop
mulA(i)<=achain(i);
mulB(i)<=taps(i);
end loop;

else

for i in 0 to nTap-1 loop
LmulA(i)<=achain(i);
LmulB(i)<=taps(i) (tapPre-1 downto tapPre-lowPre);
end loop;
end if;
end process;

tapmul: for i in 0 to nTap-1 generate
hy(i)<=mulA(i)*mulB(i);

hyL(i)<=LmulA(i)*LmulB(i);

end generate;

-- normalize by factor of 2^(M-3-T-5)

process(hy,hyL,lrst) begin
tapn4: for i in 0 to nTap-1 loop
tapn5: for k in outPre-1 downto 0 loop

if lrst='O' then
hynorm(i) (k)<=hy(i) (k-OutPre+3+tapPre+5);

else

hynorm(i) (k) <=hyL(i) (k-OutPre+3+lowPre+5);
end if;

end loop tapn5;

end loop tapn4;
end process;

-- convolution sum: hy

process(hynorm,part-y)

variable partsum: shynorm-type;
begin

partsum:=part-y;

sumhynorm: for i in nTap-1 downto 0 loop
partsum:=partsum+hynorm(i);

end loop;

y<=partsum;
end process;

end behavior;
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Appendix B

Tutorial:

Using the Synthesis and

Place-and-Route Design Flow

This appendix serves as an introduction for a digital IC designer transitioning from

custom layout to automated tools. It will not cover advanced topics such as opti-

mization methods in placement and routing, and solutions to routing problems. The

reader is refered to [4, 3, 34] for more information about how to use these tools.

B.1 Basic Synthesis and Layout: An Example

The example we will use is a 4-bit adder.

B.1.1 Synthesis

The VHDL description of the example is as follows:

-- Tutorial Example for place-and-route

library IEEE;

use IEEE.stdilogic_1164.all;
use IEEE.stdjlogic-signed.all;
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entity example is
port( A: in std-logic-vector(3 downto 0);

B: in std-logic-vector(3 downto 0);
Y: out std-logic-vector(3 downto 0));

end example;

architecture behavior of example is
begin
Y<=A+B;
end;

Read the VHDL code into Design Analyzer. At the "Command Window" type

compile. Design Analyzer will synthesize the example using the standard-cells. When

the synthesis is complete, descend the hierarchy by clicking on the icons until you see

something like Figure B-1. Save the design as a verilog net-list.

Figure B-1: Design Analyzer.

B.1.2 Place-and-Route

The next step is to perform place-and-route with Silicon Ensemble. Change directory

to where you have the se.ini file. Run silicon ensemble by typing "seultra" at the unix

prompt.
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Import LEF

The first step is to import the information that will tell Silicon Ensemble where the

pins of the various standard-cells are located. This file is contained in a ".lef" provided

by the cell provider. Under the "File" menu, click "Import-LEF". A window like the

one in Figure B-2 should appear. Fill in the location of the .lef and click the "OK"

button.

Figure B-2: Silicon Ensemble Import LEF Dialog.

Once the .lef is loaded, you can save the design, so subsequently you only need to

open the design and skip the import lef step. The default design name is "LBRARY".

Import Verilog

The next step is to import the verilog net-list from synthesis.

If you are importing for the first time, compile a verilog library for the standard

cells first by importing a verilog description of the cells provided by the standard-cell
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provider. Figure B-3 shows the "Import-Verilog" dialog box to import the standard-

cell for the first time. Once you have done that, you can import the verilog netlist

from synthesis by specifying the name of the compiled verilog library in the "Compiled

Verilog Reference Libraries" line. Be sure to specify the "Verilog Top Module" of your

design.

Figure B-3: Silicon Ensemble Import Verilog Dialog.

Floor Planning

The next step is floor planning. Under the "Floorplan" menu, click "Initialize Floor-

plan." Figure B-4 showns the "Initialize Floorplan" dialog box. Be sure to click "Flip

Every Other Row" and "Calculate". Pick a comfortable "10 To Core Distance" if

you wish to make VDD and GND rings around the chip.
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Figure B-4: Silicon Ensemble Initialize Floorplan.
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Place IOs

Under the "Place" menu, click "I0s...". The dialog box in Figure B-5 should appear.

Click "OK"

Figure B-5: Silicon Ensemble Place IOs.

Place Cells

Under the "Place" menu, click "Place Cells". The dialog box in Figure B-6 should

appear. Click "OK"

Figure B-6: Silicon Ensemble Place Cells.

