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Abstract

This thesis considers the smallest grammar problem: find the smallest context-free
grammar that generates exactly one given string. We show that this problem is
intractable, and so our objective is to find approximation algorithms. This simple
question is connected to many areas of research. Most importantly, there is a link
to data compression; instead of storing a long string, one can store a small grammar
that generates it. A small grammar for a string also naturally brings out under-
lying patterns, a fact that is useful, for example, in DNA analysis. Moreover, the
size of the smallest context-free grammar generating a string can be regarded as
a computable relaxation of Kolmogorov complexity. Finally, work on the smallest
grammar problem qualitatively extends the study of approximation algorithms to
hierarchically-structured objects. In this thesis, we establish hardness results, eval-
uate several previously proposed algorithms, and then present new procedures with
much stronger approximation guarantees.

Thesis Supervisor: Madhu Sudan
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis addresses the smallest grammar problem; namely, what is the smallest

context-free grammar that generates exactly one given string a? For example, the

smallest context-free grammar generating the string:

a = a rose is a rose is a rose

is as follows:

S -+ BBA

A -+ a rose

B -+ A is

The size of a grammar is defined to be the total number of symbols on the right sides

of all rules. Thus, in the example, the grammar has size 14. The decision version of

this problem is NP-complete, so our objective is to find an approximation algorithm;

that is, an algorithm which finds a grammar that generates the given string and is

not much larger than the smallest such grammar.
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1.1 Motivations

This elegant problem has considerable interest in its own right. It is a natural question

about a standard object in theoretical computer science (context-free grammars) that

can be posed in a single sentence. But, perhaps by virtue of this simplicity, there are

also interesting connections to diverse areas: data compression, Kolmogorov complex-

ity, pattern identification, and approximation algorithms for hierarchical problems.

These connections are discussed below.

1.1.1 Data Compression

The smallest grammar problem has attracted interest particularly in the data com-

pression community. The connection is direct: instead of storing a long string, one

can store a small grammar that generates it, provided one can be found. The original

string can be easily reconstructed from the grammar when needed. Many data com-

pression procedures use this idea, and therefore amount to approximation algorithms

for the smallest grammar problem [40, 37, 18, 16, 17, 27, 24, 23, 10]. Most of these

procedures are analyzed in detail in Chapter 4.

Empirical results indicate that the grammar-based approach to compression is

competitive with other techniques in practice [16, 10, 27, 24, 3, 1], and some grammar-

based compressors are known to be asymptotically optimal on input strings generated

by finite-state sources. But in Chapter 4 we show that, surprisingly, many of the best-

known compressors of this type can fail dramatically; that is, there exist input strings

generated by small grammars for which these compressors produce large grammars.

Consequently, they turn out not to be very effective approximation algorithms for the

smallest grammar problem.

There are compelling reasons why a good compressor might not be a good ap-

proximation algorithm and vice-versa. We delve into this issue in Section 4.1.
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1.1.2 Complexity

The size of the smallest context-free grammar generating a given string is a natural,

but more tractable variant of Kolmogorov complexity [20]. The Kolmogorov com-

plexity of a string o is the length of the shortest pair (M, x) where M is a Turing

machine description, x is a string, and M outputs o- on input x. This Turing machine

model for representing strings is too powerful to be exploited effectively; in general,

the Kolmogorov complexity of a string is uncomputable. However, weakening the

string representation model from Turing machines to context-free grammars reduces

the complexity of the problem from the realm of undecidability to mere intractability.

Moreover, we show that one can efficiently approximate the "grammar complexity" of

a string. This perspective is not new. Indeed, the well-known compression algorithms

due to Lempel and Ziv [39, 40] were an outgrowth of their earlier efforts to find a

tractable alternative to Kolmogorov complexity [25]. However, one might argue that

the models they adopted for string representation are considerably less natural than

context-free grammars.

1.1.3 Pattern Recognition

The smallest grammar problem is also relevant to identifying important patterns in a

string, since such patterns naturally correspond to nonterminals in a compact gram-

mar. In fact, an original and continuing motivation for work on the problem was

to identify regularities in DNA sequences [27, 23]. (Interestingly, [23] espouses the

goal of determining the entropy of DNA. This amounts to upper bounding the Kol-

mogorov complexity of a human being.) In addition, smallest grammar algorithms

have been used to highlight patterns in musical scores [29] and uncover properties of

language from example texts [10]. All this is possible because a string represented

by a context-free grammar remains relatively comprehensible. This comprehensibil-

ity is an important attraction of grammar-based compression relative to otherwise

competitive compression schemes. For example, the best pattern matching algorithm

that operates on a string compressed as a grammar is asymptotically faster than the
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equivalent for the well-known LZ77 compression format [14].

1.1.4 Hierarchical Approximation

Finally, work on the smallest grammar problem qualitatively extends the study of

approximation algorithms. In particular, we shift from problems on "flat" objects

(such as graphs, CNF formulas, bins and weights, etc.) to a hierarchical object,

context-free grammars. This is a significant shift. Many real-world problems such as

circuit design and image compression have a hierarchical nature. (We describe some

of these in more detail in Chapter 6.) But standard approximation techniques such

as linear and semidefinite programming are not easily transferred to this new domain.

In Chapter 5, we present two distinct solutions to the smallest grammar problem

based on completely different techniques. What elements of these techniques can be

transferred to other hierarchical optimization problems remains to be seen. Beyond

this, in Section 4.5 we formulate a class of global algorithms for the smallest grammar

problem. The idea underlying global algorithms is simple enough that one can readily

devise analogous algorithms for other hierarchical problems. We expend considerable

effort analyzing global algorithms for the smallest grammar problem, but unfortu-

nately our results remain far from complete. The need for a deeper understanding

here is perhaps the most interesting open problem radiating from this work.

1.2 Previous Work

The are many algorithms that implicitly or explicitly attempt to solve the smallest

grammar problem. Most arose in the data compression community, but some were

generated in fields as diverse as linguistics, computational biology, and circuit design.

The smallest grammar problem was articulated explicitly by two groups of authors

at about the same time. Nevill-Manning and Witten stated the problem and proposed

the SEQUITUR algorithm as a solution [27, 29]. Their main focus was on extracting

patterns from DNA sequences, musical scores, and even the Church of Latter-Day

14



Saints genealogical database, although they evaluated SEQUITUR as a compression

algorithm as well.

The other group, consisting of Kieffer, Yang, Nelson, and Cosman, approached the

smallest grammar problem from a traditional data compression perspective [17, 16,

18]. They offered a host of algorithms including BISECTION, MPM, and LONGEST

MATCH. Furthermore, they gave an algorithm, which we refer to as SEQUENTIAL,

in the same spirit as SEQUITUR, but with significant defects removed. All of these

algorithms are described and analyzed in Chapter 4. Interestingly, on inputs with

power-of-two lengths, the BISECTION algorithm of Nelson, Kieffer, and Cosman [26]

gives essentially the same representation as a binary decision diagram (BDD) [9].

BDDs have been used widely in digital circuit analysis since the 1980's and also

recently exploited for more general compression tasks [15, 22].

While these two lines of research led to the first clear articulation of the smallest

grammar problem, its roots go back to much earlier work in the 1970's. In particular,

Lempel and Ziv approached the problem from the direction of Kolmogorov complex-

ity [25]. Over time, however, their work evolved toward data compression, beginning

with a seminal paper [39] proposing the LZ77 compression algorithm. This procedure

does not represent a string by a grammar, but rather with a different structure. Nev-

ertheless, we show in Chapter 5 that LZ77 is deeply entwined with grammar-based

compression. Lempel and Ziv soon produced another algorithm, LZ78, which did

implicitly represent a string with a grammar [40]. We describe and analyze LZ78

in detail in Chapter 4. In 1984, Welch increased the efficiency of LZ78 with a new

procedure, now known as LZW [37]. In practice, LZW is much preferred over LZ78,

but for our purposes the difference is small.

Also in the 1970's, Storer and Szymanski were exploring a wide range of "macro-

based" compression schemes [33, 35, 34]. They defined a collection of attributes that

such a compressor might have, such as "recursive", "restricted", "overlapping", etc.

Each combination of these adjectives described a different scheme, many of which

they considered in detail. Apparently, none of these was precisely the context-free
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grammar model we employ here, but many of them were very close. So much so

that our proof in Chapter 3 that the smallest-grammar problem is NP-hard is closely

based on Storer and Szymanski's arguments about macro-based compression.

Recently, the smallest grammar problem has received increasing interest in a broad

range of communities. For example, de Marcken's thesis [10] investigated whether the

structure of the smallest grammar generating a large, given body of English text could

lead to insight about the structure of the language itself. Lanctot, Li, and Yang [23]

proposed using the LONGEST MATCH algorithm for the smallest grammar problem to

estimate the entropy of DNA sequences. Apostolico and Lonardi [1, 2, 3] suggested

a scheme that we call GREEDY and applied it to the same problem. Larsson and

Moffat proposed RE-PAIR [24] as a general, grammar-based algorithm. (This scheme

was partly anticipated by Gage's byte-pair encoding algorithm [13].) Most of these

procedures are described and analyzed in Chapter 4.

Beyond the design of new algorithms for the smallest grammar problem, there has

been an effort to develop algorithms that manipulate strings while still in compressed

form. For example, Kida [14] and Shibata, et al. [32] have proposed pattern matching

algorithms that run in time related not to the length of the searched string, but

rather to the size of the grammar representing it. The good performance of such

algorithms is emerging as a significant advantage of grammar-based compression over

other compression techniques such as LZ77.

Previous work on monomial evaluation also has major implications for the small-

est grammar problem. However, we defer a review of key works in that area until

Section 3.3, after we have established the link between these problems.

In summary, the smallest grammar problem has been considered by many authors

in many disciplines for many reasons over a span of decades. Frequently, it appears

that one group of authors is unaware of very similar work by another group in a

different field, limiting the cross-fertilization and advancement of ideas. Given this

level of interest, it is remarkable that the problem has not attracted greater attention

in the general algorithms community.
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1.3 Summary of Our Contributions

This thesis makes four main contributions, which are enumerated below. Throughout,

n denotes the length of an input string, and m* denotes the size of the smallest

grammar generating that one string.

1. We show that the smallest grammar generating a given string is hard to ap-

proximate to within a small constant factor. Furthermore, we show that an

o(log n/log log n) approximation would require progress on a well-studied prob-

lem in computational algebra.

2. We bound approximation ratios for several of the best-known grammar-based

compression algorithms. These results are summarized below:

Algorithm

LZ78

BISECTION

SEQUENTIAL

LONGEST MATCH

GREEDY

RE-PAIR

Approximation Ratio

Upper Bound Lower Bound

log n)2/ 3 )

log n)1/ 2 )

log n) 3/ 4 )

log n) 2/ 3)

log n)2 /3)

log n)2 / 3 )

Q(n 2 / 3 / log n)

Q(n1/ 2 / log n)

Q(nl/3)

Q(log log n)

> 1.37 ...

Q(loggn)

The bounds for LZ78 hold for some variants, including LZW. Results for MPM

mirror those for BISECTION. The lower bound for SEQUENTIAL extends to

SEQUITUR.

3. We give new algorithms for the smallest grammar problem with exponentially

better approximation ratios. First, we give a simple O(log3 n) approximation.

Then we provide a more complex O(log(n/m*)) approximation based on an

entirely different approach.
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4. We bring to light an intricate connection between grammar-based compression

and the well-known LZ77 compression scheme.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 contains definitions and

notational conventions, together with some basic lemmas. In Chapter 3, we establish

the hardness of the smallest grammar problem in two different and complementary

senses. Then, in Chapter 4, we analyze the most widely known algorithms for the

smallest grammar problem. Following this, we propose new algorithms in Chapter 5

with approximation ratios that are exponentially better. The thesis concludes with

Chapter 6, which discusses some of the many interesting lines of research radiating

from this problem.

18



Chapter 2

Preliminaries

This chapter introduces terminology and notation used throughout. We then prove

some basic lemmas about grammars to make the model more familiar and for use in

later chapters.

2.1 Definitions and Notation

A grammar G is a 4-tuple (E, F, S, A). Here E is a finite alphabet whose elements

are called terminals, F is a disjoint set whose elements are called nonterminals, and

S E F is a special nonterminal called the start symbol. All other nonterminals are

called secondary. In general, the word symbol refers to any terminal or nonterminal.

The last component of a grammar, denoted A, is a set of rules of the form T -+ a,

where T E F is a nonterminal and a E (E U F)* is a string of symbols referred to as

the definition of T.

An example grammar is shown below. In this case, the set of terminals E is

{x, y, z}, the set of nonterminals F is {S, A, B, C}, the start symbol is S, and A

comprises four rules.

19



S -+ xAAyAzxBC

A - BBxCyB

B -*xCyC

C - zzz

The left side of a rule T -+ a is the symbol T, and the right side of the rule is the

string a. Similarly, the left side of a grammar consists of all nonterminals on the left

sides of rules, and the right side of a grammar consists of all strings on the right sides

of rules.

In the grammars we consider, there is exactly one rule T -+ a in A for each

nonterminal T E F. Furthermore, all grammars are acyclic; that is, there exists an

ordering of the nonterminals F such that each nonterminal precedes all the nontermi-

nals in its definition. These properties guarantee that a grammar generates exactly

one finite-length string.

A grammar naturally defines an expansion function of the form (E U f)* F E*.

The expansion of a string is obtained by iteratively replacing each nonterminal by its

definition until only terminals remain. We denote the expansion of a string a by (a),

and the length of the expansion of a string by [a]; that is, [a] = I(a)1. (In contrast,

jal denotes the length of the string a in the traditional sense; that is, the number of

symbols in the string.) For the example grammar above, we have:

(C) = zzz

(CyB) = zzzyxzzzyzzz

[CyB] = 12

(S) = xxzzzyzzzxzzzyzzzxzzyxzzzyzzzxzzzyzzzxzzzyzzzxzzy

xzzzyzzzyxzzzyzzzxzzzyzzzxzzyxzzzyzzzzxxzzzyzzzzz

20



Note that the string generated by a grammar is the expansion of its start symbol,

(S).

The size of a grammar G is the total number of symbols in all definitions:

|G| = Z |aj
T-+a E A

The example grammar has size 9 + 6 + 4 + 3 = 22.

We use several notational conventions to compactly express strings. The symbol I

represents a terminal that appears only once in a string. (For this reason, we refer to I

as a unique symbol.) When I is used several times in the same string, each appearance

represents a different symbol. For example, a I bb I cc contains five distinct symbols

and seven symbols in total. Product notation is used to express concatenation, and

parentheses are used for grouping. For example:

(ab)5 = ababababab
3

J7Jabt I = abIabbIabbb|
i=1

The input to the smallest grammar problem is never specified using such shorthand;

we use it only for clarity of exposition in proofs, counterexamples, etc.

Finally, we observe the following variable-naming conventions throughout: termi-

nals are lowercase letters or digits, nonterminals are uppercase letters, and strings

of symbols are lowercase Greek. In particular, a- denotes the input to a compression

algorithm, and n denotes its length; that is, n = Io- . The size of a particular grammar

for o- is m, and the size of the smallest grammar is m*.

