
A Context Resolution Server for the GALAXY

Conversational Systems

Edward A. Filisko
ARCHIVES

JUL 31 2007 |B.S., Computer Science and Linguistics
University of Michigan, Ann Arbor (1999)

Submitted to the Department of
Electrical Engineering and Computer Science

partial fulfillment of the requirements for the degree ofIn

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© 2002 Massachusetts Institute of Technology. All rights reserved.

Author Signature redacted
Department of Electrical Engineering and Computer Science

May 16, 2002

Signature redacted
hd Stephanie Seneff

Principal Research Scientist

 a — ~~ Thesis Supervisor

Signature redacted

Certified by.

Accepted by
Arthur C. Smith

Cliairman, Department Committee on Graduate Students

A Context Resolution Server for the GALAXY

Conversational Systems

Edward A. Filisko

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The context resolution component of a spoken dialogue system is responsible for inter-
preting a user’s utterance in the context of previously spoken user utterances, system
initiatives, and world knowledge. This thesis describes a new and independent Con-
text Resolution (CR) server for the GALAXY conversational system framework. The
server handles all the functionality of the previous CR component in a more generic
and powerful manner. Among this functionality is the inheritance and masking of
historical information, as well as reference and ellipsis resolution. The new server,

additionally, features a component which attempts to reconstruct the intention of a
user in the case of a robust parse, in which some semantic concepts from an utter-

ance appear as unrelated fragments in the knowledge representation. A description
is also provided of how the new CR server is being utilized by SPEECHBUILDER, a
web-based software tool facilitating the development of spoken dialogue interfaces to
applications. We also present an evaluation, in which we compare the performance
of the new CR server to the performance of the old CR component.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist

Acknowledgments

[would like to extend my gratitude to my thesis advisor, Stephanie Seneff, for her

invaluable guidance throughout this research, and for honoring my frequent requests

to update the parser in order to make context resolution run more smoothly.

I would also like to acknowledge the members of the Spoken Language Systems

Group for their daily support. Specifically, I would like to thank Joe Polifroni for his

substantial help in the initial stages of this project, and for his subsequent assistance

in my understanding of discourse and dialogue. I also want to thank Scott Cyphers

for his help whenever I had problems with the GALAXY code. Additional thanks go

out to Grace Chung, Jim Glass, and Eugene Weinstein for their ideas and helpful

testing of the server.

I would like to thank my fellow graduate students for bearing with me the several

times I attempted to elucidate the difference between discourse and dialogue.

I want to give a special shout out to my office mates for making this an awesome

and unforgettable year at MIT! Brooke, thanks for keeping us in line in our crowded,

yet homey, office. Xiaolong, thanks for all your advice and for letting me teach you all

those great idioms. And Vlad—sausage, pepperoni, and taekwondo. .. thanks, dawg.

Last, but never least, I want to thank all my family and friends, whose words and

deeds were inspirational and always appreciated. Manpreet K. Singh, MD, here’s to

the stick-to-itiveness of grad students! Andy, thanks for the ceol, damhsa, agus craic.

Mom and Dad, thankyou always for your constant encouragement and unconditional

support.

This research was supported by DARPA, under contract N66001-99-1-8904 monitored

through Naval Command, Control and Ocean Surveillance Center, and by NTT.

Contents

i Introduction

1.1 Motivation and Design

1.1.1 Domain-Independence

1.1.2 Extensibility.

1.1.3 Intention Reconstruction

1.1.4 Key-Value Support . . .

Relevant Phenomena . .1.2

1.3 Outline. .

) Dialogue, Discourse, and Context Resolution

2.1 Dialogue

2.2 Discourse . . |

2.3 Evolution of Discourse Processing

2.4 Context Resolution

2.5 Summary

3 Improvements to the Framework

3.1 GALAXY’s Knowledge Representation

3.2 Semantic Frame Context

3.2.1 The Old Framework

3.2.2 The New Framework

3.3 The History Record

3.4 External Control for Function Sequence

21

23

24

25

25

26

26

31

35

36

37

390

il

12

43

14

15

16

17

7)

34

3.5 Seeking the Most Satisfied Semantic Frame . .

1 The Context Resolution Algorithm

4.1 High-Level Description

4.2 Register Mouse Clicks

1.3 Promote Predicates

4.4 Update Networks and Determine Satisfaction

4.5 Organize Topics

4.5.1 Forward Topic Relationships

4.5.2 Backward Topic Relationships

4.6 Resolve References

4.7 Form Obligatory Topic Relationships

4.8 Organize Predicates.

4.9 Inherit and Mask History . .

4.9.1 Inheritance . .

4.9.2 Masking . . .

4.9.3 Pragmatic Verification

4.10 System Initiatives

4.11 Ellipsis and Fragments .

4.12 Update History Record.

1.13 Feedback from the Dialogue Manager

4.14 Key-Value-Based Context Resolution

4.14.1 KV-Based Inheritance

4.14.2 KV-Based Masking .

4.14.3 KV-Based System Initiatives

4.15 Summary

5 Evaluation

5.1 Procedure . .

5.1.1 Batchmode

5.1.2 Log Files.

i"

59

60

63

64

65

67

69

70

70

77

R92

R4

86

89

92

95

08

102

102

103

104

105

107

108

109

110

{10

i111

5.1.3 Unit of Evaluation

5.2 Experiment

5.3 Worse Performance .

5.4 Neutral Performance

5.5 Better Performance .

5.5.1 General Improvements

5.5.2 Examplel

5.5.3 Example 2 .

Summary

Bb Summary and Future Work

6.1 Summary

6.1.1 Context Resolution . .

6.1.2 Structural Improvements

6.1.3 Intention Reconstruction

6.1.4 Interpretation in Context

6.1.5 SPEECHBUILDER

6.1.6 Evaluation.. .

Future Work.. . . .

6.2.1 Temporal Deixis.

6.2.2 Complex Constraints . . .

6.2.3 Reference Resolution Algorithm .

6.2.4 Automatic Constraint Generation .

6.2.5 Beyond Context Resolution

6.3 Final Words . . .

A Constraint Specification Meta-Language

A.1 Reserved Words

A.2 Existence . .

A.2.1 Negation.
) .

A.3 Frame Name. . .
-

112

112

114

118

118

118

119

[23

124

129

129

129

{30

[31

132

133

133

134

134

134

134

135

135

136

139

140

140

141

141

A

A.3.1 Equality .

A.3.2 Inequality

A.3.3 Negation

Integers

A.4.1 Equality .

A.4.2 Inequality

A.4.3 Negation . .

A.5 Floats

A.5.1 Equality . .

A.5.2 Inequality

A.5.3 Negation . .

A.6 Conjunctions

A.7 Disjunctions .

A.8 Hierarchical Constraints

A.8.1 Descendants .

A.8.2 Ancestors

A.9 Operator Precedence

142

142

142

142

143

143

143

143

143

144

144

144

145

145

145

145

146

10

List of Figures

A typical GALAXY configuration for a spoken dialogue system. The

Context Resolution (CR) server is the focus of this thesis.

1-2 Sample dialogue between a user (U) and VOYAGER (V), demonstrating

the resolution of both spoken and clicked references.

Sample dialogue between a user (U) and VOYAGER (V). Semantic re-

lationships are used for context resolution.

Sample dialogue between a user (U) and JUPITER (J). World knowledge

is used for context resolution.

22

27

28

29

| - Sample dialogue between a user (U) and PEGASUS (P), demonstrating

the resolution of several elliptical phrases.

Sample dialogue between a user (U) and MERCURY (M), displaying

the resolution of sentence fragments, ellipses, pronouns, definite noun

phrases, and temporal references. . . .

30

1-6

32

Semantic frame for “I want to fly from Cleveland to San Diego tomorrow.” 45

3-2 Semantic frame for “I want to fly to San Diego tomorrow.”

Semantic frame showing how the old CR component stores a frame’s

parent name as the :parent keyword within that frame.

Diagram showing how the network of nodes provides access to the

complete context of the semantic frame for “Show me museums in

Boston.”

46

18

3-5 Semantic frame for “Is there a connection for the United flight arriving

at noon?” This frame is used to demonstrate constraint testing. . . . 510]

A

3-6 The corresponding condition frame representation for the constraint,

:topic = airline.name —> :name = american | united. . . .

3-7 Excerpt from the CR server’s dialogue control table.

3-8 Semantic frame for “Is there a connection for the United flight arriving

at noon?”

3-9 [Externally specified satisfaction constraints. All of these constraints

are satisfied in the frame shown in Figure 3-8.

1-1 This diagram shows the current configuration of the context resolution

algorithm. The sequential order of execution can be modified via an

external dialogue control table.

4-2 Semantic frame for “I want a flight departing at noon and arriving

around five pm” before predicate promotion. . .

4-3 Externally specified predicate promotion constraints for when, depart,
and arrive.

1-4 Semantic frame for “I want a flight departing at noon and arriving

around five pm” after predicate promotion.

4-5 Old parser’s semantic frame for a robust parse of “I want a hotel and

Detroit.” The topic, detroit, has been discarded.

4-6 Modified parser’s semantic frame for a robust parse of “I want a ho-

tel and Detroit.” The “extraneous” topic, detroit, is retained as an

:and_topic.

4-7 Semantic frame containing a generic :and_topic chain.

4-8 Semantic frame in which the :and_topic, topic2 was resolved by the

formation of the topic relationship, topic! relation topic2.

32

h5

57

57

650

55

56

66

08

H&

69

09

4-9 Semantic frame resulting from a robust parse of “I need a coach fare

uh flight.” . .
p - . 71

4-10 Externally specified forward topic relationship, fare for flight, formed

to result in the frame of Figure 4-11. [1

3»

4-11 Semantic frame resulting from the formation of the forward topic rela-

tionship fare for flight.

1-12 Semantic frame in which the :and_topic, topic2, was resolved by the

formation of the topic relationship, topic2 relation topicl.

4-13 Modified parser’s semantic frame for “Detroit a rental car.”

4-14 Externally specified backward topic relationship, rental_car in city,

formed to result in the frame of Figure 4-15. The also< tag indicates

that the relationship is licensed both as a forward and as a backward

topic relationship.

4-15 Semantic frame for “Detroit a rental car” resulting from the formation

71

79

73

73

of the backward topic relationship rental_car in city. .

4-16 A simple DE list ordered by recency for “The boys gave Mary an apple.” 74

4-17 Externally specified antecedent constraints used to resolve the refer-

ences in “She thanked them and ate it.” . . .

4-18 Sample dialogue between a user (U) and VOYAGER (V) to demonstrate

the use of a discourse entity list.

1-19 The accumulated DE list following user utterances U(1)-U(3) in Figure

4-18. The list is ordered by depth-first topic retrieval.

1-20 Externally specified antecedent constraints used to resolve the definite

noun phrase in “Show me that museum again.”

4-21 Hypothetical semantic frame for “Do you have the time?” The infor-

mation, “of day,” is assumed by the CR server and is added to the

parsed frame.

4-22 Semantic frame for “What is the fare?”

4-23 Externally specified obligatory topic relationship, fare for flight. The

obligatory feature is encoded in the capitalized relationship, “FOR.” .

4-24 Hallucinated predicate and topic frames to satisfy the obligatory topic

relationship, fare for flight.

78

78

79

79

80

30

4-25 Semantic frame resulting from the formation of the obligatory topic

relationship fare for flight. . 51

3

4-26 Semantic frame for “What is its aircraft?”

1-27 Semantic frame for “I want the fare from Atlanta to Saint Louis?” . .

4-28 Externally specified predicates that are satisfied under the flight topic.

4-29 Semantic frame for “I want the fare from Atlanta to Saint Louis?”

following the hallucination of for flight and the movement of source

and destination from the fare topic to the flight topic.

4-30 Sample dialogue between a customer (C) and a travel agent (A), dis-

playing inheritance and masking phenomena.

4-31 Externally specified inheritance constraints for the travel_plan topic. .

4-32 Externally specified obligatory predicate constraints for the distance
clause.

81

83

23

34

R5

86

R&

1-33 Externally specified masking constraint for the departure_airport pred-

icate.........

1-34 Sample dialogue between a user (U) and MERCURY (M), displaying the

masking of connection_place by flight_-mode = “nonstop”.

1-35 Externally specified predicates that the flight topic may inherit. . . .

1-36 Externally specified masking constraints for the connection_place pred-

icate.......

1-37 Semantic frame for “I want to go from Boston to Denver tonight, con-

necting in Cleveland.”

1-38 Parsed semantic frame for “Is there a nonstop Hight?” This utterance

follows that in Figure 4-37...

1-39 Semantic frame for “Is there a nonstop flight?” following inheritance

and masking from Figure 4-37...

1-40 Externally specified relationships requiring pragmatic verification. . .

4-41 Sample dialogue between a user (U) and JUPITER (J), displaying prag-

matic verification of city and state to allow or to prevent inheritance.

1-42 Sample dialogue between a user (U) and MERCURY (M) to illustrate

how a system initiative is used to process an ambiguous fragment re-

sponse.

R90

90

91

I1

93

93

03

94

94

i

A

4-43 This diagram shows how a fragment response is disambiguated in the

“Handle System Initiative” stage, and is further incorporated into the

dialogue context via the “Resolve Ellipsis and Fragments” stage of the

CR algorithm. Q7

4-44 Externally specified valid responses to the source system initiative. . . 98

4-45 Sample dialogue between a user (U) and VOYAGER (V), displaying the

use of semantic constraints for ellipsis resolution.

4-46 Semantic frame for “Show me a neighborhood in Boston.”

4-47 Semantic frame for the elliptical phrase, “What about Cambridge?” 100

4-48 Semantic frame after ellipsis resolution of “What about Cambridge?” 101

4-49 Sample dialogue between a user (U) and a faculty info domain (S),

displaying inheritance using a KV-based knowledge representation. . . 105

4-50 KV-based semantic frame for “What is the phone number for Sam

McGillicuddy.”

4-51 KV-based semantic frame for “How about Pam O’Grady?”

4-52 Externally specified inheritable keys for the request clause.

4-53 KV-based semantic frame for “What is the phone number for Pam

O'Grady?” after inheriting the :property key.

4-54 Externally specified masking constraint for the :first_name key. . . .

1-55 KV-based semantic frame for “What is the phone number for O’Grady?”

after inheriting :property and masking :first_name..

106

106

106

107

107

5-1 This diagram shows the system flow during an offline batchmode eval-

uation, in which the hypotheses are obtained from log files. An online

mode would obtain the hypotheses from the speech recognizer; this

3-9

path is shown dimmed. . . .

The new system’s semantic frame for “denver and amsterdam k 1 m

airline as flight twenty eighty two.”

111

1 “3

[=Xi

5-3 The new system’s semantic frame for “denver and amsterdam k 1

m airline as flight twenty eighty two” after context resolution. The

:and_topic, amsterdam, failed to be resolved.

5-4 The old system’s semantic frame for “denver and amsterdam k 1 m

airline as flight twenty eighty two.”

115

117

5-5 The old system’s semantic frame for “denver and amsterdam k 1 m

airline as flight twenty eighty two” after context resolution.

5-6 KV strings for “denver and amsterdam k 1 m airline as flight twenty

eighty two” after context resolution in the new and old system. 118

5-7 The old and new systems’ parsed semantic frame for “i would like to

fly from detroit michigan on november sixth in san francisco california.” 121

5-8 The old system’s resolved semantic frame for “i would like to fly from

detroit michigan on november sixth in san francisco california.” . . . 121

5-9 The new system’s resolved semantic frame for “i would like to fly from

detroit michigan on november sixth in san francisco california.” . . . 122

5-10 The new system’s semantic frame after discourse update for “i would

like to fly from detroit michigan on november sixth in san francisco

california.”

5-11 The old system’s parsed and resolved semantic frame for “what is the

price the information from cleveland to los angeles.” . .

5-12 The new system’s parsed semantic frame for “what is the price the

information from cleveland to los angeles.”

5-13 The new system’s semantic frame for “what is the price the informa-

tion from cleveland to los angeles” after forming the backward topic

relationship, information for fare. . . .

7-14 The new system’s semantic frame for “what is the price the informa-

tion from cleveland to los angeles” after forming the obligatory topic

relationship, fare for flight.

122

123

125

125

”

9

16

5-15 The new system’s completely resolved semantic frame for “what is the

price the information from cleveland to los angeles” after moving source

and destination to the flight topic from the information topic. 126

A-1 Semantic frame for “When is the American flight from Denver arriving?” 147

i
1

18

List of Tables

3.1 Some simple constraints along with their respective meanings.

5.1 Results showing the number of key-value differences between the CR

server and the old CR component on 60 dialogues in the development

set and on 30 dialogues in the test set.

Al Operator precedence, shown in descending order, for the constraint

specification meta-language.

a
J 4

114

1460

{0

00)

Chapter 1

Introduction

Consider the deceivingly simple utterance!, “Show it to me.” This phrase can convey

a seemingly infinite number of meanings depending on the speaker, the addressee, the

object or action being requested, the accompanying hand or facial gestures made by

the speaker, and even on the manner in which the utterance is delivered.

In human-human dialogue, a participant may draw upon the history of what has

been said, physical and temporal context, inference, shared world knowledge, and

even common sense to interpret and, if necessary, disambiguate another dialogue

participant’s utterance.

This process, which we call context resolution, is ongoing in the course of a human-

human dialogue. People carry out this process so automatically, and so effortlessly,

that it often appears to be a completely unconscious phenomenon.

Nevertheless, extreme cases of ambiguity can be difficult, if not impossible, to

correctly interpret, without further clarification. This is rather eloquently evidenced

in the following quotation by Homer Simpson [37]:

“Now listen very carefully. I want you to pull on the thing, that’s near the other thing.”

It is not too surprising when Marge proceeds to pull the wrong thing, and a burst of

flame hits Homer’s head—context resolution is, indeed, very important.

IThe term, utterance, is used in this thesis to refer to any speech or written text that may serve

as input to a spoken dialogue system.

21

\

| Text-to-Speech | \

 Audio/GUI I

Speech l/
Recognition

Language |
Generation

{ Database

\

y

t=]Manager

§ Context
Resolution

IR
Language

Understanding |
Noirs

Figure 1-1: A typical GALAXY configuration for a spoken dialogue system. The
Context Resolution (CR) server is the focus of this thesis.

In human-computer dialogue, a computer often has no access to physical context

and limited access to the other resources mentioned above. This is why the problem

of computational context resolution is such a significant challenge.

In the multimodal GALAXY conversational system ? framework [43, 20], developed

by the Spoken Language Systems Group (SLS) at the Massachusetts Institute of

Technology (MIT), the problem of context resolution has always been handled within

the natural language server. This embedding of functionality, however, has inhibited

a generic and extensible representation for context resolution. The framework needed

an independent server to handle context resolution in any domain. This is what we

have developed and is what will be described in this thesis.

A brief overview of the GALAXY architecture will provide an idea of how the new

Context Resolution (CR) server fits into the framework. Figure 1-1 shows a typical

GALAXY configuration consisting of a central programmable hub, which handles the

communications among various human language technology services via a frame data

structure. The audio server captures a user’s speech and sends it to the speech recog-

nizer [16], which creates a word graph of hypotheses. This information is dispatched

to the language understanding service, via the hub, where the word graph is parsed

by TINA [40]. The best hypothesis is encoded in a semantic frame representation and

2 Conversational system and spoken dialogue ~<tem will be used interchangeably in this thesis.

09

is dispatched to the CR server. The dialogue manager receives the context-resolved

semantic frame and communicates with the database and language generation [3]

services to provide an appropriate reply to the user. This response is then audibly

realized by the text-to-speech server [52].

In this introductory chapter, we begin with a more detailed discussion of the

motivations behind the development of the new CR server, and what designs were

employed to fulfill our motivational goals. Then, several example dialogues will be

oresented to provide an idea of specific phenomena that are handled by the CR server.

We close with a brief outline of the remainder of the thesis.

1.1 Motivation and Design

[n the original GALAXY configuration, context resolution support is provided by the

natural language (NL) server. The duties of the NL server, however, are sufficiently

numerous and complex without the additional task of context resolution. Although

Figure 1-1 shows Language Understanding, Context Resolution, and Language Gen-

eration as separate services, they are all embedded in the NL server in the original

configuration.

For understanding, the NL server utilizes TINA, which probabilistically parses a

aser’s speech. GENESIS-1I [3] handles every aspect of language generation from for-

matting database queries to generating viable replies to a user. The context resolu-

tion code, embedded in the NL server, is as domain-independent as possible, obtaining

domain-dependent constraints from external files. This context resolution component,

henceforth “the old CR component,” is extremely useful and has, in fact, worked very

well across several domains.

Through our experience with the old CR component, however, we have come

to discover several of its shortcomings. First, it displays a significant amount of

domain-dependent code and it is not very extensible. This component also does not

support context resolution based on key-value pairs, which are the basis for knowledge

representation in SPEECHBUILDER [19], a new software tool developed by SLS, which

/ 4

requires key-value based context resolution. Finally, the old CR component lacks

a role in the resolution of the robust parse of a user’s utterance, in which context

resolution would seem to play a part.

Therefore, a new CR component was motivated by the need for a domain-independent

and extensible module, a component that supported context resolution based on key-

value pairs, and a module that attempted to reconstruct a user’s intention in the case

of a robust parse. In order to achieve these motivational goals, the existing context

resolution functionality would need to be extracted from the NL server and re-realized

in a new and independent CR server.

The design of the new CR server was crucial for the successful realization of our

motivational goals. For each goal, various implementations were considered until

one was found that fulfilled the intended goal and showed potential for facile future

modification. Each motivational goal, and related issues, will now be explained.

1.1.1 Domain-Independence

Although the initial intention for the old CR component was to be domain-independent,

the code displays a fair amount of domain-dependence. This is the result of several

years of “quick fixes” and code which lent itself to neither simple nor generic ex-

tensions. Most of the domain-dependent code handles idiosyncrasies of our most

mature and widely used domains; however, one must not lose sight of generality and

extensibility in the face of proper function.

To achieve domain-independence in the new CR server, we would have to ensure

that the code not contain any information to handle special cases within a given do-

main. This means that the functions within the CR algorithm would have to show

great flexibility in terms of the current domain of the dialogue. All domain-dependent

constraints, therefore, are specified by the system developer in an external file unique

to each domain. This domain-independence will also facilitate the instantiation of

the CR component for a new domain, requiring only the completion of some external

tables. We also realized that it would be desirable, for the developer, if the constraint

specification were as intuitive as possible. Excerpts from this intuitively-aware con-

4

straints file will be explained throughout the thesis in great detail.

1.1.2 Extensibility

It is evident in many current conversational systems that the division of context

resolution labor between the discourse component and the dialogue manager is rather

arbitrary. The modification of functionality among the two components can occur

rather frequently. Likewise, the sequence of function execution within a context

resolution component is often experimental. Such modifications to the division of

context resolution labor and function sequence are difficult to perform when the

function sequence is controlled by the order of procedure calls in the code. Any

change requires an undesirable recompilation of the code; these difficulties arise in

the old CR component.

The functionality assigned to the new CR server is based on our previous experi-

ence with dialogue systems and human-computer interaction. We have encapsulated

each function in the CR algorithm as fully as possible, so that any subsequent func-

tion modification may be easily accomplished, ideally, without any significant changes

;0 other functions. Additionally, we have put the CR algorithm function sequence

ander external control so that recompilation is not necessary to modify the order of

execution.

1.1.3 Intention Reconstruction

In a spoken dialogue system, a significant additional burden is placed on the under-

standing component due to spontaneous speech as well as recognition errors. Such

cases often result in robust parses, in which only fragments of the user’s utterance

appear in the semantic frame representation. In the old CR component. no further

attempt is made to link these fragments. If such an attempt were made, however, it

might result in a possible reconstruction of the user’s intention.

The new CR server is responsible for two duties. The first is to interpret a user’s

Jtterance in the appropriate context by consulting the history record and, perhaps,

25

world knowledge. The second duty is to attempt to reconstruct a user’s intention in

the event of a robust parse. We have developed a mechanism in the new CR server,

whereby an attempt is made to recover from some recognition and parsing errors. This

is accomplished by linking, otherwise unrelated, fragments in the semantic frame. In

doing so, the CR server is trying to capture the original intention of the user.

