
Merging Ontologies in the Context Mediation Framework

by

Befekadu Ayenew

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 24, 2002 k

Copyright 2002 Befekadu Ayenew. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
t Department of Electrical Engineering and Computer Science

May 24, 2002

Certified by
Stuart Madnick

Tems Supervisor

Accepted by
Arthur C.> Smith

Chairman, Department Committee 6n Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES BARKER

2

Merging Ontologies in The Context Mediation Framework
By

Befekadu Ayenew

Submitted to the
Department of Electrical Engineering and Computer Science

May 24, 2002

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Context Mediation integrates heterogeneous data sources by comparing the contexts
associated with the sources and resolving any semantic conflicts. Presently, context
mediation can be done on data sources only if they subscribe to the same ontology. We
propose a merging strategy that will allow us to extend mediation to sources that elevate
to differing ontologies. This strategy takes a divide-and-conquer approach by breaking
down the problem into smaller mediation problems that can be processed by the current
mediation system. These sub-problems will be determined through an alignment of the
concerned ontologies. The rules of these alignments will be dictated by the conflicts that
need to be resolved. Once the sub-problems have been solved, the complete solution to
the mediation problem is constructed by merging each output under the conditions that
were imposed in the original mediation problem.

Thesis Supervisor: Stuart Madnick
Title: John Norris Maguire Professor of Information Technology

and Professor of Engineering Systems

3

Acknowledgments

I would like to especially thank my advisors Professor Madnick and Dr. Siegel for giving
me this opportunity in the first place. Without their encouragement and guidance, this
thesis would not have been possible. To Aykut, my unoffical advisor, who constantly
encouraged me and helped me whenever I was stuck: thank you. I would also like to
thank Frank and Allen for their valuable input in helping me design this system. Many
thanks to the other members of the group: Tarik and Usman for helping me get started,
Harry for his constant support and Philip for tolerating me.

Of course none of this would have been possible without my family, so thank you Mami
and Babi, my brothers and my sister. Especial recognition also goes out to my friends
who make my life enjoyable and keep me interested in everything I do.

Last but not least, I want to thank God for making all of this possible.

4

Table of Contents

I Introduction.. 9
1.1 Problem D escription.. 9

1.1.1 Identical Contexts .. 9
1.1.2 Identical view s of the w orld.. 10
1.1.3 D ifferent view s of the w orld.. 11

1.2 Related W ork.. 14

2 Global Context M ediation System (GCM S).. 18
2.1 Applications.. 19

2.1.1 Ontology ... 19
2.1.2 Context D efinitions.. 20
2.1.3 D ata Sources ... 20
2.1.4 Elevations.. 21
2.1.5 Conversion Functions ... 23

2.2 Abduction Engine ... 25
2.3 Query Planner/Executioner.. 26

3 System D esign.. 28
3.1 Query Planner .. 28

3.1.1 SQ L Optim ization.. 28
3.1.2 Subquery G eneration ... 31

3.2 Context G enerator... 34
3.2.1 Synonym M atching... 36

3.3 Param etrization of GCM S ... 40
3.4 M erging ... 41

4 Im plem entation... 43
4.1 A lignm ent Tool.. 43
4.2 Context G enerator... 46
4.3 Query Builder ... 49
4.4 Query Planner .. 51
4.5 Param etrization U tility .. 53
4.6 M erger ... 53

5 M otivational Exam ple... 54

6 Possible Im provem ents and Extensions ... 57
6.1 G lobal Ontologies... 57
6.2 Ontology Level Conflicts ... 58

6.2.1 Term inological M ism atches.. 59
6.2.1.1 Synonym M ism atches.. 59
6.2.1.2 H om onym M ism atches.. 61

6.2.2 Conceptualization M ism atches ... 61
6.2.2.1 D ata Representation M ism atches .. 61

5

6.2.2.2 Scope M ism atches... 63
6.2.2.3 Model Coverage and Granularity Mismatches 63
6.2.2.4 G eneralization Conflicts... 64

6.2.3 Explication M ism atches... 66
6.2.3.1 Paradigm and Data Precision Mismatches......................66
6.2.3.2 Concept D escription M ism atches... 67

6.3 M ediation U sing a G lobal Ontology ... 69
6.4 Conclusion...72

References...73
A ppendix A ... 75
Appendix B ... 78

6

List of Figures

An excerpt of a financial ontology ...
An excerpt of the W orldScope financial ontology ...
Synonym alignments between DataStream and WorldScope ontologies.......
Design Architecture..
A screenshot of the alignment tool...
A screenshot of the modifier template builder ..
Sample Receiver Context ...
A screenshot of the query builder...
A screenshot of the query interface ..
A screenshot of the subquery generation page ...
Synonym Alignments ...

7

Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 6.1

20
37
38
40
45
47
49
50
51
52
60

List of Tables

Table 1.1 DstreamAF and DiscAF in the same context.. 10
Table 1.2 DstreamAF and DiscAF in different contexts ... 11
Table 2.1 D Stream A F Table.. 21
Table 5.1 M odifier value table.. 55
Table 6.1 A summary of semantic conflicts and their resolution 68
Table 6.2 Analogies between data source and ontology mediation............................. 69

8

1 Introduction

Often times, it is necessary for applications to retrieve related data from more than one

data source. A good example of this would be aggregation sites whose main purpose is

comparing the prices offered by different vendors. These sites collect the prices for a

particular product from different vendors, compare these prices and present the results to

the user in a coherent manner. However, it is not always clear whether or not the data

from these data sources is in the same context. For instance, different vendors could list

their prices in different currencies; if there is indeed contextual disparity between

sources, it is necessary to make the data coherent with one another before doing the

comparisons.

1.1 Problem Description

Let us consider how we would merge the following two tables containing financial

information on companies. Our goal is to use the two tables and obtain the total assets

from one table and the net income from the other table.

1.1.1 Identical Contexts

First, let us consider the case where the contexts of the two relations are identical. In

other words, the data from these two tables is coherent and can be compared without any

further mediation.

9

DstreamAF
NAME COMPANY TOTAL ASSETS
DAIMLER-BENZ 103548992
NTT 7037243392

DiscAF
NAME NET INCOME
DAIMLER-BENZ 615000
NTT 83396

Table 1.1 DstreamAF and DiscAF in the same context

In this case, we can get the result we want simply by performing a simple JOIN on the

two tables:

select DStreamAF.NAME, DStreamAF.TOTALASSETS, DiscAF.NETINCOME
from Dstream, DiscAF where DstreamAF.NAME = DiscAF.COMPANYNAME

1.1.2 Identical views of the world

Now, let us suppose the two tables espouse a common view of the world. In other words,

the people who constructed the two tables share an identical way of modeling the data.

For instance, both tables agree that a company has a name and this name can vary

depending on the naming format being used. In addition both tables are restricted to a

number of naming conventions that are familiar to both data sources. We will assume

that we have procedures that allow us to convert the names from one format into another.

We have just described two tables that share a common view of the world and yet can

have different contexts. Figure 1.2 contains an example of two such tables.

10

DStreamAF
COMPANY NAME TOTAL ASSETS
DAIMLER-BENZ 103548992
NTT 17037243392

DiscAF
NAME NET INCOME
DAIMLER BENZ CORP 615000000

NIPPON TELEGRAPH & 83396000
TELEPHONE CORP

Table 1.2 DstreamAF and DiscAF in different contexts

Using our conversion procedures, we can determine that 'DAIMLER-BENZ' and 'NTT'

in DstreamAF context are equivalent to 'DAIMLER BENZ CORP' and 'NIPPON

TELEGRAPH & TELEPHONE CORP' in DiscAF context. Therefore, we can reconcile

the contextual disparity between DstreamAF.COMPANYNAME and DiscAF.NAME

and simply join the two tables.

1.1.3 Different views of the world

So far we have discussed how to merge the two tables if they have identical contexts or if

they at least have a common view of the world. The last and perhaps the most difficult

case pertains to tables with different views of the world. In other words, the data in the

two tables is not modeled in the same way. Hence, the two tables do not pick their

contexts from a common set of contexts, and they can have their own representations for

contexts that are otherwise identical.

11

For instance, let us take the two tables in Figure 1.1. We will once again assume that the

two tables are using the same naming conventions. In the first case, the two tables had

the same view of the world; therefore, the contexts for the two tables were exactly

identical. If the two tables had different views of the world, the contexts will have

different representations even if they were equivalent. A simple example would be the

names of the naming conventions. Although they both represent the same naming

format, both views of the world might have their own terms for the same naming format.

Therefore, even though the contexts from the two tables are equivalent, they are still

incoherent with one another and mediation is still not possible.

Now, let us consider the two tables in Figure 1.2. Once again, we will not be able to do

the required conversions since the two tables have different views of the world. The

DstreamAF context does not recognize the terms used to refer to the naming conventions

used by the DiscAF context and vice versa. Therefore, routine context mediation is not

sufficient to reconcile these two naming formats and make the company names from the

two tables coherent with each other.

12

CASE 1: Identical
views of the world and

identical contexts

Ontology o

Context c

I CASE 2: Identical
views of the world but

different contexts

Ontology o

Context cI Context c2

CASE 3: Different views of
the world and different

contexts

Ontology oI Ontology o2

Context cI Context c2

R1 RR2 R1 R2

Simple Mediation Our system attempts to
JOIN Between solve this class of

cl and c2 merging problems

Figure 1.1 A summary of the three classes of merging problems

The formal representation of the context for each data source is derived from the object

model the data source subscribes to. This object model is known as an ontology, and it

denotes a particular way of viewing the world. All data sources that subscribe to the

same ontology have a common view of the world. The first two scenarios we considered

in 1.1.1 and 1.1.2 were both examples of this class of context problems; we were able to

resolve these problems making use of the fact that they all had contexts that were derived

from identical ontologies.