21



2.2 Basic Observations

In this section, we give some easy lemmas that highlight basic points about the

grammar model of compression. We begin with absolute lower and upper bounds on

the size of the smallest grammar generating a string of length n. In proofs here and

elsewhere, we ignore the possibility of degeneracies where they raise no substantive

issues, e.g. a nonterminal with an empty definition or a secondary nonterminal that

never appears in a definition.

Lemma 1 The smallest grammar for a string of length n has size Q(log n).

Proof. Let G be an arbitrary grammar of size m. We show that G generates a string

of length Q(3m/3), which implies the claim.

Define a sequence of nonterminals as follows. Let T be the start symbol of

grammar G. Let T+1 be the nonterminal in the definition of T that has the longest

expansion. (Break ties arbitrarily.) When a nonterminal defined only in terms of

terminals is reached, the sequence ends. Note that the nonterminals in this sequence

are distinct, since the grammar is acyclic.

Suppose that T has a definition of length k. Then the length of the expansion of

T is upper bounded by k times the length of the expansion of Ti+1. By an inductive

argument, the length of the expansion of T is at most the product of the lengths of

the definitions of all the nonterminals T. However, the sum of the lengths of all these

definitions is at most m, and it is well known that a set of positive integers with sum

at most m has product at most 3rm/31. Thus the length of the string generated by G

is Q(3m/3) as claimed. E

Lemma 2 Every string of length n over an alphabet of size b has a grammar of size

O(n/ logo n).

Proof. Let o- be a string of length n over an alphabet of size b. Partition o into

segments of length k = log6 n - 2 log log6 n. Define a nonterminal for every possible

string of k terminals. Then define the start symbol to be the sequence of [n/k] of

22



these nonterminals followed by at most k - 1 terminals that altogether expand to -.

The total size of this grammar for o is at most:

bk - k + +k = (logn- 2logb logbn)
k log n

n

logbn - 2logb logbn

+ logbn - 2logb logbn

logb

In the initial expression, the first term counts the cost of defining all secondary non-

terminals, the second term counts nonterminals in the start rule, and the third counts

terminals in the start rule. L]

The preceding lemma might appear counterintuitive. A standard observation is

that not all strings are compressible, and yet we have shown that every binary string

of length n is generated by a grammar of size O(n/ log n). The explanation, of course,

is that the grammar employs a larger alphabet. Nevertheless, this makes the point

that grammar size is an imperfect measure of compression performance. This issue

is discussed further in Section 4.1.

Next we show that certain highly structured strings are generated by small gram-

mars. We shall often make reference to this lemma in lower bound arguments.

Lemma 3 Let a be the string generated by grammar G, and let / be the string

generated by grammar Gfl. Then:

1. There exists a grammar of size |G0 | + |Gf + 2 that generates the string oz3.

2. There exists a grammar of size |Ga + O(log k) that generates the string a .

Proof. To establish (1), create a grammar containing all rules in G0 , all rules in Go,

and the start rule S -+ SoS3 where S, is the start symbol of G0 and S, is the start

symbol of G,3 .

23



For (2), begin with the grammar G0, and call the start symbol A1 . We extend this

grammar by defining nonterminals Ai with expansion a' for various i. The start rule

of the new grammar is Ak. If k is even (say, k - 2j), define Ak -+ AjAj and define

Aj recursively. If k is odd (say, k = 2j + 1), define Ak -+ AjAjA 1 and again define

Aj recursively. When k = 1, we are done. With each recursive call, the nonterminal

subscript drops by a factor of at least two and at most three symbols are added to

the grammar. Therefore, the total grammar size is Ga I + O(log k). El

The following example illustrates the usefulness of Lemma 3. Suppose that we

want to show that there exists a small grammar for the string:

0k ak(k+l)/ 2 (bak)(k+1) 2

For the duration of this example, let {T} denote the size of the smallest grammar

that generates the string T. By part 1 of the lemma, we have:

{cak} {ak(k+1)/ 2 } + { (bak)(k+1) 2 } +2

Applying part 2 of the lemma to each braced expression on the right gives:

{cOk} < {a} + 0 (log k(k + 1)/2) + {bak} + 0 (log(k + 1)2) + 2

= {bak} + 0(log k)

Applying part 1 and then part 2 to the remaining braced expression gives:

24



{o-} {b}-+{ak}+2+0(logk)

= {a}O + (log k)

< {a} + O(log k) + O(log k)

= O(logk)

The following lemma is used extensively in our analysis of previously-proposed

algorithms. Roughly, it upper bounds the complexity of a string generated by a small

grammar.

Lemma 4 If a string - is generated by a grammar of size m, then - contains at most

mk distinct substrings of length k.

Proof. Let G be a grammar for a- of size m. For each rule T -+ a in G, we upper bound

the number of length-k substrings of (T) that are not substrings of the expansion of

a nonterminal in a. Each such substring either begins at a terminal in a, or else

begins with between 1 and k - 1 terminals from the expansion of a nonterminal in

a. Therefore, the number of such strings is at most jal -k. Summing over all rules in

the grammar gives the upper bound mk.

All that remains is to show that all substrings are accounted for in this calculation.

To that end, let T be an arbitrary length-k substring of a-. Find the rule T -+ a such

that T is a substring of (T), and (T) is as short as possible. Thus, T is a substring of

(T) and is not a substring of the expansion of a nonterminal in a. Therefore, T was

indeed accounted for above. 1
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Chapter 3

Hardness

We establish the hardness of the smallest grammar problem in two ways. First,

we show that approximating the size of the smallest grammar to within a small

constant factor is NP-hard. Second, we show that approximating the size to within

o(log n/log log n) would require progress on an apparently difficult computational

algebra problem. These two hardness arguments are curiously complementary, as we

discuss in Section 3.4.

3.1 NP-Hardness

Theorem 5 There is no polynomial-time algorithm for the smallest grammar prob-

lem with approximation ratio less than 8569/8568 unless P = NP.

Proof. We use a reduction from a restricted form of vertex cover based closely on

arguments by Storer and Szymanski [35, 34]. Let H = (V, E) be a graph with

maximum degree three and |E|;> |VI. We can map the graph H to a string o over an

alphabet that includes a distinct terminal (denoted vi) corresponding to each vertex

vi E V as follows:

171 (#vi vi# \)2 I7 (#vi# |) U (#vi#vi# I)
vieV viEV (vi,vj)eE
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We will show that the smallest grammar for a has size 151VI + 31E| + k, where

k is the size of the minimum vertex cover for H. However, the size of the minimum

cover for this family of graphs is known to be hard to approximate below a ratio of

145/144 unless P = NP [4]. Therefore, it is equally hard to approximate the size of

the smallest grammar for -below the ratio:

15|VI + 3|EI + 145k

P = 144f3f f~
151VI + 31EI + k

Since all vertices in H have degree at most three, JEj < 1|V|. Furthermore, each

vertex can cover at most three edges, and so we get that k, the size of the minimum

vertex cover, is at least }|fE) > }fVf. The expression above is minimized when |Ej is

large and k is small. Therefore, we get the lower bound:

15|V±+ 3. V + 4(!jV)

-- 151V + 3. jVI + ( fVf)
8569
8568

All that remains is to verify that the smallest grammar for a has size 15|V| +

31EI + k. To accomplish this, the main effort is directed toward showing that the

smallest grammar for a must have a very particular structure. Let G be an arbitrary

grammar that generates a. Suppose that there exists a nonterminal with an expansion

of some form other than #vi, vi#, or #vi#. Then that nonterminal either appears

at most once in G or else expands to a single character, since no other substring of

two or more characters appears multiple times in o. Replacing each occurrence of

this nonterminal by its definition and deleting its defining rule can only decrease the

size of G. Thus, in searching for the smallest grammar for c, we need only consider

grammars in which every nonterminal has an expansion of the form #vi, vi#, or

#Vi#.
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Next, suppose grammar G does not contain a nonterminal with expansion #vi.

Then this string must appear at least twice in the start rule, since the two occurrences

generated by the first product term can not be written another way. Adding a non-

terminal with expansion #vi costs two symbols, but also saves at least two symbols,

and consequently gives a grammar no larger than G. Similar reasoning applies for

strings of the form vi#. Thus, we need only consider grammars in which there are

nonterminals with expansions #vi and vi# for all vertices vi in the graph H.

Finally, let C C V denote the set of vertices vi such that G contains a rule for the

substring #vi#. Now suppose that C is not a vertex cover for H. Then there exists

an edge (vi, vj) C E such that G does not contain rules for either #vj# or #v#. As

a result, the occurrences of these strings generated by the second product term must

both be represented by at least two symbols in the start rule of G. Furthermore,

the string #vi#vj# generated by the third product term must be represented by at

least three symbols. However, defining a nonterminal with expansion #vj# costs two

symbols (since there is already a nonterminal with expansion #vj), but saves at least

two symbols as well, giving a grammar no larger than before. Therefore, we need only

consider grammars such that the corresponding set of vertices C is a vertex cover.

The size of a grammar with the structure described above is 8|V| for the first

section of the start rule, plus 31VI - JCj for the second section, plus 31EI for the

third section, plus 41VI for rules for strings of the form #vi and vi#, plus 21CI for

rules for strings of the form #vi#, which gives 151VI + 31EI + C. This quantity is

minimized when C is a minimum vertex cover. In that case, the size of the grammar

is 151VI + 31EI + k as claimed. L

It is not known whether the smallest grammar problem is NP-hard when restricted

to input strings over a binary alphabet. Then again, no exact algorithm is known even

for input strings over a unary alphabet despite substantial efforts by many researchers.

The precise state of affairs is described in Section 3.3.
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3.2 Hardness via Addition Chains

This section demonstrates the hardness of the smallest grammar problem in an alter-

native sense: a procedure with an approximation ratio o(log n/ log log n) would imply

progress on an apparently difficult algebraic problem in a well-studied area.

Consider the following problem. Let ki, k2 , . .. , kp be positive integers. How many

multiplications are required to compute xki Xk2, ... kp, where x is a real number?

For example, we could compute x9 and x 23 using seven multiplications as follows:

X2 XX 18 _ 9 9

4 _._ 2 X 2 X22 _ 18 . 4

8 __ 4 X4 23 _ 22 X

9 _ 8

This problem has a convenient, alternative formulation. An addition chain is an

increasing sequence of positive integers starting with 1 and with the property that

every other term is the sum of two (not necessarily distinct) predecessors. The con-

nection between addition chains and computing powers is straightforward: the terms

in the chain indicate the powers to be computed. For example, 1, 2, 4, 8, 9,18, 22, 23 is

an addition chain corresponding to the algorithm given above for computing x9 and

x23 using seven multiplications. In general, the number of multiplications required to

compute x ki Xk2, ... I k is one less than the shortest addition chain containing all

of ki, k2, -. .,kp.

Surprisingly, the power evaluation and addition chain problems are closely related

to the smallest grammar problem. In particular, the problem of computing, say, x9

and x23 using the fewest multiplications is closely tied to the problem of finding the

smallest grammar for the string o = x9 1 x 2 3 . Roughly speaking, a grammar for o- can

be regarded as an algorithm for computing x9 and x23 and vice versa. The following

theorem makes these mappings precise.
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Theorem 6 Let T = {k 1 ,... kp} be a set of distinct positive integers, and define the

string - as follows:

a- = xk| xk| . kp.

Then the following relationship holds, where 1* is the length of the shortest addition

chain containing T and m* is the size of the smallest grammar for the string a:

1* < m* < 4V*.

Proof. We translate the grammar of size m* for string - into an addition chain

containing T with length at most m*. This will establish the left inequality, 1* < m*.

For clarity, we accompany the description of the procedure with an example and some

intuition. Let T be the set {9, 23}. Then - = x I X23 . The smallest grammar for

this string has size m* = 13:

S -+ A|AABxx

A -+BBB

B -+ xxx

We begin converting the grammar to an addition chain by ordering the rules so that

their expansions increase in length. Then we underline symbols in the grammar

according to the following two rules:

1. The first symbol in the first rule is underlined.

2. Every symbol preceded by a nonterminal or an x is underlined.

Thus, in the example, we would underline as follows:
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B - xxx

A -BBB

S - A| AABxx

Each underlined symbol generates one term in the addition chain. Starting at the

underlined symbol, work leftward until the start of the definition or a unique symbol

is reached. This defines a substring ending with the underlined symbol. The length

of the expansion of this substring is a term in the addition chain. In the example, we

would obtain the substrings:

x, xx, xxx, BB, BBB, AA, AAB, AABx, AABxx

and hence the addition chain:

1, 2,3, 6, 9, 18, 21,22, 23

Intuitively, the terms in the addition chain produced above are the lengths of the

expansions of the secondary nonterminals in the grammar. But these alone do not

quite suffice. To see why, observe that the length of the expansion of a nonterminal

is the sum of the expansion lengths of the symbols in its definition. For example, the

rule T -+ ABC implies that [T] = [A] + [B] + [C]. If we ensure that the addition

chain contains [A], [B], and [C], then we still can not immediately add [T]. This

is because [T] is the sum of three preceding terms, instead of two. Thus, we must

also include, say, the term [AB], which is itself the sum of [A] and [B]. Now [T] is

expressible as the sum of two preceding terms, [AB] and [C], and so we have a valid

addition chain. The creation of such extra terms is what the elaborate underlining
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procedure accomplishes. In this light, is easy to verify that the construction detailed

above gives an addition chain of length at most m* that contains T.

All that remains is to establish the second inequality, m*

translating an addition chain of length I into a grammar for

most 41. As before, we carry along an example. Let T =

addition chain containing T has length 1 = 7:

< 41*. We do this by

the string - of size at

{9, 23}. The shortest

1, 2, 4, 5, 9, 18, 23

We associate the symbol x with the initial 1 and a distinct nonterminal with each

subsequent term. Each nonterminal is defined in terms of the symbols associated

with two preceding terms, just as each term in the addition sequence is the sum of

two predecessors. The start rule consists of the nonterminals corresponding to the

terms in T, separated by uniques. In the example, this gives the following grammar:

T2

T5

T18

-+

xx

T 4x

T9 T9

T 2 T 2

T5 T4

T18T5

S - TI|T 23

The start rule has length 2|TI -

exactly two symbols on the right.

1:

1 < 21*, and the 1* - 1 secondary rules each have

Thus, the total size of the grammar is at most 41*.

The implication of the preceding theorem is that, up to a constant factor, approx-

imating the smallest grammar for a string is at least as hard as approximating the

shortest addition chain containing a specified set of numbers.
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3.3 Background on Addition Chains

Addition chains have been studied extensively for decades. There is a survey in

Knuth [19] and a less comprehensive, but more recent survey due to Thurber [36].

The classical addition chain problem is to find the shortest addition chain contain-

ing a single, specified integer n. This is closely allied with the problem of finding the

smallest grammar for the unary string Xn. All major bounds and techniques carry

over.

The i-th term of an addition chain can be no larger than 2-1. Consequently, the

shortest addition chain for Xn must have length at least log 2 n. There is a simple

algorithm with approximation ratio 2. Begin with a chain containing only n. Then

repeat the following step recursively. If n is even, prepend n/2 to the chain, and set

n = n/2. If n is odd, prepend (n - 1)/2 and n - 1 to the chain, and set n = (n - 1)/2.

When n reaches 1, stop. With each recursive call, n decreases by a factor of two

and at most two terms are added to the chain. Therefore, the length of the resulting

addition chain is at most 2log2 n, giving a 2-approximation as claimed.

