
Capabilities Aware Planner/Optimizer/Executioner
for COntext INterchange Project

by

Tarik Alatovic

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute Of Technology

February 04, 2002

Copyright 2002 Alatovic Tarik. All rights reserved.

The author hereby grants to MIT permission to reproduce
and distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Department of Electrical Engineering and Computer Science
February 04, 2002

.A A

Certified By

Accepted By

Dr. Stuart Madnick
John Norris Maguire Professor of Information Technologies

Thesis Supervisor

. Smith
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

Author

-ATI

Capabilities Aware Planner/Optimizer/Executioner
for COntext INterchange Project

by
Tarik Alatovic

Submitted to the
Department of Electrical Engineering and Computer Science

February 04, 2002

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

I present the design and implementation of a Planner, Optimizer, and Executioner (POE)
for the COntext INterchange System. POE takes a context-mediated datalog query from
the mediation engine as an input and returns query answer results assembled from data
from remote data sources. Context-mediated queries are composed of component
subqueries (CSQs) to multiple data sources. The Planner creates a query execution plan,
which specifies the execution order of the CSQs. The Executioner executes each CSQ
remotely, merges the results, and returns an answer to the original query.

In this thesis, I present novel approaches to three important query answering issues: (1)
handling data sources with varying processing capabilities, (2) optimizing queries in
distributed environments where costs statistics are not readily available, and (3)
integrating with non-relational data sources.

Thesis Supervisor: Dr. Stuart Madnick
Title: John Norris Maguire Professor of Information Technologies

2

Contents

1 Introduction... 7
1.1 M otivational Exam ple.. 8
1.2 Organization of the Thesis .. 12

2 Related W ork .. 14
2.1 Source Capabilities ... 14
2.2 Distributed Query Optim ization ... 15

3 Design Overview .. 16
3.1 POE Architecture .. 16
3.2 Im plem entation Decisions .. 18

3.2.1 Im plem entation Language ... 18
3.2.2 RDBM S as Local D ata Store ... 18
3.2.3 D atabase Connectivity .. 19

3.3 Software Com ponents... 19
4 Representations ... 20

4.1 Internal Query Representation .. 20
4.1.1 Query.. 21
4.1.2 Single Query .. 21
4.1.3 Com ponent Subquery (CSQ)... 22
4.1.4 Term .. 23
4.1.5 Condition... 24
4.1.6 Relation ... 24
4.1.7 Attribute ... 25
4.1.8 Source ... 25
4.1.9 Capability Record ... 25

4.2 D atalog Parser... 25
4.3 SQL Translation.. 28

5 Executioner ... 31
5.1 Fetching D ata From Rem ote Sources ... 32

5.1.1 Relational Access... 33
5.1.2 Functional Access ... 33

5.2 Storing D ata From the Rem ote Sources Locally .. 34
5.3 Executing Queries in Parallel.. 36
5.4 Executing Query Execution Plan... 37
5.5 Query Execution Trace ... 38

6 Planner & Optim izer... 41
6.1 Query Restrictions ... 41
6.2 Query Execution Plan ... 42
6.3 QEP Generation Algorithm ... 44

6.3.1 Trivial Algorithm ... 44
6.3.2 Parallel Query Execution .. 46
6.3.3 H andling Query Binding Restrictions.. 47

6.3.3.1 Determining whether CSQ is Independently Executable 50
6.3.3.2 Determining whether CSQ is executable given a set of executed CSQs.. 52

6.3.4 H andling Query Operator Restrictions ... 53

3

6.3.5 Cost Optimized QEP Generation Algorithm .. 54
6.3.5.1 Cost Model.. 55
6.3.5.2 Cost Statistics Generation.. 55
6.3.5.3 Cost Optimized QEP Generation Algorithm Using Remote Joins 56

6.3.6 Handling Key-at-a-Time Query Restriction .. 60
7 Integration with Non-Relational Data Sources ... 63

7.1 Web Wrapped Sources... 63
7.2 Functional Relations ... 64
7.3 Classification of Source Restrictions for Non-Relational Sources................ 65

7.3.1 Restriction Severity... 65
7.3.2 Restriction Scope ... 66

8 Conclusions and Future Work .. 67
8.1 Handling Query Restrictions.. 67

8.1.1 Batch of Tuples at a Time Retrieval ... 67
8.1.2 Grammar-Based Approach for Specifying Query Capabilities 67

8.2 Optimizing Query Execution... 68
8.2.1 Semantic Query Optimization... 68
8.2.2 Performing Joins Locally on the Relations From the Same Source 69
8.2.3 Pooling Temporary Relations .. 69

8.3 Integration with Non-Relational Sources.. 70
8.4 Conclusion ... 70

9 R eferences... 7 1
Appendix A Relation Sources, Schemas, and Capabilities 73
Appendix B Specification of Contexts... 76
Appendix C Remote Access Interfaces ... 77
Appendix D Ordered Table Class.. 78
Appendix E Datexform Servlet... 79
Appendix F Software Components.. 82
Appendix G Query Execution Trace for Motivational Example................................ 84
Appendix H Testing Setup .. 88
Appendix I Installation Instructions.. 89

4

List of Figures

Figure 1-1 Architectural Overview of the COntext INterchange System........................ 7
Figure 1-2 U ser Q uery ... 8
Figure 1-3 Schema for WorldcAF and DStreamAF Relations .. 9
Figure 1-4 Worldscope and Datastream Contexts .. 9
Figure 1-5 Mediated Datalog Query for Motivational Example 9
Figure 1-6 SQL Translation of Mediated Datalog of Motivational Example................ 10
Figure 3-1 POE A rchitecture ... 16
Figure 4-1 Internal Query Representation ... 20
Figure 4-2 Relation Record for olsen Relation .. 24
Figure 4-3 Source Records for Oracle and Cameleon Sources...................................... 25
Figure 4-4 Mediated Datalog Query for Motivational Example 26
Figure 4-5 Algorithm for Associating Query Conditions... 27
Figure 4-6 SQL Translation of Mediated Datalog of Motivational Example................ 29
Figure 5-1 Executioner Architecture .. 31
Figure 5-2 Remote Access Hierarchy for Query in Motivational Example 32
Figure 5-3 Parallel Execution of Key-at-a-Time Queries... 37
Figure 5-4 Query Execution Plan for Motivational Example Query............................. 37
Figure 5-5 Remote Join on DStreamAF CSQ Using Bindings from currency-map CSQ 38
Figure 5-6 Query Execution Trace for Executing Database CSQ 39
Figure 5-7 Query Execution Trace for Executing Cameleon CSQ................................ 39
Figure 5-8 Query Execution Trace for Exeucting Functional CSQ............................... 39
Figure 5-9 Query Execution Trace for the Final Query of Motivational Example 40
Figure 6-1 Capability Record for olsen Relation.. 41
Figure 6-2 Query Execution Plan for Motivational Example Query............................ 42
Figure 6-3 Graph Representation of QEP.. 43
Figure 6-4 SQL Corresponding to Single Query 1 of Motivational Example.............. 45
Figure 6-5 Number of Tuples in Single Query 1 of Motivational Example................. 46
Figure 6-6 Time Graph of Execution of Single Query 1 Using Trivial Algorithm..... 46
Figure 6-7 Time Graph of Execution of Single Query 1 Using Trivial Algorithm with

P arallelization ... 47
Figure 6-8 SQL Corresponding to Single Query 2 of Motivational Example.............. 48
Figure 6-9 Binding for exchanged Attribute is olsen CSQ is Missing 48
Figure 6-10 Olsen CSQ with Added Binding from Join Relation with currency-map2.. 48
Figure 6-11 Olsen CSQ with Added Binding from Join Relation with currencymap2.. 49
Figure 6-12 QEP Generation Algorithm Supporting Binding Query Restrictions........ 49
Figure 6-13 Time Graph of Execution of Single Query 2 Using QEP Generation

Algorithm Supporting Binding Restrictions .. 50
Figure 6-14 Time Graph of Execution of Single Query 2 Where CSQs are Executed

S equentially... 50
Figure 6-15 Algorithm for Determining Whether a CSQ is Independently Executable... 51
Figure 6-16 Schemas and Capability Records for Relations olsen and currency-map 51
Figure 6-17 Binding for exchanged Attribute in olsen CSQ is missing 51
Figure 6-18 Algorithm for Determining Whether a CSQ is Executable Given a Set of

E xecuted C SQ s ... 52

5

Figure 6-19 Join Bindings in Single Query 2 .. 53
Figure 6-20 Olsen CSQ with Added Binding from Join Relation with currency-map2.. 53
Figure 6-21 Olsen CSQ with Added Condition rate>1.0... 53
Figure 6-22 SQL of Modified Single Query 2 Illustrating Solution for Operator

R estrictions Problem .. 54
Figure 6-23 Join of worldcaf and namemap-dtws Relations at their Primary Keys 56
Figure 6-24 Tuples of worldcaf Relation... 57
Figure 6-25 Tuples of namemap-dt-ws Relation ... 57
Figure 6-26 Tuples of Join of worldcaf and namemap_dtws Relations at their Primary

K eys .. 57
Figure 6-27 Cost Optimized QEP Generation Algorithm Using Remote Joins 58
Figure 6-28 Query Execution Plan for Single Query 2... 59
Figure 6-29 Graph of QEP for Single Query 2.. 59
Figure 6-30 Head to Head Timing Comparison Between Cost-Optimized Algorithm and

Non-Optimized Algorithm for Execution of Single Query 2 60
Figure 6-31 Capability Record for secapl Relation ... 60
Figure 7-1 Remote Access to Non-Relational Sources... 63
Figure 8-1 SQL for Semantic Query Optimization Example .. 68
Figure 8-2 Datalog for Semantic Query Optimization Example 68
Figure 8-3 Algorithm for Finding Unused Variables in a Datalog Query.................... 69

6

1 Introduction

Context Interchange is a novel approach to the integration of heterogeneous data sources,
which was developed at the MIT Sloan School of Management. It seeks to integrate a
wide variety of data sources in a seamless manner, not only at the physical level, but also
at the semantic level. The Context Interchange approach attacks the problem of semantic
integration by proposing the idea of contexts associated with the sources and users of
data. A context can be defined as "the assumptions underlying the way an agent
represents or interprets data" [4]. The rationale behind this approach is that once all the
assumptions about the data have been explicated and clarified, it would be easy to resolve
the conflicts that arise because of the discrepancies in these assumptions.

CONTXT EDIAIONSERVCESLenseth
-------- Domain Meters IFeetConversion i

I Libra Model

ocal Store Query Execution Plan

Mo ctd-ner Mediated
Query

Qpery

Subqueries I / ' r

Elevation / ', i Elevation
Axioms :/-W pr Axioms "

Context -Contex~t
.Axioms Axioms er

Sem-structured;
Data Sources

DBMS (e.g., XML)

APPLICATIONS

C ext
AiomsI

7eet

Figure 1-1 Architectural Overview of the COntext INterchange System

The COntext INterchange (COIN) project proposes the use of a context mediator
[1], which is a component that sits between the users of data and the sources of data.
When a user sends a query on the set of data sources, the context mediator analyzes the
query to identify and resolve any semantic conflicts, which may exist in it. It resolves the
conflicts by rewriting the query with the necessary conversions to map data from one
context to another. The rewritten query is referred to as a context mediated query. This
idea has been implemented in the COIN system, which integrates standard relational
databases and wrapped non-relational data sources. Examples of wrapped data sources
are web sources and user defined functions, which provide arithmetic and string
manipulation features.

The diagram in Figure 1-1 shows the architecture of the COIN system. It is a three-tier
architecture. Users interact with the client processes, which route all requests to the
context mediator. The second set of processes in the COIN system are the mediator
processes which consist of the context mediator and Planner/Optimizer/Executioner

7

(POE). These processes provide all the mediation services. Together, they resolve the
semantic conflicts, which exist in the query and also generate and execute a query
execution plan (QEP). Finally, the server processes provide the physical connectivity to
the data sources. They provide a uniform interface for accessing both relational databases
and wrapped non-relational sources.

In this thesis, I present the design and implementation of the POE component of the
COntext INterchange System. The input to POE is a context-mediated datalog query
from the mediation engine and the output is a query answer assembled from the data
fetched from relational databases and non-relational data sources. My work focuses on
resolving three important problems: (1) handling data sources with varying processing
capabilities, (2) optimizing queries in distributed environments where costs statistics are
not readily available, and (3) integration with non-relational data sources.

1.1 Motivational Example

We start with a motivational example that is used throughout the thesis to explain the
issues involved in planning and execution of context mediated queries.

context=cws
select DStreamAF.NAME, DStreamAF.TOTALSALES,

WorldcAF.LATESTANNUALFINANCIALDATE, WorldcAF.TOTALASSETS
from DStreamAF, WorldcAF
where DStreamAF.ASOFDATE = '01/05/94'

and WorldcAF.COMPANYNAME = DStreamAF.NAME
and DStreamAF.TOTAL SALES> 10,000,000;

Figure 1-2 User Query

Joan poses the query shown in Figure 1-2. She is interested in the names, total sales, and
total assets of all companies with total sales greater than 10,000,000. This information is
provided by two relations: DStreamAF and WorldcAF. Both DStreamAF and WorldcAF
provide historical financial data on a variety of international companies. Joan is used to
working with Worldscope data source (providing WorldcAF relation), but it now also needs
to query DStreamAF relation from Datastream source because only DStreamAF contains
data on the total assets that she is interested in. Schemas and contexts' for these two
relations are shown in Figures 1-3 and 1-4 below.

WorldcAF
COMPANY NAME string
LATEST ANNUAL FINANCIAL DATE string
CURRENT OUTSTANDING SHARES number
NET INCOME number
SALES number
TOTAL ASSETS string

DStreamAF

Complete schemas and contexts for all working examples are given in Appendices A and B

8

AS OF DATE string
NAME string
TOTAL SALES number
TOTAL EXTRAORD ITEMS PRE TAX number
EARNED FOR ORDINARY Number
CURRENCY String

Figure 1-3 Schema for WorldcAF and DStreamAF Relations

Context Currency Scale Currency Date Format
Factor Type

Worldscope, c ws USD 1000 3char American Style /
Datastream, cdt Country of 1000 2char European Style -

Incorporation

Figure 1-4 Worldscope and Datastream Contexts

Because Joan is used to working with Worldscope, she wants results reported in
Worldscope contexts where all financial figures have a scale factor of a 1000 and are
reported in American dollars. She is interested in financial results as of January, 5 th,

1994 and she specifies this date in a Worldscope format as '01 /05/94'.

The query Joan entered is then sent for processing to the meditation engine. The context
mediator resolves semantic conflicts by rewriting the query with the necessary
conversions to map data from Datastream context to Worldscope context. Figure 1-5
below shows the resulting mediated datalog query and Figure 1-6 its SQL translation
generated using POE's SQL Translator component described in section 4.3.

answer('V31', 'V30', 'V29', 'V28') :-
datexform('V27', "European Style -", "01/05/94", "American Style /"),
'Name-mapDtWs'('V26', 'V31'),
10000000 < 'V30',
'DStreamAF'('V27', 'V26', 'V30', 'V25', 'V24', 'V23'),
'currency-map'('USD', 'V23'),
'WorldcAF'('V31', 'V29', 'V22', 'V21', 'V20', 'V28', 'V1 9').

answer('V18', 'V17', 'V16', 'V15') :-
datexform('V14', "European Style -", "01/05/94", "American Style /"),
10000000 < 'V13',
'Name-mapDtWs'('V1 2', 'V1 8'),
'DStreamAF'('V14', 'V12', 'V11', 'V1O', 'V9', 'V8'),
'currency-map'('V7', 'V8'),
<>('V7', 'USD'),
'V13' is 'V11' * 'VS,
olsen('V7', 'USD', 'V5', "01/05/94"),
'V17' is 'V11' * 'VS,
'WorldcAF'('V1 8', 'V16', 'V4', 'V3', 'V2', 'V15', 'Vi').

Figure 1-5 Mediated Datalog Query for Motivational Example

9

select namemapjdtws.ws names, DStreamAF.total-sales, worldcaf.latestannualfinancialdate,
worldcaf.totalassets

from (select datel, 'European Style -', '01/05/94', 'American Style /'
from datexform where formatl='European Style -'
and date2='01/05/94'
and format2='American Style ') datexform,

(select dt-names, ws-names
from name-map-dt-ws) namemap_dt_ws,
(select as-of-date, name, totalsales, total-extraorditems-prejtax, earnedfor_ordinary, currency
from DStreamAF
where 10000000 < total-sales) DStreamAF,

(select 'USD', char2_currency
from currency-map
where char3_currency='USD') currency-map,
(select company-name, latestannualfinancial-date, currentoutstanding-shares,

netincome, sales, total-assets, country-ofjincorp
from worldcaf) worldcaf

where DStreamAF.currency = currency-map.char2_currency
and namemap-dt ws.wsnames = worldcaf.company-name
and datexform.datel = DStreamAF.asofdate
and namemap-dt ws.dt names = DStreamAF.name
and 10000000 < DStreamAF.totalsales
union
select namemap.dtJws2.ws-names, DStreamAF2.totalsales*olsen.rate,

worldcaf2.latestannualfinancial-date, worldcaf2.totalassets
from (select datel, 'European Style -', '01/05/94', 'American Style /'

from datexform
where formati ='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform2,
(select dt-names, ws-names
from name-mapdt-ws) name-map-dt-ws2,
(select as-of date, name, total-sales, total-extraorditemsprejtax, earnedforordinary, currency
from DStreamAF) DStreamAF2,
(select char3_currency, char2_currency
from currency-map
where char3_currency <>'USD') currency-map2,
(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94') olsen,
(select company-name, latestannualfinancial-date, current_outstanding-shares,

netincome, sales, totalassets, country-ofjincorp
from worldcaf) worldcaf2

where namemap-dt ws2.wsnames = worldcaf2.company-name
and datexform2.datel = DStreamAF2.asofdate
and namemap-dt-ws2.dtnames = DStreamAF2.name
and DStreamAF2.currency = currency-map2.char2_currency
and currency-map2.char3_currency = olsen.exchanged
and 10000000 < DStreamAF2.totalsales*olsen.rate
and currency-map2.char3_currency <> 'USD'

Figure 1-6 SQL Translation of Mediated Datalog of Motivational Example

A datalog query is a logical rule of the form A:-B, where A is the head of the rule and B is
the body. The procedural reading for the rule A:-B is: "To answer the query A, we must
first answer B." In Figure 1-5, the head of each query is an answer() predicate. This
predicate represents the result of the query. Each fact in B is either a relational predicate,
a boolean statement, or a conversion function. We refer to all non-relational functions as

10

conversion functions. Typically, these functions are introduced into the query to map
data from one context to another2

Relational predicates represent queries to data sources. For example, the predicate
'DStreamAF'('V27', 'V26', 'V30', 'V25', 'V24', 'V23') represents the relation DStreamAF in the
Datastream source. Each argument in the predicate represents an attribute of DStreamAF
relation. The order of the arguments corresponds directly to the order of the attributes in
the relation. Thus, V27 represents DStreamAF.ASOFDATE, V26 represents
DStreamAF.NAME , V30 represents DStreamAF.TOTALSALES , V25 represents
DStreamAF.TOTALEXTRAORDITEMSPRETAX, V24 represents
DStreamAF.EARNEDFORORDINARY, and V23 represents DStreamAF.CURRENCY.