1.1.4 Key-Value Support

SPEECHBUILDER is a web-based software tool developed by SLS, which allows the

non-expert developer to easily and quickly build a spoken dialogue interface to an ap-

plication. The key-value-based knowledge representation of SPEECHBUILDER requires

a CR component also based on keys and values. The old CR component does not pro-

vide such a capability, since its functionality is based on a knowledge representation

featuring hierarchical frames.

The new CR server has been designed to support context resolution using both

the traditional hierarchical frame representation, as well as the new key-value-based

knowledge representation. The complete range of context resolution functionality is

not yet provided for the key-value representation. However, significant capabilities

do exist, and further research continues to increase CR support in this new represen-

tational framework.

Each function within the context resolution algorithm will be described in great

detail in Chapter 4. First, however, it is important to be familiar with the type of

phenomena that are relevant to the CR server. Several examples of context resolution

from our GALAXY domains will be presented in the next section in order that the

reader may understand why the CR server is necessary in the GALAXY framework.

1.2 Relevant Phenomena

The following dialogues contain several utterances in which context resolution must

be performed to obtain a correct interpretation. Each dialogue takes place between

IR

U(1): Show me the beaches in Boston.
V(1): Here is a map and list of beaches in Boston. . .

U(2): Show me the first one.
V(2): Here is a map displaying Carson Beach. ..

-

U(3):
V(3):

U4):
V(4):

U(5):
V(5):

What libraries do you know in Boston?
Here is a map and list of libraries in Boston.

How do I get to that beach from this library <click on JFK library>?
Here are directions to Carson Beach from the JFK Library. ..

Now can you show me universities in the Cambridge area?
Here is a map and list of universities in the Cambridge area . ..

U(6): How do I get there <click on Harvard> from here <click on MIT >?
V(6): Here are directions to Harvard University from MIT. ..

Figure 1-2: Sample dialogue between a user (U) and VOYAGER (V), demonstrating
the resolution of both spoken and clicked references.

a user and our spoken dialogue system in one of the GALAXY domains, which include

JUPITER [53] for weather information, MERCURY [44] for flight reservations, ORION [41]

for online task delegation, PEGASUS [54] for flight arrival and departure information,

and VOYAGER [17] for Boston area traffic and landmark information.

Consider the dialogue in Figure 1-2 between a user (U) and the VOYAGER city

guide system (V). In U(1), the user inquires about beaches. When he asks to see

“the first one” in U(2), the system uses the history of the dialogue to interpret this

as “the first beach.”

In U(3), the user switches the dialogue focus to libraries. In U(4), the user makes

a reference to “that beach.” The only beach that was ever in focus is “Carson Beach”

which was mentioned two utterances back. The system must correctly interpret this

reference. In U(4), the user also makes a reference to “this library” by clicking on

a map. The user makes additional click-references in U(6) while saying, “here” and

ia

a

U(1): Can you tell me about the churches in Boston?
V(1): Here is a map and list of churches in Boston. ..

U(2):
V(2):

How about museums?
Here is a map and list of museums in Boston. .

U(3): How about Cambridge?
V(3): Here is a map and list of museums in Cambridge.

Figure 1-3: Sample dialogue between a user (U) and VOYAGER (V). Semantic rela-
tionships are used for context resolution.

“there,” referring to “MIT” and “Harvard,” respectively. The system must correctly

interpret such deictic references, which are a type of verbal pointing. For example,

it would be undesirable for “here” to be resolved as “Harvard” and for “there” to be

resolved as “MIT.”

In the next dialogue, shown in Figure 1-3, the user (U) converses with VOYAGER

'V) using elliptical phrases, or fragments, from which the omitted information is

assumed by the speaker to be understood by the listener. In U(1), the user asks

about “churches in Boston.” When the user says, “How about museums?,” in U(2),

he likely means “Can you tell me about museums in Boston?,” since “churches” and

‘museums” have the same semantic class of “buildings.” In U(3), the user may

mean, “Can you tell me about Cambridge?” or “Can you tell me about museums

in Cambridge?” The latter is more likely since “Boston” and “Cambridge” are both

cities. VOYAGER must be able to make such decisions based on semantic class.

The next dialogue, shown in Figure 1-4, is between a user (U) and the JUPITER

weather information system (J). This dialogue demonstrates how world knowledge

may be needed to properly interpret an utterance in context. In U(1), the user asks

about the weather in “Cambridge,” which is an ambiguous city. JUPITER chooses to

alert the user of the ambiguity, but also chooses to provide only a single weather

report, which, by default, is for “Cambridge, England.” In J(2), JUPITER uses

)K

U(1):
J(1):

U(2):
J(2):

U(3):
J(3):

U4):
J(4):

What is the weather like in Cambridge?
I know of Cambridge, England and Cambridge, Massachusetts.
In Cambridge, England, cloudy skies, high near 55. What else?

What about Massachusetts?

In Cambridge, Massachusetts, partly sunny, high in mid 50s.
What other information can I give you?

What about Vermont?
I know of the following places in Vermont:
Burlington, Montpelier, and Rutland. Please select one.

Montpelier.
In Montpelier, chance of morning snow or rain showers, high in mid 40s.
Is there anything else?

' U(5): Goodbye.
| J (5): Thank you for calling!

Figure 1-4: Sample dialogue between a user (U) and JUPITER (J). World knowledge
is used for context resolution.

world knowledge to interpret U(2) as “What is the weather like in Cambridge, Mas-

sachusetts” since there is, in fact, such a place. However, in J(3), JUPITER interprets

U(3) as, “What is the weather like in Vermont.” If there were a “Cambridge, Ver-

mont,” that JUPITER knew about, J(3) would provide the weather for “Cambridge,

Vermont,” instead of prompting the user to choose a city in Vermont. JUPITER has,

in fact, initiated a subdialogue in J(3) to determine the user’s intended city. When

the user replies in U(4), JUPITER must interpret this fragment as the city for which

the user wants the forecast.

The next dialogue, shown in Figure 1-5, is between a user (U) and the PEGA-

sus flight information system (P). In this dialogue, the user offers several fragment

responses, which must be interpreted in the context of the corresponding question

posed by PEGASUS. In U(2), “Boston” must be recognized as an arrival city, rather

than as a departure city. In U(3), PEGASUS must interpret “Around five pm” as

00

U(1): What United flights from Denver are arriving today?
P(1): What city does the flight arrive in?

U(2): Boston.
P(2): Can you provide the approzimate departure or arrival time?

U(3): Around five pm.
P(3): There are two flights. Flight 998 is scheduled to arrive at 4:44 pm,

and Flight 1096 is scheduled to arrive at 5:02 pm. Please select one.

U(4): 998.
P(4): United flight 998 from Denver is expected in Boston at 4:47 pm local time.

[t is three minutes behind schedule. Is there anything else?

U(5): What was the departure time?
P(5): United flight 998 departed from Denver at 11:21 am local time. What else?

U(6): That’s all.
P(6): Thank you for calling. Have a nice day!

Figure 1-5: Sample dialogue between a user (U) and PEGASUS (P), demonstrating
the resolution of several elliptical phrases.

either a departure or arrival time. In this case, it simply chooses to accept it as an

arrival time. Numbers, in general, are extremely ambiguous. The number in U(4), for

example, could be a flight number, an identification number, a portion of an address,

or a price, among many other possibilities. In the context of this dialogue, however,

it should properly be interpreted as a flight number. In U(5), the user makes use of

an elliptical phrase from which he omitted the information, “of flight 998.” PEGASUS

must realize that “the departure time” refers to that of “flight 998,” and not to that

of “flight 1096” or any other flight.

The last dialogue, shown in Figure 1-6, is between a user (U) and the MERCURY

flight reservation system (M), and demonstrates a rich variety of context resolution

phenomena. In U(1), the user expresses his intention to book a trip. In U(2), the user

provides an airline and a departure time as fragments. MERCURY must combine this

2)

information with that provided by the user in the last utterance. In M(2), MERCURY

has found a flight and asks for the user’s approval. In U(3), the user does not directly

answer MERCURY’S query, but instead, enters into a subdialogue to determine if this

flight is, in fact, appropriate. Utilizing ellipsis, the user wants to know “the arrival

time (of the flight connecting in Dallas Fort Worth leaving at 2:08 pm).” In U(4),

the user still desires more information and asks if “it” serves dinner. This pronoun

must be resolved by the CR server to be “American flight 3742.” MERCURY replies

in M(4), but does not pose any further question to the user. The user takes initiative

and says, “book this flight,” intending for MERCURY to book “flight 3742.”

In M(5), MERCURY books the flight and inquires about the date of return. The

aser provides a relative temporal reference of “four days later” which must eventually

be resolved to the absolute date, “June 21.” After being given some options based

on the connection city, the user utters the fragment, “Chicago,” meaning “(a flight

connecting in) Chicago (O’Hare airport).” One fragment reply, which must always

be interpreted in the context of the system’s prompting question, is a confirmation

(e.g., “yes”) or denial (e.g., “no”). In U(8), the user’s “Okay” confirms the booking

of flight 1792. In U(9), the user’s “No, thank you” denies the price inquiry offered by

MERCURY. Finally, in U(10), the user repeats “No, thank you” to deny MERCURY’S

offer of further assistance.

1.3 Outline

The intent of this thesis is to provide the reader with an understanding of the necessity

for the new CR server and how it handles context resolution within our current

domains. These include JUPITER [53] for weather information retrieval, MERCURY

[44] for flight reservations, ORION [41] for online task delegation, PEGASUS [54] for

flight arrival and departure information retrieval, and VOYAGER [17] for Boston area

traffic and landmark information retrieval, as well as the simpler key-value-based

domains created using the SPEECHBUILDER utility [19].

31

U(1):
M(1):

J(2):
M(2):

U(3):
M(3):

U4):
M(4):

J(5):
M(5):

U6):
M(6):

U(7):
M(7):

U(8):
M(8):

U(9):
M(9):

[need to book a trip from Oklahoma City to Calgary on June 17.
Okay, from Oklahoma Clty to Calgary on Monday, June 17.
Can you provide the approximate departure time or airline?

American, around 1:30 pm.
What about a flight connecting in Dallas Fort Worth leaving at 2:08 pm?
Would that work?

What is the arrival time?

American flight 3742 arrives at 6:44 pm in Calgary.
Shall I add this flight to your itinerary?

Does it serve dinner?

No meal is served on the first leg, and dinner is served on the second leg.

Okay, book this flight.
American flight 3742 has been added to your itinerary. .
What date will you be returning?

Four days later.
I have connecting flights in Dallas Forth Worth and Chicago O'Hare
on Friday, June 21. Would one of these work?

Chicago.
There is only one American flight connecting in Chicago O’Hare.
It leaves at 2:09 and arrives at 9:09 pm. Shall I book this flight?

Jkay.
American flight 1792 has been added to your itinerary. . .
Would you like me to find out how much your trip will cost?

No, thank you.
Okay. Is there something else I can do for you?

U(10): No, thank you.
M(10): Thanks for using MERCURY. Have a nice day!

Figure 1-6: Sample dialogue between a user (U) and MERCURY (M), displaying the
resolution of sentence fragments, ellipses, pronouns, definite noun phrases, and tem-
poral references.

29)

The chapters are divided accordingly:

Chapter 2: Dialogue, Discourse, and Context Resolution

in which we define dialogue and discourse, provide a history of discourse pro-

cessing in spoken dialogue systems, and place the notion of context resolution

within the more general areas of dialogue and discourse.

? Chapter 3: Improvements to the Framework

in which we focus on modifications to the framework supporting context resolu-

tion, and how these changes facilitated improvements to the context resolution

functionality.

Chapter 4: The Context Resolution Algorithm

in which each function within the CR algorithm is described in detail.

» Chapter 5: Evaluation

in which we present an evaluation of the new CR server based on a comparison

hetween its performance and the performance of the old CR component.

Chapter 6: Summary and Future Work

in which we summarize our research on context resolution and suggest possible

anhancements for context resolution within the GALAXY domains.

» Appendix A: Constraint Specification Meta-Language

in which we describe how to use the constraint specification meta-language.

33

24

Chapter 2

Dialogue, Discourse, and Context

Resolution

Spoken language interaction between a human and a computer can be as simple

as speaking a menu’s name, instead of clicking on it, or speaking a command such

as “Shutdown” or “Go to sleep.” In order to complete a more significant task via

a computer, however, such as reserving a theater ticket, a user will likely need to

provide multiple, potentially interrelated utterances; in other words, the user will

carry on a conversation with the computer. In such a case, the system must maintain

some representation of the current conversational state. For example, the machine

should remember the utterances that have already been spoken by both conversational

participants, as well as be constantly aware of the user’s ultimate goal. Such a

representation allows the system to interpret each user utterance in the context of

the current conversational state.

A spoken dialogue system is able to handle conversational interaction using ideas

from the studies of dialogue and discourse. In general, dialogue and discourse are

terms used to describe the meaningful exchange and mutual understanding of ut-

terances between a speaker and one or more listeners. It is extremely challenging

for a system to optimally handle such conversational phenomena when only using

previously spoken utterances for the interpretive context. These phenomena become

increasingly more difficult to handle as the physical context of the user or machine

AE

becomes relevant, as it does with gestural or mouse-clicked input.

This chapter will begin with descriptions of dialogue and discourse in terms of a

spoken dialogue system. Since context resolution is a subset of discourse processing, as

will be explained in Section 2.4, a very brief description of dialogue, and a much more

in-depth description of discourse, will be provided. Then, the evolution of discourse

processing, as it has been implemented over the years, will be described. Finally, the

notion of context resolution, as presented in this thesis, and its role between dialogue

and discourse will be explained.

2.1 Dialogue

A dialogue is an interactive communication between two or more participants [29].

[n a spoken dialogue system, the role of the dialogue manager is to decide what

should happen next in the conversation. For example, in a hotel reservation dialogue

system, if a user has just asked to book a hotel, the system may repeat the booking

information (which may, ultimately, be cumbersome for the user to hear) or it may

simply say, “Okay, your room has been booked.” Judgments must be made as to

when the system should confirm, when it should assume, and when it should clarify.

Many similar decisions are relevant in the study of dialogue.

A dialogue may be decomposed into a series of subdialogues. In a city information

spoken dialogue system, for example, a user may initiate a dialogue to obtain direc-

tions by asking, “How do I get there from here?” If the system does not know where

“there” is, it may branch off from the main dialogic path to initiate a subdialogue in

order to obtain the user’s intended location. Once the system has this information, it

can proceed with the main course of the dialogue. In the context of dialogue systems.

researchers strive to formulate algorithms, or dialogue strategies, by which a computer

and a human may collaboratively participate in a dialogue towards the fulfillment of

some task or goal.

2G

2.2 Discourse

A discourse may be defined as any form of conversation or talk. This may include a

speech, a story, a description, an argument, a negotiation, or a task-oriented dialogue,

which is common for a spoken dialogue system.

Research into these various discourse types has resulted in the identification of,

and the observation of relationships among, discourse segments, the basic units of

a discourse. A discourse segment is a group of utterances, which conveys a special

meaning, intention, or part of a plan. Grosz [22] notes that:

The segment-level intention is not a simple function of the utterance-level

intentions, however, but a complex function of utterances, domain facts,

utterance-level intentions, and inferences about these.

The intention of a discourse segment may be any of proposition, evidence, confirma-

tion, denial, background information, question, or answer, among many others. Thus,

discourse processing involves interpreting, and identifying the intention of, an individ-

ual utterance, grouping such utterances into segments, identifying the intentions of

these discourse segments, discovering how these segments relate to one another, and

further, identifying any intentions that such interrelations may convey. For example,

the interactions among various discourse segments may provide information about a

plan that the user is trying to execute.

The need to interpret individual utterances exposes the issues of anaphora, deixis,

and ellipsis resolution. Anaphora is the term used for a phrase that refers to some

previously mentioned entity in the discourse; this may include a pronoun or a definite

noun phrase. There have been several approaches to such reference resolution, includ-

ing Webber’s notion of discourse entities [47], Discourse Representation Theory [27],

and the centering theory of Grosz, Joshi, and Weinstein [21], in which the current

focus of attention in the discourse contributes to how the references will be resolved.

Deizis can be defined as “the function of pointing or specifying from the perspec-

tive of a participant in an act of speech or writing” [51]. Five main types of deixis

have been characterized, as described by Loehr in [32]:

2m

we, ...: I, me, you,son: I,e per

eo spatial: this, that, here, there, ...

temporal: now, tomorrow, two days later, ...

discourse: the former, the latter, the above, ..

» social: the use of a formal name versus a nickname, the use of familiar versus

formal second person pronouns (e.g., Spanish ti versus usted), . .

Loehr also explores the notion of hypertext linking in webpages as a possible new

type of deixis, which he calls hyperdeizis. Research in the area of deixis has also

included work by Webber [48], for natural language understanding systems, in which

she studies the use of deictics to refer to one or more clauses, as opposed to noun

phrases. In addition, deixis in spoken language systems has been studied by Eckert

and Strube [14].

Ellipsis is the phenomenon in which specific information has been omitted from

an utterance. This elided information is assumed to be understood and should be

retrievable from the previous utterance or from the intentional structure of the dis-

course [22]. Approaches to ellipsis resolution include those of Hendrix, et al. [25],

Carberry [8], and Kehler [28]. Hendrix, et al. obtained the omitted information from

the previous user utterance, handling ellipsis by substituting the elliptical phrase for

a syntactically analagous phrase in the previous utterance. Carberry was able to ob-

tain the omitted information, not necessarily from the previous utterance, but from

the intentional structure of the discourse. Kehler also takes a semantic approach to

the problem, utilizing the notion of role linking for resolution.

Several theories have arisen that strive to formalize the notion of discourse pro-

cessing. The main difference among the theories concerns the information deemed

relevant for determining the discourse segmentation. The foremost theories include

one of discourse coherence by Hobbs[26], a generation-based discourse strategy by

McKeown [34], a theory of discourse structure based on attentional state, intentional

» J
2Q

structure, and linguistic structure by Grosz and Sidner [24], and the Rhetorical Struc-

ure Theory of Mann and Thompson [33]. Each one is incomplete, however; hence,

research continues to explore and, potentially, to extend the theories.

In short, discourse research deals with two main questions, which are observed by

Grosz in [23]:

1. what information is conveyed by groups of utterances that extends beyond the

meaning of the individual utterances, and

2. how does context affect the meaning of an individual utterance.

At least one of these questions has been addressed by many researchers in their

implementations of dialogue systems over the years. Several examples of these systems

will be described in the following section.

2.3 Evolution of Discourse Processing

Discourse processing has been actively researched in natural language applications

since the early 1970s. Several discourse capabilities have been introduced over the

years to create a more natural dialogue between the user and the system. Early text-

based systems include those such as LUNAR [50] and Winograd’s natural language

understanding system [49]. LUNAR was a natural language interface to a database

that contained chemical analyses of moon rocks, and resolved pronouns by consulting

a list of previously mentioned entities. Winograd’s system allowed a user to manipu-

late a block world by posing English instructions. The system possessed a notion of

context and could handle pronoun and some definite noun phrase resolution, as well

as ellipsis. The LIFER system [25], a natural language interface for database queries,

also featured elliptical input resolution. Other systems such as SAM (Script Applier

Mechanism) [12] and Gus [4] focused on discourse processing in limited domains.

In later years. researchers recognized the insufficiency of unimodal input (i.e.,

text or speech) in dealing with reference, for example, in applications utilizing maps.

Consequently, mouse clicks and gesture were combined with natural language systems.

10

One of the earliest multimodal systems, Put-That-There [5], was published in 1980

and combined verbal reference with gestural pointing to manipulate colored shapes.

The EDWARD system [6] allows a user to navigate and manipulate a file system via

typed natural language and mouse clicks. EDWARD utilizes the context model for

reference in which each topic is assigned a numerical salience value for subsequent

anaphora resolution. EUCALYPTUS [46] is a natural language interface to an air

combat simulation system allowing speech input and mouse clicks for reference. The

reference resolution component of EUCALYPTUS is focus-based and follows from the

work of Grosz and Sidner [24].

Some of the more recent multimodal systems handle discourse processing in var-

ious ways. CommandTalk [45, 35], a spoken language interface for battlefield sim-

ulations, employs a Contextual Interpretation agent within the dialogue manager to

resolve pronominal, definite noun phrase, and deictic references by maintaining a

salient entity list and focus spaces. Both situational context (current state) and lin-

guistic context (history) are also used to interpret underspecified commands [13].

TRIPS [15], a collaborative planning assistant developed at the University of

Rochester, handles context resolution by updating a Discourse Context (2, 7], which

contains a salience list, as well as a discourse history. Several other agents and compo-

nents communicate with the Discourse Context. For example, a reference component

utilizes the information to resolve anaphora, ellipsis, and clarification questions. The

Interpretation Manager and the Generation Manager also communicate with the Dis-

course Context to plan system replies and to display any system updates.

In the WiTAS dialogue system [31], a multimodal system for conversations with

autonomous mobile robots, the dialogue manager handles discourse processing by

maintaining a salience list of entities, as well as a modality buffer, which stores mouse

clicks until they are bound to some deictic reference.

Some dialogue systems have recently incorporated the rendering of a human face

for system output, in addition to the generation of speech [36]. Previous studies have

supported the notion that such facial displays actually convey meaningful discourse

functions [11], and can be crucial to providing a more natural experience for the

a

user. Other systems render, not only a human face, but a complete embodied human

agent for interaction [10]. Rea [9] is such an agent under development at the MIT

Media Lab. She is able to sense limited user gestures through cameras and associate

discourse functions with those gestures. As more complex systems are developed that

can sense the bodily movements and facial displays of a user, these features will have

to be incorporated into any new or modified theory of discourse processing.

2.4 Context Resolution

Now that the notions of dialogue and discourse have been introduced, the role of con-

text resolution can be described. Discourse processing was previously said to involve

the interpretation of individual utterances, the segmentation of the discourse, and

the meanings of and interactions among the resulting segments. Context resolution

is not concerned with the intentions of discourse segments, but rather, with the in-

terpretation of individual utterances in the immediate or recent context. Specifically,

this involves the resolution of anaphora, deixis, and ellipsis, the propagation of “un-

derstood” contextual information from earlier utterances, and the resolution of any

incompletely specified user requests. In terms of this functionality, context resolution

is a subset of discourse processing.

In the GALAXY framework, the dialogue manager (DM) controls the strategy that

guides dialogue flow. The DM also handles discourse processing outside of context

resolution. Any notion of a user intention or plan, which may span several utterances

or the entire dialogue, is addressed by the DM. For example, if a user were to say

to MERCURY, “I want to fly to Chicago tomorrow and return two days later,” the

DM will recognize that the user intends to fly tomorrow and he wants a return flight

two days later. The DM will know to resolve the initial flight before moving on to

resolve the return flight. Even though the DM may encounter several understanding

problems while attempting to resolve the initial flight, once it is resolved, the DM

will move on to the unresolved user intention—the return flight. Thus, it is a duty

of the DM to deal with all current user intentions before it attempts to resolve any

additional user intention.

While context resolution is not concerned with the discourse segment intentions

or planning, it does make an attempt to reconstruct the intention of a user in the

case of a speech recognition error or a fragmented parse. This is a function that

is not performed during the context resolution phase in the other dialogue systems

mentioned in Section 2.3. We have assigned this functionality to context resolution

since any such error requires that the utterance be interpreted in the context of what

may be recognized or parsed correctly in the semantic representation. We believe

that this issue is consequential of the nature of a spoken dialogue system and is an

issue that would need to be addressed in a general theory of discourse processing.

Whether or not this intention reconstruction should definitely be a role of the context

resolution component, however, is debatable.

2.5 Summary

[n this chapter, we have introduced the notions of dialogue and discourse in terms of a

spoken dialogue system. We presented a more in-depth history of discourse processing

in system implementations. Finally, we provided a high-level view of what we call

context resolution and how it relates to the more familiar disciplines of dialogue and

discourse.