By this time, you should obtain in the main window something like
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Figure B-7: Silicon Ensemble window after placement.
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Add Filler Cells

At this point, you need to add filler cells, to fill up the empty cells. Click "Filler

Cells-Add Cells" under the "Place" menu. You can use the settings as shown in

Figure B-8

Figure B-8: Silicon Ensemble Add Filler Cells.

Plan Power

This step adds VDD and GND rings around the chip. First, pull up the menu "Route-

Plan Power". Click Add Rings. Figure B-9 should appear. Do the necessary setting,

like shown in the figure, and click OK.

To complete this step, click "Connect Ring" under the "Route" menu and click

"OK".
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Figure B-9: Silicon Ensemble Add Rings.

Route

The final step is to route the entire design. Click "WRoute" under "Route" menu,

and click "OK." When the entire design is routed, the main window should look like

the following.

Export GDSII

The final step in Silicon Ensemble is to export it to a GDSII file that will be imported

into Cadence Design Framework. Figure B-11 shows the dialog box you should pull

up from the "File-Export" menu. You will need to make a gds2.map file, if the cell

provider does not provide it. An example is shown below:

13 POLY1;
16 METAL1;
17 VIA12;
18 METAL2;
27 VIA23;
28 METAL3;
29 VIA34;
31 METAL4;
40 NAME METAL1;
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Figure B-10: Silicon Ensemble window after routing.

Figure B-11: Silicon Ensemble Export GDSII.
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41 NAME METAL2;
42 NAME METAL3;
43 NAME METAL4;
62 CELL;

Import Stream into Design Framework

The final step is to import the routed cell in design framework. Start design framework

with "icfb" Under the "File" menu, click "Import-Stream" to stream in the GDSII file

from Silicon Ensemble. You will need to specify the layer map and ASCII technology

file in the dialog box shown in Figure B-12 After refreshing the Library Manager, you

Figure B-12: Design Framework Stream In. Click "User-Defined Data" on the left
dialog for the right dialog to appear.

should be able to open the layout view of the cell, as shown in Figure B-13

B.2 Extraction

Running Dracula Layout Parasitic Extraction (LPE) correctly requires taking care

of subtle issues in compatibility of the netlist. The following is a shell script for

running Dracula. One important command to include in running loglvs is the "fpin"

command, because the verilog net-list Synopsys synthesizes sometimes leaves out pins

in module instantiations.
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Figure B-13: Design Design Framework Virtuoso Layout.
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run.sh

#! /usr/local/bin/tcsh -f

# [cell name] [verilog source]

# expects to find [cell name] .gds2 in the folder [cell name]

# change to the directory containing [cell name] .gds2
cd $1

# compiles schematic for LPE

LOGLVS << END >! loglvs.log
DXF

fpin
CIR /u/vader/cheewe/artisan/tsmcOl8-2000q1v3/aci/sc/lvsnetlist/tsmcl8.cdl

ver $2

LINK $1

CON
EXIT
END

# makes a copy of dracLPE.rul from the parent directory, substituting

# the names of the cells

sed -e "s/_cell-name_/$1/\

s/gds/gds2/" . . /dracLPE. rul >! dracLPE. rul

# compiles the LPE rules

PDRACULA << END >! pdracula.log
/get dracLPE.rul

/fin
END

# run LPE

./jxrun.com >! jxrun.log

B.3 Running Powermill

Powermill can be run on both the Verilog netlist, as well as the extracted SPICE

netlist. The Verilog netlist retains hierarchical structure, but the SPICE netlist is

flattened in the LPE process. Section C.5 describes the necessary steps to set up the
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model files to run powermill under both situations.

Since the SPICE netlist is flattened, it is more difficult to measure the power

dissipation of sub-blocks. One of the ways is to parse the netlist and provide a unique

VDD for each sublock.

The SPICE netlist from LPE does not name the models correctly if the LVS

netlist from the cell-provider does not. In this thesis, TSMC has a different model

for different sizes of transistors. It is necessary to parse the SPICE netlist and insert

the proper model names according to the gate width.

There are some syntax differences between the SPICE output from LPE and Epic.

The LPE netlist uses VSS instead of 0, so a search and replace is needed. Synopsys

produces node names that contain "+"- which propagate through LPE. They must

be removed because they are incompatible with Epic.

The following subsections documents the scripts to perform the above functions.

DoSubVDDmodel.sh

This shell script takes the SPICE.DAT output from LPE, calls other shell-scripts to

create a unique VDD for each sub-block, and make a Epic configuration file epic.cfg

to report the power for all these VDD. vCells.sp contains the supply definitions for

the VDDs.