Variables shared by different facts must instantiate to the same value. In our example, the
first attribute of NamemapDtWs and the second attribute of DStreamAF must instantiate
to the same value because they are both represented by the variable V26. Thus, shared
variables in the relations represent joins among the relations in the query. Shared
variables are also used to show which attributes must be returned to the user as part of the
answer. In our example, V30 is shared by DStreamAF and answerO. Therefore, the third
attribute of DStreamAF (e.g. TOTALSALES) would have to be returned as part of the
answer to the query.

Boolean statements represent selection conditions on attributes in the query. A
statement like <>(V7', 'USD') restricts the value of currency-map.char3_currency to be other
than 'USD'. Conversion functions represent the operations needed for context conversion.
In our example, the second datalog query has the conversion function V1 7 is V11 * V5.
V1 7 is the second argument in the answero predicate, V11 is the third attribute of
DStreamAF (e.g. TOTALSALES), and V5 is the third argument of olsen (e.g. Rate). This
conversion function represents the fact that in order for the DStreamAF.TOTALSALES to
be returned to the user, its value needs to be multiplied by currency exchange rate to
account for context differences.

Each datalog query in the output of the context mediator resolves a possible semantic
conflict in the original query. In our example, the two queries represent the two kinds of
conflicts that could occur. The first datalog query handles the conflicts, which arise when
financial figures in DStreamAF relation are reported in American dollars, while the second
handles the conflicts, which occur when the financial figures in DStreamAF are reported
in currency other than American dollars. In the first datalog query, fact
'currency-map'('USD', 'V23') ensures that DStreamAF financial figures are reported in
American dollars. There is no need for a conversion of the currency of financial figures
once this condition is satisfied. The only conversions that need to be performed are a
translation of the name of the company from the Worldscope format to Datastream format
and a date format conversion. In the second datalog query, facts 'currency-map'('V7', 'V8')
and <>('V7', 'USD') ensure that DStreamAF financial figures are not reported in American

2 We will see later that the conversion function datexform is used for date conversions, such as Datastream
context date in 'European Style -' format to Worldscope context date format in 'American Style /'.

11

dollars. In this case a currency conversion using olsen relation is needed in addition to the
previously mentioned conversions.

The relational predicates DStreamAF and WorldcAF represent the relations that were
identified by the user in the original SQL query. Name-mapDtWs, datexform,
currency-map and olsen are auxiliary relations that provide information for mediation.
name-map-dt ws provides a translation of company names between Datastream and
Worldscope formats. datexform provides date format conversions. currency-map provides
translation between 3 letter currency codes and 2 letter currency codes. olsen provides
historical exchange rates for a given date.

Execution of this query involves accesses to Datastream and Worldcaf relations to retrieve
the information Joan needs. Because the user expects all financial data in US Dollars,
each financial figure requested by the user needs to be converted to US Dollars. This
conversion requires the exchange rate between the currency of financial figures and US
Dollars. Relation olsen provides this conversion. However, it imposes the restriction that
the olsen.Exchanged, olsen.Expressed, and olsen.Fate attributes be bound. Bindings for
olsen.Expressed and olsen.Date are 'USD' and '01/05/94' respectively. To get around binding
restriction3 for olsen.Exchanged we use the CURRENCY attribute of DStreamAF relation
(converted from 2char to 3char representation using currency-map). Using these olsen
bindings we can retrieve the exchange rate and use it to convert DStreamAF financial
figures to US Dollars.

1.2 Organization of the Thesis

The motivational example provided us with insight into steps necessary for retrieving the
query answer. The rest of the thesis describes design and implementation of Planner,
Optimizer, and Executioner components.

In chapter 2, I present related work in areas of source capabilities and distributed query
optimization. In chapter 3, I present an overview of the POE architecture and discuss
important implementation choices.

In chapter 4, I develop internal query representation, show how input datalog query is
parsed into internal representation, and describe SQL Translator component that
generates SQL corresponding to the internal query representation.

In chapter 5, I describe Executioner component. I show how data is fetched from remote
sources, how it is stored locally, and how it is merged into a query answer. I also discuss
how query execution is parallelized.

In Chapter 6, the richest chapter, I describe Planner and Optimizer components. I start
the chapter with a discussion on query restrictions and present capability records - the
language for capturing query restrictions. I continue with describing the format of query
execution plan (QEP). The rest of the chapter discusses QEP generation algorithm.

3 Binding restrictions are discussed in detail in section 6.1 on query restrictions.

12

Because of the complexity of the algorithm, I describe it in several stages starting of with
a trivial version of the algorithm and ending with a cost optimized version. I also discuss
query planning issues arising from restrictions on the queries that we can execute on the
remote sources.

In Chapter 7, I discuss issues arising from integration with non-relational data sources.

I conclude with chapter 8, which presents future directions for improvements of COIN
Planner/Optimizer/Executioner.

13

2 Related Work

An earlier version of Planner/Optimizer/Executioner for COIN system was built by Koffi
Fynn [16]. My POE offers improvements over Koffi Fynn's in the following areas:

" handling data sources with varying processing capabilities
" optimizing queries in distributed environment where costs statistics are not

available
" integration with non-relational data sources

In the area of handling data source with varying processing capabilities, I improve upon
Koffi Fynn by handling key-at-a-time restriction common among web sources.

In the area of distributed query optimization, I improve significantly over the Koffi Fynn
POE. I generate costs statistics for database queries and use cost-optimization algorithm
to minimize transfer of tuples over the network - the key factor of query execution time.
I also introduce parallel execution of component subqueries and key-at-a-time queries.

In the area of integration with non-relational data sources, I improve over Koffi Fynn by
integrating with Cameleon web wrapper engine through CGI interface and retrieving
query results in XML format. I also introduce Function Container Servlet used for
exporting conversion functions.

In addition, my POE has features not present in Koffi Fynn Executioner. Most notably,
SQL Translator component is used for translating mediation datalog into more readable
SQL notation. Also, I support a query execution trace feature, which shows in detail
operations that Executioner performs in answering the query.

The biggest difference between my and Koffi Fynn Executioner is in the underlying
technology. Koffi Fynn POE implementation uses Prolog and my POE implementation
uses Java and is built upon Oracle RDBMS engine (see section 3.2 for detailed discussion
of implementation choices).

In the rest of this section, I present a short survey of research work done in the areas of
query capabilities and distributed query optimization.

2.1 Source Capabilities

There are a number of efforts to develop languages for describing the capability
restrictions imposed by sources. Examples of research projects, which are tackling these
problems, are the Garlic Project at IBM, TSIMMIS Project at Stanford, Information
Manifold, and Disco.

IBM's Garlic project incorporates capability based query rewriter based on Relational
Query Description Language (RQDL) [13]. RQDL developed by researchers at Stanford,
University of California, and University of Maryland is an extension of Datalog and can
describe large and infinite sets of supported queries as well as schema independent

14

queries. However, the algorithms used in Garlic for integrating query capability
descriptions in the query planning phase only works among the different components of a
single subquery and not among different subqueries. For example, Garlic does not
consider the possibility of using information from one source to provide the information
required by other sources. It only uses the information to remove restrictions within a
single source.

Information Manifold uses the notion of a capability record [10] for representing query
capability restrictions where capability descriptions are attached to the schema exported
by the wrapper. The description states which and how many conditions may be applied
on each attribute.

TSIMMIS uses a language called the Query Description and Translation Language
(QDTL) [12]. It suggests an explicit description of the wrapper's query capabilities,
using the context-free grammar approach. However, TSIMMIS considers a restricted
form of the problem wherein descriptions consider relations of prespecified arities and
the mediator can only select or project the results of a single CSQ.

DISCO [17] describes the set of supported queries using context-free grammars. This
technique reduces the efficiency of capabilities-based rewriting because it treats queries
as ''strings."

2.2 Distributed Query Optimization

There has been a significant amount of work in building optimizers for distributed
homogenous databases like system R*. However, only a limited amount of work has
been done in optimization of queries in distributed heterogeneous environments.
Moreover, the work that has been done in distributed heterogeneous environments is not
universally applicable because different sets of assumptions are made in proposed
optimization algorithms. For example, IBM's Garlic system makes an assumption that
each of the data sources provides reliable cost estimates in a format specified by Garlic
system [18]. Another proposed optimization strategy is collecting statistical data on the
cost of previously executed queries [19]. This strategy assumes that the data at sources is
not changing rapidly and that queries performed are often repeated.

15

3 Design Overview

I first present the high-level architecture of the POE and then discuss the implementation
choices made. I finish with an overview of software components.

3.1 POE Architecture

As its name suggests, POE consists of three main components: Planner, Optimizer, and
Executioner (see Figure 3-1).

Planner Optimizer

____mediated Datatog internal Join
query Parser mpmni~ Calculator Cs siao

internal internal join cost
representation representation bindng-ta9sc

SOLSOTrnltrPaGeeao4 translation SQTrnltrPaGerto

Execution

+-query answer-

query
execution plan

CGl/XML

Carreoner**

Database Engine with Remote Query Non-Relational
Local Data Store Executioner Web Data Soutce

JDBC CGl/XML

Function Container
Servet

Remote Database

Figure 3-1 POE Architecture

Executioner executes the query plan. It dispatches the component subqueries to the
remote sources and combines the returned results. It also performs joins and condition
filtering that could not have been done at the remote sources. Intermediate results are
stored in the local data store.

In my implementation, Executioner is built on top of the conventional RDBMS. The
major challenge with this approach is that RDBMS can only perform relational
operations on the locally stored data because it does not have ability to access data in
remote sources. The task of efficiently bringing the data from remote sources into the

16

local data store of RDBMS is in fact the major task of Planner and Optimizer
components. Once the data from remote sources relevant for answering the query is
brought into the local data store, the RDBMS can perform relational operations on it and
answer the original query.

Planner takes a datalog query as an input and produces a query execution plan (QEP).
QEP in my implementation differs from query execution plans used for single database
executioners in that it operates at a higher level and does not specify complete ordering of
relational operations. Instead, it specifies constraints that need to be satisfied in the
execution of component subqueries (CSQs). The reasons why I chose a different role for
QEP are twofold: (1) I rely on powerful Executioner component that can execute queries
on locally stored data, and (2) CSQs may be executed in parallel, which means that
complete ordering of CSQ execution may not be known until the run-time.

Planner ensures that CSQs in QEP can be executed at the remote sources. This is
necessary because some data sources impose restrictions on the kinds of queries they can
answer. Typically, some sources require that bindings be provided for some of their
attributes or that only a specified number of attributes can be bound in a query.
Additionally, sources can have restrictions on the types of relational operators, which
they can handle.

Planner also includes a SQL Translator component. While SQL Translator is not an
essential component of the Planner, it is useful for understanding of mediated queries
because SQL tends to be more readable than the Datalog produced by the mediation
engine. Moreover, SQL Translator proved to be useful as a debugging tool. SQL
Translator is explained in the section 4.3.

Optimizer uses cost estimates to improve planner's QEP by searching for an optimal
execution path - ordering of CSQs that minimizes transfer of tuples across the network.
Optimizer is a critical component for the performance of the system because the order in
which component subqueries are executed can result in orders of magnitude difference in
the amount of network communication.

For example, a relation in source A with 1,000,000 tuples and a relation in source B with
5 tuples can be joined at primary keys in two ways. In the first way, 1,000,000 tuples
from source A and 5 tuples from source B are shipped over the network to the local data
store L, and then the join is performed in the local data store L. A total of 1,000,005
rows is transferred over the network. In the second way, we perform a remote join4 . The
local data store L first imports 5 tuples from source B and then forwards the join attribute
values to source A. Source A uses join attribute values to identify tuples that need to be
returned for performing join at the local data store L. Because A and B are joined at
primary keys and B contains only 5 tuples, the source A will also return only 5 tuples
after restricting tuples to those containing the join attribute values from source B. A total
of 15 rows is transferred over the network. In conclusion, a small difference in the

4 In section 5.4, I explain details of how remote joins are performed, and in section 6.3.5, I present a cost-
optimization algorithm using remote joins.

17

ordering of operations may result in orders of magnitude difference in network
communication - a major cost in execution of distributed queries.

3.2 Implementation Decisions

My implementation choices were guided by three important design goals:
" ease of integration
" ease of implementation
" robustness

Ease of integration is important because POE is just a component of a larger COIN
project. Moreover, POE needs to communicate with a variety of data sources. Ease of
implementation is important because the project is maintained by graduate students who
work on this project for only a portion of the overall project lifecycle. Finally, robustness
is important because data sources POE uses for fetching data are not reliable. For
example, web sources may never return an answer or may take an unacceptable amount
of time to return one.

In line with these design goals, I made the following implementation choices:
" implementing Planner/Optimizer/Executioner in Java
" using Oracle RDBMS as a basis of Executioner component
" using JDBC for database connectivity

3.2.1 Implementation Language

Using Java to implement POE meets both goals of ease of integration and ease of
implementation. Goal of ease of integration is met because Java is used in COIN project
as a glue between system components. Java also makes implementation easier than
alternative languages for the following reasons:

" Java naturally supports database connectivity through JDBC interface
" Planner, Optimizer, and Executioner contain many algorithms that would be hard

to code efficiently in the logical programming language that Mediation Engine is
coded in

" Java provides a large number of libraries with pre-built functionality

3.2.2 RDBMS as Local Data Store

I chose to use Oracle RDBMS for local data storage and relational operation processing
instead of building a multi-database executioner from ground up because this approach
provides three important benefits:

" robust implementation of local data storage,
" efficent relational operations (e.g. joins and arithmetic calculations),
" shortened implementation time

18

3.2.3 Database Connectivity

Database connectivity is accomplished through JDBC interface. In line with my design
goals, I chose JDBC instead of a more commonly used ODBC interface. The main
reason is that ODBC is a C interface and is not appropriate for direct use from Java as
calls from Java to C have drawbacks in the security and portability. Additionally, most
databases provide JDBC interface. For databases that do not provide JDBC interface it is
possible to use Sun's generic ODBC-JDBC bridge.

3.3 Software Components

The POE implementation consists of 40 Java modules grouped into 9 packages totaling
5,000 lines of code (see Appendix F). query, metadata, term, and operators packages
implement abstract data types for internal data representation (explained in the next
section). executioner package contains modules for remote execution of component
subqueries and modules for implementing optimization algorithms.

19

4 Representations

Before we can start discussion of query execution algorithms, we need to understand the
details of internal query representation. In this section, I describe internal query
representation and show how input datalog query is parsed into the internal
representation. I finish off the section with the description of the SQL Translator
component, which generates SQL from the internal query representation. Additionally,
in this section I will introduce the terminology used in the rest of the thesis.

4.1 Internal Query Representation

Figure 4-1 below shows components of the internal query representation. I explain in
turn each of the query components.

)_ Condition

dependency
1 1 *

1

Query _1___+ SingleQuery 1 +) CSQ 1 1 Relation

1 1
proj. list

- proj. list Term

IntegerConstant StringConstant Variable Expression

1 + 1 +
Source Relation Attribute

Capabilty Record

Figure 4-1 Internal Query Representation

20

4.1.1 Query

Query component represents the whole query. It is a union of Single Query components.

Query:
Single Query 1: answer('V31', 'V30', 'V29', 'V28')

datexform('V27', "European Style -", "01/05/94", "American Style /"),
'NamemapDtWs'('V26', 'V31'),
10000000 < 'V30',
'DStreamAF'('V27', 'V26', 'V30', 'V25', 'V24', 'V23'),
'currencymap'('USD', 'V23'),
'WorldcAF'('V31', 'V29', 'V22', 'V21', 'V20', 'V28', 'V19').

Single Query 2: answer('V1 8', 'V1 7', 'V1 6', 'V1 5') :-
datexform('V14', "European Style -", "01/05/94", "American Style /"),
10000000 < 'V13',
'NamemapDtWs'('V12', 'V18'),
'DStreamAF'('V1 4', 'V1 2', 'V11', 'Vi 0', 'V9', 'V8'),
'currency-map'('V7', 'V8'),
<>('V7', 'USD'),
'V13' is 'V11'* 'V5',
olsen('V7', 'USD', 'V5', "01/05/94"),
'V17' is 'V11' * 'VS,
'WorldcAF'('V 8', 'V16', 'V4', 'V3', 'V2', 'V1', 'Vi').

In the datalog of the motivational example shown above, each of the two datalog queries
maps to a Single Query component, and a complete datalog including both datalog
queries maps to a Query component.

4.1.2 Single Query

Single Query represents a single datalog query and it consists of a projection list,
component subqueries and query conditions. Let us examine second Single Query from
our motivational example and identify each of the components:

Single Query 2: answer('Vi 8', 'V17', 'V16', 'V1') :-
datexform('V1 4', "European Style -", "01/05/94", "American Style /"),
10000000 < 'V13',
'NamemapDtWs'('Vi 2', 'V1 8'),
'DStreamAF'('Vi 4', 'V12', 'Vi 1', 'Vi', 'V9', 'V8'),
'currency-map'('V7', 'V8'),
<>('V7', 'USD'),
'V13' is 'V11' * 'V5',
olsen('V7', 'USD', 'V5', "01/05/94"),
'V1 7' is 'V 11' * 'V5',
'WorldcAF'('V18', 'V16', 'V4', 'V3', 'V2', 'V15', 'Vi').

Projection list is a list of attributes returned by the query. Line (answer('Vi 8', 'V1 7', 'V1 6',
'V1 5')) of Single Query 2 projects attribute wsnames of NamemapDtWs relation,
attribute totalsales of DStreamAF relation multiplied by exchange rate obtained from
olsen relation ('V1 7' is 'V11' * 'V5'), attribute latestannualfinancialdate of WorldcAF

21

relation, and attribute totalassets of Worldcaf relation5 . Note that items of projection list
are Terms, where each term resolves to a relation attribute, a constant, or an expression
(e.g. DStreamAF.totalsales*olsen.rate).

Component subqueries (CSQs) are subqueries accessing relations at remote data sources.
Component subqueries also include conditions that can be executed on those relations.
For example, the following part of Single Query2 constitutes a CSQ:

'currency-map'('V7', 'V8'),
<>('V7', 'USD'),

Remember that the order of the variables in relation corresponds directly to the order of
the attributes in the relation. Thus, each variable in the predicate 'currency-map'('V7', 'V8')
represents a corresponding attribute of currency-map relation. V7 is the first predicate,
and it matches the first attribute of currency-map relation - char3_currency. V8 is the
second predicate, and it matches the second attribute of currency-map relation -
char2_currency. Note, also, that the currency-map CSQ has an associated condition that
char3_currency differs from 'USD'.

Finally, Single Query consists of conditions that could not be performed at the level of
component subqueries. These conditions can be classified into join conditions and
explicit conditions. Join conditions appear between shared CSQ variables. For example,
variable V14 is shared between CSQs datexform and DStreamAF. This means that attribute
datel of datexform is joined with attribute asofdate of DStreamAF
(datexform.datel =DStreamAF.asofdate). If a join variable is shared by more than 2 CSQs
then we compute a transitive closure finding all possible join condition between CSQs
sharing the join variable.

Explicit conditions are either CSQ conditions that could not have been performed at the
CSQ level because of query restrictions (e.g. no conditions can be specified on
Cameleon's olsen relation) or non-join conditions between variables in different CSQs.
An example of a non-join condition between variables in different CSQs is 10000000 <
'V1 3'. Variable V1 3 is an alias for V11 *V5 where V11 is DStreamAF.totalsales and V5 is
olsen.rate. Thus, this condition translates to 1 000000<DStreamAF.totalsales*olsen.rate,
which is a non-join condition involving CSQs DStreamAF and olsen.

4.1.3 Component Subquery (CSQ)

CSQ is a component query of a larger Single Query. It retrieves data from a single
relation relevant in answering of Single Query. CSQ has a structure similar to Single
Query and it consists of underlying relation, projection list, and CSQ conditions.