In the next chapter, we begin to describe details of the new CR server in terms of its

supporting framework and data structures, and how this framework is an improvement

on the old CR component.

49

Chapter 3

Improvements to the Framework

The old context resolution component in the GALAXY framework has always been

embedded within the natural language (NL) server, whose tasks are numerous and

complex. In addition to context resolution, the NL server handles the parsing of a

user’s utterance via TINA, as well as every aspect of natural language generation, from

formatting SQL queries to generating viable replies to a user via GENESIS-1I [3].

This embedding of functionality has inhibited a generic and extensible represen-

tation for context resolution. After many years of various and hasty modifications

to the NL server, CR-related code has manifested itself with high specificity and

without consistency. Extensions to CR capabilities cannot be easily or generically

implemented and, consequently, essential updates seem to be incorporated randomly

for lack of a better protocol. In addition, the functions within the context resolu-

tion process are constrained by the specifications and boundaries imposed by the NL

server.

The new CR server was developed to encapsulate context resolution functionality.

Since the server was created from scratch, we wanted to improve upon as many

functions as possible, as well as upon the framework supporting context resolution.

This chapter will focus on the latter, highlighting the following improvements to the

framework:

12

1. a network of pointers allowing complete access to the context of a semantic

frame via a simple, yet powerful, constraint specification language,

2. a modified history record that contains a list of topics throughout the conver-

sation, as well as the semantic representation for the previous utterance,

3. an external means by which to specify, and easily modify, the sequence of func-

tion execution in the CR algorithm, and

4. a notion of semantic satisfaction in which a parsed semantic frame is reorganized

into its most satisfied state.

Before describing our improvements to the framework in detail, we will give a brief

explanation of knowledge representation in the GALAXY domains. This will provide

sufficient background information, allowing one to see the inherent benefits of the

improvements made to the framework.

3.1 GALAXY’s Knowledge Representation

In the GALAXY domains (JUPITER [53] for weather information, MERCURY [44] for

flight reservations, ORION [41] for online task delegation, PEGASUS [54] for flight

arrival and departure information, VOYAGER [17] for Boston area traffic and landmark

information, and many others), the linguistic knowledge from an utterance is encoded

in a hierarchical semantic frame containing objects identified as one of a small set

of predefined types, namely, clause, topic, predicate, or keyword. TINA, the

parsing component of the NL server, parses from a word graph produced by the speech

recognizer and encodes the best hypothesis in a semantic frame representation. This

frame is then passed to the CR server for context resolution processing. Figure 3-1

shows a possible semantic frame for the utterance, “I want to fly from Cleveland to

San Diego tomorrow.”

Notice that the top-level frame in the figure is a clause, statement, which contains

the flight topic, since flight is the topic of the main clause in the utterance. Within

i
= 1

clause {c statement

topic {q flight
pred {p source

‘topic {q city
:name "cleveland" } }

pred {p destination
:topic {q city

:name "san diego" } }

pred {p month_date
topic {q date

‘name "tomorrow" } } f RB

Figure 3-1: Semantic frame for “I want to fly from Cleveland to San Diego tomorrow.”

this topic frame, there are three predicates—source, destination, and month_date—

which serve to modify the flight topic. Each of these predicate frames contains its

own topic frame, and each of these topics is made specific by the value of its own

:name keyword.

An utterance usually contains only one clause, which represents the type of utter-

ance (e.g., statement, wh_query, truth, what_about). Each clause frame may contain a

single topic object, which typically represents a noun phrase. An object frame may

contain multiple predicates, which often represent adjectival or adverbial modifiers,

as well as verb phrases.

3.2 Semantic Frame Context

The CR server depends heavily on the ability to traverse the semantic frame to locate

clauses, topics, predicates, and keywords, as well as the contexts in which they

occur. The old CR component had very limited, and overly specific, capabilities for

accessing this information. When designing the new CR server, we acknowledged

this weakness and realized that a generic and much more powerful mechanism would

be advantageous. Thus, the CR server utilizes a strategy of organizing the contents

of a frame along the dimensions of clause, topic, predicate, and keyword, and

providing a structure of pointers that link among them.

AF

The old CR component lacked any sort of language with which to specify the

various constraints utilized by its functions. Therefore, it was felt that the new

CR component would benefit from a general, but expressive, language in which a

developer may simply and intuitively specify such constraints. The new CR server

employs such a language, which, when coupled with the new structure of linkage

pointers, provides an extremely powerful and useful tool.

In this section, we will demonstrate the shortcomings of the old framework in terms

of accessing information in a semantic frame. This will be followed by a detailed

description of the new mechanism within the CR server that is used to access the

complete context of a frame.

3.2.1 The Old Framework

Given a semantic frame hierarchy, the old CR component would access a specific

clement deep within the nest by traversing several internal frames. Consider the

semantic frame given in Figure 3-2.

{c intention

topic {q flight
‘pred {p destination

‘topic {q city
:name "san diego" } }

{p month_date
topic {gq date

‘name "tomorrow" EF

Figure 3-2: Semantic frame for “I want to fly to San Diego tomorrow.”

In one instance, we may want to know if the topic of the semantic frame is flight.

The old CR component would handle this by creating a function, which would simply

check the first level of the hierarchy for the desired element. In another instance, we

may not only want to know if the topic of the semantic frame is flight, but also if

that topic contains a destination predicate and, further, if that predicate contains

a city topic. This would require another function to be written.

AF

It would become even more troublesome if we also wanted to know a value at

a higher or equivalent level in the hierarchy (i.e., a parent or sibling frame). The

old CR component accomplishes this in an overly specific and inelegant manner by

storing the desired value. For example, if we know, in advance, that we will have to

know the name of each predicate’s parent frame, we can store the parent frame name

as :parent, as shown in Figure 3-3.1

{c intention

topic {q flight
‘pred {p destination

‘parent "flight"
‘topic {q city

‘name "san diego" } }
month_date

‘parent "flight"
topic {q date

‘name "tomorrow" } J

Figure 3-3: Semantic frame showing how the old CR component stores a frame’s
parent name as the :parent keyword within that frame.

This technique would become unwieldy if it were to be extended to additionally

store the siblings, grandparent, clause, etc., for each predicate. In addition, this infor-

mation may also not be required for every context resolution function, in which case,

it would be unnecessarily occupying space. This method simply does not demonstrate

the generality or extensibility which we seek in a context resolution component.

3.2.2 The New Framework

We have implemented a generic mechanism, in the new CR server, whereby, within a

given semantic frame, every component frame has access to every other frame and to

all the contents therein. This is accomplished using a network of nodes which mimics

the structure of the semantic frame via pointers. Each object type (i.e., clause,

IThe GALAXY frame libraries do not provide any convenient tools for tracing an object’s ancestry
within a frame

jr tT

NETWORK

clauses Lv a [

topics ~

predicates “,

keywords |

Ra1}

NODE

NODE parent pil
object
NODE kids|[0] k1
NODE next X

NODE previous Bld

Semantic Frame
| :clause {c display
| # ‘topic {q museums

—:pred {p in
— ———=topic { q city

——=name "boston"} } } }

Figure 3-4: Diagram showing how the network of nodes provides access to the com-
plete context of the semantic frame for “Show me museums in Boston.”

topic, predicate, keyword) is stored in a separate doubly-linked list to allow easy

scanning of all the topics, for example, within the semantic frame. Each list node

contains a pointer to its corresponding object in the semantic frame, a pointer to the

parent node, and an array of pointers to its children nodes. The parent and children

objects may be accessed through the corresponding parent and children nodes. Using

this network of pointers, we can access any location in the semantic frame from any

location in the semantic frame.

Figure 3-4 shows a diagram of how the network of nodes provides access to

the complete context of the semantic frame. The NETWORK structure holds four

doubly-linked lists. The previous pointer of the first node in each list points to “null”

as does the next pointer of the last node in each list. In this example, there is one

clause (display), two topics (museums and city), one predicate (in), and one keyword

(:name). We will describe here the details of NODE t2. The parent member points

to NODE pl, whose object member points to the in predicate frame object in the

semantic frame. The object member of NODE t2 points to the city topic frame object

in the semantic frame. The first element of the kids array points to NODE k1, whose

object member points to the :name keyword string object in the semantic frame. The

next member of NODE t2 points to “null” since it is the last topic in the list. Finally,

the previous member of NODE t2 points to NODE t1, which points to the museums

topic frame object in the semantic frame. In this case, if our current context is the

‘name object node, we can easily find the nearest encompassing clause, for example,

by following the parent pointers until we reach a node that points to a clause object.

439=
a

The order of nodes in the lists is currently determined by a depth-first traversal of

the semantic frame. However, each node also contains a depth member, which allows

an entire list to be ordered by depth, if so desired.

Constraint Specification

We have just described the data structures designed to provide complete access to

the context of a semantic frame. However, there must also be a means by which one

may easily specify the desired constraints to be tested. We have developed a simple

meta-language in which a developer may specify the constraints in a linear string

format. Appendix A contains a complete specification for this meta-language.

We will now demonstrate several example constraints using the semantic frame in

Figure 3-5 as the frame to be tested. We will refer to this frame as “the test frame.”

Consider the following simple constraint:

:topic = connection

Since :topic is a frame object in the test frame, this constraint means that the

name of the frame must be connection. If : topic were a string object, the constraint

would mean that the value of the string must be connection. In general, if the object

denoted by :<key> is a frame, the right-hand side of an expression is expected to be

the frame name. If a string object is denoted by :<key>, the right-hand side of

an expression is expected to be a string. This works similarly for integer and float

objects.

Specifying predicate values is a special case. Predicates always occur as frames,

aever as strings or numeric values. For example, in this constraint:

:pred = arrival_time

the value in the expression will always be interpreted as a predicate frame name.

In the case where no value is provided with a :<key>. the constraint indicates

existence. Consider the following:

 quantifier & :pred

This constraint indicates that the :quantifier and :pred keywords should simply

exist with any value. Since a single frame can have multiple predicates, :pred ac-

10

{c truth

‘topic {q connection
:quantifier "indef"
pred {p for

:topic {q flight
‘quantifier "def"
pred {p airline

:topic {q airline_name
:name "united" } }

pred {p arrival_time
topic {q time

‘military 1200 } } } } }

Figure 3-5: Semantic frame for “Is there a connection for the United flight arriving
at noon?” This frame is used to demonstrate constraint testing.

tually means one or more predicates. This constraint also demonstrates the use of

the conjunctive operator, &, which means that both :quantifier and :pred must

exist in the frame for the constraint to be satisfied. Table 3.1 shows some additional

simple constraints and their meanings to give an idea of the conditions that can be

specified.

The simple constraints are extremely useful, but they do not take full advantage of

:he benefits provided by the networked node structure. We can make more complex

constraints by utilizing the hierarchy operator (—>) to indicate moving either up

or down in the semantic frame hierarchy. Consider this example in which we move

down the hierarchy:

pred = airline —> (:topic = airline_name —> :name = united)

Simple Constraint Meaning)

l :quantifier quantifier does not exist in the frame

:quantifier = def :quantifier’s value contains the substring def
:pred != airline no predicate exists that has the value airline
:name = american | united the value of :name is american or united
 “imilitarv <= 1200 the value nf ‘military is less than or equal to 1200 |

lable 3.1: Some simple constraints along with their respective meanings.

<0

This constraint matches if there is a predicate with the value, airline, and within this

predicate frame, :topic exists with the value, airline_name, and within this topic

frame, the keyword, :name, exists with the value, united. We can see that this con-

straint is satisfied in the test frame.

Similarly, we can also access information at a higher level in the hierarchy. Con-

sider the following example:

:topic = flight —> (:P_PARENT = for —> :T_PARENT = connection)

This constraint indicates that the value of : topic is flight, flight's parent (:P_PARENT)

is the predicate, for, and for’s parent (:T_PARENT) is the topic, connection. This con-

straint is also satisfied in the test frame. The :X_PARENT keys not only allow us to

check the parent of a frame, but the type of the frame as well. The above constraint

would not be satisfied in the test frame if, for example, flight's parent were not a

predicate frame or if for’s parent were not a topic frame. The meta-language also

supports a generic : PARENT key, which satisfies any type.

In some cases, we may want to know what the clause name is, but we do not want

to trace through the entire ancestry to find it. Therefore, we also have a mechanism

to easily test the clause name as demonstrated by this constraint:

:topic = flight —> :CLAUSE = truth

This indicates that the nearest encompassing clause frame of the flight topic should

nave the name, truth. Again, this condition holds in the test frame.

Testing the Constraints

We have described how a developer may specify simple and complex constraints using

the new meta-language. When the new CR server is started, all of the constraints

present in the external specifications file are converted from their string format into

an easily traversable frame representation and are put into storage for subsequent

reference.

This means of constraint storage is worthy of mention since it is another improve-

ment on the old CR component by the new CR server. The old component stored all

of its constraints in arrays, which was awkward, especially for constraints with multi-

R17

[c topic
op Hn

value {c airline name }
name {c name

op n_n

value {c

argl {c american }
arg? {c %

:argl {c united } } } } }

Figure 3-6: The corresponding condition frame representation for the constraint,
topic = airline_name —> :name = american | %united.

ple arguments. The new CR server utilizes the existing GALAXY frame structures and

utilities for constraint storage, as well as for knowledge representation, eliminating

the need for additional storage and access functions that must be created for novel

data structures.

Figure 3-6 shows the corresponding condition frame for the following constraint:

:topic = airline name —> :name = american | %united

The resulting condition frame can then be sent as an argument to the boolean func-

rion, test_condition(NODE_to_test, condition frame). The first argument is a

NODE, which points to the frame to be tested. The NODE structure is passed so

that we may access parent or sibling relationships, if they happen to be specified in

a constraint.

The function traverses the condition frame and the frame to be tested, verifying

each sub-expression. Once a sub-expression evaluates to false, the traversal ceases and

the function returns false. If all sub-expressions in the condition frame are verified,

the function returns true.

3.3 The History Record

The main task of the CR server is to interpret a user’s utterance in the context of

what has previously been spoken in the dialogue. Therefore, the information stored

39)

in history, and how this information is represented, has a significant effect on what

information is accessible by the context resolution functions.

The old CR component remembers the context-resolved frame from the previous

utterance, which is typically a clause. In addition, the component maintains a series

of semantic slots, each of which holds a single object of the given semantic type, such

as source, destination, or date. These semantic slots are consulted for the purpose

of filling in any missing information in an utterance and for determining the object

to which a pronoun may refer, otherwise known as an antecedent. This mechanism

severely limits the amount of history remembered, which restricts how far back in

history the user can refer. A suitable history record should allow the user to make

references to objects introduced into the dialogue several utterances back.

Another issue to consider is the extent to which objects should be processed before

adding them to the history record. One option is to store every semantic frame in a

list, and simply traverse this list searching for an appropriate antecedent, for example.

This strategy would likely be inefficient in both memory and time, and would place

the burden of complex search on the antecedent resolution function.

An alternative strategy is to extract entities from the semantic frame, which may

subsequently be referenced, and store them in some convenient structure in the history

record. For example, all the topics introduced into the dialogue could be maintained

in a list structure. This list could then be traversed to find the most recent instance

of a specific semantic type or to find a valid antecedent. This is the strategy adopted

in the design of the new CR server.

The new CR server, like the old CR component, remembers the context-resolved

frame from the previous utterance. This frame may serve as the context in which

a spoken fragment, such as “Tomorrow,” would be interpreted. In addition, the

server maintains a bounded list of all topics that are introduced into the dialogue.

By default, every topic frame is placed into this entity list; however, the domain

developer has the power to exclude specific topics by specifying them in an external

file. The developer also has control over the number of topics that are maintained in

this list. When the maximum number of topics has been enlisted, the oldest topics

33

are displaced to prevent an unrealistically long-term memory.

The topics for this list are extracted from a hierarchical semantic frame in a depth-

first manner, so that the topmost entity in the list is the highest-level topic from the

most recent utterance. It is possible for the list to contain multiple entities that match

a given search constraint, in which case, the first match will be selected for the task

at hand.

The list just described is extensible and can be used to maintain any object, not

only topics. In future versions of the CR server, we may discover the need to maintain

lists of specific predicates or clauses, in which case this utility can easily be extended.

3.4 External Control for Function Sequence

For any system under development, the ability to easily add, modify, or remove

specific functions from a procedure facilitates experimentation with various function

sequences; additionally, it eases the debugging process. This is not the case in a system

in which the function sequence is “hard-wired” into the code. In this situation, in

order to disable a specific function, or to modify the existing sequence of functions,

the code has to be modified and then recompiled. Thus, the ideal control for function

sequence needs to exist outside the code.

The old CR component specifies its function sequence in the code and requires re-

compilation after every change. Context resolution, however, is a rather experimental

process, frequently requiring modification. Therefore, a context resolution algorithm

would benefit a great deal from an external means of function sequence control. This

is the strategy adopted by the new CR server.

The CR server utilizes an external dialogue control table to specify the order in

which its component functions be executed. This same mechanism has previously

been used successfully in the GALAXY dialogue managers, the most notable of which

is for MERCURY [44]. The developer can specify the desired order of functions in this

table along with optional keys which, when present in the current dialogue state, will

rigger the execution of a specific function.

7 2

*kdiscourse —--> check_for_user_clicks

kdiscourse —--> check _for_one_list_item

xone_list_item & !:*user_clicks --> record_single_item_as_click

Figure 3-7: Excerpt from the CR server’s dialogue control table.

Figure 3-7 shows an excerpt from the CR server’s dialogue control table. This

sequence of rules handles implicit focus. In the web-based version of GALAXY, the

user may ask for a list of “neighborhoods in Newville.” The user could then click

on a neighborhood that appeared in a displayed list and follow with, “How do I get

here from Boston?” The system will link here with the clicked neighborhood. If the

displayed list, however, showed only a single neighborhood, that neighborhood would

be implicitly in focus, as if it had been clicked by the user; but, no explicit user click

would be required to correctly interpret the follow-up query.

The keys to the left of a “~=>” can be set by the functions to the right of the

“-->” in any of the preceding rules. For example, if check for _user_clicks were

triggered, it would create the :*user_clicks key in the dialogue state only if the

aser had, in fact, input a mouse click to the system. If check _for_ one list _item

were then triggered, and it only found one item in the displayed list, it would add

the :*one_list_item key to the dialogue state. Then, according to the third rule in

Figure 3-7, if :*user_clicks did not exist in the dialogue state, the next rule would

rigger record_single_item_as_click, and so on through the sequence of rules.

3.5 Seeking the Most Satisfied Semantic Frame

The old CR component did not do any reorganization within the semantic frame

that it received from the NL server. Instead, it only handled the incorporation of

information from the history into the parsed semantic frame. In other words, the old

CR component considered the parser to be entirely correct in its placement of parsed

concepts within the semantic frame.

in contrast, the functionality of the new CR server is based on manipulating the

35

semantic frame in order to obtain the most satisfied state possible. The satisfaction

state of the semantic frame is determined by the satisfaction of its constituent objects

(i.e., clause, topic, predicate, keyword). Our system allows the domain developer

to specify a set of satisfaction constraints that indicate which objects are licensed to

occur within other object frames. Throughout the context resolution process, various

ansatisfied objects may be moved around the semantic frame until they attain a state

of satisfaction. This rearrangement is typically performed to deal with a robust parse,

when the semantic frame may contain several, as yet, unrelated fragments. A robust

parse results when the parser cannot obtain a single full parse solution, and backs off

to parsing and combining fragments [39].

The network structure, described in Section 3.2.2, allows us to access the complete

context of any object within a semantic frame. Therefore, the satisfaction of a single

object may be dependent on any combination of the other objects within the semantic

frame. We now present some examples which will serve to make this concept clearer.

Figure 3-8 shows the semantic frame for the utterance, “Is there a connection

for the United flight arriving at noon?” In order to check the satisfaction of the

individual objects within the frame, we reference the satisfaction constraints in the

external file. Some example constraints, as they may be specified by the developer,

are shown in Figure 3-9.

In the figure, the #<TYPE> = <name> heading indicates the type and name of an

object frame. Under the heading, one may specify any or all of .satisfied_topics,

.satisfied_predicates, and .satisfied keys. Under one of these subheadings

come the constraints which the topic, predicate, or key must uphold in order to be

satisfied. For example, the first condition specifies that, under a clause frame named

truth, any :topic object will be satisfied. The second condition says that, under a

topic frame named flight, the following predicates are satisfied:

|. airline if it contains a :topic named airline_name and this : topic frame con-

tains the :name key with the value, united.

arrival_time if the name of its nearest encompassing clause contains the sub-2.

string truth or is statement.

SN

{c truth

topic {q connection
rquantifier "indef"
.pred {p for

:topic {q flight
rquantifier "def"
‘pred {p airline

topic {q airline_name
:name "united" } }

pred {p arrival_time
.topic {q time

military 1200 } } } } }

Figure 3-8: Semantic frame for “Is there a connection for the United flight arriving
at noon?”

#CLAUSE = truth

satisfied_topics
:topic

#TOPIC = flight

satisfied_predicates
pred = airline —> {(:topic = airline_name —> :name = united)

pred = arrival time —> :CLAUSE = Jtruth | statement

#TOPIC = time

 satisfied keys
‘military —> (PARENT —> :PARENT = arrival time | departure_time)

Len

Figure 3-9: Externally specified satisfaction constraints. All of these constraints are
satisfied in the frame shown in Figure 3-8.

Zr

2

The third condition says that, under a topic frame named time, the key, :military

is satisfied if the name of its grandparent frame is arrival_time or departure_time. All

of these constraints are satisfied in the semantic frame, shown in Figure 3-8.

This chapter has focused on those structural aspects of the new CR server that

are significant improvements over the old CR component. We have discussed the new

framework and meta-language for the CR server, which support much more powerful

satisfaction constraints utilizing the entire context of the semantic frame. We have

discussed the history record and the information that is stored within. We drew

attention to the new mode of external sequence control used by the CR server and

the benefits thereof. All of these improvements work together to allow very generic

and powerful context resolution functionality, which is the topic of the next chapter.

A

Chapter 4

The Context Resolution Algorithm

[n the preceding chapters, we have explained the idea of context resolution and how it

is applicable to a spoken dialogue system. We have also described why an independent

server, in the GALAXY framework, was necessary for a more powerful CR component

to be realized. In this chapter, we set out to describe each specific function within

che context resolution process.

Determining the exact functions to be carried out by the CR server is a major

challenge. The specific functions in the CR algorithm are based on those utilized

in the old CR component, in which they were experimentally determined based on

collected dialogues [42]. Through the course of developing the new CR server, some

functions have been added; some have been deleted; nearly all have been significantly

modified. As described in Section 3.4, the algorithm is externally controlled via a

dialogue control table; thus, the sequential order of function execution can be easily

modified. However, the current configuration of the algorithm, shown in Figure 4-1,

has been experimentally determined to provide the best performance.

Before providing a detailed description of each context resolution function, we will

give a high-level explanation of the entire CR algorithm.

30

Parsed Semantic Frame .
and User Clicks Register

or Mouse

Feedback from Clicks

Dialogue Manager

\ a “ _
|

en Promote
Predicates 7 b J — _

— - TN

Inherit/Mask

History Using
Pragmatics

rr

Organize
Predicates

Form

Obligatory
Topic

Relationships |

—\ (

-y— ay

—Ne / _)

pr— terrecmei——

Handle

System
Initiative

| Resolve Update
Ellipsis :

= History

and Record
Fragments)

 >»

)

Organize
Topics

"™N

Resolve
References

Context-Resolved
Semantic Frame

Figure 4-1: This diagram shows the current configuration of the context resolution
algorithm. The sequential order of execution can be modified via an external dialogue
control table.

4.1 High-Level Description

The process begins when the CR server receives a semantic frame from the NL server.

This semantic frame represents the knowledge from the best hypothesis of what the

user has spoken.

In addition to speech and typed text, GALAXY’s web-based interface allows a user

to make references via mouse clicks. The CR server is able to handle references in

any of these modalities. Speech and typed text are handled similarly since speech

has been transformed to text by the time it reaches the CR server. A mouse click is

treated just as if the user had spoken the reference, except that it is made to be more

salient than any spoken reference. These clicked references will, ultimately, need to

be linked to a verbalized reference such as “here” or “this one.” This is performed

later in the reference resolution stage.