SubVDDmodel.sh SPICE.DAT >! LPE.sp
sort -o sCells Cells
awk -f Vlist.awk sCells >! vCells.sp
awk -f makeCfg.awk sCells >! epic.cfg

SubVDDmodel.sh

This shell script substitutes the correct model name, and creates a unique VDD for

each sub-block.

#! /usr/local/bin/tcsh -f
sed -f PreSize.sed $1 1 awk -f PreModel.awk I sed -f SubModel.sed\\
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I sed -e 's/"+"-//g'

PreSize.sed

This Sed script prepends the gate length so that PreModel can pick out the correct

model for each transistor declaration.

# Takes a spice deck, ignores line that do not begin with M,C,+
# Substitutes {name}-VDD for VDD, 0 for VSS
# Prepends gate width
# output should be piped to PreModel.awk

# delete all lines that do not begin with M,C,+
/^ [MC+] /d
# append each line with a space for convenience
s/\(.*\)/\i /
# keep a copy of lines that begin with M till NRD is found

/^M/{
h
d

}
# NRD is found, process
/NRD=/{
# append this line and get it
H

g
# search for the name of the cell and save it in a file Cells

s/^M\ ([^\- \\\ \([ ]*\).*/-C\2/
/^_C/{
s/^_C//
w Cells

}
# get the line back, search for name of cell and prepend it

g
s/^M([^\]*)\\([^]*\)/\2, M\1\\\2/

# replace all VDD with {name}-VDD (at most appears twice), but keep VSS
s/\(.*\), \(.*\) VDD /\1, \2\1-VDD /
s/\(.*\), \(.*\) VDD /\1, \2\1-VDD /
# remove the name of the cell, after VDD has been replaced

s/\(.*\), //
# replace VSS with 0 (appears at most twice)
S/ VSS / 0 /
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s/ VSS / 0 /
# prepend the gate width
s/\(.*\)W=\([0-9]*\.[0-9]*\)/\2, \1W=\2/

p
d

}
# keep a copy of lines that begin with +

H
d

}

# substitute VSS for C's too

/^C/s/ VSS / 0 /

PreModel.awk

This Awk script prepends the correct spice model, given the input from PreSize.sed

# Takes the output from PreSize.sed

# and replaces the prepend with correct spice model
# Output should be piped to SubModel.sed
BEGIN { FS=", "}

/^[0-91/{
if ($1<0.6)

print "chl2"$2;

else if ($1<1.3)

print "ch9"$2;

else if ($1<10.1)

print "ch6"$2;

else

print "ch3"$2;

}

^ [^0-91 /{
print $0
}

SubModel.sed

This script takes the output from PreModel.awk and replaces the original model

names "N" and "P" with the correct one.
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# Takes the output from PreModel.awk

# replaces N and P with the correct string

# delete all lines that do not begin with c,C,+

/^[^cC+]/d
# keep a copy of lines that begin with n,p till NRD is found

h
d

}
# NRD is found, process

/NRD=/{

# append this line and get it

H

g
# substitute P or N of ' N ' or ' P ' is found, and remove prepend

s/^c\([ ]*\) \(.*\) N \(.*\)/\2 nc\1 \3/
s/^c\(^ ]*\) \(.*\) P \(.*\)/\2 pc\1 \3/
# substitute P or N of ' N\n' or ' P\n' is found, and remove prepend

s/^c\([\ N\n/\2 nc\}\

s/^c\([^]\- \.\ P\n/\2 pc\l\

# keep a copy

H
d

}

Vlist .awk

of lines that begin with +

This Awk scripts creates the supply declarations of VDDs

BEGIN {OFS=" "}
$1 != LastCell {
LastCell = $1
print "V"$1, $1"-VDD", 0, "pVdd"

}
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makeCfg.awk

This script creates the Epic configuration file to measure the power supplied by each

VDD.

BEGIN {OFS=""; ORS=""; x=1}
$1 != LastCell {

if (xX10==1) print "report node-powr"
LastCell = $1
print " " ,$1, "-VDD"

if (x%10==O) print "\n"
x=x+1

}
END { print "report node..powr VDD CLK A[* ERR[* Y[*\n" }
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Appendix C

Tutorial:

Setting Up the Synthesis and

Place-and-Route Design Flow

This appendix describes the process of setting up a digital design flow involving Syn-

opsys Design Analyzer, Cadence Silicon Ensemble, Cadence Design Framework II,

Cadence Dracula, and EPIC Powermill. It does not cover setting up the shell envi-

ronment variables, such as PATH, LICENSEFILE, etc., to run these tools. Rather

it will describe the steps you need to do to set up the flow after the tools can be run.