A somewhat more subtle algorithm known as the M-ary method gives a 1 +

0(1/log log n) approximation. (This is apparently folklore.) One writes n in a base

M, which is a power of 2:

n = doMk + d 1Mk~1 + d2 Mk- 2 + ... + dk-lM+ dk

The addition chain begins 1, 2, 3,. .. , M - 1. Then one puts do, doubles it log M

times, adds d, to the result, doubles that log M times, adds d2 to the result, etc. The

total length of the addition chain produced is at most:

(M - 1) + logn + - logn+O(logn/loglogn)
log M

In the expression on the left, the first term counts the first M -1 terms of the addition
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chain, the second counts the doublings, and the third counts the increments of di.

The equality follows by substituting M = log n/ log log n.

The M-ary method is very nearly the best possible. Erd6s [12] showed that, in

a certain sense, the shortest addition chain containing n has length at least log n +

log n/ log log n for almost all n.

Nevertheless, an exact solution to the addition chain problem remains strangely

elusive. The M-ary method runs in time polylog(n) and gives a 1 + o(1) approxima-

tion. However, even if exponentially more time is allowed, poly(n), no exact algorithm

(and apparently even no better approximation algorithm) is known. A determined at-

tempt by Bleichenbacher [5] yielded an exact algorithm with an empirically observed

running time of nf for some slow-growing function f. In particular, he observed

that f(n) was approximately 2 for small n and about 2.3 for n = 500, 000.

The general addition chain problem is to find the shortest addition chain containing

a specified set of integers k1,... , kp. Pursuing the obvious approach to the classical

addition chain problem described above leads naturally to this one. Suppose that we

were trying to find the shortest addition chain containing a single integer n. We could

do this by finding the shortest addition chain containing two integers k, and k2 that

sum to n and then appending n to the end of that chain. This, however, requires a

solution to the general addition chain problem.

The general addition chain problem is known to be NP-hard if the integers ki

are given in binary [11]. There is an easy O(log n) approximation algorithm, where

n = E ki. First, generate all powers of two less than or equal to the maximum of

the input integers ki. Then form each ki independently by summing a subset of these

powers corresponding to I's in the binary representation of ki. In 1976, Yao [38]

pointed out that the second step could be tweaked in the spirit of the M-ary method.

Specifically, he groups the bits of ki into blocks of size log log ki - 2 log log log ki and

tackles all blocks with the same bit pattern at the same time. This improves the

approximation ratio slightly to 0 (log n/log log n).

Yao's method retains a frustrating aspect of the naive algorithm: there is no
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attempt to exploit special relationships between the integers ki; each one is treated

independently. This can lead to rather suboptimal results. For example, suppose

ki = 3' for i = 1 to p. Then there exists a short addition chain containing all of the

ki: 1, 2, 3 6, 9 18, 27, 54, 81, ... . But Yao's algorithm thrashes about, effectively

trying to represent powers of three in base two.

Remarkably, even if the ki are written in unary, apparently no polynomial time

algorithm with a better approximation ratio than Yao's is known. However, since

Theorem 6 links addition chains and small grammars, finding an approximation algo-

rithm for the smallest grammar problem with ratio o(log n/ log log n) would require

improving upon Yao's method.

3.4 An Observation on Hardness

We have seen that the smallest grammar problem is hard to approximate via reduc-

tions from two very different problems. Interestingly, there is also a marked difference

on the other end of these reductions; that is, in the types of strings generated.

Specifically, Theorem 5 maps graphs to strings with large alphabets and few

repeated substrings. As a consequence, there is minimal potential for the use of

hierarchy when representing such strings with grammars. Thus, we show the NP-

completeness of the smallest grammar problem by analyzing a space of input strings

that specifically dodges the most interesting aspect of the problem: hierarchy.

On the other hand, Theorem 6 maps addition chain problems to strings over a

unary alphabet (plus unique symbols). The potential for use of hierarchy in repre-

senting such strings is enormous; in fact, the whole challenge now is to construct an

intricate hierarchy of rules, each defined in terms of the others. Thus, this reduction

more effectively captures the most notable aspect of the smallest grammar problem.

Taken together, these two reductions show that the smallest grammar problem is

hard in both a "combinatorial packing" sense and a seemingly orthogonal "hierarchi-

cal structuring" sense.
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Chapter 4

Analysis of Previous Algorithms

In this chapter, we establish upper and lower bounds on the approximation ratios

of six previously proposed algorithms for the smallest grammar problem: LZ78, Bi-

SECTION, SEQUENTIAL, LONGEST MATCH, GREEDY, and RE-PAIR. In addition,

we discuss some closely-related algorithms: LZW, MPM, and SEQUITUR. The re-

sults in this chapter are summarized in the table below, which also appeared in the

introduction.

Algorithm

LZ78

BISECTION

SEQUENTIAL

LONGEST MATCH

GREEDY

RE-PAIR

Approximation Ratio

Upper Bound Lower Bound

O((n/ log n)2 /3 )

O((n/ log n)1 /2)

O((n/ log n)3 /4)

O((n/ log n)2 /3)

O((n/ log n)2/3 )

O((n/ log n)2/3 )

n 2 / 3 /logn)

Q(n 1/ 2 / log n)

Q(n1/ 3)

Q(log log n)

> 1.37 ...

Q ( lIo gn)

4.1 Compression Versus Approximation

We regard the algorithms in this chapter as approximation algorithms for the small-

est grammar problem. However, most were originally designed as compression al-
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gorithms. Generally speaking, a good grammar-based compression algorithm should

seek the smallest possible grammar generating the input string. But there do exist sig-

nificant disconnects between our theoretical study of the smallest grammar problem

and practical data compression. We highlight three of these below.

Most obviously, our optimization criteria is grammar size, whereas the optimiza-

tion criteria in data compression is the length of the compressed string in bits. There

is some relationship between the two measures, of course. At the very least, a gram-

mar of size m can be represented by a string of at most m log m bits by assigning each

distinct symbol a unique (log m)-bit representation. Such a log m factor is small by

the standards of our worst-case theoretical analyses, but enormous by practical data

compression standards.

Perhaps more importantly, data compression algorithms are typically designed

with an eye toward universality (asymptotically optimal compression of strings gener-

ated by a finite-state source) and low redundancy (fast convergence to that optimum).

Informally, strings generated by a finite-state source have high entropy; that is, they

are compressible by only a constant factor. Thus, the main focus in the design of a

data compressor is on high entropy strings. In fact, Kosaraju and Manzini [21] point

out that universality and redundancy are not meaningful measures of a compres-

sor's performance on low entropy strings. Consequently, performance on low-entropy

strings is typically neglected completely.

In contrast, we focus here on the approximation ratio of algorithms for the smallest

grammar problem. Now high-entropy strings are of little interest. If the smallest

grammar for an input string of length n has size, say, n/ log n, then any compressor

can approximate the smallest grammar to within a log n factor. However, low-entropy

strings present a serious challenge. If an input string is generated by a grammar of

size, say, n1 /3, then a carelessly designed algorithm could exhibit an approximation

ratio as bad as n2/ 3. Thus, grammar-based data compressors and approximation

algorithms can both be regarded as approaches to the smallest grammar problem,

but they target different ranges of inputs.
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Finally, practical data compression raises many considerations given scant atten-

tion here. For example, the running time should be linear in the length of the input

string. Even an O(n log n) running time is justifiable only in restricted contexts such

as long-term archiving, where the initial compression cost is small next to the storage

costs over time. One can not even neglect constants in the running time that are

hidden by asymptotic notation. Ideally, a compressor should also be on-line; that is,

a single left-to-right pass through the input string should suffice. Space consumption

throughout this pass should, preferably, be a function of the size of the compressed

string, not the size of the string being compressed.

As a result of these disconnects, one must take the results in the remainder of this

chapter with a caveat: while we show that many grammar-based data compression

algorithms exhibit mediocre approximation ratios, the designers of these algorithms

are concerned with slightly different measures, different inputs, and many practical

issues that we ignore.

4.2 LZ78

The well-known LZ78 compression scheme was described by Lempel and Ziv [40].

While not originally described in terms of grammars, the algorithm has a natural

interpretation within our framework.

The Procedure

In traditional terms, LZ78 represents a string - by a sequence of pairs. For example,

one possible sequence is as follows:

(0, a) (1, b) (0, b) (2, a) (3, a) (2, b) (4, a)

Each pair expands to a substring of o-, and the concatenation of all their expansions

is the whole of o-. Each pair is of the form (i, c), where i is an integer and c is a
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symbol in -. If i is zero, then the expansion of the pair is simply c. Otherwise, the

expansion is equal to the expansion of the i-th pair followed by the symbol c. The

expansions of the pairs in the example sequence are as follows:

(0, a) = a (3, a) = ba

(1, b) = ab (2, b) = abb

(0, b) = b (4, a) = abaa

(2, a) = aba

Consequently, the entire sequence represents the string a ab b aba ba abb abaa, where

spaces are added for clarity.

The sequence-of-pairs representation of a string is generated by LZ78 in a single

left-to-right pass as follows. Begin with an empty sequence of pairs. At each step,

find the shortest, nonempty prefix of the unprocessed portion of the string that is not

the expansion of a pair already in the sequence. There are two cases:

1. If this prefix consists of a single symbol c, then append the pair (0, c) to the

sequence.

2. Otherwise, this prefix must be of the form ac, where a is the expansion of some

pair already in the sequence (say, the i-th one) and c is a symbol. In this case,

append the pair (i, c) to the sequence.

For example, consider the earlier string, aabbababaabbabaa. We begin with an

empty sequence of pairs, and then take the shortest, nonempty prefix that is not the

expansion of an existing pair. This prefix is the single symbol a. This is case (1), and

so we append the pair (0, a). The shortest, nonempty prefix of the remainder which

is not the expansion of an existing pair is now ab. This is case (2); ab consists of the

expansion of the first pair followed by the symbol b, and so we append the pair (1, b).

The procedure continues in this way until the entire input string is translated to a

sequence of pairs.
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LZ78 in Grammar Terms

An LZ78 pair sequence maps naturally to a grammar. Associate a nonterminal T

with each pair (i, c). If i is zero, define the nonterminal by T -s c. Otherwise, define

the nonterminal to be T -+ Uc, where U is the nonterminal associated with the i-th

pair. The right side of the start rule contains all the nonterminals associated with

pairs. For example, the grammar associated with the example sequence is as follows:

S -+ X 1 X 2X 3X 4X 5 X 6X 7

X1  4 a X 5 -> X 3a

X 2 -+ X1 b X 6 - X 2 b

X 3  b X 7 - X 4 a

X 4 - X 2 a

Given this easy mapping, hereafter we simply regard the output of LZ78 as a grammar

rather than as a sequence of pairs.

Note that the grammars produced by LZ78 are of a very restricted form. In

particular, the right side of each rule contains at most two symbols and at most one

nonterminal. Subject to these restrictions, the smallest grammar for even the string

x" has size Q(v/i). On the other hand, grammars with such a regular form can be

encoded in bits more efficiently.

Analysis

The next two theorems provide nearly-matching upper and lower bounds on the

approximation ratio of LZ78 when it is regarded as an approximation algorithm for

the smallest grammar problem.

Theorem 7 The approximation ratio of LZ78 is Q(n 2 /3 / log n).

Proof. The lower bound follows by analyzing the behavior of LZ78 on input strings

of the form
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9k ak(k+1)/2 (bak)(k+1) 2

where k > 0. The length of this string is n = 0(k). Repeated application of Lemma 3

implies that there exists a grammar for O-k of size O(log k) = O(log n). (In fact, this

is the example string analyzed immediately after the statement of Lemma 3.)

The string -k is processed by LZ78 in two stages. During the first, the k(k + 1)/2

leading a's are consumed and nonterminals with expansions a, aa, aaa, ... , ak are

created. During the second stage, the remainder of the string is consumed and a

nonterminal with expansion azbai is created for all i and j between 0 and k. For

example, o4 is represented by nonterminals with expansions as indicated below:

a aa aaa aaaa

b aaaab aaaaba aaab aaaabaa aab aaaabaaa ab aaaabaaaa

ba aaaba aaabaa aaba aaabaaa aba aaabaaaa

baa aabaa aabaaa abaa aabaaaa

baaa abaaa abaaaa

baaaa

The pattern evident above can be shown to occur in general by a routine induction.

As a result, the grammar produced by LZ78 has size Q(k 2 ) - Q(n 2 /3 ). Dividing by

our upper bound on the size of the smallest grammar proves the claim. El

Theorem 8 The approximation ratio of LZ78 is 0 ((n/log n)2/3 ).

Proof. Suppose that the input to LZ78 is a string -of length n, and that the smallest

grammar generating o has size m*. Let S -+ X 1 ... X, be the start rule generated by

LZ78. Note that the size of the entire grammar is at most 3p, since each nonterminal

Xi is used once in the start rule and is defined by a rule with at most two symbols on
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the right side. Therefore, to upper bound the size of the LZ78 grammar, it suffices

to upper bound p, the number of nonterminals in the start rule.

To that end, list the nonterminals Xi in order of increasing expansion length.

Group the first m* of these nonterminals, the next 2m*, the next 3m*, and so forth.

Let g be the number of complete groups of nonterminals that can be formed in this

way. By this definition of g, we have:

m* + 2mn* +.. .+(g + )m* > P

And so p = O(g 2m*).

On the other hand, the definition of LZ78 implies that the Xi expand to distinct

substrings of u-. But Lemma 4 states that u- contains at most m*k distinct substrings

of length k. It follows that each nonterminal in the j-th group must expand to a

string of length at least j, since the number of distinct, shorter substrings of o is

upper bounded by the number of nonterminals in preceding groups. Therefore, we

have:

n= [X 1 +...+[Xp]

> m*+2 2 m*+3 2 m*+...+g 2m*

This inequality implies g = 0 ((n/m*)l/ 3 ). Substituting this bound on g into the

upper bound on p obtained previously gives:

( n )2/3m*

0 n )2/3 n

log n
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The second equality follows from Lemma 1, which says that the smallest grammar

for a string of length n has size Q(logn). D

LZW

Some practical improvements on LZ78 are embodied in a later algorithm, LZW [37].

The grammars implicitly generated by the two procedures are not substantively dif-

ferent, but LZW is more widely used in practice. For example, it is used to encode

images in the the popular gif format. Interestingly, the bad strings introduced in

Theorem 7 have a natural graphical interpretation. Here is or written in a 15 x 9 grid

pattern:

aaaaaaaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

baaaabaaaabaaaa

Thus, an image with colors in this simple vertical stripe pattern yields a worst-case

string in terms of approximation ratio. This effect can be observed in practice on

even small examples. For example, a 68 x 68 image consisting of four horizontal lines

spaced 16 pixels apart is stored by Corel PhotoPaint, a commercial graphics program,

in a 933 byte file. However, if the image is simply rotated ninety degrees to create

vertical lines instead, the stored file grows to 1142 bytes, an increase of more than

20%.

44



4.3 BISECTION

The BISECTION algorithm was proposed by Kieffer, Yang, Nelson, and Cosman [18,

26]. For binary input strings of length 2k, the same technique was employed much

earlier in binary decision diagrams (BDDs), a data structure used to compactly rep-

resent and easily manipulate boolean functions. Indeed, BDDs have themselves been

proposed as a compression tool more than once.