The semantic frame then passes through a “Promote Predicates” stage that serves

to simplify the frame by collapsing nested predicates, with the intent of reducing the

depth of the hierarchy. This stage makes the semantic frame shallower and easier

to traverse. The promotion of predicates may result in the rearrangement of objects

S20

within the semantic frame. The semantic network of pointers, which is newly featured

n the CR server, and which was described in Section 3.2.2, must, therefore, be

updated to remain consistent with the current and history semantic frames. This

update stage is necessary throughout the CR algorithm, whenever the current or

history semantic frame is modified, to ensure the consistency of the networks.

As mentioned in Section 1.1.3, one of the roles of the new CR server is to attempt to

reconstruct the intention of the user in the case of a robust parse or recognition error.

The “Organize Topics” stage partially addresses this issue by finding relationships for

unsatisfied topics in the current semantic frame. The satisfaction of these topics

contributes to an increase in the overall satisfaction of the current semantic frame,

which is a goal of the CR server.

Reference resolution is an extremely vital function in the CR algorithm. When a

aser says, “it,” “there,” or “those flights,” or when a user clicks on a map location,

it is the job of the “Resolve References” stage to identify the object to which the

user is referring. The CR server maintains a discourse entity list, or a list of entities

throughout the dialogue to which a user may potentially refer. When a reference must

be resolved, this list is scanned for an antecedent corresponding to the given reference.

Reference resolution is difficult due to a potentially high degree of ambiguity, which

is simple for a human to process, but is extremely challenging for a spoken dialogue

system.

In the next stage, the server establishes obligatory topic relationships as specified

in the external file. If one of these relationships does not already exist in the current

semantic frame, the CR server will hallucinate it. For example, in the MERCURY

domain, if a user were to say, “I want a first-class fare,” he actually means “I want a

first-class fare (for a flight).” Therefore, fare for flight would be an obligatory topic

relationship; whenever fare exists, flight must also exist.

Following the previous stage, the CR server continues to reconstruct a user’s in-

tention in the “Organize Predicates” stage by moving unsatisfied predicates around

the current semantic frame until as many as possible are satisfied. This, again, con-

tributes to the CR server’s goal of increasing the overall satisfaction of the current

ra
bod

semantic frame.

The propagation of information from the dialogue history is crucial in interpreting

subsequent user utterances. The “Inherit and Mask History” stage inherits specific in-

formation from the history record into the current semantic frame. Some information,

which would otherwise be inherited, is masked due to the presence of other informa-

tion already in the current semantic frame. Complex constraints for inheritance and

masking are specified in the external file.

Interpreting sentence fragments is easy in human-human communication since we

are often unconsciously aware of the context in which they make sense. A dialogue

system, however, must be explicitly provided with the proper context for interpreta-

tion. One way the dialogue manager handles this is via a system initiative. When the

dialogue manager prompts the user for a destination, for example, it sends a system

initiative frame to the CR server, anticipating that the user might respond with a

fragment such as a city name. If the user were to respond with “Boston,” the CR

server would use the system initiative frame to interpret “Boston” as a destination,

rather than as a source, for instance.

Even after it has been resolved through a system initiative, however, an input

fragment may still be a fragment, in which case it needs further processing by the

“Resolve Ellipsis and Fragments” stage. This stage resolves phrases from which a

user has omitted information. The missing information is assumed by the speaker to

be understood by the listener, or in this case, the dialogue system. This phenomenon

is prevalent when the user is responding to a system question. However, a fragment,

commonly preceded by a “what about” cue, can also occur in the absence of a prompt

from the system. Consider the query, “What is the address of John Jones?,” followed

by “What about Jane Smith?” A fragment is typically resolved by incorporating it

into the semantic frame of the previous user utterance.

The final stage in the CR algorithm involves updating the history record. A copy

of the newly context-resolved semantic frame, which represents the most immediate

historical context, is stored in the history record. It is from this frame that subsequent

user utterances will inherit information. The discourse entity list is also updated with

32

every topic frame from the semantic frame.

The context-resolved semantic frame is then sent to the appropriate domain’s dia-

logue manager. If the dialogue manager chooses to modify or update any information

in the semantic frame, it will do so and pass the frame back to the CR server to move

through the process again. This step is known as a discourse update. The algorithm

is executed just as if the frame represented the knowledge from a user’s utterance.

[t is also during this stage that a system initiative may be sent to the CR server for

subsequent use.

The context resolution functions will now be described in the same sequence in

which they are executed in the current configuration of the CR algorithm. For each

function, we will describe the functionality as it exists in the new CR server, often

providing specific examples. In many cases, we will also draw attention to the ways

in which the new CR server improves upon the capabilities of the old CR component.

4.2 Register Mouse Clicks

In WebGALAXY[30], GALAXY’s web-based graphical interface, a user may point and

click on any list item or map location and accompany it with a verbal reference such

as “this one” or “there.” The first step in the CR algorithm is to incorporate any

clicked items as potential discourse entities [1], to which the user may later refer. The

clicked items are added to this discourse entity (DE) list in temporal order, with the

earliest click at the top. Thus, clicked and uttered entities, alike, are put into the

same list for subsequent reference resolution. The details of how such references are

resolved will be explained in Section 4.6.

The old CR component also supported the resolution of clicks and, in fact, served

as the basis for this capability in the new CR server. However, whereas the old CR

component only enabled the user to make a single clicked reference per utterance (i.e.,

any further click would override the previous), the new CR server is able to handle

an arbitrary number of clicks simply by retrieving the clicks into an array. However,

the CR server obtains a user’s clicks from the hub, which stores the click indices as

A3

separate variables in the semantic frame used to communicate between the hub and

the servers. The number of click variables is currently set at two, allowing a maximum

of two clicks per utterance. It is possible to allow additional clicks by setting up a new

hub variable for each one, but there is, presently, no simple mechanism supporting

an arbitrary number. However, once the hub is able to easily adjust the quantity of

user clicks, the CR server will be equipped to handle them.

Although small, the increase from one to two clicks gives a user more reference

options, especially in the VOYAGER domain. When presented with a map, for example,

a user may ask:

“Show me directions from MIT to Harvard.”

I'he user, however, might just as easily say:

“Show me directions from here to there.”

while clicking on a starting point (MIT), and on an ending point (Harvard). Such

a request can easily be handled by the new CR server, whereas, previously, it could

not. At the present, there does not seem to be any good motivation for allowing more

than two clicks.

A user is only able to utilize mouse clicks from a graphical display. Therefore, when

a user 1s accessing a GALAXY domain solely via telephone, this function of registering

mouse clicks does not apply to, and has no effect on, the context resolution process.

4.3 Promote Predicates

The promotion of predicates is a function that was taken directly from the old CR

component. Its utility lies in simplifying, or collapsing, nested predicates within

a semantic frame. It is debatable whether this stage is truly the responsibility of

the CR server, since it could easily be a post-parsing process performed by TINA.

Nevertheless, it is currently an obligation of the CR server and will be described here.

Consider the semantic frame in Figure 4-2, in which predicate promotion has

not occurred. There are two sets of nested predicates which result from the parser:

depart-when-at and arrive-when-around. Predicate promotion serves to collapse each

4

{c statement

topic {q flight
:pred {p depart

‘pred {p when
pred {p at

‘topic {q time
‘military 1200 } } } }

pred {p arrive
‘pred {p when

pred {p around
‘topic {q time

minutes 0

‘hour 5

xm "pm" } +} } } 3}

Figure 4-2: Semantic frame for “I want a flight departing at noon and arriving around
five pm” before predicate promotion.

of these nests, bottom-up, into a single predicate for the sake of simplification. The

manner in which these nests 200 collapsed is specified in the external file, in the

form of constraints as shown in Figure 4-3. The first condition says that, when the

predicate, when, is present and either predicate, at or around, occurs within when's

predicate frame, the nested predicates will be collapsed into a single predicate, at.

Similarly, the predicate-predicate nests, depart-when and arrive-when, will collapse

into the single predicates, departure_time and arrival_time, respectively, as specified

in the second and third conditions. Figure 4-4 shows the much simpler and concise

semantic frame resulting from these predicate promotions.

4.4 Update Networks and Determine Satisfaction

Now that the semantic frame has been simplified by predicate promotion, we can tra-

verse the semantic frame and create a network of nodes as discussed in Section 3.2.2.

This will enable us to utilize context-dependent constraints in any further context

resolution processing. Once the network has been established for the semantic frame,

the satisfaction of each object within the network is determined. We also establish a

65

#PREDICATE = when

. promotions

at — > at

around —— > at

#PREDICATE = depart

. promotions

when —— > departure_time

#PREDICATE = arrive

.promotions
when —— > arrival_time

Figure 4-3:
and arrive.

Externally specified predicate promotion constraints for when, depart,

{c statement

‘topic {q flight
‘pred {p departure_time

topic {q time
:military 1200 } }

pred {p arrival_time
topic {q time

.minutes 0

hour 5

‘xm "om" } } } J

Figure 4-4: Semantic frame for “I want a flight departing at noon and arriving around
five pm” after predicate promotion.

(6

network of nodes for the history frame, which is the context-resolved semantic frame

from the previous utterance, so that our mechanism of history propagation can also

be subject to context-dependent constraints.

As the semantic frame is reorganized throughout the context resolution process, its

structure changes, rendering the network obsolete. Therefore, after any reorganization

of the semantic frame, or the history frame, an update of the corresponding network

must be executed.

4.5 Organize Topics

As mentioned earlier, we want the semantic frame to move toward as satisfied a state

as possible, as it passes through the context resolution process. The first step in

establishing this satisfied state is to make sure that the greatest number of topics is

satisfied.

The overwhelming majority of topics that result from the parser are already sat-

isfied. In the case of an unsatisfied topic, it is possible that the appropriate licensing

constraint simply does not exist in the external file (see Section 3.5). The most likely

reason, however, is that the parser was not able to fully parse the user’s utterance,

resulting in one or more topics for which no relationship could be established. In the

old CR component, the relationships between any topics found in an utterance were

established simultaneously with the parse of that utterance. In a case where a topic

was parsed, but no relationship could be found for it, the topic was simply thrown

away, as if it were never mentioned.

Consider the following user utterance:

“I want a hotel in Detroit”

and the corresponding hypothesis from the speech recognizer:

“I want a hotel and Detroit.”

in which “and” was substituted for “in.” Given that the user did, in fact, mention

Detroit and hotel, we would expect these two concepts to appear as related topics

in the parsed semantic frame. Due to the misrecognition, however, the parser could

Fr

{c identify
:topic {q hotel

:quantifier "indef" } }

Figure 4-5: Old parser’s semantic frame for a robust parse of “I want a hotel and
Detroit.” The topic, detroit, has been discarded.

(c tdentify
‘topic {q hotel

quantifier "indef"
and_topic {q city

:name "detroit" } } }

Figure 4-6: Modified parser’s semantic frame for a robust parse of “I want a hotel
and Detroit.” The “extraneous” topic, detroit, is retained as an :and_topic.

not establish any structure between the topics. Consequently, the second topic was

discarded and the semantic frame, as shown in Figure 4-5, was passed to the CR

component.

We have implemented a new mechanism in the TINA framework, whereby “extra-

neous” topics are retained in an :and_topic chain in the semantic frame. This was

accomplished via a simple modification to one of TINA’s control files. The modified

parse for “I want a hotel and Detroit,” is shown in Figure 4-6.

Under the assumption that the user intended some relevance by uttering every

topic, we believe that retaining all the topics will enable the CR server to, potentially,

reconstruct the user’s intention.

A generic :and_topic chain is shown in Figure 4-7. Every :and_topic is unsatis-

fied and we must try to rearrange each one to be in a satisfied state. Our method for

satisfying an unsatisfied topic is to find another topic within the semantic frame with

which the unsatisfied topic can form a valid relationship. These valid relationships

are specified by the developer in the external file. We search the valid relationships to

find the appropriate missing predicate, which will then serve to link the two topics.

18

{c clause

topic {gq topicl
rand_topic {q topic2

rand_topic {q topic3 } } } }

rigure 4-7: Semantic frame containing a generic :and_topic chain.

{c clause

:topic {q topicl
pred {p relation

:topic {q topic2
rand _topic {q topic3 } } } } }

figure 4-8: Semantic frame in which the :and_topic, topic2 was resolved by the
formation of the topic relationship, topic! relation topic.

4.5.1 Forward Topic Relationships

Given the semantic frame in Figure 4-7, we traverse the list of topics from the semantic

frame network to identify any possible topic relationships. We check each topic against

every topic following it in the list, until a relationship is found. For example, we look

at topicl and topic2. Since topic? is unsatisfied, we must find a relationship in which

it would be satisfied. Perhaps topic relation topic? is such a relationship. We consult

the externally specified topic relationships table to see if topic relation topic2 exists.

If it does, we create the predicate relationship, relation, reorganizing the frame to

appear as in Figure 4-8. Notice that the :and topic keyword has been changed to

topic, so that it may be marked as satisfied. If topicl relation topic2 does not exist,

we move on, checking if the relationship, topic relation topic3, is valid. Notice that if

topic2 were already satisfied, there would be no need to check for a valid relationship

and we would move on to check topic! against topic3. Once we are finished with

topicl, we move on to check topic? against every following topic, and so on.

We now present an example. Figure 4-9 shows the parsed semantic frame con-

caining an :and_topic, Figure 4-10 shows the relevant topic relationship as specified

in the external file, and Figure 4-11 shows the resulting frame after the formation of

50

the forward topic relationship, fare for flight.

4.5.2 Backward Topic Relationships

The formation of backward topic relationships differs from its forward counterpart

because of the way in which the frame must be reorganized. The process is similar,

however, in that we check a topic against every topic following it in the list, but we

search for the reverse relationship between the two topics. From our example frame

in Figure 4-7, we look at topic! and topic2. Since topic? is unsatisfied, we consult

the topic relationships table to see if topic2 relation topicl, the reverse relationship,

exists. If it does, we will create the predicate relationship, relation, to obtain the

semantic frame as shown in Figure 4-12. If it does not, we move on to check if the

relationship, topic3 relation topicl, is valid. Notice again, that if both topics were

already satisfied, we need not check for a relationship and we would continue.

If a backward topic relationship is created, we update the network’s topic list and

restart the process. The cycle will end when no more relationships can be formed.

We now present an example. Figure 4-13 shows the parsed semantic frame for

“Detroit a rental car,” which contains an :and_topic, Figure 4-14 shows the relevant

topic relationship as specified in the external file, and Figure 4-15 shows the resulting

frame after the formation of the backward topic relationship, rental_car in city.

This process of topic reorganization provides as satisfied a base as possible, on

which the remaining functions can create an even more satisfied semantic frame. To

oe sure that the semantic frame network is still consistent after this reorganization,

we perform an update following this stage in the context resolution algorithm.

4.6 Resolve References

The problem of complete reference resolution in human-computer interaction is ex-

tremely challenging, if not impossible. However, the inability of a dialogue system

to handle references such as “she,” “them.” “here.” “this town,” and “that museum”

can result in a rather unnatural and awkward dialogue. The ease and quickness with

7()

{c statement

:topic {q fare
-and_topic {q flight}
‘quantifier "indef"
pred {p fare_class

:topic "coach" } } }

Figure 4-9: Semantic frame resulting from a robust parse of “I need a coach fare uh

flight.”

#TOPIC_RELATIONSHIPS

fare for flight
J

Figure 4-10: Externally specified forward topic relationship, fare for flight, formed to
result in the frame of Figure 4-11.

{c statement

;topic {q fare
:pred {p for

:topic {q flight } }
‘quantifier "indef"
pred {p fare_class

‘topic "coach" } }

Figure 4-11: Semantic frame resulting from the formation of the forward topic rela-
tionship fare for flight.

vq

{c clause

:topic {gq topic2
pred {p relation

:topic {gq topicl}
and_topic {q topic3 } } } }

Figure 4-12: Semantic frame in which the :and_topic, topic2, was resolved by the
formation of the topic relationship, topic2 relation topicl.

which a human is able to comprehend and disambiguate such references is remarkable.

The CR server attempts to resolve two general types of references: anaphoric and

deictic. An anaphoric reference is any reference that refers to something previously

mentioned in the dialogue. This includes pronouns and definite noun phrases. A

deictic reference can be described as verbal pointing. Given the context of a map, for

example, a user may refer to a location by saying, “here” or “there.” Similarly, when

presented with a list of flights, a user may refer to a specific flight by saying, “this”

or “that one.”

In this section, we describe how the new CR server handles the resolution of

such references. The resolution algorithm relies on the maintenance of a discourse

entity (DE) list. In general, a DE list contains previously mentioned entities in the

conversation, to which a dialogue participant may later refer. An entity can be as

simple as a name such as “John,” a complex noun phrase such as “the flight from

Boston to San Francisco leaving sometime in the morning connecting in Chicago and

arriving sometime in the early evening,” or even an action situation such as “my

going home and your not liking it.” Any object, action, idea, situation, or state can

be considered an entity. The CR server, currently, considers an entity to be any topic

frame object in the semantic frame following the complete context resolution process.

The mechanism of utilizing a DE list is rather simple. Given a reference, the DE

list is linearly scanned to find an appropriate entity to which the reference is being

made, also known as the antecedent. A DE list can be ordered in several ways. The

entities may be appended to the list according to recency. This means the first entity

to be checked in a search would be the most recently occurring entity. Other systems

79)

{c identify
:topic {q city

.name "detroit"

‘and_topic {q rental_car
:quantifier "indef" } } }

Figure 4-13: Modified parser’s semantic frame for “Detroit a rental car.”

#TOPIC_RELATIONSHIPS

also< rental_car in city

Figure 4-14: Externally specified backward topic relationship, rental_car in city,
formed to result in the frame of Figure 4-15. The also< tag indicates that the
relationship is licensed both as a forward and as a backward topic relationship.

{c identify
:topic {q rental_car

.pred {p in
topic {q city

:name "detroit" } }

quantifier "indef" } }

Figure 4-15: Semantic frame for “Detroit a rental car” resulting from the formation
of the backward topic relationship rental_car in city.

73

rank the entities in order of salience. Centering theory, as described in [1], proposes

a list of potential next centers ordered by grammatical role. The most salient role is

subject, followed by object, indirect object, and any other discourse entities. Consider

the following sequence of sentences:

1. The boys gave Mary an apple.

2. She thanked them and ate it.

Figure 4-16 shows the corresponding DE list ordered by recency, following sentence

I. Each entry contains the entity name, along with gender and number features.

 top of DE list
entity: an apple
gender: neuter
number: singular
entity: mary
gender: feminine
number: singular
entity: the boys
gender: masculine
number: plural

Figure 4-16: A simple DE list ordered by recency for “The boys gave Mary an apple.”

When “she” is encountered in sentence 2, the DE list must be searched to find an

antecedent that matches the constraints imposed by “she,” namely, gender: femi-

nine and number: singular. The first entity that matches these constraints is mary.

The search for “them” must find an entity with number: plural; the gender does

not matter since there is only one third person plural pronoun. The first and only

match found is the boys with gender: masculine and number: plural. Finally, the

search for “it” only matches on an apple with gender: neuter and number: sin-

gular. Having resolved all the pronominal references, we can present the meaning

AS”

She thanked them and ate Al

Mary thanked the boys and ate (the) apple

This example demonstrates the simple process of using a DE list to resolve ref-

erences. The same method is utilized by the CR server; the structures are slightly

7p

different, however. For example, each entity is a topic frame, and all of its features

are the keys within that frame. The constraints that each reference imposes on a

potential antecedent are specified by the developer in an external file.

The ability to specify constraints on an antecedent is a new feature offered by

the CR server. In the old CR component, the handling of matching on antecedent

features was very limited and it was “hard-coded,” rendering the functionality rather

inextensible. To provide an example of these constraints supported by the new CR

server, Figure 4-17 shows the encoding of constraints that would be used to resolve

the pronouns in “She thanked them and ate it.”

#REFERENCE = she

antecedents

‘topic = person —> :gender = feminine & :number = singular

#REFERENCE = them

.antecedents

;topic = person —> :number = plural

REFERENCE = it

.antecedents

topic —> :gender = neutral & :number = singular

Figure 4-17: Externally specified antecedent constraints used to resolve the references
in “She thanked them and ate it.”

A developer’s ability to modify the antecedents for a reference can also support

user utterances in which the pragmatic rules of anaphora and antecedents are vio-

lated. For example, it is colloquially common, at least in some parts of America, for a

speaker to refer to a singular, indefinite person with the third person plural pronouns,

“they” and “them.” A situation, such as the following, is not uncommon:

“You said that someone left me a message. What did they say?”

[n this case, the normally plural pronoun, “they” refers to the singular form, “some-

one.” If a dialogue system’s reference resolution component were very strict about

75

matching on the number feature, it may not be able to make sense of this query. In

the GALAXY domains, if a developer were to foresee such speech being used in a given

domain, an antecedent rule could be added, licensing specific singular entities to be

valid antecedents for “they” and “them.”

In addition to pronouns, definite noun phrases are also references that need to be

resolved in context. A definite noun phrase is a noun quantified by a definite article

(e.g., “the”) or a demonstrative adjective (e.g., “this,” “those”). When a user says,

“Show me that museum,” there must be some museum of which the user believes

both parties are aware; otherwise, the utterance would be nonsensical. This museum

must have been the topic of conversation at some point if the user is able to refer to

it as such.

We will now consider the dialogue in Figure 4-18 between a user (U) and VOYAGER

(V), our city guide domain. To add entities to the DE list, the CR server makes a

depth-first traversal of a semantic frame, adding each topic frame to the list as it is

found.

U(1): What museums do you know in Boston?
V(1): Here is a map and a list of museums in Boston. .

U(2): Give me the Museum of Fine Arts.
V(2): Here is the Museum of Fine Arts. . .

U(3): Now show me the libraries in Cambridge.
V(3): Here is a map and a list of libraries in Cambridge.

U(4): Show me that museum again.
V(4): Here is the Museum of Fine Arts. ..

Figure 4-18: Sample dialogue between a user (U) and VOYAGER (V) to demonstrate
he use of a discourse entity list.

figure 4-19 shows the accumulated DE list following utterances U(1)-U(3). None

of the noun phrases in U(1)-U(3) needed resolving. In U(1), “museums” is indefinite

7G

and, therefore, does not refer to something previously mentioned. In U(2), “the

Museum of Fine Arts” is an unambiguous definite entity. In U(3), “the libraries in

Cambridge” is a definite noun phrase, but the added information, “in Cambridge,”

is sufficient to disambiguate this set of libraries from another. In U(4), we encounter

a definite noun phrase, “that museum,” which requires resolution since no further

information is provided in the utterance to help us disambiguate the reference. The

modifier, “again,” indicates that the entity has probably been mentioned earlier, but

this information happens not to be included in the semantic frame.

The resolution protocol is to consult the valid antecedent constraints in the ex-

ternal file and then to search the DE list for a match. The antecedent constraint for

‘that museum” is shown in Figure 4-20. We then proceed to scan the DE list starting

at the top, looking for the first matching entity. The third entity in the list is the

only one satisfying our constraint:

:topic = museum —> (:number = singular | !:number)

Thus, this topic will replace the topic we were trying to resolve. The selected an-

tecedent is removed from the DE list since it is now part of the semantic frame. When

the context resolution algorithm has been completed, the DE list is updated by ex-

tracting the topics from the semantic frame. The topic just referenced, even though

it may have been mentioned several utterances back, is now promoted to the top of

the list, and will receive higher priority as an antecedent in the following utterance.

