
TeleMedMail: A Low-Cost
Store-and-Forward Telemedicine System

for Use in Developing Countries

by

Darius G. Jazayeri

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

March 19, 2002

Copyright 2002 Darius G. Jazayeri. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author_
Department ot hiecwical Engineering and Computer Science

March 19, 2002

Certified by-
Hamish Fraser

Thesis Supervisor

Accepted by
Arthu . Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

16PF)OP
V%

TeleMedMail: A Low-Cost
Store-and-Forward Telemedicine System

for Use in Developing Countries

by

Darius G. Jazayeri

Submitted to the
Department of Electrical Engineering and Computer Science

March 19, 2002

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

My thesis proposes an email-based store-and-forward telemedicine system for use in
resource-poor, poorly networked developing countries. The system is designed for use in
structured network where many remote locations refer cases to few central hospitals with
specialist expertise, but it is flexible enough to be used in many other scenarios as well.
The system consists of four components: a Java client applications that sends digital
camera images and structured XML text as email, a server component which processes
referral emails, and enters then into an Electronic Medical Record database, a JavaServer
Pages based web interface to that database, and a Java applet for viewing images.

Thesis Supervisor: Hamish Fraser, MBChB, MSc, MRCP
Title: Research Affiliate, MIT Laboratory for Computer Science,

Director of Informatics and Telemedicine,
Program in Infectious Disease and Social Change, Harvard Medical School

2

Acknowledgements

I would like to acknowledge Lech Banach and Donnie McGrath for their pioneering work in this field,

without which I would never have been inspired to pursue the TeleMedMail concept. I would like to thank

Professor Peter Szolovitz, Sean Doyle, Agnieszka Szot, and Eduardo Marquez for their advice on the

security, computer imaging, radiological, and user-interface aspects of the system.

Part of the funding for this project was provided by the Bill and Melinda Gates Foundation, through a

grant to the Program in Infectious Disease and Social Change, Harvard Medical School, and the Fogarty

International Center of the NIH through an ITMI grant to the Medical School of the University of Natal,

Durban, South Africa, and Tufts University.

Above all, I would like to thank my thesis advisor Hamish Fraser for introducing me to this subject

matter, and for the many hours of guidance and support he has given me throughout the last two years.

The idea for this project came from Hamish Fraser and a number of South Africa-based doctors. I did

most of the system design and all of the implementation.