The Procedure

BISECTION works on an input string - as follows. Select the largest integer j such

that 2i < I a. Partition a into two substrings with lengths 2i and Ia - 2. Repeat this

partitioning process recursively on each substring produced that has length greater

than one. Afterward, create a nonterminal for every distinct string of length greater

than one generated during this process. Each such nonterminal can then be defined

by a rule with exactly two symbols on the right.

For example, consider the string a- = 1110111010011. We recursively partition

and associate a nonterminal with each distinct substring generated as shown below:

1110111010011 S -+ T1T2

S

11101110 10011 T1 U1U1 T2 U21
TT T2

1110 1110 1001 1 U1 - V 1V2 U2 -+ V2V3

U1  U2

11 10 11 10 10 01 1 V1 + 11 V2 -+ 10 V3 -+ 01

V, V2 V3

Analysis

The following two theorems give nearly-matching lower and upper bounds on the

approximation ratio of BISECTION

Theorem 9 The approximation ratio of BISECTION is Q(Vnj/ log n).
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Proof. We analyze the behavior of BISECTION on input strings of the form

Uk a(b2k a)2k_1

where k > 0. This string has length n = 22k*. After k bisections, Uk is partitioned

into 2 k distinct substrings of length 2 *. In particular, each contains a single a, which

appears in the i-th position in the i-th substring. For example, bisecting U 2 twice

gives four distinct strings:

abbb babb bbab bbba

A routine induction argument shows that this pattern holds in general for Uk . Since

each distinct substring generates a nonterminal, BISECTION produces a grammar of

size Q( 2k) = Q(/i) on input Uk.

On the other hand, Lemma 3 implies that there exists a grammar for ak of size

0(k) = O(log n). The approximation ratio of Q(- F/ log n) follows. l

Theorem 10 The approximation ratio of BISECTION is O(V n/ log n).

Proof. Suppose that the input to BISECTION is a string a of length n, and that

the smallest grammar generating a has size m*. Let j be the largest integer such

that 2i < n. Note that the size of the BISECTION grammar for a is at most twice

the number of distinct substrings generated during the recursive partitioning process.

Thus, it suffices to upper bound the latter quantity.

At most one string at each level of the recursion has a length that is not a power

of two; therefore, there are at most j strings with irregular lengths. All remaining

strings have length 2' for some i between 1 and j. We can upper bound the number

of these in two ways. On one hand, BISECTION creates at most one string of length

2 i, at most two of length 2 j-1, at most four of length 2-- 2, etc. On the other hand,
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Lemma 4 says that a- contains at most 2im* distinct substrings of length 2'. The

first observation gives a good upper bound on the number of distinct long strings

generated by the recursive partitioning process, and the second is tighter for short

strings. Putting this all together, the size of the BISECTION grammar is at most:

-(j-logj) j

m*2i + > 2 j-)
i=1i= i -log j)

= (logn) + (m* lg)

0 m*
log n

+ 0 (n log n)

In the second equation, we use the fact that m* = Q(log n) by Lemma 1. El

MPM

BISECTION was generalized to an algorithm called MPM [18], which permits a string

to be split more than two ways during the recursive partitioning process and allows

that process to terminate early. For reasonable parameters, performance bounds are

the same as for BISECTION.

4.4 SEQUENTIAL

Nevill-Manning and Witten introduced the SEQUITUR algorithm [27, 29]. Kieffer and

Yang subsequently offered a similar, but improved algorithm that we refer to here as

SEQUENTIAL [16].

The Procedure

SEQUENTIAL works as follows. Begin with an empty grammar and make a single

left-to-right pass through the input string. At each step, find the longest prefix of the

unprocessed portion of the input that is the expansion of a secondary nonterminal,
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and append that nonterminal to the start rule. If no prefix matches the expansion of

a secondary nonterminal, then append the first terminal in the unprocessed portion

of the input to the start rule. In either case, if the newly created pair of symbols at

the end of the start rule already appears elsewhere in the grammar without overlap,

then replace both occurrences by a new nonterminal whose definition is that pair.

Finally, if some nonterminal is used only once after this substitution, replace it by its

definition, and delete the corresponding rule.

As an example, consider the input string o- = x | xx I xxxx I xxxxxxxx. After

six steps, the grammar is:

S -+ x|xxx

No secondary rules have been created so far, because every nonoverlapping pair of

symbols occurs only once in this prefix. However, when the next x is appended to

the start rule, there are two copies of the substring xx. Therefore the rule R1 -+ xx

is added to the grammar, and both occurrences of xx are replaced by R 1.

S -+ x I R R

R - xx

Because the expansion of R1 is now a prefix of the unprocessed part of -, the next

step consumes xx and appends R 1 to S. During the next few steps, the start rule

expands to the following:

S -+ x I R1I R1R1I R1R1

R1 - xx
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At this point, the pair R1 R1 appears twice, and so a new rule is R 2 -+ R 1R1 is added

and applied.

S -> x I R I RR 2

R1 -- xx

R 2 -+ R 1 R1

The remainder of the input string matches the expansion of R 2, so this nonterminal

is added to the start rule to complete the grammar:

S - x R1 R 2 | R 2 R 2

R1 -- xx

R 2 -+ R1 R 1

Lower Bound

The next two theorems bound the approximation ratio of SEQUENTIAL. Both the

upper and lower bounds are considerably more complex than was the case for LZ78

and BISECTION.

Theorem 11 The approximation ratio of SEQUENTIAL is Q(n 1/ 3 ).

Proof. We analyze the behavior of SEQUENTIAL on strings 9k, defined as follows, for

k > 0.

9k ok/ 2

a 0 k+1 | 0 k+1 60 |60 |61 | 6 1 | .. | 6k

6 k 6 k k4Ek-1 kk-2 kk-3 ... 
6 k k/2 ok

6,= oijio-

49



The prefix a forces SEQUENTIAL to create a nonterminal with expansion Ok+1, a

nonterminal with expansion 6, for each i from 0 to k, and some nonterminals with

shorter expansions that are not relevant here.

The remainder of the input, the string #k/2, is consumed in segments of length

k + 1. This is because, at each step, the leading k + 1 symbols of the unprocessed

portion of the input string form either 0 k+1 or else 6i for some i. Consequently, the

corresponding nonterminal is appended to the start rule at each step. Note, however,

that the length of /3 is not a multiple of k +1. Each Ji component of # does expand to

a string of length k + 1, but 3 ends with 0 *. As a result, each copy of / is represented

by a different sequence of nonterminals. This is the inefficiency that we exploit.

The first copy of / is parsed almost as it is written above. The only difference

is that the final 0 k at the end of this first copy is combined with the leading zero in

the second copy of # and read as a single nonterminal. Thus, nonterminals with the

following expansions are appended to the start rule as the first copy of / is processed:

6 kk kk-1 kk-2 kk-3 ... kk/2 Ok+1

SEQUENTIAL parses the second copy of / differently, since the leading zero is already

processed. Furthermore, the final 0 k-1 in the second copy of / is combined with the

two leading zeroes in the third copy and read as a single nonterminal:

k-1k-1 k-1k-2 k-1k-3 ... k-1k/2-1 Ok+1

With two leading zeros already processed, the third copy of / is parsed yet another

way. In general, an induction argument shows that the j-th copy (indexed from j = 0)

is read as:
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3 k-j 6 k-j 6 k-j 6 k-j-1 6 k-j 6 k-j-2 -
6 k-j 6 k/2-j 0 k+1

No consecutive pair of nonterminals ever comes up twice in this entire process, and

so no new rules are created. Since the input string contains k/2 copies of # and each

is represented by about k nonterminals, the grammar generated by SEQUENTIAL has

size Q(k 2).

On the other hand, there exists a grammar for -k of size 0(k). First, create a

nonterminal Zi with expansion 0' for each i up to k + 1. Each such nonterminal can

be defined in terms of its predecessors using only two symbols:

Zi -+ 0Zi_1

Next, define a nonterminal Di with expansion 6 for each i using three symbols:

Di -+ ZilZkj

Now define a nonterminal A with expansion a and a nonterminal B with expansion

# using the Zi and Dj:

A Zk+1 Zk+1 | Do I Do I D D ... Dk | Dk

B - DkDk DkDk_1 DkDk-2 DkDk_3 ... DkDk/2 Zk

Finally, using Lemma 3, 0(log k) additional symbols suffice to define a start sym-

bol with expansion a I #k/2. In total this grammar has size 0(k). Therefore the

approximation ratio of SEQUENTIAL is Q(k) = Q(n 1/3). L
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Irreducible Grammars

Our upper bound on the approximation ratio of SEQUENTIAL relies on a property of

the output. In particular, Kieffer and Yang [16] show that SEQUENTIAL produces an

irreducible grammar; that is, one which has the following three properties:

1. All nonoverlapping pairs of adjacent symbols on the right side of the grammar

are distinct.

2. Every secondary nonterminal appears at least twice on the right side of the

grammar.

3. No two symbols in the grammar have the same expansion.

For example, the following grammar is not irreducible:

S -+ ABCAB

A -+ xy

B -Az

C -+ xyz

Note that (1) the adjacent pair of symbols AB appears twice without overlap, (2)

the nonterminal C appears only once on the right, (3) the symbols B and C have the

same expansion. In contrast, the following grammar generates the same string, but

is irreducible:

S -+ CCC

C -+ xyz

Note that the pair of adjacent symbols CC does appear twice, but these two instances

overlap.
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In upper-bounding the approximation ratio of SEQUENTIAL, we rely on properties

of irreducible grammars established in the following two lemmas.

Lemma 12 The sum of the lengths of the expansions of all distinct nonterminals in

an irreducible grammar is at most 2n.

(This result also appears as equation 9.33 in Appendix B of [17].)

Proof. Let S be the start symbol of an irreducible grammar for a string of length

n, and let R 1, . . . , Rk be the secondary nonterminals. Observe that the sum of the

expansion lengths of all symbols on the left side of the grammar must be equal to

the sum of the expansion lengths of all symbols on the right side of the grammar.

Furthermore, every secondary nonterminal appears at least twice on the right side by

property (2) of irreducible grammars. Therefore, we have:

[S] + [R 1 ] +... + [Rk] > 2([R 1 ] + ... + [Rk])

Adding [S] - [R 1 ] +... + [Rk] to both sides of this inequality gives:

2[S] > [S]+[R]+...+[Rk]

The length of the expansion of the start symbol, [S], is equal to n by definition, and

so we have

2n > [S]+[Ri]+...+[Rk]

as claimed. R

Lemma 13 Every irreducible grammar of size m contains at least m/3 distinct,

nonoverlapping pairs of adjacent symbols.
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Proof. For each rule, group the first and second symbols on the right to form one

pair, the third and fourth for a second pair, and so forth. If a rule has an odd number

of symbols, ignore the last one. Each pair is unique by property (1) of irreducible

grammars. The right side of every rule must have length at least two as a consequence

of property (3) of irreducible grammars. Therefore, at most m/3 symbols are ignored,

leaving at least 2m/3 symbols, which are grouped into at least m/3 pairs. EL

Upper Bound

Now we upper bound the approximation ratio of SEQUENTIAL by using the fact that

SEQUENTIAL always produces an irreducible grammar and showing that no irreducible

grammar is too far from optimal.

Theorem 14 Every irreducible grammar for a string is O((n/ log n)3/ 4) times larger

than the size of the smallest grammar for that string.

Corollary 15 The approximation ratio of SEQUENTIAL is O((n/ log n)3/ 4).

Proof. (of Theorem 14) Let o- be a string of length n. Let m be the size of an

irreducible grammar generating o-, and let m* be the size of the smallest grammar.

Identify m/3 distinct, nonoverlapping pairs of adjacent symbols in the irreducible

grammar. These are guaranteed to exist by Lemma 13. As preliminary observation,

note that only a limited number of these pairs can expand to the same length-k

substring of -. The first nonterminal in each such pair must expand to a string with

length between 1 and k - 1. Thus, if there are k or more such pairs, then there must

exist two pairs UV and XY such that [U] = [X] and [V] = [Y]. Since all pairs are

distinct, either U 7 X or V : Y. In either case, we have two distinct symbols with

the same expansion, which violates property (3) of irreducible grammars. Therefore,

at most k - 1 pairs can expand to the same length-k substring of -

List all m/3 pairs in order of increasing expansion length. Group the first 1 -2m*

of these pairs, the next 2 - 3m*, the next 3 - 4m*, and so forth. Let g be the number

of complete groups of nonterminals that can be formed in this way. Then we have:
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1 .2m* +2-3m* + ... + (g+ 1) - (g+2)m* > m/3

And so m = O(g 3 m*).

Lemma 4 implies that o- contains at most m*k distinct substrings of length k. The

preliminary observation says that there can be at most k - 1 pairs that expand to a

given length-k substring. Therefore, at most m*k(k - 1) pairs have an expansion of

length k. For example, at most 1 -2m* pairs expand to a string of length 2, at most

2. 3m* pairs expand to a string of length 3, etc. Consequently, each pair in the first

group expands to a string of length at least 2, each pair in the second group expands

to a string of length at least 3, and generally each pair in the j-th group expands to

a string of length at least j + 1. Thus, the total length of the expansions of all pairs

is at least:

1 - 22 m* + 2 - 32 m* +... + g(g + 1) 2m*

The m/3 pairs constitute a subset of the symbols on the right side of the grammar.

The total expansion length of all symbols on the right side of the grammar is equal

to the total expansion length of all symbols on the left. Lemma 12 upper bounds the

latter quantity by 2n. Therefore, we have:

1.2 2 m* +2-3 2m* + ... + g(g +1) 2m* < 2n

As a result, g = 0 ((n/m*)1/ 4 ). Substituting this bound on g into the bound on m

obtained previously implies:
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m = 0((n/m*)3/4m*)

= O((n/ logn)3 /4 m*)

The second equality follows from Lemma 1, which says that m* = Q(log n). EL

Filling in The Gap

There is a sizable gap between our upper bound on the approximation ratio of SE-

QUENTIAL (roughly 0(n 3 /4 ) and our lower bound (roughly Q(n1 /3)). The following

theorem shows that we can not significantly improve the upper bound using only

properties of irreducible grammars.

Theorem 16 There exist irreducible grammars Q(n 2/3/ log n) times larger than the

smallest grammar for the same string.

Proof. Consider the following grammar for a string of x's of length n = 0(k)

S -& R 1 R 1 R 1R 2

R 2 R 2

R1 R 3

R 2R 3

R1Rk

R 2Rk

RklRk

Il* XX

R2 R 1x

R3 R 2 x

Rk -+ Rk1x

This grammar is irreducible and has size Q(k 2 ) - Q(n 2/3 ). However, Lemma 3 implies

that there is a grammar of size O(log k) = O(log n), and the claim follows. EI
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4.5 Global Algorithms

The remaining algorithms analyzed in this chapter all belong to a single class, which

we refer to as global algorithms. We upper bound the approximation ratio of ev-

ery global algorithm by 0 ((n/log n)2 /1) with a single theorem. However, our lower

bounds are all different, complex, and weak; all are o(log n). Thus, it may be that

every global algorithm has an excellent approximation ratio. But, at present, we are

unable to fully analyze any of them. Because they are so natural and our understand-

ing is so incomplete, global algorithms are one of the most interesting topics related

to the smallest grammar problem that could use further research.