4.7 Form Obligatory Topic Relationships

The next stage in the CR algorithm addresses the issue of a user speaking in ellip-

tical form. The phenomenon of ellipsis can be defined as speech in which a speaker

omits specific information, which he assumes to be understood by the listener. For

example, when a person asks someone for the time, he might typically say, “Do you

have the time?” The listener would most likely understand this request as “Do you

have the time (of day)?” rather than “Do you have the time (of month/year)?” The

listener makes an assumption (probably unconsciously) about the unspoken relation-

top of DE list

{q library
;context 2

;quantifier "definite"
‘number "pl"
pred {p in

:topic {q town
‘name "cambridge" } } }

{gq town
;context 2

:name "cambridge" }

{q museum
;context 1

:quantifier "definite"
:name "Museum of Fine Arts" }

{q museum
:context O

number "pl"
pred {p in

:topic {q town
-:name "boston" } } }

{q town
context O

name "boston" }

Figure 4-19: The accumulated DE list following user utterances U(1)-U(3) in Figure
4-18. The list is ordered by depth-first topic retrieval.

#REFERENCE = :topic = museum —> :quantifier = definite | demonstrative

.antecedents

;topic = museum —> (:number = singular | !:number)

Figure 4-20: Externally specified antecedent constraints used to resolve the definite
noun phrase in “Show me that museum again.”

 NX

ship between “time” and “day.” This is the process we are trying to realize in the

CR server.

Using the above hypothetical example, if a user were to ask the system for the

time, the CR server would receive “time” as the only topic. The server would assume

that whenever it saw the topic, “time,” it would interpret this as “time of day”

and it would physically add the topic, “day,” to the semantic frame, creating the

relationship, “time of day.” The resulting semantic frame might appear as in Figure

+21

{c identify
‘topic {gq time

pred {p of
topic {q day } } } }

Figure 4-21: Hypothetical semantic frame for “Do you have the time?” The informa-
tion, “of day,” is assumed by the CR server and is added to the parsed frame.

In the CR server, the developer has total control as to which topic relationships

should be considered obligatory. Maintaining our goal of domain-independence, these

celationships are specified in an external file. We will now demonstrate how an oblig-

atory topic relationship is created.

A prime example of an obligatory topic relationship is fare for flight in the MER-

CURY flight reservation domain. In this domain, a fare is always considered to be for

some flight, which means that anytime the fare topic occurs, the flight topic must

also occur. When a user says, “What is the fare?” the corresponding parse frame in

Figure 4-22 is sent to the CR server.

{c wh_question
topic {q fare

quantifier "which_def" }

Figure 4-22: Semantic frame for “What is the fare?”

When the obligatory topic relationships stage in the algorithm is encountered, the

70)

server scans the semantic frame’s topic list and, for each topic, checks if there is an

obligatory topic relationship specified in the external file. When the table is checked

for fare, the obligatory topic relationship fare FOR flight is found as shown in Figure

4-97

#TOPIC_RELATIONSHIPS

fare FOR flight

Figure 4-23: Externally specified obligatory topic relationship, fare for flight. The
obligatory feature is encoded in the capitalized relationship, “FOR.”

Each obligatory topic relationship is also licensed as a regular topic relationship

as described in Section 4.5. The capitalized predicate, FOR, indicates that the topic

relationship is obligatory.

Once an obligatory topic relationship constraint has been identified, the semantic

frame is checked to see if the topic relationship already exists. The relationship, “fare

for flight,” would already exist if, for example, the user had explicitly spoken both

topics, as in “What is the fare for the flight?” If an obligatory topic relationship

already exists, nothing needs to be done. However, if it does not exist, we create, or

hallucinate, the required predicate and topic to satisfy the relationship. In doing this,

the CR server is assuming that the user simply omitted the information for the flight

from the utterance knowing, whether consciously or not, that this information was

understood by the system. In order to form this relationship, we create a predicate

frame named for, which contains a topic frame named flight. This frame is shown in

Figure 4-24.

{p for

topic {q flight } }

Figure 4-24: Hallucinated predicate and topic frames to satisfy the obligatory topic
relationship, fare for flight.

()

This predicate frame is then added to the topic frame in Figure 4-22. Figure 4-25

shows the semantic frame following this addition to result in the relationship, fare for

Aight.

{c wh_question
topic {q fare

quantifier "which_def"
pred {p for

topic {q flight } } } }

Figure 4-25: Semantic frame resulting from the formation of the obligatory topic
relationship fare for flight.

This stage of forming obligatory topic relationships takes place following reference

resolution because some compulsory relationships may be satisfied by the resolution

of a specific reference. The external function sequence control in the new CR server is

very useful in this situation, allowing the order of the reference resolution and oblig-

atory topic relationships functionality to be easily modified and the results, thereof,

to be examined. We will now present an example of this situation.

If a user were to say, “What is its aircraft?,” with the intention that “its” be the

possessive pronoun for some flight, the semantic frame, shown in Figure 4-26, would

be sent to the CR server.

{c wh_question
topic {q aircraft

pred {p for
:topic {q pronoun

-name "it" } } } }

Figure 4-26: Semantic frame for “What is its aircraft?”

Assume that the obligatory topic relationship, aircraft for flight, exists. If the

formation of obligatory topic relationships took place before reference resolution, the

CR server would hallucinate for flight since it does not already exist in the semantic

frame. The pronoun would likely be resolved to flight in the following stage, thus,

<}

satisfying the obligatory topic relationship, aircraft for flight, making the CR server’s

hallucination in the previous stage unnecessary and semantically incorrect. If the

references are resolved first, however, the pronoun in this example will likely be re-

solved to flight, satisfying the obligatory topic relationship, aircraft for flight. Now,

when the obligatory topic relationships are checked, the CR server will not need to

hallucinate aircraft for flight.

This stage only deals with elliptical fragments, from which the user has omitted

topics. It will not handle such ellipses as “What about (flights arriving at) four

thirty?” and “What about (flight) four thirty? (Is it also a non-stop flight?)” in

which there are multiple interpretations of the utterance given the context of the

dialogue. The handling of this type of ellipsis will be described later in Section 4.11.

Since this stage in the CR algorithm may result in modification of the semantic

frame, the network of pointers must be updated before proceeding to the next stage.

4.8 Organize Predicates

This stage is similar to the topic reorganization stage described in Section 4.5; how-

ever, this stage deals with the reorganization of predicates to put the semantic frame

in the most satisfied state possible. This stage in the new CR server deals with reor-

ganizing the semantic frame and, thus, has no equivalent in the old CR component.

It is an improvement, nonetheless, since an unsatisfied predicate resulting from a ro-

bust parse can potentially be moved to a location in the semantic frame where it is

satisfied.

As explained in Section 3.5, each predicate is satisfied in the semantic frame

wherever the developer licenses it. It is most likely that the developer will specify these

constraints to match where the parser places the predicates; however, the developer

does have the power to specify how the CR server should rearrange the predicates in

a parsed semantic frame, according to the satisfaction constraints in the external file.

One example of this concerns the utterance, “I want a first-class fare from Atlanta

to St. Louis.” In other words, the speaker wants a first-class fare for a flight from

RD

Atlanta to St. Louis. The parser will place source and destination under the fare

topic, as shown in Figure 4-27, because there is no flight topic present, but a fare

does not really have a source or destination—a flight does.

{c statement

.topic {q fare
pred {p source

topic {q city
:name "atlanta" } }

{p destination
‘topic {q city

‘name "saint louis" } } }

Figure 4-27: Semantic frame for “I want the fare from Atlanta to Saint Louis?”

This is reflected by the satisfaction constraint in the external file, as shown in

Figure 4-28. This constraint says that source and destination predicates are satisfied

under the flight topic. This constraint is not specified for the fare topic, so source

and destination are unsatisfied under the fare topic.

#TOPIC = flight

.satisfied_predicates

.pred = source

pred = destination

Figure 4-28: Externally specified predicates that are satisfied under the flight topic.

Therefore, if there were a flight topic, source and destination could be moved from

the fare topic to the flight topic. The CR server uses its obligatory topic relationships

function to hallucinate the flight topic. Then, during this stage of organizing predi-

cates, the entire list of predicates is scanned and the satisfaction of each is assessed.

Finding source and destination to be unsatisfied under the fare topic, the server will

move them under the flight topic. The resulting frame will appear as shown in Figure

1-29.

23

{c statement

:topic {q fare
pred {p for

:topic {q flight
pred {p source

:topic {q city
:name "atlanta" } }

pred {p destination
:topic {q city

name "saint louis" } } } } } }

Figure 4-29: Semantic frame for “I want the fare from Atlanta to Saint Louis?”
following the hallucination of for flight and the movement of source and destination
from the fare topic to the flight topic.

Since the semantic frame is reorganized during this stage, the network of node

pointers must be updated so it remains consistent with the semantic frame.

4.9 Inherit and Mask History

The next stage is a very important one in the process of context resolution in any

conversation. Consider the dialogue in Figure 4-30 between a customer (C) and a

travel agent (A), in which the customer is trying to book travel between the mainland

and an island off the coast.

Throughout this dialogue, A is acquiring and remembering travel-related details.

For example, before A(5), A has gathered and remembered the name of the island

(Good Weather Island), the dates of departure (July 1) and return (July 5), the mode

of travel (airplane), and the airport of departure (Metro). In C(5), when C tells A that

he no longer wants to take the plane, A must decide what information to remember

and what information to forget. Since the only change is to the travel mode, A should

remember information that is independent of travel mode, and reconfirm or forget all

information that is dependent on the travel mode. In A(6), we can see that A has

chosen to remember the travel mode, the name of the island, and the dates. Notice

chat the plane travel mode has been overridden by the boat travel mode, and that

4

A(1): What island are you traveling to?
C(1): Good Weather Island.

A(2): What date are you leaving for Good Weather Island?
C(2): July first and I'm coming back on the fifth.

A(3): Would you like to take a plane or a boat to the island?

C(3): I'll take a plane.

A(4): Which airport do you want to leave from?
C(4): How about Metro Airport.

A(5): Okay, you want to take a plane from Metro Airport to Good Weather
[sland on July first and you want to return on July fifth.
That will cost five hundred dollars.

C(5): On second thought, I'll take a boat.

A(6): Okay, you want to take a boat to Good Weather Island on July first
and you want to return on July fifth.

Which port do you want to depart from?
C(6): Port Louise.

Figure 4-30: Sample dialogue between a customer (C) and a travel agent (A), dis-
playing inheritance and masking phenomena.

airport is no longer relevant since a boat departs from a port. The boat travel mode

has made the travel agent forget the airport detail of the travel.

This stage in the CR algorithm deals with the issues just described in the sample

dialogue. The CR server must determine what information from the dialogue history

should be incorporated (inherited) into the current context for the user’s utterance,

and what information should be forgotten or overridden (masked). This is accom-

plished via domain-dependent inheritance and masking constraints, which are speci-

fied by the developer in an external file, thus, maintaining the domain-independence

of the CR server code.

The old CR component handles the inheritance and masking of information from

nistory, but its power is restricted by its limited constraint specification. The meta-

R5

language designed for the new CR server, described in Section 3.2.2, allows much more

detailed constraints and significantly increases the power of inheritance and masking.

The relevance of these detailed constraints to each of inheritance and masking will

se explained in the corresponding section below.

4.9.1 Inheritance

I'he constraints for inheritance are specified by the developer in an external file. In

the above sample dialogue, the equivalent CR server constraints may appear as in

Figure 4-31.

#TOPIC = travel_plan

inherited_predicates
pred = destination

pred = departure_date
pred = return_date

pred = travel_mode

pred = departure_airport
pred = departure_port

Figure 4-31: Externally specified inheritance constraints for the travel_plan topic.

These constraints indicate that, when the topic of the dialogue is travel_plan, the

following list of “inherited _predicates” are licensed to be propagated from the dialogue

history.

The new meta-language supports very specific inheritance constraints. If the

developer were to choose to only remember a destination predicate if it was an island

and it had the name Good Weather Island, the following detailed constraint might be

specified:

pred = destination —> (:topic = island —> :name = Good Weather _Island)

T'his would mean that any destination predicate from the history that did not satisfy

this constraint, would not be inherited into the context of the current semantic frame.

 6G

A constraint of this specificity is not possible in the old CR component; thus, its

inheritance capabilities are limited.

While the old CR component only deals with the inheritance of predicates, the

new CR server supports predicate inheritance, keyword inheritance, and even a form

of topic inheritance. The new CR server divides its inheritance into three types:

1. inheritance from an antecedent

2. inheritance from the previous utterance

3. inheritance of obligatory information

The first type of inheritance in the CR algorithm is from an antecedent selected

during the reference resolution stage. When an antecedent frame is chosen, it is tem-

porarily stored in the history record, and an empty frame, with the antecedent’s name,

is created in the current semantic frame to replace the reference. Then, during the

inheritance stage, predicates and keywords are inherited from the stored antecedent

frame into this newly created frame. This type of inheritance is useful for incorpo-

rating features of the selected antecedent, which may have been mentioned several

atterances back.

The second type of inheritance is from the context-resolved semantic frame of

the previous utterance. This frame represents the most immediate historical context

of the dialogue, including specific information propagated from earlier utterances.

In this type of inheritance, the CR server simply scans the topic list in the current

semantic frame and, for each topic, locates a single topic, in the previous utterance’s

frame, from which it may inherit. If it cannot find a topic with the same name, it

backs off to finding a topic of the same semantic class. The inheritance constraints

are consulted and, if valid, the information from this history topic is propagated.

This same process is repeated for the top-most clause in the current semantic frame,

so that both clause and topic frames may inherit information.

The third type of inheritance deals with a form of ellipsis described earlier in

Section 4.7. For example, if a user were to simply say, “Show me,” perhaps he

had previously mentioned a restaurant, a museum, or any landmark that might be

"
”

displayed; and he assumes that the system will understand what is meant. The

utterance, “Show me,” results in a display clause. The system can then search the

history record for a landmark, which is capable of being displayed. This landmark

is called an obligatory topic, since the display clause is meaningless without it. If no

such landmark can be found in the history, nothing is done, and the CR algorithm

continues, leaving this issue to be handled by the dialogue manager.

Earlier, in Section 4.7, the obligatory topic relationship was described. The obliga-

tory topic relationship is a topic-pred-topic construct that must exist in the current

semantic frame. If it does not exist, the complete relationship is hallucinated by the

CR server. In contrast, an obligatory topic is enforced under a clause frame, result-

ing in a clause-topic construct. Also, if an obligatory topic does not exist, it will

not be hallucinated by the CR server.

In a similar manner, the CR server also supports obligatory predicates under

clauses and topics. For example, if a user simply said, “The distance.” The devel-

oper may choose to specify obligatory predicates for this clause, such as from and

to, since a distance must be between two locations. Figure 4-32 shows how such a

constraint specification may appear.

Ey

#CLAUSE = distance

obligatory_predicates
pred = from -—> :topic = location | landmark | roadway
pred = to —> :topic = location | landmark | roadway

Figure 4-32: Externally specified obligatory predicate constraints for the distance
clause.

There is, of course, a design decision made in implementing these obligatory topics

and predicates. If a user were to say, “Show me,” it is possible that choosing the most

recently mentioned landmark to display may not be what the user intended. An

alternative would be to initiate a clarification subdialogue to resolve the ambiguity.

The system could, for example, reply, “What landmark would you like me to show

°Q

you?” Nevertheless, if the system is incorrect in its decision, the user will typically

be more explicit in his request and the system will probably be able to capture the

user’s intention correctly.

4.9.2 Maskin r

It is possible to completely prevent the propagation of specific information simply by

omitting it from the inheritance constraints in the external file. In some contexts,

however, it is desirable for a specific predicate or keyword to be propagated, while in

others, it is best to discard it. The mechanism of masking is combined with inheritance

to handle this situation.

Recall the travel agent/customer dialogue above. The agent wants to propagate

he destination_airport information, which is relevant since the travel_mode is plane.

When the customer switches travel_mode to boat, however, the destination_airport

is no longer relevant and the agent now wants to forget that information; in other

words, the agent wants to mask destination_airport. The CR server’s constraint for

such masking would appear in an external file, as shown in Figure 4-33.

#PREDICATE = departure_airport

masked_by
-travel_mode = boat

Figure 4-33: Externally specified masking constraint for the departure_airport predi-
cate.

This constraint signifies that a predicate named departure_airport in the history

will not be incorporated into the parsed semantic frame if the parsed semantic frame

contains the keyword, :travel_mode, and it has the value, boat. The old CR compo-

nent cannot handle such a masking constraint since there is a value imposed on the

predicate; the old constraint specification language is too limited to handle such an

Issue.

RG

We will now show an example of inheritance and masking in the MERCURY flight

reservation domain. Consider the dialogue in Figure 4-34 between a user (U) and

MERCURY (M).

U(1): I want to go from Boston to Denver tonight, connecting in Cleveland.
M(1): Sorry, I could not find any such flights.

U(2): Is there a nonstop flight?
M(2): I have three nonstop flights from Boston to Denver tonight. ..

Figure 4-34: Sample dialogue between a user (U) and MERCURY (M), displaying the
masking of connection_place by flight.mode = “nonstop”

In U(1), the user provides source, destination, date, and connection city con-

straints for a flight. This knowledge is represented in a semantic frame as shown

in Figure 4-37. In M(1), MERCURY notifies the user that no such flights could be

found. In U(2), the user modifies his constraints, requesting a nonstop flight instead

of a connecting one. The knowledge from U(2) is represented in the semantic frame

shown in Figure 4-38.

The inheritance procedure begins by scanning the topic list of the current semantic

frame, which, in this case, is the frame in Figure 4-38. The topic list is obtained

via a depth-first traversal, resulting in flight and non-stop. The first topic, flight,

is considered. Looking at the history frame, in this case Figure 4-37, we find the

topic from which flight is most likely to inherit. An exact topic name match and

exact parent name match is the most preferred, followed by only an exact topic name

match, and then by a topic name with the same semantic class as flight. We find a

matching topic name, so the flight topic from history is the topic from which we will

nherit.

There are four predicates in this topic frame: source, destination, month_date, and

connection_place. The inheritance constraints table is consulted and all predicates are

found to be inheritable by the topic, flight, as shown in Figure 4-35.

AN

#TOPIC = flight

inherited predicates
pred = source

pred = destination

pred = month_date

pred = connection_place

Figure 4-35: Externally specified predicates that the flight topic may inherit.

We first consider the source, destination, and month_date predicates. Since none of

these predicates already exists in the current semantic frame, each one may potentially

he inherited. We check each one, in turn, to see if it will be masked by some other

predicate that already exists in the current semantic frame. After consulting the

masking constraints table, no maskers are found for source, destination, or month_date

and all three predicates are inherited.

#PREDICATE = connection_place

.masked_by
pred = flight_ mode —> :topic = nonstop

figure 4-36: Externally specified masking constraints for the connection_place predi-
cate.

We finally consider the connection_place predicate. It does not already exist in

the current semantic frame, so we move on to check for maskers. After consulting the

masking constraints table, we find that a flight_mode predicate with a “nonstop” topic

in the current semantic frame will mask a connection_place predicate from the his-

tory. This is specified in the masking constraints table as shown in Figure 4-36. This

makes sense since the presence of both predicates, flight-mode = nonstop and connec-

tion_place, in a semantic frame would incur conflict. By masking connection_place,

the user’s most recent intention receives the focus, and the system understands, “I

g®

want a nonstop flight tonight from Boston to Denver,” in which source, destination,

and month_date are inherited and connection_place is masked. Figure 4-39 shows the

resolved semantic frame following inheritance and masking.

4.9.3 Pragmatic Verification

The inheritance mechanism utilized by the old CR component had previously inher-

ited, for example, predicates from the history without acknowledging the validity of

the relationship between the inheriting topic and any topic of the predicate being

inherited. Thus, the old CR component recently began using a utility that queries

a database to verify the pragmatics of an inheritance before it actually occurs. This

utility is currently only used in the JUPITER weather domain, but it has proven to be

successful for its intended purpose.

A developer can specify relationships that need pragmatic verification in the ex-

ternal file. For example, a city and state combination needs to make sense; i.e., the

combination, “San Francisco, Vermont,” is invalid, as is the city and country combi-

nation, “Bratislava, England.” Thus, when an inheritance will result in city in state

or city in country, pragmatic verification is required. Figure 4-40 shows how these

constraints are specified in the external file.

We will now present an example of how this pragmatic verification functions.

Consider the dialogue in Figure 4-41 between a user (U) and JUPITER (J), the weather

information system.

The user is trying to find out the weather in various cities. In U(1), the user

contributes the city, “Chicago,” and the state, “Illinois,” to the dialogue. There

is no dialogue history, so there can be no inheritance to pragmatically verify. In

U(2), the user mentions the city, “Springfield.” This overrides the city, “Chicago,”

from the history. Next, the server determines whether “Illinois” should be inherited.

A database pragmatics check on city = Springfield and state = Illinois verifies the

city-state combination and the inheritance is allowed.

This utterance also illustrates one technique that JUPITER uses to handle am-

biguous city names. The city, “Springfield,” exists in many states, including Illinois,

09

{c intention

:topic {q flight
‘pred {p source

topic {q city
‘name "boston" } }

‘pred {p destination
‘topic {q city

:name "denver" } }

pred {p month_date
topic {q date

:name "tonight" } }
pred {p connection_place

topic {q city
‘name "cleveland" } + } t

Figure 4-37: Semantic frame for “I want to go from Boston to Denver tonight, con-
necting in Cleveland.”

(c truth

topic {q flight
pred {p flight_mode

‘topic "nonstop" } } }

cigure 4-38: Parsed semantic frame for “Is there a nonstop flight?” This utterance
follows that in Figure 4-37.

{c truth

topic {q flight
pred {p source

rtopic {q city
:name "boston" } }

pred {p destination
:topic {q city

:name "denver" } }

pred {p month_date
:topic {q date

‘name "tonight" } }

pred {p flight_mode
:topic "nonstop" } }

Figure 4-39: Semantic frame for “Is there a nonstop flight?” following inheritance
and masking from Figure 4-37.

33

#DATABASE_REQUEST = geography@sql

verify
city in state
city | state in country

Figure 4-40: Externally specified relationships requiring pragmatic verification.

J(1): Can you tell me the weather in Chicago, Illinois?
J(1): The weather in Chicago in Illinois is. . .

U(2): How about in Springfield?
J(2): The weather in Springfield in Illinois is. . .

U(3): How about in Detroit?
J(3): The weather in Detroit is.

Figure 4-41: Sample dialogue between a user (U) and JUPITER (J), displaying prag-
matic verification of city and state to allow or to prevent inheritance.

Massachusetts, and Missouri. JUPITER resolves this ambiguity by inheriting the state,

‘Ilinois,” from the history record. !

In U(3), the user mentions the city, “Detroit.” This overrides the city, “Spring-

field,” from the history. Next, the server determines whether “Illinois” should be

inherited. A database pragmatics check on city = Detroit and state = Illinois returns

no results, signifying that the pair is invalid; the inheritance will be prevented, and

“Illinois” is discarded from the immediate context.

Since inheritance and masking may significantly modify the structure of the cur-

rent semantic frame, the network for the current semantic frame must be updated

rollowing this stage.

If there were no state in the history record to inherit, the dialogue manager would resort to a

clarification subdialogue with the user to disambiguate the city.

4

4.10 System Initiatives

In order for a conversational dialogue system to be practical, its components must be

configured for a specific domain such as flight reservations, hotel bookings, or theater

reservations. This allows the recognizer and grammar of the system to concentrate on

a select vocabulary, since an unconstrained lexicon would be huge, and understand-

ing the infinite number of ambiguous utterances would be immensely difficult. For

example, the utterance, “I want to go tomorrow,” in a domain-generic system could

carry, literally, hundreds of meanings. If this same utterance were issued in a theater

reservation domain, however, the system would know that the person, most likely,

wanted to attend some theater event tomorrow.

Nevertheless, ambiguity does not disappear once the focus is on a single domain.

If a user were to say, “April first,” in a flight reservation domain, he may intend

either to depart or to arrive on April first. However, if the system had just asked

the question, “What date will you be returning?,” April first could be unambiguously

understood as a return date. In addition, responses such as “Yes” and “No” can only

be understood in the context of the system’s question. For example, “Shall I book

this flight?” “Yes.”

This phenomenon is handled jointly by the dialogue manager and the CR server

via a system initiative. In order to know “what on April first” or “Yes, what’ the

prompting question issued by the system must be known. The prompts are deter-

mined according to the dialogue strategy, which is controlled by the dialogue manager.