Let us examine CSQ currency-map in more detail:

5 Appendix A shows the metadata file with schema for all relations in the motivational example.

22

'currency-map'('V7', 'V8'),
<>('V7', 'USD')

or in more friendly SQL notation:

select char3_currency, char2_currency
from currency-map
where char3_currency <> 'USD'

The underlying relation of this CSQ is currency-map relation. Indeed, we name CSQs
after their underlying relations6 . The projection list of currency-map CSQ are variables
V7 and V8 corresponding in turn to attributes char3_currency and char2_currency of
underlying currency-map relation.

Condition <>('V7', 'USD') belongs to this CSQ because all variables in this condition
belong to this CSQ (in this case this is variable V7). Moreover, currency-map relation
comes from a relational data source and is capable of executing condition <>('V7', 'USD').

As in the case of Single Query, the items in a projection list are Terms and can be
constants, variables, or expressions. For example, olsen CSQ uses constants in its
projection list (olsen('V7', 'USD', 'V5', "01/05/94") and translates to the following SQL:

select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01 /05/94'

4.1.4 Term

Term is a generic item that can appear in a query's projection list or its conditions. In our
Java implementation, Term is an interface implemented by four classes: String Constant,
Number Constant, Variable, and Expression.

Let us examine Single Query2 once again and identify some terms in it:

Single Query 2: answer('V1 8', 'V17', 'V16', 'V15') :-
datexform('V1 4', "European Style -", "01/05/94", "American Style /"),
10000000 < 'V13',
'NamemapDt Ws'('V1 2', 'V1 8'),
'DStreamAF'('V1 4', 'V1 2', 'V11', 'V1 0', 'V9', 'V8'),
'currency-map'('V7', 'V8'),
<>('V7', 'USD'),
'V13' is V11' *V5

olsen('V7', 'USD', 'V5', "01/05/94"),
'V17' is 'V11' * V',
'WorldcAF'('V1 8', 'V16', 'V4', 'V3', 'V2', 'V15', 'V1').

6 As we will see in the Datalog Parsing section, if several CSQs are present in the same query we number
them sequentially.

23

'V18', 'V17', 'V16', and 'V15' in the answer clause are all Variable Terms.
"European Style -", "American Style /", and "01/05/94" in datexform CSQ are all String

Constants.
1000000 in Condition 10000000 <'V1 3' is a Number Constant.
'V1 1'*'V5' in Alias 'V 3' is VII1' * V' is an Expression.

An Expression consists of two Term operands and an operator. Supported operators are
+, -. *, /. Notice the recursive structure of the Expression. This recursive structure allows
us to represent expressions of arbitrary complexity. For example, ('V1 1'*'V5')/'V3' is an
expression with first operand equal to expression 'V1 1'*'V5', second operand equal to
expression V3, and operator equal to '/'.

Aliases are special types of variables that resolve to other terms. In our example, 'V 3' is
'V11' * 'V5' is an alias clause. Alias V1 3 resolves to Expression 'Vii' * 1 V5'. In general,
Aliases can resolve to any Term.

4.1.5 Condition

Condition component represents a SQL condition. It has a structure similar to Expression
component and it consists of two Terms and a comparator. Supported comparators are =,
<>, >, <, >=, and <=.

Let us examine condition 10000000 <'V1 3'. V1 3 is an alias and it resolves to 'V1' * 'V5'.
We can rewrite this condition as 10000000 < 'V1 1' * 'V5'. In this condition, the first Term is
a Number Constant 10000000. The second Term is an Expression, 'V11' * 'V5'. The
comparator is <.

4.1.6 Relation

The relation component captures schema information for a given relation. Every relation
has a name unique within its data source and consists of one or more attributes. In
addition to traditional schema information, relation component also contains a capability
record, which specifies kinds of queries that can be executed on the relation.

relation(cameleon,
olsen,
[['Exchanged',string],['Expressed',string],['Rate',number],
['Date',string]],

cap([[b(1),b(1),f,b(1)]], [<,> '<>','<=','>=']).

Figure 4-2 Relation Record for olsen Relation

Above figure shows record for olsen relation7 . It specifies Cameleon as the data source of
olsen and specifies 4 attributes of olsen relation: Exchanged, Expressed, Rate, and Date.
The last clause specifies the capability record.

7 Appendix A shows the metadata file with schema for all relations in the motivational example.

24

4.1.7 Attribute

The attribute component represents a relation attribute. It is a simple structure consisting
of attribute name and its type. In order to support schemas across a variety of databases,
I decided to make attribute types as generic as possible. Therefore, only two attribute
types are String and Number where arithmetic operations can be performed only on
attributes of type Number. Figure 4-2 shows that olsen has Rate attribute of type Number
and three attributes of type String: Exchanged, Expressed, and Date.

4.1.8 Source

Source component captures two types of information about the data source:
" How to physically connect to the data source
" What mechanism to use to query data in the remote source

source(oracle, database, 'jdbc:oracle:oci8: @coin&system&manager').
source(cameleon, cameleon, 'http://context2.mit.edu:8081/servlet/camserv').

Figure 4-3 Source Records for Oracle and Cameleon Sources

Figure 4-3 shows source records for remote sources Oracle and Cameleon. The first
element in a source record is the source name. The second element tells us what
mechanism to use to query the data in the remote source. Oracle source is treated as a
database and SQL queries are sent to it through Relational Access interface. Cameleon
source can only accept SQL queries in functional form and is accessed through
Functional Access interface. The third element contains physical connection properties
for the source. Oracle source is physically accessed through JDBC interface with
connection string jdbc:oracle:oci8: @coin&system&manager. Cameleon source is physically
accessed through CGI interface at URL http://context2.mit.edu:8081/servlet/camserv.

4.1.9 Capability Record

The representation for Capability Records is given in section 6.1 on query restrictions.

4.2 Datalog Parser

Because datalog is a fairly simple language, I decided to use Java's standard
StringTokenizer class instead of more sophisticated grammar-based parsers, such as
javacc. This proved to be a good choice because in only a few days I had a working
datalog parser that converted input datalog into a list of tokens and then into internal
query representation.

Conversion of datalog to internal representation is done in the following stages:
* Separation in datalog clauses
" Parsing individual clauses

8 Remote Access Interfaces are discussed in detail in section 5.1.

25

S

S

S

S

Post parsing
Resolving aliases
Naming CSQs
Associating conditions with CSQs

In the first pass through the datalog query, parsing algorithm separates it into clauses and
identifies the type of each clause. A datalog clause can be one of the following types:

0 an answer clause
* a CSQ clause
" a prefix condition clause
* an infix condition clause
* an alias

answer('V31', 'V30', 'V29', 'V28')
datexform('V27', "European Style -", "01/05/94", "American Style /"),
'NamemapDtWs'('V26', 'V31'),
10000000 < 'V30',
'DStreamAF'('V27', 'V26', 'V30', 'V25', 'V24', 'V23'),
'currency-map'('USD', 'V23'),
'WorldcAF'('V31', 'V29', 'V22', 'V21', 'V20', 'V28', 'V1 9').

answer('V1 8', 'V17', 'V16', 'V15') :-
datexform('V14', "European Style -", "01/05/94", "American Style /"),
10000000 < 'V13',
'Name-mapDtWs'('V1 2', 'V1 8'),
'DStreamAF'('V14', 'V12', 'V11', 'V1O', 'V9', 'V8'),
'currency-map'('V7', 'V8'),
<>('V7', 'USD'),
'V13' is 'V11' *'V5',

olsen('V7', 'USD', 'V5', "01/05/94"),
'V17' is 'Vii' * 'V5',
'WorldcAF'('V1 8', 'V16', 'V4', 'V3', 'V2', 'V15', 'Vi').

Figure 4-4 Mediated Datalog Query for Motivational Example

In the second stage, each of the datalog clauses is parsed into internal representation
equivalents.

An answer clause (e.g. answer('V1 8', 'V1 7', 'V1 6', 'V1 5')) is mapped to a projection list of a
Single Query. Each variable in the answer clause is mapped to a term, which resolves to
a relation attribute, a constant, or an expression.

A CSQ clause (e.g. 'currency-map'('V7', 'V8')) is mapped to an underlying relation of a
CSQ. currency-map CSQ is associated with the underlying relation currency-map.
Variables in CSQ clause are mapped to attributes of a relation. Order is important in
parsing of CSQ queries because we can determine the attribute of relation by its position
in the relation clause. Thus, in 'currencymap'('V7', 'V8'), we know that V7 maps to attribute
char3_currency and V8 maps to attribute char2_currency.

26

A prefix condition clause (e.g. <>('V7', 'USD')) specifies query condition in a prefix
notation where operator comes before operands. It is mapped to a condition component
of internal representation. In the third stage of conversion from datalog to internal
representation, the condition is associated with either a CSQ or a Single Query.

A infix condition clause (e.g. 10000000 < 'V30') specifies query condition in an infix
notation where operator comes between operands. It is mapped to a condition component
of internal representation. In the third stage of conversion from datalog to internal
representation, the condition is associated with either a CSQ or a Single Query.

An alias clause (e.g. 'V1 7' is 'Vii' * 'V5') specifies variable as an alias for a Term
component. In 'V1 7' is 'V1' * 'V5', V1 7 is an alias for expression 'V11' * 'V5'. Aliases are
resolved in the third stage of conversion from datalog to internal representation.

After the second stage is complete, we are left with a projection list, a list of CSQs, a list
of aliases, and a list of conditions. In the final post parsing stage, we resolve aliases, give
unique name to CSQs and associate conditions with corresponding CSQs.

Aliases are resolved by substituting alias variables wherever they appear with the alias
Term they represent.

We name CSQs with the names of their underlying relations. Since relation names are
unique, the issue of unique CSQ names only comes into play when more than one
relation is accessed in a datalog query. In this case, the CSQs are named sequentially. In
the datalog of the motivational example, relation datexform is accessed in two CSQ
clauses. As a result, the CSQ from first CSQ clause is named datexform, and the CSQ
from second datexform clause is named datexform2.

Finally, conditions are associated with CSQs or Single Queries. I present the algorithm
for associating conditions in Figure 4-5 below.

Associate Query Conditions:
1. for every condition cond in Single Query q
2. let S be a set of all variables referenced in cond
3. if all variables in S belong to a single CSQ c
4. associate condition cond with a CSQ c
5. else
6. associate condition cond with a Single Query q

Figure 4-5 Algorithm for Associating Query Conditions

I will demonstrate this algorithm on the Single Query 2 of the motivational example:

27

answer('V1 8', 'V17', 'V16', 'V15') :-
datexform('V1 4', "European Style -", "01 /05/94", "American Style /"),
10000000 < 'V13',
'Name-mapDtWs'('V1 2', 'V1 8'),
'DStreamAF'('V14', 'V12', 'V11', 'V10', 'V9', 'V8'),
'currency-map'('V7', 'V8'),
<>('V7', 'USD'),
'V13' is 'VII1' * V',
olsen('V7', 'USD', 'V5', "01/05/94"),
'V17' is 'V11' * 'V5,
'WorldcAF'('V18', 'V16', 'V4', 'V3', 'V2', 'V15', 'Vi').

Condition 10000000 < 'V13' contains alias variable V13, which resolves to V11' *V5.

Variable V11 belongs only to DStreamAF CSQ and variable V5 only to olsen CSQ. Thus,
condition 10000000 < 'V1 3' does not reference variables within the same CSQ and is
consequently associated with the Single Query 2.

Condition, <>('V7', 'USD') references variable V7, which belongs to currency-map CSQ.
Thus, the condition is associated with the currencymap CSQ.

4.3 SQL Translation

Once we have datalog parsed into internal representation generating SQL representation
of a query is fairly straightforward process as we now show. Figure 4-6 below shows
generated SQL corresponding to the datalog of our motivational example.

28

select namemap-dt ws.ws names, DStreamAF.total-sales, worldcaf.latestannualfinancialdate,
worldcaf.totalassets

from (select datel, 'European Style -', '01/05/94', 'American Style /'
from datexform
where formatl='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform,
(select dt names, ws names
from name-map-dt-ws) name-map-dt-ws,
(select as of date, name, total-sales, totalextraorditems-prejtax, earnedforordinary, currency
from DStreamAF
where 10000000 < total-sales) DStreamAF,

(select 'USD', char2_currency
from currency-map
where char3_currency='USD') currency-map,
(select company-name, latest annualfinancial-date, current_outstanding-shares,

netincome, sales, total-assets, country-ofjincorp
from worldcaf) worldcaf

where DStreamAF.currency = currency-map.char2_currency
and namemap-dt ws.wsnames = worldcaf.company-name
and datexform.datel = DStreamAF.asofdate
and namemapdtws.dtnames = DStreamAF.name
and 10000000 < DStreamAF.totalsales
union
select namemap-dt ws2.ws-names, DStreamAF2.totalsales*olsen.rate,

worldcaf2.latestannualfinancial-date, worldcaf2.totalassets
from (select datel,'European Style -', '01/05/94', 'American Style /'

from datexform
where formatl='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform2,
(select dt-names, ws-names
from name-map-dt-ws) name-map-dt-ws2,
(select as-of-date, name, total-sales, total-extraorditems-prejtax, earnedfor_ordinary, currency
from DStreamAF) DStreamAF2,
(select char3_currency, char2_currency
from currency-map
where char3_currency <> 'USD') currency-map2,
(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94') olsen,
(select company-name, latest annualfinancial date, currentoutstanding-shares,

netincome, sales, totalassets, country-ofjincorp
from worldcaf) worldcaf2

where namemapdLws2.ws_names = worldcaf2.company-name
and datexform2.datel = DStreamAF2.asofdate
and namemap-dt-ws2.dtnames = DStreamAF2.name
and DStreamAF2.currency = currency-map2.char2_currency
and currency-map2.char3_currency = olsen.exchanged
and 10000000 < DStreamAF2.totalsales*olsen.rate
and currency-map2.char3_currency <> 'USD'

Figure 4-6 SQL Translation of Mediated Datalog of Motivational Example

While the generated SQL may seem awkward at first, it is in fact fairly easy to
understand. First, notice that the above SQL is a union of two queries corresponding to
Single Queries 1 and 2 of internal representation. Columns in select lists of the two
queries are the Terms of Single Query projection list.

29

From statements of two queries consist of component subqueries accessing data at the
remote sources. Consider the currency-map2 CSQ in Single Query 2:

(select char3_currency, char2_currency
from currency-map
where char3 currency <> 'USD') currency-map2

The CSQ SQL is generated directly from the internal representation. The select
statement of CSQ SQL (select char3_currency, char2_currency) contains attributes of
underlying relation currency-map. The where statement contains all the conditions
associated with the CSQ. As we discovered at the end of section 4.2, the condition
char3_currency <>'USD' is associated with the currency-map2 CSQ.

The where statement of Single Query consists of two kinds of conditions: (1) join
conditions between CSQ attributes and (2) conditions that could not have been associated
with individual CSQs because they involve attributes from multiple CSQs.

In Single Query 1, condition DStreamAF.currency = currency-map.char2_currency in where
statement is a join condition between currency attribute of DStreamAF CSQ and
char2_currency attribute of currency-map relation.

In Single Query 2, condition 10000000 < DStreamAF2.totalsales*olsen.rate in where statement
could not have been performed at the CSQ level because it references attributes from two
distinct CSQs: DStreamAF2 and olsen.

30

5 Executioner

I describe the Executioner component before the Planner and Optimizer because strong
capabilities of the Executioner were drivers behind the design of the Planner and
Optimizer components. I build the Executioner on top of the conventional RDBMIDS
providing it with ability to answer queries on the relations stored in the local data store
(see Figure 5-1 below).

___ query
execution plan

4-query answer-

CGl/XML

Executioner a "

Database Engine with Remote Query Non-Relational
Local Data Store Executioner Web Data Source

JDBC CGl/XML

Function Container
Servlet

Remote Databaae

Figure 5-1 Executioner Architecture

I chose to use the Oracle RDBMS for local data storage and relational operation
processing instead of building a multi-database executioner from ground up. This
approach provides three important benefits:

" robust implementation of local data storage,
" efficient relational operations (e.g. joins and arithmetic calculations),
" shortened implementation time

The major challenge with using an RDBMS for this purpose is that an RDBMS can only
perform relational operations on the locally stored data9 because it does not have the
ability to access data in remote data sources. The task of efficiently bringing the data
from remote sources into the local data store of RDBMS is in fact the major task of
Planner and Optimizer components. Once the data from remote sources relevant for
answering the query is brought into the local data store the RDBMS can perform
relational operations on it and answer the original query.

9 Oracle can in fact access data stored in other Oracle database through database links. However, database
links are limited to Oracle databases only and do not provide general solution to the problem of accessing
data from remote sources.

31

In COIN POE, the Executioner assumes the following tasks: (1) fetching data from
remote sources, (2) storing data from remote source locally, and (3) executing queries in
parallel. I discuss in turn each of this tasks in the following three sections. In the last
section, I show the generated query execution trace for motivational example.

5.1 Fetching Data From Remote Sources

As shown in the Figure 5-2, data sources are accessed through the Remote Access
interface 0 . Remote Access interface is extended by two specific data access interfaces:
Relational Access and Functional Access. Relational access interface is used for
accessing data in relational databases supporting full SQL specification. Functional
access is used for accessing data sources conforming to parameters-in, results-out model
used in functional conversions and non-relational wrappers.

olsen

Cam leon
Function Container

Servlet

datexform

CGI/XML CGI/XML

Function Serviet Cameleon
Access Access

Functional
Access

Database

DStreamAF,
WorldcAF,
CurrencyMap,
Namemapsdtws

JDBC

Database
Access

Relational
Access

Remote
Access

Remote Query
Executioner

Figure 5-2 Remote Access Hierarchy for Query in Motivational Example

Each of the remote interfaces is implemented by one or more classes that encapsulate
drivers for specific data sources. Relational Access interface is implemented by DB

10 Definitions of remote access interfaces are given in Appendix C

32

Access class that uses JDBC to provide connectivity to relational databases. Functional
Access interface is implemented by Cameleon Access class and Servlet Access class.
Cameleon Access is used for accessing wrapped web sources. It uses CGI to send SQL
to Cameleon engine and XML to get back the query results. Servlet Access class is used
to access conversion functions. It uses CGI interface to send the function name and
query parameters and it uses XML to get back the query results.

Figure 5-2 shows six relations accessing three distinct remote data sources in answering
the motivational example query. Relations DStreamAF, worldcaf, name_map-dt ws,
currency-map stored in Oracle database are accessed through Relational Access interface
because Oracle supports full SQL specification. olsen relation provides historical
currency conversions and is accessible through Cameleon web wrapper. Even though
Cameleon web wrapper accepts SQL syntax it is inherently non-relational because it only
accepts functional queries subscribing to parameters-in, results-out model. Therefore,
data in olsen relation is accessed through functional access interface. datexform relation
performs data format conversions and is accessible through Function Container Servlet
using functional access interface.

5.1.1 Relational Access

public interface RelationalAccess extends RemoteAccess {
public OrderedTable executeQuery(String sql) throws Exception;
public int type();

}

Relational access interface provides executeQuery method that takes SQL as input and
returns results as an ordered list of tuples using OrderedTable structure (see Appendix D).
In our example, data from DStreamAF relation is fetched through Relational Access
interface by executing following SQL:

select asofdate, name, total_sales, total_extraorditemsprejtax,
earnedforordinary, currency

from DStreamAF
where 10000000 < totalsales

The tuples returned by executing this query are stored in Ordered Table structure. Data
from other Oracle relations is fetched in the same way.