The Procedure

A global algorithm begins with the grammar S -+ o- . The remaining work is divided

into rounds. During each round, one selects a maximal string 7. (The way global

algorithms differ is in how a maximal string is selected in each round.) A maximal

string -y is a string with three properties.

" It has length at least two.

" It appears at least twice on the right side of the grammar without overlap.

* No longer string appears as many times on the right side without overlap.

After a maximal string -y is selected, a new rule T -4 -y is added to the grammar.

This rule is applied by working left-to-right through the right side of every other rule.

Each time the string -y is encountered, it is replaced by the symbol T. The algorithm

terminates when no more rounds are possible; that is, when no more maximal strings

exist.

An example illustrates the range of moves available to a global algorithm. Suppose

that the input string is a = abcabcabcabcaba. We initially create the grammar

S -+ abc abc abc abc ab a
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where spaces are added for clarity. The maximal strings are ab, abc, and abcabc.

In contrast, the string a is not maximal, because it does not have length at least

two. The string abcabcabc is not maximal because there are not two nonoverlapping

instances. The string bc is not maximal because the longer string abc appears as many

times without overlap. Suppose that we select the maximal string ab, and introduce

the rule T -+ ab. The grammar becomes:

S - Tc Tc Tc Tc T a

T 4ab

Now the maximal strings are Tc and TcTc. Suppose that we select TcTc and intro-

duce the rule U -+ TcTc. Then we obtain the grammar:

S UUTa

T -ab

U - TcTc

Now the only maximal string is Tc. Adding the rule V - Tc yields:

S -+UUTa

T -+ab

U -+V V

V - Tc

No maximal strings remain, so we are done.
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Upper Bound

One theorem employing a now-familiar argument bounds the approximation ratio of

every global algorithm by O((n/ log n)2 !3 ). The argument relies on a series of lemmas

saying that a grammar produced by a global algorithm is always well-conditioned.

In particular, such a grammar is not only irreducible, but also has the additional

property guaranteed by the following lemma.

Lemma 17 The following invariant holds for the grammar maintained during the

execution of a global algorithm. Let a and # be strings of length at least two on the

right side of the grammar. If (a) = (/), then a = /.

Proof. The invariant holds trivially for the initial grammar S -± a. So suppose that

the invariants hold for grammar G, and then grammar G' is generated from G by

introducing a new rule T -+ -y. Let a' and 0' be strings of length at least two on the

right side of G' such that (a') = (/'). We must show that a' = 3'. There are two

cases to consider.

First, suppose that neither a' nor 0' appears in 'y. Then a' and /' must be obtained

from nonoverlapping strings a and / in G such that (a) = (a') and (/) = (/'). Since

the invariant holds for G, we have a = /. But then a and / are transformed the same

way when the rule T -* -y is added; that is, corresponding instances of the string 'Y

within a and / are replaced by the nonterminal T. Therefore, a' = 0'.

Otherwise, suppose that at least one of a' or /' appears in -y. Then neither a'

nor /' can contain T. Therefore, both a' and /' appear in grammar G, where the

invariant holds, and so a' = /' again. l

The remaining lemmas are dedicated to the proposition that grammars produced

by a global algorithm are irreducible.

Lemma 18 The following invariants hold for the grammar maintained during the

execution of a global algorithm.

1. Every secondary nonterminal appears at least twice on the right side of the

grammar.
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2. Not every instance of a nonterminal is followed by the same symbol.

3. Not every instance of a nonterminal is preceded by the same symbol.

Proof. All three invariants hold vacuously for the initial grammar S -+ -. Suppose

that the invariant holds for a grammar G, and then we obtain a new grammar G'

by introducing the rule T -+ -y, where 7 is a maximal string. Observe that all three

invariants hold in G' with respect to the new nonterminal T due to the maximality

of -y. What remains is to check that the invariants still hold with respect to each

nonterminal U that also appeared in G.

First, we show that U appears at least twice in G'. Note that U can not appear

only on the right side of the new rule T - y, since that would imply that the symbol

preceding or following U in -y always preceded or followed it in G as well, violating

invariant 2 or 3. Therefore, if U appears in -y, it also appears outside of y, which

means that it appears twice. If U does not appear in y at all, then every instance of

U in G remains in G', and so it still appears at least twice.

Next, we show that U is not always followed by the same symbol in G'. We argue

by contradiction: suppose that U is always followed by the same symbol. If that

symbol is T, then U was always followed by the first symbol of -y in G, violating

invariant 2. If that symbol is not T, then U was always followed by that symbol in

G as well, violating invariant 2 again. A symmetric argument shows that U is not

always preceded by the same symbol either. D

Lemma 19 The following invariants hold for every secondary rule T -+ - in a gram-

mar maintained during the execution of a global algorithm:

1. The string -y appears nowhere else in the grammar.

2. The length of y is at least two.

Proof. The invariants hold trivially for the initial grammar S -+ -. Suppose that the

invariants hold for every rule in a grammar G, and then we obtain a new grammar

G' by introducing the rule U -+ 5.
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First, we check that the invariants hold for the new rule. The string 6 can not

appear elsewhere in the grammar; such an instance would have been replaced by the

nonterminal U. Furthermore, the length of 6 is at least two, since 6 is a maximal

string.

Next, we check that the invariant holds for each rule T - y' in G' that corresponds

to a rule T -+ y in G. If -y' does not contain U, then both invariants carry over from

G. Suppose that 7' does contain U. The first invariant still carries over from G. The

second invariant holds unless 6 = 7. However, since 6 is a maximal string, that would

imply that y appeared at least twice in G, violating the first invariant. El

Lemma 20 A grammar produced by a global algorithm on an input string of length

at least two is irreducible.

Proof. We must show that a grammar produced by a global algorithm satisfies the

three properties of an irreducible grammar. First, all nonoverlapping pairs of adjacent

symbols on the right side are distinct; a global algorithm does not terminate until this

condition holds. Second, every secondary nonterminal appears at least twice on the

right side by Lemma 18. Third, no two symbols have the same expansion. The start

symbol can not expand to a terminal, since the grammar generates a string of length

at least two. No secondary nonterminal can expand to a terminal, because Lemma 19

implies that each secondary nonterminal has an expansion of length at least two. No

two nonterminals can expand to the same string either; their definitions have length

at least two by Lemma 19, and therefore their expansions are distinct by Lemma 17.

El

Theorem 21 The approximation ratio of every global algorithm is 0 ((n/log n)2/ 3 ).

Proof. Suppose that on input o of length n, a global algorithm outputs a grammar

G of size m, but the smallest grammar has size m*.

Identify m/3 distinct, nonoverlapping pairs of adjacent symbols in G, which are

guaranteed to exist by Lemma 13. List all these pairs in order of increasing expansion

length. Group the first 2m* pairs, the next 3m*, the next 4m*, and so forth. Suppose
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that g complete groups can be formed in this way. Then the largest complete group

has size (g + 1)m*. Therefore, we have:

2m*+3m*+...+(g+2)m* > m/3

And so m = O(g 2m*).

Lemma 17 implies that every pair expands to a distinct substring of -, and

Lemma 4 says that - has at most m*k distinct substrings of length k. Therefore,

at most 2m* pairs expand to a string of length 2, at most 3m* expand to a string

of length 3, etc. Consequently, every pair in the j-th group expands to a string of

length at least j + 1. The total length of the expansions of all pairs must be at least:

22m* + 32 M* + . .. + (g + 1)2M*

Since grammar G is irreducible by Lemma 20, this quantity is upper bounded by

2n according to Lemma 12. This implies that g = 0 ((n/m*)1/ 3 ). Substituting this

bound on g into the upper bound on m gives:

m = ((n/m*)2/3M*)

= O((n/ log n)2/3m*)

As usual, the second equality follows from Lemma 1, which says that m* = Q(logrn).

D

In the following sections, we describe three natural global algorithms. The pre-

ceding theorem provides an upper bound on the approximation ratio for all of them.

Below, we establish a weak lower bound on the approximation ratio for each one

individually. The arguments here are quite complicated.
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4.5.1 LONGEST MATCH

Kieffer and Yang [17] proposed the LONGEST MATCH procedure, a global algorithm

in which one always selects the longest maximal string. For example, given the initial

grammar

S - abc abc abc abc ab a

the first rule added is T -+ abc abc. The resulting grammar is:

S - TTaba

T -4 abc abc

Tools for Analysis

LONGEST MATCH has two elegant features that simplify analysis of its behavior:

1. No rule is ever introduced with a nonterminal on the right side.

2. Each nonterminal created appears in the final grammar.

If the first principle were violated and a rule with a nonterminal on the right were

introduced, then the definition of that nonterminal could not have been the longest

maximal string when it was created, which contradicts the definition of the algorithm.

The second principle follows from the first; since every new rule has only terminals on

the right, nonterminals are only added to the grammar over the course the procedure

and never eliminated.

The usefulness of the second principle is more readily explained. It can be used

to lower bound the size of a grammar generated by LONGEST MATCH; we need only

sum up the number of nonterminals created over the course of the procedure.
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The first principle allows one to simplify the grammar maintained during the

execution of LONGEST MATCH in a particular way without altering the subsequent

behavior of the algorithm. Specifically, the same sequence of maximal strings is

selected and the same number of nonterminals is introduced afterward whether or

not we carry out this simplification.

Here is how the simplification is done. During the execution of LONGEST MATCH,

we can replace each nonterminal on the right by a unique symbol. This does not alter

subsequent behavior, since no rule containing a nonterminal will ever be introduced

anyway. The example grammar from the start of this section can be transformed in

this way into the following:

S -+ |ab a

T -+ abc abc

Furthermore, we can append the definitions of secondary rules to the start rule,

separated by unique symbols, and then delete all secondary rules. In the example,

we would obtain:

S |ab a abc abc

Finally, we can delete unique symbols at the start and end of this rule and merge

consecutive unique symbols. Transforming the example in this way gives:

S -- ab a I abc abc

We refer to this three-step simplification procedure as consolidating a grammar. In

analyzing the behavior of LONGEST MATCH on an input string, we are free to con-
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solidate the grammar at any point to simplify analysis; the subsequent behavior of

the procedure is unchanged.

Lower Bound

Theorem 22 The approximation ratio of LONGEST MATCH is Q(loglogn).

Proof. We analyze the performance of LONGEST MATCH on the string Uk, which is

largely a concatenation of substrings of

7k = 2 4 8 16 32 64 2 k-2 2 k-1

xyxy X Y YX ; ... x

separated by unique symbols. Index the k terms of -yk from 0 to k - 1. Now the

string Uk contains one substring of 'Yk for each i in the range 0 to k - 1. Specifically,

the i-th substring starts with term i of -yk and contains 2i consecutive terms, where

j is as large as possible. In addition, 9k has the suffix I x2 I, 2k. For example, a-10 is

depicted below with indentation and line breaks to clarify the structure.

X y 2

y
2

y
8

y
8

y
8

y
8

010 -

X16

X16

X16

X16

X16

y
32

y
32

y
32

y
3 2

y
32

Y
32

X64

X64

X64

X64

X64

X64

X64

y
128

y
1 2 8

y
128

y
128

y
128

y
12 8

y
12 8

X256

256

256

X256

X256

256

y
5 12

y
5 12

y
5 12

y
5 12

X1024 1024

Note that, for example, a10 contains a substring of '71o that begins with term i = 3
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and contains 2i = 22 = 4 consecutive terms. (It can not contain 23 = 8 consecutive

terms of 'y1o, because y1o does not contain that many terms.) This substring appears

on the fourth line above. Also, (-10 has the suffix x1024 1l024

Now we must determine what LONGEST MATCH does when given this string as

input. Define a segment to be a substring that is bounded on both sides by unique

symbols or an end of the string. For example, in the string o-io, one segment is

x 256 512, and there are twelve segments in all. In these terms, the longest match in

-k is the second longest segment that contains the last term of 'yb. This segment is

wholly contained in the longest segment containing the last term of 'Yk. Thus, in the

example, the longest match is:

64 128 256 512

In the next round, the longest match is the third longest segment containing the last

term of 'yb, which is wholly contained by the second longest such segment. In the

round after, the longest match is the fourth longest segment containing the last term

of -yk, and so forth. After log k rounds of this type, the next two longest matches

are x and y2 k.-1 After introducing rules corresponding to all these matches, we

obtain the grammar:
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y8

y
8

y8

y
8

x 16

x16

x 16

x16

x16

y 32

y
3 2

y 32

y
3 2

y
3 2

y
3 2

x64

x64

T,

x64

x64

x64

T,

y128

128 256

y
12 8

y
12 8

x256

128 256

T2

T3 | T3 T3 I T4T4

x6 4  128 T

T2 -+ 256

T3 s-+o

T4

Now we consolidate this grammar to obtain:

T3

x512

y 5 12

S 2 -+x y 2

y
2

y8

y
8

y
8

y
8

x 16

x16

x16

x16

x16

y 32

y
3 2

3 2

3 2

3 2

3 2

64 128

64 128

x64

x64

x64

x64

y
12 8

y
1 2 8

y
1 2 8

y
1 2 8

x256

256

256

x 256 x512 512

The critical observation here is that the consolidated grammar is the initial grammar
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for input string o9 . After another succession of rounds and a consolidation, the

definition of the start rule becomes 0 8 , and then o, and so forth. Reducing the right

side of the start rule from c-i to uj_ 1 entails the creation of at least log i nonterminals.

Since nonterminals created by LONGEST MATCH are never eliminated, we can lower

bound the total size of the grammar produced on this input by:

k

log i = (k log k)
i=1

On the other hand, there exists a grammar of size 0(k) that generates Crk. What

follows is a sketch of the construction. First, we create nonterminals X 2 and Y2

with expansions x2 and y2 respectively for all i up to k. We can define each such

nonterminal using two symbols, and so only 0(k) symbols are required in total.

Then we define a nonterminal corresponding to each segment of Uk. We define

these nonterminals in batches, where a batch consists of all nonterminals correspond-

ing to segments of 9k that contain the same number of terms. Rather than describe

the general procedure, we illustrate it with an example. Suppose that we want to

define nonterminals corresponding to the following batch of segments in rlo.

4 8 16 32

y8 x16 y 3 2 x 6 4

X 1 6 Y3 2 X 6 4 Y 128

32 64 128 256

This is done by defining the following auxiliary nonterminals, which expand to prefixes

and suffixes of the string x4 y8 X16 y 32 X64 y128256.
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P1 y32 S, X64

P2 - X16P 2 - 1y128

P3 - Y 8P2  S3 - 226

P4 - X4 P3

Now we can define nonterminals corresponding to the desired substrings of yk in terms

of these "prefix" and "suffix" nonterminals as follows:

G 1 -+ P4

G2 -+ P3 S 1

G3 -+ P 2S 2

G4 -+ P 1 S3

In this way, each nonterminal corresponding to a substring of yk in Uk is defined using

a constant number of symbols. Therefore, defining all k such nonterminals requires

0(k) symbols. We complete the grammar for Uk by defining a start rule containing

another 0(k) symbols. Thus, the total size of the grammar is 0(k).