3

Table of Contents

1 Introduction and Previous Work 9

2 Design Considerations 12

2.1 Security 12

2.2 Low Cost and Connectivity 13

2.3 Ease-of-use & Automation 13

2.4 Not Limited to Existing Users 13

2.5 Extensible, Open, and Platform-Independent 14

3 Design 15

3.1 Dual Design 15

3.2 Software Components 15

3.3 Security 16

3.4 Low Cost and Connectivity Requirements 18

3.4.1 Java 19

3.5 Ease-of-use 20

3.6 Automation 20

3.6.1 Referring End 21

3.6.2 Receiving End 21

3.7 Extensible and Based on Open Standards 22

3.8 Platform-Independent 23

4 Client-Server Model 24

4.1 Workflow 24

4.2 Discussion 27

5 Peer-to-Peer Model 29

5.1 Workflow 29

5.2 Discussion 31

6 TeleMedMail 32

4

6.1 Workflow 32

6.1.1 Sender and Receiver Identification 32

6.1.2 Clinical Patient Data 34

6.1.3 Images 34

6.2 Attached Files 34

6.3 Editing an Image 35

6.3.1 "Crop and Rotate Image" Dialog 35

6.3.2 "Annotate" Dialog 35

6.3.3 "Compression" Dialog 37

6.3.4 "Edit Comment" Dialog 39

6.4 Save Case, Open Case, New Case 39

6.5 Configuration 42

6.6 Advanced Configuration 42

6.6.1 Standard Fields 43

6.6.2 Text Labels and Internationalization 46

6.7 File Types 47

6.8 Address Book 47

6.9 Sent Case Browser 49

6.10 Decrypt Replies 51

6.11 Case UIDs 52

6.12 Java 2 and Installation 53

7 TMMReceiver 55

7.1 External Applications 59

7.2 Further Work 60

8 TMMServer 61

8.1 Workflow 61

8.1.1 New Account Application 61

8.1.2 Login and Case Index 64

5

8.1.3 Viewing Cases 64

8.1.4 Replies 66

8.2 Administration 69

8.2.1 User Management 69

8.3 Further Work 70

9 Viewer 72

9.1 Window Levels 74

9.2 Multiple Languages 75

10 CaseViewer 78

10.1 Further Work 80

11 Security Risks 81

11.1 Forged Replies 81

11.2 Spurious Referrals 82

12 Conclusions 84

12.1 Other Usage Scenarios 84

12.1.1 Remote Specialists 84

12.1.2 Trusted Third-Party Record-Keeping 86

12.2 Further Work 86

12.2.1 Minor Improvements for Broader Use 87

12.2.2 Message Authentication for Large-Scale Use 88

13 References 90

Appendix A - TeleMedMail Sent Case Archive 92

Appendix B - TeleMedMail Saved Cases 93

Appendix C - Standard Fields Descriptor Files 94

Appendix D - english.lab 95

Appendix E - TeleMedMail AddressBook Interface 101

Appendix F - TeleMedMail CaseBrowser Interface 103

Appendix G - TMMServer SQL Database Setup Code 104

6

List of Figures

Figure 3.1 - Client-Server Model Overview 17

Figure 3.2 - Peer-to-Peer Model Overview 17

Figure 4.1 - Client-Server Model 25

Figure 4.2 - Client-Server Model Case Packaging 25

Figure 5.1 - Peer-to-Peer Model 30

Figure 5.2 - Peer-to-Peer Model Case Packaging 30

Figure 6.1 -TeleMedMail Main Window 33

Figure 6.2 - TeleMedMail Attached File Panel 33

Figure 6.3 - TeleMedMail Crop and Rotate Image Dialog 36

Figure 6.4 - TeleMedMail Annotate Image Dialog 36

Figure 6.5 - TeleMedMail Image Compression Preview Dialog 38

Figure 6.6 - TeleMedMail Edit Comment Dialog 38

Figure 6.7 - TeleMedMail Save Case Dialog 40

Figure 6.8 - TeleMedMail Open Case Dialog 40

Figure 6.9 - TeleMedMail Configuration Dialog 41

Figure 6.10 - TeleMedMail Compression Settings Dialog 41

Figure 6.11 - TeleMedMail Edit Address Book Dialog 48

Figure 6.12 - TeleMedMail Case Browser 48

Figure 6.13 - TeleMedMail Secure Reply 50

Figure 6.14 - TeleMedMail Decrypt Reply Email Dialog 50

Figure 6.15 - TeleMedMail Installation 54

Figure 7.1 - TMMReceiver Graphical Mode 56

Figure 7.2 - TMMReceiver Text Mode 56

Figure 7.3 - TMMReceiver Received Case Notification Email 57

Figure 7.4 - TMMReceiver Received Case Reply Email 57

Figure 8.1 - TMMServer Account Application Page 62

7

Figure 8.2 - TMMServer Account Activation Email 62

Figure 8.3 - TMMServer Login Page 63

Figure 8.4 - TMMServer Case Index Page 63

Figure 8.5 - TMMServer View Case Page 65

Figure 8.6 - TMMServer Low-Bandwidth View Case Page 65

Figure 8.7 - TMMServer Send Web Reply 67

Figure 8.8 - TMMServer Send Secure Email Reply 67

Figure 8.9 - TMMServer Send Unsecure Email Reply 68

Figure 8.10 - TMMServer User Management 68

Figure 9.1 - Viewer Window 73

Figure 9.2 - Viewer Window Levels Intensity Transfer Curve 73

Figure 9.3 - Effect of Brightening an Image (After/Before) 76

Figure 9.4 - Effect of Inverting an Image (After/Before) 76

Figure 10.1 - Peer-to-Peer HTML Index Page 79

Figure 10.2 - CaseViewer Window 79

8

1 Introduction and Previous Work

Developing countries face a severe shortage of doctors. In Africa, the concentration of doctors ranges from

6.2 doctors per 100,000 population in Ghana to 56.3 per 100,000 in South Africa. (The USA, in contrast,

has 279 doctors per 100,000, while other developed countries have even higher figures1 .) Other poor areas

of the world face similarly grim shortages of medical expertise. The shortage of specialists is even worse:

14 countries in Africa do not have a single radiologist2 , for example.