5.1.2 Functional Access

Data from olsen relation is fetched through Functional Access interface. Cameleon
Access class implements Functional Access interface by constructing simple SQL queries
that Cameleon web wrapper can handle and then sending them to Cameleon engine.
Here is one of the queries executed remotely through Cameleon engine:

33

Note the functional form of the query with input parameters (exchanged, expressed and
date) and output parameters (exchanged, expressed, rate, and date). Above SQL query is
easily constructed from arguments in executeQuery method of functional access
interface:

public interface FunctionalAccess extends RemoteAccess {
public OrderedTable executeQuery(Relation r, boolean[] in, boolean[] out, String[] inBinding);
public OrderedTable executeQuery(Relation r, boolean[] in, boolean[] out, OrderedTable inBindings);

}

inBinding parameter and boolean array in specify input parameters to the function.
Boolean array out specifies parameters we want to get back from the relation r. Like in
the case of relational access, results are returned in Ordered Table structure.

Functional Access interface is also used to fetch the data from datexform relation.
datexform is a conversion function providing date format conversions. Class Servlet
Access implements Functional Access interface. Servlet Access uses CGI interface to
supply function name and input parameters to functions residing in function container
servlet. The output results are returned in XML format.

Following is the format of request sent to function container servlet for conversion of
date '01 /05/94' from American Style with '/' used as delimiter to European Style with '-' used
as delimiter:

http://hostname/servet/edu.mit.gcms.functionservet?function=datexform&
format1 =European Style -&date2=01/05/94&format2=American Style /

The result of this conversion returned in XML format is:

<?xml version="l.0" ?>
<DOCUMENT>
<ELEMENT>
<date1>05-01-94</date 1>
<formatl>European Style -</formatl>
<date2>01/05/94</date2>
<format2>American Style /</format2>
</ELEMENT>
</DOCUMENT>

5.2 Storing Data From the Remote Sources Locally

34

select exchanged, expressed, rate, date
from olsen
where exchanged="DEM"
and expressed="USD"
and date="01 /05/94"

As explained at the opening of this section, the data from remote sources needs to be
stored locally so that RDBMS engine can perform relational operations on it. However,
the task of bringing the data into RDBMS at run-time is more challenging than it at first
appears. The reason why this task is challenging is that inserts in relational databases
involve hard disk operations". Performing large inserts on regular RDMBS tables is a
prohibitively expensive operation.

Oracle and some other commercial databases provide a solution for this problem through
the facility of temporary tables designed for storage of temporary data. Temporary tables
take much less time to create and do not involve hard disk operations. In addition, Oracle
temporary tables have support for session and transaction specific data. We use this
feature to empty the temporary table once the query is answered and temporary data is no
longer needed.

I create temporary tables at the Executioner initialization time. The reason why I do not
create them at the run time is that creating temporary table takes a long time - on the
order of 50ms. However, creating temporary tables at the Executioner initialization time
has its own problems. Because several CSQs can access the same relation in the query,
we need to create several temporary relations for each CSQ and this is a clear scalability

12drawback . In section 8.2.3, I present a better approach for managing temporary tables
that solves both scalability and performance issues.

I name the temporary tables by the names of CSQs for which they are storing the data.
Only minor nuisances with using Oracle temporary tables is the restriction on column
names. These restrictions make it impossible to have one-to-one mapping between
relation attribute names and temporary table column names. 13

Temporary table for storing data fetched from olsen relation is created as follows:

create global temporary table TTPolsen (
DAPexchanged varchar,
DAPexpressed varchar,
DAPrate number,
DAPdate varchar) on commit delete rows;

Few points are worth mentioning about the above temporary table definition. First,
'global temporary' in create table statement is the Oracle specific feature and designates
the table as a temporary table. Second, TTP_ is prefix used to avoid naming collisions
with system tables present in the database, and DAP_ is prefix used to avoid naming
collisions with RDBMS reserved key words such as date. Both TTP_ and DAP_ are

" This is because RDBMS were designed for permanent data storage. Inserts and updates are not cached in
the memory.
12 Number of temporary tables to be created is specified in NUM_TEMPTABLESPERRELATION
constant in module edu.mit.gcms.poe.executioner.Executioner.java
13 Column names are restricted to length of 32 characters and cannot feature any of Oracle's reserved
keyword, such as, date.

35

customizable parameters and can be changed if the underlying RDBMS used for
executioner is changed. Second, 'on commit delete rows' specifies that data stored in this
temporary table is transaction specific and is automatically deleted once the transaction is
committed. Executioner commits transaction once the results to original user query are
returned and data stored in temporary table is no longer needed. Finally, we use two
datatypes: varchar matching Java's String and number matching Java's double to store all
the data in temporary tables. We need RDBMS's number type in order to be able to
perform arithmetic operations specified in the original query datalog (e.g.
olsen.rate*1000).

Once we create a temporary table, we need to populate it with data fetched from remote
sources. The data from a remote source is returned in the Ordered Table structure and we
need to insert this data into a temporary table. The most straightforward way of feeding
data into table with the JDBC interface is by doing one insert at a time for each row or
Ordered Table structure. However, this straightforward approach is inefficient because it
makes unnecessary round trips between Executioner and underlying database engine. To
avoid this performance problem, I used a new feature of JDBC 2.0 specification
supported by Oracle driver, which allows for batch inserts of large amounts of data into
the table.

5.3 Executing Queries in Parallel

The Executioner supports two kinds of parallel processing:
" parallel execution of CSQs
" parallel execution of key-at-a-time queries within CSQs.

The Executioner schedules in parallel a Java thread for fetching data for each of the
CSQs. Since some CSQs depend on the data obtained from other CSQs - as specified in
the query execution plan - the dependent CSQs need to wait until the thread fetching the
data for the CSQ they depend on is executed. The mechanism for doing this is Java
thread's join method which delays execution of a thread until other specified threads have
completed their execution. Therefore, when all threads that a particular thread depends
on are complete, the dependent thread is allowed to proceed. Once all Java threads
complete - that is once the data from all CSQs is fetched - the Executioner proceeds to
the next stage of merging CSQ data obtained from the remote data sources.

Parallel execution for key-at-time queries is simpler because key-at-a-time queries are
independent of each other and can all be executed in parallel . Figure 5-3 is a portion of
query execution trace for motivational example query showing key-at-a-time queries for
olsen CSQ sent to the Cameleon source. Execution of 4 queries took 877ms to complete
because the longest running queries took 877ms and all four queries were executed in
parallel at the same time.

14 Executioner can define a maximum number of queries that can be sent to each source for processing.
This is important because some servers may only handle only a few concurrent connections at any given
time.

36

877ms Parallel Execution

Executing Remote Cameleon Query:
290ms select exchanged, expressed, rate, date from olsen where exchanged="DEM" and expressed="USD"

and date="01/05/94"

Executing Remote Cameleon Query:
470ms select exchanged, expressed, rate, date from olsen where exchanged="FRF and expressed="USD"

and date="01/05/94"

Executing Remote Cameleon Query:
480msi select exchanged, expressed, rate, date from olsen where exchanged="JPY and expressed="USD"

and date="01/05/94"

Executing Remote Cameleon Query:
877ms ~ select exchanged, expressed, rate, date from olsen where exchanged="GBP" and expressed="USD"

and date="01/05/94"

Figure 5-3 Parallel Execution of Key-at-a-Time Queries

5.4 Executing Query Execution Plan

In this section, I explain how query execution plan (QEP) is executed 5 . QEP for
motivational example query is shown in Figure 5-4 below.

0: currency-map, datexform, currency-map2, datexform2
currency-map: DStreamAF ((currency currency-map.char2_currency))
DStreamAF: name map-dt-ws ((dt-names DStreamAF.name))
Name-map dt ws worldcaf ((company-name namemap dt ws.ws-names))
currency-map2: DStreamAF2 ((currency currency-map2.char2_currency)),

olsen ((exchanged (currency-map2.char3 currency))
DStreamAF2: name-map-dt-ws2 ((dt names DStreamAF2. name))
Name-map-dt ws2: worldcaf2 ((company-name name-map dt ws2.ws names))

Figure 5-4 Query Execution Plan for Motivational Example Query

As explained in the previous section, a Java thread is scheduled for execution of each
CSQ. It follows that all independently executable CSQs in the first row of the QEP are
executed in parallel. All other CSQs are executed once the CSQs they depend on have
been executed. As soon as the execution of a CSQ c com letes, all CSQs depending on
the execution of CSQ c are notified and are then executed . In our example, DStreamAF
CSQ is dependent on currency-map CSQ. Once execution of currency-map is completed,
thread executing DStreamAF is notified and may proceed with the execution. Similarly,
thread executing Name-map-dt-ws blocks until the execution of DStreamAF has been
completed.

Now, let us examine how remote joins are performed. In the second row of QEP shown
in Figure 5-4, we see that DStreamAF's attribute currency is bound to the currency-map's

15 QEP is explained in detail in section 6.2.
16 Note that a CSQ may depend on the execution of more than one CSQ. In that case CSQ is executed once
all the CSQs it depends on have been executed.

37

attribute char2_currency. I perform the remote join by using SQL's 'in' construct. Figure
5-5 shows remote join performed on DStreamAF relation using bindings from
currency-map relation. We can now clearly see how DStreamAF CSQ depends on the
execution of currency-map CSQ. The query in Figure 5-5 can only be executed once the
data from currency-map CSQ has been fetched.

select asofdate, name, totalsales, totalextraorditemsprejtax, earned_for-ordinary,
currency
from dstreamaf
where 10000000 < totalsales
and currency in (select char2 currency from currency-map)

Figure 5-5 Remote Join on DStreamAF CSQ Using Bindings from currency-map CSQ

After we store the data from all CSQs in the temporary tables of local data store, we can
use RDBMS's relational processing facilities to answer the original query. For our
working example, the final relational query is:

select TTPname-map-dt ws.wsnames, TTPDStreamAF.totalsales,
TTPworldcaf.latestannualfinancial_date, TTP-worldcaf.totalassets

from TTPdatexform, TTPnamemap-dt-ws, TTPDStreamAF, TTPcurrency-map,
TTPworldcaf

where TTPDStreamAF.currency = TTPcurrency-map.char2_currency
and TTPname-map-dtws.wsnames = TTPworldcaf.company-name
and TTPdatexform.datel = TTP_DStreamAF.asofdate
and TTPname-map-dt_ws.dtnames = TTP_DStreamAF.name
union
select TTPname map-dtws2.wsnames, TTPDStreamAF2.totalsales*TTPolsen.rate,

TTP_worldcaf2.latestannualfinancialdate, TTP-worldcaf2.totalassets
from TTPdatexform2, TTPname-map-dt-ws2, TTPDStreamAF2, TTPcurrency-map2,

TTPolsen, TTP-worldcaf2
where TT P_name map-dtws2.wsnames = TTPworldcaf2.company-name
and TTPdatexform2.datel = TTP_DStreamAF2.asofdate
and TTPname map-dtt_ws2.dtnames = TTPDStreamAF2.name
and TTPDStreamAF2.currency = TTPcurrency-map2.char2_currency
and TTPcurrency-map2.char3_currency = TTPolsen.exchanged
and 10000000 < TTP_DStreamAF2.totalsales*TTPolsen.rate

Notice that the above query contains all join conditions of the original query and all
conditions that could not have been applied at the CSQ level. The query also contains
arithmetic operations (e.g. TTPDStreamAF2.totalsales*TTPolsen.rate) that are efficiently
processed by the RDBMS engine.

5.5 Query Execution Trace

I developed query execution trace tool as a component of the Executioner. Query
execution trace proved to be invaluable for debugging the Executioner as well as for
getting the insight in the way the POE is answering the queries. Furthermore, timing
information provided in the trace allowed me to identify query execution bottlenecks and
focus on the most important planning and optimization issues.

38

Appendix G shows query execution trace for the motivational example query. Query
execution trace is a hierarchical log with timing information and it consists of four main
stages: datalog parsing, planning & optimization, fetching remote data, and execution of
final database query. Datalog parsing stage only provides the time elapsed in parsing the
datalog into the internal query representation. Planning & Optimization shows
intermediate steps of calculating the query execution plan and the time elapsed for each
of the intermediate stages.

Fetching remote data stage shows component subqueries sent to remote sources. The
component subqueries are displayed in the format specific to the data source they are sent
to. Thus, database and cameleon CSQs are displayed in SQL notation (see Figures 5-6
and 5-7), and queries to Function Container Servlet are displayed as a parameterized
query URL (see Figure 5-8).

Executing at remote database oracle:
select asofdate, name, total sales, totalextraorditemstpreax, earned for ordinary, currency

20ms, from dstreamaf
where 10000000 <totalsales
and currency in (US)

Figure 5-6 Query Execution Trace for Executing Database CSQ

Executing Remote Cameleon Query:
290ms! select exchanged, expressed, rate, date from olsen where exchanged="DEM" and expressed="USD"

and date="01/05/94"

Figure 5-7 Query Execution Trace for Executing Cameleon CSQ

Executing Remote Functional Query:
10ms http://avocado.mit.edu/servlet/edu.mit.qcms.demo.servets.datexform?function=datexform&

format1=European+Style+-&date2=01%2F05%2F94&format2=American+Stvle+%2F

Figure 5-8 Query Execution Trace for Exeucting Functional CSQ

The last stage of the query execution trace shows the final query sent to the database for
execution. The final query performs relational operations on the temporary tables
containing data fetched from remote sources. Figure 5-9 below shows the final query in
the execution of motivational example query.

Database Execution of Final Query:
select TTPnamemap-dt ws.ws names, TTPdstreamaf.totalsales,
TTP_worldcaf.latestannualfinancialdate, TTPworldcaf.totalassets
from TTP_datexform, TTPname map dt ws, TTP dstreamaf, TTP currency map, TTP_worldcaf
where TTP_dstreamaf.currency = TTP_currency map.char2 currency

30ms and TTP_namemap dt~ws.wsnames = UP_worldcaf.company name
and TTP_datexform.datel = TTP_dstreamaf.asofdate
and TTP_namemap dt ws.dtnames = UP_dstreamaf.name
union
select TTP_namemapdt-ws2.ws-names, TTP_dstreamaf2.totalsales*TTP_olsen.rate,
TTP_worldcaf2.latestannualfinancialdate, TTPworldcaf2.totalassets
from TTP_datexform2, TTP_name map-dt-ws2, TTP-dstreamaf2, TTP currency-map2, TTP_olsen,

39

TTP_worldcaf2
where TTP_namemapdtws2.wsnames = TTP_worldcaf2.company-name
and TTP_datexform2.datel = TTP_dstreamaf2.asofdate
and TTP_namemap dtws2.dt names = TTPdstreamaf2.name
and TTP_dstreamaf2.currency = UP_currency-map2.char2_currency
and TTP_currency map2.char3_currency = UP_olsen.exchanged
and 10000000 < TTP_dstreamaf2.total sales*TTP_olsen.rate

Figure 5-9 Query Execution Trace for the Final Query of Motivational Example

40

6 Planner & Optimizer

The challenge for the Planner and Optimizer components is to create a plan for efficiently
bringing data from remote data sources into the local data store while satisfying
restrictions on the kinds of queries that the remote sources can answer. The Planner and
Optimizer generate a query execution plan (QEP), which specifies CSQ dependencies
and joins that need to be performed. Additionally, the running time of QEP generation
algorithm must not be exponential because of the complexity of queries involved.

I present Planner and Optimizer components together because of my approach to the
query optimization. I do not first build a feasible plan and then optimize it by making
changes to feasible plan. Instead, I build optimized QEP recursively from scratch by
using greedy algorithm that relies on cost statistics.

I start of the chapter with the discussion of query restrictions. In section 6.2, I explain the
format of query execution plan, and in section 6.3 I develop the QEP generation
algorithm.

6.1 Query Restrictions

Due to the nature of some of the data sources in the COIN system (e.g. non-relational
web sources) the wrappers cannot provide the full relational capability. Therefore,
restrictions are placed on the nature of the queries, which can be dispatched to the
wrappers. For example, the relation olsen requires that the attributes Expressed,
Exchanged, and Date be bound whenever a query is sent to it. It also requires that the
attribute Rate be free. A capability record is used to describe query restrictions for a
relation. My capability records are very similar to those described in [16] by Koffi Fynn
in that I create separate records for the binding restrictions and the operator restrictions of
the source.

Figure 6-1 below shows the schema of olsen relation together with its capability record.
Data in olsen relation is accessible through Cameleon web wrapper.

relation(cameleon,
olsen,
[['Exchanged',string],['Expressed',string],['Rate',number], ['Date',string]],
cap([[b(1),b(1),f,b(1)]],[' ,>,< ''=,> ').

Figure 6-1 Capability Record for olsen Relation

Let us examine the the capability record of olsen relation cap([[b(1),b(1),f,b(1)]],
<, >=']). The first part of the capability record [[b(1),b(1),f,b(1)]] specifies

binding restrictions and the second part ['<','>','<>','<=','>='] specifies operator restrictions.

Binding restrictions is a list of all possible binding combinations of the attributes in the
relation. A binding combination specifies attributes that need to be bound, attributes that
need to be free, and attributes that can be either free or bound. It is represented with a list

41

of binding specifiers for each of the attributes in the relation. A binding specifier can be
one of the following: b, b(N), f, and ?. b indicates that the attribute has to be bound. b(N)
indicates that the attribute has to be bound with N keys-at-a-time binding restriction. f
indicates that the attribute must be free. ? indicates that the attribute can be either bound
or free. The record for operator restrictions is a list of the operators, which cannot be
used in queries on the relation.

Note that key-at-a time restrictions are quite common among the web wrapped relations.
The olsen query I already described can only bind one key at a time for its attributes
Exchanged, Expressed, and Date. Key-at-a-time restrictions that can bind more than key at
a time (N>1) are also common. A good example of this is a stock quote server like
finance.yahoo.com, which allows up to 50 stock quote symbols to be entered at one time.

The capability record in Figure 6-1 can be read as follows:
" attributes Exchanged, Expressed, and Date have 1 key-at-time binding restriction
* attribute Date needs to be free
* comparators '<, '>','<>', '<=', and '>=' cannot be used in the query

6.2 Query Execution Plan

In this section, I explain the format of the query execution plan (QEP). My QEP differs
from conventional ones for single databases. The main difference is that it operates at a
higher level and does not specify complete ordering of relational operations. Instead, it
specifies the order in which CSQs need to be executed. The reason why my QEP is
different is the unique features of the Executioner, which is capable of performing
relational operations on locally stored data. Because the Executioner can perform
relational operation locally on the data from CSQs, the information we need from QEP is
not how to perform relational operations but how to bring CSQ data from remote sources
into the local data storage.