Before the system prompts a user, it sets up a context frame, or system initiative

frame, for the subsequent user utterance, anticipating a fragment response. This

rrame is sent to the CR server, which stores it in the history record. The system then

replies to the user with the prompting question. If the user responds with an ambigu-

ous fragment, the CR server checks if the fragment is a valid response to the system

initiated question. If it is valid, the CR server has succeeded in disambiguating the

fragment, and incorporates it into the current semantic frame or the history seman-

ic frame. (This incorporation into the history semantic frame will be explained in

35

Section 4.11.) If the user’s utterance is not a valid response to the system’s prompt,

the CR server will attempt to interpret the utterance in a later stage.

In order to clarify this process, we will present an example. Consider the short

dialogue in Figure 4-42 between a user (U) and MERCURY (M). The user provides a

destination in U(1). According to its dialogue strategy, MERCURY will next prompt

the user for a source. The dialogue manager creates a system initiative frame for

source and sends it to the CR server, where it is stored in the history record. MER-

CURY then queries the user in M(1). In U(2), the user gives a fragment response,

‘Boston,” which is intended to be the departure city.

U(1): IT want a flight to Dallas.
M(1): Where does the flight depart from?

U(2): Boston.

Figure 4-42: Sample dialogue between a user (U) and MERCURY (M) to illustrate how
a system wnitiative is used to process an ambiguous fragment response.

Figure 4-43 illustrates how the CR server disambiguates this fragment and in-

corporates it into the current context. The first box shows the spoken fragment,

‘Boston,” and its corresponding semantic frame, as input to the “Handle System

Initiative” function. This function finds the source system initiative frame in the

history record and it must test if “Boston” is a valid response. The system developer

is in control of assigning valid user responses to a given system initiative; they are

specified in the external file. Figure 4-44 shows the valid user responses to the source

system initiative. This constraint indicates that either a city or an airport is a valid

response. Since “Boston” is a city, it is a valid response and it will be incorporated

into the system initiative frame. The output of “Handle System Initiative” shows

the resulting semantic frame, which indicates that “Boston” has been interpreted as

a source, “from Boston,” via the system initiative.

Notice that the system initiative frame in this example is a predicate. In such

J6

-

"Boston"

(q city
‘name "boston"}

Va

Handle System Initiative
system_initiative
rinitiative_frame {p source}
:injitiative_name "source" }

{Cc

\

"rom Boston"

{(p source

topic {g city
:name "boston" } }

Hr———

Resolve Ellipsis and Fragments
{c intention

topic {g flight
:pred {p destination

topic {gq city
:name "dallas" } } } }

_{

"T want a flight to Dallas from Boston"

Ny

{c intention
topic {g flight

pred {p destination
topic {g city

:name "dallas" } }
pred {p source

topic {g city
name "boston" } } } }

J

figure 4-43: This diagram shows how a fragment response is disambiguated in the
“Handle System Initiative” stage, and is further incorporated into the dialogue con-
text via the “Resolve Ellipsis and Fragments” stage of the CR algorithm.

07

#SYSTEM_INITIATIVE = source

responses
city
airport

Figure 4-44: Externally specified valid responses to the source system initiative.

a case, the input fragment may become partially disambiguated, but it will still be

a fragment, and it must further be incorporated into the semantic representation.

However, it is also possible for a system initiative frame to be a clause. In this

situation, the transformed input would no longer be a fragment, and it would not

require further resolution.

If the output of the “Handle System Initiative” stage requires further processing,

this will be accomplished in the “Resolve Ellipsis and Fragments” stage of the CR

algorithm. Continuing the above example, this latter stage will produce the final

context-resolved intention, “I want a flight to Dallas from Boston,” as shown in the

figure. The mechanism for this incorporation will be described in Section 4.11.

Again, since this stage may have resulted in the modification of the current se-

mantic frame, as well as the history semantic frame, both the current and history

semantic networks need to be updated upon completion of this stage.

4.11 Ellipsis and Fragments

Many subtleties contribute to the naturalness of a human-human dialogue, one of

which is the ability to communicate using incomplete sentences, or fragments. An

ellipsis is an utterance from which the speaker has omitted information, which he

assumes to be understood by the listener. Consider a travel agent who is requesting

information from a customer to book a flight to Tahiti for him. If the customer says,

“I want to leave tomorrow,” his intention is that he wants to fly on a plane to Tahiti

tomorrow. The customer assumes that “flv on a plane to Tahiti” is understood by

HQ

the travel agent, eliminating the need to explicitly say, “I want to fly on a plane to

Tahiti tomorrow.”

A fragment can be thought of as a special case of ellipsis, in which the omitted

information is the entire remaining context of the sentence. If the customer says,

“Tomorrow,” he assumes the travel agent knows that tomorrow is when the customer

wants to fly on a plane to Tahiti.

In the case of ellipsis or a fragment, a human listener is, remarkably, able to hear

such a construct and interpret it instantly and correctly using, not only, the context

of the ongoing dialogue, but also world knowledge, semantic relationships, inference,

and common sense.

In a spoken dialogue system, in particular our GALAXY systems, there is limited

access to the above-mentioned resources. Therefore, rather simple, but powerful,

mechanisms are used to interpret both ellipses and fragments. It is common for

systems to interpret ellipses and fragments by incorporating them into the semantic

representation of the previous utterance [42, 1, 25]. The CR server accomplishes

this in two ways. An ellipsis is typically resolved by inheriting the “understood”

information from the history record during the inheritance and masking stage of

context resolution. A sentence fragment is commonly resolved by splicing it into the

context-resolved semantic frame stored in the history record.

There is a challenge associated with splicing a fragment into the semantic frame

of the history; that is, what if there are multiple locations into which the fragment

may be spliced? Consider the sample dialogue in Figure 4-45 between a user (U) and

VOYAGER (V).

U(1) results in the context-resolved semantic frame, shown in Figure 4-46. This

frame is then stored in the history record.

U(2) is an elliptical fragment; the procedure is to splice it into the semantic frame

of the previous user utterance. Figure 4-47 shows the parsed semantic frame for U(2).

The resolution protocol is to scan all the topics in the history frame, Figure 4-46

in this example, searching for the most appropriate topic to be replaced by the new

fragment. The history topics are prioritized as follows, in terms of which one should

9

U(1): Show me a neighborhood in Boston.
V(1): Here are the neighborhoods in Boston. ..

U(2): What about Cambridge?
V(2): Here are the neighborhoods in Cambridge. . .

Figure 4-45: Sample dialogue between a user (U) and VOYAGER (V), displaying the
ase of semantic constraints for ellipsis resolution.

{c display
topic {q neighborhood

‘pred {p in
topic {gq town

‘name "boston" } } } }

figure 4-46: Semantic frame for “Show me a neighborhood in Boston.”

be replaced:

1. a topic that has the same name

2. a topic that has the same semantic class

It is important to note that “neighborhood” and “town” are in the same semantic

class of region. Therefore, there is ambiguity in terms of the topic to replace. However,

the protocol says, if only one topic exists with the same name as the fragment, that

topic will be chosen for replacement. This decision overrides the ambiguity created by

the presence of several topics with the same semantic class. Nevertheless, if multiple

topics exist with the same name, the fragment is ambiguous as to how it should be

ncorporated into the dialogue context, and no replacement is made. Likewise. if

{Cc what_about
topic {gq town

name "cambridge" } }

igure 4-47: Semantic frame for the elliptical phrase, “What about Cambridge?”

{00

multiple topics with the same semantic class exist, and none has the same name as

the fragment, no replacement is made.

In the given example, only one topic exists with the same name as the fragment,

i.e., town. Therefore, the ambiguity is overridden and town is chosen as the topic to

replace. The resolved frame is shown in Figure 4-48.

(c display
‘topic {q neighborhood

:pred {p in
:topic {gq town

name "cambridge" } } } }

figure 4-48: Semantic frame after ellipsis resolution of “What about Cambridge?”

In the case that the fragment cannot be resolved unambiguously, it is passed on to

the dialogue manager. The dialogue manager may acknowledge this ambiguity and

adjust its dialogue strategy accordingly.

When the new CR server considers which topic to replace in the history seman-

sic frame, it scans the topic list obtained from the semantic network. The old CR

component is not able to correctly handle the above sequence of utterances, because

it does not consider all the topics in the history semantic frame due to the limited

oreadth-first search it performs to locate the topics. Consequently, the best topic to

be replaced in the history semantic frame may never even be considered, simply due

to the incomplete scan of the frame. The semantic network in the new CR server,

however, allows easy access to all topics in the semantic frame, so the ideal topic to

replace may be identified.

An ellipsis or fragment resolution may modify both the current and history se-

mantic frames. Therefore, the corresponding semantic networks need to be updated

in order to remain consistent.

101

4.12 Update History Record

The last stage of context resolution involves updating the history record. The history

record has been referenced throughout this chapter, without much detail given to how

it is maintained. This section will describe the maintenance of the history record.

The history record is a major source from which the CR server obtains the context

in which to interpret user utterances. There are two major components to the history

record. The first is the discourse entity list, which, potentially, contains every topic

mentioned in the conversation. The developer has the power to prevent specific topics

from being stored in the entity list; these topics are listed in the external specifications

file. The developer may also impose a bound on the length of the entity list. The

second component is the context-resolved semantic frame of the previously spoken

atterance.

In order to update the discourse entity list, the topic frames from the current

semantic frame must be extracted and appended to the existing list, which may

already contain other entries from earlier in the dialogue. The topic frames are

identified during a depth-first traversal of the current semantic frame; each topic

frame is appended to the discourse entity list as it is found. This updated list can

then be consulted to resolve references in subsequent utterances.

The final step is to store the current context-resolved semantic frame in the history

record, in its entirety. It is from this frame that information is inherited and masked

by subsequent utterances. This stored frame also serves as the frame into which a

subsequent sentence fragment may be spliced.

4.13 Feedback from the Dialogue Manager

When the context resolution process has been completed, the resolved semantic frame

is sent to the dialogue manager for the appropriate domain. The dialogue manager

may then modify the semantic frame, if necessary, and/or set up a system initiative.

One instance in which the dialogue manager would modify the semantic frame is

Xe

in the case of a relative temporal reference (e.g., next Friday). The dialogue manager

will convert this reference into an absolute date and send the modified semantic frame

back to the CR server. The modified semantic frame will proceed through the CR

algorithm as if it were the parsed semantic frame representing a user’s utterance.

The absolute date would then be incorporated into the dialogue history, overriding

the relative date spoken by the user.

The dialogue manager may also set up and send a system initiative to the CR

server in this stage. The CR server will store the system initiative in the history

record and will utilize it in processing the next user utterance.

Heretofore, we have described each function in the CR algorithm in great de-

tail, while providing several examples. This algorithm is used by the major domains

ander development by SLS, including JUPITER, MERCURY, ORION, PEGASUS, and

VOYAGER. These rather complex domains utilize hierarchical frames for knowledge

representation. In the next section, we describe how the CR server is being used to

support context resolution in simpler domains, typically developed using the SPEECH-

BUILDER software tool, which utilizes an alternate knowledge representation—a flat

iist of key-value pairs.

4.14 Key-Value-Based Context Resolution

[n addition to supporting context resolution in the previously mentioned domains,

which utilize hierarchical frames for knowledge representation, the CR server is also

being used to support context resolution in domains featuring a simpler key-value

KV) based knowledge representation. This context resolution capability for KV

pairs is novel in the CR server; it was not supported by the old CR component.

This functionality was originally designed to be used by SPEECHBUILDER, a web-

based software tool allowing the non-expert developer to build a spoken dialogue

interface to an application. SPEECHBUILDER uses the existing GALAXY servers for its

speech and language technology requirements, but it additionally provides utilities

go simplify the creation of a new domain for a non-expert developer. The KV-based

103

knowledge representation utilized by SPEECHBUILDER also facilitates various knowl-

edge and constraint specifications. This KV-based knowledge representation requires

KV-based context resolution and it has allowed us to investigate the potential of

context resolution based solely on a flat list of keys and values.

SPEECHBUILDER is intended to be novice-friendly and, thus, requires as simple a

constraint specification as possible. The context resolution constraints are currently

automatically generated as a default. The developer may then easily and quickly

modify the constraints to increase the complexity of the domain, if so desired.

While work continues on SPEECHBUILDER, SLS has also made progress on a

generic dialogue manager [38], which can handle simple dialogue strategies in any

domain. The KV-based context resolution approach has been favored over the hier-

archical frame-based version to be used in conjunction with this dialogue manager.

While the more complicated hierarchical frames provide much greater power than the

KV pairs, the latter are a more intuitive way for the non-expert developer to specify

constraints. Simplicity and easy comprehension of constraint specification is a prime

goal of SPEECHBUILDER, the generic dialogue manager, and the new CR server.

KV-based context resolution is not yet as complex as that supporting the hierar-

chical frame representation, but work is continuing to increase the functionality. The

KV-based context resolution process consists of inheriting a KV pair from history

into the current semantic frame, if the key is not already present in the frame. This

inheritance can also be prevented, or masked, by other keys already present in the

current frame. The server is also able to determine if a user’s utterance is the reply

to a system initiative. Each of these phenomena will now be explained.

4.14.1 KV-Based Inheritance

The inheritance mechanism is rather simple. The function will scan the list of keys

obtained from the network representing the history semantic frame. Each KV pair will

potentially be inherited into the current semantic frame. An external table contains

nformation about which keys may be inherited by a specific clause. Consider the

dialogue in Figure 4-49.

104

U(1): What is the phone number for Sam McGillicuddy?
S(1): The phone number for Sam McGillicuddy is 123-4567.

U(2): How about Pam O’Grady?
S(2): The phone number for Pam O’Grady is 765-4321.

Figure 4-49: Sample dialogue between a user (U) and a faculty info domain (S),
displaying inheritance using a KV-based knowledge representation.

The semantic frame for U(1) is shown in Figure 4-50. The frame name, eform, is

simply the name given to a frame utilizing the KV-based knowledge representation.

No information is inherited into this frame since no history record exists yet. Once

processed, however, this semantic frame is entered into the history record. When

U(2) is spoken, the semantic frame in Figure 4-51 is created by the parser and is sent

to the CR server. The server consults the external inheritance table to check which

keys may be inherited given that the clause of the current semantic frame is request.

The relevant inheritance constraints appear in Figure 4-52. Each licensed key will be

inherited from the frame in Figure 4-50 into the frame in Figure 4-51 if the key is not

already present in the latter frame. Only :property will be inherited, resulting in

the context-resolved frame, shown in Figure 4-53.

4.14.2 KV-Based Masking

The masking mechanism works to prevent the propagation of keys, which would

otherwise be inherited, from the history. The presence or absence of specific keys

or KV pairs in the current semantic frame may cause other keys to be masked. For

example, consider an alternate U(2) in the above dialogue: “How about O’Grady?”

The user still wants Pam O’Grady’s phone number, but he omitted the first name,

since people often refer to a person using only a surname. If inheritance took place,

without any masking, the resolved frame would represent, “What is the phone number

for Sam O’Gradv?” If we impose the constraint that :first_name be masked from

10%

{c eform

:clause "request"
:property "phone number"
:first_name "Sam"

:last_name "McGillicuddy"
domain "LCSinfo" }

Figure 4-50: KV-based semantic frame for “What is the phone number for Sam
McGillicuddy.”

{c eform

:clause "request"
:first_name "Pam"

‘last_name "0’Grady"”
domain "LCSinfo" }

Figure 4-51: KV-based semantic frame for “How about Pam O'Grady?”

#CLAUSE = request,

inherited _and_satisfied keys
:property
first_name
‘last_name

Figure 4-52: Externally specified inheritable keys for the request clause.

{c eform

:clause "request"
property "phone number"
:first_name "Pam"

:last_name "O’Grady"
-domain "LCSinfo" }

Figure 4-53: KV-based semantic frame for “What is the phone number for Pam
O'Grady?” after inheriting the :property key.

| NR

history if the current semantic frame contains :last_name, as shown in Figure 4-54,

then the semantic frame in Figure 4-55 will result. This will be interpreted as desired,

“What is the phone number for O'Grady?” In the case that there is more than one

O’Grady in the database, the dialogue manager may adjust its strategy to handle

this ambiguity.

#KEY = :first_name

.masked_by
Jast_name

Figure 4-54: Externally specified masking constraint for the :first_name key.

{c eform

.clause "request"
‘property "phone number"
:last_name "0’Grady"
‘domain "LCSinfo" }

cigure 4-55: KV-based semantic frame for “What is the phone number for O'Grady?”
after inheriting :property and masking :first_name.

4.14.3 KV-Based System Initiatives

System initiatives were described earlier in Section 4.10. A system initiative is a

frame sent to the CR server by the dialogue manager, which sets up the context in

which the following user utterance will be interpreted. For example, if a user were to

say, “June third,” in a hotel reservation domain, he could be referring to either the

check-in date or the check-out date. The system initiative tells the CR server how

that date should be interpreted.

This small set of context resolution functions has worked well in the simple do-

mains explored to date. In the future, we want to extend the capabilities of these

domains, however, making them more complex and able to handle phenomena such

17

as reference resolution and, perhaps, the reconstruction of a user’s intention in the

case of a robust parse. Current and future work will focus on researching various al-

gorithms and structures, pursuing the best way to realize such extended functionality

given the KV-based nature of this knowledge representation.

4.15 Summary

[n this chapter, we have described each context resolution function in detail. We

have given several examples of how the new CR server resolves a user’s utterance in

context and, in some cases, how this resolution is an improvement over that offered

by the old CR component.

In the next chapter, we will describe the method used to evaluate the CR server.

We will also present evaluation results, which demonstrate how the new CR server

performed in comparison to the old CR component.

108

Chapter 5

Evaluation

The performance of the CR server is difficult to assess. Nearly every stage comprising

the CR algorithm could certainly be evaluated as a single entity. In fact, there are

several systems which concentrate solely on what is a single stage in our CR algorithm,

most notably, reference resolution. Such a system could be evaluated by running it on

some input and having it output a mapping from each reference to its corresponding

referent. Then, the output could simply be compared to an accepted mapping of each

reference and a percentage of correct resolutions could be obtained.

In evaluating the new CR server, however, we chose to take a holistic approach.

The goal of the CR server is not to perfect the performance of any single function;

rather, the output of the collective context resolution process is what should be as-

sessed. While each function is made to be very powerful and to perform as optimally

as possible, our evaluation centered on the collaboration between these functions to

produce a resolved semantic frame most closely reflecting the user’s intention.

The purpose of the new CR server is to improve upon and to completely replace

the old CR component. In order to achieve this goal, the CR server must successfully

handle context resolution in all of the existing GALAXY domains, namely JUPITER,

MERCURY, ORION, PEGASUS, and VOYAGER. The old external files containing context

resolution constraints had to be translated into the different syntax utilized by the

new CR server. This task was completed, and minimal testing was carried out, for all

domains. Since MERCURY is the most complex domain currently under development,

100

we chose to perform an extensive evaluation in this flight reservation domain. To do

so, the performance of the new CR server was evaluated by comparing its resolved

output to that of the old CR component.

As we just mentioned, the old context resolution constraints had to be translated

into the new specification. While the power of the new constraint specification is

much greater than that of the old one, the equivalent constraints were represented in

the new file so that the performance could be compared at a common level.

If we had used the power of the new constraint specification to its full potential, the

new CR server would be able to handle situations impossible for the old component.

The intention was to verify that the new CR server performed at least as well as the

old component, and that had to be done using comparable constraints. We did, in

fact, find that the CR server performed as well as the old component in most cases,

better in several cases, and worse in only a couple of cases. These results will be

discussed later. First, we present the details of the evaluation procedure.

5.1 Procedure

Evaluation was performed offline on user utterances contained in log files from real

user telephone interactions with GALAXY in the MERCURY flight reservation domain.

This offline processing could be accomplished by using the batchmode server in con-

junction with pre-recorded data in log files.

5.1.1 Batchmode

The purpose of the batchmode server is “to generate inputs to a system during offline

processing” [18]. This batchmode process is depicted in Figure 5-1. A batchmode run

differs from an online run in that the N-best list of hypotheses is obtained from a

log file, rather than from the recognizer; the differing portion of an online process is

shown dimmed in the figure.

I'he ability to bypass the audio server and recognizer facilitates the processing

and evaluation of, potentially, hundreds of utterances contained in a large number

110

Logfile

Utterances

Hypotheses
Replies !
DB Results |,J

—— 1

Be

 Audio

 ~~ Server
\

wre.V...... N-Best List

 Speech :°f Hypotheses Language
; . Serres

' Recognizer: Parser

Context
Resolution

Key-Value
Paraphrase

Ne

N-Best List of Hypotheses
‘what about boston"
'what about austin"

. "what about houston*

Parsed Semantic Frame
ic what_about

‘pred {p destination
‘topic {q city

‘name "boston" } } }

~ Context-Resolved Frame

= intention

:topic {q flight
:pred {p destination

‘topic {q city
:name “boston” } }

pred {p source
:topic {q city

:name "denver" } } } } !

KV String
"clause: intention topic: flight destination: ROS source: DEN

F:

Dialogue
Manager

Dialogue State
{c dialogue_state

source "DEN"

destination "BOS"
domain "Mercury" }

Figure 5-1: This diagram shows the system flow during an offline batchmode eval-
uation, in which the hypotheses are obtained from log files. An online mode would
obtain the hypotheses from the speech recognizer; this path is shown dimmed.

of dialogues. In such understanding components of a spoken dialogue system, the

recognition performance is not always relevant. This is the case for context resolution

evaluation, so we chose to circumvent the audio and recognition servers, obtaining

the necessary inputs from log files processed by the batchmode server.

5.1.2 Log Files

A log file contains information that is generated by the dialogue system as a live

interaction is occurring. A developer is able to control the content of a log file by

il]

listing specific elements in the hub program [43], which guides communication among

che various GALAXY servers. A developer may choose, for example, that the system

output the parsed semantic frame, the context-resolved semantic frame, or even the

results for each database query. Processed dialogues that store the database results

in the log file may be evaluated at any future time, without the danger of a dialogue

becoming incoherent due to different results obtained from the dynamically updated

database.

5.1.3 Unit of Evaluation

The unit of evaluation was a key-value (KV) string. Figure 5-1 shows how GENESIS-II

produces a KV string for each utterance following the parsing and context resolution

stages. A KV string is simply a string representation of the knowledge within a

semantic frame. The KV string following context resolution represents the knowledge

parsed from the user’s utterance as well as any information propagated from the

history record. The KV string is then used by the dialogue manager to determine the

dialogue state and, consequently, the system’s next move in the dialogue.

5.2 Experiment

The same dialogue system was run twice. The first system, henceforth known as “the

old system,” used the old CR component for context resolution, while the second

system, henceforth “the new system”, used the new CR server for context resolution.

I'he corresponding KV strings from each run were compared. If the two KV strings

were identical, the new CR server was counted as having performed equivalently to

the old CR component on that utterance. Every remaining pair of KV strings differed

in some way. Each difference was placed into one of four categories in terms of how

the new system performed on the corresponding utterance: neutral, better, worse, or

excluded.

A difference was designated neutral, or insignificant, if the old and new systems

resulted in the same dialogue state. A consequence of this is that the replies to the user

112

after the given utterance would be the same in both systems. A difference in the KV

strings could result in the same dialogue state if, for example, the information passed

to the dialogue manager by the CR server were overridden due to the longer-term

knowledge maintained by the dialogue manager. It is also possible that the differing

information was simply not significant enough to cause a change in the dialogue state.

A difference was designated better if the new system performed better than the

old system on that particular utterance. A difference could be better if it captured

more information spoken by the user, or if it more correctly grasped the intention of

the user by placing specific information into more appropriate semantic relationships.

In a similar manner, a difference was designated worse if the old system performed

better than the new system on that particular utterance.

Since the evaluation systems were run on input from log files, which reflected the

output of the old system, the user replies to any system queries were fixed. If the

context resolution in the new system were such that the system posed a different

query than the corresponding one in the log file, the user’s invariant reply would po-

tentially be illogical. This would often instigate a nonsensical exchange of utterances

in the evaluation system. When such a situation occurred, it was no longer possible

to reliably compare the KV strings. These differences were excluded from the eval-

uation since the performance of neither system could confidently be assessed on the

corresponding utterances.

