
Practices for Fast and Flexible Software Development

by

Pearlin P. Cheung

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 24, 2002

Copyright 2002 MIT. All rights reserved.

Author
Department of Electrical Eng neering and C ister Science

May 24, 2002

Certified by
Michae A. Cusumano

Thesis 8Survisor

Accepted by
Artnur C. Smif

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNO.OGY

JUL 3 1 2002 BARKER

LIBRARIES

Practices for Fast and Flexible Software Development
by

Pearlin P. Cheung

Submitted to the
Department of Electrical Engineering and Computer Science

May 24, 2002

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The software industry has expanded worldwide due to the Internet boom. The software
industry in each country has its own unique evolution due to cultural and historical
differences. As the industry grew, the software community began to explore different
methods of developing software. The purpose of this thesis is to determine the practices
or processes that contribute to development performance and to give a survey of the
development techniques utilized in different countries-mainly India, Japan, and the
United States.

Thesis Supervisor: Michael A. Cusumano,
Title: Sloan Management Review Distinguished Professor.

Table of Contents

1 P u rp o se ... 7

2 B ackground ... 9

3 R elated W ork .. 14

4 Research Methodology..17

5 General Project Characteristics..23

6 Summary of Hypotheses...28

7 D ata A nalysis..33

7.1 Preliminary Data Analysis: Productivity..33

7.2 Data Analysis: Productivity Application/Systems.................................35

7.3 Data Analysis: Bugginess..45

7.4 Data Analysis: Timeliness...55

7.5 Data Analysis: Budget Error...63

7.6 Data Analysis: Customer satisfaction perception rating.............................68

7.7 Summary of Results..72

7.8 Data Analysis: Country..75

8 C onclusion .. 84

A ppendix A : Survey..87

R eferences...100

2

List of Tables

T able 5-1. L ocations of project bases...23
T able 5-2. Sum m ary of softw are type... 24
T able 5-3. C ustom ers or use...24
T able 5-4. Program m ing L anguages. ... 24
Table 5-5. Summary of design and code reviews. ... 25
Table 5-6. Cross summary of design and code reviews. .. 25
Table 5-7. Summary of sub-cycles usage.. 26
T able 5-8. Sum m ary of project sizes..26
Table 5-9. Summary of average staff size and resources for development and entire project team.........26
Table 5-10. Summary of product version.. 27
Table 7-1. Summary of productivity with and without outliers. ... 33
Table 7-2. ANOVA of productivity and all three software types. .. 33
Table 7-3. ANOVA of productivity and the software types of applications and systems........................34
Table 7-4. Summary of productivity for applications and systems..35
Table 7-5. Correlation of productivity and percentages of developers with different levels of experience.35
Table 7-6. Correlation of productivity and percentage of specifications completed before coding............36
Table 7-7. Correlation of productivity and percentage of the final functionality present in early project

e v en ts...3 7
Table 7-8. Correlation of productivity and design reviews... 38
Table 7-9. Correlation of productivity and code reviews..40
Table 7-10. Correlation of productivity and sub-cycles.. 40
Table 7-11. Correlation of productivity and the use of regression test after code base modifications.........42
Table 7-12. Correlation of productivity and the developer participation in testing. 42
Table 7-13. Correlation of productivity and the percentage of automated tests...................................... 43
Table 7-14. Summary of analysis with the exclusion of projects from HP-Agilent.................................44
Table 7-15. Summary of bugginess, with and without outliers...45
Table 7-16. Correlation of bugginess and developers' experience. .. 45
Table 7-17. Correlation of bugginess and percentage of specifications completed before coding. 46
Table 7-18. Correlation of bugginess and percentage of the final functionality present in early project

e v en ts...4 7
Table 7-19. Correlation of bugginess and design reviews. .. 48
Table 7-20. Correlation of bugginess and code reviews. .. 49
Table 7-21. Correlation of bugginess and sub-cycles. ... 50
Table 7-22. Correlation of bugginess and the use of regression test after code base modifications. 52
Table 7-23. Correlation of bugginess and the developer participation in testing......................................52
Table 7-24. Correlation of bugginess and the percentage of automated tests. ... 53
Table 7-25. Summary of analysis with the exclusion of HP-Agilent projects. 54
Table 7-26. Correlation of timeliness and developers' experience. ... 55
Table 7-27. Correlation of timeliness and percentage of specifications completed before coding. 56
Table 7-28. Correlation of timeliness and percentage of the final functionality present in early project

e v e n ts...5 7
Table 7-29. Correlation of timeliness and design reviews. .. 58
Table 7-30. Correlation of timeliness and code reviews... 59
Table 7-31. Correlation of timeliness and sub-cycles. ... 60
Table 7-32. Correlation of timeliness and the use of regression test after code base modifications............61
Table 7-33. Summary of analysis with the exclusion of HP-Agilent projects. 62
Table 7-34. Correlation of budget error and developers' experience..63
Table 7-35. Correlation of budget error and percentage of specifications completed before coding..........64
Table 7-36. Correlation of budget error and percentage of the final functionality present in early project

e v e n ts...6 5
Table 7-37. Summary of analysis with the exclusion of HP-Agilent projects. ... 67
Table 7-38. Summary of customer satisfaction perception ratings and the percentage of final functionality

in the first p ro to typ e 6 8

3

Table 7-39. Summary of customer satisfaction perception ratings and the percentage of final functionality
in th e first b eta ... 6 8

Table 7-40. Summary of customer satisfaction perception ratings and the percentage of final functionality
in the first integration 69

Table 7-41. Summary of customer satisfaction perception ratings and number of beta releases.............69
Table 7-42. Summary of customer satisfaction perception ratings and the number of sub-cycles...........70
Table 7-43. Summary of customer satisfaction perception ratings and sub-cycle length as a percentage of

the project duratio n .. 70
Table 7-44. Summary of the data analysis results...74
Table 7-45. Summary of code generation practice across selected countries compared to the entire sample.

... 7 7
Table 7-46. Summary of architectural specification documentation across selected countries compared to

the entire sam p le..7 8
Table 7-47. Summary of functional (or requirements) specification documentation across selected

countries compared to the entire sample..78
Table 7-48. Summary of detailed specification documentation across selected countries compared to the

en tire sam p le .. 7 8
Table 7-49. Summary of the use of sub-cycles during development across selected countries compared to

the entire sam p le..79
Table 7-50. Summary of design reviews across selected countries compared to the entire sample.........80
Table 7-51. Summary of code reviews across selected countries compared to the entire sample............80
Table 7-52. Summary of daily builds during the different time periods of development across selected

countries compared to the entire sample..81
Table 7-53. Summary of integration or regression tests conducted across selected countries compared to

the entire sam p le..8 1
Table 7-54. Summary of productivity (without outliers) across selected countries compared to the entire

sam p le .. 8 2
Table 7-55. Summary of bugginess across selected countries compared to the entire sample. 83

4

List of Figures

Figure 4-1. Relationships among context, process, and outcome variables .. 18
Figure 7-1. Boxplot of productivity and software types.. 33
Figure 7-2. Boxplot of productivity and the software types of application/systems and embedded............34
Figures 7-3: Scatterplots of productivity vs. percentage of developers with different levels of experience.

... 3 5
Figures 7-4. Scatterplots of productivity vs. percentage of specification documents completion before

co d in g 3 6
Figures 7-5. Scatterplots of productivity vs. percentage of the final functionality present in early project

e v en ts...3 8
Figures 7-6. Scatterplots of productivity vs. design reviews... 39
Figures 7-7. Scatter plots of productivity vs. code reviews. .. 40
Figures 7-8. Scatter plots of productivity vs. sub-cycles..41
Figure 7-9. Scatterplot of productivity and the practice of running regression tests after code base

m o d ificatio n s...4 2
Figures 7-10. Scatterplots of productivity and developer participation in testing....................................43
Figure 7-11. Scatterplot of productivity and the percentage of automated tests. 43
Figures 7-12. Scatterplots of bugginess vs. percentage of developers with different levels of experience.. 45
Figures 7-13. Scatterplots of bugginess vs. percentage of specification documents completion before

co d in g .. 4 7
Figures 7-14. Scatterplots of bugginess vs. percentage of the final functionality present in early project

e v e n ts...4 8
Figures 7-15. Scatterplots of bugginess vs. design reviews. .. 49
Figures 7-16. Scatterplots of bugginess vs. code reviews ... 50
Figures 7-17. Scatterplots of bugginess vs. sub-cycles..51
Figure 7-18. Scatterplot of bugginess and the practice of running regression tests after code base

m o d ificatio n s...5 2
Figures 7-21. Scatterplots of bugginess and developer participation in testing. 53
Figure 7-20. Scatterplot of bugginess the percentage of automated tests...54
Figures 7-21. Scatterplots of timeliness vs. percentage of developers with different levels of experience..55
Figures 7-22. Scatterplots of timeliness vs. percentage of specification documents completion before

co d in g .. 5 6
Figures 7-23. Scatterplots of timeliness vs. percentage of the final functionality present in early project

e v en ts...5 8
Figures 7-24. Scatterplots of timeliness vs. design reviews ... 58
Figures 7-25. Scatterplots of timeliness vs. code reviews..59
Figures 7-26. Scatterplots of timeliness vs. sub-cycles.. 60
Figure 7-27. Scatterplot of timeliness and the practice of running regression tests after code base

m o d ificatio n s...6 1
Figures 7-28. Scatterplots of budget error vs. percentage of developers with different levels of experience.

... 63
Figures 7-29. Scatterplots of budget error vs. percentage of specification documents completion before

c o d in g .. 6 4
Figures 7-30. Scatterplots of budget error vs. percentage of the final functionality present in early project

e v e n ts...6 6
Figure 7-31. Dot plot of productivity (without outliers) broken down by country. 82
Figure 7-32. Dot plot of bugginess broken down by country... 83

5

Acknowledgements

I am thankful for all the support and guidance that I have received during this whole

process.

I would like to thank my thesis advisor, Professor Michael Cusumano, for giving me the

opportunity to work on such exciting research. Throughout the process, I learned a great

deal about software development-the industry, the models, and the practices. Whenever I

encountered problems or needed to discuss how the research should proceed, he always

made himself available to help me despite his hectic schedule. I would also like to thank

him for the generous research asssistantship.

I would also like to thank Professor Alan MacCormack from Harvard Business School

and Professor Chris Kemerer from Katz Business School at the University of Pittsburgh.

They provided much guidance during the research and writing of this thesis by fielding

my numerous questions and cautioning me when I start heading in the wrong direction.

Bill Crandall from Hewlett-Packard has also been a great support with his invaluable

advice and enthusiasm. He rallied together the large participation of many in HP and

Agilent.

The survey would not have been possible without the help of Jeffrey Schiller and Jagruti

Patel from MIT Information Systems. They facilitated and maintained the web survey.

I would also like to thank all the project teams that participated in this research. They

have taken much time and effort to complete the extensive survey.

Lastly, I would like to thank my family and my good friend Steven Yang for their

continued encouragement during my academic career at MIT.

6

The software industry has a global reach. According to Standard & Poor's Industry

Surveys, in the year 2001, almost $200 billion USD was spent on packaged software

worldwide and nearly $400 billion USD on software services [28]. Along with the

expansion of the software industry, there has been a shift in the software community as to

how software development should proceed. Departing from the waterfall model,

incremental development methodologies have emerged.

1 Purpose

With multiple software models and methodologies available, the problem is to determine

which software engineering practices allow for fast and flexible software development.

The term "fast" means the development team is highly productive, and the term

"flexible" means the project team can successfully incorporate late changes to the system

without sacrificing quality.

Although many practitioners of various development methodologies believe that their

approaches are productive, there has not been extensive research to validate their claims.

The objectives of this thesis are to measure the performance of software development

projects and to determine which engineering practices strongly correlate with high

performance. Performance can be measured through many factors such as timeliness,

quality, customer satisfaction, and productivity.

This thesis will also examine the software development techniques used in the US, Japan,

and India. These three countries have different approaches towards software

development: incremental development has gained popularity in the United States, Japan

takes a manufacturing approach to software development, and much outsourcing work

takes place in India.

The thesis is arranged as follows: Section 2 presents background information regarding

development models and methodologies followed by a survey of related work in Section

3. The research methodology of this study is presented in Section 4. Hypothesis and

7

results are in Sections 6 and 7. The survey this study used for its data collection

instrument is located in Appendix A.

8

2 Background

The waterfall model has long been the dominant software development process, but it has

been slowly losing popularity due to the now fast-paced environment of software

development. Responding to the increasing volatility of customer demands, new

methodologies and models have emerged. These new methodologies allow for more

flexibility in software development than the traditional waterfall method. Some of the

adaptive methodologies are also known as lightweight or agile methodologies. Listed

below are a few popular models and methodologies, as well as the classic waterfall

model.

Waterfall Model

The waterfall model is a sequential development process that was widely used in the 70s

and 80s [26]. The process is very structured and provides an orderly way to develop

systems. From the beginning, the project team must thoroughly understand the system

they are developing because this model does not adjust well to requirement changes. A

project team using the waterfall model can backtrack to successive steps but backtracking

any further is difficult. Unlike most lightweight methodologies, formal documentation is

written for each stage throughout the entire process.

The first step to the waterfall model is to determine the system and software

requirements, and to document the software requirements. Next, the project team makes

a preliminary design of the system and simulates the development of a smaller version of

the final system. After the project team conducts an analysis of the preliminary design,

they finalize the program design. The next phases are coding and testing. The project

team is divided into smaller teams that are each responsible for developing and testing a

module. After the system is successfully integrated, a user manual is written and the

system is delivered to the customer.

Spiral Model

The spiral model focuses on reducing project risk by eliminating risks incrementally

through iterations [5]. The first step in each iteration is to determine the objectives of the

9

system, multiple ideas for design or implementation, and constraints on the system.

Next, the design ideas are evaluated to help identify risks. The next step is to resolve

these risks, usually by creating a prototype. At the end of each iteration, the project team

reviews the current iteration and plans the next phase or iteration. The remaining risks

determine the next steps. If performance or user-interface risks prevail over the other

remaining risks, then the project team continues the risk-reducing iterations. If

development or control risks prevail, then the project team uses the waterfall or an

equivalent model to complete the development process of implementation, integration,

and testing.

Microsoft's Synch-and-Stabilize

Microsoft's approach to software development is synch-and-stabilize, which is a loosely

organized process that is geared towards developing systems for the mass market [10].

There are three phases to synch-and-stabilize: planning, development, and stabilization.

The planning phase usually lasts more than a year for new products and up to three

months for existing products. Product and program managers write a vision statement to

help the developers understand the project. The vision statement also includes a list of

prioritized features. The program managers and developers then write a specification

document that outlines features, the architecture, and component interdependencies.

Program managers create prototypes and conduct feasibility studies to explore design

alternatives, which help them make better decisions related to specifications. A testing

strategy is also formed. Program mangers then schedule milestone deadlines for the

development phase, and arrange feature teams. Each feature team consists of one

program manager, three to eight developers, and a tester for each developer. When the

schedule is completed and the project plan approved, the project team moves onto the

development phase.

The development phase consists of three to four milestones, each lasting about two to

four months. The most important features are developed in the first milestone while the

least critical are developed in the last milestone. Each milestone consists of coding,

10

testing, and stabilizing (debugging and integration) stages. A "build master" conducts a

build every day to help coordinate and update the main code. Developers also update

their source code files daily in order to synchronize their development with the entire

team. When a developer first develops a feature, he implements the feature into his latest

copy of the source code. When he is done with implementation, his assigned tester

conducts a "quick test" or "smoke test" to make sure that the developer's additions have

not affected any other features in the main code. After successful testing, the developer

can then check in his code to the main code. There is an internal release at the end of

each milestone. After the last milestone release, there is a "visual freeze" where no major

changes can be made to the user interface. "Feature complete" occurs when the system is

functional but not bug-free. The system is "code complete" when features work

according to the specifications.