13

In the third case, we have two data sources that subscribe to two different ontologies.

Since contexts are based on ontologies, the problem of reconciling contexts becomes one

of reconciling ontologies. Hence, the major challenge is resolving any semantic conflicts

between the ontologies and making them coherent with one another. Figure 1.1

illustrates these three classes of merging problems.

The purpose of this thesis is to propose a solution to this problem and to implement a

mechanism, which will let users issue queries that use data sources from multiple

ontologies. The proposed solution will still comply with the specifications of the current

context mediation framework, and it will attempt to use as much as possible of the

current implementation.

1.2 Related Work

The problem of ontology heterogeneity is not new. Extensive research has already been

done in the area of ontology management. Various tools for merging and aligning have

been developed over the last few years. Although several tools have been built, most of

them have been marginally successful because they have failed to deal with the semantic

mismatches effectively. In fact, most of the earlier ontology alignment and merging

tools have opted to focus on resolving only syntactic conflicts, and that has rendered

them useless in handling domains with conceptual heterogeneity.

A good example for this is Ontomorph, a tool that sought to resolve mostly language

level mismatches by converting ontologies into a common format [5]. Since resolving

semantic conflicts usually requires human knowledge, most of the semantic matching

14

enabled tools seek the assistance of domain experts in decision making on merging and

aligning operations.

A rare exception to this is ONIONS (Ontological Integration of Naive Sources), which

attempted to integrate ontologies using a stratified design of an ontology library system

[5]. This system contained formalized generic ontology, which were classified based on

description logic. Furthermore, this system had intermediate modules that contained most

of the general conceptualizations of a domain. Ontologies were matched with ontologies

in this library system during the alignment and merging processes. Quite predictably,

this system was limited to ontology on medical terminology, and it was of little or no use

for domains with no relevant ontology in the library system.

One of the earliest tools designed to resolve conceptual heterogeneity with human

assistance was Chimaera, a tool that provided limited support to the user by pointing to

possible alignments and merging [12]. Chimaera could resolve some semantic

differences, and it even had a conflict detection utility that alerted the user whenever an

illegal merging or alignment operation was performed. Although Chimaera was mostly

inaccurate, it laid the grounds for the birth of the much improved and more advanced

Smart.

Smart, which later became Prompt, is a system that provides a semi-automatic approach

to ontology merging and alignment by involving the user in conflict resolution [12]. It

also supplies the user with more suggestions than Chimaera, and it has sharper conflict

15

detection. Its biggest improvement, however, is the specificity of its suggestions and its

ability to read the concept hierarchy in the ontology more effectively. Based on its

understanding of how closely concepts are related, it can suggest possible alignment and

merging operations more successfully. In fact, studies have shown that, on average,

Prompt gives 30% more correct suggestions than Chimaera [12].

The merging strategy presented in this thesis will use a somewhat similar approach to

reconcile the ontologies and resolve any semantic conflicts between ontologies. By the

time the user tries to execute a query, all the concerned ontologies will be coherent with

one another and ready for mediation.

Although a large variety of semantic conflicts can arise between ontologies, this

mechanism will attempt to resolve only mismatches caused by the use of synonyms to

refer to semantically equivalent objects in different ontologies. These are a very common

type of conflict between ontologies, and we will use them to demonstrate how the key

components of the mechanism will deal with any type of semantic heterogeneity. A

more powerful ontology alignment strategy that can solve a larger number of semantic

mismatches will be presented in the later chapters as a possible extension to this

implementation.

In the next chapter, we will provide an overview of GCMS, the current implementation of

the context mediation system. In the following two chapters, we will present the design

of our proposed system and give a description of its implementation. In chapter 5, we

16

will use a more detailed motivational example to demonstrate how the system works.

The final chapter will contain the design for a more effective approach to the problem of

ontology heterogeneity, other possible extensions and concluding remarks.

17

2 Global Context Mediation System (GCMS)

The Context Interchange (COIN) group at the Sloan School of Management does

research on the integration of heterogeneous data sources using context mediation.

Context mediation is a strategy in which semantic conflicts among heterogeneous

systems are not identified a priori, but are detected and reconciled by a Context Mediator

through comparison of the contexts associated with any two systems engaged in data

exchange [7]. Context mediation allows the execution of a query over multiple data

sources with different contexts, and this powerful capability lends itself to an effective

implementation of an application or a group of heterogeneous data sources tied together

by a common ontology.

The most recent implementation of COIN, the Global Context Mediation System

(GCMS) supports this notion of applications. GCMS is a complete end-to-end system,

which is capable of taking in a query, doing the mediation and query execution before

finally returning the appropriate result. Following, we will briefly discuss the features

and capabilities of the current GCMS system in order to lay grounds for the ensuing

discussion on the necessary amendments to the system.

GCMS consists of three major components:

1. applications

2. the abduction engine

3. query planner & executioner.

18

2.1 Applications

A GCMS application is a group of data sources subscribing to a common ontology. An

application is made up of the following elements [7]:

1. Ontology

2. Context Definitions

3. Data Sources

4. Elevations

5. Conversion Functions

2.1.1 Ontology

A COIN ontology, like any other data model, represents a particular conceptualization of

a domain. An ontology is made up of semantic types, attributes and modifiers. Semantic

types are objects that denote independent class types in the ontology. The attributes of a

semantic type are other semantic types that are used to define the properties of this type.

For instance, in the excerpt of the financial ontology in the figure below, Company Name

is an attribute of the Company semantic type. Modifiers are specialized attributes whose

values can vary from one context to another. For example Format Modifier is a modifier

of Company Name. In other words, until we are given a context that defines the Format

Modifier, it is not immediately obvious from the ontology what format Company Name is

in.

19

Company Total Sales amount Money Scale Scale
Sales PAmount Factor

Currency
nam e

Company Format Name Currency --.------
Name Format -. Attribute

-* Modifier

Figure 2.1 An excerpt of a financial ontology

2.1.2 Context Definitions

COIN ontologies tackle contextual heterogeneity by using the concept of modifiers. For

instance, if moneyAmount is a semantic type, which has currency and scaleFactor,

depending on the context, we define these two attributes as modifiers of moneyAmount.

And as such, currency and scaleFactor will be assigned values for every context.

Hence, an American context may define currency to be "US Dollars" and scaleFactor to

be 1, whereas an Italian context might choose to assign "Lire" and 1,000, 000 to the two

values. In a more general sense, a context definition is simply an assignment of

particular values to the modifiers in the system.

2.1.3 Data Sources

The main purpose of GCMS is performing context mediation between different data

sources. Therefore, any GCMS application needs data sources, and each of these data

sources needs to subscribe to the application's ontology. This relationship between the

sources and the ontology is formally expressed through what are known as elevations.

20

2.1.4 Elevations

So far, we have described how ontology and contexts are defined in the COIN

framework. Although GCMS uses only an abstract model for context mediation, the

whole purpose of this system is querying physical data sources. Therefore, we need a

way of tying up the physical model or schema with the more abstract representation or

the ontology. Elevations do just that. An elevation elevates an attribute in a physical

relation to an ontology object, turning relation contents from raw data to context-aware

information.

Let's once again consider the excerpt of the financial ontology from Figure 2.1. Based

on this figure, a Company object has two attributes: name represented by a

CompanyName object and total sales represented by a Sales object. A CompanyName

object, in turn, has a modifier called Format, which is represented by a NameFormat

object. A Sales object has an attribute amount, which is of object type moneyAmount as

defined in the earlier example. So this exceprt consists of three modifiers: Format,

Currency and scaleFactor.

Now let us consider a data source, which can be elevated to this ontology.

Relation: DStreamAF
Name Asofdate Totalsales Earnedforordinary
DAIMLER-BENZ 05-01-96 103548992 -5674000
NNT 05-01-95 7037243392 76278000

Table 2.1 DStreamAF Table

21

Table 2.1 shows the excerpt of a relation that contains financial data on companies. The

table contains four attributes, but for the purpose of this example, we only need to

concern ourselves with Name and Totalsales. The Name column and Totalsales

columns contain raw data at the moment but we can make this data context-aware by

elevating these two columns to the appropriate semantic types in the ontology from

Figure 2.1. Subsequently, Name can be elevated to the Company attribute name and

Totalsales can be elevated to the attribute TotalSales. By elevating these two columns

to these two semantic types, we allow the characterization of the data in these two

columns using any of the contextual elements defined for these types.

We have already specified that both of these semantic types have associated modifiers.

Namely, name has a Format modifier and although Sales does not have its own modifier

it is affected by the modifiers of its attribute amount. Amounts modifiers scaleFactor

and Currency have direct bearing on the contextual significance of Sales; consequently,

these modifiers are imposed on any column that is elevated to Sales.

The data in the two columns is now tied into the abstract model and mediation on queries

to this physical source can now be performed based on these elevations. Once the

attributes of a relation have been elevated, making the source data context-aware is just a

simple matter of defining a context and assigning it to the source. In addition, users will

be able to use these contexts as a receiver's context for defining the contextual

environment from which they will be issuing queries.

22

To summarize, elevations are the physical to abstract mappings that make it possible for

the abduction engine [7] to perform context mediation on physical data sources. Before

a data source can participate in a mediation process, it needs to be elevated to the

ontology of its parent application.