Necessary CSQs Dependent CSQs
0: currency-map, datexform, namemap_dt ws2, datexform2
currency-map: DStreamAF ((currency currency-map.char2_currency))
DStreamAF: name map-dt-ws ((dt-names DStreamAF.name))
namemapdtws worldcaf ((company-name name-map-dt ws.ws names))
name-map-dt-ws2: worldcaf2 ((companyname name-map-dt ws2.ws_names)),

DStreamAF2 ((name name-map dt-ws2.dt names))
DStreamAF2: currency-map2 ((char2_currency DStreamAF2.currency))
currency-map2: olsen ((exchanged (currency-map2 char3_currency))

Figure 6-2 Query Execution Plan for Motivational Example Query

Let us examine the format of the query execution plan. Figure 6-2 above shows the QEP
generated for the query in our motivational example. QEP has two columns: necessary
CSQs and dependent CSQs. The CSQs in the Dependent column depend on CSQs in the
Necessary column. For example, the second row of QEP tells us that DStreamAF CSQ
depends on the execution of currency-map CSQ. This means that DStreamAF CSQ can
only be executed once the execution of CurrencyMap CSQ is completed. In addition,

42

DStreamAF ((currency currency-map.char2_currency)) specifies that currency attribute of
17DStreamAF needs to be joined remotely with char2_currency of currency-map

The first row of the QEP is different from others because it contains CSQs that do not
depend on any other CSQs. 0: currency-map, datexform, currency-map2, datexform2 means
that CSQs currency-map, datexform, currency-map2, and datexform2 do not have to wait for
execution of any CSQs to complete. At run time, these four CSQs are executed in
parallel.

char2_currency = currency name= dt-names namemapdLws

ws-names = company-name

datexform worldcaf

name map dtws2 dt names = name dstreamaf2 currency = hrurny crecmap2

re =>aecurrency = char3_currency _

ws-names = company-name char2scurrency = exchanged

datexform2 worldcaf2 olsen

Figure 6-3 Graph Representation of QEP

Notice that the QEP has a form of a graph of CSQ dependencies. Figure 6-3 shows a
graph representation of QEP where nodes represent CSQs, and arrows dependency
conditions between CSQs. Names on the arrows are names of attributes of two CSQs
that are being joined. We read the graph as follows:

* DStreamAF CSQ is joined remotely with currency-map CSQ. char2_currency
attribute of currency-map supplies join binding for currency attribute of DStreamAF

* Namemap-dt ws CSQ is joined remotely with DStreamAF CSQ. name attribute of
DStreamAF supplies join bindings for dtnames attribute of Namemap_dt ws

" Wolrdcaf CSQ is joined remotely with Namemap-dt-ws CSQ. wsnames attribute
of Name-map-dt-ws supplies join bindings for companyname attribute of Wolrdcaf

The reason why QEP only specifies dependencies between CSQs and not the complete
sequential ordering of CSQs like in Koffi Fynn POE [16] is that the Executioner
parallelizes execution of CSQs whenever possible. The Executioner spins off a separate
thread for execution of each CSQ 18 and because the running time of CSQ threads cannot
be known until the run-time, it is not possible to determine what CSQs are executed in

17 Section 5.4 shows how remote joins are performed.
18 See Section 5.3.

43

parallel prior to run-time. Therefore, QEP only specifies CSQ dependencies and
Executioner starts execution of a CSQ once all the CSQs it depends on have been
executed.

6.3 QEP Generation Algorithm

In this section, I present the algorithm for generating the query execution plan. As
mentioned in previous sections, the main task of Planner and Optimizer is to find a way
to bring relevant data from the CSQs into the local RDBMS engine in the least amount of
time.

In order to get a feel for the quality of optimizations, I assume a cost per retrieved tuple
of 10ms for database relations in the motivational example query (name-map-dt.ws,
DStreamAF, currency-map, worldcaf)19, cost of 100ms per retrieved tuple for remote
functional conversion datexform, and cost of 300ms per retrieved tuple for Cameleon
relation olsen. These are approximate costs observed while executing above query on a
sample setup of COIN system (see Appendix H).

I use the motivational example query to illustrate steps of QEP generation algorithm and
demonstrate where optimizations take place. Since the optimization algorithm is
complex, I first consider the trivial version of the algorithm in section 6.3.1. I then add
parallelization in section 6.3.2, handling query restrictions in sections 6.3.3 and 6.3.4, and
cost-based optimizations in section 6.3.5. Finally, section 6.3.6 shows how to handle
key-at-a-time restrictions at run-time.

6.3.1 Trivial Algorithm

Let us take a look once again at Single Query 1 of our motivational example:

19 Database in the experimental setup runs on the same machine as COIN system.

44

select namemap-dt-ws.ws-names, DStreamAF.total-sales, worldcaf.latestannualfinancialdate,
worldcaf.totalassets

from (select datel, 'European Style -', '01/05/94', 'American Style /'
from datexform
where formati ='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform,

(select dt-names, ws-names
from name-map-dt ws) name-map-dt-ws,
(select as-of-date, name, total-sales, total-extraorditemspre_tax, earnedforordinary, currency
from DStreamAF
where 10000000 < total-sales) DStreamAF,

(select 'USD', char2_currency
from currency-map
where char3_currency='USD') currency-map,
(select company-name, latest-annualfinancialdate, currentoutstandingshares,

netincome, sales, total_assets, country-ofjincorp
from worldcaf) worldcaf

where DStreamAF.currency = currency-map.char2_currency
and namemap-dt ws.wsnames = worldcaf.company-name
and datexform.datel = DStreamAF.asofdate
and namemap-dt-ws.dt-names = DStreamAF.name
and 10000000 < DStreamAF.totalsales

Figure 6-4 SQL Corresponding to Single Query 1 of Motivational Example

The above query consists of five distinct CSQs: datexform, name-map-dt ws, DStreamAF,
currency-map, and worldcaf. The most straightforward way for fetching the data from
remote CSQs is to simply execute all five CSQs in sequence and bring the data into local
data storage. This approach works for this query because all CSQs except datexform have
no capability restrictions. Moreover, binding restrictions for datexform are satisfied
because formati, date2, and format2 attributes are bound and thus satisfy restrictions of
datexform's capability record [f, b(1), b(1), b(1)].

Since all CSQs are independently executable - that is they do not depend on the
execution of each other - the QEP for execution of the above query can be written as
follows:

Necessary CSQs Dependent CSQs
0: datexform, namemap_dt-ws, DStreamAF, currencymap, worldcaf

Notice, however, that the above QEP is inefficient. The reason is that Executioner is
transferring total of 623 tuples across the network as shown in the Figure 6-5 below.

45

(select datel, 'European Style -', '01/05/94', 'American Style /'
from datexform
where format1 ='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform
NUMBER OF TUPLES: 1

(select dt-names, ws-names
from name-map-dt ws) name-map-dt-ws
NUMBER OF TUPLES: 7

(select as-of date, name, total-sales, total-extraord-items-prejtax, earnedforordinary,
currency
from DStreamAF
where 10000000 < total-sales)
NUMBER OF TUPLES: 266

(select 'USD', char2_currency
from currency-map
where char3_currency='USD') currency-map
NUMBER OF TUPLES: 1

(select company-name, latest-annualfinancial-date, currentoutstanding-shares,
net-income, sales, total-assets, country-oLincorp

from worldcaf) worldcaf
NUMBER OF TUPLES: 354

Figure 6-5 Number of Tuples in Single Query 1 of Motivational Example

As Figure 6-6 shows, the trivial version of the algorithm takes a total of 622x10ms +
100ms= 6,320 ms.

datextorm, lxi00ms

name-map _ws, 7xlOms

0 .10

dstreamat, 266x1Oms

currencyjiap, 1x1Oms

worldcaf, 354x1Oms

10 fl 200 ~t00 400 foo 600

Execution Time (ms)

Figure 6-6 Time Graph of Execution of Single Query 1 Using Trivial Algorithm

6.3.2 Parallel Query Execution

A significant improvement to the trivial algorithm can be achieved by executing the
queries in the parallel. This is possible for the QEP in the previous section of Single
Query 1 because all 5 component subqueries are independently executable. Adding
parallelization at the execution stage does not change QEP because QEP only captures
the dependencies between CSQs. However, the execution time of query changes because
all five CSQs are executed in parallel.

46

inn 300 600

datexform, lxi0Oms

name mapdt ws, 7x1Oms

dstreamaf, 266x1 Oms

currency Mao, 1xIOms

worldcaf, 354x1 Oms

010 100 200 300 400 500 600

Execution Time (ms)

Figure 6-7 Time Graph of Execution of Single Query 1 Using Trivial Algorithm with Parallelization

As Figure 6-7 shows, parallelization cuts query execution time almost in half.
Calculation is shown below:

T= Max(datexformt, name map_dt_wst, DStreamAFt, currencymap, worldcaft)
= Max(lxlOOms, 1x1Oms, 255x10ms, 1x1Oms, 354x10ms)
= 354x10ms
= 3,540 ms

6.3.3 Handling Query Binding Restrictions

Before we consider further optimization improvements, we need to make sure that
queries can execute correctly with respect to query restrictions of data sources. As I
mentioned in the explanation of the trivial algorithm, the reason why the trivial algorithm
works in the first place is that all CSQs in Single Query 1 are independently executable.
This, however, is not the case for Single Query 2 shown in Figure 6-8.

47

select namemap-dt-ws2.ws-names, DStreamAF2.totalsales*olsen. rate,
worldcaf2.latestannualfinancial-date, worldcaf2.totalassets

from (select datel, 'European Style -', '01/05/94', 'American Style /'
from datexform
where formati ='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform2,

(select dt-names, wsnames
from name-map-dt-ws) name-map-dt-ws2,
(select as-of date, name, total-sales, total-extraorditems-prejtax, earnedforjordinary, currency
from DStreamAF) DStreamAF2,
(select char3_currency, char2_currency
from currency-map
where char3_currency <> 'USD') currency-map2,
(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94') olsen,
(select company-name, latest-annualfinancial-date, currentoutstanding-shares,

netincome, sales, total_assets, country-ofjincorp
from worldcaf) worldcaf2

where namemap-dt ws2.wsnames = worldcaf2.company-name
and datexform2.date1 = DStreamAF2.asofdate
and namemap-dt-ws2.dtnames = DStreamAF2.name
and DStreamAF2.currency = currency-map2.char2_currency
and currency-map2.char3_currency = olsen.exchanged
and 10000000 < DStreamAF2.totalsales*olsen.rate
and currency-map2.char3_currency <> 'USD'

Figure 6-8 SQL Corresponding to Single Query 2 of Motivational Example

In Single Query 2, CSQ olsen is not independently executable. As shown in Figure 6-9,
olsen's attribute exchanged is not bound and consequently the binding restriction [b(1),
b(1), f, b(1)] is not satisfied. The trivial algorithm will not work for Single Query 2
because a required binding for olsen is not provided.

(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94') olsen

Figure 6-9 Binding for exchanged Attribute is olsen CSQ is Missing

The query can still be executed by using join condition currency-map2.char3_currency =
olsen.exchanged and supplying binding for olsen.exchanged from CSQ currency-map2.
Figure 6-10 shows olsen CSQ modified so that it satisfies the binding requirement:

(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94'
and exchanged in (select char3_currency from currency-map2)) olsen

Figure 6-10 Olsen CSQ with Added Binding from Join Relation with currencymap2

48

Notice, however, that CSQ currency-map2 now needs to be executed before olsen is
executed. In other words, CSQ olsen depends on CSQ currency-map2. Figure 6-11
below shows QEP for Single Query 2 that handles query restrictions on olsen relation.

Necessary CSOs Dependent CSQs
0: currency-map2, datexform2, DStreamAF2, name-mapdt_ws2,

worldcaf2
currency-map2: olsen ((exchanged (currencymap2.char3_currency))

Figure 6-11 Olsen CSQ with Added Binding from Join Relation with currency-map2

The first row tells us that CSQs currency-map2, datexform2, DStreamAF2,
namemap_dt_ws2, worldcaf2 are independently executable. Second row tells us that CSQ
olsen needs to wait for the execution of CSQ currency-map2 to complete. It also specifies
that olsen needs to bind its attribute exchanged to the attribute char3_currency of
currency-map2.

I now present the general QEP algorithm that handles binding conditions on CSQs.

Input: Single Query q
Output: Query Execution Plan (QEP)

QEP Generation Algorithm:
1. initialize set S to an empty set
2. for all CSQs c in S
3. if c is independently executable
4. add c to set S
5. add entry 0: c to QEP
6. repeat until no more CSQs are added to S
7. for all CSQs c outside of S
8. if CSQ c can be executed using bindings from CSQs in S
9. add an entry for c to QEP including all join bindings of c
10. add CSQ c to set S
11. if S does not contain all CSQs in a query
12. throw exception "query cannot be executed"
13. return QEP

Figure 6-12 QEP Generation Algorithm Supporting Binding Query Restrictions

There are two non-trivial steps in the above algorithm: step 3 and step 8. In step 3 we
compute all independently executable CSQs, and in step 8 we determine whether a CSQ
c can be executed using join bindings from CSQs in set S. I will present detailed
algorithms for steps 3 and 8 shortly, but let us first walk through the execution of QEP
generation algorithm for Single Query 2 and convince ourselves that it generates a
feasible query execution plan.
Steps 1-5: Finds all independently executable CSQs in Single Query 2:

currency-map2, datexform2, DStreamAF2, name-map-dtws2, worldcaf2
and adds them to the first row of QEP

Steps 6-10: CSQ olsen is the only CSQ in Single Query 2 that is not independently
executable. In step 8, algorithm discovers that olsen CSQ can be executed by

49

binding olsen's exchanged attribute to char3_currency attribute of
independently executable CSQ currency-map2.

Steps 11-13: Algorithm finds that all CSQs in Single Query 2 have been covered and
returns the resulting QEP.

Now, let us analyze the efficiency of generated QEP. As Figure 6-13 below shows,
CSQs currency-map2, datexform2, DStreamAF2, name-map-dt ws2, worldcaf2 are executed
in parallel. CSQ olsen is dependent on CSQ currency-map2 and needs to wait until
execution of currency-map2 to complete. Total running time is 3,540 ms dominated by
354 tuples of CSQ worldcaf.

datexform2, IxiOOms

namemap_dts2, 7xlOms

dstreamaf2, 312xlOms

currencyjmap2, 9x1Oms

olsen, 4x300ms

worldcaf2, 354x1Oms

0 10 100 200 300

Execution Time (ms)

Figure 6-13 Time Graph of Execution of Single Query 2 Using QEP Generation Algorithm
Supporting Binding Restrictions

For comparison, I also present a time graph for execution of Single Query 2 where CSQs
are executed sequentially. Figure 6-14 shows that sequential version of the algorithm
takes almost three time as much time as the paralellized version of the algorithm
supporting binding restrictions.

datedorr, 1x1Oms

name_mapdt ws2, 7xlOms

dstreanaf2, 312x10ms

currencyrmap2, xlOms

olsen, 4x300ms

worldcaf2, 354x10ms

10 10 100 200 300 400 500 600 700 800

Execution Time (ms)

Figure 6-14 Time Graph of Execution of Single Query 2 Where CSQs are Executed Sequentially

Now, we address the non-trivial steps of QEP generation algorithm. I first present the
algorithm for finding independently executable CSQs and then the algorithm for
determining whether a CSQ c can be executed using join bindings from a set of CSQs S.

6.3.3.1 Determining whether CSQ is Independently Executable

50

pop_ M

Figure 6-15 shows the algorithm for determining whether a CSQ c is independently
executable.

Input: CSQ c
Output: true if CSO c is independently executable

false otherwise

Independently Executable CSQ:
1. for all binding specifiers bs of c's underlying relation r
2. for all attribute specifiers as of bs
3. if as is of type bound and there is no binding in CSQ c for corresponding attribute
4. continue 1
5. else
6. continue 2
7. return true
8. return false

Figure 6-15 Algorithm for Determining Whether a CSQ is Independently Executable

I now show how the algorithm works for independently executable CSQs currency-map2
and olsen of Single Query 2. Schemas and capability records for relations of these two
CSQs is shown in Figure 6-16 below.

relation(oracle,
'currency-map',
[['CHAR3 CURRENCY',string],['CHAR2_CURRENCY',string]],
cap([[?,?]],[).

relation(cameleon,
olsen,
[['Exchanged',string],['Expressed',string],['Rate',number],
['Date',string]],

cap([[b(1),b(1),f,b(1)]],[' ,>,< ''=,> ').

Figure 6-16 Schemas and Capability Records for Relations olsen and currency--map

The currrency-map has only one binding specifier [?, ?]. Since the ? attribute specifier is
not binding, the if condition in step 3 leads to execution of else statement in step 6 for
both attribute specifiers. It follows, that algorithm reaches step 7 and returns true.
Therefore, the algorithm correctly determined that currency-map2 CSQ is independently
executable.

(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94') olsen

Figure 6-17 Binding for exchanged Attribute in olsen CSQ is missing

olsen also has only one binding specifier [b(1),b(1),f,b(1)]. exchanged attribute is the first
attribute of olsen relations and according to capability record it needs to be bound.

51

However, as Figure 6-17 shows, attribute exchanged is not bound. The algorithm detects
missing binding in step 3 and looks whether binding conditions can be satisfied for
another binding specifier. However, since [b(1),b(1),f,b(1)] was the only binding specifier
for olsen, the algorithm exits the for loop and returns false. Therefore, the algorithm
correctly determined that olsen CSQ is not independently executable.

6.3.3.2 Determining whether CSQ is executable given a set of executed CSQs

Figure 6-18 shows the algorithm for determining whether a CSQ c is executable given a
set of already executed CSQs S.

Input: set of executed CSQs S, new CSQ n
Output: if n cannot be executed given join bindings from CSQs in S

returns null
else

returns list of join bindings for CSQ n

CSQ Executable:
1. for all binding specifiers bs of CSQ n
2. initialize list of join bindings to an empty list jbl
3. for all attribute specifiers as of bs
4. if as is of type bound and CSQ n does not contain binding for attribute matching as
5. if there is a join binding jb from n's attribute matching as to one of CSQs in S
6. add jb tojbl
7. continue 3
8. else
9. continue 1
10. return jbl
11. return null

Figure 6-18 Algorithm for Determining Whether a CSQ is Executable Given a Set of Executed CSQs

olsen also has only one binding specifier [b(1),b(1),f,b(1)]. In the first iteration of the for
loop in step 3, the algorithm discovers that attribute exchanged has a join binding to
attribute char3_currency of currency-map2 (see Figure 6-19 showing all join bindings in
Single Query 2). In the next iterations of for loop in step 3, the algorithm finds no new
join bindings because the attribute rate is free and the attributes expressed and date are
already bound within olsen CSQ. Since CSQ olsen can be executed given join binding
for attribute exchanged, the for loop in step 3 finishes execution and returns join binding
list in step 10. The join binding list contains only one join binding - the join binding
between olsen's attribute exchanged and currency-map2's attribute char3_currency.

52

char3scurrency = currency

currency-map2

char2_currency = exchanged

(:olsen:

dstreamaf2

as-of-date = datel

datexform2

name= dtnames

name-map_dt_ws2

ws-names = company-name

(:worldcaf2)

Figure 6-19 Join Bindings in Single Query 2

6.3.4 Handling Query Operator Restrictions

In this section, we discuss how to handle query operator restrictions. Figure 6-20 shows
olsen CSQ of Single Query 2 with added binding from join relation with currency-map2
CSQ.

(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94'
and exchanged in (select char3_currency from currency-map2)) olsen

Figure 6-20 Olsen CSQ with Added Binding from Join Relation with currency._map2

As capability record for olsen cap([[b(1),b(1),f,b(1)]], ['<,'>','<>','<=','>=]) indicates, the olsen
CSQ cannot handle operators '<', '>','<>', '<=', and '>='. Since CSQ olsen in Figure 6-20
does not contain any of the restricted operators the query needs not be modified. Now,
imagine that we are only interested in exchange rates greater than 1.0. Modified olsen
CSQ (see Figure 6-21) cannot be executed. Condition rate>11.0 violates the operator
query restriction.