Developers and testers continue to debug and test the system extensively. Beta releases

are conducted to allow end-users to test the system. When no more critical bugs remain

and the remaining bugs are scheduled to be fixed in the next version of the system, the

"zero bug release" stage has been achieved. The system is then officially released to

manufacturers. After the release, the project team writes a postmortem document to

summarize what succeeded, what did not succeed, and suggestions for improvement.

Capabilities Maturity Model

In 1984, the US Defense Department formed the Software Engineering Institute (SEI) to

help define a discipline for professional software engineering practices and to integrate

new technologies and methods into software engineering practice. The result of one SEI

project is the Capabilities Maturity Model [15]. Each stage of the Capabilities Maturity

Model describes a different discipline or maturity level of software development found in

organizations. With this model, an organization can determine on which maturity level

of software development they stand and which areas they need to improve in order to

proceed from one maturity level to the next. When an organization reaches the last

maturity level, it is able to produce a product that meets customer needs within the

original cost and schedule estimations. The main objective of using this model is to

11

measure and control software processes to provide a "scientific foundation for continuous

improvement" [15]. There are a total of five stages in the model: Initial Process,

Repeatable Process, Defined Process, Managed Process, and Optimizing Process.

In the Initial Process, there is little project management, no quality assurance group, and

no defined process to handle change. The defining aspect of the Repeatable Process is

commitment control, which is achieved through project plans, scheduled reviews of cost

and development progress, and orderly procedures for requirement changes. When an

organization reaches the Defined Process, it has formed a solid foundation for

development progress. At this level, an organization has established a progress group

that solely focuses on improving the development process, an architecture that defines the

technical and management roles in the development process, and a set of development

methods and technologies. The Managed Process focuses on collecting quantitative data

by using designated databases to gather and analyze the cost and quality measurements of

each product. At the Optimizing Process level, data gathering is automated and the

organization's focus is to improve the actual development process using the analyzed

data. By the final level, an organization has established the foundations for improvement

in both software and productivity.

Cleanroom Process Model

The philosophy behind the Cleanroom process model, or Cleanroom software

engineering, is to minimize the number of defects by writing correct code the first time

around [27]. The process model incorporates the concepts of incremental development,

correctness verification, teamwork, and reliability certification. Software development

involves one team that conducts both the developing and certification. For larger

projects, an organization can use two separate teams, each restricted to a maximum of

eight people. There are five stages defined in the Cleanroom model: specification,

increment planning, design and verification, quality certification, and feedback [20].

The process begins with analyzing and verifying customer requirements. In the

specification stage, the development team writes the functional specifications, which

12

define the external behavior of the system, and the certification team produces the usage

specifications, which define usage scenarios. During the planning stage, both teams

create a plan to develop the system in increments based on the defined specifications.

Development then cycles through the next three stages for each increment. The

development team proceeds through design and correctness verification while the

certification team produces test cases to parallel the development progress. The

development team progresses to the quality certification stage by sending a partial system

to a separate test team for both usage and statistical testing. In the Cleanroom model, the

statistical usage testing process is specifically used to determine mean time to failure by

testing software the way users intend to use it. During the feedback stage, errors are sent

back to the development team for correction. Using the data from statistical testing,

managers can determine how well development progress is proceeding. Development

continues to cycle through these last three stages until the system is complete.

Extreme Programming

Extreme programming, also known as XP, is a methodology that is mostly a combination

and reinforcement of selected software development practices [13]. It is a minimalist

methodology that has a small set of rules and assumes that developers need little

guidance. XP is designed for small teams of no more than ten developers.

XP stresses design simplicity: developers should design for current requirements, and not

for potential future requirements. XP also encourages developers to refactor

continuously during the development process. Refactoring is the redesigning of current

software to improve its internal structure while maintaining its current external behavior.

A unique practice of XP is pair programming where developers work in pairs such that

one developer codes or tests while another developer reviews as the first developer

works. Using XP, developers integrate frequently, once every few hours, to minimize the

number of integration errors early on.

13

3 Related work

There have been a number of empirical studies conducted on software development in

general, but there few focussed on the speed and flexibility of development.

Blackburn, Scudder, Van Wassenhove

This study surveyed software managers from the United States, Japan, and Western

Europe [3]. American and Japanese managers completed a total of 49 surveys between

the years 1992 and 1993, and 98 surveys were completed by western European

participants through field interviews conducted in 1992. The researchers identified 11

factors that could contribute to the overall development time of a software project: use of

prototypes, customer specifications, use of CASE (computer-aided software engineering)

tools, parallel development, recoding, project team management, testing strategies, reuse

of code, module size, communication between team members, and quality of software

engineers. The study distinguishes the rate of change in development time from the rate

of change in productivity: development time is concerned with the overall time while

productivity is concerned with individual contribution such as lines of code (LOC) per

man-month. This study uses LOC as a measure of productivity.

The study found that spending more time and effort spent on customer specifications

improves both development and productivity speed. The results also indicate that

prototyping, better software engineers, and less reworking or recoding contribute to faster

development time. Their results show that smaller teams are faster, but there is little

evidence outside this study that supports this result. They found that more time and effort

spent on testing and integration actually have a negative effect on development speed,

and better testing strategies and the newness of the project do not affect development

time. Their overall results suggest that doing it right the first time is essential for

reducing development time.

Their results support the view that larger teams reduce productivity during most stages of

production. Productivity is also negatively correlated with both testing and project times.

They could not confirm a definite relation between productivity and project size. They

14

also found that the newness of the project bears no significance to productivity.

Productive firms, however, have larger teams devoted to customer specifications. These

results suggest that early planning and customer specifications are crucial to overall

productivity.

Maxwell, Van Wassenhove, Dutta

Published in 1996, this study consists of 99 software development projects from the

European Space Agency database, which began data compilation in 1988 [22]. Only

projects developing space, military, and industrial applications were included in this

study. The purpose of this study was to determine the metrics to measure productivity

and the factors that influence productivity.

Productivity can be measured in different ways. A simple way to measure productivity is

dividing source lines of code (SLOC) by man-months of effort. A more complex

measure of productivity is process productivity, which was developed by Putnam and

Myers. The calculation of process productivity takes developer skill as a function of

system size, as well as SLOC and effort into account. Another method is by measuring

the number of tokens per man-month. The number of tokens is determined by dividing

SLOC by functionality. Productivity can also be measured by function points, which are

based on user functionalities such as input and output features. Measuring productivity

by feature points is an extension of function point measurement that includes measuring

the algorithms in the software.

The study found that productivity increases when the projects had fewer reliability

requirements, low storage constraints, fewer execution time constraints, small project

teams, shorter durations, and when the projects used tools and modem programming

practices. Contrary to previous findings, the results show that productivity increases with

increasing system size. For this study, the quality of the applications could not be

evaluated, and management factors were not considered.

15

Cusumano and Kemerer

Published in 1990, the main purpose of this study was to compare the performances of

software projects between the United States and Japan to determine if the Japanese

software industry is comparable to that of the United States [9]. A total of 40 projects

from both countries were analyzed in this study.

The results show that both countries are similar in the following areas: types and sizes of

products developed, development tools utilized, and programming languages and

hardware platforms used for development. The work experiences of the developers were

also comparable.

The study reveals that the Japanese teams concentrated more time on product design

while the American teams spent more time on coding. However, both countries exhibited

similar levels of productivity and defects.

Upadhyayula

Completed in 2001, this study analyzed 26 software development projects at Hewlett-

Packard and Agilent [30]. The purpose of the study was to determine the software

engineering practices that promote development flexibility.

The results indicate that projects should obtain and incorporate customer feedback during

the early stages of development. In order to incorporate customer feedback more easily,

project teams should begin with the design and implementation of high-level architecture

instead of with detailed design. The study found that implementing a high percentage of

the final product functionality in the first beta is a good way to minimize functionality

changes later in the project. The results also show that design reviews improve product

quality. If the quality assurance and development teams work closely together from the

beginning of the project, the overall testing time is reduced.

16

4 Research Methodology

Survey Development

A survey was the instrument used to study and measure software engineering practices

and how they are related to project performance. The survey in this study was based on a

survey developed for a previous study, which Sharma Upadhyayula completed in January

2001 under the guidance of Professor Michael Cusumano.

For his study, Upadhyayula developed a survey and deployed it specifically to software

development groups in Hewlett-Packard and Agilent. A team, which included members

from both the academic and professional communities, developed this original survey.

The team consisted of the following members: Professor Michael Cusumano (MIT Sloan

School of Management), Professor Chris Kemerer (Katz Graduate School of Business,

University of Pittsburgh), Professor Alan MacCormack (Harvard Business School), Bill

Crandall (Hewlett-Packard), Guy Cox (Hewlett-Packard), and Sharma Upadhyayula

(MIT).

For this study, Professors Cusumano, Kemerer, and MacCormack, Mr. Crandall and the

author revised the original survey from Upadhyayula's study by adding new questions

and modifying some of the original questions.

The author also created an addendum survey, which consisted of the new and modified

questions of the new survey, for distribution to the past participants of the Hewlett-

Packard and Agilent study.

Data Collection

Jeffrey Schiller of MIT Information Systems then set up the newly updated survey online.

When participants submitted completed surveys, the survey forms were transmitted using

SSL for secure transmission because the survey asked for information that may be

confidential to the company. The web-based survey was deployed to select companies

through the team's professional contacts. Each contact was encouraged to distribute the

survey to the heads of software projects within his company.

17

Mr. Crandall distributed the addendum survey to the past participants from the Hewlett

Packard and Agilent study. The data from the previous study can therefore be updated

and utilized for this study.

The author examined the collected data to check for inconsistencies. When clarifications

were needed, the author contacted the participant who had submitted the data in question

to correct any misunderstandings or errors.

The author used both Microsoft Excel version 9.0 and Data Desk version 6.1 for

Microsoft Windows to analyze the data.

Variables

The purpose of this study is to identify practices that affect performance and how

development techniques differ across countries. Three types of variables are needed for

this study: context, process, and outcome. Context variables describe the circumstances

of software projects. Process variables identify the development practices projects

employ. Outcome variables measure project performance. The three variables affect

each other as shown in Figure 4-1.

Outcome

Context w Process

Figure 4-1. Relationships among context, process, and outcome variables. Context affects both the

outcome and process variables and process affects the outcome.

Source: Upadhyayula, p. 17.

The survey covers all three variables. The following sections enumerate examples of the

data collected for each variable.

18

Context Variables

. Type of software developed: systems, embedded, applications

. Level of reliability required: high, medium, low

. Target hardware platform: mainframe, workstation, PC, other

. Primary customer: individuals, enterprises, in-house use

* Project size: SLOC

* Project base: country of primary development

Process Variables

. Specification documents: architectural, functional, detailed

. Reviews: design and code

. Build frequency: daily, 2-3/week, weekly, bi-monthly, monthly or less

. Testing techniques: regression or integration, automated

. Sub-cycles: frequency, length of each sub-cycle

. Customer interaction: betas, prototypes

Outcome Variables

Productivity

Before productivity can be measured, the SLOC measurements need to be normalized.

This can be done with the SPR (Software Productivity Research, Inc) Programming

Languages Table version 7 [17], which lists common programming languages and their

corresponding number of average source lines per function point. The author used this

table to convert SLOC measurements to their C-equivalents. The author calculated C-

equivalents with the following equation, where SLOCL is the SLOC measurement in

language L, f L is the conversion factor for language L in terms of source lines per

function point, and f c is the conversion factor for C,

SLOCL
* f

f L

Equation 1. Conversion of a SLOC measurement to its C-equivalent.

19

Productivity is measured in SLOC per person-months. One person-month is the amount

of work equivalent to one person working for one month. To calculate productivity, the

author used the following equation,

(%code developed by this team)* SLOCceq

resourcesTotal * 12

Equation 2. Productivity in terms of SLOC per person-month.

where SLOCceq is the source lines of code measurement converted to its C-equivalent

and resourcesTotal is the total number of resources in terms of person-years.

Bugginess

Bugginess refers to the technical quality of a product. The author chose to calculate

bugginess, in terms of bugs per month per thousands of lines of code, with the following

equation,

bugs

months -SLOCceq

Equation 3. Bugginess in terms of bugs per month per thousands of lines of code.

where bugs is the number of bugs reported in the first 12 months after the product

launch, months is the number of months of bug data available, and SLOCceq is the C-

equivalent of lines of code.

Timeliness

Timeliness measures how well a project team follows the original development schedule.

The author measured this variable in terms of schedule estimation error, which is

calculated by using the following equation:

(actual duration - estimated duration)

estimated duration

Equation 4. Schedule estimation error.

20

Budget Overrun

This variable measures how much a project team outspends its budget, which is

calculated by the following equation:

(actual expenditure - budget)

budget

Equation 5. Budget error.

Product quality can be measured either objectively or subjectively. An objective

measurement is an evaluation of the product's technical quality in terms of errors and

failures. A subjective measurement is an assessment of usability quality in terms of

customer or user satisfaction.

Variable Choice: Software Size

Software size is usually measured in two different ways. The easier approach is to count

the number of source lines of code, or SLOC. This simply entails counting the lines of

code that are neither blanks nor comments. The main drawback is that language and

implementation style affect this measurement outcome. Some programming languages

require more lines of code to implement a function than others. For example, object-

oriented languages usually require fewer lines of code than C. In terms of

implementation, this method rewards quantity and punishes quality. For example, one

developer may write a poorly designed piece of code which consists of more lines of

code than necessary, and he will seem productive according to this type of measurement.

A popular method of measuring productivity is by function points. Function points are

determined from the perspective of an end-user. Although the outcome of this method is

not affected by language or implementation differences, the process of counting function

points is a labor-intensive and time-consuming activity. Besides tallying functionalities,

it involves calculations that take project complexity into account. Because it is a

sensitive process, companies can hire certified experts to count function points.

Despite the disadvantages of measurement by source lines of code, the survey

participants are more likely to have the information regarding SLOC available than

21

information about function points. Therefore, the decision was to measure software size

by source lines of code for this project.

22

5 General Project Characteristics

A total of 60 surveys were collected during the period between December 2001 and April

2002. Two surveys were excluded from the sample due to insufficient answers. One

other project was omitted because of its small size-a one-person development team.

Thus, 57 new projects are included in this study in addition to 30 projects from the 2000

HP-Agilent study. The final sample therefore contains 87 projects.

This section gives a general overview of the projects' characteristics.

Region

The scope of the projects is international, covering mainly Asia and Northern America.

Table 5-1 below shows the regions where the projects were based. Excluding Japan, the

region of Asia includes China, Hong Kong, India, and Taiwan. The two projects from

Europe are based in France and Switzerland. There is one project based in Bahrain.

Region [Count
USA and Canada 40
Japan 27
Asia-excluding Japan 17
Europe 2
Other 1
Total 87

Table 5-1. Locations of project bases.

Type of Software

More than half of the sample developed software applications, which include both

include custom and general-purpose applications. In the sample, there were more custom

applications than general-purpose. The other types of projects include embedded

software, systems software, and other. The "other" category includes projects that

developed any combination of the previously mentioned three types. Table 5-2 below

summarizes the types of software developed by the reported projects.

23

Type Count
Applications 51
Embedded 11
Systems 25
Total 87

TU
Table 5-2. Summary of software type.

Customers

Table 5-3 below shows the rundown of the projects' targeted customers. There are

roughly three times as many projects developed for external customers or external use

than projects developed for internal purposes.

Customer CountI External 64
Internal 23
Total 87

Table 5-3. Customers or use.

Programming Languages

Table 5-4 below shows a percentage breakdown of the programming languages used in

the projects. Note that most projects used more than one programming language, the

percentages do not sum to 100%.