Therefore, the approximation ratio for LONGEST MATCH is Q(log k). Since the

length of Uk is n = 0(k2k), this ratio is Q(log log n) as claimed. L

4.5.2 GREEDY

Apostolico and Lonardi [1, 2, 3] proposed a variety of greedy algorithms for grammar-

based data compression. The central idea, which we analyze here, is to select the

maximal string that reduces the size of the grammar as much as possible. For example,

given the starting grammar
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S -+ abc abc abc abc ab a

the first rule added is T -+ abc, since this decreases the size of the grammar by 5

symbols, which is the best possible:

S -+ TTTTaba

T -+ abc

Theorem 23 The approximation ratio of GREEDY is at least 5 =og3 - 1.137 ....3 log 5

Proof. We consider the behavior of GREEDY on an input string of the form Uk = Xn,

where n = 5 2 k

Greedy begins with the grammar S --+ O-k. The first rule added must be of the

form T --+ x. The size of the grammar after this rule is added is then:

t + [n/tJ + (n mod t)

The first term reflects the cost of defining T, the second accounts for the instances

of T itself, and the third represents extraneous x's. This sum is minimized when

t = ni1 /2. The resulting grammar is:

S -+ T

T -+ xk-I

Since the definitions of S and T contain no common symbols, we can analyze the

behavior of GREEDY on each independently. However, each of these two subproblems

70



is of the same form as the original, but of size k - 1 instead of k. Thus, after two

more rules are added, the grammar becomes:

S -+ U 2

T -+ V5 2k-2

U T2k-2

V x 5 2 k-2

Continuing in this way, we reach a grammar with 2k nonterminals, each defined

by five copies of another symbol. Each such rule is transformed as shown below in a

final step that does not alter the size of the grammar.

X -+ yyyyy
X'X'y

YY

Therefore, GREEDY generates a grammar for Ork of size 5 2k.

On the other hand, we show that for all n, X" has a grammar of size 310g 3(n) +

o(logrn). Substituting n = 5 2 k then proves the theorem. Regard n as a numeral in a

base b = 3j, where j is a parameter defined later:

n = dob' + d1btl + d2 bt-2 +... + dI 1 bI + dt

The grammar is constructed as follows. First, create a nonterminal T with ex-

pansion x' for each i between 0 and b - 1. This can be done with 2- b = 2.3i symbols,

using rules of the form T+1 -> Tx. Next, create a nonterminal Uo with expansion

xdo, using the rule U0 -+ Tdo. Create a nonterminal U1 with expansion xdob+dl by

tripling U0 , tripling the result, and so on j times and then appending Td1 :
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Z1

Z2

Z3

ZU

U1

- UoUoUO

Z Z1Z1Z1

Z3Z3Z3

-+ zj_1zi-1zj_1

-ZTd

This requires 3j + 2 symbols. Similarly, create U2 with expansion xdob 2 +dlb+d2, and so

on. The start symbol of the grammar is Ut. The total number of symbols used is at

most:

2 -3i + (3j + 2) - t 2 - 3 + (3j+ 2) -logbn
2

2-3j+3log3 n + -- ogn
I

The second equality uses the fact that b = 3j. Setting j =1 log 3 log3 n makes the last

expression 3 log 3(n) + o(log n) as claimed. ED

4.5.3 RE-PAIR

Larsson and Moffat [24] proposed the RE-PAIR algorithm. (The byte-pair encoding

(BPE) technique of Gage [13] is based on similar ideas.) Essentially, this is a global

algorithm in which one always selects the maximal string that appears most often.

For example, given the starting grammar

S -+ abc abc abc abc ab a
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the first rule added is T -+ ab, since the maximal string ab appears most often.

There is a small difference between the algorithm originally proposed by Larsson

and Moffat and what we refer to here as RE-PAIR: the original algorithm always

makes a rule for the pair of symbols that appears most often without overlap, regard-

less of whether that pair forms a maximal string. For example, on input xyzxyz, the

original algorithm generates the following grammar:

S UU

U xV

V - yz

This is unattractive, since one could replace the single occurrence of the nonterminal

V by its definition and obtain a smaller grammar. Indeed, RE-PAIR, as described

here, would give the smaller grammar:

S - UU

U - xyz

The original approach was motivated by implementation efficiency issues.

Theorem 24 The approximation ratio of RE-PAIR is Q(Vlog n).

Proof. Consider the performance of RE-PAIR on input strings of the form:

2 /k w-1

Oi'k
w=vrk i=O

where bw,i is an integer that, when regarded as a k-bit binary number, has a 1 at each

position j such that j - i (mod w). (Position 0 corresponds to the least significant
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bit.) On such an input, RE-PAIR creates rules for strings of x's with lengths that are

powers of two:

X1 -4 XX

X 2 -4 X 1X 1

X 3 -+ X 2X 2

X4 -- X 3X 3

At this point, each run of x's with length b.,, in Uk is represented using one nonter-

minal for each 1 in the binary representation of be,,. For example, the beginning of

9 16 and the beginning of the resulting start rule are listed below:

16 - X0001000100010001

X00100
01000100010

X0100
010001000100

X1000
100010001000

X100 00 10000 100 001

Xo 000 01 000 01 00010

X00 01 0 00 01 000 100

X0010000100001000

X0100001000010000

S - X 12 X 8X 4 X

X 13X 9 X5 X1

X 14X 10X 6 X 2

X 15 X 11X 7 X 3

X 15XI0X 5X

X 11 X 6 X 1

X 12 X 7 X 2

X 13X8 X 3

X 14X 9 X 4

Note that no other rules are introduced, because each pair of adjacent symbols

now appears only once. RE-PAIR encodes each string of x's using Q(vrk) symbols.

Since there are Q(k) such strings, the size of the grammar produced is Q(k 3/2 ).

On the other hand, there exists a grammar of size 0(k) that generates ok. First,

we create a nonterminal Xj with expansion x2i for all j up to k - 1. Then for each w
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we create a nonterminal B,0o for xbw,o using O(VT) of the Xj nonterminals, just as

RE-PAIR does. However, we can then define a nonterminal for each remaining string

of x's using only two symbols:

Bwl Bw,o Bw,

Bw,2 B- B1Bw,1

Bw, 3  Bw,2Bw,2

In total, we use O(k) symbols to define the nonterminals X. Then we use O(-V)

symbols defining Bw,O for each of the VT different values of w. The remaining O(k)

nonterminals Bwi cost two symbols each to define. Finally, we expend O(k) symbols

on a start rule, which consists of all the Bw,i separated by unique symbols. In total,

the grammar size is O(k) as claimed.

To complete the argument, note that n = |kI= E(VT2k), and so the approxima-

tion ratio is no better than Q(VkT) = Q(v/logn). E
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Chapter 5

New Algorithms

In this chapter, we present a simple O(log3 n) approximation algorithm for the small-

est grammar problem. We then give a more complex algorithm with approximation

ratio O(log n/m*) based on an entirely different approach.

5.1 An O(log3 n) Approximation Algorithm

We begin with a simple algorithm with approximation ratio O(log 3 n). As prelimi-

naries, we describe a useful grammatical construction, prove one lemma, and cite an

old result that we shall need.

5.1.1 Preliminaries

The substring construction generates a set of grammar rules enabling each substring

of a string r/ = x, ... xP to be expressed with at most two symbols.

The construction works as follows. First, create a nonterminal for each suffix of

the string x1 ... Xk and each prefix of Xk+1 ... x,, where k = []. Note that each

such nonterminal can be defined using only two symbols: the nonterminal for the

next shorter suffix or prefix together with one symbol xi. Repeat this construction

recursively on the two halves of the original string, X1 ... Xk and Xk+1 ... X,. The

recursion terminates when a string of length one is obtained. This recursion has logp
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levels, and p nonterminals are defined at each level. Since each definition contains at

most two symbols, the total cost of the construction is at most 2plogp.

Now we show that every substring a = xi... xj of q is equal to (AB), where A

and B are nonterminals defined in the construction. There are two cases to consider.

If a appears entirely within the left-half of q or entirely within the right-half, then

we can obtain A and B from the recursive construction on x 1 ... Xk or Xk+1 ... .

Otherwise, let k = F] as before, and let A be the nonterminal for xi ... Xk, and let

B be the nonterminal for Xk+1 ... Xj-.

For example, the substring construction for the string 17 = abcdefgh is given

below:

C1

C2

C3

C4

-+4

-4

b

aE1

-4

-4

-4

-+4

F1

F 2

d

cC1

bC 2

aC3

C

F1d

D1

D2

D3

D4

-4

-4

-+4

-+4

-+4

-+4

e

D i f

D 2g

DAh

f
eG 1

H1

H 2

-4

-4

g

H1 h

With these rules defined, each substring

symbols. As examples, consider:

abc

defg

bcdefgh

We now turn to the lemma, which up

erated by a small grammar in a new way

of abcdefgh is expressible with at most two

S(E2F1 )

= (C1 D3 )

- (C3 D 4 )

per bounds the complexity of a string gen-
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Lemma 25 Let - be a string generated by a grammar of size m. Then there exists

a string f3 k of length at most 2mk that contains every length-k substring of -.

Proof. We can construct Ai by concatenating all strings obtained as follows from

rules T -+ a in the grammar of size m:

1. For each terminal in a, take the length-k substring of (T) beginning at that

terminal.

2. For each nonterminal in a, take the length-(2k - 1) substring of (T) consisting

of the last character in the expansion of that nonterminal, the preceding k - 1

characters, and the following k - 1 characters.

In both cases, we permit the substrings to be shorter if they are truncated by the

start or end of (T).

Now we establish the correctness of this construction. First, note that the string

#k is a concatenation of at most m strings of length at most 2k, giving a total length

of at most 2mk as claimed. Next, let y be a length-k substring of -. Consider the

rule T -+ a such that (T) contains y and is as short as possible. Either -y begins at a

terminal of a, in which case it is a string of type 1, or else it begins inside the expansion

of a nonterminal in a and ends beyond, in which case it is contained in a string of

type 2. (Note that 'y can not be wholly contained in the expansion of a nonterminal

in a; otherwise, we would have selected that nonterminal for consideration instead of

T.) In either case, y is a substring of A3 as desired. LI

Our approximation algorithm for the smallest grammar problem makes use of

Blum's 4-approximation for the shortest superstring problem [6]. In this procedure,

we are given a collection of strings and want to find the shortest superstring; that

is, the shortest string that contains each string in the collection as a substring. The

procedure works greedily. At each step, find the two strings in the collection with

largest overlap. Merge these two into a single string. (For example, abaa and aaac

have overlap aa and thus can be merged to form abaaac.) Repeat this process until
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only one string remains. This is the desired superstring, and Blum proved that it is

at most four times longer than the shortest superstring.

5.1.2 The Algorithm

Now we assemble our O(log3 n)-approximation algorithm for the smallest grammar

problem.

In this algorithm, the focus is on certain sequences of substrings of -. In particular,

we construct log n sequences Cn, Cn1 2, Cn/ 4, . .. , C2 , where the sequence Ck consists

of some substrings of - that have length at most k. These sequences are defined as

follows. The sequence Cn is initialized to consist of only the string -itself. In general,

the sequence Ck generates the sequence Ck/2 via the following operations, which are

illustrated in the figure that follows.

1. Use Blum's greedy 4-approximation algorithm to form a superstring Pk contain-

ing all the strings in Ck.

2. Now we are going to cut the superstring Pk into small pieces. First, determine

where each string in Ck ended up inside Pk, and then cut Pk at the left endpoints

of those strings.

3. Cut each piece of Pk that has length greater than k/2 at the midpoint. During

the analysis, we shall refer to the cuts made during this step as extra cuts.

The sequence Ck/2 is defined to be the sequence of pieces of Pk generated by this

three-step process. By the nature of Blum's algorithm, no piece of Pk can have length

greater than k after step 2, and so no piece can have length greater than k/2 after

step 3. Thus, Ck/2 is a sequence of substrings of o- that have length at most k/2 as

desired.
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Begin with the sequence of strings Ck:

Step 1: Overlap these strings greedily to form a superstring pk'

Step 2: Cut pk at the left endpoint of each constituent string.

Step 3: Cut pieces with length greater than k/2 at the midpoint.
(Cuts made at this step are called extra cuts.)

The resulting sequence of pieces is Ck,2:

Each string in Ck (e.g., T) is the concatenation of consecutive strings
in Cw2 (V, W, X) plus a prefix of the following string (Y). This prefix is
itself a concatenation of consecutive strings in Ck/4 plus the prefix of

the following string, etc.

Now we translate these sequences of strings into a grammar. To begin, associate

a nonterminal with each string in each sequence C. In particular, the nonterminal

associated with the single string in C,., (which is a itself) is the start symbol of the

grammar.

All that remains is to define these nonterminals. In doing so, the following obser-

vation is key: each string in Ck is the concatenation of several consecutive strings in

Ck/2 together with a prefix of the next string in CQ/2. This is illustrated in the figure

above, where the fate of one string in Ck (shaded and marked T) is traced through

the construction of C4/2. In this case, T is the concatenation of V, W, X, and a

prefix of Y. Similarly, the prefix of Y is itself the concatenation of consecutive strings

in CQ/4 together with a prefix of the next string in CQ/4. This prefix is in turn the

concatenation of consecutive strings in C/s together with a prefix of the next string

in C/s, etc. As a result, we can define the nonterminal corresponding to a string

in Ck as a sequence of consecutive nonterminals from CG/2, followed by consecutive

nonterminals from CQ/4, followed by consecutive nonterminals from C/s, etc. For

example, the definition of T would begin T - VWX ... and then contain sequences
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of consecutive nonterminals from Ck/4, C/8, etc. As a special case, the nonterminals

corresponding to strings in C2 can be defined in terms of terminals.

We can use the substring construction to make these definitions shorter and hence

the overall size of the grammar smaller. In particular, for each sequence of strings Ck,

we apply the substring construction on the corresponding sequence of nonterminals.

This enables us to express any sequence of consecutive nonterminals using just two

symbols. As a result, we can define each nonterminal corresponding to a string in Ck

using only two symbols that represent a sequence of consecutive nonterminals from

Ck/2, two more that represent a sequence of consecutive nonterminals from C/4, etc.

Thus, every nonterminal can now be defined with O(log n) symbols on the right.

Theorem 26 The procedure described above is an O(log' n)-approximation algorithm

for the smallest grammar problem.

Proof. We must determine the size of the grammar generated by the above procedure.

In order to do this, we must first upper bound the number of strings in each sequence

Ck. To this end, note that the number of strings in Ck/2 is equal to the number of

strings in Ck plus the number of extra cuts made in step 3. Thus, given that C,

contains a single string, we can upper bound the number of strings in Ck by upper

bounding the number of extra cuts made at each stage.

Suppose that the smallest grammar generating - has size m*. Then Lemma 25

implies that there exists a superstring containing all the strings in C with length

2m*k. Since we are using a 4-approximation, the length of Pk is at most 8m*k.

Therefore, there can be at most 16m* pieces of Pk with length greater than k/2 after

step 2. This upper bounds the number of extra cuts made in the formation of Ck/ 2,

since extra cuts are only made into pieces with length greater than k/2. It follows

that every sequence of strings C has length 0 (m* log n), since step 2 is repeated only

log n times over the course of the algorithm.

On one hand, there are log n sequences Ck, each containing 0(m* log n) strings.

Each such string corresponds to a nonterminal with a definition of length O(logn).