2.1.5 Conversion Functions

Another key component of GCMS that can be defined through the front end tool is the

conversion function for a modifier. Since modifiers can take on different values, they

also need functions that specify how to convert data between contexts with two different

values for the same modifier. For instance, in the case of the scaleFactor modifier, to

make data in the American context (scaleFactor is 1) coherent with similar data in the

Italian context (scaleFactor is 1,000,000) we will need to multiply or divide by 1,000,000

depending on the order of conversion. A conversion function for the scaleFactor

modifier will formally express this relationship between two different modifier values

and provide the rules for converting relevant data from one context to another. In

general, conversion functions are defined per modifier and they are used by the mediator

to convert data between contexts.

23

---------------------- DataOntology EeainElevations Source--------------------- RI
-Semantic
types
-Attributes
-Modifiers C2

J Context
ContextsMediation

C3C4

--------------------- Cneso
Elevations Functions

-------------------- R2

Figure 2.2 The Elements of a GCMS Application

Figure 2.2 shows all the key components of an application and how they are tied to each

other. The application's ontology will have a representation that complies with the

specifications of the COIN framework [7]. In order to make ontology management easier,

GCMS allows users to build and edit ontologies in their graphical form. This function is

provided through a ontology with a user-friendly graphical interface. After the user

builds an ontology using this interface, the tool stores the new model in a central registry

and converts this graphic representation into an internal representation that can be used in

mediation. This tool also allows users to edit existing ontologies by re-deriving the

graphical representation from model data retrieved from the registry.

24

The ontology editor is part of a larger front-end application management interface.

Another important piece of this front-end interface is the meta-data management tool.

The meta-data management mechanism is used to manage the contexts, data sources,

conversion functions and elevations of applications. Given this mechanism and a

working ontology, a user can build a proper application with all the contextual elements

necessary for mediation. For instance, the user can define conversion functions, define a

context and a source, do the proper elevations to the source schema and assign the

context to the source, and we now have a simple "ready for mediation" application

complying with COIN specifications.

The components we have discussed so far are all key to the GCMS implementation, and

the front end interface allows us to create and modify these different components. Going

back to the notion of applications, the purpose of this front end tool can be summarized

as the general maintenance of GCMS applications. Once the application has been built

and its key components have all been defined, it is ready for context mediation.

2.2 Abduction Engine

When a query is dispatched to the system, it goes through several stages before it finally

returns the results. Arguably the most important stage is mediation and this process is

handled by the abduction engine. Before the abduction engine can start mediation, first

the query needs to be converted into Datalog. The original query is expressed in SQL,

and an SQL to Datalog parser is used to do the necessary conversion. After converting to

Datalog, the query is now in Naive Datalog form, or it still does not take into account the

receiver's context or any source contexts.

25

In the very next stage, this naive Datalog query is upgraded to context sensitive Datalog

by including in it the receiver's context and the source contexts. However, it should be

noted that the query is still unaware of possible conflicts between these contexts.

The next two stages are conflict detection and mediation. In these two stage, the

abduction engine determines any conflicts between the contexts and formulates a

mediated query by applying the necessary conversion functions to resolve these conflicts.

This query is still in Datalog form but it is now contextually accurate. In the very next

stage, another parser is used to convert this Datalog query back into SQL. This query is

now passed to the query planner/executioner [7].

2.3 Query Planner/Executioner

The query planner takes in the mediated SQL query and forms a plan for executing it.

The data sources in the query might include databases, web pages and local sources,

therefore, the query planner needs to determine the optimal order in which these sources

are accessed and the results are put together. This plan is passed to the optimizer for

further optimization before it is finally executed to output a result.

Figure 2.3 shows an overview of the GCMS architecture.

26

Query
Context Mediate Query Planner)

Mediation Query & Executioner

CentralFront End

A p iat nApplication
Repository Management

Interface

Figure 2.3 A bigger picture of GCMS

Now that the reader has a fairly detailed understanding of GCMS components and

processes, we will go into the main purpose of this thesis.

27

3 System Design

The next few sections contain a detailed description of the design of the system, and we

will briefly explain the purposes of the key components of the system. Context

mediation on federated queries is performed in three major stages:

1. Query Planning

2. Receiver Context Generation

3. Merging

3.1 Query Planner

At this point, we assume that the reader has some familiarity with the current

implementation of GCMS. The purpose of the query planner is to take a federated query

and break it down into single application queries that can be handled by GCMS. In other

words, if a query contains sources belonging to more than one application, the planner

will break the query down per application by grouping same application sources together.

3.1.1 SQL Optimization

However, before the planner even attempts to break down the query it does some

optimizations that will speed up the merging process. Let us consider the following

query:

select WorldcAF.TOTALASSETS, DStreamAF.EARNEDFORORDINARY,
from WorldcAF, DStreamAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'
and DStreamAF.ASOFDATE = '01/05/94'
and WorldcAF.COMPANYNAME = DStreamAF.NAME

28

Here, we assume that WorldcAF and DstreamAF are relations belonging to two different

applications, WorldScope and DataStream respectively. Although the type of standard

SQL optimization that we will be making is already implemented in the GCMS

Executioner, we still need to apply it to this federated query because the executioner is

able to optimize only the single application queries that are derived from the federated

query.

In this case, we can immediately see that the join condition on DStreamAF.NAME and

WorldcAF.COMPANYNAME is redundant since WorldcAF.COMPANYNAME is

already set equal to a constant 'DAIMLER-BENZ AG'. Hence we can improve this

query by replacing the join with another constant to attribute comparison.

select WorldcAF.TOTALASSETS, DStreamAF.EARNEDFORORDINARY,
from WorldcAF, DStreamAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'
and DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME = 'DAIMLER-BENZ AG'

After the query planner breaks down this federated query, we have the following two

subqueries for WorldScope and DataStream.

DataStream: select DStreamAF.EARNEDFORORDINARY, DstreamAF.NAME
from DStreamAF
where DStreamAF.ASOFDATE = '01/05/94'
and DstreamAF.NAME = 'DAIMLER-BENZ AG'

WorldScope: select WorldcAF.TOTALASSETS, WorldcAF.COMPANYNAME
from WorldcAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'

29

Note that DstreamAF.NAME and WorldcAF.COMPANYNAME have to be selected in the

views even if they were not selected in the federated query because the final merging is

performed on those two columns. The joining condition for these two sub-queries will be

Select DataStream.Dstream.EARNEDFORORDINARY,
WorldScope.WorldcAF.TOTALASSETS
From DataStream, WorldScope
Where DataStream.DstreamAF.NAME =
WorldScope.WorldcAF.COMPANYNAME

Here, DataStream and WorldScope pertain to the views containing the mediated results

returned from the two applications. Since we have imposed strong conditions on

COMPANYNAME and NAME in both sub-queries, the join condition that is performed

on these two attributes in the merging stage is almost trivial. In fact, in this case, since

we have already specified the company name, we expect to get just one row back from

each subquery.

However, consider what would have happened if we hadn't made this optimization. In

this case, after breaking down the federated queries, we would have

DataStream: select DStreamAF. EARNED FORORDINARY, DstreamAF.NAME
from DStreamAF
where DStreamAF.ASOFDATE = '01/05/94'

WorldScope: select WorldcAF.TOTALASSETS, WorldcAF.COMPANYNAME
from WorldcAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'

The join condition will still be the same, but we now have to do more work during

merging because we have not done any pre-mediation optimization on the joined

30

attributes from the two applications. In other words, the DataStream view now contains

even rows for which NAME is not 'DAIMLER-BENZ AG'; Hence, we will have to

enforce this condition during the merging stage, whereas in the optimized case, we were

able to enforce it at the level of the DataStream subquery.

3.1.2 Subquery Generation

Breaking down a query into subqueries involves two steps. The first one is grouping all

the sources in the query by application. This can be determined by consulting the

registry which contains schema information on all applications. The next step is picking

out the relevant conditions for each application and applying the appropriate

propositional logic to them. In other words, we want to recover the right disjunctive and

conjunctive connectives for each condition without altering the query logic.

Let's consider a slightly more elaborate example of a DataStream-WorldScope federated

query after some optimization:

select WorldcAF.TOTALASSETS, DStreamAF.EARNEDFORORDINARY,
from WorldcAF, DStreamAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'
or DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME = 'DAIMLER-BENZ AG'
or WorldcAF.sales > 500000
and WorldcAF.totalassets > 10000000
and DstreamAF.earnedforordinary > 10000000
and WorldcAF.COMPANYNAME = DstreamAF.NAME

Our goal is to break this query down into two separate queries without altering the

propositional logic it would have applied if all the sources had been from the same

application. The safest approach here would be to use the cover-up method and treat all

31

the conditions that we don't want in a subquery conditions as true logic statements. In

the case of the example, this will translate into the following:

DataStream subquery:

select DStreamAF.EARNEDFORORDINARY from DStreamAF
where WorIdF. ANY NAME -'DAIMLER BENZ AG' true
or DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME = 'DAIMLER-BENZ AG'
or WerldcAF.sales > 500000 true
and WorldGAF.tetal assets > 10000000 true
and DstreamAF.earnedfor ordinary > 10000000
and WorldcAF.C Y NAME - DstreamAF.NAME true

select DStreamAF.EARNEDFORORDINARY from DStreamAF
where true
or DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME= 'DAIMLER-BENZ AG'
or true
and true
and DstreamAF.earnedfor ordinary > 10000000
and true

Merging condition:

select WorldcAF.TOTALASSETS, DStreamAF.EARN EDFORORDINARY,
from WorldcAF, DStreamAF
where WorIdGAF.COMPANY NAME -DAIMLER BENZ AG'true
or DStreamAF.AS OF DATE -'01/05/94' true
and DStreamAF.NAME -DAIMLER BENZ AG' true
or WorIdcAF.sales- 500000 true
and WerldGAF.tetal assets > 10000000 true
and DstreamAF.e d f ordinary 10000000 true
and WorldcAF.COMPANYNAME = DstreamAF.NAME

select WorldcAF.TOTAL ASSETS, DStreamAF. EARN EDFORORDINARY,
from WorldcAF, DStreamAF
where true
or true
and true
or true
and true
and true
and WorldcAF.COMPANYNAME = DstreamAF.NAME

32

We have left out the WorldScope subquery because it uses the same exact approach as

the DataStream subquery. The next step is to apply propositional logic to these

simplified queries by starting with the conjunctions, followed by the disjunctions, applied

from left to right in the order they appear.