Programming Language Pecente
Assembly 3.4
C 24.1
C++ 35.6
COBOL 4.6
Java 25.3
Visual Basic 10.3
Web-content languages 13.8
Other 26.4

Table 5-4. Programming Languages. Web-content languages include ASP, HTML, Java Script, JSP, PHP,
and VB Script. A total of 85 surveys were used in this summary.

From the projects that have been collected, object-oriented languages, i.e. C++ and Java,

dominate as the primary development language of choice with C++ leading in popularity.

C remains a popular development language.

24

Reviews

Although high percentages of the projects conducted design reviews and code reviews,

more projects had the practice of design reviews than code reviews, as shown in Tables

5-5 and 5-6.

Design Reviews Code Reviews
Yes 77 Yes 62
No 10 No 25

Total 87 Total 87
Table 5-5. Summary of design and code reviews.

Design Reviews

Yes No

Code Yes 58 4

Reviews No 19 6

Table 5-6. Cross summary of design and code reviews. A total of 87 surveys were used in this summary.

Approximately 95% of the projects performed one or both types of reviews, with nearly

70% of the projects surveyed conducting both design and code reviews.

Sub-cycles

A sub-cycle usually consists of all the phases in the waterfall method: design,

implementation, build, test, integration, and release. A project that has sub-cycles means

that its development occurred through iterations whereas a project with no sub-cycles

followed the more traditional waterfall approach. As shown in Table 5-7 below, the

majority of the projects used sub-cycles during their development phase. The number of

sub-cycles ranged from 2 to 36. The average number of sub-cycles per project is 3.8 with

a 4.9 standard deviation and a median of 3.

25

Yes 55
No 32

Total 87
Table 5-7. Summary of sub-cycles usage.

Project Size

The range of the project sizes in the sample reaches the millions regardless of

normalization. Table 5-8 below summarizes characteristics of the project sizes including

the statistics for both the overall size and the new code the current project team

developed. Project size is measured in terms of source lines of code, and the sizes were

normalized to their C-equivalents as described in section 4. Some projects did not

provide enough information to normalize their SLOC measurements.

SLOC #Prjects Min Max _ Average Std Dev] Median.
overall (normalized) 77 2376 97M 2.71M 11.5M 362264
overall 86 500 45M 1.40M 5.54M 160000
new (normalized) 77 2257 4.9M 545709 1.05M 134095
new 86 475 4.7M 247360 593162 59244

Ern mi
Table 5-8. Summary of project sizes.
"#Projects".

All measurements are in terms of source lines of code, except

Staff Size and Resources

Along with a large range in project sizes, there is a large range of staff size in this sample.

Table 5-9 summarizes average staff size and resources of the development team and the

whole project team. Staff averages are measured in numbers of people, and resources are

measured in person-years.

#Projects Min Max Average Std Dev Median

average development 87 0.4 500 22 73 6
raverage total 87 1 790 40 109 13
resources development 87 0.1 940 34 126 6
resources total 1 87 0.2 1260 58 181 12
Table 5-9. Summary of average staff size and resources for development and entire project team.

26

Version

Most of the projects in the sample developed new products as opposed to developing the

next version of an existing product. A project that includes more than 50% of the

existing code from a previous version of the product is considered a product extension.

Table 5-10 summarizes the sample below.

E Version Count

New product 54
Product extension 33
Total 87

Table 5-10. Summary of product version.

27

6 Summary of Hypotheses

Staff Experience

Staff experience is measured by the following percentages: staff with 0-5 years of

development experience and staff with 6+ years of development experience. The higher

the percentage of staff with 6+ years of experience, the more experienced the project

team. The higher the percentage of staff with 0-5 years of experience, the less

experienced the project team. The author hypothesizes that more experienced project

teams will have the following properties:

. higher levels of productivity. In Boehm's COCOMO II model [7], the equation to

estimate the number of person-months required to develop a project indicates that

more experienced developers will need less time than less experienced developers

to finish a project. This indicates that experienced developers are more

productive overall.

. lower levels of bugginess. More experienced developers generally write more

robust code which reduces the number of potential bugs in the code.

. lower levels of overspending budget. Since more experienced developers should

be more productive, they are less likely to go over schedule, which decreases the

chances of going over budget.

. lower schedule estimation error. More experienced teams should be able to better

manage their schedule and work more productivity which should help the project

finish more timely.

Specification documents

Formal documentation of specifications usually indicates thoroughly planned designs. A

project that lacks a specification document has 0% completion of that document. Higher

levels of completion of specifications before coding begins mean more time was put into

design. There are three different specification documents: architectural, functional or

requirements, and detailed design. The author hypothesizes that higher levels of

specification completion before coding contribute the following:

28

. higher levels of productivity. Since "design serves as the foundation [for project

activities] ... effective design is essential to achieving maximum development

speed" [23, p. 63]. Therefore a more well thought out design will increase

productivity.

. lower levels of bugginess. A poor design that cannot be easily extended or

modified may need to be redesigned later in the development process.

Redesigning, which can affect many code modules, is prone to bugs. Thus, poor

designs ultimately contribute to more bugs.

. lower schedule estimation error. If good design increase productivity, then it

should in turn increase the likelihood that the project will finish more timely.

. lower levels of overspending budget. If a good design decreases the amount of

time a project to goes over deadline, then the project will be less likely to

overspend their budget. The longer a project lasts, the more money is spent on

the project.

. higher customer satisfaction perception rating. With a good design and fewer

bugs, customer satisfaction should be high.

Feedback

There are two types of feedback: market and technical. Prototypes and betas provide

market feedback and integrations offer technical feedback. Feedback timing is measured

by the percentage of final functionality present in the first releases or the first integration.

Projects that lack any one of these project events have 0% of the final functionality in the

missing event. Lower percentages mean the project teams received earlier feedback. The

author hypothesizes that feedback will affect the following outcome variables:

. productivity. Early market feedback will increase levels of productivity because

changes to the requirements or functionalities are easier to incorporate earlier in

the project than later. Early technical feedback will increase levels of overall

productivity because fixing defects early requires less time than fixing them later.

. bugginess. Early market feedback minimizes major rework because any large

functionality changes that would want to make will more likely occur early in the

process rather than later. Avoiding major rework later in the project, in turn,

29

decreases the number of errors. Early technical feedback detects errors early in

the project so that the errors can be corrected early. It is easier to find and fix

bugs earlier than later in the projects so that early correction reduces the overall

level of bugginess.

. timeliness. Early market feedback minimizes rework late in the project, which

helps a project finish more timely. Early technical feedback decreases schedule

estimation error because detecting and fixing defects early reduces the amount of

time spent on the project [23].

. level of overspending budget. Since early market feedback minimizes rework, a

time-consuming process, late in the project the time spent on a project reduces

which also reduces levels of expenditure. As a result, the level of overspending

decreases. Early technical feedback, which exposes errors early, reduces the level

of overspending budget because fixing defects later in the project is more

expensive [23].

. customer satisfaction perception rating. Early market feedback demonstrates a

project's progress and allows the customer to participate in the project. These two

consequences increase customer satisfaction with the project. Early technical

feedback does not have an effect on customer satisfaction.

Design and code reviews

Design reviews allow project teams to evaluate and improve upon their original designs.

Code reviews can help developers correct potential mistakes in the code or improve the

readability of their code. Design review is measured by whether the project team

conducted design reviews and the number of design reviews done. Similarly, code

review is measured by whether the project team conducted code reviews and percentage

of final code that was reviewed. The author hypothesizes that the practice of these two

reviews results in the following:

. higher levels of productivity. A design error left undetected until testing can take

up to 10 times as long to fix as it would if it were detected at design time [11].

Conducting design reviews can uncover design errors before coding begins,

which increases overall productivity because rework is minimized. Although

30

code reviews take away from coding, readable and relatively error-free code

speeds up development. This contributes to an increase in overall productivity.

. lower levels of bugginess. Technical reviews can find a large percentage of bugs.

For example, informal reviews can detect 30%-70% of the errors in a system [24,

4, 32].

* lower schedule estimation error. Technical reviews uncover errors earlier in the

project which helps a project finish more timely because errors detected later in

the project take longer to fix than errors detected earlier [23].

Sub-cycles

Projects can develop incrementally by using sub-cycles. This study will analyze the

following aspects regarding sub-cycles: the practice of sub-cycles, the number of sub-

cycles and the length of sub-cycles. The hypotheses are that sub-cycles will contribute to

the following outcome variables:

. lower levels of productivity. Development in sub-cycles decreases productivity

because constant incorporation of customer feedback which involves removing

and adding functionalities. The more requirement specifications change, the

lower the level of productivity [31].

. lower levels of bugginess. With each sub-cycle, new errors are found and fixed

which reduces the number of bugs of the system.

. lower schedule estimation error. Developing in sub-cycles allows a project team

to constantly re-evaluate and adjust their schedule, which lowers the percentage of

schedule estimation error. As a project progresses, estimations become more

accurate [6].

. higher customer satisfaction perception rating. Progress is visible with

incremental development, which increases customer satisfaction.

Regression or Integration Tests

A regression or integration test is used to detect if any new bugs were introduced after

previously tested code was modified. This test is more than just a simple compile and

31

link test. Running regression tests after each time the code base is modified is

hypothesized to affect the following results:

. higher levels of productivity. By detecting and fixing bugs early with this

practice, the overall productivity of the project increases because uncovering and

correcting bugs early in the project consumes less time than if the bugs were

found later in the project.

. lower levels of bugginess. Running a regression test after each code change helps

pinpoint errors more easily. Therefore, the uncovered errors are easier to fix

which reduces the overall level of bugginess.

. lower schedule estimation error. According to Capers Jones [16], one main

contributor to schedule overrun is poor quality. Since this practice should reduce

the bugginess level of a project, the schedule estimation error should decrease.

Testing Techniques

Developer participation in writing test cases and automated testing are two testing

techniques hypothesized to have the following effects:

. higher levels of productivity. Developer participation in testing and automated

tests contribute to testing efficiency, which increases overall productivity.

. lower levels of bugginess. Developers know what to test for because they know

the code so their participation in testing helps uncover more errors, which lowers

the levels of bugginess. Automated tests also help detect errors, which reduces

the number of bugs in a system.

32

7 Data Analysis

7.1 Preliminary Data Analysis: Productivity

In this study, productivity is calculated in terms of SLOC per person-month using the

equation in Section 4. A summary of productivity is provided in the Table 7-1 below.

Productivity #Projects Mi Max Ave Std Dev Median
With outliers 77 16.7715 101230 3949.32 13292.7 895.807
Wt outliers 74 16.7715 8369.39 1605.69 2011.45 828.973

Table 7-1. Summary of productivity with and without outliers.

Three outliers were removed from the productivity analysis. Since there is a large range

of productivity levels, an ANOVA analysis was run to see if the type of software

(applications, embedded, and systems) developed affects productivity level.

Analysis of Variance For Productivity
No Selector
97 total cases of which 13 are missing

Source df Sums of Squares Mean Square F-ratio Prob
const 1 190.78ge6 190.789e6 49.368 0. 0001
:iST 2 20.9628e6 10.4814e6 2.7121 0.0733
Error 71 274.391e6 3.86466e6
Total 73 295.353e6

Table 7-2. ANOVA of productivity and all three software types.

With a F-ratio of 2.7121 and a probability greater than 0.05, productivity levels differ

depending on the software type. A boxplot reveals the difference, as shown below in

Figure 7-1.

Figure 7-1. Boxplot of productivity
indicates an outlier.

and software types. Extreme outliers are denoted by "*" and a "0"

33

0*8000 0

P6000--
r
0
d 4000

c
t
i 2000--

t
y

app emd sys

adj Sof tware Type

Applications and systems have similar mean values for productivity so an ANOVA was

run on applications and systems, as shown below in Table 7-3.

Analysis of Variance For Productivity
No Selector
B7 total cases of which 13 are missing

Source df Sums of Squares Mean Square F-ratio Prob
Const 1 190.78ge6 190.789e6 49.71 5 0.0001
twT 1 19.0136e6 19.0136e6 4.954 0.0292
Error 72 276.34e6 3.83805e6
Total 73 295.353e6

Table 7-3. ANOVA of productivity and the software types of applications and systems.

Since there is little difference between the productivity levels of applications and

systems, the two software types are combined into one category. The resulting boxplot is

shown below in Figure 7-2.

8000 -0

P 6000-
r
0

d 4000

c
t
j 2000-

t
y

app/sys embedded

software Type

Figure 7-2. Boxplot of productivity and the software types of application/systems and embedded.

As a result of the above analysis, the sample for productivity analysis was partitioned into

two samples: application/systems and embedded. Only the productivity analysis for

application/systems was performed due to the small number of embedded projects in the

overall sample. The five outliers from the applications/systems sample were removed.

34

7.2 Data Analysis: Productivity of Application/Systems

This section contains the productivity analyses for the combined samples of application

and systems software. A summary of the productivity characteristics for the applications

and systems sample is shown below in Table 7-4.

Productivity #Projects Min Max Average Std Dev Median

Applications/Systems 59 16.7715 5093.83 1321.81 1292.54 900.364
Table 7-4. Summary of productivity for applications and systems.

Hypothesis 1: More experienced project teams will be more productive than less

experienced teams.

Productivity Statistical Significance
% of Developers with 0-5 years experience -0.025 0.8666
% of Developers with 6+ years experience 0.025 0.8666

Table 7-5. Pearson Product-Moment Correlation of productivity and percentages of developers with
different levels of experience.

P 3750
r
0
d 2500
U

+ +

S12560

Y I I I I I I
0 0.2 0.4 0.6 0.8

%IowExperience

Figure 7-3a.

5000

P 3750 .
r+
0
d 2500
U+

0 +. . . .

t 4+,
i 12560 _____________

+

t + + +4+4 +

0 6.2 0.4 0.6 6.8

XhighExperience

Figure 7-3b.

Figures 7-3: Scatterplots of productivity vs. percentage of developers with different levels of experience.
A total of 56 projects were in this sample.

a. Percentage of developers with 0-5 years of experience
b. Percentage of developers with 6+ years of experience

There is no statistically significant correlation between developers' experience and

productivity as shown in Table 7-5 and Figures 7-3a and 7-3b. This outcome suggests

two possibilities: 1) a developer with many years of experience does not necessarily

outperform, in terms of productivity, a developer with little experience and 2) a more

35

experienced developer writes more concise code than a less experienced developer;

therefore he seems to be less productive. A function point analysis would be helpful in

understanding this relationship.

Hypothesis 2: Project teams that complete more of their specification documents before

coding are more productive.

Productivity Statistical Significance

% of Architectural specifications finished 0.219 0.0983
% of Functional specifications finished 0.100 0.4565

% of Detailed specifications finished 0.123 0.3582
Table 7-6. Pearson Product-Moment Correlation of productivity and percentage of specifications
completed before coding.

5000

P 3750
r+

d 2500
U

C +
t +

1250
+

y I I I I I
0 0.2 0.4 0.6 0.8

PercentArch Spec Done

Figure 7-4a.

5000

P 3750
r
0

d 2500
U
c

1250 + 4

Y * 4 +3

y I I I
0 0.2 0.4 0.6 0.8

Percent Func Spec Done

Figure 7-4b.

5000

P :3750
r + +

0

d 2500
U :
c
t

1250 --

t +

y I I I I
6 0.2 0.4 0.6 0.8

Percent Deta I Spec Done

Figure 7-4c.

Figures 7-4. Scatterplots of productivity vs. percentage of specification documents completion before
coding. There were 58 projects in the sample.

a. Architectural specification
b. Functional (or requirements) specification
c. Detailed specification

36

The correlations between productivity and the percentages of specification

documentation completed before coding are positive but none are statistically significant.

The results indicate that the more complete the architectural specification document is

before coding begins, the higher the productivity levels. With most of the design laid out,

developers should be able to focus more on coding and to code more efficiently. The

degrees of completeness of functional and detailed specifications have little impact on

productivity levels.