Further, those doctors that do exist in developing countries are not evenly spread out: many villages

and rural areas do not have even the most basic medical and health facilities, and their populations must

travel hours or days for medical care. Specialists are also poorly distributed-they generally cannot be

found outside of big cities.

The problem of lack of doctors in developing countries is caused by a fundamental lack of resources

that causes a lack of training opportunities and a heavy brain drain to rich countries, and as such the

solution is very expensive and complicated. The problem of the uneven distribution of the scarce existing

medical expertise, however, is more tractable, and can be partly addressed by using telemedicine to allow

remote doctors and healthcare workers to refer cases to doctors and specialists at well-staffed hospitals.

Telemedicine, as it is typically practiced in developed countries, focuses on real-time

videoconferencing via a high-bandwidth network connection. A typical system requires at least two 64-

kbit/sec ISDN lines, and uses equipment costing between $5,000 and $15,000, and additional expensive

attachments such as digital ophthalmoscopes. Although such systems have been successfully used in

developing countries, the costs make this type of system very difficult to sustain in the developing world

outside of small well-funded studies3. Even when the equipment is donated, or provided at heavily

discounted prices, the connection costs are prohibitive: for example a dual-ISDN (128 kbit/sec) call from

Boston to Lima, Peru costs over $150 per hour (2002 price).

However, physicians in developing countries have demonstrated ways to do very low-cost

telemedicine referrals, using store-and-forward electronic mail 4 instead of real-time interaction, digital still

cameras instead of video5 , and standard computer applications instead of expensive telemedicine systems5.

Wolfgang Seckler and Don O'Mahony, two doctors in South Africa, began sending referrals as ZIP files

9

attached to standard email messages 6,7. The Armed Forces Institute of Pathology, Washington D.C. began

using a similar technique, accepting email referrals and replying asynchronously by fax or telephone. These

systems clearly show that sufficiently determined and computer-savvy doctors can improve the access to

specialist opinions in remote rural areas with the use of cheap hardware and standard software. Indeed, as

these methods have become more widely known, considerable evidence has arisen to prove the utility of

store-and-forward and still-image telemedicine"'. Some African doctors now refer to the concept of a

"standard store-and-forward telemedicine system," which consists of assembling a case either as a ZIP

archive with an HTML index page, or as a Microsoft PowerPoint presentation, and then sending it as an

email attachment.

While this telemedicine technique is demonstrably useful to computer-savvy doctors, it is not broadly

applicable in its current form. Its use is complicated at the referring end, requiring the concurrent use of

multiple software packages (digital camera software, possibly an image-editing program, an email client, a

web page editor and a zip utility, or, if bandwidth is not a concern, MS PowerPoint); further, it is inefficient

at the receiving end, requiring the specialist to download, locate, open, and archive email attachments

manually. Finally, this method does not provide any sort of security to ensure patient confidentiality.

Once these ease-of-use, efficiency, and security obstacles are removed, however, the large-scale use

of low-cost store-and-forward telemedicine will become possible. This should make it a valuable tool for

developing countries that want to address the problem of medically underserved regions-it can become an

integral part of a country's health care system, spreading the reach of its centrally located specialists. The

same technique is also starting to be used in underserved rural areas of developed countries as well, such as

northern Canada' and Norway.

My thesis describes a store-and-forward telemedicine system, called TeleMedMail, which simplifies

the referral process described by Seckler and O'Mahony, and automates the job of viewing and replying to

these referrals, while enhancing it to make the entire referral and reply process secure.

The existence of a system facilitating large-scale telemedicine is not in itself a reason to actually

practice telemedicine of that sort. Although small studies and anecdotal evidence have shown that

telereferrals are medically useful in many situations, the question of whether large-scale, low-cost

telemedicine is an appropriate use of the limited healthcare funding available to developing countries is still

10

open. This question can only be resolved with further projects, studying specific applications of

telemedicine to specific situations, and measuring its true costs and associated benefits.