(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94'
and exchanged in (select char3_currency from currency-map2)
and rate>1.0) olsen

Figure 6-21 Olsen CSQ with Added Condition rate>1.0

The solution to the problem of operator restrictions is straightforward. We execute the
CSQ without violating condition and add the violating condition to the final query sent to
Executioner's database engine. In our case, the violating condition olsen.rate>1.0 would be

53

removed from olsen CSQ and added to the final where clause of Single Query. The
condition would be performed because the final where clause is carried out in the local
data store using RDBMS engine (see Figure 6-22).

select namemap-dt ws2.ws names, DStreamAF2.totalsales*olsen.rate,
worldcaf2.latestannualfinancial-date, worldcaf2.totalassets

from (select datel, 'European Style -', '01/05/94', 'American Style /'
from datexform
where formati ='European Style -'
and date2='01/05/94'
and format2='American Style /') datexform2,
(select dt names, ws-names
from name-map-dt-ws) name-map-dt-ws2,

(select as-of-date, name, totalsales, total-extraorditems-prejtax, earnedfor_ordinary, currency
from DStreamAF) DStreamAF2,

(select char3_currency, char2_currency
from currency-map
where char3_currency <> 'USD') currency-map2,
(select exchanged, 'USD', rate, '01/05/94'
from olsen
where expressed='USD'
and date='01/05/94'
and exchanged in (select char3_currency from currency-map2)) olsen
(select company-name, latest annualfinancial date, currentoutstanding-shares,

netincome, sales, totalassets, country_ofjincorp
from worldcaf) worldcaf2

where namemapdtws2.ws_names = worldcaf2.company-name
and datexform2.datel = DStreamAF2.asofdate
and name mapdtws2.dtnames = DStreamAF2.name
and DStreamAF2.currency = currency-map2.char2_currency
and currency-map2.char3_currency = olsen.exchanged
and 10000000 < DStreamAF2.totalsales*olsen.rate
and currency-map2.char3_currency <> 'USD'
and olsen.rate>1.0

Figure 6-22 SQL of Modified Single Query 2 Illustrating Solution for Operator Restrictions Problem

6.3.5 Cost Optimized QEP Generation Algorithm

Query optimizations presented in this section do not rely on source provided cost
statistics for producing reasonable plans. However, cost statistics provided by sources
can be used to improve on reasonable query execution plans.

The reason why I decided not to rely on the existence of reliable costs statistics from the
sources are based on the following observations in the COIN system:

" new date sources may be added at any time
" sources of information are heterogeneous and do not subscribe to any particular

cost estimation model
* administrators of data sources cannot be mandated to provide cost statistics for an

arbitrarily chosen cost model

54

I start the following section with discussion of cost model, continue with describing
methods for gathering cost statistics, and finish with presenting final cost-optimized QEP
generation algorithm that uses remote joins.

6.3.5.1 Cost Model

Total Cost= Query processing time + Communication time

Query processing time depends on the performance of the source node and its current
load. Communication time depends on the location of source node and load on the
network. Notice that both cost components are dynamic and change with time.
Therefore, we need a flexible cost model that can estimate cost in real time.

Query processing time is hard to estimate in heterogeneous settings because of diversity
of data sources. It depends on performance of the source node and its load. To get
around the problem of estimating query processing cost, a commonly made assumption in
optimizers of distributed heterogeneous sources is that communication cost dominates the
overall cost of the query. This assumption is justified in the case of COIN because data
sources are widely dispersed.

Communication time = Number of CSQ Tuples Transmitted * Average Time per CSQ Tuple

Communication time is equal to product of number of tuples transmitted over the
network and the average time per transmitted tuple. Average Time per CSQ Tuple
captures physical constraints, such as, round-trip time and load on the network.
In the next section on cost statistics generation, I show how to estimate both number of
tuples transmitted and average time per tuple.

Using our assumption that communication time dominates query processing time, we
arrive at the following simplified cost model:

Total Cost = Number of CSQ Tuples Transmitted * Average Time per CSQ Tuple

Since average time per CSQ tuple captures physical constraints that we do not have
control of, it follows that we can minimize the total cost of executing the query by
minimizing the number of tuples transmitted over the network. We show how to do that
in section 6.3.5.3.

6.3.5.2 Cost Statistics Generation

We need to generate two kinds of cost statistics: (1) average time per retrieved CSQ
tuple, and (2) estimated number of tuples returned by execution of a CSQ.

Average time per retrieved CSQ can be estimated by keeping time statistics of previously
executed CSQs on the same underlying relation. The estimation process can be initiated
by starting with a conservative default time estimate and then improving on it

55

exponentially using time statistics on recently executed CSQs on the same underlying
relation.

Number of tuples returned by execution of a CSQ is harder to estimate because number
of tuples varies dramatically by changing conditions on CSQ. For example, query select *

from DStreamAF where name= 'DAIMLER-BENZ' returns one tuple and query select * from
DStreamAF returns 312 tuples. One possible approach to this problem is to require sources
to provide cost statistics as is done in IBM's Garlic system. However, as stated in the
design goals, COIN cannot rely on source to provide cost statistics.

In order to estimate number of tuples in CSQs of database sources, I use the SQL
supported count operator. We can obtain cardinalities of two queries mentioned in
previous paragraph by performing following single tuple queries: select count(*) from
DStreamAF where name= 'DAIMLER-BENZ' and select count(*) from DStreamAF. Notice that
cardinalities obtained by these queries can be cached and thus save one round-trip time.

In general case, number of tuples in CSQs of non-relational sources cannot be obtained
because standard count(*) operator is not supported and we can only obtain source
provided cost statistics2 0. However, in line with my assumption of non-reliance on
source cost statistics, I do not require sources to provide cost statistics; the QEP
generation algorithm presented in the next section still produces reasonable albeit not
optimal plans. Nevertheless, non-relational sources may optionally provide information
on cardinalities of their relations. Cardinalities of relations can then be used to estimate
number of tuples in CSQs using query sampling method [20].

6.3.5.3 Cost Optimized QEP Generation Algorithm Using Remote Joins

The optimization in this section is made possible by the following key observation:
Joining two relations with their primary keys equal results in a relation with number of
tuples of at most the number of tuples in a smaller of two relations. I illustrate this
observation on a concrete example by joining relations worldcaf and name-map-dt-ws (see
Figure 6-23).

select *
from (select dt names, ws names

from name-map-dt ws) name-map-dt-ws,
(select company-name, latest-annualfinancial-date, current_outstanding-shares,

net_income, sales, total_assets, country-ofjincorp
from worldcaf) worldcaf

where name map-dt-ws.ws names = worldcaf.company-name;

Figure 6-23 Join of worldcaf and namemap_dtws Relations at their Primary Keys

20 Note that in certain cases cardinalities of CSQ result sets can be calculated for non-relational sources
using binding source restrictions and integrity constraints. For example, if Cameleon query has a key-at-a-
time binding restriction on a unique key of a relation, we can infer that exactly one tuple will be returned by
the query.

56

As shown in Figures 6-24 and 6-25, relation worldcaf contains 354 tuples and relation
name-map-dt-ws 7 tuples.

worldcaf.company-name ...
ABBOTT LABORATORIES ...
ACKLANDS LIMITED ...
ADVANCED MICRO DEVICES, INC. ...
AETNA LIFE & CASUALTY COMPANY ...
AIR EXPRESS INTERNATIONAL CORP ...
AIR PRODUCTS AND CHEMICALS, IN ...
AIRBORNE FREIGHT CORPORATION ...
ALASKA AIR GROUP, INC. ...
ALBERTSON'S, INCORPORATED ...
... (TOTAL of 354 tuples) ...

Figure 6-24 Tuples of worldcaf Relation

namemap dt ws.ws names ...
BRITISH TELECOMMUNICATIONS PLC ...
DAIMLER-BENZ AG ...
ITOCHU CORPORATION ...
LYONNAISE DES EAUX SA ...
NIPPON TELEGRAPH & TELEPHONE C ...
SUMITOMO CORPORATION ...
TOMEN CORPORATION I_...

Figure 6-25 Tuples of name-map-dt-ws Relation

name-map dt ws.ws names=worldcaf.company-name ...
BRITISH TELECOMMUNICATIONS PLC ...
DAIMLER-BENZ AG ...
ITOCHU CORPORATION ...
LYONNAISE DES EAUX SA ...
NIPPON TELEGRAPH & TELEPHONE C ...
SUMITOMO CORPORATION ...
TOMEN CORPORATION ...

Figure 6-26 Tuples of Join of worldcaf and name-map_dt-ws Relations at their Primary Keys

As shown in Figure 6.26, the join of two relations at their primary keys
(name-map-dtws.ws_names = worldcaf.company-name), results in only 7 tuples - the number of
tuples in a smaller of two relations. This is an important property because it allows us to
reduce the number of tuples transferred over the network by performing joins remotely.
Instead of brining 354 tuples of worldcaf and 7 tuples of namemap-dt-ws into the local
datastore, we can reduce the number of transferred tuples to only 21 as I now show.

Step 1 - Bring tuples from namemap-dtws into the local store by running following
query:

57

select *
from namemap-dt-ws;
(7 tuples transferred over the network to retrieve the query results)

Step 2 - Do remote join of namemap-dt ws and worldcaf at the source of worldcaf
by running following query:

select *
from worldcaf
where company-name in ('BRITISH TELECOMMUNICATIONS PLC', 'DAIMLER-BENZ AG',

'ITOCHU CORPORATION', 'LYONNAISE DES EAUX SA',
'NIPPON TELEGRAPH & TELEPHONE C',
'SUMITOMO CORPORATION', 'TOMEN CORPORATION');

(7 tuples transferred over the network to send the join attribute values of name-mapjdtws)
(7 tuples transferred over the network to retrieve the query results)

Note that approach scales well as number of tuples in relations increase. If worldcaf
relation had 1,000,000 instead of 354 rows, which is typical of many databases, the
number of tuples transported over the network would reduce from 1,000,007 to only 21.

I generalized remote joins optimization approach and developed the following improved
QEP generation algorithm:

Input: Single Query q
Output: Query Execution Plan (QEP)

QEP Generation Algorithm:
1. initialize set A to an empty set
2. for all CSQs c in A
3. if c is independently executable
4. add c to set A
5. sort CSQs in set A by increasing estimated cardinality of tuples
6. initialize set S to an empty set
7. while A is not empty
8. initialize set B to an empty set
9. move first element of set A to set B
10. repeat until no more CSQs are added to B
11. for all CSQs c outside of B and S
12. if CSQ c can be executed using bindings from CSQs in B
13. add an entry for c to QEP including all join bindings of c
14. add CSQ c to set B
15. add all elements of set B to set S
16. if S does not contain all CSQs in a query
17. throw exception "query cannot be executed"
18. return QEP

Figure 6-27 Cost Optimized QEP Generation Algorithm Using Remote Joins

The algorithm above looks complicated but it is not much different from the algorithm in
section 6.3.3 where we already discussed steps 3 and 12 of the algorithm: determining
whether CSQ is independently executable and determining whether CSQ is executable
given a set of already executed CSQs.

58

There are two notable differences from the non-optimized version of the algorithm. First,
the algorithm performs remote joins as soon as possible in order to minimize the transfer
of tuples across the network. Second, in step 5, we use cost statistics to sort
independently executable CSQs by increasing estimated cardinality of tuples. The
algorithm produces QEP for Single Query 2 shown in Figure 6-28 in table form and
Figure 6-29 in graph form.

Necessary CSQs Dependent CSQs
0: name map_dt_ws2, datexform2
name-map_dt-ws2: worldcaf2 ((company-name namemap_dt_ws2.wsnames)),

DStreamAF2 ((name namemap_dt ws2.dt names))
DStreamAF2: currency-map2 ((char2_currency DStreamAF2.currency))
currencymap2: olsen ((exchanged (currency-map2 char3 currency))

Figure 6-28 Query Execution Plan for Single Query 2

namemap_dtws2 dnames = name dstreamaf2 currency = char3_currency currencymap2

ws-names = company-name char2_currency = exchanged

datexform2 worldcaf2 olsen

Figure 6-29 Graph of QEP for Single Query 2

Now, let us compare the execution of cost-optimized version of the algorithm presented
in this section with the non-optimized version of section 6.3.3. As Figure 6-30 shows,
cost optimization cuts the execution time by approximately a half. Note, however, that
cost-optimization algorithm scales very well and with increasing number of tuples in
relations, reductions in query execution time may be much larger. Now, let us examine
the timing graphs of two algorithms in more detail. In non-optimized version of the
algorithm, the query execution time is determined by the time it takes to retrieve tuples of
two large CSQs - DStreamAF2 and WorldcAF2. Executioner retrieves 312 tuples from
DStreamAF relation and 354 tuples from WolrdcAF relation. In the cost optimized version
of the algorithm remote joins cut down the number of tuples from DStreamAF relation to
29 and number of tuples from WorldcAF relation to only 7. The limiting factor in the
query execution time now becomes olsen relation which takes 1200ms to fetch 4 tuples.

59

NON-OPTIMIZED EXECUTION

datexform2, lxi00ms

namemap. d ws2, 7xl Oms

dstreamaf2, 312x1 Oms

currencyj ap2, 9x1Oms

olsen, 4x300ms

worldcaf2, 354x1 Oms

010 100 200 300

Execution Time (ms)

COST-OPTIMIZED EXECUTION

datexform2, lx100ms

name-map-dows2, 7x1 Oms

worldcaf2, 7x1 Oms

dstrearhaf, 29x 1Oms

curencymrap2, 4x1 Oms

olsen, 4x300ms

a10 i 100 200 300

Execution Time (ms)

Figure 6-30 Head to Head Timing Comparison Between Cost-Optimized Algorithm and
Non-Optimized Algorithm for Execution of Single Query 2

6.3.6 Handling Key-at-a-Time Query Restriction

The last hurdle we have to overcome in query execution is dealing with key-at-a-time
query restriction. In our motivational example, both cameleon and functional container
servlet source impose key-at-a-time restriction for its bindings.

Let us examine the challenge of key-at-a-time query restriction on a concrete example:

select price
from secapl
where ticker in ('GE', 'IBM', 'MSFT');

secap is web-wrapped relation provided through cameleon interface and returns latest
stock price for a company specified by ticker. Capability record for secapl relation is
shown below:

relation(cameleon,
'secapl',
[['TICKER', string], ['PRICE', number]],
cap([[b(l), ft, ['<', ' '<>', '<=', '>=')

Figure 6-31 Capability Record for secapl Relation

60

Cameleon wrapper cannot handle this query directly because secap relation has key-at-a-
time query restrictions for the attribute ticker and cannot handle queries with 'in'
operator . In order to answer the query, we need to rewrite it as union of three key-at-a-
time queries, and perform the union operation locally.

Our query becomes:

Now, let us examine how to automate the task of query rewriting for handling key-at-a-
time restriction. The input to the algorithm is CSQ c with some key-at-a-time restricted
attribute. The output is union of simpler key-at-a-time queries whose union returns same
result as original CSQ c.

KAT (key-at-a-time) rewriting algorithm:
1. for every key-at-a-time-restricted attribute in CSQ
2. if attribute is bound to more values than allowed by query restriction then
3. rewrite the CSQ as union of 2 KAT queries:
4. first KAT query with the attribute bound to the maximum allowed number of values
5. second KAT query with the attribute bound to the remaining values
6. call KAT algorithm recursively on both KAT queries

Let us examine in detail how KAT algorithm processes our original CSQ:

Step 1 - Original CSQ

select price
from secapl
where ticker in ('GE', 'IBM', 'MSFT');

Step 2 - CSQ gets decomposed into a union of two simpler queries

21 Note that queries containing 'in' operator are common because when CSQ c I is joined remotely with
CSQ c2, executioner feeds results of CSQ c I into CSQ c2 through 'in' operator (e.g. ticker in (select ticker
from TickerLookup)).

61

(select price
from secapl
where ticker= 'GE')
union
(select price
from secap
where ticker= 'IBM')
union
(select price
from secapi
where ticker= 'MSFT')

Step 3 - KAT Query 1 satisfies key-at-a-time restriction

Step 4 - KAT Query 2 gets decomposed into a union of two simpler queries

KAT Query 1: select price
from secapl
where ticker= ('GE')
union

KAT Query 2: select price
from secapi
where ticker= ('IBM')
union

KAT Query 3: select price
from secapi
where ticker= ('MSFT');

Step 5 - KAT Query 2 satisfies key-at-a-time restriction
Step 6 - KAT Query 3 satisfies key-at-a-time restriction

62

KAT Query 1: select price
from secap
where ticker= ('GE')
union

KAT Query 2: select price
from secapl
where ticker in ('IBM', 'MSFT');

7 Integration with Non-Relational Data Sources

In this section, I discuss integration issues with non-relational data sources. In sections
7.1 and 7.2 I present the two most commonly encountered non-relational data sources:
web wrappers and functional relations. I end the section by presenting a generic
framework for classifying non-relational sources.

olsen

Cam leon
Function Container

Serviet

datexform

CGI/XML CGI/XML

Function Serviet Cameleon
Access Access

Functional
Access

Remote
Access

Figure 7-1 Remote Access to Non-Relational Sources

7.1 Web Wrapped Sources

The COIN system includes a web wrapper component - the Cameleon engine. Cameleon
integrates data sources from multiple web sites under a unified SQL interface. It extracts
data from web pages using declarative specification files that define extraction rules and
it lets us wrap web sources and execute simple SQL queries against them. Query results
by Cameleon are returned in several formats including XML.

As discussed in section 5.1, remote access to Cameleon is achieved through the
Cameleon Access class, which uses CGI to send query parameters to the Cameleon
engine and to get back the query results as XML. Figure 7-1 shows the Cameleon
wrapped relation olsen, which provides historical currency conversion rates. Here is one
of the queries executed remotely through Cameleon engine:

63

Even though the Cameleon web wrapper accepts the SQL syntax it is inherently non-
relational because it only accepts functional queries subscribing to the parameters-in,
results-out model. Note the functional form of the query with input parameters
(exchanged, expressed and date) and output parameters (exchanged, expressed, rate, and
date). Consequently, data in the olsen relation is accessed through functional access
interface.

Cameleon returns query results in XML format. Here is the XML returned when
executing the above query on olsen relation:

<?xml version="1.0" ?>
<DOCUMENT>
<ELEMENT>
<EXCHANGED>DEM </EXCHANGED>
<EXPRESSED> USD</EXPRESSED>
<RATE>0.57600</RATE>
<DATE>01/ 05/94</DATE>
</ELEMENT>
</DOCUMENT>

7.2 Functional Relations

Functional relations are commonly encountered in mediation systems because they
provide conversion functions between different contexts. In our motivational example,
we use the datexform source, which converts dates between different formats. Functional
relations reside inside a Function Ccontainer Servlet. Class Servlet Access implements
Functional Access interface and makes calls on functions residing inside a Function
Container Servlet. Servlet Access uses the CGI interface to supply the function name and
input parameters to functions residing in the Function Container Servlet. The output
results are returned in XML format. Appendix E shows the code implementing the
Function Container Servlet containing a single conversion function - datexform. Note
that more general Function Containers may be implemented containing many conversion
functions.

The following is the format of the request sent to the Function Container Servlet for
conversion of date '01 /05/94' from American Style with '/' used as delimiter to European
Style with '-' used as delimiter:

http://hostname/servet/edu.mit.gcms.functionservlet?function=datexform&
format1 =European Style -& date2=01 /05/94&format2=American Style /

64

select exchanged, expressed, rate, date
from olsen
where exchanged="DEM"
and expressed="USD"
and date="01/05/94"

The result of this conversion returned in XML format is:

An alternative to sending function parameters as URL query strings is to use SQL like in
the case of the Cameleon queries. Here is the resulting SQL for datexform CSQ:

select date1, format1, date2, format2
from datexform
where datel ="01 /05/94"
and format1= "European Style -"

and format2="American Style /"

Advantage of this approach is that it provides a common SQL interface and disadvantage
that it is harder to implement because a SQL parser is needed to parse the SQL query.