Hypothesis 3: Projects that receive early technical and market feedback have higher

levels of productivity.

Productivity Statistical Significance
% of Final functionality in first prototype -0.140 0.3022

% of Final functionality in first integration -0.051 0.7076
% of Final functionality in first beta -0.083 0.5442

Table 7-7. Pearson Product-Moment Correlation of productivity and percentage of the final functionality
present in early project events.

5000 * 5000

P :3750 -- P 3750
r + r +

0 0
d 2500 - - 2500
U ,U +

0 +. 0. +. +.

t + t
1250 t 4 25

+4 + + +4 +

y i i i y i I i
0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

ZFina I Functional ityIn Prototype %FinaI Functional ityInIntegrat...

Figure 7-5a. Figure 7-5b.

37

P 3750
r
0

d 2500
U++

0

t*4
1250 - -

. + ..

y I I I
0 0.2 0.4 0.6 0.8

Final Functional ityInBeta

Figure 7-5c.

Figures 7-5. Scatterplots of productivity vs. percentage of the final functionality present in early project
events. There were 56 projects in the sample.

a. First prototype
b. First integration
c. First beta

There are no statistically significant correlations between productivity and feedback.

However, there is a higher negative correlation between productivity and market

feedback (% final functionality in first beta and % final functionality in first prototype)

than the correlation between productivity and technical feedback. Project teams that

receive early market feedback are more likely to incorporate the feedback, which

involves modifying, adding, and deleting functionality. This slows down overall

productivity because the team needs to rework their original implementation.

Hypothesis 4: The practice of design reviews makes a project team more productive.

Productivity Statistical Significance
Conducted design reviews 0 117 0.3856

(1=Yes, O=No)
Design reviews -0.146 0.2793

Table 7-8. Pearson Product-Moment Correlation of productivity and design reviews.

38

5000+

Figure 7-6a. Figure 7-6b.

Figures 7-6. Scatterplots of productivity vs. design reviews. There were 68 projects in the sample.
a. Dummy variable of design reviews
b. Number of design reviews conducted

A dummy variable was used to denote the practice of design reviews such that the

variable was set to 1 if the team conducted design reviews and 0 if the team did not. The

correlation between productivity and the practice of design reviews is positive but not

statistically significant. This suggests that design reviews contribute to overall project

efficiency. Design reviews help to uncover design errors and to improve the overall

project design. So by doing design reviews, the overall design of the project should not

require any major modifications later in the development process.

Although there is a negative correlation between productivity and the number of design

reviews conducted, the correlation is not statistically significant. This suggests that

conducting more design reviews slows down developers' productivity. However, it must

be noted that larger projects are more likely to conduct more design reviews than smaller

projects, and larger projects are traditionally less productive than smaller projects.

Therefore, the size of the project may be affecting the relationship between the number of

design reviews and productivity.

Hypothesis 5: The practice of code reviews is associated with higher levels of

productivity.

39

5000

P 3750
r
0

d 2500
U

C

t
1250

V

t
y I I I I

0 0.2 0.4 0.6 0.8

dummy-DesignReviews

P 3750
r
0

d 2500
U

C

1250
Y

t
y I I I I I

0 75 150 225 300

#designReviews

Productivity Statistical Significance
Conducted code reviews -0.005 0.9699

(1=Yes, O=No)
% Code reviewed 0.004 0.9750

Table 7-9. Pearson Product-Moment Correlation of productivity and code reviews.

5000

P 3750
r +
0
d 2500
U

t +
1250

y I I I I
0 0.2 0.4 0.6 0.8

dummy-code Review

Figure 7-7a.

5000

P 3750
r
0
d 2500
U
0

1250 .

t + ,

y I I I I
0 0.2 0.4 0.6 0.8

Percent Code Rev iewed

Figure 7-7b.

Figures 7-7. Scatter plots of productivity vs. code reviews. There were 51 projects in the sample.
a. Dummy variable of code reviews
b. Percentage of code reviewed

Like design reviews, a dummy variable was used to denote whether a project team

conducted code reviews such that the variable was set to 1 if the project team did code

reviews and 0 otherwise. There is essentially no correlation between productivity and the

practice of code reviews. A possible explanation is the fact that code reviews help

streamline code such that the original code is rewritten to be more concise. As a result,

the productivity levels seem lower. Further investigation of the number of product

functionality would help in understanding this relationship.

Hypothesis 6: The use of sub-cycles will result in lower levels of productivity.

Productivity Statistical Significance
Used sub-cycles 0.065 0.6241

(1=Yes, O=No)
Sub-cycles 0.183 0.1664

Sub-cycle length 0.019 0.8862
(% of project duration)

Table 7-10. Pearson Product-Moment Correlation of productivity and sub-cycles.

40

Figure 7-8a. Figure 7-8b.

5000 +

P :37508
r + + 4

0
d 2500
U+
C
t +,

i 1250. - *

Y 4 4

t 4

y I I I I
0.3 0.6 0.9 1.2

%lengthSubcycle

Figure 7-8c.

Figures 7-8. Scatter plots of productivity vs. sub-cycles. There were 55 projects in the sample.
a. Dummy variable of sub-cycle use
b. Number of sub-cycles
c. Sub-cycle length as a percentage of the project duration

Although there are no statistically significant correlations between productivity and sub-

cycles, all three correlations are positive. There is a stronger relation between

productivity and the number of sub-cycles than the relations between productivity and the

other two factors regarding sub-cycles. This suggests that using more sub-cycles

increases productivity level. Iterative development allows the designs and requirements

to be reassessed and improved if necessary, which means that the likelihood of

unnecessary implementation is reduced. This increases overall productivity.

Hypothesis 7: A project team that runs regression tests after each modification to the

code base will have higher levels of productivity.

41

5000

P 3750
r
0
d 2500 -

C
t

i1250

t
y I I I I I i

0 0.2 0.4 0.6 0.8

dummy-used Subcyc I es

5000 +

P 3750
r
0
d 2500
U4
0
t

i1250

y I I I
5 10 15 20

#Subcycles

Productivity Statistical Significance
Ran regression test 0.251 0.0325

(1=Yes, O=No)
Table 7-11. Pearson Product-Moment Correlation of productivity and the use of regression test after code
base modifications.

P 3750
r +
0
d 2500
U
C
t

1250
Y

0 0.2 0.4 0.6 0.8

regressionTest

Figure 7-9. Scatterplot of productivity and the practice of running regression tests after code base
modifications. There were 54 projects in this sample.

The correlation between productivity and the dummy variable for running regression tests

is statistically significant at the 0.05 level. Testing for bugs after each code base

modification prevents bugs from accumulating as development progresses and ensures

that developers do not introduce new bugs to the existing code. It also makes it easier to

pinpoint the source of the error. As a result, developers can spend more time on coding

and less time on finding and fixing bugs.

Hypothesis 8: More developer participation in testing contributes to higher levels of

productivity.

Productivity Statistical Significance
Developers write test cases 0.047 0.7533

(1=Yes, O=No)
% of Code tested by developers 0.161 0.2737

Table 7-12. Pearson Product-Moment Correlation of productivity and the developer participation in testing.

42

5000

P 3750 -
r++
0
d 2500 --
u +C +

t
1250 _____

t4
y I I I I

0 0.2 0.4 0.6 0.8

dummy- DevelopersTest

Figure 7-1Oa.

5000

P 3750 -
r+
0
d 2500
U

t4
1250 - -

Y +

: +:
t + 4

SI I I
0 0.2 0.4 0.6 0.8

Percent Developers Test

Figure 7-IOb.

Figures 7-10. Scatterplots of productivity and developer participation in testing. There were 48 projects in
this sample.

a. Dummy variable for developer participation in testing
b. Percentage of code tested by developers

The correlation between productivity and developer participation in testing is not

statistically significant but there is a slight positive relation. The reason could be that

developers know the code better so that testing is overall more efficient, and therefore

overall productivity levels increase.

Hypothesis 9: Levels of productivity increase as higher percentages of tests are

automated.

Productivity Statistical Significance
% of Automated tests -0.228 0.0858

Table 7-13. Pearson Product-Moment Correlation of productivity and the percentage of automated tests.

5000 -

P 3750 -
r+
0
d 2500 -
U

4 +

t4 +

1250 --

t +44

SI I I
0 0.2 0.4 0.6 0.8

Percent Automated Tests

Figure 7-11. Scatterplot of productivity and the percentage of automated tests. There were 58 projects in
this sample.

43

There is a negative correlation between productivity and the percentage of automated

tests that is not statistically significant at the 0.05 level. A possible reason is that the

effort put into writing the automated tests takes away from testing which could reduce

overall productivity levels.

Sensitivity Analysis

A sensitivity analysis was performed to determine whether a particular company (HP-

Agilent) had a significant impact on the overall productivity analysis. The results are

shown below in Table 7-14.

Original HP-Agilent excluded
Significance Correlation Significance
Level Level

% of Automated tests < 0.10 -0.344 < 0.05
Ran regression test (1=Yes, O=No) < 0.05 0.197 > 0.10

Table 7-14. Summary of analysis with the exclusion of projects from HP-Agilent.

An explanation of the differences between the original productivity analysis and the

analysis with the exclusion of HP-Agilent projects could be that automated tests are less

productive and that running regression tests after code base changes increases

productivity at the company relative to the other projects.

44

7.3 Data Analysis: Bugginess

Bugginess is measured in terms of bugs per month per thousand lines of code, calculated

with Equation 3. For the data analysis, two outliers were removed from the sample.

Table 7-15 provides a summary of bugginess levels of the samples, with and without

outliers.

I Bu iness #Proects Min Max Average Std Dev Median

With outliers 60 0 1111.11 93.6315 228.677 7.9206
Without outliers 58 0 701.754 60.4617 142.946 7.57558

Table 7-15. Summary of bugginess, with and without outliers.

Hypothesis 1: Project teams with higher percentages of experienced developers have

lower levels of bugginess.

Bugginess Statistical Significance
% of Developers with 0-5 years experience 0.167 0.3039
% of Developers with 6+ years experience -0.167 0.3039

Table 7-16. Pearson Product-Moment Correlation of bugginess and developers' experience.

B 450 -
U

9
g 300

n+
e 150

6 * *.......

0 +

I I I I I I
0 0.2 0.4 0.6 0.8

%IowExperience

Figure 7-12a.

60

B
U
9
g

n
e

+ ++
- * ~ 4.4 40

0.8
i i i i
0 0.2 0.4 0.6

%highExperience

Figure 7-12b.

Figures 7-12. Scatterplots of bugginess vs. percentage of developers with different levels of experience. A
total of 40 projects were in this sample.

c. Percentage of developers with 0-5 years of experience.
d. Percentage of developers with 6+ years of experience

The correlations between bugginess and the experience levels of the project teams are not

statistically significant. The positive correlation between bugginess and project teams

45

with low experience and the negative correlation between bugginess and more

experienced project teams indicate that more experienced developers write more solid

code. This is intuitive because a developer's coding ability improves over time by

learning from past mistakes.

Hypothesis 2: Project teams that complete a higher percentage of specification

documents before coding have lower levels of bugginess.

Bugginess Statistical Significance
% of Architectural specification finished -0.135 0.3162

% of Functional specification finished -0.108 0.4252
% of Detailed Specification Finished -0.155 0.2492

Table 7-17. Pearson Product-Moment Correlation of bugginess and percentage of specifications completed
before coding.

600

B 450
U

9
g 300

n +
e 150

S+ +

6 0.2 0.4 0.6 0.8

Percent Arch Spec Done

Figure 7-13a.

600

B 450
U
9
g 300

n
e 150 +

S t.

I I I
0 0.2 0.4 0.6 0.8

Percent Func Spec Done

Figure 7-13b.

600

B 450
U

9
g 300
i +
n+
e 150

S 4 .4+., + + +

0 0.2 0.4 0.6 0.8

Percent Detail Spec Done

Figure 7-13c.

46

Figures 7-13. Scatterplots of bugginess vs. percentage of specification documents completion before
coding. There were 57 projects in the sample.

a. Architectural specification
b. Functional (or requirements) specification
c. Detailed specification

The correlations between bugginess and completeness of the specification documents

before coding are statistically insignificant. However, all three correlations are negative.

When more time is spent on design, more of the design documents are completed before

coding begins. This indicates that more time spent on planning the design before writing

code leads to more robust code. Projects that do not spend much time on design may

need to redesign later during development, which usually contributes more bugs to the

project.

Hypothesis 3: Projects that receive early technical and market feedback have lower

levels of bugginess.

Bugginess Statistical Significance
% of Final functionality in first prototype 0.166 0.2292

% of Final functionality in first integration 0.064 0.6468
% of Final functionality in first beta -0.174 0.2094

Table 7-18. Pearson Product-Moment Correlation of bugginess and percentage of the final functionality
present in early project events.

B 450
U

g
g 300

n +

e 150

61 + +
+.4 * +~4

I I I I I
0 0.2 0.4 0.6 0.8

SFinaI Functional ityInPrototype

Figure 7-14a.

B 450
U

g 300
i

150 -_-_+

+ +
6 + + + .+.+.

S I I I I
0 0.2 0.4 0.6 0.8

XFinaI Functional ityInIntegrat...

Figure 7-14b.

47

B 450
U

g 300

e 150 _____________

0 + ++

SI I I I
0 0.2 0.4 0.6 0.8

FinaI Functional ityInBeta

Figure 7-14c.

Figures 7-14. Scatterplots of bugginess vs. percentage of the final functionality present in early project
events. There were 54 projects in the sample.

a. First prototype
b. First integration
c. First beta

The correlations between bugginess and the percentage of final functionality present in

early project events are not statistically significant. No general conclusions about market

and technical feedback regarding bugginess can be drawn. The difference between

prototype and beta feedback could either be due to the fact that prototypes are usually

released once and betas are released multiple times or the fact that prototypes are usually

released before betas. If a project team releases its prototype late in the project, there is

less time to incorporate feedback, which usually results in more bugs. Projects that

release later betas may be less likely to incorporate feedback. Less incorporation means

less rework and therefore fewer potential bugs.

Hypothesis 4: The practice of design reviews reduces bugginess levels.

Bugginess Statistical Significance
Conducted design reviews 0.029 0.8388

(1=Yes, O=No)
Design reviews -0.044 0.7529

Table 7-19. Pearson Product-Moment Correlation of bugginess and design reviews.

48

600 600

B 450 B 450
U U
g g
g 300 g 300

I I I I II

nn + n
e 5 e 150

e 5

6 0.2 0.4 0.6 0.8 0 200 400 600

dummy-DesignReviews #designReviews

Figure 7-15a. Figure 7-15b.

Figures 7-15. Scatterplots of bugginess vs. design reviews. There were 53 projects in the sample.
a. Dummy variable of design reviews
b. Number of design reviews conducted

A dummy variable was used for the practice of design reviews such that the variable was

set to 1 if the team conducted design reviews and 0 if the team did not. The correlations

between bugginess and design reviews are not statistically significant. Further analysis

on the data cluster at the lower left-hand corner of Figure 7-15b did not yield statistically

significant correlations.

Hypothesis 5: The practice of code reviews is associated with lower bugginess levels.

Bugginess Statistical Significance
Conducted code reviews 0.225 0.1249

(1=Yes, O=No)
% Code reviewed 0.204 0.1641

Table 7-20. Pearson Product-Moment Correlation of bugginess and code reviews.

49

606 4-

Figure 7-16a. Figure 7-16b.

Figures 7-16. Scatterplots of bugginess vs. code reviews. There were 48 projects in the sample.
c. Dummy variable of code reviews
d. Percentage of code reviewed

A dummy variable was used to denote whether a project team conducted code reviews

where the variable is set to 1 if the team had code reviews and 0 otherwise. There is a

positive correlation between bugginess and the practice of code reviews. This may be

explained by the calculation of bugginess (Equation 3) where fewer lines of code

contribute to a higher level of bugginess. Since many code reviews are conducted to

ensure that code is written concisely, the project teams that engaged in code reviews are

more likely to have higher bugginess levels.