One argument raised against telemedicine is that diagnosing a remote patient with a complicated

illness does not necessarily mean that remote health care workers can do anything about that diagnosis. A

key focus of pilot telemedicine projects should be to study the degree to which distant specialist diagnoses

can be acted upon, whether specialists can tailor their suggested treatments to those available remotely, and

to what extent telediagnosis can prevent the expenses and risks of transporting sick patients.

A second issue which should be considered by pilot studies, but is difficult to quantify, is the degree

to which having the capability to request a specialist opinion in difficult cases can reassure remote doctors,

and make them feel more supported, and perhaps more likely to remain in a remote town, even if that

capability is used only sparingly. Another issue to be considered is the extent to which remote healthcare

workers can learn from interacting with a specialist on telediagnoses, and provide better care in the future

due to a past telereferral".

I make no pretense at being able to answer these questions myself. The TeleMedMail system

described in this thesis is intended both for pilot studies assessing the costs and benefits of small- and large-

scale application of the store-and-forward telemedicine approach, and as a tool that can be widely deployed

if that paradigm is shown to be useful.

This thesis builds upon work I did for my Advanced Undergraduate Project , and includes work

previously described in "Appropriate Technology for Telemedicine in Developing Countries" 3 and

"Telemedmail: free software to facilitate telemedicine in developing countries" 4

The TeleMedMail system I describe is already in actual and test use: the system is being used in Peru

to make peer-to-peer referrals, and is being tested in pilot projects in South Africa and Ecuador. In addition,

the case-sending portion of the system is being tested in Basel, Switzerland as a tool to send cases to an

existing web-accessible pathology database'5 .

II

2 Design Considerations

When beginning the TeleMedMail project, my intention was to build a low-cost store-and-forward

telemedicine application, automating the process used by Wolfgang Seckler and Don O'Mahony in South

Africa. The project later expanded into designing and building a full telemedicine system, suitable for

large-scale use to show that telemedicine could be used as a significant part of a developing country's

health care system.

Building such a telemedicine system, appropriate for large-scale use, involves making three

improvements that go beyond Seckler and O'Mahony's basic systems:

1. Simplifying the process of referring a case

" Reducing the amount of human work required to assemble a referral, to save doctor time

" Reducing the number of different software components needed, to simplify training.

2. Introducing security features into the system

* Only sending encrypted cases

* Only sending encrypted replies

3. Allowing both the doctor and specialist to organize cases on their computers

* Preventing time wasted searching for computer files

These issues led me to set out a set of design guidelines relating to security, low cost, automation, and

transparency.

2.1 Security

Above all else, the system would need to be secure. Although an insecure system could still be an

improvement over those pioneered by Seckler and O'Mahony, it would be unacceptable for large-scale use:

no large institutional user would (or should) invest significant time and effort installing a system with such

a glaring deficiency, as it would clearly need to be replaced before too long.

One might think that, given their lack of medical expertise, developing countries are not concerned

with patient confidentiality: this is not true. The social stigmas attached to some diseases can make security

12

literally a life-or-death issue: a woman diagnosed with HIV in southern Africa, for example, may be turned

out of her village to starve.

2.2 Low Cost and Connectivity

Secondly, the system should have very low requirements in software, hardware, and network connectivity.

For large-scale use in poor countries, the system needs to be as cheap as possible on a per-installation basis.

This mainly means that the system should use email for communications, and stick to still images and text,

as Seckler's and O'Mahony's works suggest, and that the system should require no software that isn't free.

(Although being low-cost is the main point of the system, it is still secondary to security as a design

consideration. An expensive system may find large-scale use somewhere; an insecure system is not worth

setting up in any large-scale environment.)

2.3 Ease-of-use & Automation

Thirdly, the system would need to be easy to use. Actually putting the system into large-scale use will

require significant investment in human training-an easy-to-use system would save significant amounts of

time and money by simplifying that training.

In addition to being easy-to-use, the system should automate as much of the process of sending and

receiving a case as possible, and ensure that the workflow of the referral process is straightforward to the

doctors involved.

In particular, the system should make the job of receiving and replying to a referral as easy and fast as

possible: causing scarce specialists to spend unnecessary time clicking and typing would not help improve

the state of developing-country health-care.