The simplification rule we will be using is as follows. If we have two true statements

connected through disjunction or conjunction we will just eliminate the first truth

statement and the connective following it. If we have a true statement joined with a

relational condition, we will remove the true statement and the connective between them.

After all the conjunctions have been eliminated in the DataStream subquery, we have

select DStreamAF.EARNEDFORORDINARY from DStreamAF
where true
or DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME = 'DAIMLER-BENZ AG'
or DstreamAF.earnedforordinary > 10000000

And after all the disjunctions have been removed, we have

select DStreamAF.EARNEDFORORDINARY from DStreamAF
where DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME = 'DAIMLER-BENZ AG'
or DstreamAF.earnedforordinary > 10000000

Similarly, for the merging condition we'll have the following simplified query after

eliminating all the true statements.

select WorldcAF.TOTALASSETS, DStreamAF.EARNEDFOR_ORDINARY,
from WorldcAF, DStreamAF
where WorldcAF.COMPANYNAME = DstreamAF.NAME

33

Since merging will be done on the outputs from the individual subqueries, we always

need to make sure that the attributes in the join conditions are always selected in the

subqueries. For instance, in this example, WorldcAF.COMPANYNAME and

DstreamAF.NAME are not selected in the federated query, and hence neither appears in

the generated subqueries. Therefore, we have to inspect the merging condition and make

sure that all the joined attributes are selected in the subqueries.

So after enforcing this rule we get the following two subqueries

DataStream:
select DStreamAF.EARNEDFOR_ORDINARY, DstreamAF.NAME

from DStreamAF
where DStreamAF.ASOFDATE = '01/05/94'
and DStreamAF.NAME = 'DAIMLER-BENZ AG'
or DstreamAF.earnedforordinary > 10000000

WorldScope:
select WorldcAF.TOTALASSETS, WorldcAF.COMPANYNAME

from WorldcAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'
or WorldcAF.sales > 500000
and WorldcAF.totalassets > 10000000

3.2 Context Generator

Now we have single application queries that can be handled by the current GCMS

system. However, mediation requires a receiver context, and we need to send equivalent

receiver contexts with each GCMS subquery in order to make merging possible. In fact,

so far we have assumed that the two receiver contexts for the DataStream and

WorldScope mediation processes are equivalent because if that were not the case, we

would not be able to perform simple SQL type joins on final the views returned from

these mediations.

34

However, we ideally do not want to impose many constraints on the users by requiring

them to define equivalent contexts for every application that is involved in the process.

Since we are doing a join that spans multiple applications, it is safe to assume that there is

some semantic equivalence between objects in the involved applications. In the

example we just gave, we know that WorldcAF.COMPANYNAME and

DstreamAF.NAME elevate to at least semantically related (if not semantically

equivalent) types in the two applications.

Hence we can also infer that there is a lot of semantic equivalence in the contextual

definitions that are relevant to these semantic types. Ideally, we do not want to make the

user provide the definitions for both applications. Instead, we want to take just one of

the equivalent definitions and derive the rest using alignments that have been made prior

to query execution.

For our implementation, we use an example of an ontology alignment that seeks to

resolve only synonym mismatches to demonstrate how cross-application alignments can

be used to generate equivalent receiver contexts for all involved application and how

these contexts can be used with the other components of this system to make cross-

application context mediation possible. A more powerful mechanism for aligning

ontologies will be presented in the last chapter of this thesis.

35

3.2.1 Synonym Matching

Synonym Matching resolves only one of several semantic conflicts that arise in ontology

merging. Hence it is feasible only in cases where the concerned ontologies are very

similar in structure. We are not proposing this as a lasting solution to the problem of

ontology heterogeneity but rather as a simple back end partial solution to let us have a

complete end-to-end demonstration of the other components of the merging system.

Alignments are made between any two applications and they are transitive between

applications. For instance, let us suppose we have two applications with ontology A and

B that are already aligned. Now if a third application with ontology C is aligned with A,

by the transitive property, all the alignments between A and B are passed on to A and C.

Hence, all three applications will be aligned with one another.

Since we are considering only synonym matching in this example, we will simply start by

establishing semantic equivalence between like semantic types in the ontologies and

work our way down to matching modifiers and modifier values. In other words, once we

have aligned two semantic types, we will proceed with the assumption that the modifiers

from one semantic type can only be aligned with modifiers from the other semantic type.

Once the modifiers have been aligned, we also need to do mappings between equivalent

modifier values because all ontologies do not use the same terminology.

Now let us assume that the ontology excerpt we had in Figure 2.1 was from a DataStream

world. Let the following figure represent an excerpt from an equivalent ontology in the

WorldScope world.

36

Corporation Sales Sales figures Financial Scale Scale
Amount

Corp CUerr
Name

Corp Name Currency .. Attribute
Name Cony Convention -0 Modifier

Figure 3.1 An excerpt of the WorldScope financial ontology

Since these two ontologies are structurally similar, we can do simple synonym

alignments between them. Figure 3.2 shows how we can align sections of the two

ontologies by drawing equivalence between semantic types, attributes, modifiers and

modifier values in the two ontologies.

In this example, the semantic type Company in DataStream is aligned with the

Corporation from WorldScope. By establishing this semantic equivalence, we are

affirming that the two semantic types are interchangeable, differences in their attributes

and their modifiers notwithstanding. Similarly, we can align Name and Corp Name.

Next we want to align the modifiers from these two attributes. Once we have aligned the

modifiers, we need to do equivalence mappings between every possible value of the

aligned modifiers because the terminology is likely to be different even for the modifier

values.

37

Company -Corporation

Name Corp
Name

Format Name
- . Conv

Worldscope WS
Disclosure *..-..--..-----.. DS
Datastream DT
Microsoft MS

DATASTREAM WORLDSCOPE

Figure 3.2 Synonym alignments between DataStream and WorldScope ontologies

Now we have the alignments that are required to define receiver contexts that span

multiple applications. First of all, we will define the receiver context on a given number

of applications. A single application context in GCMS simply contains modifier

definitions for the modifiers in that application. In this case, the receiver context will be

able to include modifiers from more than one application. However, any context cannot

contain multiple definitions for the same modifier. Therefore, this puts a constraint on

all semantically equivalent modifiers because they cannot have conflicting definitions.

We have two options here: the first one is to make the user specify equivalent values for

all semantically equivalent modifiers. This approach will require a considerable amount

38

of work during context definitions in determining the right modifier values for each

application based on the alignments we have. In the alignment example we just

discussed, this would be done by setting both format and name conv to equivalent

modifier values in their respective applications.

The second, and perhaps more feasible approach is to disallow the definition of multiple

semantically equivalent modifiers. In other words, the receiver context will contain only

one modifier value definition for every class of semantically equivalent modifiers. In

this case, we would pick only one offormat and name conv and assign it a value in the

context. This will be the approach we will be using in this implementation.

The purpose of the context generator is to take these heterogeneous modifier definitions

and derive the corresponding modifier definitions for all the semantically equivalent

modifiers in all concerned applications. In other words, given an application, if the

receiver context contains modifier definitions for all unaligned modifiers and definitions

of semantically equivalent modifiers for all aligned modifiers, the context generator

should be able to generate the equivalent homogeneous receiver context for that

application.

Since the receiver context is typically built to span more than one application, the number

of homogeneous receiver contexts generated will often be more than one. Equipped with

these GCMS compatible receiver contexts, we are now ready to go ahead and do routine

context mediation on the subqueries that were produced by the query planner. However,

39

in order to do that, we first need to parametrize the current GCMS system to be able to

handle multiple mediation processes concurrently.

Federated Query

Query

Alignments

.eeie Optimizer Context
Reeier& Planner r

Context r

Context Context
Mediator Mediator

Receiver

MergerContext

Merged
Output

Receiver
Context

Figure 3.3 Design Architecture

3.3 Parametrization of GCMS

Context Mediation on GCMS is done using an abduction engine whose functions are

invoked through an interface provided by the executioner. The abduction engine needs

to load all the necessary application files before it can do mediation. These files include

internal representations for the application's ontology, contexts, sources, conversion

40

functions and elevations. These internal reps are loaded into a module and this module is

kept intact once the abduction engine is initialized.

However, GCMS can currently support only one module at a time. We could load one

application after another sequentially into this module and do mediation in series but a

more feasible approach is to parametrize the abduction engine and the execution engine

to support multiple modules. This allows us to have more than one application loaded at

the same time so we can run multiple context mediation processes in parallel. This

approach is also time efficient because it does not require the re-initialization of the

Eclipse engine every time a new application is loaded into a module [7].