Hypothesis 6: The use of sub-cycles will result in lower levels of bugginess.

Bugginess Statistical Significance
Used sub-cycles 0.086 0.5225

(1=Yes, O=No)
Sub-cycles -0.069 0.6068

Sub-cycle length -0.053 0.6933
(% of project duration)

Table 7-21. Pearson Product-Moment Correlation of bugginess and sub-cycles.

50

B 450 .
U
g
g 300

n+
e 150

+

6
0 --

I I I I I I
0 0.2 0.4 0.6 0.8

dummy-codeReview

B 450
U
g
g 300

n+
e 150

0 -- +

0 0.2 0.4 0.6 0.8

Percent Code Rey i ewed

600 --

B 450.
U
g
g 300
i +
n+
e 150 +

S 0 - - 7
I I I I I I
0 0.2 0.4 0.6 0.8

dummy-usedSubcycles

Figure 7-17a.

B 450
U

g
g 300
i +

e 156 t5 - - +

0 -
I I

7.5 15.0 22.5 30.0

#Subcycles

Figure 7-17b.

600

B 450
U
g
g 300

n
e 156

5 .4.
04 +

S I I I I
0.2 0.4 0.6 0.8

%IengthSubcycle

Figure 7-17c.

Figures 7-17. Scatterplots of bugginess vs. sub-cycles. There were 57 projects in the sample.
d. Dummy variable of sub-cycle use
e. Number of sub-cycles
f. Sub-cycle length as a percentage of the project duration

There are no statistically significant correlations between bugginess and the different

aspects of sub-cycles. A possible explanation is that old bugs are fixed and new bugs are

introduced in each iteration, regardless of length, such that the overall bugginess level is

unaffected.

Hypothesis 7: A project team that runs regression tests after each modification to the

code base will have lower levels of bugginess.

51

Bugginess Statistical Significance
Ran Regression Test -0.247 0.0612

(1=Yes, O=No)
Table 7-22. Pearson Product-Moment Correlation of bugginess and the use of regression test after code
base modifications.

B 450 --
U

g 300

e 150 -- +

0 -
I I I I I I

0 0.2 0.4 0.6 0.8

regressionTest

Figure 7-18. Scatterplot of bugginess and the practice of running regression tests after code base
modifications. There were 58 projects in this sample.

There is a negative correlation between bugginess and the practice of running regression

tests after each code base modification that is statistically significant at the 0.10 level but

not at the 0.05 level. This practice prevents bugs from accumulating in the system.

Assuming the original code base was mainly error-free, the bugs uncovered after the

regression test can also be located more easily because the new code introduced the new

bugs to the existing code. These advantages reduce the overall bugginess level of the

project.

Hypothesis 8: More developer participation in testing contributes to lower levels of

bugginess.

Bugginess Statistical Significance
Developers write test cases 0.089 0.5834

(1=Yes, O=No)
% of Code tested by developers -0.192 0.2354

Table 7-23. Pearson Product-Moment Correlation of bugginess and the developer participation in testing.

52

600 -1-

Figure 7-19a. Figure 7-19b.

Figures 7-19. Scatterplots of bugginess and developer participation in testing. There were 40 projects in
this sample.

a. Dummy variable for developer participation in testing.
b. Percentage of code tested by developers.

The correlations between bugginess and developer participation in testing are not

statistically significant. There is a stronger negative correlation between bugginess levels

and the percentage of code tested by developers than between bugginess levels and the

practice of developer participation in testing. This suggests that bugginess level

decreases as developers test a higher portion of the code. A possible reason is that

developers are generally more efficient testers than the QA staff because they know the

code, and therefore know what to test for and where bugs may occur.

Hypothesis 9: The level of bugginess decreases as a higher percentage of tests are

automated.

Bugginess Statistical Significance
% of automated tests -0.054 0.6889

Table 7-24. Pearson Product-Moment Correlation of bugginess and the percentage of automated tests.

53

B 450±
U
9
g 300

n
e 150 --

SI I I I
0 0.2 0.4 0.6 0.8

dummy-Developers Test

B 450
U

9
g 300

n
e 150 -

S I I I
0 0.2 0.4 0.6 0.8

Percent Devel opers Test

Figure 7-20. Scatterplot of bugginess the percentage of automated tests.
sample.

N'

600

B 450
u
g
g 300

n +

e 150

1 *

0 0.2 0.4 0.6 0.8

Percent Automated Tests

The correlation between bugginess and percentage of automated tests is not statistically

significant. There is a slight negative relationship, which suggests that automated tests

do help lower bugginess but not significantly.

Sensitivity Analysis

Since there were a large number of projects from HP-Agilent, a sensitivity analysis was

run to see whether they had significant impact on the original analysis of bugginess. The

results are shown in Table 7-25.

Original HP-Agilent excluded
Significance Correlation Significance
Level Level

% of Functional specification finished > 0.10 -0.362 0.05
% of Detailed specification finished > 0.10 -0.342 5 0.10
Ran regression test (1=Yes, O=No) 0.10 -0.437 < 0.05

Table 7-25. Summary of analysis with the exclusion of HP-Agilent projects.

Compared to other projects, the bugginess levels of the projects from HP-Agilent are less

affected by functional and detailed specification completion and the practice of running

regression tests after each change to the code base.

54

here were 58 projects in this

7.4 Data Analysis: Timeliness

Timeliness is measured by schedule estimation error as a percentage (see Equation 4).

The smaller the error, the closer the project finished according to the original schedule.

Hypothesis 1: More experienced project teams have smaller schedule estimation errors.

Timeliness Statistical Significance
% of Developers with 0-5 years experience 0.206 0.1051
% of Developers with 6+ years experience -0.206 0.1051

Table 7-26. Pearson Product-Moment Correlation of timeliness and developers' experience.

T 0.9 T 0.9
i m

e 0.6 e 0.6
+I +

n 0.3 - n 0.3 -
e +e

S +

s 0 + +44.4+.4*0*

I I I I I I I I I I I
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

XlowExperience %highExperience

Figure 7-21a. Figure 7-21b.

Figures 7-21. Scatterplots of timeliness vs. percentage of developers with different levels of experience. A
total of 64 projects were in this sample.

a. Percentage of developers with 0-5 years of experience
b. Percentage of developers with 6-10+ years of experience

The correlation between timeliness and the percentage of project teams with less than 6

years of experience is 0.206, and the correlation between timeliness and the percentage of

project teams with 6 and more years of experience is -0.206. Neither of the correlations

is statistically significant. The positive correlation of timeliness and less experienced

teams indicates that less experienced teams are more prone to scheduling errors than

more experienced teams, which had a negative correlation to timeliness. An interesting

point for further investigation is the managers' years of experience, which should have a

direct effect on schedule estimation error.

55

Hypothesis 2: Completing higher percentages of specification documents before coding

contributes to smaller schedule estimation errors.

Table 7
before c

Timeliness Statistical Significance
% of Architectural specification finished 0.090 0.4200

% of Functional specification finished 0.009 0.9331
% of Detailed specification finished -0.261 0.0170

-27. Pearson Product-Moment Correlation of timeliness and percentage of specifications co mpleted
oding.

3.00

2.25
T
i

m 1.50
e

n 8.75+

S +__ _ __ _ _ +__ _

I I I I I I
0 0.2 0.4 0.6 0.8

Percent Arch Spec Done

Figure 7-22a.

3.00

2.25
T

m 1.50
e

n 8.75

S J_+++ +- +++ 4+

I I I I I
0 0.2 0.4 0.6 0.8

Percent Func Spec Done

Figure 7-22b.

3.00

2.25
T
i

m 1.50
e +

n 8.75..
e+ +

..

8 8.2 8.4 8.6 8.8

Percent Detail Spec Done

Figure 7-22c.

Figures 7-22. Scatterplots of timeliness vs. percentage of specification documents completion before
coding. There were 83 projects in the sample.

a. Architectural specification
b. Functional (or requirements) specification
c. Detailed specification

Out of the three correlations, only the correlation between timeliness and percentage of

detailed specification documents completed before coding is statistically significant at the

56

0.05 level. The other two correlations are statistically insignificant. Well-planned

detailed designs contribute to more efficient coding because developers can concentrate

on coding once most of the design is finished. This efficiency, in turn, helps the project

team stay on schedule.

Hypothesis 3: Projects that receive early technical and market feedback have smaller

schedule estimation errors.

Timeliness Statistical Significance
% of Final functionality in first prototype -0.116 0.3107

% of Final functionality in first integration -0.205 0.0705
% of Final functionality in first beta -0.035 0.7587

Table 7-28. Pearson Product-Moment Correlation of timeliness and
present in early project events.

3.00

2.25
T

m 1.50e

8
..

75
e + 4

S 4

8 8.2 8.4 8.6 8.8

SFinal Functional ityInPrototype

Figure 7-23a.

percentage of the final functionality

3.00

2.25
T

m 1.50
e +

n 8.75

I I I I I
0 0.2 0.4 0.6 0.8

EFinaI Functional ityInIntegrat...

Figure 7-23b.

3.00

2.25
T

m 1.50

e

i + +
+ 4+4

8 0.2 0.4 0.6 0.8

%Final Functional ityInBeta

Figure 7-23c.

57

Figures 7-23. Scatterplots of timeliness vs. percentage of the final functionality present in early project
events. There were 79 projects in the sample.

a. First prototype
b. First integration
c. First beta

The correlations between timeliness and feedback are negative but not statistically

significant. This may be because project teams that receive early feedback continuously

incorporate feedback throughout the development process, which causes schedule delays.

There is a time cost to modifying functionality.

Hypothesis 4: The practice of design reviews reduces schedule estimation error.

Timeliness Statistical Significance
Conducted design reviews -0.090 0.4250

(1=Yes, O=No)
Design reviews -0.106 0.3491

Table 7-29. Pearson Product-Moment Correlation of timeliness and design reviews.

3.00

2.25
T

M 1.50
e+

i ++

n 0.75 -

e __ __ _

0 + IS 0 --
I I I I I I

0 0.2 0.4 0.6 0.8

dummy-DesignReviews

Figure 7-24a.

Figures 7-24. Scatterplots of timeliness vs. design reviews.
a. Dummy variable of design reviews
b. Number of design reviews conducted

3.00 +

2.25
T

m 1.50
e

n 0.75
e

0 -
I I I I

0 200 400 600

#designReviews

Figure 7-24b.

There were 80 projects in the sample.

A dummy variable was used for the practice of design reviews. The correlations between

timeliness and design reviews are negative but not statistically significant. Further

analysis on the data cluster at the lower left-hand corner of Figure 7-24b did not yield a

statistically significant correlation (-0.155 with p=0.1821) between timeliness and the

58

number of design reviews. However, the negative correlations of the overall and the

cluster samples suggest that more design reviews reduce schedule estimation error. This

is probably because a well-planned design requires less rework and backtracking later in

the development process, which helps project teams stay on schedule.

Hypothesis 5: The practice of code reviews means reduces schedule estimation error.

Timeliness Statistical Significance
Conducted code reviews -0.260 0.0242

(1=Yes, O=No)
% Code reviewed -0.195 0.0928

Table 7-30. Pearson Product-Moment Correlation of timeliness and code reviews.

1.6

T 1.2 -

i +4

e 8.8

n 0.4 -
e2
S

I I I I I I
8 0.2 8.4 0.6 0.8

dummy-codeReview

Figure 7-25a.

1.6 --

T 1.2 -

i + +

e 8.8

n 8.4 --
e
S
s 8 -

I I I I I I
8 0.2 0.4 0.6 8.8

Percent Code Reviewed

Figure 7-25b.

Figures 7-25. Scatterplots of timeliness vs. code reviews. There were 75 projects in the sample.
a. Dummy variable of code reviews
b. Percentage of code reviewed

The correlation between timeliness and the practice of code reviews is statistically

significant at the 0.05 level. Project teams that review code can uncover and fix errors

earlier in the development process, which takes less time than realizing and correcting

bugs later during development. There is a positive yet statistically insignificant

correlation between timeliness and the percentage of code reviewed. More bugs are

uncovered and corrected earlier and more quickly as more code is reviewed, which helps

a project stay on schedule. Early bug fixing is easier and less time-consuming than bug

fixing later in the development phase.

59

Hypothesis 6: Projects that use sub-cycles have smaller schedule estimation error.

Timeliness Statistical Significance
Used sub-cycles 0.195 0.0760

(1=Yes, O=No)
Sub-cycles 0.134 0.2226

Sub-cycle length -0.161 0.1440
(% of project duration)

Table 7-31. Pearson Product-Moment Correlation of timeliness and sub-cycles.

3.00

2.25
T
i

m 1.50
e+
I +

n 0.75
e+

I I I I I I0 0.2 0.4 0.6 0.8

dummy-usedSubcycles

Figure 7-26a.

3.00

2.25
T

m 1.50
e

n 0.75 +

e++

S 0 +

I I
7.5 15.0 22.5 30.0

*Subcycles

Figure 7-26b.

3.00

2.25
T

m 1.56
e

n 6.75
e+

0 ++ ++ +

0.2 0.4 0.6 0.8

%IengthSubcycle

Figure 7-26c.

Figures 7-26. Scatterplots of timeliness vs. sub-cycles. There were 84 projects in the sample.
a. Dummy variable of sub-cycle use
b. Number of sub-cycles
c. Sub-cycle length as a percentage of the project duration

The correlations between timeliness and sub-cycles are not statistically significant. There

is a positive correlation between timeliness and the use of sub-cycles. Using sub-cycles

60

allows a project team to continuously evaluate their situation and adjust their

development schedule at the beginning of each iteration to finish by deadline. There is a

positive correlation between timeliness and the number of sub-cycles and a negative

correlation between timeliness and sub-cycle length. This is because a project team that

develops with more sub-cycles usually has shorter sub-cycles. Frequent iteration means

smaller schedule estimation error because schedule estimation is more accurate with each

iteration and as the project approaches the final deadline.

Hypothesis 7: A project team that runs regression tests after each modification to the

code base will have a smaller schedule estimation error.

Timeliness Statistical Significance
Ran regression test -0.222 0.0410

(1=Yes, O=No)
Table 7-32. Pearson Product-Moment Correlation of timeliness and the use of regression
base modifications.

test after code

3.00

2.25
T
i

m 1.50
+

S 0.75
e

I I I I I I
6 0.2 0.4 0.6 0.8

regressionTest

Figure 7-27. Scatterplot of timeliness and the practice of running regression tests after code base
modifications. There were 85 projects in this sample.

The negative correlation between timeliness and running regression tests after changes to

the code base is statistically significant at the 0.05 level, which means that this practice

helps project teams stay close to schedule. This is because these regression tests find and

fix bugs early in the development process so that less time is spent on bug fixing, which

is a more time-consuming task later in development.

61

Sensitivity Analysis

A sensitivity analysis was run to evaluate whether projects from a certain company or

country had a significant impact on the original timeliness analyses. The tests were

conducted for projects from HP and Agilent. The results are shown in Table 7-33.

Original HP-Agilent excluded
Significance Correlation Significance
Level Level

% High/Low experience > 0.10 -0.358/0.358 5 0.05
% of Architectural specification finished > 0.10 -0.251 < 0.10

% of Detailed specification finished < 0.05 -0.106 > 0.10
Conducted code reviews (1=Yes, O=No) < 0.05 0.022 > 0.10

Ran regression test (1=Yes, O=No) - 0.05 -0.185 > 0.10
Table 7-33. Summary of analysis with the exclusion of HP-Agilent projects.

The timeliness of the projects from HP-Agilent are not affected by project team

experience levels or architectural specifications compared to the other projects.

However, the HP-Agilent are strongly affected by detailed specifications, code reviews,

and regression tests after code base modifications.