2.4 Not Limited to Existing Users

One less obvious design consideration is that the system should provide a way to refer cases to specialists

who are not affiliated with one of the system's servers.

The basic assumption is not only that specialists are scarce in a particular developing country, but that

there may not be any at all, in which case a doctor might want to make a one-time referral to a specialist not

normally participating in the system.

13

Further, a specialist who does participate in the system might not be located at a well-equipped

hospital, and thus be unable to access a hospital server over a local network: it should still be possible to

refer a case to such a specialist.

2.5 Extensible, Open, and Platform-Independent

Finally, the TeleMedMail system, like all others, will have some flaws and weaknesses. The system should

be as transparent as possible to facilitate bugfixes; it should also be extensible and flexible to allow future

improvements and enhancements, both by myself and by other users.

First, it should be possible to replace individual components of the system without having to modify

others. Second, the system should use open standards wherever possible, and should avoid tying itself to

any particular platform.

14

3 Design

3.1 Dual Design

Two of the design guidelines are in direct conflict. On the one hand, as much of the referral process as

possible should be automated, which means that the receiving end of the system needs to have installed

software for that purpose. On the other hand, it should be possible to refer a case to a specialist outside of

the system, who by definition won't have the system software installed on his computer.

The conflict between these two requirements led me to build the system with a dual design, allowing

cases to be referred in two separate modes.

The TeleMedMail system's preferred mode of operation follows a client-server model: it assumes that

specialists are able to access a server on a high-speed LAN, that the server has non-negligible computing

power, and that the server is set up by knowledgeable IT staff. This preferred mode is designed for the case

where there are a few central, well-staffed hospitals, each with several specialists, and many remote clinics

from which doctors refer cases to the specialists at the central hospitals.

The more general mode of operation follows more of a peer-to-peer model (in the sense that it doesn't

count on any central server), and requires no special software on the receiving end, but is less automated. It

is intended for one-time referrals to doctors outside the system, but it has the side effect of allowing

computer-savvy doctors to form a flexible, ad-hoc referral network.

From one perspective, this dual design is the most interesting part of the system: no existing

telemedicine system that I am aware of has the concept of a one-time secure referral, to any computer user

in the world, using only email and requiring no non-standard software or server account.

3.2 Software Components

Case data follows the same format across the two models, but the way it is packaged and encrypted

differs. I wanted to reuse as much code as possible between the two models, all the while focusing on

automation in the client-server model, and lack of installation in the peer-to-peer model. Towards that end,

I divided the system into the following software components:

15

TeleMedMail

Viewer

CaseViewer

TMMReceiver

TMMServer

An application that allows the user to assemble images and text into a structured case. It

packages and encrypts this data, and sends it via email. (See Section 6.)

A very small Java applet, used to view an image file, with controls for zoom, and

brightness. (See Section 9.)

A small Java applet, which decrypts a case, and displays its text and images. (It shares its

image-viewing code with Viewer.) (See Section 10.)

An application that receives cases, decrypts and unzips them, and inserts them into the

database used by TMMServer. (See Section 7.)

A JavaServer Pages based web application that manages a SQL database of users and

cases. It allows users to view and reply to cases that they have permissions on. (See

Section 8.)

Under the client-server model (see Figure 3.1), the sender runs TeleMedMail, the receiving server runs

TMMReceiver and TMMServer, and the receiving doctor views cases in a web browser, using Viewer for

digital images. Under the peer-to-peer model (see Figure 3.2), the sender runs TeleMedMail, and the

receiving doctor views cases with CaseViewer, using the JVM included in his web browser. The key

difference is that in the client-server model, TMMReceiver automates the process of unzipping and

decrypting the case, and managing keys, while in the peer-to-peer model the user must manually enter a

password and use an external unzip utility. These two models are described in detail in sections 4 and 5.

This modular design, with open interfaces between its various components, should also allow other

programmers to reuse parts of the TeleMedMail system for other telemedicine applications.

Having two different referral models also adds a degree of redundancy to the system. If a specialist's

network connectivity is uncommonly bad at any particularly time, then she can ask a doctor to send (or re-

send) her a peer-to-peer referral instead of a client-server one, so that she gets a local, offline copy of the

case data.