This gives 0(m* log3 n) symbols in total. On the other hand, for each sequence of

82



strings Ck, we apply the substring construction on the corresponding sequence of

nonterminals. Recall that this construction generates 2plogp symbols when applied

to a sequence of length p. This creates an additional

O((log n) - (m* log n) log(m* log n)) = O(m* log3 n)

symbols. Therefore, the total size of the grammar generated by this algorithm is

O(m* log 3 n), which proves the claim. El

5.1.3 Aside: The Substring Problem

One aspect of the preceding algorithm for the smallest grammar problem raises an-

other grammar-related question that is interesting in its own right: given a string

- = X1... x,, construct a small grammar such that every substring of - is expressible

using few symbols. For example, the substring construction of Section 5.1.1 produces

a grammar of size O(plogp) such that every substring of - is expressible using two

symbols.

Alternative solutions to this problem are possible. For example, we could pro-

ceed as follows. Partition x1 ... x, into p/ log p segments consisting of log p symbols

each. Associate a nonterminal Qj with each such segment. Apply the earlier sub-

string construction on the sequence Q, ... Qp/iogp. Then apply this new construction

recursively on each segment of logp symbols. The depth of the recursion is log* p. As

a result, the size of the grammar produced is at most 2p log* p, and each substring of

- is expressible using 2 log* p symbols.

These two solutions to the substring problem are compared below:

grammar size symbols per substring

construction in Section 5.1.1 2plogp 2

construction given here 2p log* p 2 log* p

Whether the infinitesimal log* p terms are really necessary is unclear; in particular,
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does there exists a grammar of size O(p) that enables each substring to be expressed

using 0(1) symbols?

5.2 An O(log n/m*)-Approximation Algorithm

We now present a more complex solution to the smallest grammar problem with

approximation ratio O(lognr/m*). The description is divided into three sections.

First, we introduce a variant of the well-known LZ77 compression scheme. This serves

two purposes: it gives a new lower bound on the size of the smallest grammar for a

string and is the starting point for our construction of a small grammar. Second, we

introduce balanced binary grammars, the variety of well-behaved grammars that our

procedure employs. In the same section, we also introduce three basic operations on

balanced binary grammars. Finally, we present the main algorithm, which translates

a string compressed using our LZ77 variant into a grammar at most O(log n/m*)

times larger than the smallest. In a concluding section, we offer some perspectives on

the algorithm.

5.2.1 An LZ77 Variant

We begin by describing a flavor of LZ77 compression [39]. We use this both to obtain

a lower bound on the size of the smallest grammar for a string and as the basis for

generating a small grammar. In this scheme, a string is represented by a sequence of

characters and pairs of integers. For example, one possible sequence is:

a b (1, 2) (2, 3) c (1, 5)

An LZ77 representation can be decoded into a string by working left-to-right through

the sequence according to the following rules:

. If a character c is encountered in the sequence, then the next character in the
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string is c.

* Otherwise, if a pair (x, y) is encountered in the sequence, then the next y char-

acters of the string are the same as the y characters beginning at position x

of the string. (We require that the y characters beginning at position x be

represented by earlier items in the sequence.)

The example sequence can be decoded as follows:

index 1 2 3 4 5 6 7 8 9 10 11 12 13

sequence a b (1, 2) (2, 3) c (1, 5)

string a b a b b a b c a b a b b

The shortest LZ77 sequence for a given string can be found in polynomial time.

Make a left-to-right pass through the string. If the next character in the unprocessed

portion of the string has not appeared before, output it. Otherwise, find the longest

prefix of the unprocessed portion that appears in the processed portion and output

the pair (x, y) describing that previous appearance. It is easy to show (and well

known) that this procedure finds the shortest LZ77 sequence.

The following lemma states that this procedure implies a lower bound on the size

of the smallest grammar.

Lemma 27 The length of the shortest LZ77 sequence for a string is a lower bound

on the size of the smallest grammar for that string.

Proof. Suppose that a string is generated by a grammar of size m*. We can transform

this grammar into an LZ77 sequence of length at most m* as follows. Begin with

the sequence of symbols on the right side of the start rule. Select the nonterminal

with longest expansion. Replace the leftmost instance by its definition and replace

each subsequent instance by a pair referring to the first instance. Repeat this process

until no nonterminals remain. Note that each symbol on the right side of the original
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grammar corresponds to at most one item in the resulting sequence. This establishes

the desired inequality. E

An example illustrates the method employed in the proof. Suppose we want to

map the following grammar to an LZ77 sequence.

S -+ ABtAu

A - vBBw

B - xyz

We effect the transformation as follows:

S A B t A u

V BBwBt(1,8)u

-- v X y z (2, 3) w (2, 3) t (1,8) u

A somewhat similar process was described in [28].

Our O(log n/m*)-approximation algorithm essentially inverts this process, map-

ping an LZ77 sequence to a grammar. This other direction is much more involved.

5.2.2 Balanced Binary Grammars

In this section, we introduce the notion of a balanced binary grammar. The approx-

imation algorithm we are developing works exclusively with this restricted class of

well-behaved grammars.

A binary rule is a grammar rule with exactly two symbols on the right side. A

binary grammar is a grammar in which every rule is binary. Two strings of symbols,

j and -y, are a-balanced if
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a [ [ - a
1 - a [] a

for some constant a between 0 and . Intuitively, a-balanced means "about the

same length". Note that inverting the fraction 1 gives an equivalent condition. The

condition above is also equivalent to saying that the length of the expansion of each

string ([3] and [y]) is between an a and a 1 - a fraction of the length of the combined

expansion ([/3 y]). An a-balanced rule is a binary rule in which the two symbols on the

right are a-balanced. An a-balanced grammar is a binary grammar in which every rule

is a-balanced. For brevity, we usually shorten "a-balanced" to simply "balanced".

The remainder of this section defines three basic operations on balanced binary

grammars. Each operation adds a small number rules to an existing balanced gram-

mar to produce a new balanced grammar that has a nonterminal with specified prop-

erties. These operations are summarized below.

AddPair: Produces a balanced grammar containing a nonterminal with expansion

(XY) from a balanced grammar containing nonterminals X and Y. The number

rules added to the original grammar is:

0 1 + log
[Y]

AddSequence: Produces a balanced grammar containing a nonterminal with expan-

sion (X1 ... Xt) from a balanced grammar containing nonterminals X1 ... Xt.

The number of rules added is:

0 (t (I+log[Xi... Xt]
t
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AddSubstring: Produces a balanced grammar containing a nonterminal with expan-

sion /3 from a balanced grammar containing a nonterminal with 13 as a substring

of its expansion. Adds O(log j/|) new rules.

For these operations to work correctly, we require that a be selected from the limited

range 0 < a < 1 - v/2, which is about 0.293. These three operations are detailed

below.

The AddPair Operation

We are given a balanced grammar with nonterminals X and Y and want to create

a balanced grammar containing a nonterminal with expansion (XY). Suppose that

[X] < [Y]; the other case is symmetric. The AddPair operation is divided into two

phases.

In the first phase, we decompose Y into a string of symbols. Initially, this string

consists of the symbol Y itself. Thereafter, while the first symbol in the string is not

in balance with X, we replace it by its definition. A routine calculation, which we

omit, shows that balance is eventually achieved. At this point, we have a string of

symbols Y ... Y with expansion (Y) such that Y1 is in balance with X. Furthermore,

note that Y ... Y is in balance with Yi for all 1 < i < t by construction.

The second phase is extremely intricate. The analysis runs for many pages, even

though we omit some routine algebra. Initially, we create a new rule Z1 -> XY and

declare this to be the active rule. The remainder of the second phase is divided into

steps. At the start of the i-th step, the active rule has the form Zi -+ AjBj, and the

following three invariants hold:

1. (Zi) = (X Y . . . Yi)

2. (Bi) is a substring of (Y ... Y).

3. All rules in the grammar are balanced, including the active rule.

The relationships between strings implied by the first two invariants are indicated in

the following diagram:
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zi

X Y Y2 ... ... Yi-1 Yi Yi+1 --- Yt

Ai Bi

After t steps, the active rule defines a nonterminal Zt with expansion (XY ... Y) =

(XY) as desired, completing the procedure.

The invariants stated above imply some inequalities that are needed later to show

that the grammar remains in balance. Since Y ... Y is in balance with Yi+1, we have:

a 1Yi+ 1] < - a

I - a - [Y 1 ... Y] - a

Since (B2 ) is a substring of (Y ... Y) by invariant 2, we can conclude:

a < [Yi+I1 (1a ____(5.1)

- a [Bi]

On the other hand, since (Zi) is a superstring of (YI ... Y) by invariant 1, we can

conclude:

[Yzi1 < I a (5.2)
[Zi] - a

Each step in the second phase involves intricate grammar transformations. For

clarity, we supplement the text with diagrams. In these diagrams, a rule Zi -> AjBj

is indicated with a wedge:

Z.

Ai Bi
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Preexisting rules are indicated with shaded lines, and new rules with dark lines. As

a further example, the decomposition of XY into XY . . . Xt during the first phase

results from the grammar containing the following structure:

Y

Yt

Yt-1

Y3

Y, Y2

All that remains is to describe how each step of the second phase is carried out.

At the start of the i-th step, the active rule is Zi -+ AjBj. Our goal is to create a

new active rule that defines Zj+1 while maintaining the three invariants. There are

three cases to consider.

Case 1: If Zi and Y+1 are in balance, then we create a new rule:

Zi+1

Zi+1 - Z1Yi+1

This becomes the active rule. It is easy to check that

tained.

If case 1 is bypassed, then Zi and Y+j are not in

assertion does not hold:

a [Yi+119
1 -a -- [Zi]
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Since the right inequality is (5.2), the left inequality must be violated. Thus, hereafter

we can assume:

a > [Z+
1- a [Zl

Case 2: Otherwise, if Ai is in balance with BiYi+i, then we create two new rules:

Z+1 -+ ALT

T - BiYi+1

A.

zi+1

Z

B, Yi+1

The first of these becomes the active rule. It is easy to check that the first two

invariants are maintained. But the third, which asserts that all new rules are balanced,

requires some work. The rule Zj+1 -+ ALT is balanced by the case assumption. What

remains is to show that the rule T - BiYi+1 is balanced; that is, we must show:

(5.3)

a [Yi+1]
1 -a ~ [Bi]

1 - a

The left inequality is (5.1). For the right inequality, begin with (5.3):

[Yi+ 1]
a i< [Zi]1 -a
a

= ([Ai] + [Bi])
-1 -a

a1 - a
< ~[Bi] + [Bi]
1a -aa
1-a

K [B]

The equality follows from the definition of Z by the rule Zi ABj. The subsequent

inequality uses the fact that this rule is balanced, according to invariant 3. The last
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inequality uses only algebra and holds for all a ; 0.381.

If case 2 is bypassed then Ai and BjY+1 are not in balance; that is, the following

assertion is false:

a [Al]
1 - a - [BiYi+1]

1 - a

a

Since Ai is in balance with Bi alone by invariant 3, the right inequality holds. There-

fore, the left inequality must not; hereafter, we can assume:

ae [Ai]
1 - a [BiYi+1]

Combining inequalities (5.3) and (5.4), one can use algebraic manipulation to establish

the following bounds, which hold hereafter:

[Ail]
[Bj]

[Yi+ 1]
[Bj]

1 - 2a
a

1 - 2a

(5.5)

(5.6)

Case 3: Otherwise, suppose that Bi is defined by the rule Bi -+ UV. We create

three new rules:

zi+1

(5.4)

Zj+j -+ PQi

Pi - AjU

Qi -+ VYi+1

P.

Ai U

Q.

Bi

V Yg 1

The first of these becomes the active rule. We must check that all of the new rules

are in balance. We begin with Pi -+ A1U. In one direction, we have:
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[Ai]

[U]
[Ai]

(1 - a)[Bi]

> [Ai]
[Bi]

a
1-a

The first inequality uses the fact that B -+ UV is balanced. The second inequality

follows because 1 - a < 1. The final inequality uses the fact that Ai and Bi are in

balance. In the other direction, we have:

[Ai]

[U]
[Ail]

a[Bi]
1

- 1 -2a

a

The first inequality uses the fact that Bi -+ UV is balanced, and the second follows

from (5.5). The last inequality holds for all a < 0.293.

Next, we show that Qj -± VY+j is balanced. In one direction, we have:

[Yi+1]

[V]
< [Yi+1]
- a[Bi]

1

- 1-2a
1-a

The first inequality uses the fact that Bi -* UV is balanced, the second uses (5.6),

and the third holds for all a < 0.293. In the other direction, we have:
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[Yi+1] > [Yi+1]
[V] - (1 - a)[Bi]

> [Yi+ 1]
- [Bi]

a
- 1- a

Again, the first inequality uses the fact that Bi - UV is balanced, the second uses

1 - a < 1, and the third is (5.1).

Finally, we must check that Zi+1 -± PQj is in balance. In one direction, we have:

[PI] [A U]

[Qi] [VYi+1]
< [Ai] + (1 - a)[Bj]

a[Bi] + [Yi+ 1 ]
[Ai] + a

+B] (1-a)

[Bi]

in + (1-a)

1-a
a

The equality follows from the definitions of P and Qj. The first inequality uses the

fact that the rule Bi -± UV is balanced. The subsequent equality follows by dividing

the top and bottom by [Bi]. In the next step, we use (5.5) on the top, and (5.1) on

the bottom. The final inequality holds for all a < }. In the other direction, we have:
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[IN [AjU]
[Qi] [VYi+1]

[Aj]+a[Bi]
(I - a) [Bi] + [Yi+1]

[Ai]+a

[Ba] ±a

a +C

- 1-a

As before, the first inequality uses the definitions of P and Qj. Then we use the

fact that Bi -+ UV is balanced. We obtain the second equality by dividing the top

and bottom by [Bi]. The subsequent inequality uses the fact that Ai and Bi are in

balance on the top and (5.6) on the bottom. The final inequality holds for all a < }

All that remains is to upper bound the number of rules created during the AddPair

operation. At most three rules are added in each of the t steps of the second phase.

Therefore, it suffices to upper bound t. This quantity is determined during the first

phase, where Y is decomposed into a string of symbols. In each step of the first phase,

the length of the expansion of the first symbol in this string decreases by a factor

of at least 1 - a. When the first symbol is in balance with X, the process stops.

Therefore, the number of steps is O(log [Y]/[X]). Since the string initially contains

one symbol, t is 0(1 + log [Y]/[X]). Therefore, the number of new rules is:

0 1+ log
[Y]

Because we take the absolute value, this bound holds regardless of whether [X] or

[Y] is larger.
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The AddSequence Operation

The AddSequence operation is a generalization of AddPair. We are given a balanced

grammar with nonterminals X1 ... Xt and want to create a balanced grammar con-

taining a nonterminal with expansion (X 1 ... Xt).