You will need to ask the system admin of the lab to set up the tools itself. At the

writing of this thesis, the versions of the tools are shown in Table C.1

Table C.1: Versions of CAD tools
Tool Version
Design Analyzer 1999.10
Silicon Ensemble 5.3
Design Framework 4.45
Powermill 5.4
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Table C.2: Data Files Required for CAD Tools
Tool Data Files Source
Design Analyzer *.db, *.lib Artisan
Silicon Ensemble *.lef Artisan

*.tlf (optional) Artisan
a Verilog definition of the cells Artisan
gds2.map Artisan,

or create your own
Design Framework front-end cell-views in GDSII Artisan

layer map, font map (optional) TSMC
display.drf, ASCII technology file TSMC

Dracula Dracula DRC or LPE rules TSMC
LVS netlist of standard cells Artisan

Powermill SPICE models TSMC
LVS netlist of standard cells Artisan

C.e Data files for CAD Tools

You will need to obtain several data files pertaining to the particular fabrication

process and cell library, from the respective foundry and the library provider. In

this thesis, we used Taiwan Semiconductor Manufacturing Co., Ltd. (TSMC) and

Artistan Components, Inc.

C.2 Setting Up Design Analyzer

To set up designer analyzer to use the back-end views of your standard-cells and

DesignWare for synthesis you need to add or modify the following lines in the .syn-

opsys-dc.setup file located in the start-up directory of "design-analyzer"

search-path= search-path + ''path containing *.db and *.lib''
targetjlibrary=typical. db

symbol-library=typical.db
syntheticjlibrary=dwfoundation.sldb
linklibrary={typical.db, dwfoundation.sldb}

synlib.wait_for-design-license={"DesignWare-Foundation"}

Here "typical.db" is the back-end library provided by Artisan Components.
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C.3 Setting Up Cadence Silicon Ensemble

The cell provider may specify certain enviroment variables to be set in the "se.ini" file

in the start-up directory of "seultra." For example, the following lines were provided

by Artisan Components for the TSMC 0.18 SAGE-X standard cell library:

# Silicon Ensemble floorplan variables - required for TSMC .18
set v plan.rgrid.Mloffset 560
set v plan.rgrid.M2offset 660
set v plan.rgrid.M3offset 560

set v groute.Allow.OffGrid.PinAccess false
set v froute.Allow.OffGrid.PinAccess false
set v froute.Avoid.OffGrid.Blockage true
set v froute.Build.OffGrid.SPins false

In addition, I found it necessary to add the following line. The verilog output

from design analyzer uses "[]" as parenthesis, while the default for Silicon Ensemble

is "()". It is crucial that they are the same, because in the Layout-versus-schematics

step, the layout will be compared to the verilog netlist.

# so that pins are labeled with [] which is compatible with spice and verilog
SET VAR INPUT.VERILOG.BUS.DELIM "[]" ;

C.4 Setting up Design Framework

In order for design framework to incorporate the front-end cell-views into the place-

and-routed view from Silicon Ensemble, the front-end cell-views must be imported

into Design Framework.

To do so, create a new library using the "Library Manager" specifying the directory

to contain the new library. Then import the GDSII file containing the front-end views,

specifying the technology file, the layer map and font map files. After completion,

fire up Virtuoso by opening one of the layouts, pull up the "Display Resource Editor"

menu under "LSW" as shown in Figure C-1 and load the new display.drf file.
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Figure C-1: Setting up display.drf.

C.5 Setting up Powermill

Powermill requires the SPICE models for the transistors. In some cases, you need

to do a search-and-replace for syntax differences between the SPICE models given

by the foundry and the acceptable by Powermill. In TSMC's model, it uses "nch.6"

to "nch.12" and "pch.6" to "pch.12" as model names. "." is not acceptable in the

syntax for Epic and must be removed.

Powermill can also be used to perform rough power estimation using the Verilog

netlist obtained from synthesis. To do so, you need to compile the LVS netlist from

the cell-provider into the Epic proprietary netlist format using "vlog2e". Since the

LVS netlist does not specify the correct model for the gate width, I replaced all the

references to the model "n" with "nch9" and all the references to "p" with "pch9".

The LVS netlist uses "VSS" as ground node, so you will need to replace "VSS" with

"GND".
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