3.3 Security

When deciding what security features to design into the TeleMedMail system, I considered several

possibilities:

16

Figure 3.1 - Client-Server Model Overview

Client Server
Referring

TMMReceiver

TeleMedMaill

SQL
Database

Receiver

Web Browser

2Specia istD

Figure 3.2 - Peer-to-Peer Model Overview

Referin

Web Browser

JVM

Specialist

17

JSP
Web Server

TMMServ

R efe rre r Receiver

leMedMail Email Client

Unzip
.3 Utility

FCaseVieN

1. Referrals can't be read by anyone but the intended recipient.

2. Referrals can't be tampered with in transit.

3. Replies to referred cases should be also be secured as in (1) and (2).

4. Referral and reply messages should be authenticated.

The first two features are absolutely necessary. A system that does not protect confidential patient data is

by definition not secure.

The third feature is slightly less important than the first two, but still highly desirable. A system where

replies can be sent securely is significantly more useful than a system where replies are not secure. The

latter can still be useful in certain circumstances, however, if it is possible for doctors to reply to referrals

via telephone, or if there is a high enough volume of referrals between doctors that using a Case ID instead

of a patient's name in replies provides an acceptable degree of patient confidentiality.

The fourth feature is less important than the previous three-exploiting it to do harm to patients

requires a break-in at the referring or receiving end. But such a break-in would invalidate most security

models, and cause much bigger problems.

After discussing the likely threats with physicians, I decided to implement the first three features, but

not the fourth. Authenticating all messages requires a more complicated and less flexible design, while

increasing the amount of setup that needs to be done; not authenticating all messages didn't seem to be a

major security hole. This is an acceptable decision if TeleMedMail is to be used in a single institution, but

it may become a more important problem in a multi-institution enterprise. This is discussed further in

Section 12.2.2.

3.4 Low Cost and Connectivity Requirements

For the most part, the system's low requirements stem not from particularly clever optimizations in the

software design, but from the system's conscious limitations: using only text and still pictures as case data,

and store-and-forward email rather than real-time communication.

One place I did put special effort into keeping the connectivity requirement small was in designing

and building the Viewer and CaseViewer applets. After building the applets, I combined event-handling

18

code for different GUI elements (eliminating anonymous inner classes), which cut the size of both applets

by about 5 KB. (This is actually a 20% decrease in the size of "Viewer.jar," and a non-trivial improvement

when one considers that the applet may be sent many times over slow dialup connections.)

I also chose to use the IDEA encryption algorithm specifically to decrease the size of the CaseViewer

applet. The "IdeaCipher.class" file in the encryption package I used was only 4 KB in size. This compares

very favorably to similar block ciphers: "BlowfishCipher.class" takes up 26 KB, and Rc6Cipher.class takes

up 8 KB.

I did not put significant effort into keeping the system requirements of the TeleMedMail application

small. In order to run a Java program, one must first run a Java Virtual Machine, which is an application

with a significant enough memory and processor footprint that any substantial Java application will run

slowly on machines with very little memory. On the other hand the TeleMedMail application is

straightforward enough that it can run acceptably on modern computers even without being highly

optimized.

3.4.1 Java

My decision to develop TeleMedMail in Java rather than C++ involved a tradeoff. On the one hand the

system could be developed significantly faster, due to Java's built-in networking, security, and image-

manipulation code. On the other hand, it means that the computer used at the referring end of the system

should be at least a Pentium with 64MB of memory. (It runs correctly, but painfully, on a Pentium-200 with

32 MB of memory.) This is not an issue if a country or institution decides to set up a large-scale network

from scratch, since any computer available today will run TeleMedMail well. It is an issue, however, when

attempting to build a network out of very old existing computers. A future strategy I will take to combat

this problem is compiling TeleMedMail into native Win32 code, with a Java bytecode-to-Win32 compiler

such as Excelsior JET16 . This should result in an application with a smaller memory footprint, which will

improve its performance on old machines with less than 64MB of memory.

A few optimizations were necessary to increase TeleMedMail's perceived speed on slower computers,

such as doing key generation and image loading in background threads, and doing some simple image

caching.