At this point, we have a system that is completely parametrized so we can start with a

federated query and get outputs from the individual mediation processes for all concerned

applications. The last stage involves taking these output and merging them by the

imposing the merging conditions that were derived during the query planning stage.

3.4 Merging

Let us now revisit the DataStream-WorldScope example we used to demonstrate the

query planning stage. After breaking the federated query into two subqueries we have

the following merging condition to complement them:

select WorldcAF.TOTALASSETS, DStreamAF.EARN EDFORORDINARY,
from WorldcAF, DStreamAF
where WorldcAF.COMPANYNAME = DstreamAF.NAME

41

This merging condition is incomplete right now because it references relations instead of

applications. For instance, we could have several relations called WorldcAF and

DstreamAF. Therefore, we need to make it clear that this merging condition applies to

only the views of these tables that were generated during query planning. To simplify

matters, let us refer to the views containing the outputs from query planning as DS (for

DataStream) and WS (for WorldScope).

Now we can specify a merging condition that is particular to these views.

select WS.WorldcAF.TOTALASSETS, DS.DStreamAF. EARN EDFORORDI NARY,
from WS, DS
where WS.WorldcAF.COMPANYNAME = DS.DstreamAF.NAME

Executing this query will finally give us a mediated output for the original federated

query bringing us to the completion of the mediation and merging process.

42

4 Implementation

Almost all the implementation in this system is done exclusively in Java, including the

propositional logic involved in the query planner. In this chapter, we will present the

implementation of the following components

1. Alignment Tool

2. Context Generator

3. Query Builder

4. Query Planner

5. GCMS Parametrization Utility

6. Merger

4.1 Alignment Tool

Once again, the purpose of the alignment tool is to establish semantic equivalence

between objects in ontologies from different applications. The tool allows users to make

alignments between any two applications and it relies on the registry to store these

equivalence mappings. In order to make this possible, we have implemented the

following data model

SQL> desc merger
Name Null? Type

MERGER_ID NUMBER(38)
NAME VARCHAR2(40)
APP1 NUMBER(38)
APP2 NUMBER(38)

SQL> desc semtypemap
Name Null? Type

43

MAPPINGID NUMBER(38)
MERGERID NUMBER(38)
SEM1 NUMBER(38)
SEM2 NUMBER(38)

SQL> desc modifier-map
Name Null? Type

MAPPINGID NUMBER(38)
SEMTYPEMAP NUMBER(38)
MOD1 NUMBER(38)
MOD2 NUMBER(38)

SQL> desc modval_map
Name Null? Type

MAPPING_ID NUMBER(38)
MOD_MAPPING NUMBER(38)
VALUEI VARCHAR2(100)
VALUE2 VARCHAR2(100)

These mapping relations reference each other in the same order the parts of an ontology

reference each other. In other words, mappings between two semantic types

(semtype map) belong to a mapping between two ontologies (merger) and mappings

between modifiers (modifier-map) belong to a mapping between semantic types

(semtype map).

The alignment interface uses JSP pages and follows the same central registry used by

GCMS. Users make the alignments in a sequential manner starting from applications and

working their way down to modifier values. In other words, alignments on modifiers

values cannot be made until the modifiers, their parent semantic types and their parent

applications have all been aligned.

44

Datastream-Worldscope : Start Query Interface

Select matching semantic types:

DatstramWorids~ctIpI

0 "T Pa r7i -la r:k C: i (7 (7dis

oniarvName C comrpanyName C

a at e C dP qte C
curren-1-yTy:Pe r curny'rypc. C
exchangeRate exchangep- 'te (7

ountryName C counry ame r

bazic2 r b s ic'
Rpvenun r RP) n:u e

Click on the button to align these types: A

companyFinancials companyFinancials [srmove nimldifirs]

companyName companyName [remsve I modi

date date [remove odiflers d

CQIN. massachusetts istitute of techqw1y

Ibn r7 i l 4-t

Figure 4.1 A screenshot of the alignment tool

Also this implementation does not support one-to-many or many-to-many alignments.

The reason for this restriction will become more apparent when we are discussing the

implementation of receiver contexts. For modifier values that are identical for two

aligned modifiers, the user does not need to make the alignments because the context

generator always assumes that missing alignments for modifier values constitute semantic

equivalence. Once all the proper alignments have been made, the user can build a

receiver context spanning multiple applications.

45

4.2 Context Generator

Just like the alignment tool, the context generator prompts users to specify which

application to use in building this context. We can classify all the possible scenarios into

three groups:

" The federated query will involve certain applications and

contain modifiers from more than one of these applications.

" The federated query will involve certain applications and

contain modifiers from just one of these applications

" The receiver context will contain modifiers that don't

applications involved in the federated query.

the receiver context will

the receiver context will

belong to any of the

In all of these three cases, we require to have the proper alignments between all

applications involved in both the federated query and the receiver context.

Although alignments are between pairs of applications, the context mediator is able to

transitively deduce alignments that are not explicitly specified by the user. For instance,

if the user aligns DataStream with both WorldScope and Disclosure, the context mediator

is able to derive the alignments between WorldScope and Disclosure with no further

action from the user.

Once the user has specified, which applications to use in this receiver context, the context

generator will return a list of all the modifiers from all selected applications. The

46

generator will also look up the alignments between these applications and force the user

to choose only one modifier for cases where it finds modifiers that are already aligned.

This goes back to the discussion of conflicting modifier definitions in the design section.

Therefore, the receiver context template will essentially contain all unaligned modifiers

from all applications and one modifier representing every group of aligned modifiers.

.. NI _I F i e eT Mmi j ii
G ,4 -ewEg rt2 eeds deeee ~

A4:i&m Jj http://aeecadeon.rtedueseolecsrsergerchoose-mod isp'cxtjd-66

Application Merging

homepage projocts gmnm mrnerqrs

Context : DS-WS-DT :

Please select a single modifier from the merged modifiers.

Modifier Nam Selac t
Datastream:: companyFinancials: currency C
Worldscope:: companyFinancials:: currency C
Disclosure:: companyFinancials:: currency I

Datastream::companyFinancials:: scaleFactor C
Worldscope::companyFinancials:: scaleFactor C
Disclosure::companyFinancials: :scaleFactor &
Datastream:: companyName:: format C
Worldscope:: companyName:: format C
Disclosure:: companyName:: format r

* Datastream;: date :;dateFmt

Worldscope: : date:: dateFmt

Datastream:: currencyType:: curTypeSym C

Disclosure:: currencyType:: curTypeSym R

Worldscope:: currencyType:: curTypeSym
Disclosure:: date;: dateFmt

select modifiers

Figure 4.2 A screenshot of the modifier template builder

The user chooses which aligned modifiers to use and the template for the receiver context

will be displayed showing the selected modifiers. However, users can always deselect

and select modifiers and change the template. With the help of a DBA, the user can now

specify the context definitions for all the modifiers.

47

At this point, we have a receiver context, which is compatible with all the applications

involved assuming that all the modifier definitions are consistent with the alignments.

During mediation, the context generator is invoked by the query planner to build single

application contexts which are identical to a given receiver context that meets all the

conditions we have discussed here. We are now ready to do mediation on federated

queries involving any applications whose modifiers are in the receiver context or aligned

with the modifiers in the receiver context.

Receiver contexts and their definitions are stored in the registry using the following data

model:

SQL> desc mergedcontext
Name Null? Type

CONTEXTID NUMBER
NAME VARCHAR2(30)
APPS VARCHAR2(20)

SQL> desc merged cxtvalues
Name Null? Type

CONTEXTID NUMBER
MODIFIERID NUMBER
MODIFIERVALUE VARCHAR2(40)
MODIFIERTYPE VARCHAR2(10)
SELECTED CHAR(1)
MERGING VARCHAR2(15)

48

Application Merging

horepagp procjcts gqrn merger3 contexts

Context: DS-WS-DT [show all modifiers]

Modifier Name Type Value
Datastream::companyFinancials: :currency static USD
Worldscope::companyFinancials::scaleFactor static 1000
Disclosure:: companyName:: format static msft
Datastream::date:: dateFmt static Amencan /
Disclosure:: currencyType: :curTypeSym static 3char
Worldscope:: currencyType:: curTypeSym static 4char
Disclosure:: date:: dateFmt static amencani

Click on the button to generate single-app contexts Submit

COIN. mq35asschujsett5 Institute Of fechnology

Edit/Select
edit
edit
edit

[edit

[edit]

[edit I
[edit]

p ____________________

Figure 4.3 Sample Receiver Context

4.3 Query Builder

The query builder is an application that is designed to let the user build federated queries

using the schema information stored in the central registry. The screenshot below shows

how this tool is used to build fairly complicated queries. The tree like structure on the

left hand side of the application imports the schema information on all GCMS

applications and users are able to browse through all the relations in all applications and

select the attributes they want to use in the query.

When an attribute is selected it appear on the top right hand side of the application. All

selected attributes default to 'TRUE' for the SELECT? Property so if users do not want

to select that column in the query, they have to change the value to 'FALSE.' While

49

attributes are being selected and the SELECT? Property is being edited the federated

query will be constantly updated and displayed on the frame right under the attribute

frame.

Users can also build the 'WHERE' conditions using the lowest frame where they can

specify what to compare on the left hand side (LHS) and the right hand side (RHS) and

how to compare and combine these conditions with one another.