7.3 Classification of Source Restrictions for Non-Relational Sources

I classify query restrictions along
and (2) scope of restriction.

Q)
0_
0

U)

0

CI)
(1)

All

Group

Single

two orthogonal dimensions: (1) severity of restriction,

Avoidable Processing Binding
Restriction Severity

7.3.1 Restriction Severity

regard to severity, I classify source restrictions in the following three categories:
Binding restrictions
Processing restrictions
Avoidable query restrictions

<?xml version="1.0" ?>
<DOCUMENT>
<ELEMENT>
<date1 >05-01-94</date 1>
<formatl>European Style -</formatl>
<date2>01/05/94</date2>
<format2>American Style /</format2>
</ELEMENT>
</DOCUMENT>

With
S

S

65

Binding restrictions make it impossible to retrieve all information present in a data
source. For example, finance.yahoo.com asks for a ticker symbol in order to retrieve
quote data. We cannot issue a query or series of queries (without the knowledge of all
the tickers) that would retrieve all the data present in finance.yahoo.com information
source. This data restriction prevents us from issuing a relational query that would
retrieve tickers of all stocks with trading price above 100. Another example of binding
restrictions comes from our motivational example. A query on relation olsen cannot
return an answer unless attributes Expressed, Exchanged, and Date are bound.

Processing restrictions are those restrictions that prevent us from doing transformations
of the data at the information source. Typical RDBMS, such as Oracle, impose no
restrictions on transformations that can be performed. Most of the web sources, however,
have little or no processing capabilities, as they cannot perform joins, condition,
subqueries, or even simple arithmetic operations on attributes, such as addition. Operator
restrictions discussed in section 6.3.4 are a type of processing restrictions.

Avoidable query restrictions are those restrictions that make it impossible to retrieve
required data in a single query. However, it is possible to execute a series of queries on
this information source that would yield the required data. An example of avoidable
query restriction is a batch-of-tuples-at-a-time restriction, where the information source
allows only a few records to be retrieved at a time (see section 8.1.1). To avoid batch-of-
tuples-at-a-time restriction, the Executioner can keep querying the source until all the
required data is retrieved.

7.3.2 Restriction Scope

With regard to scope, I classify source restrictions in the following three categories:
" Single relation
" Group of relations
" All relations

The lowest level of granularity of restriction severity is a single relation. Capability
records used in my Planner/Optimizer/Executioner specify restrictions on single relations
only. Note, however, that not all restrictions can be expressed at the granularity of a
single relation. For example, restriction that the JOIN between the two specific relations
in a source is prohibited requires restriction scope to contain at least those two relations.
Additional benefit of 'group of relations' and 'all relations' restriction scopes is that they
make it easier for the user to define source restrictions. Instead of defining a restriction
for every relation in a source, the user can define a single restriction shared by a group of
relations or all relations (e.g. schema independent query restrictions). For example, this
is useful in a web source where all relations typically have a restriction of not being able
to perform a JOIN operation.

66

8 Conclusions and Future Work

In general, the POE has achieved its aim of providing a stable execution environment for
context mediated queries. Nevertheless, there are a number of improvements which can
be made in the POE to improve its execution. These improvements are in the areas of
handling query restrictions, optimizing query execution, and integration with non-
relational sources.

8.1 Handling Query Restrictions

While capability records in POE handle the most common cases of query restrictions,
such as binding restrictions, operator restrictions, and key-at-a-time restrictions,
improvements can be made in handling less commonly occurring query restrictions. In
section 8.1.1, I describe how to handle bach-of-tuples-at-a-time restriction, and in section
8.1.2, I present a generic grammar-based approach for describing query capabilities of
arbitrary complexity.

8.1.1 Batch of Tuples at a Time Retrieval

Some web sources impose a restriction on the number of tuples that can be returned when
querying a relation. Search engines typically exhibit this behavior - they only return a
pre-set number of results at the time for each query. For example, querying
www.google.com for 'context mediation' results in 280 records but only 10 records are
returned per page. If we wished to obtain all the results, we would need to query
www.google.com 28 times fetching 10 tuples at a time.

Handling batch-of-tuples-at-a-time restriction involves extending capability records to
carry the information on how many tuples can be returned by a query. In addition,
Functional Access interface needs to be modified in order to keep track of the execution
state. In our example, the execution state is the record number from which to start
counting next batch of tuples to be retrieved.

Bathch-of-tuples-at-time-restriction can only be handled by wrappers that take starting
record number as an input parameter. In the case of Cameleon, we can extend SQL with
startat keyword specifying the record number from which to start counting the batch of
tuples. Then, retrieving records 31-40 from the google relation can be achieve with the
following query:

select searchresults
from google
where searchkeyword='context mediation'
and startat= 31;

8.1.2 Grammar-Based Approach for Specifying Query Capabilities

As we have already seen in the previous section, capability records are limited in their
ability to express query capabilities. An improvement could be made in integrating

67

sources with complex query restrictions by using Relational Query Description Language
(RQDL) [13]. RQDL is a grammar-based approach for specifying query capabilities and
it can describe large and infinite sets of supported queries as well as schema independent
queries.

However, RQDL also has disadvantages over capability records. While a capability
record is easy to understand and write, RQDL may not be so. An effective solution may
be to use capability records at the front end for typical usage and RQDL at the backend.
For advance uses when the power of RQDL is necessary, administrators can be given an
option to specify query capabilities using RQDL.

8.2 Optimizing Query Execution

In this section, I present practical approaches for optimizing query execution. I first
discuss semantic query optimization, an approach applicable to all queries and showing a
great promise in reducing the query execution time. I continue with the discussion of
performing joins locally in the queries involving joined relations from the same source. I
finish with presenting a better strategy for managing temporary relation in the RDBMS
engine than the one described in section 5.2.

8.2.1 Semantic Query Optimization

Let us examine the query shown in Figure 8-1 and the mediated datalog produced by
mediation engine shown in Figure 8-2.

context=cdt
select COMPANYNAME
from DiscAF
where COMPANYNAME='DAIMLER-BENZ';

Figure 8-1 SQL for Semantic Query Optimization Example

answer(" DAI MLER-BENZ") :-
'DiscAF'('V7', 'V6', 'V5', 'V4', 'V3', 'V2', 'V1'1),
'Name mapDtDs'("DAIMLER-BENZ", 'V7').

Figure 8-2 Datalog for Semantic Query Optimization Example

Notice that mediated datalog in Figure 8-2 does not need to access relations DiscAF and
Name-mapDtDs relations. answer("DAIMLER-BENZ") contains a constant "DAIMLER-
BENZ" in its projection list and it does not need any additional information to answer the
original user query. In general, semantic optimization can be performed on a datalog
query before it is sent to the Executioner for processing. The straightforward algorithm
for detecting unused variables unused in answering the query is presented in Figure 8-3.
Unused relations can then be easily identified because they only contain unused
variables.

68

Input: Datalog Query d
Output: Set of variables not used in answering query d

Find Unused Variables:
1. initialize set UNUSED to all variables occurring in a query d
2. initialize set USED to an empty set
3. move all variables occurring in answer() predicate from UNUSED to USED
4. repeat until no new variables are added to the UNUSED set
5. for all USED variables v
6. for all relations r containing variable v
7. if relation r contains some variable u in UNUSED set
8. move variable u from UNUSED to USED
9. continue 4
10. return UNUSED

Figure 8-3 Algorithm for Finding Unused Variables in a Datalog Query

The semantic query optimization done in the POE should be closely coordinated with the
work done on mediation engine. The reason is that the mediation engine already
performs some semantic query optimization as a part of the mediation process. A clear-
cut demarcation needs to be made between semantic optimizations in the mediation
engine and semantic optimizations in the POE

8.2.2 Performing Joins Locally on the Relations From the Same Source

A significant reduction in query execution time can be achieved by performing joins
locally on all relations coming from the same source. This approach is applicable to any
query containing two joined relations from the same source. In our motivational
example, relations DStreamAF, WolrdcAF and NamemapDtWs all reside in the same
database. Instead of accessing each of these three relations separately by sending three
SQL queries to the database to fetch the data, we can send a single query that performs
join on these three data sources and fetches results into the local data store. This way the
database source is accessed only once and the number of tuples transferred over the
network is reduced.

8.2.3 Pooling Temporary Relations

In section 5.2, I explained how temporary relations are created at the Executioner
initialization time. However, this approach does not scale to a global system with a large
number of relations. The reason is that creating temporary relations would take too long
at the initialization time and that underlying RDBMS engine may have limitations on the
number of temporary relations it can support.

Creating temporary relations on the fly solves scalability problem. However, this
approach lengthens the query execution time because creating temporary tables at a run-
time takes a long time (on the order of 50ms). An alternative hybrid solution that solves
both scalability and performance problems is to keep a pool of temporary relations for
frequently accessed relations. Every time a query is executed, the Executioner first
checks if the temporary relation needed for answering the query is already in the pool of

69

temporary relations. If the temporary relation is already in the pool, then the Executioner
uses the pooled temporary relation and if its not then the Executioner creates a new
temporary table on the fly and adds it to the pool of temporary relations.

8.3 Integration with Non-Relational Sources

In the current implementation of the POE, I use a CGI interface to send function
parameters to Function Container Servlet and retrieve the results in XML format. While
this approach works well, it can be improved by using a recently announced XML-RPC
protocol.

In the XML based RPC, a remote procedure call is represented using an XML based
protocol such as the SOAP 1.1 specification. Using XML-RPC, a Function Container
Servlet can define, describe and export conversion functions as RPC based services.
Executioner can then make remote procedure calls to Function Container Servlet to
execute the conversion functions. The advantage of XML-RPC over existing CGI/XML
approach is that XML-RPC is a standard, it is more robust, and it makes defining and
exporting conversion functions easier.

8.4 Conclusion

The Planner/Optimizer/Executioner I implemented has been successfully deployed on the
financial application TASC built on top of the COIN system. It has proved to be both
versatile and effective in answering the queries from a variety of data sources. In
addition, I developed a fully functional datalog to SQL translator and demonstrated a
feasibility of using RDBMS engine of a single database as a basis for the multi database
Executioner. On the theoretical side, I showed how to handle data sources with varying
processing capabilities, showed how to optimize queries in distributed environments
where costs statistics are not readily available, and presented the solution to a problem of
integration with non-relational data sources.

70

9 References

[1] S. Bressan, K. Fynn, T. Pena, C. Goh, and et al. Demonstration of the context
interchange mediator prototype. In Proceedings of ACM SIGMOD/PODS

Conference on Management of Data, Tucson, AZ, May 1997.
[2] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog

(and never dared to ask). IEEE Transactions On Knowledge And Data Engineering,
1(1), March 1989.

[3] W. Du, R. Krishnamurthy, and M. C. Shan. Query optimization in heterogeneous
dbms. In International Conference on VLDB, Vancouver, Canada, September 1992.

[4] C. H. Goh, S. Madnick, and M. Siegel. Context interchange: Overcoming the
challenges of large-scale interoperable database systems in a dynamic environment.
In Proceedings of the Third Int'l Conf on Information and Knowledge Management,
Gaithersburg, MD, November 1994.

[5] Cheng Han Goh. Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems. PhD dissertation, Massachusetts Institute of
Technology, Sloan School of Management, December 1996.

[6] C.H. Goh, S. Bressan, S. Madnick, M. Siegel, "Context Interchange: New Features
and Formalisms for the Intelligent Integration of Information", ACM Transactions on
Office Information Systems, July 1999 [SWP #3941, CISL #97-03].

[7] S. Bressan, C. Goh, N. Levina, A. Shah, S. Madnick, M. Siegel, "Context Knowledge
Representation and Reasoning in the Context Interchange System", Applied
Intelligence: The International Journal of Artificial Intelligence, Neutral Networks,
and Complex Problem-Solving Technologies, Volume 12, Number 2, September
2000, pp. 165-179, [SWP #4133, CISL #00-04].

[8] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons,
Inc., 1991.

[9] Marta Jakobisiak. Programming the web - design and implementation of a
multidatabase browser. Technical Report CISL WP#96-04, Sloan School of
Management, Massachusetts Institute of Technology, May 1996.

[10] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogenous information
sources using source descriptions. In Proceedings of the 22nd VLDB Conference.,
Mumbai (Bombay), India, September 1996.

[11] K. A. Morris. An algorithm for ordering subgoals in nail. In Proceedings of the 7th
ACM Symposium on Principles of Database Systems, Autin, TX, March 1988.

[12] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A query
translation scheme for rapid implementation of wrappers. In Deductive and
Object-Oriented Databases, Fourth International Conference., pages 161-186,
Singapore, December 1995.

[13] Y. Papakonstantinou, A. Gupta, and L. Haas. Capabilities-based query rewriting
in mediator systems. In to appear in Fourth International Conference on Paralled
and Distributed Information Systems, Miami Beach, Florida, December 1996.

[14] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD International

71

Conference on Management of Data, pages 23-34, Boston, May 1979.
[15] Leon Sterling and Ehud Shapiro. The Art of Prolog : Advanced Programming

Techniques. The MIT Press, 1994.
[16] Koffi Fynn, A Planner/Optimizer/Executioner for Context Mediated Queries,

MIT Masters Thesis, Electrical Engineering and Computer Science, 1997.
[17] A. Tomasic, L. Raschid, and P. Valduriez. A data model and query processing

techniques for scaling acccess to distributed heterogeneous databases in DISCO,
1996. Submitted for publication.

[18] Laura M. Hass, Donald Kossmann, Edward L. Wimmers, Jun Yang. Optimizing
Queries across Diverse Data Sources. Proceedings of the 2 3rd VLDB Conference.
Athens, Greece, 1997.

[19] S. Adali, K.S. Candan, et al. Query Caching and Optimization in Distributed
Mediator Systems. SIGMOD Conference 1996.

[20] Qiang Zhu, and P. A. Larson. A query sampling method of estimating local cost
parameters in a multidatabase system. Technical Report CS93-42, University of
Waterloo, Canada, 1993.

72

Appendix A Relation Sources, Schemas, and Capabilities

%% Sources

source(oracle, database, 'jdbc:oracle:oci8: @coin&system&manager').
source(cameleon, cameleon, 'http://context2.mit.edu:8081/servlet/camserv').
source(servlet, functionserviet, 'http://context2.mit.edu/servlet/edu.mit.gcms.functionservlet ').

%% Relations

relation(cameleon,
'secapl',
[['TICKER', string], ['PRICE', number]],
cap([[b(1), f]], ['<',% '>', '<>', '<=', '>='9

relation(oracle,
'Currencytypes',
[['COUNTRY',string],['CURRENCY',string]],
cap([[?, ?]],[).

relation(oracle,
'currency-map',
[['CHAR3_CURRENCY',string],['CHAR2_CURRENCY',string]],
cap([[?,?]], U)).

relation(servlet,
datexform,
[['Datel', string], ['Formati', string], ['Date2', string],
['Format2', string]],

cap([[b(1),b(1),f,b(1)], [f,b(1),b(1),b(1)]],[' ,>,< ''=,> ').

relation(cameleon,
olsen,
[['Exchanged',string],['Expressed',string],['Rate',number],
['Date',string]],

cap([[b(1),b(1),f,b(1)]],[' ,>,< ''=,> ').

relation(cameleon,
quotes,
[['Cname',string],['Last', string]],
cap([[b(1),f]],['''''>,< ,>=).

relation(oracle,
'DiscAF',
[['COMPANYNAME',string],['LATESTANNUALDATA',string],
['CURRENTSHARESOUTSTANDING',number],['NETINCOME',number],
['NETSALES',number],['TOTALASSETS',number],
['LOCATIONOFINCORP',string]],
cap([[?2',????,]] [])).

73

relation(oracle,
'WorldcAF',
[['COMPANYNAME',string],['LATESTANNUAL_FINANCIALDATE',string],
['CURRENTOUTSTANDINGSHARES',number],
['NET INCOME',number],['SALES',number],['TOTALASSETS',number],
['COUNTRYOFINCORP', string]],
cap([[?,?,?,,?,?,?]], U)).

relation(oracle,
'WorldcAFT',
[['COMPANYNAME',string],['LATESTANNUALFINANCIALDATE',string],
['CURRENTOUTSTANDINGSHARES',number],
['NET INCOME',number],['SALES',number],['TOTALASSETS',number],
['COUNTRYOFINCORP', string]],

cap([[?,?,?,?,?,?,?], [0)).

relation(oracle,
'Name_mapDsWs',
[['DSNAMES',string],['W SNAMES',string]],
cap([[?,?]],[])

relation(oracle,
'TickerLookup',
[['COMPNAME',string],['TICKER',string],
['EXC', string]],
cap([[?,?,?f],[).

relation(oracle,
'Namemap_DtDs',
[['DTNAMES',string],['DSNAMES',string]],
cap([[?,?]],[).

relation(oracle,
'Name_map_DtWs',
[['DTNAMES',string],['WSNAMES',string]],
cap([[,?]], [])).

relation(oracle,
'DStreamAF',
[['ASOFDATE',string],['NAME',string],
['TOTALSALES',number],
['TOTALEXT RAORD_IT EMS_PRE_TAX',number],
['EARNEDFORORDINARY',number],
['CURRENCY',string]],
cap([[?,?,??,?,]],[).

relation (cameleon,
quicken,
[['Ticker',string],
['Headlines',string],
['LastTrade',number],

cap([[b(1), f, f]], [<, >, <>, <=,

relation (cameleon,

74

cia,
[['Country',string],
['capital',string],
['economy',string],
['Iocation',string],
['coordinates',string],
['totalarea',string],
['climate',string],
['population',string],
['telephone',string],
['GDP',string],
['Background',string],
['Link',string],

cap([[b(1), f, f, f, f, f, f, f, f, f, f, fq,[,>,< <, >=D)).

relation(cameleon,
moneyrates,
[['bankname',string],
['rate',number],
['yield',number],
['minbalance',number],

cap([[f, f, f, f]], [<, >, <>, <=, >=])).