62

7.5 Data Analysis: Budget Error

Over-expenditure level is measured by budget estimation error (see Equation 5). The

values of budget error are percentages.

Hypothesis 1: More experienced project teams are less likely to exceed their budget.

Budget Error Statistical Significance
% of Developers with 0-5 years experience 0.075 0.5926
% of Developers with 6+ years experience -0.075 0.5926

Table 7-34. Pearson Product-Moment Correlation of budget error and developers' experience.

2.0

1.5
B
U
d 1.0 +

g
e++
t 0.5
E : *
r -

r 0 + ++4*++4++

Or +0+
r

I I I I I I
0 0.2 0.4 0.6 0.8

%IowExperience

Figure 7-28a.

2.0

1.5

U
d 1.0 -

g
e
t 0.5
E + * + +

r+ +
0 + + + ++ +*+ + +4

r + +

I I I I I I
0 0.2 0.4 0.6 0.8

XhighExperience

Figure 7-28b.

Figures 7-28. Scatterplots of budget error vs. percentage of developers with different levels of experience.
A total of 54 projects were in this sample.

a. Percentage of developers with 0-5 years of experience
b. Percentage of developers with 6+ years of experience

The correlation between budget error and the percentage of team members with less than

6 years of experience is 0.075, and the correlation between budget error and the

percentage of team members with 6 and more years of experience is -0.075. Both of

these relationships are statistically insignificant. However, from Figure 7-29b, it can be

observed that some projects spent less than their budgets (negative budget errors) after

the 30% mark. Along with the positive correlation, this suggests that more experienced

teams better manage their budgets.

63

Hypothesis 2: Project teams with higher percentages of specification documentation

completion before coding are less likely to exceed budget.

Budget Error Statistical Significance
% of Architectural specification finished -0.277 0.0212

% of Functional specification finished -0.330 0.0056
% of Detailed specification finished -0.116 0.3431

Table 7-35. Pearson Product-Moment Correlation of budget error and percentage of specifications
completed before coding.

1.50
B
U

6 ..75
e 7

E 6
r +

0 O
r

6 0.2 0.4 0.6 0.8

Percent Arch Spec Done

Figure 7-29a.

1.50 --
B
U

g 6.75
e 7
t
E 6

r

6 6.2 6.4 6.6 6.8

Percent Func Spec Done

Figure 7-29b.

1.50
B
U

d 0.75
e +
t +

E 6 +-
r + ~ +444

r

0 0.2 0.4 0.6 0.8

Percent Detai I Spec Done

Figure 7-29c.

Figures 7-29. Scatterplots of budget error vs. percentage of specification documents completion before
coding. There were 69 projects in the sample.

a. Architectural specification
b. Functional (or requirements) specification
c. Detailed specification

Attention to higher level design is strongly correlated with minimizing budget error

whereas detailed design is not. The correlation between budget error and the percentage

64

of completeness of architectural specification documentation before coding is statistically

significant at the 0.05 level, and the correlation of the budget error and the percentage of

completeness of functional specification documentation before coding is statistically

significant at the 0.01 level. Although the correlation between budget error and the

percentage of detailed specification completed before coding is not statistically

significant, the negative correlation is consistent with the other two documentation

relationships with budget error. These results indicate that spending sufficient time to

create a good design helps a project team stay within their budget because starting with a

good design helps a team avoid the need to redesign later in the development phase.

Redesigns are expensive both monetarily and temporally.

Hypothesis 3: Earlier technical and market feedback lead to a lower likelihood of

exceeding budget.

Budget Error Statistical Significance
% of Final functionality in first prototype -0.061 0.6246

% of Final functionality in first integration -0.227 0.0663
% of Final functionality in first beta -0.093 0.4586

Table 7-36. Pearson Product-Moment Correlation of budget error and percentage of the final functionality
present in early project events.

1.50 --
B
U+

d ..75 ..
e 7-3a.t + + +

E 6 +. S! *

r +.
r+
0
r

6 0.2 6.4 6.6 6.8

X F inoI Funct ionalI itylIn Prototype

Figure 7-30a.

1.50
B
U
d

S
. .75

E in* ncioaltyn .ter...Fiur 7-3+b.

r .

r4
0
r

0 0.2 6.4 06 0.8

X F inoI Funct ionalI i tyIn Integrat...

Figure 7-30b.

65

1.50
B
U
d
d 0.75
e
t + +4

E+

r++
r+
0
r

I I I I I I
B 0.2 0.4 0.6 0.8

EFinaI FunctionalityInBeta

Figure 7-30c.

Figures 7-30. Scatterplots of budget error vs. percentage of the final functionality present in early project
events. There were 66 projects in the sample.

a. First prototype
b. First integration
c. First beta

The correlations between budget error and feedback are negative but not statistically

significant. This suggests that project teams that receive earlier feedback have a higher

likelihood of overspending. This could be because the projects that receive early

feedback are more likely to incorporate feedback throughout development. Constant

feature change during development is costly because implemented features may be

replaced or redesigned to accommodate the addition of new features. To add new

features, the project team may need to backtrack and change the initial design to integrate

the new features, which costs both time and money. Projects that do not incorporate

much feedback do not go through this expensive process of changing functionalities.

The correlation of budget error and technical feedback (% of final functionality in the

first integration) is stronger than the correlations of budget error and market feedback (%

of final functionality in the first prototype and % of final functionality in the first beta).

This suggests that technical feedback has a greater impact on project expenditure than

market feedback.

Sensitivity Analysis

Since a large number of the submitted projects were from one company (HP and Agilent

are treated as one company), the analysis was rerun with the exclusion of these projects.

66

The results of the reanalysis are shown below in Table 7-37

Original HP-Agilent excluded
Significance Correlation Significance
Level Level

% Low/High experience > 0.10 0.294/-0.294 < 0.10
% of Architectural specification finished : 0.05 -0.290 : 0.10

% of Functional specification finished < 0.01 -0.346 : 0.05
Table 7-37. Summary of analysis with the exclusion of HP-Agilent projects.

An explanation of the correlation difference for experience levels is that experience does

not greatly affect overspending budget at HP-Agilent. Regarding the percentages of

architectural and functional specification completed before coding, their degrees of

completeness affect expenditure more at HP-Agilent compared to the other projects.

67

7.6 Data Analysis: Customer satisfaction perception rating

Customer satisfaction perception rating was measured on a 5 point scale where 1 means

the project's perceived customer satisfaction rating was significantly below its

expectations and 5 means its perceived customer satisfaction rating was significantly

above its expectations.

Hypothesis 1: Projects that receive earlier feedback have higher customer satisfaction

perception ratings.

% of Final
functionality in #Projects Min Max Average Std Dev Median
first prototype

0-20% 22 1 5 3.22727 0.922307 3
21-40% 17 2 5 3.35294 0.86177 3
41-60% 17 2 5 3.52941 0.799816 4
61-80% 11 2 5 3.09091 0.94388 3
80-100% 8 2 5 3.875 0.991031 4

Table 7-38. Summary of
in the first prototype.

customer satisfaction perception ratings and the percentage of final functionality

There is generally an increasing trend between the percentage of final functionality in the

first prototype and customer satisfaction perception ratings. The 61-80% group seems to

be an anomaly because its average is a lot lower compared to the average ratings of the

other four percentage groups. This table shows that the more complete the first

prototype, the higher the customer satisfaction perception rating.

% of Final
functionality in #Projects Min Max Average Std Dev Median

first beta
0-20% 10 2 5 3.6 1.07497 3
21-40% 0 - - - -

41-60% 6 3 4 3.33333 0.516398 3
61-80% 13 2 5 3.23077 1.16575 3
80-100% 46 1 5 3.36957 0.826201 3

Table 7-39. Summary of customer satisfaction
in the first beta.

perception ratings and the percentage of final functionality

Projects that have 0-20% of the final functionality present in their first beta had the

highest overall average for customer satisfaction perception ratings. The reason could be

68

that these projects developed incrementally and incorporated more customer feedback,

which explains the low percentage of final functionality. Therefore these projects have

more customer interaction than the other projects.

% of Final
functionality in #Projects Min Max Average Std Dev Median
first integration

0-20% 5 3 5 4 1 4
21-40% 5 2 4 3 1 3
41-60% 19 2 5 3.31579 0.945905 3
61-80% 22 1 4 3.13636 0.83355 3
80-100% 24 2 5 3.58333 0.829702 4

Table 7-40. Summary of
in the first integration.

customer satisfaction perception ratings and the percentage of final functionality

The projects that received the earliest technical feedback (0-20% final functionality in the

first integration) have a higher average customer satisfaction perception rating than the

other projects. However, only 5 projects fall in this group so the data may not be an

accurate representation. The projects that had 81-100% of the final functionality in the

first integration also had a high average customer satisfaction perception rating. These

could be projects that use the waterfall model for development, which explains the large

percentage of the final functionality implemented before the first integration. If the

requirements were well defined before development and do not change much as the

project progresses, which is characteristic of most waterfall methods, the customer will

get what they initially asked for. This may explain why the customer satisfaction

perception rating is high.

Hypothesis 2: More beta releases increase customer satisfaction perception ratings.

of Betas #Projects Min Max Average Std Dev Median
0 24 2 5 3.33333 0.916831 3
1 17 2 5 3.52941 0.799816 4
2 19 1 5 3.42105 1.01739 4
3 11 2 4 3.27273 0.786245 3
4+ 8 2 5 3.375 0.916125 3

Table 7-41. Summary of customer satisfaction perception ratings and number of beta releases.

69

There were a large number of projects in the sample that did not have a beta release.

Their average customer satisfaction perception rating was 3.33333, which is lower than

the average satisfaction perception ratings of the projects that released one, two, and four

more betas. However, the customer rating for three beta releases was lower than the

customer ratings for no beta releases. This may be an anomaly in the data. The table

shows that customer satisfaction perception ratings are generally higher if projects release

betas. This is probably because betas increase customer involvement in the projects.

Hypothesis 3: Projects that use sub-cycles have higher customer satisfaction perception

ratings.

of Sub-cycles #Projects Min Max Average Std Dev Median
1 30 2 5 3.46667 0.819307 4

2-3 19 2 4 3.15789 0.60214 3
4-5 17 2 5 3.23529 0.970143 3
6+ 12 1 5 3.83333 1.19342 4

Table 7-42. Summary of customer satisfaction perception ratings and the number of sub-cycles.

Sub-cycle #Projects Min Max Average Std Dev MedianLength
0-25% 29 1 5 3.41379 0.982607 4
26-50% 14 2 4 3.14286 0.662994 3
51-75% 3 2 4 3 1 3
76-100% 30 2 5 3.43333 0.8172 3.5

Table 7-43. Summary of customer satisfaction perception ratings and sub-cycle length as a percentage of
the project duration.

Out of the projects that developed in sub-cycles, those that used more sub-cycles had

higher customer satisfaction perception ratings. The projects that used the waterfall

model (i.e., those with one sub-cycle) have a higher average rating than the projects with

two to five sub-cycles but have a lower average rating than the projects with six or more

sub-cycles.

The projects with sub-cycle lengths between 76% and 100% of their actual project

duration are most likely projects that use the waterfall method. With this assumption, the

projects with shorter sub-cycles have higher customer satisfaction perception ratings.

70

This is probably because these projects have more interaction with the customer, which

increases customer satisfaction perception rating.

71

7.7 Summary of Results

This section shows a quick summary of the study's results. The table below presents the

outcome variables and the process variables that affect the outcome variables. The

significance levels, denoted by p, of each correlation between outcome and process

variables are provided. A lower significance level indicates a stronger relationship

between the variables.

Outcome Variables Process Variables

Budget Error Percent of architectural specification completed before coding.

There is a negative correlation (p < 0.05). Overspending levels

reduce as more architectural specifications are documented

before coding begins.

Percent of functional specification completed before coding.

There is a strong negative correlation (p <0.01). The degree of

overspending is greatly reduced as more functional

specifications are documented before coding begins.

Percent of final functionality present in the first integration.

There is a weak negative correlation (p < 0.10). Early technical

feedback helps projects reduce their levels of overspending.

Bugginess Running regression tests after each code base modification.

There is a weak negative correlation (p < 0.10). Bugginess

levels reduce with the practice of running regression or

integration tests (and not compile and link tests) after each

change to the code base.

Customer Satisfaction Waterfall model.

Projects that use the waterfall model had high customer

satisfaction perception ratings.

72

Productivity

~0~

Timeliness

Incremental development.

Projects with short and frequent sub-cycles had higher customer

satisfaction perception ratings than the projects that use the

waterfall model. Projects that use long and few sub-cycles had

lower customer satisfaction perception ratings than the projects

that use the waterfall model.

Percent of architectural specification completed before coding.

There is a weak positive correlation (p 0.10). Productivity

increases when more architectural specification are documented

before coding begins.

Running regression tests after each code base modification.

There is a positive correlation (p 0.05). The practice of

running regression or integration tests after changes to the code

base increases overall productivity levels.

Percent of automated tests.

There is a weak negative correlation (p < 0.10).

levels decrease as more tests are automated.

Productivity

Percent of detailed specification completed before coding.

There is a negative correlation (p 0.05). Schedule estimation

error decreases as more detailed specifications are documented

before coding begins.

Percent of final functionality present in the first integration.

There is a weak negative correlation (p 0.10). Early technical

feedback reduces schedule estimation error.

Use of code reviews.

There is a negative correlation (p 0.05). The practice of code

reviews reduces schedule estimation error.

73

H

Percent of code reviewed.

There is a weak negative correlation (p < 0.10). Schedule

estimation error decreases as more code is subjected to review.

Use of sub-cycles.

There is a weak positive correlation (p:5 0.10). Incremental

development increases schedule estimation error.

Running regression tests after each code base modification.

There is a negative correlation (p < 0.05). This practice reduces

schedule estimation error.

Table 7-44. Summary of the data analysis results.

74

7.8 Data Analysis: Country

This section briefly summarizes the software industry of India, Japan, and the United

States.

India

The Indian software industry gained global visibility in the mid-1980s when three large

American organizations (Citibank, Texas Instruments, and Hewlett-Packard) established

subsidiaries in India [19]. In the 1990s, outsourcing software activities became popular.

With a large English speaking population and a skilled labor force, India was well

positioned to be the receiving end of the outsourcing contracts, many from American

firms. As a result, professional services dominate Indian software exports.

According to the Software Engineering Institute, 43 of the 66 organizations that have

reached CMM Level 5 since January 2002 are located in India [25]. Software developers

in India pursue quality relentlessly because "It's almost shameful for them to admit they

are a [CMM] Level 2 company..." says Satish Bangalore who is a managing director of

Phoenix Global Solutions in Bangalore [2]. And according to Deepandra Moitra, a

general manager at Lucent Technologies India, Indian companies use these ratings to

signal quality when competing for outsourcing contracts [18].

Japan

The software industry in Japan has been heavily influenced by the manufacturing

industry, which has a long history in Japan [21]. Many Japanese software organizations

use Total Quality Control, a technique for total performance improvement borrowed from

the manufacturing industry.

Computer equipment manufacturers are at the top of the Japanese software industry

hierarchy and small software companies are at the bottom level of the hierarchy. The

term "software factory" describes how software development occurs in the computer

manufacturing companies. In these firms, software development is the cooperative effort

of large teams that focus on quality, productivity, and process standardization. In these

75

factories, software reuse is a major component of quality and productivity improvement

and development follows the waterfall model. These organizations also keep meticulous

records of its organizational history, e.g. individual worker productivity, such that

schedule and costs can be more accurately calculated for future projects [1, 8]. Most of

the software development in Japan occurs in the lower levels of the hierarchy. The

developers at these small software companies are poorly educated [21] and poorly

managed [12].