Q1E Microsoft Internet Explorer proided by America online t

Figure 4.4 A screenshot of the query builder

50

Click HERE to export this query to the abduction engine. [KELP]

When the federated query is complete, the user can click on the link at the bottom of the

screen to export it to the query planner interface.

4.4 Query Planner

When the query gets to the planner, the first thing the user needs to do is specify which

application each relation is from. The planner looks up all the relations in the query and

finds all the applications that contain relation by those names. In some cases, there will

be more than one application per relation and the user will have to specify the right

application.

L& d e FIvortkes To36 aelp
4- Back . Se -) arch L Favriteis 13Madaj

Addtrss r http:/lavocado.mit edu:8000gcmsMERGE/Demo jsp

MultiApp Query

SQL Query:

select WorldcAF.TOTALASSETS, DiscAF.NETSALES,
DiscAF.NETINCOME, DStreamF.TOTAL_EXTRAORDITEMSPRE_TAX

from WorldcAF, DiscAF, DStreamAF
where WorldcAF.COMPANY NAME = 'DAIMLER-BENZ AG'
and DStreamAF.ASOFDATE - '01/05/94'

and WorldcAF.COMPANY NAME = DStreamAF.NAME

and WorldcAF.COMPANY NAME = DiscAF.COMPANY_NAME

Relaio App; ab-z
DStreamAF Datastream :: oracle 0

DiscAF Disclosure :; oracle re

WorldcAF Worldscope :: oracle C

submit

Fiu. rchusetts institute of t AChn stee

Figure 4.5 A screenshot of the query interface

51

After all the relations have been uniquely identified, the planner prompts the user to

choose the receiver context for this query. The users are expected to know which

receiver context is compatible with the applications they are trying to merge. Once the

receiver context has been selected, the planner optimizes and produces a subquery for

every application that was selected in identifying the relations.

0_ Ldt w ZFrtIs roo sbp
P ark 2 e+ serch LjFavortes r8Mt'd1 "j 4

Ao*m - http://avocado.mt.edu:8000/gcms/planner

Subqueries

Datastream (337) C on t axt,

select DStreamAF.total_extraord_itemspretax, DStreamkF.asofdate
from DStreamAF where DStreamF.as_ofdate=0l/OS/94 and
DStreamAF.name='DAINLER-BENZ AG'

~o'drt4 Pa (33-8) Context

select WorldcAF.totalassets from iorldcAF where
WorldcAF.companynaae='DAIMLER-BENZ AG'

Dicoue(340 otx
select DiscAF.netsales, DiscAF.netincome from DiscAF where
DiscAF.company_name-'DAIMLER-BENZ AG'

Merging

unifying q.uery

elect 337.DStreamAF.totalextraorditemspretax, 337.DStreamAF.as_ofdate, J
338.VorldcAF.total_assets, 340.DiscAF.netsales, 340.DiscAF.net_income from
337, 338, 340 and 338.WorldcAF.companyname = 337.DStreamAF.name and
338.WorldcAF.company_name = 340.DiscAF.companyname

Figure 4.6 A screenshot of the subquery generation page

The planner also invokes the context generator on the receiver context to produce a

receiver context for every application. Once these single application contexts have been

52

produced, the planner will invoke a GCMS parametrization utility that generates the files

that are necessary for each mediation process.

4.5 Parametrization Utility

The purpose of this utility is to generate all the files that are needed by the abduction

engine and the executioner for mediation. This includes the internal representations for

contexts, ontologies, sources, elevations and conversion functions. These files will be

generated for every application that needs a mediation process.

Instead of overwriting the same application files every time mediation is invoked, this

utility retains the application files from every application and allows the execution of

concurrent mediation processes. The utility also parametrizes the abduction engine by

allowing it to start a new module every time a new application needs to be loaded up.

Therefore, the multiple mediations necessary for merging are run in parallel, enhancing

the scalability and the overall performance of the system.

4.6 Merger

The last component is the merger that is responsible for taking the output from each

individual mediation process and merging them under the given merging conditions. The

merger turns each output into a temporary view in the central registry and the final query

is run on these views. The merging conditions are directly imported from the query

planner and the merger simply returns the output meeting these conditions.

53

5 Motivational Example

As a driving example, let us consider a case where we try to merge three different

applications. The three applications will be DataStream, WorldScope and Disclosure.

The federated query be querying one relation from each application.

DataStream: DStreamAF
WorldScope: WorldcAF
Disclosure: DiscAF

Federated Query:

select WorldcAF.TOTALASSETS, DiscAF.NETSALES,
DiscAF.NETINCOME, DStreamAF.TOTALEXTRAORDITEMSPRETAX,
from WorldcAF, DiscAF, DStreamAF
where WorldcAF.COMPANYNAME = 'DAIMLER-BENZ AG'
and DStreamAF.ASOFDATE = '01/05/94'
and WorldcAF.COMPANYNAME = DStreamAF.NAME
and WorldcAF.COMPANYNAME = DiscAF.COMPANYNAME

After optimizing and breaking it down, we get the following three subqueries.

DataStream:

select DStreamAF.TOTALEXTRAORD_ITEMS_PRE_TAX,
DStreamAF.NAME
from DStreamAF
where DStreamAF.AS_OF_DATE='01/05/94'
and DStreamAF.NAME='DAIMLER-BENZ AG'

WorldScope:

select WorldcAF.TOTALASSETS, WorldcAF.COMPANYNAME
from WorldcAF
where WorldcAF.COMPANYNAME='DAIMLER-BENZ AG'

Disclosure:

select DiscAF.NETSALES, DiscAF.NETINCOME,
DiscAF.COMPANYNAME
from DiscAF

54

where DiscAF.COMPANYNAME='DAIMLER-BENZ AG'

And the merging conditions will be specified using the following three views: DT, WS

and DS to refer to the outputs for DataStream, WorldScope and Disclosure respectively.

select WS.WorldcAF.TOTALASSETS, DS.DiscAF.NETSALES,
DS.DiscAF.NETINCOME,
DT.DStreamAF.TOTALEXTRAORD_ITEMS_PRE_TAX
from WS, DS, DT
where WS.WorldcAF.COMPANYNAME = DT.DStreamAF.NAME
and WS.WorldcAF.COMPANYNAME=DS.DiscAF.COMPANYNAME

Next, we use the alignments between the three applications to generate single application

receiver contexts. For our example, the only relevant modifier is the name format

modifier which is a modifier of the company name semantic type. We will summarize

the modifier names and their values for the three applications in the following table.

DataStream WorldScope Disclosure
Modifier Name Name format Format Name_fmt

Worldscope WS WS_fmt

Modifier Values Disclosure DS DS_fmt
Datastream DT DT_fmt

I Microsoft MS MS fmt

Table 5.1 Modifier value table

Now let us suppose the receiver context was Format := DS. The context generator will

now go through this table and determine the equivalent modifier values for DataStream

and Disclosure. Consequently, the receiver contexts for the three applications will now

contain

55

DataStream: Nameformat := Disclosure
WorldScope: Format:= DS
Disclosure: Name_fmt := DS_fmt

The same conversions will be applied to all the other modifiers in the receiver context. If

a modifier value cannot be found in the table, the mechanism will assume that a common

modifier value is used by the other ontologies. We now have three receiver contexts and

we are ready to do context mediation.

After we have run the three mediation processes, we store the mediated outputs from the

three applications into the views that were mentioned earlier in this chapter (WS, DS and

DT). Finally, we use the merging conditions imposed on the federated query to join these

views and get the correct output.

56

6 Possible Improvements and Extensions

Although we have tried to parametrize GCMS, we have not parametrized every

component. For instance, the POE (Planner/Optimizer/Executioner) has yet to be

parametrized. Some of the difficulty in parametrizing the POE arises from the fact that

some data sources are web sources. Since the executioner has to use wrappers to access

these sources, the merger cannot simply take a mediated SQL query containing

references to web sources and join it with another mediated SQL query. This deficiency

accounts for the extra work the merger has to do in building and querying views formed

from the results produced by the POE. Clearly, integrating the merger with the POE and

making it capable of merging the mediated subqueries before execution will make the

system far more efficient so this is an area that could be improved on.

But the major focus of this chapter will be describing how a more powerful alignment

can be established between applications using the notion of global ontologies.

6.1 Global Ontologies

The idea here is to be able to relate ontologies to on another through an overlying model

instead of doing pair-wise matching as we have done in this implementation.

Consequently, different ontologies will elevate to this model much like data sources

elevating to an ontology in GCMS. Once this meta-model has been defined, we can

define contexts for each ontology based on the meta-model modifiers and we can do

context mediation between different ontologies, much the same way we do mediation on

sources that elevate to the same ontology. But before we start describing this merging

57

mechanism, let us briefly go through the most common semantic conflicts that arise

between ontologies.

6.2 Ontology Level Conflicts

Let us consider how we would try to resolve the semantic heterogeneity if we wanted to

extend our tightly coupled approach to more semantic conflicts. Namely, let us consider

how we would try to resolve the semantic conflicts between the three financial ontologies

in Appendix A. The first two ontologies have a reasonable number of conflicts between

them; the third ontology, on the other hand, has many similarities with both of these

ontologies. Our challenge will be to take to distinct ontologies like the first two and try

to reconcile them. The conflicts that need to be resolved will include language

heterogeneity and ontology level mismatches. For our system, we will assume that all

ontologies are written in a common language; therefore, we will be disregarding all

language related conflicts.