The CR server was developed on a total of 60 dialogues, containing a total of 867

utterances. The development process involved the modification of the CR algorithm,

and slight changes to the functions therein, to be run on the dialogues until all KV

differences were shown to be neutral or better. The development results are shown in

Table 5.1.

The CR algorithm was then frozen and tested on a set of 30 dialogues, containing a

total of 586 utterances. The test results, also shown in Table 5.1, were very promising.

Ten (1.7 percent) of the total test utterances were excluded, leaving 576 utterances.

Both the old and the new system performed identically on about 98.6 percent of these

utterances, about 1.0 percent were handled better by the new system, and less than

(13

Set| Utterances | Better |Neutral| Worse| Excluded |
Dev | 87 | 15 | 27 | 0 | 16 _
Test | 586 |6|23 2 10

Table 5.1: Results showing the number of key-value differences between the CR server
and the old CR component on 60 dialogues in the development set and on 30 dialogues
In the test set.

0.4 percent were handled better by the old system.

Most interesting is how the new system was able to perform better than the old

system on several utterances; some examples will soon be given. First, however, it

must be explained why, and under what circumstances, the old system performed

better than the new system and if, in fact, this is really significant.

5.3 Worse Performance

A new feature of the parser, as explained in Section 4.5, is to retain “extraneous”

topics from a user’s utterance in an :and_topic chain in the semantic frame. This is

merely a design decision, but one needs to consider whether this information should

truly be retained, especially given the fact that much of the information in the se-

mantic frame could be incorrectly hypothesized by the speech recognizer.

The following example spotlights this situation, in which a hypothesized topic

forms a relationship and the truly spoken topic gets buried in the parse and is, ulti-

mately, unresolved.

Consider this utterance, spoken by a user:

“Edinburgh to Amsterdam KLM UK United Flight twenty eighty two”

and the corresponding hypothesis from the speech recognizer:

“denver and amsterdam k 1 m airline as flight twenty eighty two”

The NL server then generates a semantic frame for the hypothesized utterance

and sends it to the CR server. The semantic frame generated by the new parser is

shown in Figure 5-2.

I'he hypothesized :topic city, denver, is part of a relationship, flight ambiguous

city, and it is satisfied. This is the same relationship that the truly spoken :and_topic

i14

{c what_about
:topic {q flight

pred {p flight_number
‘topic 2082 }
ambiguous
‘topic {q city

name "denver"

;and_topic {q city
‘name "amsterdam" } } }

pred {p airline
:topic {q airline_name

‘name "k 1 m" } } }

Figure 5-2: The new system’s semantic frame for “denver and amsterdam k 1 m airline
as flight twenty eighty two.”

{c display
‘domain "Mercury"
;topic {q flight

‘pred {p flight_number
“topic 2082 }
ambiguous
;topic {q city

‘name "denver"

-and_topic {q city
'name "amsterdam" } } }

pred {p airline
:topic {q airline_name

:name "k 1 m" } }

pred {p source
:topic {q city

:name "EDI" } }

{p destination
topic {q city

name "AMS" } } }]

Figure 5-3: The new system’s semantic frame for “denver and amsterdam k I m airline
as flight twenty eighty two” after context resolution. The :and_topic, amsterdam,
failed to be resolved.

15

city, amsterdam, would like to form with flight. However, the knowledge represen-

tation is such that only a single flight ambiguous X relationship can exist. The CR

server fails to resolve the :and_topic, as shown in the resolved semantic frame in

Figure 5-3.

In the new parser, the first fragment topic is chosen as the user-intended topic

and any subsequent such topics are deemed “extraneous.” This forces us to wonder

whether the reverse would be a more optimal parsing strategy, that is, whether the

most recently mentioned fragment topic should be viewed as user-intended, and any

previous such topics as “extraneous.” Such a modification would improve performance

in this example, but could potentially be detrimental for other utterances. Further

research is required to determine which parsing strategy is more optimal.

The old system utilizes the old parser, which generates the parsed semantic frame

as shown in Figure 5-4. The typical behavior of the old parser is to discard all but the

most recently mentioned fragmentary topic, for which it establishes a relationship in

the semantic frame [39]. This is based on the theory that the most recently mentioned

fragmentary topic is possibly a correction and, therefore, should be viewed as the user-

intended topic. Consequently, the parser did not retain the “extraneous” :topic city

denver, and amsterdam correctly forms the flight ambiguous city relationship, even

after context resolution. The resolved semantic frame is shown in Figure 5-5.

The KV strings for the old and the new system are shown in Figure 5-6. Notice

that the only difference is the value of the city key which represents an ambiguous

city. The system reply to this utterance is actually the same in both systems since the

ambiguous city difference was not significant enough to change the dialogue strategy.

This KV difference was not counted as neutral, however, since unresolved informa-

tion in an :and_topic could become quite a significant problem. This issue must,

therefore, be addressed in future versions of the CR server.

There was another KV difference designated worse. This difference, however, was

not the result of differing functionality between the two systems. Rather, it was the

result of an incomplete inheritance specification in the external file for the new CR

server, which could be fixed simply by adding the necessary constraint.

116

{c what_about
‘topic {q flight

pred {p flight_number
:topic 2082 }

‘pred {p ambiguous
:topic {q city

‘name "amsterdam" } }

{p airline
topic {q airline_name

‘name "k 1m" } } } }

Figure 5-4: The old system’s semantic frame for “denver and amsterdam k 1 m airline
as flight twenty eighty two.”

{c display
:domain "Mercury"
‘topic {q flight

pred {p flight_number
:topic 2082 }

pred {p ambiguous
;topic {q city

:name "amsterdam" } }

pred {p airline
topic {q airline_name

‘name "k 1 m" } }

pred {p source
topic {q city

:name "EDI" } }

pred {p destination
topic {q city

‘name "AMS" } } } }

Figure 5-5: The old system’s semantic frame for “denver and amsterdam k 1 m airline
as flight twenty eighty two” after context resolution.

(17

New system KV string:
clause: display destination: AMS source: EDI city: DEN

flight number: 2082 airline: KL

Old system KV string:
clause: display destination: AMS source: EDI city: AMS

flight number: 2082 airline: KL

Figure 5-6: KV strings for “denver and amsterdam k 1 m airline as flight twenty eighty
two” after context resolution in the new and old system.

5.4 Neutral Performance

The majority of KV differences in both the development and the test sets were desig-

nated neutral. Most of them were not very interesting since the differences were very

slight and insignificant, such as a small variation in the confidence score for a specific

concept, or the insertion or deletion of a single concept, such as :quantifier which

is more for featural completeness than for determining the course of the dialogue.

Since there are more interesting phenomena occurring in those utterances for which

‘he new system performed better, attention will be focused on that area.

5.5 Better Performance

There are several utterances for which the new system performed better than the

old system. We will briefly describe some general areas of improvement observed

throughout the development and evaluation of the CR server. This will be followed

by an elaboration on two specific and outstanding example utterances for which the

new CR server outperformed the old CR component.

5.5.1 General Improvements

The sequence of function execution in the old CR component was such that, in some

circumstances, information that should not have been propagated from the history

was, in fact, inherited. The sequence in the CR server was modified to appropriately

118

handle this issue. The new sequence is also specified as generally as possible, so that

it may, potentially, correctly handle some unforeseen situations.

Another oversight in the old CR component was that information from the history

could be multiply inherited into the current semantic frame. This caused problems in

some instances. The new CR server handles this by marking each piece of information

inherited from the history. In this way, the current semantic frame may only inherit

an unmarked piece of information from the history record.

The processing of the old CR component was such that, in a few circumstances,

the current semantic frame would be left containing multiple sources, destinations, or

other necessarily singular concepts. The functionality of the new CR server, especially

the functions that reorganize unsatisfied objects within the semantic frame, tended

to produce “clean” frames, in that there was only one instance of each necessarily

singular concept.

The new CR server supports the resolution of multiple mouse clicks, whereas the

old CR component could only handle a single click. Our dialogue systems currently

allow a user to make two click references, which especially facilitates asking for di-

rections in the VOYAGER city guide domain. When presented with a map, a user

may, for example, click on two map locations and say, “How do I get from here to

there?” The new CR server is able to resolve such an utterance, whereas the old CR

component could not. This feature was not evaluated, but it is a feature that we hope

will be useful in future research.

We have just presented some general improvements of the new CR server over the

old CR component. In order to demonstrate the improved power of the new server,

however, we now present two specific examples of context resolution taken from the

MERCURY evaluation dialogues.

5.5.2 Example 1

In the first example, the user spoke the following utterance:

“I would like to fly from Detroit, Michigan on November sixth to San Francisco, California.”

The speech recognizer produced the following hypothesis:

10

“i would like to fly from detroit michigan on november sixth in san francisco california”

in which “to san francisco” was substituted with “in san francisco.” Already, there is

an error by the recognizer that will, in the best case, be fixed by the parser. However,

both the old and the new parser produce the semantic frame shown in Figure 5-7, in

which the nonsense relationship, city in city, has been established.

The old CR component is unable to resolve the city in city relationship, so the

relationship is left alone. This resolved frame is shown in Figure 5-8. The only mod-

ifications to the parsed frame were the promotions of the predicate chains depart-

source and depart-when-month_date. When the dialogue manager receives this re-

solved frame, it is unable to identify san francisco as a meaningful concept, due to

the city in city nesting, so the system replies with “What city does the flight arrive

in?” It would appear to the user that the system was oblivious to the fact that the

destination had already been supplied.

Given the parsed semantic frame, in Figure 5-7, the new CR server identifies that

the city in city relationship is not valid and that san francisco is an unsatisfied topic.

The “Organize Topics” stage tries to find a relationship in which this city topic will

be satisfied. The server consults the external file and establishes the flight ambiguous

city relationship for the san francisco topic. The new resolved semantic frame is

shown in Figure 5-9.

When the dialogue manager receives this semantic frame, it discovers the ambigu-

ous city, san francisco. Since a destination city is still required, the dialogue manager

realizes that this ambiguous city could be the intended destination city. In its dis-

course update, the dialogue manager sends a destination predicate to be incorporated

into the history record. The dialogue manager also sends an airline predicate in the

discourse update which must come from longer-term information maintained by the

dialogue manager. Following the discourse update, the semantic frame in Figure 5-10

represents the reconstructed intention of the user, salvaged by collaboration between

the CR server and the dialogue manager.

From this example, it can be seen how the new CR server performs better than

the old CR component by going deep into the semantic frame and verifying that every

[20

{c statement

topic {q flight
‘pred {p depart

:pred {p source
:topic {q city

‘name "detroit"

‘pred {p in
topic {q city

:name "san francisco"

‘pred {p in
topic {q state
:name "california" } } } } } }

pred {p when
:pred {p month_date

:topic {q date
:day_number 6
‘month "november" } } } } }

Figure 5-7: The old and new systems’ parsed semantic frame for “i would like to fly
from detroit michigan on november sixth in san francisco california.”

{c statement

:topic {q flight
:pred {p source

:topic {q city
:name "detroit"

pred {p in
:topic {q city

name "san francisco"

pred {p in
:topic {q state

:name "california" } } } } } }

:pred {p month_date
:topic {q date

:day_number 6
month "november" } } } }

Figure 5-8: The old system’s resolved semantic frame for “i would like to fly from
detroit michigan on november sixth in san francisco california.”

121

{c statement

topic {q flight
:pred {p source

topic {q city
:name "detroit" } }

pred {p month_date
:topic {q date

:day_number 6
:month "november" } }

pred {p ambiguous
‘topic {q city

:name "san francisco"

pred {p in
:topic {q state

‘name "california" } } } } } }

Figure 5-9: The new system’s resolved semantic frame for “i would like to fly from
detroit michigan on november sixth in san francisco california.”

{c statement

;topic {q flight
:pred {p destination

:topic {q city
:name "san francisco"

:pred {p in
:topic {q state

:name "california" } } } }

pred {p source
:topic {q city

:name "DTW" } }

pred {p airline
:topic {q airline_name

:name "NW" } }

pred {p month_date
:topic {q date

.month "NOV"

:day_number 6
:day "tuesday" } } } }

Figure 5-10: The new system’s semantic frame after discourse update for “i would
iike to fly from detroit michigan on november sixth in san francisco california.”

(22

topic and predicate is satisfied in its current location. If it is not satisfied, it will be

moved to a more appropriate frame.

5.5.3 Example 2

[n this example, the user spoke the following utterance:

‘Like to get some pricing information from Dayton to Los Angeles.”

The speech recognizer produced the following hypothesis:

“what is the price the information from cleveland to los angeles”

in which Dayton was substituted with cleveland, among other, more innocuous, er-

rors. The old parser generates a semantic frame, as shown in Figure 5-11, in which

source and destination are placed under the fare topic. The context-resolved frame

is identical to the parsed frame. The dialogue manager can handle this semantic

representation; however, it does not represent, semantically, what the user intended.

The user asked for information, which does not even appear in the parsed frame.

Semantically, source and destination are properties of a flight, not a fare. The new

CR server attempts to more accurately portray these relationships in the semantic

frame.

{c wh_question
topic {q fare

quantifier "which_def"
pred {p source

topic {q city
:name "cleveland" } }

{p destination
topic {q city

:name "los angeles" } } } }

pred

figure 5-11: The old system’s parsed and resolved semantic frame for “what is the
price the information from cleveland to los angeles.”

The parsed semantic frame generated by the new parser is shown in Figure 5-

12. Notice that information is retained as an :and_topic. The predicates, source

and destination, have been placed under the information topic, but they may be

123

reorganized in the appropriate stage of the CR algorithm. Several steps are taken to

achieve the final resolved semantic frame. To demonstrate the transformation, the

semantic frame after each relevant stage will now be shown.

The first relevant stage is “Organize Topics” in which the backward topic rela-

tionship, information for fare, is formed. The resulting frame is shown in Figure

5-13.

The next relevant stage is “Form Obligatory Topic Relationships” in which the

obligatory topic relationship, fare for flight, is formed. The resulting frame is shown

in Figure 5-14.

At this point, the predicates, source and destination, are unsatisfied under the

information topic. Therefore, the next, and last, relevant stage is “Organize Predi-

cates” in which source and destination are moved from the information topic to the

flight topic where they are satisfied. The resulting semantic frame, shown in Figure

5-15, now represents what the user intended, “the information for the fare for the

Hight from (cleveland) to los angeles.” While cleveland is not the city spoken by

the user, it is correct as far as the CR server is concerned. In order to correct the

city, the system must rely on the correction strategies of the dialogue manager. One

possibility would be for the dialogue manager to use the recognition confidence scores

of the cities to determine that cleveland is likely not the city spoken by the user. The

dialogue manager may then confirm the city with the user.

5.6 Summary

The results of this evaluation are encouraging. The new CR server has achieved the

goal of performing at least as well as the old CR component on the overwhelming

majority of tested utterances. The CR server has also shown improved performance

on a promising number of utterances in the flight reservation domain.

Another goal of the CR server was to provide a minimally equivalent mechanism

for context resolution in all of the existing GALAXY domains. The groundwork has

peen laid for this, but extensive testing has only been performed in the MERCURY

24

{c wh_question
:topic {q fare

‘quantifier "which_def"
rand_topic {q information

quantifier "def"
pred {p source

topic {q city
:name "cleveland" } }

pred {p destination
‘topic {q city

:name "los angeles" } } } }

Figure 5-12: The new system’s parsed semantic frame for “what is the price the
information from cleveland to los angeles.”

{c wh_question
topic {gq information

‘quantifier "def"
pred {p for

topic {q fare
:quantifier "which_def" }

pred {p source
topic {q city

:name "cleveland" } }

.pred {p destination
;topic {q city

‘name "los angeles" } } }

F

f

Figure 5-13: The new system’s semantic frame for “what is the price the informa-
sion from cleveland to los angeles” after forming the backward topic relationship,
information for fare.

125

{c wh_question
topic {gq information

:quantifier "def"
‘pred {p for

:topic {q fare
:quantifier "which_def"
pred {p for

:topic {q flight} } } }
pred {p source

:topic {gq city
:name "cleveland" }

pred {p destination
“topic {q city

:name "los angeles" } } }

}

t

Figure 5-14: The new system’s semantic frame for “what is the price the information
from cleveland to los angeles” after forming the obligatory topic relationship, fare for
flight.

{c wh_question
topic {q information

:quantifier "def"
pred {p for

:topic {q fare
quantifier "which_def"
pred {p for

1topic {q flight
:pred {p source

:topic {q city
:name "cleveland" } }

pred {p destination
:topic {q city

:name "los angeles" } } } } } } } }

Figure 5-15: The new system’s completely resolved semantic frame for “what is the
orice the information from cleveland to los angeles” after moving source and destina-
tron to the flight topic from the information topic.

126

domain. Nevertheless, given the increased capabilities that the new CR server puts at

our disposal, powerful modifications to any domain’s context resolution functionality

can ideally be accomplished solely by adding detailed constraints to the external file.

| D7

1928

Chapter 6

Summary and Future Work

6.1 Summary

Throughout this thesis, we have presented the new Context Resolution (CR) server

for the GALAXY conversational system framework. The purpose of the CR server is

twofold—to attempt to reconstruct a user’s intention in the case of a recognition error

or a robust parse, and to interpret an individual utterance in context.

This section will summarize the work presented in the previous chapters, beginning

with the definition of context resolution and ending with the results obtained from

our evaluation of the CR server.

6.1.1 Context Resolution

In Chapter 1, we defined context resolution to be the process by which one dialogue

participant interprets another participant’s utterance. Several sources, including the

dialogue history, physical and temporal context, inference, shared world knowledge,

and common sense, may be used to produce a successful interpretation.

In terms of our spoken dialogue systems, the CR server uses the semantic repre-

sentation of the previous utterance, a discourse entity list of previously mentioned

topics, world knowledge via databases, and developer-specified constraints to inter-

pret a user’s utterance in context.

(20

We motivated the new CR server with the goals of domain-independence, ex-

tensibility, intention reconstruction, and support for a key-value-based knowledge

representation. Several sample dialogues were presented, demonstrating the necessity

for the functionality provided by the new CR server.

In Chapter 2, we described the related studies of dialogue and discourse, the history

of discourse processing in conversational systems, as well as how context resolution

can be considered a subset of discourse processing.

6.1.2 Structural Improvements

In Chapter 3, we described several improvements to the framework supporting context

resolution in the new CR server. The first of these is the creation of the NETWORK

and NODE structures, along with a new meta-language, to allow constraints to be

specified on the basis of the complete context of a semantic frame. This lets the

developer specify detailed constraints, which is not possible in the old CR component.

This improvement also supports our notion of semantic satisfaction, in which each

object in a frame is either satisfied or unsatisfied. This increased power, for example,

allows one to specify that a given predicate is satisfied only if it has a specific parent.

Another improvement is the modified history record. This structure contains the

semantic representation of the previous user utterance, as well as a bounded list

of all topics introduced throughout the dialogue. This list is subsequently used for

reference resolution. The old CR component stores the semantic representation of

the previous utterance, along with selected concepts in semantic slots; however, no

extended history is maintained. The new CR server allows the user to make references

to entities introduced into the dialogue from several utterances back.

The third major improvement is external function sequence control of the CR

algorithm by a dialogue control table. This previously existing mechanism in the

GALAXY framework allows the sequence of function execution within the context

resolution process to be modified externally, without recompilation of the code. This

facilitates the development of the CR server, due to the very experimental nature of

obtaining the proper order within the CR algorithm.

130

In Chapter 4, we began to describe each function in the context resolution process

in detail. Each function contributes to at least one of the overall goals of the CR

server—intention reconstruction or interpretation in context.

6.1.3 Intention Reconstruction

As mentioned above, one goal of the CR server is to attempt to reconstruct a user’s

intention in the case of a recognition error or a robust parse. This attempt is based

on the notion of semantic satisfaction, in which all objects within a semantic frame

representation are either satisfied or unsatisfied, according to developer-specified con-

straints. In the event of a recognition error, which the parser fails to resolve, the

semantic frame representation of a user’s utterance may contain predicates in loca-

tions where they are not satisfied. The CR server acknowledges the dissatisfaction

of these predicates and attempts to move each one to a location where it will be

satisfied.

The formation of topic relationships is another strategy used by the CR server to

reconstruct a user’s intention. A robust parse often results in several topic fragments.

The old parser would retain only one of a set of such topics from a robust parse,

discarding the others. This strategy is potentially problematic, since a meaningful

concept may easily be lost. We made a slight modification to the parser, resulting

in the retention of all topic fragments in a robust parse. The CR server, based on

the notion that these individual topics may somehow be linked in a meaningful way,

attempts to form relationships between them by consulting valid topic relationships

specified in the external file.

If either of these strategies is successful, the CR server will have accomplished

its goal of reconstructing the intention of the user. The old CR component did

not possess any ability to handle such recovery from a potential recognition error or

robust parse. It is our hope that this new strategy will create a more robust context

resolution component, and a more natural dialogue for the user.

(3]

65.1.4 Interpretation in Context

The context in which an individual utterance is interpreted is comprised of several

elements. These may include the successful reconstruction of a user’s intention, the

semantic representation of the previous utterance, a discourse entity list of topics in-

troduced through the course of the dialogue, as well as world knowledge via databases.

Many of the functions comprising the new CR server are based on the function-

ality provided by the old CR component. While its overall functionality is simi-

lar, however, each function has been modified to be more powerful and completely

domain-independent.

T'he reference resolution component still functions to determine the best an-

tecedent for a given reference, but the new CR server allows the developer to specify,

externally, what antecedents are valid for each possible reference. In the old CR

component, features such as gender and number were “hard-coded” and inextensible.

The new CR server also maintains an extended list of possible antecedents, allowing

the user to reference entities from several utterances back.

The inheritance and masking utilities have retained their overall functions to prop-

agate and to forget information from the history, respectively; however, the new CR

server allows much more precise inheritance and masking constraints, based on the

context of descendant and ancestor frames, to be specified.

Another related feature of the new CR server is the pragmatic verification of

relationships that result from inheritance. This utility facilitates the incorporation of

world knowledge via databases into the context resolution process.

The ellipsis and fragment resolution component still interprets elliptical phrases

e.g., “What about Boston?”) and utterance fragments (e.g., “Tomorrow”) in context.

However, the new NETWORK and NODE data structures facilitate access to the

historical context to find an optimal location in which to insert the phrase or fragment,

resulting in a more appropriate resolution.

All of these improvements contribute to a more powerful and more accurate con-

cext resolution component, which we hope will be useful for future research.

132

6.1.5 SPEECHBUILDER

[n Chapter 4, we described the new CR server’s ability to handle context resolution,

based on a knowledge representation of key-value pairs, for the SPEECHBUILDER soft-

ware tool. Currently, in domains created with SPEECHBUILDER, the new CR server

supports the inheritance and masking of historical information, as well as discourse

updates and system initiatives from the dialogue manager. We hope to extend con-

text resolution support for these domains; the challenge lies in providing powerful

functionality that remains simple and intuitive to control for a non-expert developer.

6.1.6 Evaluation

[n Chapter 5, we presented an evaluation of the new CR server, which consisted of

reprocessing offline a sequence of utterances contained in log files from user interac-

tions with MERCURY. Each log file was run through the system twice—once using the

old CR component, and once using the new CR server. The corresponding key-value

strings from each run were compared to measure performance. About 1.7 percent

of the total test utterances were excluded due to the consequent incoherence of the

associated dialogues. The new CR server performed identically to the old CR com-

ponent on about 98.6 percent of the remaining utterances, while about 1.0 percent

were handled better by the new CR server, and less than 0.4 percent were handled

better by the old CR component.

We consider these results to be very promising, especially since the increased

power of the new CR server was not thoroughly utilized in the evaluation. We have

yet to take full advantage of the new framework and constraint specification offered

by the new CR server in our current domains. We believe that the addition of more

detailed constraints, impossible in the old CR component, will serve to improve the

verformance of context resolution as a whole.

33

6.2 Future Work

There is a lot of potential work for improving the CR server. This section will identify

and briefly describe only some of the many possibilities.