The software industry in Japan suffer from the following problems [21]: old-fashioned

software technologies and development styles, delays in international technology

adaptation due to the language barrier, remote and relatively closed software

organizations, lack of creativity, and the weak connection between academia and the

industry. To address these issues, in 1997, the Software Engineering Association (SEA)

in Japan initiated a movement to improve software process. SEA translated the

Capabilities Maturity Model manual to Japanese, which was published in 1999. This

translation actuated development improvements in the industry.

United States

In the summer of 1969, IBM announced the decision to unbundled its software from its

hardware. Previously, customers who purchased the hardware received complimentary

software. The independent software vendor sector emerged from this move. Because of

the first mover advantage, the American software industry holds strong positions in

domestic and international markets. The United States continues to maintain this lead

because of its established software infrastructure [29].

The United States is also a leader of software innovations. However, foreign software

industries and not the American software industry adapt and integrate the many software

technologies, processes, and models that originated from the United States. The CMM is

an example of an American theory embraced in another country-India. Most of the US

companies that have been assessed for CMM certification are at Level 2 [14].

76

Results
This section investigates how software development practices differ across countries.

Only specific comparisons of the countries of India, Japan, and the USA were possible

due to the insufficient response numbers from the other countries. The other countries,

which include Bahrain, Canada, China, France, Hong Kong, Switzerland, and Taiwan,

are grouped together for the comparisons under the name "Other".

Code generation

A dummy variable for code generation was used such that the dummy variable was set to

1 if a project had a non-zero percentage of code generated automatically, else 0. It is

assumed that code generation is not practiced if no answer was provided. Table 7-45

shows the breakdown among India, Japan, the USA, and across the sample.

Code generation India Japan USA Other All
Yes 6 10 7 6 29
No 6 17 32 3 58

Total 12 27 39 9 87
Table 7-45. Summary of code generation practice across selected countries compared to the entire sample.

Approximately one-third of the projects practiced code generation. A high percentage of

the projects received from India (50%) and Japan (- 37%) used the practice of code

generation compared to the USA (- 18%). Two-thirds of the sample from the remaining

countries automatically generated code.

Specification Documents

Since the CMM model advocates consistent documentation of activities during the

development cycle, a high percentage of the Indian sample should have the practice of

formal specification documentation. The breakdown of the three specification

documents-architectural, functional, and detailed-is shown in Tables 7-46 to 7-48 below.

77

Architectural . India Japan USA Other All
Yes 9 19 31 8 67

fNo 3 8 8 1 20Total 12 27 39 9 87_j
Table 7-46. Summary of architectural specification documentation across selected countries compared to
the entire sample.

About 77% of the entire sample formally documented architectural specifications. The

US leads the three countries with -79% of its sample writing architectural

documentation, followed by India with 75% and Japan with -70%. Approximately 89%

of the projects from the other countries wrote formal architectural specification

documentation.

E Functional India Japan USA IOther All
Yes 11 24 33 9___ 79 .
No 1 3 6 0 15
Total 12 27 39 9 87

Table 7-47. Summary of functional (or requirements) specification documentation across selected
countries compared to the entire sample.

Across the entire sample, about 91% formally documented functional or requirements

specifications. In comparison, -92% of the Indian projects, -89% of the Japanese

projects, and 100% of the other projects had functional specification documents. The US

lags behind with only -85% of the surveyed projects with formal documentation of

functional specifications.[Detailed jIndia fJpn USA [Other [All .
Yes 12 23 19 7 61
No 10 4 20 2 26
Total 12 27 39 9 87

Table 7-48. Summary of detailed specification documentation across selected countries compared to the
entire sample.

About 70% of the sample formally documented detailed design specifications. India and

Japan have higher percentages of projects that had detailed design documentation, 100%

and -85% respectively, compared to the overall average and the other countries' average.

78

About 78% of the sample from the other countries used formal detailed specification

documentation. The US, however, follows behind the overall average and all the other

countries with -49% of its projects that engaged in detailed specification documentation.

Among the three selected countries, the projects from India lead in terms of formally

documenting specifications. This Indian sample is consistent with the current state of the

Indian software community where there is a constant strive for CMM Level 5 status.

Sub-cycles

Table 7-49 shows the breakdown of sub-cycle usage across the three countries compared

to the whole sample.

Sub-Cycles India Japan USA Other All
Yes 9 13 24 9 55
No 3 14 15 0 32
Total 12 27 39 9 87

Table 7-49. Summary of the use of sub-cycles during development across selected countries compared to
the entire sample.

Sub-cycles are a sign of flexible design because they allow software to be developed

incrementally such that requirements can be modified during development. The majority

of the sample (-63%) engaged in the practice of sub-cycles. 75% of the projects from

India and -62% of the US projects developed in sub-cycles while less than half of the

Japanese projects used sub-cycles for development. 100% of the other countries

developed software in sub-cycles.

The Japanese sample trails the other countries in the practice of incremental

development. This observation is consistent with the software factory approach to

development of the large computer equipment manufacturers, which is to follow the

waterfall method.

Design Reviews

The breakdown of the practice of design review is seen in Table 7-50.

79

Desi n Reviews India Japan I USA Other All
Yes 12 26 31 8 77
No 0 1 8 1 10
Total 12 27 39 9 87

Table 7-50. Summary of design reviews across selected countries compared to the entire sample.

High percentages of the projects from India, Japan, and the other countries conducted

design reviews as part of the development process with India at 100%, Japan at -96%

and the other countries at -89%. The majority of the US sample, about 79%, also

practiced design reviews but this percentage is lower than the overall average of -89%.

Code Reviews

Table 7-51 shows the breakdown of the practice code reviews.

Code Reviews India Japan USA Other All
Yes 12 19 23 8 62
No 0 8 1611 25
Total 12 27 39 9 87

Table 7-51. Summary of code reviews across selected countries compared to the entire sample.

Like design reviews, 100% of the Indian sample and -89% of the other countries' sample

conducted code reviews. Compared to design reviews, fewer projects in the Japanese

(-70%) and US (-59%) samples conducted code reviews. The overall average was

lower, at -71%, than the overall average of design reviews which was -89%.

It is not surprising to see that all the projects from India conducted both design and code

reviews. This result is consistent with the Indian effort to produce quality.

Build Frequency

Table 7-52 shows the number of projects for each country category that conducted daily

builds during three different times of development-the first third, the middle third, and

the last third.

80

Daily Builds India Japan USA Other All
Beginning_ _____ __1___ 6 11 0 18
Middle 2 7 10 3 22
End 1 10 10 3 24
Total Projects 12 27 39 9 87

Table 7-52. Summary of daily builds during the different time periods of development across selected
countries compared to the entire sample.

Overall, the percentage of projects that conducted daily builds increases as development

progresses. Only Japan shows the same increasing trend. On average, the Japanese

sample leads with -28% that had daily builds followed by -26% of the USA sample,

-22% of the other countries, and -11% of the Indian projects.

Integration or Regression Test

The practice of running an integration or regression test after changes are made to the

code base is broken down as shown in Table 7-53.

Table 7-53. Summary of
the entire sample.

Regression Test India Japan USA Other All
Yes 10 26 22 7 65
No 2 1 17 2 22
Total 12 27 39 9 87

integration or regression tests conducted across selected countries compared to

Overall, approximately 75% of the projects ran integration tests after code changes. The

Indian, Japanese, and other countries' samples have higher percentages of projects that

used this practice, with -83% for the Indian sample and -96% for the Japanese sample

and -78% for the other countries. The US sample has a lower percentage of -56%

compared to the overall average.

Productivity

There is a wide range of productivity levels in each country, as shown by Figure 7-31

below. The plot does not include outliers.

81

Figure 7-31. Dot plot of productivity (without outliers)

8000

P
r+
0 4000 +d +
U+
C 2000 +
t ?

t

y India Jpn Otr US

byCountry

Most of the projects have productivity levels below 2000 LOC/person-month. Each

country category has a few extremely productive projects, despite removing the outliers,

relative to the group average. Table 7-54 gives a more detailed view of the difference in

productivity levels across different countries.

Country Count JAverage Std Dev Median
India 11 2010.01 2910.1 531.168
Japan 25 1752.95 1709.02 1204.92
Other 8 1502.84 1811.31 582.387
USA 30 1362.14 1977.45 542.993

Table 7-54. Summary of productivity (without outliers) across selected countries compared to the entire
sample.

India has the highest average out of the four country categories. However, taking the

median value and Figure 7-31 into account, Indian projects have similar productivity

levels as the other projects. With a high average and a high median value, the Japanese

projects are the most productive overall out of the four categories.

82

A

broken down by country.

Bugginess

1000 --

B 750
U

9 500 -+g
g

n250
e+
S

+ +

India Japan Other USA

byCountry

Figure 7-32. Dot plot of bugginess broken down by country.

Most of the projects are around similar levels of bugginess, with the exception of a few

extremely buggy projects in India and the USA. Figure 7-32 above shows the quality

range across different countries. Table 7-55 lists the numerical qualities of bugginess

across the countries.

Countr Count Average A. ver Std Dev Median Adj. Median
India 6 144.015 32.4677 274.658 37.0833 32.5
Japan 19 29.0032 29.0032 61.2365 2.56312 2.56312
Other 7 53.2098 53.2098 61.3019 13.5135 13.5135
USA 30 127.676 21.2496 293.304 6.77778 4.88095

Table 7-55. Summary of bugginess across selected countries compared to the entire sample. Two averages
and medians are provided: one with the outliers and one without the outliers.

The five outliers shown in Figure 7-32 swayed the average measurements for India and

the USA by one order of magnitude. With the omission of those extreme data points, the

bugginess averages are similar. It is unclear, however, whether the outliers are typical to

their respective country.

An interesting observation is that the median and the adjusted median value for India are

the highest of the four categories. This does not seem to be consistent with their focus on

quality. This may be that the samples in our analysis are not representative of the

average projects in India. The analysis without the outliers indicates that Japan and the

US are comparable in terms of quality.

83

8 Conclusion

Current State of Development Practices

The sample in this study is international in scope and diverse in their development

strategies. The following is a summary of the current state of software development

practices based on the data:

" Design and code reviews are common practice. About 89% of the sample

conducted design reviews and approximately 71% of the projects conducted

code reviews.

. The majority of the sample, about 63%, developed incrementally using sub-

cycles.

. Overall, about 33% of the sample automatically generated code. However,

nearly half the non-US sample used code generation. Less than 20% of the US

projects generated code.

. Formally documenting specifications is common practice across all groups.

About 77% of the sample wrote formal architectural specification

documentation, about 91% wrote formal functional or requirements

specification documentation, and about 70% wrote formal detailed

specification documentation.

. Daily builds is not a common practice with only an average of 25% of the

sample conducting builds daily at some time during development.

. About 75% of the sample conducted regression or integration tests after

changes to the code base.

. For customer feedback, about 90% of the sample had some form of a prototype

and about 72% released betas. Of the projects that released betas, most

released one or two betas and about 16% had four or more betas.

Future Considerations

Survey implementers almost always realize potential enhancements to facilitate the data

collection process after the survey has gone live. Although the survey from the 2000 HP-

84

Agilent study was improved upon, there are still areas of improvement such as the

following:

Implementation

. The participant's ability to save the survey on his browser so that he can work

on it thoroughly before submission. Logins is another method that allows the

participants to answer the survey completely before submission.

" Before submission, the answers are checked for accuracy. This will let the

participant correct mistakes before submitting his survey and increases the

accuracy of the data received. For example, several questions in the survey

ask for a series of percentages that sum to 100%. However, it is easy for a

participant to mistype his answer. If there is a quick check that alerts the

participant of the calculation error, he can correct his answers before the

survey is submitted.

Content

. Whether a feasibility test was conducted before the project began. Project teams

often evaluate the feasibility of their potential project before officially starting the

project. The resources they used for this preliminary assessment should also be

taken into consideration when analyzing software projects.

. Duration of development phases such as testing, design, and coding. Participants

generally know the time frame of the development phases better than their precise

start and end dates.

. Date of the last integration. It was not possible to know how long the integration

period lasted without this information.

. Ratings of financial returns and market share change. Since financial information

is confidential, many participants did not feel comfortable submitting these

numbers. Also, at the time of response, many participants did not have exact

numbers regarding market share. Therefore, instead of asking for specific

financial and market share data, more participants should be able to rate their

financial and market performance. One caution to this method is that the data is

the participant's perception and may not accurately reflect the true performance.

85

. The amount of rework on architectural and functional design. Rework costs the

project team both time and money. With this data, an analysis of the factors that

contribute to rework would uncover valuable lessons for project teams to avoid

rework.

86

Appendix A: Survey

SOFTWARE DEVELOPMENT PROCESS STUDY

by

MIT Sloan School of Management

Katz Graduate School of Business, University of Pittsburgh

Harvard Business School

This survey has two fundamental objectives:

. To identify and document best-known methods for increasing performance in
software development, such as speed, flexibility, and quality

. To identify and understand what types of approaches to software development
work best in different types of projects.

As an appreciation for your participation in this survey, you will receive a package of
recently published materials about software development.

As an appreciation for your participation in this survey, you will receive a package of
recently published materials about software development.

Please note that all project-specific data will be kept confidential by researchers; only
summary results and project data that cannot be matched to a specific project will be
included in published results.

Contact Ipformation
Academic Contacts

. Prof Michael Cusumano (MIT Sloan School of Management),
cusumano@mit.edu

. Prof Chris F. Kemerer (Katz Graduate School of Business, University of
Pittsburgh), ckemerer@katz.pitt.edu

. Prof Alan MacCormack (Harvard Business School), amaccormack@hbs.edu

Main Contact (responsible for maintaining the research questionnaire and data
collection)

. Pearlin Cheung (MIT School of Engineering), pearl@mit.edu

87

Some reference material that may be helpful in filling out the survey:

. Project data
sheets

. Project results

. Project schedules

. Project checkpoint
presentations

. Project resource
plans

Company Name

Name of the project you are describing in this
questionnaire (including version number, if any)

Today's date (e.g. 25 November 2001)

Name of the person filling out this form

Your role on the project (e.g., project manager, lead
architect, developer, etc.)

Your email address (in the event that there are
questions)

Your phone number (in the event that there are
questions)

If you wish to be provided with a summary of the results
of this research, please indicate that here (select one) Yes No

Part 1: Product and Project Description

In this survey you will be answering questions about the main software deliverable from
the project.

. A project here is the entire effort devoted toward delivering a specific software
deliverable where the activity was both separately managed and tracked from
other software deliverables.

. The software deliverable from a project might be a product or a service. In
particular, it might be a new release of a previously existing piece of software.

Throughout this survey the focus will generally be on the software project, but some
questions will ask about the software deliverable, the product or service. When questions
ask about the product or service, they are referring only to the version created by this
project.

88

1.1 Product Description

1.1.1 What type of software is the deliverable? (check one only)

Systems Software (e.g., OS, DB, network, tools, languages)

General-Purpose Applications Software(e.g., Office, SAP standard package)

C Custom or Semi-Custom Application (including system integration services)
C Embedded Software

1.1.2 What level of mission-critical reliability does the software deliverable require?
(check one only)

High (e.g., real-time control software or enterprise OS, where system failures are
extremely rare, costly, or dangerous)
C Medium (e.g., enterprise software but occasional system failures are acceptable)
r Low (e.g. individual such as Word, Excel)

1.1.3 What was the target hardware platform?
C Mainframe

C Workstation (e.g., Unix, NT)
CPC

other

1.1.4 To whom is the software primarily sold? (check one only)

C Individuals r Enterprises In-House Use

1.1.5 Outline briefly the main functions of the software:

1.1.6 What programming language (e.g. C, C++, HTML,
Assembly) was the software primarily written in?

1.1.7 Please estimate the size of the delivered software in
source lines of code: lines

1.1.8 Does this figure include comments? (select one) r Yes No

1.1.9 If "yes," estimate the percentage of comments:

89

1.1.10 What was the origin of the software code in the finished release according to the
following categories?

Category Percentage of
Ca r I Code

Existing code retained from the previous version of this j
product%

lExisting code taken from other sources (e.g., code libraries) %

New code developed for this product in other project team(s)
(e.g. core code, components, code outsourced to %
geographically separate organizations)

New code developed for this product in this project team %

1.1.11 Please estimate the percentage of new code developed for
this product in this project team (i.e., the figure in box four,
above) that was generated automatically.