Ontology level conflicts can generally be grouped into three categories [5]:

1. Terminological Mismatches

2. Conceptualization Mismatches

3. Explication Mismatches

58

6.2.1 Terminological Mismatches

Terminological mismatches refer to syntactic conflicts that are caused by the terminology

that is used in writing the ontologies [5]. Two examples of terminological mismatches

are synonym conflicts and homonym conflicts.

6.2.1.1 Synonym Mismatches

Synonym conflicts arise when two words are used to describe the same concept (class) in

two ontologies [10]. For instance, financial amount and monetary amount or curr and

currency could be used to refer to the same object in two different ontologies. We have

already resolved synonym conflicts in our implementation; our general approach will be

explicitly establishing semantic equivalence between synonymous semantic objects in the

ontologies. Hence, we will be elevating financial amount and monetary amount to

FINANCIALS and curr and currency to CURRENCY.

Synonym alignments get a little more complicated when we are dealing with modifiers.

Unlike semantic types and attributes, modifiers have values that can be ontology specific;

therefore, we need to address any semantic disparity that might arise between these

values. For instance, when we align curr and currency, we also need to define a modifier

for the currency value format. In other words, we need to specify the format in which

we are expressing the value of the CURRENCY modifier.

59

Financial
Amount

Curr

CURRENCY
VALUE: A_fmt

Ontology A

FINANCIALS

CURRENCY

CURRENCY
VALUE

Modifier

Meta-Model

Monetary
Amount

Currency

CURRENCY
VALUE: B_fmt

Has A
---- k IsA

Ontology B

Figure 6.1 Synonym Alignments

For instance, ontology A might refer to US Dollars as USD and ontology B might refer to

the same value as USDOL. Therefore, from the perspective of someone who can see

both ontologies only in terms of the meta-model, we need to specify the format that is

being used by each ontology. Accordingly, if we named the formats being used by

ontology A and B, A_fmt and B_fmt, we will just have to set the value of the CURRENCY

VALUE modifier to these values in each respective ontology.

From this point on, we will always assume that a format modifier is added to the meta-

model every time two modifiers are aligned.

60

6.2.1.2 Homonym Mismatches

Homonym conflicts are conflicts caused by words that are used in a different sense in two

ontologies [10]. For instance, income could represent a company's income in one

financial ontology and the CEO's income in another. In this case, the two types are not

semantically related; therefore, we cannot relate the two semantic types.

6.2.2 Conceptualization Mismatches

Conceptualization mismatches arise from differences in the conceptualization of the

domain [5]. In other words, two authors can have different conceptualizations of the

same domain, and each can represent a domain using different models. The four major

conceptualization conflicts are data representation mismatches, scope mismatches, model

coverage and granularity mismatches and generalization mismatches.

6.2.2.1 Data Representation Mismatches

Data representation mismatches are caused when two ontologies have two different

objects representing the same semantic type [10]. In other words, there is a very explicit

relation between the two objects but they are not semantically equivalent. For instance,

income could be represented as weekly income in one financial ontology and annual

income in another.

In our global ontology approach, we try to resolve this conflict by introducing a modifier

for the meta-model which allows us to relate the two semantic types. In this instance, we

will elevate both weekly income and annual income to the same type, INCOME, in the

61

metal model and create a PERIOD modifier for this income type to distinguish the

differences between these different income types. With the introduction of this modifier

we now have a new class of contexts, namely ontology contexts. Ontology contexts will

be define using meta-model modifiers, and we will be using them to resolve a number of

semantic conflicts that can be resolved by defining new modifiers. In this example, we

will set the value of PERIOD to weekly in one ontology and annual in the other.

COMPANY

Company

--- lyINCOME
Weekly
Income

PERIOD
PERIOD:
Weekly

Modifier

Ontology A Meta-Model

Corporation

Annual
Income

PERIOD:
Annual

-* Has A
----.> IsA

Ontology B

Figure 6.2 Data Representation Alignments

62

6.2.2.2 Scope Mismatches

Scope mismatches arise when a type is represented in different scopes in two different

ontologies [13]. In other words, two ontologies could describe the same semantic type,

albeit use different attributes or modifiers. For instance, report date might be an attribute

for income in one financial ontology whereas it might be deemed unnecessary in another.

Generally, unless the missing objects are implicitly defined in the ontologies, it is

impossible to do any type of alignment. Some cases of scope mismatches overlap with

generalization conflicts, and we will be discussing these conflicts shortly.

6.2.2.3 Model Coverage and Granularity Mismatches

Model coverage and granularity mismatches are caused when two ontologies make

different levels of distinction between equivalent objects [3]. For instance, one ontology

might choose to represent sales as total sales whereas another one might choose to go one

level further and break it down into retail sales and direct sales. This would be a typical

example of an aggregation conflict.

Although, we will not be going into this in great detail, one possible way of resolving this

type of conflict would be defining basic aggregation operators that will be helpful in

establishing semantic equivalence using functional definitions. For instance, in this case,

we could define a new TOTALSALES type in the meta-model and elevate total sales to

this type. We could then align retail sales and direct sales to total sales by applying the

aggregation operator to them and elevating them to TOTALSALES.

63

COMPANY

Company

TOTAL
SALES

Total
Sales

Has A
--- > IsA

> Input

Ontology A Meta-Model

'', Company

Retail Direct
Sales Sales

Ontology B

Figure 6.3 Model Coverage and Granularity Mismatches

6.2.2.4 Generalization Conflicts

Generalization conflicts are caused if one ontology has a more general conceptualization

of a semantic type [10]. An example of this would be an ontology which has a location

attribute for company and another that assumes that all companies are in the US. This is

an example of a generalization mismatch because one ontology is more general and

explicitly includes the location whereas the other one already assumes a specific location.

In order to resolve this conflict, we once again introduce a new modifier at the meta-

model level. As with most general vs. specific problems, the approach we will be taking

is starting with the more specific ontology and attempting to make it coherent with the

64

more general ontology. Accordingly, we start out by elevating the location in the more

general ontology to a LOCATION modifier in the meta-model. We will be elevating this

attribute to a modifier because this LOCATION is an variable attribute in one ontology

and a constant attribute in another.

Now, when we are defining the ontology contexts, we set the value of LOCATION to US

in the more specific ontology and in the case of the general ontology, the value of the

modifier will be inherited from the location attribute in the general ontology itself. We

can implement this without the introduction of any other modifiers simply by making the

value of LOCATION a static type (for the specific ontology) or a dynamic type (for the

more general ontology).

- - COMPANY

Company Company

-- LOCATION LOCATION:

Location --- ' (static)
U'S

LOCATION: Modifier
(dynamic) Has A
Location ---- > IsA

Ontology A Meta-Model Ontology B

Figure 6.4 Generalization Conflicts

65

If location has modifiers, then the proper modifiers are also created in the meta-model

and the values of these modifiers will be included in the ontology contexts. This will be

especially important in the case of the more specific ontology because we will need to

specify the LOCATION context as a static value, using terminology that is coherent with

the general ontology.

6.2.3 Explication Mismatches

The last class of ontology level mismatches, explication mismatches, refer to

discrepancies that arise from variations in styles of ontology modeling [5]. The three

major types of explication mismatches are paradigm conflicts, data precision conflicts

and concept description mismatches.

6.2.3.1 Paradigm and Data Precision Mismatches

Paradigm mismatches are caused by the use of different paradigms such as time [3]. An

instance of this would be representing stock prices as a closing value (point reference) or

a daily high-low range (interval reference). The same example can also be used for data

precision mismatches, which arise when there is one-to-many mapping between

semantically related types in two ontologies.

Generally, these types are only semantically related and it is not possible to establish

direct semantic equivalence between them without the assistance of an external

mechanism (for instance a look up table in this case), which will be used to convert a type

in one ontology to its equivalent in another. By equivalent we do not mean equal because

66

there is always some approximation involved in resolving data precision mismatches,

while going from a general type to a more specific type.

Just like we did with the generalization mismatches, we start with the more precise type

and try to express it in terms of the more general type. In other words, we will introduce

a new type in the meta-model and elevate both the less precise and more precise types to

this type. However, for the more precise type, we will do the elevation under certain

conditions that will map the precise value to a less precise value that is coherent with the

more general ontology. Hence, if we finally try to do a join involving the two

ontologies, we will be able to join only on the level of the more general ontology. In the

instance of the stock value, we will be able to compare only daily ranges, as opposed to

exact closing values.

6.2.3.2 Concept Description Mismatches

Finally, concept description mismatches are caused by variations in modeling

conventions [3]. For instance, a difference between two semantically equivalent classes

can be specified using an attribute or using a new class.

Let us consider the company example we had for generalization conflicts. To recap, one

company object referred to any company whereas the other referred specifically to

American companies. To establish a relationship between these two company objects in

the same ontology we can make country an attribute for the more general company object

and set it to US to represent American company object. Or equivalently, we can make

67

American Company a subclass of company using a subsumption relation. To resolve this

type of conflict, we will simply elevate both company and American company to the

semantic type and treat it as a typical case of a generalization conflict. These conflicts

can be expressed in terms of other conflicts so we will generally try to reduce the

problem into mismatches we have already resolved and proceed with the methodology

we have developed for those mismatches.

If we applied this strategy in resolving the conflicts between the first two ontologies in

Appendix A, we would end up with a meta-model that strongly resembles the last

ontology (C) in that appendix. The following table tries to summarize the conflicts

presented here and the approach we are taking in resolving them.