75

Specification

Context Currency Scale Currency Date Format
Factor Type

Worldscope, c_ws USD 1000 3char American Style /
Datastream, cdt Country of 1000 2char European Style -

Incorporation
Disclosure, cds Country of 1 3char American Style /

Incorporation
Olsen, c ol I 1 3char American Style /

76

of ContextsAppendix B

Appendix C Remote Access Interfaces

public interface RemoteAccess {
public static final int RELATIONALACCESS=1;
public static final int FUNCTIONALACCESS=2;

public int typeo;
}

public interface RelationalAccess extends RemoteAccess {
public OrderedTable executeQuery(String sql) throws Exception;
public int typeo;

I

public interface FunctionalAccess extends RemoteAccess {
public OrderedTable executeQuery(Relation r, boolean[] in, boolean[] out, String[] inBinding);
public OrderedTable executeQuery(Relation r, boolean[] in, boolean[] out, OrderedTable inBindings);

public int type(;
I

77

Appendix D Ordered Table Class

public class OrderedTable {

public void addRow(List row);
public List getRow(int rowNum);
public int getNumRowso ;
public int getNumColumnso;
public Object getElement(int rowNum, int colNum);
public void merge(OrderedTable o);

}

78

Datexform ServIet

package edu.mit.gcms.demo.servlets;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import edu.mit.gcms.util.StringUtils;

public class datexform extends HttpServlet {
private static final String CONTENTTYPE = "text/xml";
public static final int EUROPEAN= 1;
public static final int AMERICAN= 2;

/**lnitialize global variables*/
public void init(ServletConfig config) throws ServletException {
super.init(config);

I

public String getParamValue(HttpServletRequest request, String paramName) {
String[] paramValues= request.getParameterValues(paramName);
if (paramValues==null) {

return "";
} else {

return paramValues[O];
}

}

boolean bound(String paramName) {
return !paramName.equals("");

I

/**Process the HTTP Get request*/
public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {
response.setContentType(CONTENTTYPE);
PrintWriter out = response.getWritero;

String function= getParamValue(request, "function");
String datel = getParamValue(request, "datel ");
String date2= getParamValue(request, "date2");
String format1 = getParamValue(request, "format1");
String format2= getParamValue(request, "format2");

if (!function.equals("datexform")) {
throw new ServletException("unknown function");

}

if (bound(datel) && bound(formatl) && bound(format2) && !bound(date2)) {
date2= convertDateFormat(date1, formati, format2);

} else if (bound(date2) && bound(formatl) && bound(format2) && !bound(datel)) {
datel= convertDateFormat(date2, format2, formati);

} else {
throw new ServletException("unsupported function bindings");

79

Appendix E

}

String xml= "";

xml+= "<?xml version='1.0'?>\n";
xml+= "<DOCUMENT>\n";
xml+= "<ELEMENT>\n";
xml+= "<datel>"+datel+"</datel>\n";
xml+= "<format1 >"+formatl +"</formatl >\n";
xml+= "<date2>"+date2+"</date2>\n";
xml+= "<format2>"+format2+"</format2>\n";
xml+= "</ELEMENT>\n";
xml+= "</DOCUMENT>\n";

out.print(xml);
}
/**Process the HTTP Post request*/
public void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {
doGet(request, response);

}

/**Clean up resources*/
public void destroyo {
}
// european style= dd-mm-yy
// american style= mm/dd/yy
public String convertDateFormat(String date, String fromFormat, String toFormat) {

int fromFormatType, toFormatType;
char fromDelimiter, toDelimiter;
String day, month, year;

if (from Format.startsWith("European Style")) {
fromFormatType= datexform.EUROPEAN;
fromDelimiter= fromFormat.charAt(1 5);

} else if (fromFormat.startsWith("American Style")) {
fromFormatType= datexform.AMERICAN;
fromDelimiter= fromFormat.charAt(15);

} else {
throw new RuntimeException(from Format + " is unrecognized date format");

}

if (toFormat.startsWith("European Style")) {
toFormatType= datexform.EUROPEAN;
toDelimiter= toFormat.charAt(1 5);

} else if (toFormat.startsWith("American Style")) {
toFormatType= datexform.AMERICAN;
toDelimiter= toFormat.charAt(1 5);

} else {
throw new RuntimeException(toFormat + " is unrecognized date format");

}

String[] elements= StringUtils.split(date, ""+fromDelimiter);

if (elements.length!=3) {

80

throw new RuntimeException("invalid date format");
}

switch (fromFormatType) {
case datexform.EUROPEAN:

day= elements[O];
month= elements[1];
year= elements[2];
break;

case datexform.AMERICAN:
day= elements[1];
month= elements[];
year= elements[2];
break;

default:
throw new RuntimeException("invalid date format");

}

switch (toFormatType) {
case datexform.EUROPEAN:

return day+toDelimiter+month+toDelimiter+year;
case datexform.AMERICAN:

return month+toDelimiter+day+toDelimiter+year;
default:

throw new RuntimeException("invalid date format");
}

}

81

Appendix F Software Components

package edu.mit.gcms.poe (630 lines)
Decription: Contains modules for working with internal query representation: (1) Datalog Parser for

converting datalog into internal query representation, and (2) SQL Generator for generating
SQL from internal query representation.

451 lines DatalogParser.java
179 lines SQLGenerator.java

package edu.mit.gcms.poe.executioner (1,448 lines)
Description: Contains modules of Executioner component. This includes remote access interfaces

(Relational Access and Functional Access), classes implementing those remote interfaces
(DB Access, Cameleon Access, and Servlet Access), parallel functional executioner
responsible for queries sent to Cameleon and function container servlet, and main
Executioner class, which executes QEP.

897 lines Executioner.java
122 lines CameleonAccess.java
108 lines CSQOrdering.java
96 lines ServletAccess.java
74 lines DBAccess.java
66 lines ParallelFunctionalExecutioner.java
30 lines CSoBinding.java
19 lines RemoteAccess.java (interface)
19 lines FunctionalAccess.java (interface)
17 lines RelationalAccess.java (interface)

package edu.mit.gcms.poe.query (782 lines)
Description: Contains internal query representation structures: Single Query, CSQ, Condition, and

Alias.
594 lines Single Query.java
84 lines CSQ.java
42 lines Alias.java
39 lines Condition.java
23 lines CSQAttribute.java

package edu.mit.gcms.poe.metadata (538 lines)
Description: Contains metadata for representing schema information: Sources, Relations, Attributes,

and Capability Records.
48 lines Attribute.java
68 lines AttributeSpecifier.java
46 lines Binding Specifier.java
216 lines CapabilityRecord.java
69 lines Relation.java
48 lines Schema.java
43 lines Source.java

package edu.mit.gcms.poe.term (172 lines)
Description: Contains internal representation of the Term component. Term is a Java interface

implemented by four classes: Number Constant, String Constant, Expression, and Variable.
44 lines Expression.java
41 lines Variable.java
32 lines NumberConstant.java
32 lines StringConstant.java
23 lines Term.java (interface)

package edu.mit.gcms.poe.operators (147 lines)
Description: Contains modules representing arithmetic operators and comparators.
59 lines ArithmeticOperator.java
88 lines Comparator.java

package edu.mit.gcms.util (514 lines)

82

Description: Contains modules with utility functions and structures.
101 lines OrderedTable.java
236 lines StringUtils.java
39 lines Timer.java
41 lines TimingEvent.java
53 lines Timinginfo.java
44 lines Util.java

package edu.mit.gcms.demo.servlets (135 lines)
Description: Contains serviets conforming to CGI-XML functional access interface.

135 lines datexform.java

package edu.mit.gcms.demo (659 lines)
Description: Contains code demonstrating capabilities of Executioner and COIN system in general.

538 lines DemoBean.java
121 lines DemoQueries.java

83

Appendix G Query Execution Trace for Motivational Example

I69nIOTAL

1629ms Execution

10ms Datalog Parsing

20ms [Planning and Optimization

Calculating Join Groups:
m 1 ((datexform, dstreamaf, currency-map, name map dL ws, worldcaf))

Calulating Optimal CSQ Cost Ordering
2Oms ((currency-map ()), (dstreamaf ((currency (currency-map char2 currency)))), (datexform 0)) (name map dt ws

((dt-names (dstreamaf name)))), (worldcaf ((company-name (name-map-dt ws ws names)))))

Calulating Independent CSO Cost Ordering:
2ms (currency-map, namemap_dt ws, dstreamaf, worldcaf, datexform)

Calculating CSQ Cost:
select count(*)

1oms from dstreamaf
where 10000000 <totalsales
CSQ Cost= 266

Calculating CSQ Cost:
select count(*)

Oms from currency map
where char3currency='USD
CSQ Cost= 1

Calculating CSQ Cost:

1 oms select count(*)
from namemap_dt ws
CSQ Cost= 7

Calculating CSQ Cost:
select count(*)

Oms from worldcaf
CSQ Cost= 354

Fetching Remote CSQ Data

2Oms Fetching currency map Data

l~is j Preparing Temporary Table TTP urrency map

Executing at remote database oracle:
10ins : select 'USD', char2_currency

from currency-map
where char3_currency='USD'

kms Batch Inserting Remote Data into Temporary Table

3Oms / Fetching dstreamaf Data

10ins Preparing Temporary Table TTPdstreamaf

Executing at remote database oracle:
select as of date, name, total sales, total extraord items pretax, earned fo rordinary, currency

20ms from dstreamaf
where 10000000 < total-sales
and currency in (US)

Oms Batch Inserting Remote Data into Temporary Table

tching datexform Data

3mns Preparing Temporary Table TTP datexform

84

1 Gis
Executing Remote Functional Query:
http://avocado.mit.edu/servlet/edu.mit.gcms.demo.servlets.datexform?function=datexform&formatl =European+Styie+-
&date2=01%2F05%2F94&format2=American+Style+%2F

B0ms Batch Inserting Remote Data into Temporary Table

4Oms Fetching name map dt ws Data

2Oms Preparing Temporary Table TTP-name map-dt ws

Executing at remote database oracle:
20ms select dt names, ws-names

from name mapdtws

Batch Inserting Remote Data into Temporary Table

3Oms Fetching worldcaf Data

2msI Preparing Temporary Table TTP worldcaf

Executing at remote database oracle:
select company-name, latestannual financial date, current outstandingshares net income, sales, total assets,
country-of-incorp
from worldcaf

Batch Inserting Remote Data into Temporary Table

Planning and
20ms

Optimization

[s I Calculating Join Groups:
((datexform2, dstreamaf2, name map dt ws2, currency map2, worldcaf2, olsen))

Calulating Optimal CSQ Cost Ordering

2Oms ((name map-dLws2 ()), (worldcaf2 ((company-name (name-map-dt-ws2 ws-names)))), (dstreamaf2 ((name
(namemapdt-ws2 dt-names)))), (datexform2 ()), (currency-map2 ((char2scurrency (dstreamaf2 currency)))), (olsen
((exchanged (currency-map2 char3_currency)))))

Calulating Independent CSQ Cost Ordering:
20ms(name map-dt-ws2, currency-map2, dstreamaf2, worldcaf2, datexform2)

Calculating CSQ Cost:
1 Oms select count(*)

from dstreamaf
CSQ Cost= 312

Retrieving Cached CSQ Cost:
Oms select count(*)

from name map dws
CSQ Cost= 7

Calculating CSQ Cost:
select count(*)

Oms from currency-map
where char3_currency <> 'USD'
CSQ Cost= 9

Retrieving Cached CSQ Cost:
select count(*)
from worldcaf
CSQ Cost= 354

11ms Fetching Remote CSQ Data

3Oms Fetching name map dt ws2 Data

2OsPreparing Temporary Table TP-name map-dtws2

Retrieving Cached SQL Query:
1 Gms select dt names, ws names

from name map dt ws

85

Oms Batch Inserting Remote Data into Temporary Table

4Oms Fetching worldcaf2 Data

1ins Preparing Temporary Table TTP worldcaf2

Executing at remote database oracle:
select company-name, latest annual financial date, currentoutstanding shares, netjincome, sales, total assets,
country ofjincorp

2Oms from worldcaf
where company name in (DAIMLER-BENZ AG, BRITISH TELECOMMUNICATIONS PLC, NIPPON TELEGRAPH &
TELEPHONE C, LYONNAISE DES EAUX SA, ITOCHU CORPORATION, SUMITOMO CORPORATION, TOMEN
CORPORATION)

1ms Batch Inserting Remote Data into Temporary Table

7Oms Fetching dstreamaf2 Data

10mns Preparing Temporary Table TTP dstreamaf2

Executing at remote database oracle:
select as_of date, name, totalsales, total-extraord-items tretax, earned forsordinary, currency

30ms I from dstreamaf
where name in (DAIMLER-BENZ, BRITISH TELECOM., NTT, LYONNAISE DES EAUX, ITOCHU CORPORATION
SUMITOMO CORPORATION, TOMEN CORPORATION)

3Oms : Batch Inserting Remote Data into Temporary Table

2msFetching datexform2 Data

1ins Preparing Temporary Table TTP datexform2

Retrieving Cached Functional Functional Query:
http://avocado.mit.edu/servlet/edu.mit.ocms.demo.servlets.datexform?function=datexform&formatl=European+Stvle+-
&date2=01%2F05%2F94&format2=American+Stvle+%2F

1 Oms Batch Inserting Remote Data into Temporary Table

41ms Fetching currency map2 Data

11ms Preparing Temporary Table TTP currency-map2

Executing at remote database oracle:
select char3_currency, char2_currency

2Oms from currency map
where char3 currency <> 'USD'
and char2_currency in (BP, BP, BP, BP, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, JY, FF, FF, FF,
FF, DM, DM, DM, DM, DM)

l~insBatch Inserting Remote Data into Temporary Table

907mns Fetching olsen Data

lims Preparing Temporary Table TTP-olsen

877ms f Parallel Execution

Executing Remote Cameleon Query:
290ms select exchanged, expressed, rate, date from olsen where exchanged="DEM" and expressed="USD" and

date="01/05/94"

Executing Remote Cameleon Query:
470ms select exchanged, expressed, rate, date from olsen where exchanged="FRF" and expressed="USD" and

date="01/05/94"

Executing Remote Cameleon Query:
480ms select exchanged, expressed, rate, date from olsen where exchanged="JPY" and expressed="USD" and

date="01/05/94"

Executing Remote Cameleon Query:
877ms select exchanged, expressed, rate, date from olsen where exchanged="GBP" and expressed="USD" and

date="01/05/94"

86

87

1 Dms Batch Inserting Remote Data into Temporary Table

Database Execution of Final Query:
select TTP name map dt ws.ws names, TTP dstreamaf.total sales, TTP worldcaf.latest annual financial date,
TTPworldcaf.total assets
from TTPdatexform, TTPnamemap dt ws, TTP dstreamaf, TTP currency map, TTP worldcaf
where TTP dstreamaf.currency = TTP_currency-map.char2_currency
and TTP name map dt ws.ws names = TTPworldcaf.companyname
and TTPdatexform.datel = TTPdstreamaf.as oLdate
and TTP_namemap_dt_ws.dtnames = TTP_dstreamaf.name

3Oms union
select TTP-name-mapdt_ws2.wsnames, TTP-dstreamaf2.total-sales*TTPolsen.rate,
TTP_worldcaf2.latest annual financialdate, TTPworldcaf2.totalassets
from TTP_datexform2, TTP-name map dt ws2, TTP dstreamaf2, TTP currency map2, TTP-olsen, TTP worldcaf2
where TTP-name map-dLws2.ws names = TTP_worldcaf2.company-name
and TTP datexform2.datel = TTP_dstreamaf2.as_of_date
and TTP name map dt ws2.dnames = TTP dstreamaf2.name
and TTP_dstreamaf2.currency = TTP-currency-map2.char2_currency
and TTP-currency map2.char3 currency = TTP olsen.exchanged
and 10000000 <TTPdstreamaf2.total sales*TTP_olsen.rate

Testing Setup

Live demo is accessible from COIN system demo page at
http://context2.mit.edu/coin/demos/

Machine characteristics:
Pentium III 500MHz
256MB RAM
Windows 2000 Professional
Oracle 8.1.7

88

Appendix H

Installation Instructions

ALL INSTALLATION FILES ARE LOCATED AT http://avocado.mit.edu/gcms/install

1 Eclipse

1. You have administrative privileges.
2. Install Eclipse 5.3 under C:\eclipse, Follow instructions in
http://avocado.mit.edu/pcms/install/Eclipse5.3 41/README WIN.TXT

2 Web Server (JRun)

1. Install Jr302.exe [accept full installation, run as a service, skip the license number-will be
limited to 3 simultaneous connections-]
2. Quit jrun processes [Kill jrun process from Task Manager]
3. Install jr30sp2 [service pack]
4. Make your JRun installation robust:

When JRun servers are installed as NT services on Windows NT or 2000, Sun JDK/JRE 1.3
and IBM JDK 1.3 users may find that JRun servers stop when the user is logged off. This bug is
fixed in the JDK 1.3.1 beta release. Please see to the JDK 1.3.1 release notes. Workaround for
JDK 1.3: Open the JRunrootdir/bin/global.properties file in a text editor.
Under Java VM Settings, set the java.exe property to JRunrootdir/bin/dontdiejava.exe as
follows:

java.exe=JRun rootdiA\bin\\dontdiejava.exe.

Add an extra entry for java.jnipath property for directory containing the jvm.dll file as follows:
java.jnipath=C:\\Sun\\jsdk1 30\\jre\\bin\\hotspot;{user.jnipath};{ejb.jnipath};{servlet.jnipath}
You cannot set java.jnipath indirectly by setting user.jnipath. You must use java.jnipath directly.

3 XML Libraries

1. Download Sun's XML Parser from http://java.sun.com/xml/downloads/avaxmlpack.html
2. Unzip it into any directory.

4 Oracle

1. Install Oracle Client if you do not have Oracle database on your machine. Copy Oracle8.1.7
directory from avocado GCMS-Install into your own computer. Start installation and choose
Oracle Client, and choose the application user type of installation. Database name is coin,
connection TCP. Username is system, password manager [you will get an error since the default
username is scott, you have to enter correct username and password]
2. Make sure the connection test is successful
3. (OPTIONAL) If you have Oracle database on your machine, you can upload sample data
containing Datastream, Disclosure, Worldscope data from SampleData.dmp file using the
following command:

imp full=y file=SampleData.dmp system/manager

5 COIN

1. Copy GCMSStable directory into "GCMS-dir"
2. If you do not want any development environment then you can simply use the compiled
class files and skip 3-7
3. Start JBuilder
4. Open the GCMS.jpx from "GCMS-dir"

89

Appendix I

5. Update the parameters under Project=>Project Properties=>Run-change the directory
names make them point to GCMS directory
For example
applicationPath = C:\\JBuilder4\\projects\\GCMS\\src\\edu\\mit\\gcms\\demo\\application
eclipsePath = C:\\eclipse\\

6. Update the required libraries, have the followings listed:
Servlet=> JBuilder's Servlet.jar
XML => Point to xerces.jar to be found in the directory used in step 5
eclipse => eclipse.jar under eclipse\lib\
jdbc => oracle/ora8l/jdbc/lib/classes1 2.zip & oracle/ora8l/jdbc/lib/nls_charset1 2.zip
7.The project should compile successfully now.
8. Now update JRun: login to admin page from port 8000. In JRun Default Server

*Create a new application under web applications with the following parameter values

Application Name: GCMS
Application Root Directory: C:\JBuilder4\projects\GCMS\src\edu\mit\gcms [put your GCMS-dir
here]
Application Mapping: /gcms

*Application Variables under GCMS should be as follows [use your own GCMS-dir, I provide
mine below]
gcmsPath
C:\\JBuilder4\\Projects\\GCMS\\src\\edu\\mit\\gcms

applicationPath
C:\\JBuilder4\\Projects\\GCMS\\src\\edu\\mit\\gcms\\demo\\application

eclipsePath
C:\\eclipse\\

dbName
coin

dbUser
system

eclipseApplicationPath
//C/JBuilder4/projects/GCMS/src/edu/mit/gcms/demo/application/

dbPassword
manager

*MIME Type Mappings Under GCMS should be as follows
MIME Type Extension
MIME Type

.pl
plain/text

*Java Settings under JRun Default Server should be as follows [again use your own
variations]

Java Executable

90

C:\JBUILDER4\jdkl.3\bin\javaw.exe
Path to your JVM executable

System.out Log File
{jrun.rootdir}/logs/{jrun.server.name}-out.log
Location where System.out messages appear

System.err Log File
{jrun.rootdir}/logs/{jrun.server.name}-err.log
Location where System.err messages appear

JRun Control Port
53000
Port used by JRun to send server commands

Classpath
{jrun.rootdir}/servers/ib{jrun.server.rootdir}/lib
C:/eclipse/lib/eclipse.jar
C:/oracle/ora8l/jdbc/lib/classesl2.zip
C:/oracle/ora81 /jdbc/lib/nIs_charset1 2.zip
C:/<GCMSRoot>/classes
Additional classpath entries

Java Arguments

Additional command-line arguments passed to the Java Executable

Library Path
{servlet.jnipath};{ejb.jnipath};C:\eclipse\lib\i386_nt;C:\oracle\ora81 \bin
Directory of native JNI

9. The system should now be functional at http://localhost/gcms/demo/Demo.jsp

91