1.2 Project Description

Project Budget
1.2.1 What was the software development budget for the
project (in $million)?

1.2.2 What was the actual outcome expenditure for the
project (in $million)?

$1 million

$F-million

Project Team Composition
For the following questions, please refer only to the project team members responsible
for the new code identified in box four of table 1.1.10.
1.2.3 What was the structure of the primary software development team?

Position

Project Management (includes project
managers and directors, but not team or
technical leads)

Architecture and Design

Average Peak Staff Total Staff
Staff (number of Resources

(number of (eof (person-
people) years)

I ~ IF

90

I

Development/Programming

Testing (QAIQE & Integration)

Project Support (e.g., software
engineering, project management support,
configuration management,
documentation, etc.)

Other:

F F I-

1.2.4 What is the software development experience of the project team (give percentage
of team) as described in each category?

Years of Software Development Experience Percentage of Software Team

0-2 years %
3-5 years %

6-10 years %

10+ years %

1.2.5 What percentage of the development team had
worked on the previous version of this product?

1.2.6 In which country was your project team primarily
based?

Project Schedule
1.2.7 What was the original software development schedule
(duration in calendar months)?

1.2.8 What was the actual duration of the project (in
calendar months)?

II

months

months

Please consider the following general phases in a software development project (your
organization may not track all these steps, or may use slightly different terminology.)

Functional (or Requirements) Design: Phase that outlines the functional description of
the product, which includes product features and market requirements.
Architectural Design: Phase that outlines the high level system design.

91

I

Detailed Design andDevelopment: Phase that covers detailed design, coding, unit-level
testing, and debugging.
Integration and System Testing: Phase that integrates and stabilizes modules, and tests the
performance of the whole system.

1.2.9 Please fill in the dates for the following events on your project in the format
MM/YY (e.g. February 2001 is denoted as 2/01). Note: Events do not have to be
sequential.

Activity [Activity Description Activity Date

1 [Project start date

2 Functional (or Requirements) design start date

3 Architecture design start date

4 Detailed design and development start date

5 Last addition of new functionality, excluding
bug fixes (e.g. code complete)

6 First system integration date

7 Project end date

1.2.10 When was the first prototype of any sort shown to
customers (e.g. even if only a mock-up of the user
interface)?

1.2.11 When was the first beta version released to
customers? (A beta is defined as an early working version
of the system that is released to selected customers.)

1.2.12 How many beta versions did you release to
customers?

MMM/YY

MM/YY

Part 2: The Development Process

2.1 Planning and Specification

2.1.1 Did the team write an architectural specification
6 1- n ticipnmint thnt nrnvitl-d n biah lt-vi- di-qirintlnn nf

92

Yes No

I

the subsystems and interfaces of the eventual product or
service)? Select one:

2.1.2 If "yes," what percentage of the
architectural specification was completed
before the team started coding?

2.1.3 If "yes," how long were the
architectural specifications for this system
or product in terms of pages?

2.1.4 If "yes," on which date (MM/YY)
was the architecture specification
document first available?

2.1.5 If "yes," on which date (MM/YY)
was the last major change made to the
architectural design specification?

2.1.6 Did the team write a functional (or requirements)
specification (i.e., a document that described how
features worked but not the underlying structure of the
code or modules)? Select one:

2.1.7 If "yes," what percentage of the
functional (or requirements) specification
was completed before the team started
coding?

2.1.8 If "yes," how long was the
functional (or requirements) specification
for this system or product in terms of
pages?

2.1.9 If "yes," on which date (MM/YY)
was the functional (or requirements)
specification document first available?

2.1.10 If "yes," on which date (MMIYY)
was the last major change made to the
functional (or requirements) design
specification?

2.1.11 Did the team write a detailed design specification
(i.e. a document that provides the structure of the
modules and an outline of algorithms where needed)?
Select one:

2.1.12 If "yes," what percentage of the
detailed design specification was
completed before the team started coding?

pages

SMM/YY

MM/YY

Yes No

pages

MM/YY

MMIYY

Yes No

93

I

I I

2.1.13 If "yes," how long was the detailed
design specification for this system or
product in terms of pages?

2.1.14 If "yes," on which date (MM/YY)
was the detailed design specification
document first available?

2.1.15 If "yes," on which date (MM/YY)
was the last major change made to the
detailed design specification?

2.1.16 What percentage of the features in the original
functional (or requirements) specification were contained
in the final product?

2.1.17 What percentage of the features in the final
product were contained in the original functional (or
requirements) specification?

pages

MM/YY

MM/YY

2.2 Project Structure

Sub-cycles
The following questions ask about sub-cycles, in contrast to code builds. A sub-cycle
typically includes the following phases: design, implementation, build, testing,
integration, and release (internal or external). For example, we consider the pure waterfall
method to be one sub-cycle. A 12-month project that is divided into four three-month
sub-projects or phases, each ending with a formal release at least within the company,
would contain four sub-cycles.

2.2.1 Did you divide the development phase of the project
into separate development sub-cycles that built, tested, and
released a subset of the final product's functionality?

2.2.2 If "yes," how many separate
development sub-cycles were there on this
project?

2.2.3 If "yes," how long was the average
sub-cycle, in terms of weeks?

2.2.4 If "yes," after which sub-cycle was the
first beta version released?

r Yes No

I weeks

94

I

I

Project Events

2.2.5 Estimate the percentage of the final product's functionality which existed in the
design at the following project events (assume the functionality in the design is 0% at the
start of the project and 100% at the time the product is launched):

Percentage of Final Product
Project Event Functionality

The first prototype shown to customers (even %
if only a mock-up) %

The first system integration (even if modules
only partially complete) %
The first beta version (the initial full version
for external customer use)

2.3 Detailed Development Practices and Tools

Coding Practices
2.3.1 Was each developer paired up with a tester who
would test their code (i.e., a "private release") prior to
checking in to the master build?

2.3.2 Did the project team engage in "pair programming"
where developers work in pairs such that one developer
codes or tests while the other reviews?

2.3.3 Was the code collectively owned (i.e., developers
can modify any part of the code), selectively owned (i.e.,
developers can alter only a subset of the code such as
specific modules), or individually owned by the developer
who wrote it (e.g., developers are assigned responsibility
to certain classes)?

2.3.4 Did the project team follow a uniform coding style
or a set of coding rules?

2.3.5 If "yes," please name or briefly describe this
standard.

Yes No

r Yes r No

Collective
r Selective

C Individual

Yes No

~iLJ

95

Reviews

2.3.6 Were there any design reviews done?

2.3.7 If "yes," how many?

2.3.8 Were there any code reviews done?

2.3.9 If "yes," approximately what
percentage of all the newly developed code
was reviewed by another team member?

r Yesr No

r Yes No

System Builds
2.3.10 During the development phase, how frequently was the system "built" on average
(i.e., how often were design changes, including bug fixes, integrated into the code base
and then recompiled)?

Daily 2-3x a week Weekly Bi-Monthly Monthly or less

First third of F
development F
Middle third
of r C C r C

development

s third of
dlopment F I

Testing

2.3.11 Did developers help write test cases?

2.3.12 If "yes," what percentage of the
code did the developers test?

2.3.13 Was any type of integration or regression test (as
opposed to a simple compile and link test) run each time
developers checked changed or new code into the system
build?

2.3.14 If "yes," how long did the
integration test usually take to run?

2.3.15 When the product was "built," how long did it
take to get feedback on the performance of the system
using the most comprehensive set of system tests
assembled during the project?

2.3.16 Approximately what percentage of the test cases
run on the product or system were automated?

Yes

Yes

No

No

hours

I hours

Tools
2.3.17 What were the most useful development tools or methods for each activity?

96

I

I %,

Requirements Design

Architectural Design

Detailed Design

Coding

Testing

Configuration Management

Project Management

Other

Part 3: Performance

The following questions refer to data on sales, market share, and reported bugs for the 12
month period following the product's launch. If less than 12 months of data are available,
please report the number of months where indicated.

3.1 Financial Performance

3.1.1 If you sold your product in the market, please
estimate the total dollar revenues that the product
generated in the first 12 months after shipment of the final
release, including extra charges for design changes, if
applicable. If your product included charges for hardware,
please estimate revenues solely attributable to the
software part of the product (for example, as tracked by
your internal accounting procedures).

Note: If less than 12 months of data are available, please
report data only for those months you have data and note
the number of months here:

3.2 Market Performance

3.2.1 If you sold your product in the market, please
estimate the increase or decrease in market or user share of
your product in the first 12 months after shipment of the
final release (e.g. if your share increased from 10% to 20%,
this is a 10% increase):

Note: If less than 12 months of data are available, Dlease

$K- million

I months

I
points

97

report data only for those months you have data and note
the number of months here:

months

3.3 Product Ouality

Software quality is often thought of as the relative absence of defects, or 'bugs'. Most
organizations have mechanisms in place for testers and customers to report bugs, (e.g.
'software problem reports'). The following questions ask about these bugs in terms of
volume and timing.

3.3.1 Please estimate the number of bugs reported by
customers or by field technicians in the first 12 months
after the system was shipped:

Note: If less than 12 months of data are available, please
report data only for those months you have data and note
the number of months here:

bugs

I months

If there was a beta release, please answer the following question:
3.3.2 Of the bugs discovered AFTER the first beta release, please estimate the percentage
of these bugs that came from the following sources. (Numbers should sum to 100%)

Source Percentage of Bugs Found After
Beta

Bugs found by development engineers %
themselves

Bugs found by QA and test engineers during %
testing activities

Bugs found by customers using the beta release %

Please answer the following questions regarding project expectations using a 5-point
scale, where 1=Significantly below, 2=Below, 3=Met expectations, 4=Above,
5=Significantly above

3.3.3 Please indicate the extent to which you perceive the
project met expectations in terms of customer satisfaction
with the end-product.

3.3.4 Please indicate the extent to which the product met
expectations in terms of sales, relative to the forecasts
which were made prior to the product's release.

98

Please note below the number of any questions for which you have low confidence in
your answers.
(E.g., My numbers are good except for 2.2.5, which I estimated.)

WI -pjj

Many thanks for completing this survey. We will email you with a link to the results of
this survey as soon as they have been compiled. If you have any comments on the survey,
or suggestions for future questions we should ask, please leave them below.

4iL

Please provide your mailing address below.

LiJ~J

99

References

[1] Aaen, Ivan, Peter Botcher and Lars Mathiassen. "The Software Factory:
Contributions and Illusions." Proceedings of the Twentieth Information Systems
Research Seminar. Scandinavia, Oslo, 1997: 411-413.

[2] Anthes, Gary H. and Jaikumar Vijayan. "Lessons from India Inc." Computerworld.
April 2, 2001. <http://www.itworld.com/Tech/2418/C WD010402STO59083/>.

[3] Blackburn, J.D.; Scudder, G.D.; Van Wassenhove, L.N. "Improving speed and
productivity of software development: a global survey of software developers."
IEEE Transactions on Software Engineering. December 1996: 875 -885.

[4] Boehm, Barry W. "Industrial Software Metrics Top 10 List." IEEE Computer.
September: 43-57.

[5] Boehm, Barry W. "A Spiral Model of Software Development and Enhancement."
IEEE Computer. May 1988: 61-72.

[6] Boehm, Barry W., et al. "Cost Models for Future Software Life Cycle Processes:
COCOMO 2.0." Annals of Software Engineering, Special Volume on Software Process
and Product Measurement. J.D. Arthur and S.M. Henry, eds. Amsterdam: J.C. Baltzer
AG, Science Publishers.

[7] Boehm, Barry W., et al. COCOMO IIModel Definition Model. University of
Southern California. Version 1.4.
<http://my.raex.com/FC/B1/phess/coco/Modelman.pdf>.

[8] Cusumano, Michael A. Japan's Software Factories: A Challenge to US.
Management. Oxford University Press. 1991.

[9] Cusumano, Michael A. and Chris F. Kemerer. "A Quantitative Analysis of U.S. and
Japanese Practice and Performance in Software Development." Management
Science. November 1990: 1384-1406.

[10] Cusumano, Michael A. and Richard W. Selby. Microsoft Secrets. New York:
Simon & Schuster. 1998.

[11] Dunn, Robert H. Software Defect Removal. New York: McGraw-Hill. 1984.

[12] Duvall, Lorraine M. "A Study of Software Management: The State of Practice in
the United States and Japan." The Journal of Systems and Software. January 1993.
<http://www.dacs.dtic.mi]/techs/management/node2.html>.

[13] Highsmith, Jim. "Extreme Programming." e-business Application Delivery.
February 2000. <http://www.cutter.com/ead/ead0002.html>.

100

[14] HL Global Parters, L.L.C. "Why Offshore Development?"
<http://www.hlglobalpartners.com/WhyOS.htm>.

[15] Humphrey, Watts S. "Characterizing the Software Process: A Maturity
Framework." IEEE Software. March 1998: 73-79.

[16] Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs, N.J.:
Yourdon Press. 1994.

[17] Jones, Capers. "Programming Languages Table." Software Productivity Research,
Inc. March 1996. <http://www.theadvisors.com/langcomparison.htm>.

[18] Keuffel, Warren. "A Software Superpower?" Software Development. March 2001.
< http://www.sdmagazine.com/documents/s=733/sdm0103o/0103o.htm>.

[19] Lateef, Asma. "Linking up with the global economy: A case study of the Bangalore
software industry." International Labour Organization Discussion Papers. No. 96.
1997. <http://www.ilo.org/public/english/bureau/inst/papers/1997/dp96/ch2.htm>.

[20] Linger, Richard C. "Cleanroom Process Model." IEEE Software. March 1994: 50-
58.

[21] Matsubara, Tomoo. "Japan: A Huge IT Consumption Market." IEEE Software.
Sep/Oct 2001. <http://www.computer.org/software/homepage/2001/05CountryReport/>.

[22] Maxwell, K.D.; Van Wassenhove, L.; Dutta, S. "Software development productivity
of European space, military, and industrial applications." IEEE Transactions on Software
Engineering. October 1996: 706 -718.

[23] McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press. 1996.

[24] Myers, Glenford J. The Art of Software Testing. New York: John Wiley & Sons.
1979.

[25] Paulk, Mark. "List of Maturity Level 4 and 5 Organizations." Jan 2002.
<http://www.sie.cmu.edu/cmm/high-maturity/HighMatOrgs.pdf>.

[26] Royce, Winston W. "Managing the Development of Large Software Systems:
Concepts and Techniques." Proceedings of IEEE WESCON. 1970.

[27] Spangler, Alan. "Cleanroom Software Engineering." IEEE Potentials.
October/November 1996: 29-32.

[28] Standard &Poor. Industry Surveys, Computers: Software. Vol. 170. No. 4. January
24, 2002.

101

[29] Steinmueller, W. Edward. "The U.S. Software Industry: An Analysis and
Interpretive History." 1995. <http://www-edocs.unimaas.nl/files/mer95009.pdf>.

[30] Upadhyayula, Sharma. "Rapid and Flexible Product Development." Master of
Science thesis in the MIT System Design and Management Program. MIT, 2001.

[31] Vosburgh, J.B., et al. "Productivity Factors and Programming Environments."
Proceedings of the 7'h International Conference on Software Engineering. Los Alamitos,
CA: IEEE Computer Society. 1984: 143-152.

[32] Yourdon, Edward. Structured Walk-Throughs, 4k" ed. New York: Yourdon Press.
1989.

102