19

3.5 Ease-of-use

One key point from the ease-of-use perspective is that the system has to be multi-lingual: it should find

significant use in South America and Africa.

I made the TeleMedMail application fully multi-lingual by putting all text that is ever displayed to the

user in a user-selectable language file. At present, English, Spanish, and Portuguese translations exist.

The Viewer and CaseViewer applets both look for alternate button labels in the HTML that contains

them, before defaulting to English, thus TeleMedMail can specify non-English text for an applet when it

sends a case, with a tiny overhead in message size. So far the Viewer applet has been translated into

17
Russian, to view chest X-Rays of drug-resistant tuberculosis patients'.

The TMMReceiver server component is currently English-only, although it can easily be translated if

users require it. This seemed like an acceptable tradeoff between better design and faster implementation:

an IT worker at a well-staffed hospital can almost certainly understand computer-related English, and the

text of the program contains only standard computer terms.

The second key ease-of-use point is that the workflow of referring a case, and replying to a referral,

has to be straightforward and natural. I spent the most significant amount of time working on the User

Interface of the TeleMedMail referral application, which over time has gone through several iterations, and

received feedback from users in Brazil, South Africa, and the US. At present, the UI is streamlined and

straightforward, and seems well accepted. (See Section 6.)

3.6 Automation

A well-designed telemedicine system needs to automate all "computer tasks" involved in sending a case,

receiving a case, and replying to a case, such that the doctors involved can focus on "medical tasks." In

particular, the doctors should not have to:

1. Handle email attachments

2. Manage email addresses

3. Manage image files and directories

4. Manage case files and directories

5. Remember more than one password

20

When used in the preferred client-server model, the system should handle all these points; under the peer-

to-peer model, it should automate as much of the process as is possible without requiring the receiving

specialist to install any software besides a ZIP program.

3.6.1 Referring End

At the referring end of the system, the TeleMedMail application takes care of the first four points. In client-

server mode, it also handles the last one.

TeleMedMail sends emails itself, so the user does not need to deal with attachments, or another email

client. It maintains an Address Book, so the user can select the receiving doctor and server by name, and

not via email address.

TeleMedMail supports drag-and-drop of image files, so the user can drag files directly from the

digital camera software without worrying about directories and real file-management. It also includes a

"CaseBrowser" component for looking back at sent cases.

In client-server mode, security is handled via server public keys (configured at install-time), so the

user doesn't need to worry about passwords. In peer-to-peer mode, however, this isn't possible. The

referring doctor and receiving doctor need to agree on a password, and the referring doctor should use a

different password for each specialist. TeleMedMail keeps a copy of the password with the sent case, for

use in decrypting replies to that case, so that remembering passwords is not an issue for one-time referrals.

But it takes no steps to automate the process of sending multiple peer-to-peer referrals to one or more

specialists.

It would be possible to build a password-manager, which maps each peer-to-peer specialist to a

password shared with that specialist, but in general doctors should not be using peer-to-peer mode in this

way.

3.6.2 Receiving End

In the client-server model, the TMMReceiver automates the process of receiving a case: it downloads the

referral from the mail server, decrypts and unzips it, and places it in the server's filesystem and database.

TMMReceiver then notifies the specialist (via email) of the received case. The specialist merely has to

21

click on a link in the email and enter his hospital system password to view the case. While viewing the

case, a single click takes him to a "send-reply" page.

The TeleMedMail system doesn't automate the process of the specialist looking through past cases,

beyond displaying a chronological list of cases received. Better case-management might or might not be an

important feature-that will be clearer once the system can be observed in large-scale use. Implementing a

more advanced form of received-case-management is a large task, whose design and implementation is

better left until the way that TeleMedMail fits in with already-existing systems can be further studied.

Since the cases are put in a database, and available over an SSL web connection, it's straightforward

to build a future system to browse and manage them, once it is more clear how exactly that should be done.

This could be implemented as a stand-alone application, or else an existing hospital system can be modified

for this purpose.