The idea is to place the Xi at the leaves of a balanced binary tree. (To simplify the

analysis, assume that t is a power of two.) We create a nonterminal for each internal

node by combining the nonterminals at the child nodes using AddPair. Recall that

the number of rules that AddPair creates when combining nonterminals X and Y is:

o 1 + log ) = 0 (log [X] + log [Y])
[Y ]

Let c denote the hidden constant on the right, and let s equal [X 1 ... Xt]. Creating

all the nonterminals on the bottom level of the tree generates at most

t

c log[X] < ctlog
t

i=1

rules. (The inequality follows from the concavity of log.) Similarly, the number of

rules created on the second level of the tree is at most c(t/2) log ', because we pair

t/2 nonterminals, but the sum of their expansion lengths is still s. In general, on the

i-th level, we create at most

c(t/27) log /2 = c(t/2) log - + cti/2Z
t/2i t

new rules. Summing i from 0 to log t, we find that the total number of rules created

is
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log t / /X .-v ..X'1
c(t/2)log + cti/2 = 0 t I + log

i=o

as claimed.

The AddSubstring Operation

We are given a balanced grammar containing a nonterminal with 3 as a substring of

its expansion. We want to create a balanced grammar containing a nonterminal with

expansion exactly 3.

Let T be the nonterminal with the shortest expansion such that its expansion

contains 3 as a substring. Let T -+ XY be its definition. Then we can write

# = OP#&, where the prefix Op lies in (X) and the suffix 0, lies in (Y). (Confusingly,

Op is actually a suffix of (X), and #, is a prefix of (Y).) We generate a nonterminal

that expands to the prefix Op, another that expands to the suffix &3, and then merge

the two with AddPair. The last step generates only 0(log 1,3|) new rules. So all that

remains is to generate a nonterminal that expands to the prefix, ,; the suffix is

handled symmetrically. This task is divided into two phases.

In the first phase, we find a sequence of nonterminals X1 ... Xt with expansion

equal to Op. To do this, we begin with an empty sequence and employ a recursive

procedure. At each step, we have a desired suffix (initially /3) of some current non-

terminal (initially X). During each step, we consider the definition of the current

nonterminal, say X -+ AB. There are two cases:

1. If the desired suffix wholly contains (B), then we prepend B to the nonterminal

sequence. The desired suffix becomes the portion of the old suffix that overlaps

(A), and the current nonterminal becomes A.

2. Otherwise, we keep the same desired suffix, but the current nonterminal becomes

B.
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A nonterminal is only added to the sequence in case 1. But in that case, the length

of the desired suffix is scaled down by at least a factor 1 - a. Therefore the length of

the resulting nonterminal sequence is t = O(log I ).

This construction implies the following inequality, which we will need later:

[X1 ... Xi] 1- a (57)
[Xi+1] ~ a

This inequality holds because (X1 ... Xj) is a suffix of the expansion of a nonterminal

in balance with Xi+1. Consequently, X1 ... Xi is not too long to be in balance with

Xi+1-

In the second phase, we merge the nonterminals in the sequence X1 ... Xt to obtain

the nonterminal with expansion Op. The process goes from left to right. Initially, we

set R1 = X 1. Thereafter, at the start of the i-th step, we have a nonterminal Ri with

expansion (X1 ... Xj) and seek to merge in nonterminal Xi+1 . There are two cases,

distinguished by whether or not the following inequality holds:

a [Ri]
1 -a - [Xi+ 1]

" If so, then Ri and Xj+1 are in balance. (Inequality (5.7) supplies the needed

upper bound on [Ri]/[Xi+1].) Therefore, we add the rule Rj+1 -+ RjXj+1.

* If not, then Ri is too small to be in balance with Xi+1. (It can not be too large,

because of inequality (5.7).) We use AddPair to merge the two, which generates

0(1 + log [Xi+1]/[Ri]) new rules. Since [Ri] is at most a constant times the size

of its largest component, [Xi], the number of new rules is 0(1 +log [Xj+1]/[Xi]).

Summing the number of rules created during this process gives:
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o( 1 + log ±I = O(t + log[X])

= O(log P)

The second equality follows from the fact, observed previously, that t = O(log|#3)

and from the fact that (Xt) is a substring of 3. Generating a nonterminal for the

suffix /3 requires O(log 1,|) rules as well. Therefore, the total number of new rules is

O(log I|) as claimed.

5.2.3 The Algorithm

We now combine all the tools of the preceding two sections to obtain an O(log n/m*)-

approximation algorithm for the smallest grammar problem.

We are given an input string -. First, we apply the LZ77 variant described in

Section 5.2.1. This gives a sequence L1 ... LP of terminals and pairs. By Lemma 27,

the length of this sequence is a lower bound on the size of the smallest grammar

for -; that is, p < m*. Now we employ the tools of Section 5.2.2 to translate this

sequence to a grammar. We work through the sequence from left to right, building

up a balanced binary grammar as we go. Throughout, we maintain an active list of

grammar symbols.

Initially, the active list is L1 , which must be a terminal. In general, at the begin-

ning of i-th step, the expansion of the active list is the string represented by L1 ... Li.

Our goal for the step is to augment the grammar and alter the active list so that the

expansion of the symbols in the active list is the string represented by L1 ... Li+,.

If Lj+1 is a terminal, we can accomplish this goal by simply appending Lj+1 to

the active list. If L,+1 is a pair, then it specifies a substring /i of the expansion of

the active list. If /i is contained in the expansion of a single symbol in the active list,

then we use AddSubstring to create a nonterminal with expansion /i using O(log 0iI)

rules. This nonterminal is then appended to the active list.
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On the other hand, if #3 is not contained in the expansion of a single symbol in

the active list, then it is the concatenation of a suffix of (X), all of (A1 ... Ati), and a

prefix of (Y), where XA1 ... AtY are consecutive symbols in the active list. We then

perform the following operations:

1. Construct a nonterminal M with expansion (A1 ... At,) using AddSequence.

This produces O(ti(1 + log 13i1/ti)) rules.

2. Replace A1 ... At, in the active list by the single symbol M.

3. Construct a nonterminal X' with expansion equal to the prefix of/3i in (X) using

AddSubstring. Similarly, construct a nonterminal Y' with expansion equal to

the suffix of #3 in (Y) using AddSubstring. This produces O(log 10iI) new rules

in total.

4. Create a nonterminal N with expansion (X'MY') using AddSequence on X',

M, and Y'. This creates O(log Jl~j) new rules. Append N to the end of the

active list.

Thus, in total, we add O(ti + tj log I/il/ti + log Loij) new rules during each step. The

total number of rules created is:

0 + tjlog |3I/tj + logj|#j = o t + Eti log \Iti + slog | I

The first sum is upper bounded by the total number of symbols inserted into the

active list. This is at most two per step (M and N), which gives a bound of 2p:

P

S ti < 2p
i=1

To upper bound the second sum, we use the concavity inequality:
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p

ai log bi a log (=a
1P =1

and set ai = ti, bi = I#I/ti to give:

tj log
ti

< ( t log

= o(Plog())

The latter inequality uses the fact that _U1 |3Zj _ n and that E _ 2p. Note

that the function x log n/x is increasing for x up to n/e, and so this inequality holds

only if 2p < n/e. This condition is violated only when input string (length n) turns

out to be only a small factor (2e) longer than the LZ77 sequence (length p). If we

detect this special case, then we can output the trivial grammar S - a- and achieve

a constant approximation ratio.

By concavity again, the third sum is upper bounded by:

p log p log -
P p

The total grammar size is therefore:

O P log = 0 (m* log )

where we use the inequality p < m* and, again, the observation that x log n/x is

increasing for x < n/e. This proves the claim.
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5.3 Grammar-Based Compression versus LZ77

We have now shown that a grammar of size m can be translated into an LZ77 sequence

of length at most m. In the reverse direction, we have shown that an LZ77 sequence

of length p can be translated to a grammar of size O(plogn/p). Furthermore, the

latter result is nearly the best possible. Consider strings of the form

o- = xki I Xk2 I ... I Xkl

where k, is the largest of the ki. This string can be represented by an LZ77 sequence

of length O(q + log ki):

x (1, 1) (1, 2) (1, 4) (1, 8) ... (1, ki - 2j) | (1, k2) |... (1, kq)

Here, j is the largest power of 2 less than ki. If we set q = E(log k1 ), then the sequence

has length O(log k1 ).

On the other hand, Theorem 6 states that the smallest grammar for o- is within

a constant factor of the shortest addition chain containing ki,... , kq. Pippinger [30]

has shown, via a counting argument, that there exist integers ki, . . , kq such that the

shortest addition chain containing them all has length:

S(log k + q logk
log log ki + log q

If we choose q = E(log k1) as before, then the above expression boils down to:

( log 2 ki
log log ki
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Putting this all together, we have a string - of length n = O(ki log k1) for which

there exists an L Z77 sequence of length O(log ki), but for which the smallest grammar

has size Q . The ratio between the grammar size and the length of the LZ77

sequence is therefore:

(log ki 9 ( log n
loglogki loglognJ

Thus the O(log n) blowup given by our algorithm for mapping an LZ77 sequence to

a grammar is essentially optimal. No significantly better approximation ratio can be

achieved using the length of the LZ77 representation as a lower bound.

The analysis in this chapter suggests that the best grammar-based compressors

and LZ77 should achieve roughly comparable compression performance. This is

hardly surprising since the two representations are quite similar. Which approach

achieves superior compression in practice depends on many considerations beyond

the scope of our theoretical analysis. For example, one must bear in mind that a

grammar symbol can be represented by fewer bits than an LZ77 pair. In particular,

each LZ77 pair requires about 2 log n bits to encode, although this may be somewhat

reduced by representing the integers in each pair with a variable-length code. On the

other hand, each grammar symbol can be naively encoded using about log m bits,

which could be as small as log log n. This can be further improved via Huffman or

arithmetic encoding. Thus, the fact that grammars are typically somewhat larger

than LZ77 sequences is roughly offset by the fact that grammars translate better to

bits. Empirical comparisons are emerging, but do not yet seem definitive one way or

the other [16, 10, 27, 24, 3, 1].

The procedures presented here are not ready for immediate use as practical com-

pression algorithms. The numerous hacks and optimizations needed in practice are

lacking. Furthermore, as noted in Section 4.1, our evaluation criterion, approxima-

tion ratio, reveals little about performance on high-entropy strings, such as ordinary

English text. (In fact, recall that if the input string o- is compressible by less than a
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factor of 2e, which is about the limit for ASCII text, our best algorithm outputs the

trivial grammar S -4 -.) Furthermore, our algorithms are designed not for practical

performance, but for good, analyzable performance. In practice, the best grammar-

based compression algorithm may yet prove to be a simple scheme like RE-PAIR,

which we do not yet know how to analyze.
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Chapter 6

Future Directions

This chapter discusses some interesting open problems related to the smallest gram-

mar problem.

Analysis of Global Algorithms

Our analysis of previously-proposed algorithms for the smallest grammar problem

leaves a large gap of understanding surrounding the global algorithms, GREEDY,

LONGEST MATCH, and RE-PAIR. In each case, we upper bound the approximation

ratio by O((n/ log n)2 /3) and lower bound it by some expression that is o(log n). Elim-

ination of this gap would be significant for several reasons. First, these algorithms

are important; they are simple enough to be practical for applications such as com-

pression and DNA entropy estimation. Second, there are natural analogues to these

global algorithms for other hierarchically-structured problems. Thus, a deeper un-

derstanding of them in the context of the smallest grammar problem may have wider

ramifications for hierarchical optimization in general. Third, all of our lower bounds

on the approximation ratio for these algorithms are well below the Q(log n/ log log n)

hardness implied by the reduction from the addition chain problem. Either there

exist worse examples for these algorithms or else a tight analysis will yield progress

on the addition chain problem. Either resolution would be interesting.
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Approximation Algorithms for Addition Chains

As noted in Chapter 3, the addition chain problem has been studied extensively, but

not from the perspective of approximation algorithms. Yao's algorithm [38] approxi-

mates the shortest addition chain containing k1, ... , k, to within O(log n/loglog n),

but makes no use of special relationships between the integers ki. Progress on this

problem seems possible and would be interesting for at least two reasons. First,

the approximation ratio for the smallest grammar problem achieved in Chapter 5,

O(logn/m*), can not be significantly improved without progress on this problem.

Second, the addition chain problem has considerable interest in its own right. The

need to efficiently exponentiate in cryptographic applications provides some motiva-

tion, but the problem also has intrinsic interest; much work on the problem was done

before the cryptographic application appeared.

Monomial Evaluation

Pippenger [30] considered the problem of evaluating a set of monomials over several

variables using the minimum number of multiplications. For example, how many

multiplications are needed to compute x 8y z, x23y9z' 0 , and x 8y12 ? This can be

regarded as a vectorial version of the addition chain problem. In the example, we

must find the shortest addition chain beginning with the vectors (1, 0, 0), (0, 1, 0),

and (0, 0, 1) and containing the vectors (8, 3, 5), (23, 9, 10), and (8,12, 0). Pippenger's

elegant paper demonstrates results for this general problem analogous to Yao's for

the single-variable problem. Thus, the door is open to an approximation algorithm.

This can also be regarded as a variant of the smallest grammar problem. Now one

is given several input strings instead of just one. In the example, the input strings

would be x8y3 z5 , x 2 3 y 9 z1 0 , and x 8y12. The goal is roughly to create a grammar

containing nonterminals that expand to these strings. However, we disregard the

order of symbols within a string. For example, we now regard the strings xxyz and

zxyx as equivalent. Note that global algorithms for the smallest grammar problem

have natural analogues in this domain. For example, in analogy to RE-PAIR one might
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always create a nonterminal for the pair of symbols that appears most frequently, now

disregarding the order of symbols within a string.

Even the special case of this problem where every variable has degree at most one

is interesting. It is equivalent to the smallest AND-circuit problem. A digital circuit

has several input signals and several output signals. Each output is required to be

the logical AND of a specified subset of the inputs. How many two-input AND gates

must the circuit contain to satisfy the specification?

Algebraic Extraction

The algebraic extraction problem is of great practical importance and points out the

need for a better understanding of hierarchical approximation problems beyond the

smallest grammar problem. It can be regarded as a generalization of the smallest

AND-circuit problem. As before, a digital circuit has several inputs and several

outputs. Now, however, the function of each output is a specified sum-of-products

over the input signals. The basic problem is to find the smallest circuit satisfying

this specification. However, to simplify matters, one regards each distinct literal in

the sums-of-products as a distinct real-valued variable. Logical OR is regarded as

addition, logical AND is regarded as multiplication, and only transformations that

are valid over the reals are admissible. For example, ab + ai = a(b + T) is a valid

transformation, but ab + ab = a is not.

This problem has been studied extensively in the context of automated circuit

design. (In practice, some transformations that do not correspond to identities over

the reals are sometimes allowed in order to enhance performance.) Interestingly,

the best known algorithms for this problem are closely analogous to the GREEDY

and RE-PAIR algorithms for the smallest grammar problem. (For details on these

analogues, see [8, 7] and [31] respectively.) No approximation guarantees are known.

This underlines the need for a better understanding of global algorithms.
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String Complexity in Other Natural Models

One motivation for studying the smallest grammar problem was to shed light on

a computable and approximable variant of Kolomogorov complexity. This raises a

natural follow-on question: can the complexity of a string be approximated in other

natural models? For example, the grammar model could be extended to allow a non-

terminal to take a parameter. One could then write a rule such as T(P) -+ PP, and

write the string xxyzyz as T(x)T(yz). Presumably as model power increases, ap-

proximability decays to uncomputability. Good approximation algorithms for strong

string-representation models could be applied wherever the smallest grammar prob-

lem has arisen: data compression, deducing linguistic structures, revealing patterns

in DNA, etc.
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