Table 6.1 A summary of semantic conflicts and their resolution

68

Semantic Conflict Resolution
Synonyms Direct semantic equivalence
Homonyms No Resolution due to semantic inequivalence
Data Representation Definition of a modifier at the meta-model

level and use of ontology contexts
Scope Generally no resolution except for a small

class of mismatches that overlap with
generalization mismatches

Model Coverage & Definition of operators to relate semantically
Granularity related types
Generalization Definition of a modifier at the meta-model

level and use of ontology contexts to reference
a general type or a specific value

Paradigm & Data Semantic equivalence after the conversion of a
Precision specific type into a more general type that is

coherent with the more general ontology
Concept Description Reduce to other semantic mismatches and

resolve each one separately

6.3 Mediation Using a Global Ontology

Now we know how to resolve a reasonable number of semantic conflicts. The next step

is incorporating these conflict resolution techniques in a mechanism that can effectively

use them to merge different ontologies. With the global ontology approach, this involves

doing mediation between ontologies. Ideally, we want to use GCMS to do this mediation

so let us see explore the analogy between data source mediation and ontology mediation.

The following table contains the analogous elements from the two mediation processes.

Table 6.2 Analogies between data source and ontology mediation

The only parts of the mediation that are significantly different are the ontology and its

meta-model. The contexts, the elevations and the conversion functions are very similar

to their data source mediation equivalents; therefore, we will not be spending a lot of time

explaining their significance.

Once again, we start the merging process by breaking down the problem into single

application mediation sub-problems. We will now be defining the receiver context in

terms of the modifiers from the meta-model. Please note that the meta-model will

include even modifiers that appear in only one ontology because it is supposed to be a

69

Data Source Mediation Ontology Mediation
Data Sources Ontologies
Contexts Ontology Contexts
Ontology Meta-model (global ontology)
Elevations Elevations
Conversion Functions Conversion Functions

superset of all the underlying ontology. Therefore, the modifiers from the meta-model

are a superset of the modifiers from every ontology.

We start out with one receiver context that spans all the concerned applications without

any conflicts. We go through each modifier value in this context and try to generate its

equivalent in the receiver context for every application. We use the alignments we have

established between modifiers to generate these single application receiver contexts. We

then proceed to do parallel mediations on each application and we store our results in

temporary views.

However, before we can join these views, we need to do mediation on the ontologies and

determine how they are related to one another. Our goal is to be able to express all the

data in the views in a single ontology receiver context. Therefore, we need to do

ontology context mediation on these views. In order to be able to do ontology context

medation on these views we first need to elevate them to the meta-model and extend to

them the ontology context drafted for their parent ontology. For our receiver ontology

context, we choose an arbitrary ontology context or if desired, the user can specify which

ontology context to use simply by picking one of the ontologies.

This procedure is slightly different from the routine mediation procedure because it

requires two levels of elevation. First we have data sources getting elevated to

ontologies, and then we have these ontologies getting elevated to the meta-model. This

method bypasses the ontology-to-meta-model elevation and directly elevates data sources

70

to the meta-model. However, it should be noted that the data sources that are being

elevated are views containing results from single application mediation processes. In

addition, the ontology contexts belonging to the two ontologies are also adopted by the

views belonging to each respective application. Hence context mediation is done on the

views using the contexts of their parent ontologies. Now we build a query that

references these views and contains the same join conditions that were imposed on the

original federated query. To get the final result, we pass this query into the ontology

context mediation process.

For instance, let us consider the data representation conflict we had in Figure 6.2.

Suppose we are trying to merge two tables from the two ontologies by joining the income

columns from each table. We first do mediation on each application separately store our

mediated results in the temporary views. Now one of these incomes represents weekly

income and the other represents annual income; therefore, they are not quite ready for a

JOIN yet. In order to resolve this context problem, we now do mediation on these views

using a query with the original JOIN conditions.

This approach allows us to resolve a larger number of semantic conflicts, and it also

scales better than the pair-wise matching strategy. And finally, it attempts to minimize

the amount of additional work by utilizing the existing mediation system.

71

6.4 Conclusion

We have proposed a strategy that will allow users to query data sources belonging to

multiple applications. The strategy employs tightly coupled ontology merging to resolve

the semantic heterogeneity among the ontologies. We then employ a divide and conquer

approach to split the federated query into subqueries that are ready for routine mediation.

These subqueries will refer to only sources from the same application and the current

implementation of GCMS will be used to do mediation on each subquery.

The result from each one of these subqueries will all be returned in the same receiver

context. The receiver context for each subquery will be derived from a single receiver

context using the context generator. This generator uses synonym alignments made prior

to query dispatch to construct identical contexts in each application. Finally, these results

are joined using the conditions that were imposed on the federated query.

As we have already mentioned, synonym matching is not a lasting solution to the

problem of ontology heterogeneity. The approach proposed in this chapter attempts to

give a more complete solution, and yet, there are still conflicts it cannot handle. The next

step should be implementing this strategy and extending it to resolve even more semantic

conflicts.

72

References

[1] T. Alatovic. Capabilities Aware Planner/Optimizer/Executioner for COntext
INterchange Project. M.Eng Thesis, Massachusetts Institute of Technology, Sloan
School of Management, January 2002.

[2] P. A. Bernstein, A. Y. Halevy and R. A. Pottinger. A Vision for Management of
Complex Models. Seattle Washington.

[3] H. Chapulsky, E. Hovy and T. Russ. Progress on Automatic Ontology Alignment
Methodology. 1997.

[4] B. Czedjo, M. Rusinkiewicz, and D. Embley. An Approach to Schema Inte ration
and Query Formulation in Federated Database Systems. In Proceedings of the 3' IEEE
Conference on Data Engineering, February 1987.

[5] Y. Ding, D. Fensel, M. Klein, and B. Omelayenko, "Ontology management: survey,
requirement and directions." On-To-Knowledge. Amsterdam, Holland. June 2001.

[6] C. H. Goh, S. Madnick, and M. Siegel. Context interchange: Overcoming the
challenges of large-scale interoperable database systems in a dynamic environment. In
Proceedings of the Third Int'l Conf on Information and Knowledge Management,
Gaithersburg, MD, November 1994.

[7] C. H. Goh. Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Systems. PhD dissertation, Massachusetts Institute of Technology, Sloan
School of Management, December 1996.

[8] T. R. Gruber, "A translation approach to portable ontology specifications."
Knowledge Acquisition, 5(2). 1993.

[9] J. Jannink, P. Mitra, E. Neuhold, S. Pichai, R. Studer, and G. Wiederhold: "An
Algebra for Semantic Interoperation of Semistructured Data"; in 1999 IEEE Knowledge
and Data Engineering Exchange Workshop (KDEX'99), Chicago, Nov. 1999.

[10] V. Kashyap and A. Sheth. Semantic and Schematic Similarities between Database
Objects: A Context-based Approach. In THE VLDB Journal, September 1995.

[11] P. Mitra, G. Wiederhold and J. Jannink: " Semi-automatic Integration of Knowledge
Sources"; in Proceedings ofFusion '99, Sunnyvale CA, July 1999.

[12] N. F. Noy, M. A. Musen, PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. 2000.

73

[13] P. R. S. Visser et al. An Analysis of Ontology Mismatches; Heterogeneity Versus
Interoperability. In AAAI 1997 Spring Symposium on Ontological Engineering.
Liverpool, England. 1997.

74

Appendix A

Company

Country sales

tockP
Financial

Company Amutassets
Name

Trade shares
\Value

weekly\
Curre icy income

Record
modifier Date

.--- Scale Currency
Type Symbol

----- format Format
Currency ~--

Type..----

fromCu ency ToC rrency Scale
Company Dt

Exchange NameForma
Factor Fra

Is-a
Has-a

Financial Ontology A

75

Corporation -

Local
ck sales

Sales Pri e

MonetaryIN

Has-a CopanypDat

inaniaAmount Total
Name

Direct

SalesToday Intl
RageStocks salesRetail Annual \.I10s

Sales revenue \\

Recorded
modifier Date

\ Currency
Symbol

format ''Format
Scale

Has-a Company Date
NameForma Format

Financial Ontology B

76

Country 4------Companysae

tock Retail
P e Financial

Company - Value assets
Intl Name

sales '

Trade sae
\Value

Local weekly '

sales -- 'm om

Shares
RecordedScl

modifier Date

C ency-

Scale Currency
-- Type Symbol

..--- format Format
Currency --

Type-\ ...

fromnCu ency ToC rrency FinV-
Scale Company Date

Exchange NameForma
Factor Fra

Is-a

Financial Ontology C

77

Appendix B

Merger: classes used for breaking up a federated query
Atrributes
Optimizer
Planner
Predicate
Predicates
QueryCleaner
Relation
Relations

Param : classes used for writing the application files used in parametrizing GCMS
ContextWriter
ConversionsWriter
ElevationsWriter
OntologyWriter
SchemaWriter
SourceWriter

Context : classes used for generating contexts
ContextMapper
ContextPlanner

Servelets :
PlannerServlet
MediateServlet
ContextServlet

QueryBuilder:
Context
Treemaker
Treemodel
Treenode
Modell
Framel
Qbapplet
ParseQuery
Browser
Frame1_aboutbox

Merger (alignment tool)
Choosemode
Choosemod2
Contexts

78

Demo
Editmod
Editmod2
Init
Linkapps
Linkmods
Linksems
Linkvals
Newapp
Newcxt
Newcxt2
Oneapp
Onecxt
Onemod
Onesem
Removecxt
Remove merger
Removemod
Removesem
Removevals
Selectmod

79