6.2.1 Temporal Deixis

The dialogue manager still handles the resolution of temporal deixis, such as “tomor-

row” and “the following Friday,” to absolute dates. This functionality would more

appropriately be handled during context resolution. Current work in SLS is develop-

ing a generic and independent date/time server [38], which could potentially be called

from the CR server to resolve temporal deixis, thus, relieving the dialogue manager

>f this resolution task.

6.2.2 Complex Constraints

The new framework and meta-language for the CR server has provided the devel-

oper with a very powerful means by which to specify complex context resolution

constraints. The range of this power has not been extensively studied; however, the

development of new domains will allow us to fully explore and to take full advan-

tage of the new constraint specification from the initial development of each domain’s

context resolution component.

6.2.3 Reference Resolution Algorithm

I'he current reference resolution algorithm in the CR server simply searches for the

first discourse entity in the DE list that satisfies given constraints. While this algo-

rithm is currently sufficient, we would like to revise the algorithm to better handle

competing antecedents. Perhaps the DE list could be divided into focus spaces, so

that the server would be aware of all entities in focus during a given interval. This

may help facilitate ambiguity resolution.

124

6.2.4 Automatic Constraint Generation

SPEECHBUILDER automatically creates a set of default context resolution constraints.

The developer is subsequently able to modify these constraints to add limited com-

plexity to the domain. In our traditional domains (i.e., JUPITER, MERCURY, ORION,

PEGASUS, and VOYAGER), many more types of constraints featuring greater complex-

ity must be specified by the developer. Automatically generating these constraints

would be extremely difficult. However, perhaps there is some way in which common

relationships between semantic objects may be learned to produce a default set of,

for example, topic-predicate satisfication constraints or topic relationships. Such a

utility would be much more efficient, relieving the developer of the cumbersome task

of specifying the multitude of compulsory constraints.

6.2.5 Beyond Context Resolution

We believe the generic nature of the NETWORK and NODE structures, and the

constraint specification meta-language, will allow this new mechanism to be extended

to any system component that may need to verify the contents within a semantic

frame. For instance, this utility might prove to be useful for translation tasks. Among

natural languages, the linguistic structure for a single meaning may differ. Consider

the query, “What is your name?” In English, name may be designated the highest-

level object in the semantic frame representation. In Mandarin, the translation is

“ni3 jiao4 shen2 med ming2 zi4?” (“You call what name?”). Here, the call predicate

may be designated the highest-level object. The semantic frame representation of this

utterance will be different for each language, due to the differing linguistic structures.

The utilities of the new CR server are able to verify the structure of a given semantic

frame and, using satisfaction constraints, might be able to transform the semantic

frame representation for one language into the semantic frame representation for the

other. The CR server contains the potential for this functionality, and we hope to be

witness to a more in-depth exploration of this issue.

35

6.3 Final Words

We set out to create a new and independent Context Resolution server for the GALAXY

framework, with the goal that it would perform at least as well as the old context

resolution component. We believe that this minimal goal has been fulfilled and, ahead

of us, lies the opportunity to expand and improve the server even further.

Discourse processing and dialogue strategy are closely intertwined. We previously

defined each notion separately while, in reality, their effect on one another is signifi-

cant. Exactly how these duties should be divided within a spoken dialogue system is

highly varied within current implementations and there is not much agreement on the

optimal approach. In our systems, the CR server handles context resolution, which is

a subset of discourse processing, while the dialogue manager handles dialogue strat-

egy, as well as the remaining discourse processing tasks. Whether or not this is the

best way to divide the understanding component of our systems is uncertain. Per-

haps, for example, an entirely separate component is needed to handle the remaining

discourse processing duties, possibly involving user goals and intentions.

As previously mentioned, SLS is currently working on a generic dialogue manager,

which can handle simple dialogue strategies in any domain. We plan to continue such

research and to more profoundly explore the interrelations between context resolution,

discourse processing, and dialogue strategy. During this study, we may discover that

our context resolution process is incomplete, requiring more functionality to deal with

issues such as intention recognition or presupposition failure—in other words, context

resolution may cross over into the realm of “meaning across several utterances,” rather

shan strictly handling the interpretation of an individual utterance in context.

On the other side of the coin, we may discover that the new intention recon-

struction utility of the CR server is successful enough to be its own independent

component. In either of the above cases, however, the notion of context resolution

would require redefinition.

Nevertheless, the current division of our dialogue, discourse, and context res-

olution functionality has contributed to significant success in the three processes’

136

collaborative role of natural language understanding.

Overall, we are very encouraged by the evaluation results that the new CR server

performed as well as the old CR component on the majority of utterances. We

look forward to further experimentation with the power of the new constraint meta-

language, and we hope that the new CR server, in conjunction with the dialogue

manager, will provide an improved and more natural experience for each user of our

spoken dialogue systems.

137

138

Appendix A

Constraint Specification

Meta-Language

[his appendix contains information on using the constraint specification meta-language.

The purpose of this meta-language is to allow a developer to easily specify conditions

to be tested in a given semantic frame. For example, we can send the following frame:

{c top_frame

clause {c statement

topic {q season

‘name " summer"

pred {p come

:mode "ing" } } } }

along with a constraint, to the testing utility which verifies whether or not the con-

dition is true for this frame. Consider these constraints:

:clause = statement -> :topic = season

:clause -> (:topic -> :name = spring | summer)

clause -> (:topic -> :name = autumn | winter) Fulse

The following sections will describe the syntax and semantics for this language. Note

that, in the following descriptions, :key, string, substring, integer, and float are

all-inclusive terms for any keyword, string, substring, integer, or float, respectively.

139

A.1 Reserved Words

tne

This specifies a topic object. It may be a string, integer, float, or frame. If it

is a frame object, the type of the frame must be topic.

pred

This specifies a predicate object, which is always a frame. Any single frame

may have multiple : pred objects.

PARENT

This specifies a parent frame object. Its frame type may be any of clause,

topic, or predicate.

-P_ PARENT

This specifies a parent frame object with the predicate frame type.

» ‘T_PARENT

I'his specifies a parent frame object with the topic frame type.

|} ‘C_ PARENT

T'his specifies a parent frame object with the clause frame type.

CLAUSE

This specifies the nearest encompassing frame of type clause.

A.2

ry
x

Existence

toni

I'he given frame contains the :topic key.

rv:

The given frame contains one or more ‘ored frames.

1 4(,

» :PARENT

The given frame has a parent frame.

» :P_ PARENT

The given frame has a parent frame of type predicate.

:T_ PARENT

The given frame has a parent frame of type topic.

:C_ PARENT

The given frame has a parent frame of type clause.

CLAUSE

The given frame has an ancestor frame of type clause.

-gt

The given frame contains the specified keyword.

A.2.1 Negation

Any of the above tokens may be negated with the “!” prefix, to indicate the non-

existence of each token in the given frame. For example:

 pred

The given frame does not contain any :pred frames.

b 'T_PARENT

T'he given frame does not have a parent frame of type topic.

A.3 Frame Name

Given that the specified :key exists in the given frame, and given that the object

represented by :key is a frame object, conditions may be imposed on the frame

object’s name.

141

A.3.1 Equality

» :key = string

I'he name of the frame must be string.

:key = Ysubstring

T'he name of the frame must contain substring.

A.3.2 Inequality

:key < string

The name of the frame must occur alphabetically before string.

:key <= string

The name of the frame must occur alphabetically before string, or the name

must be equal to string.

‘key > string

The name of the frame must occur alphabetically after string.

» ‘key >= string

I'he name of the frame must occur alphabetically after string, or the name

must be equal to string.

A.3.3 Negation

Any of the above operations may be negated with the ! prefix, to result in: !=, !<,

<= I> >=

A.4 Integers

Given that the specified :key exists in the given frame, and given that the object

represented by :key is an integer object, conditions may be imposed on the integer’s

value.

142

A.4.1 Equality

:key = integer

I'he value of the integer must equal integer.

A.4.2 Inequality

:key < integer

The value of the integer must be less than integer.

:key <= integer

The value of the integer must be less than or equal to integer.

:key > integer

The value of the integer must be greater than integer

b ‘key >= integer

I'he value of the integer must be greater than or equal to integer.

A.4.3 Negation

Any of the above operations may be negated with the ! prefix, to result in: !'=, !<,

<= 11>. 1 >=

A.5 Floats

Given that the specified :key exists in the given frame, and given that the object

represented by :key is a float object, conditions may be imposed on the float’s value.

A.5.1 Equality

b key = float

The value of the float must equal float.

A

A.5.2 Inequality

‘key < float

I'he value of the float must be less than float.

» :key <= float

The value of the float must be less than or equal to float.

>» key > float

T'he value of the float must be greater than float.

key >= float

The value of the float must be greater than or equal to float.

A.5.3 Negation

Any of the above operations may be negated with the ! prefix, to result in: !=, !<,

<= 1> 1>=,

A.6 Conjunctions

I'he conjunctive operator (&) may be used to specify a conjunction between two

conditions. For example:

:key < value & :pred

I'he value of :key is less than value and one or more : pred frames exist in the

given frame.

key != value & !:topic

The value of :key is not equal to value and the :topic key does not exist in

the given frame.

| A4

A.7 Disjunctions

The disjunctive operator (1) may be used to specify a disjunction between two con-

ditions, as well as between two values. For example:

? :key < value | :pred = pvalue

The value of :key is less than value or a :pred frame named pvalue exists in

the given frame.

key = valuel | value2 | value3

The value of :key equals valuel or value2 or value3.

A.8 Hierarchical Constraints

A.8.1 Descendants

The “~>” symbol may be used following the key representing a frame object to impose

conditions inside that frame. For example:

> :key -> :descendant = value

The given frame contains the :key keyword, which represents a frame object

and this frame contains the :desc>ndant keyword, which has a value equal to

value.

:key = value -> |:descendant

I'he given frame contains the :key keyword, which represents a frame object

hat is named value and this frame does not contain the :descendant keyword.

A.8.2 Ancestors

The “->” symbol may be used following a key representing any object to impose

conditions on that object’s parent, grandparent, etc. For example:

145

) Operator

{...)
4
1

Xr

a) <, <=, >, >=

I=, 1, 1<=, I>, I>=

‘Operator Name
Scope
Substring -

Negation
Hierarchy |

Disjunction |
Conjunction
Equality and Relations

Table A.1: Operator precedence, shown in descending order, for the constraint spec-
ification meta-language.

:key -> PARENT = value

[he given frame contains the :key keyword, and :key’s parent frame is named

value

:key -> :CLAUSE = value

The given frame contains the :key keyword, and the nearest ancestor clause

frame of this key is named value

A.9 Operator Precedence

The precedence of the operators is shown in descending order in Table A.1. The

operator precedence must be respected when constraints are specified. To modify

operator precedence, parentheses must be placed around the relevant portion of the

constraint. Some examples follow, based on the frame in Figure A-1.

[f the current scope is the clause frame named truth:

» (topic = flight -> :pred = airline & :pred = arrival time

is false since the default association is

(:topic = flight -> :pred = airline) & :pred = arrival time

and :pred = arrival_time does not exist in the frame named truth.

i topic = flight -> (:pred = airline & :pred = arrival_time)

46

{c truth

:topic {q flight
pred {p airline

:topic "american" }
pred {p arrival_time

:topic {q time
:quantifier "which"
pred {p source

topic {q city
‘name "denver" } } } } } } }

figure A-1: Semantic frame for “When is the American flight from Denver arriving?”

is true since the parentheses associate both :preds under the frame named

flight, where they both exist.

[f the current scope is the clause frame named time:

:quantifier = Ywhich & :pred -> :P_PARENT | :T_PARENT

is false since the default association is

‘quantifier = Ywhich & ((:pred -> :P_PARENT) | :T_PARENT)

and the time frame does not have a :pred that has a predicate parent frame

nor does the time frame have a topic parent frame.

:quantifier = %which & (:pred -> (:P_PARENT | :T_PARENT))

is true since the parentheses associate the constraint such that :pred may have

either a predicate parent frame or a topic parent frame. Since either :pred has

the time topic frame as its parent, and the rest of the constraint is satisfied,

the entire constraint is true.

1 A7

148K

Bibliography

1] J. Allen. Natural Language Understanding. The Benjamin/Cummings Publishing

Company, Inc., Redwood City, California, 1995.

2] J. Allen, G. Ferguson, and A. Stent. An architecture for more realistic conver-

sational systems. In Proc. Intl. Conf. on Intelligent User Interfaces, pages 1-8,

Santa Fe, New Mexico, January 2001.

3] L. Baptist and S. Seneff. GENESIS-II: A versatile system for language generation

in conversational system applications. In Proc. Intl. Conf. on Spoken Language

Processing, pages 271-274, Beijing, China, October 2000.

[4] D. Bobrow, R. Kaplan, M. Kay, D. Norman, H. Thompson, and T. Winograd.

Gus: A frame-driven dialog system. Artificial Intelligence, 8:155-173, 1977.

5] R.A. Bolt. Put-That-There: Voice and gesture at the graphics interface. Com-

puter Graphics, 14(3):262-270, 1980.

6] E. Bos, C. Huls, and W. Claassen. EDWARD: Full integration of language and

action in a multimodal user interface. International Journal of Human-Computer

Studies, 40:473-495. 1994.

7] D.K. Byron. Improving discourse management in TRIPS-98. In Proc. European

Conf. on Speech Communication and Technology, pages 1379-1382, Budapest,

Hungary, September 1999.

i49

[8] M.S. Carberry. A pragmatics based approach to understanding intersentential

ellipsis. In Proc. Mtg. of the Assoc. for Computational Linguistics, pages 188

197, Chicago, Illinois, 1985.

9] J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell, K. Chang,

H. Vilhjalmsson, and H. Yan. Embodiment in conversational interfaces: Rea.

In Proc. Conf. of the Assoc. for Computing Machinery (ACM) Special Interest

Group on Computer-Human Interaction (SIGCHI), pages 520-527, Pittsburgh,

Pennsylvania, May 1999.

10] J. Cassell, T. Bickmore, L. Campbell, H. Vilhjalmsson, and H. Yan. More than

just a pretty face: Conversational protocols and the affordances of embodiment.

Knowledge-Based Systems, 14:55-64, 2001.

11] N. Chovil. Discourse-oriented facial displays in conversation. Research on Lan-

guage and Social Interaction, 25:163-194, 1991.

12] R.E. Cullingford. SAM. In R.C. Schank and C.K. Riesbeck, editors, Inside Com-

puter Understanding: Five Programs Plus Miniatures, pages 75-119. Lawrence

Erlbaum Associates, Hillsdale, New Jersey, 1981.

[13] J. Dowding, E.O. Bratt, and S. Goldwater. Interpreting language in context

in CommandTalk. In Communicative Agents: The Use of Natural Language in

Embodied Systems, pages 63-67, Seattle, Washington, May 1999. ACM Special

Interest Group on Artificial Intelligence (SIGART).

14] M. Eckert and M. Strube. Resolving discourse deictic anaphora in dialogues.

In Proc. of the European Chapter of the Assoc. for Computational Linguistics,

pages 37-44, Bergen, Norway, June 1999.

115] G. Ferguson and J. Allen. TRIPS: An integrated intelligent problem-solving

assistant. In Proc. of the National Conference on Artificial Intelligence, pages

567-572, Madison, Wisconsin, July 1998. American Association for Artificial

Intelligence.

150

[16] J. Glass, J. Chang, and M. McCandless. A probabilistic framework for feature-

based speech recognition. In Proc. Intl. Conf. on Spoken Language Processing,

pages 2277-2280, Philadelphia, Pennsylvania, 1996.

17] J. Glass, G. Flammia, D. Goodine, M. Phillips, J. Polifroni, S. Sakai, S. Seneft,

and V. Zue. Multilingual spoken-language understanding in the MIT VOYAGER

system. Speech Communication, 17(1-2):1-18, March 1995.

[18] J. Glass, J. Polifroni, S. Seneff, and V. Zue. Data collection and performance

evaluation of spoken dialogue systems: The MIT experience. In Proc. Intl. Conf.

on Spoken Language Processing, Beijing, China, October 2000.

19] J. Glass and E. Weinstein. SPEECHBUILDER: Facilitating spoken dialogue system

development. In Proc. European Conf. on Speech Communication and Technol-

ogy, pages 1335-1338, Aalborg, Denmark, September 2001.

20] D. Goddeau, E. Brill, J. Glass, C. Pao, M. Phillips, J. Polifroni, S. Seneff, and

V. Zue. GALAXY: A human-language interface to on-line travel information.

In Proc. Intl. Conf. on Spoken Language Processing, pages 707-710, Yokohama,

Japan, September 1994.

21] B.J. Grosz, A.K. Joshi, and S. Weinstein. Centering: A framework for modeling

the local coherence of discourse. Computational Linguistics, 21(2):203-225, June

1995.

22] B.J. Grosz, M.E. Pollack, and C.L. Sidner. Discourse. In M.I. Posner, editor,

Foundations of Cognitive Science, chapter 11, pages 437-468. The MIT Press,

Cambridge, Massachusetts, 1989.

23] B.J. Grosz, D. Scott, H. Kamp, P. Cohen, and E. Giachin. Discourse and di-

alogue. In R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue, editors,

Survey of the State of the Art in Human Language Technology, chapter 6. Cam-

bridge University Press, 1996. <http://cslu.cse.ogi/edu/HLTsurvey/>. Accessed

2 May 2002.

151

[24] B.J. Grosz and C.L. Sidner. Attention, intention, and the structure of discourse.

Computational Linguistics, 12(3):175-204, 1986.

25] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a natural

language interface to complex data. ACM Transactions on Database Systems,

3(2):105-147, June 1978.

[26] J.R. Hobbs. On the coherence and structure of discourse. Report No. CSLI-85-37.

CSLI, Stanford, California, October 1985.

127] H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Modeltheo-

retic Semantics of Natural Language, Formal Logic and Discourse Representation

Theory. Kluwer Academic Publishers, Dordrecht, Germany, 1993.

[28] A. Kehler. A discourse copying algorithm for ellipsis and anaphora resolution.

In Proc. Conf. European Chapter of the Assoc. for Computational Linguistics,

pages 203-212, Utrecht, Germany, April 1993. |

29] L.B. Larsen, T. Brgndsted, H. Dybkjeer, L. Dybkjeer, B. Music, and C. Povlsen.

State-of-the-Art of Spoken Language Systems — A Survey. Report 1 from the

Danish Project in Spoken Language Dialogue Systems. STC Aalborg University,

CCS Roskilde University, CST University of Copenhagen, September 1992.

130] R. Lau, G. Flammia, C. Pao, and V. Zue. WebGALAXY: Beyond point and click-

a conversational interface to a browser. Computer Networks and ISDN Systems,

20:1385-1393. 1997.

[31] O. Lemon, A. Bracy, A. Gruenstein, and S. Peters. The WITAS multi-modal di-

alogue system I. In Proc. European Conf. on Speech Communication and Tech-

nology, pages 1559-1562, Aalborg, Denmark, September 2001.

[32] D. Loehr. Hypertext and deixis. Presented and published by SIGMEDIA work-

shop entitled Referring Phenomena in a Multimedia Context and Their Compu-

tational Treatment. Association for Computational Linguistics. Madrid, Spain,

Julv 1997.

152

[33] W.D. Mann and S.A. Thompson. Rhetorical Structure Theory: Towards a func-

tional theory of text organization. Text, 8(3):243-281, 1988.

34] K. McKeown. Text Generation: Using Discourse Strategies and Focus Con-

straints to Generate Natural Language Text. Cambridge University Press, Cam-

bridge, United Kingdom, 1985.

35] R. Moore, J. Dowding, H. Bratt, J.M. Gawron, Y. Gorfu, and A. Cheyer. Com-

mandTalk: A spoken-language interface for battlefield simulations. In Proc.

Conf. on Applied Natural Language Processing, pages 1-7, Washington, D.C.,

April 1997. Assocation for Computational Linguistics.

36] K. Nagao and A. Takeuchi. Speech dialogue with facial displays: Multimodal

human-computer conversation. In Proc. Mtg. of the Assoc. for Computational

Linguistics, pages 102-109, Las Cruces, New Mexico, June 1994.

137] Natural Born Kissers. Matt Selman, writer. Klay Hall, director.

The Simpsons. Copyright FOX. Originally Aired 17 May 1998. In-

formation obtained from <http://www.snpp.com/episodes/5F18> and

<http://www.thesimpsons.com/episode_guide/>. Accessed 8 May 2002.

[38] J. Polifroni and G. Chung. Promoting Portability in Dialogue Management.

Submitted to Intl. Conf. on Spoken Language Processing, Denver, Colorado,

September 2002.

[39] S. Seneff. Robust parsing for spoken language systems. In Proc. Intl. Conf. on

Acoustics, Speech, and Signal Processing, pages 189-192, San Francisco, Califor-

nia, March 1992.

40] S. Seneff. TINA: A natural language system for spoken language applications.

Computational Linguistics, 18(1):61-86, 1992.

41] S. Seneff, C. Chuu, and D.S. Cyphers. ORION: From on-line interaction to

off-line delegation. In Proc. Intl. Conf. on Spoken Language Processing, pages

142-145. Beijing, China, October 2000.

1592Ls

[42] S. Seneff, D. Goddeau, C. Pao, and J. Polifroni. Multimodal discourse mod-

elling in a multi-user multi-domain environment. In Proc. Intl. Conf. on Spoken

Language Processing, pages 192-195, Philadelphia, Pennsylvania, October 1996.

[43] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue. GALAXY-II: A

reference architecture for conversational system development. In Proc. Intl. Conf.

on Spoken Language Processing, Sydney, Australia, November 1998.

44] S. Seneff and J. Polifroni. Dialogue management in the MERCURY flight reserva-

tion system. In Proc. ANLP-NAACL, Satellite Dialogue Workshop, pages 1-6,

Seattle, Washington, May 2000.

45] A. Stent, J. Dowding, J. Gawron, E. Bratt, and R. Moore. The CommandTalk

spoken dialogue system. In Proc. Mtg. of the Assoc. for Computational Linguis-

tics, pages 183-190, College Park, Maryland, June 1999.

[46] K. Wauchope. Eucalyptus: Integrating natural language input with a graphical

user interface. NRL Technical Report, NRL/FR/5510--94-9711, Navy Center for

Applied Research in Artificial Intelligence, Naval Research Laboratory, Wash-

ington, D.C., 1994.

[47] B.L. Webber. So what can we talk about now? In M. Brady and R. Berwick, ed-

itors, Computational Models of Discourse, chapter 6, pages 331-371. MIT Press,

Cambridge, Massachusetts, 1983.

[48] B.L. Webber. Structure and ostension in the interpretation of discourse deixis.

Natural Language and Cognitive Processes, 6(2):107-135. 1991.

[49] T. Winograd. Understanding Natural Language. Academic Press, New York,

New York. 1972.

[50] W.A. Woods. Semantics and quantification in natural language question answer-

ng. In B.J. Grosz, K.S. Jones, and B.L. Webber, editors, Readings in Natural

Language Processing, pages 205-248. Morgan Kaufmann Publishers, Inc., Los

Altos. California. 1986.

| RA

[51] WordNet ® 1.7, (© 2001 Princeton University. G. Miller, Principal Investigator.

<http://www.cogsci.princeton.edu/cgi-bin/webwnl.7.17stage=1& word=deixis>.

From Web WordNet ® 1.7.1. Accessed 5 May 2002.

52] J. Yi, J. Glass, and L. Hetherington. A flexible, scalable finite-state transducer

architecture for corpus-based concatenative speech synthesis. In Proc. Intl. Conf.

on Spoken Language Processing, pages 322-325, Beijing, China, October 2000.

53] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. Hazen, and L. Hetherington.

JUPITER: A telephone-based conversational interface for weather information.

IEEE Transactions on Speech and Audio Processing, 8(1):85-96, January 2000.

54] V. Zue, S. Seneft, J. Polifroni, M. Phillips, C. Pao, D. Goodine, D. Goddeau, and

J. Glass. PEGASUS: A spoken dialogue interface for on-line air travel planning.

Speech Communication, 15(3-4):331-340, 1994.

155