Under the peer-to-peer model, very little of the process of receiving a referral is automated. The

receiving specialist must manually unzip an attachment, open the contained html file, and enter the case

password. This requires a certain familiarity with email and ZIP programs, and is tedious to do regularly-

an acceptable shortcoming, since the peer-to-peer model is intended for one-time referrals. (In fact, the

work a specialist has to do to read a peer-to-peer referral is exactly that required in current state-of-the-art

manual systems.)

In client-server mode, the process of replying to a case is also automated: clicking a link on the View

Case, or Case Index page on the server allows the user to send a text reply without worrying about email

addresses or encryption. Peer-to-peer mode does not provide a process for sending replies.

3.7 Extensible and Based on Open Standards

The key design choice I made to keep the TeleMedMail system extensible and open is to make sure that

individual components of the system should communicate with open standards, in ways that are transparent

enough to understand without looking at any source code. This choice shows up in several instances.

TeleMedMail communicates with TMMReceiver and CaseViewer via an XML case descriptor file

included in the case referral, while the referral itself is a standard ZIP file. This allows cases sent by

22

TeleMedMail to be easily translated for input into other applications. One advanced user built (overnight) a

bridge that imports TeleMedMail case referrals into iPath, an open-source telepathology database.

TeleMedMail also archives its sent cases as ZIP files which contain an XML descriptor file as a text

file, the case session key as a file of bytes, and replies to that case as standard text files. TeleMedMail's

address book is saved as straightforward XML in a text file. This should allow the Sent Case Browser, Sent

Case Viewer, Decrypt Reply Email, and Address Book components of TeleMedMail to be improved on and

replaced by any Java programmer, without him having to understand any obscure data formats. (See

Appendices A and E.)

TMMReceiver places the cases it receives in a SQL database, with a straightforward table structure.

This allows other front-ends to be built or modified to access TeleMedMail case data.

A second decision, which makes the system more, open and flexible is that to make it open-source,

under the GNU General Public License 8 . This allows users to improve upon the system, or alter it to better

suit their own situation, by modifying the source code. An institution could easily modify TMMReceiver's

SqlDBHelper. insertCase () method to insert cases into its existing database system, for example.

3.8 Platform-Independent

A further design choice was to make TeleMedMail as platform-independent as possible. The TeleMedMail

and TMMReceiver applications and the Viewer and CaseViewer applets are all written in Java, which

means they can run on any major platform. TMMServer, written in JSP, is slightly less portable, but the

major web servers do support it. Particularly important is that the entire TeleMedMail system can run on

free software: Linux on a client, and Linux, PostgreSQL' 9 , and Tomcat20 on a server. (Most users will run

Windows on client machines, but Linux's free licensing can cut the TeleMedMail's system's per-machine

cost to the bare minimum, if that is important enough to an institutional user.)

23

4 Client-Server Model

4.1 Workflow

The preferred way to use the system follows a client-server model. This usage model assumes that there are

a few central, well-staffed hospitals, each with several specialists, and many remote clinics from which

doctors refer cases to the specialists at the central hospitals. Although designed for this scenario, the

TeleMedMail system's client-server model can be used in others as well. (See Section 12.1.)

This model is optimized to allow a specialist to handle many incoming referrals, from many different

sources. It requires installing software at the central hospitals to receive and decrypt cases automatically,

thus saving the specialist work. This is probably an acceptable tradeoff, because the efficiency

improvement of making the specialist more productive dwarfs the incurred cost of installing and

configuring a software application at a well-staffed hospital. In addition, specialists at locations without

sufficient IT expertise to run a server can still use a non-local server, such as the prototype one running at

MIT.

Figure 4.1 shows an overview of the client-server security model. A client-server referral begins with

the referring doctor assembling and sending a case with the TeleMedMail application (see Section 6),

specifying which server the case should be sent to, and which doctor it is intended for. The case is IDEA-

encrypted with a random session key; the session key is then encrypted with the server's RSA public key,

and sent along with the case so that the server can use it to decrypt the case, and send back secure replies.

The TeleMedMail application also archives a copy of the session key for use decrypting these replies.

The case email is then handled by TMMReceiver (see Section 7), the first of two software

components at the heart of the server end of the TeleMedMail system. TMMReceiver is a Java application

that acts as a POP client, downloading case referrals from a mail server, then decrypting and unzipping

them, and inserting them into a SQL database. (The "server email account" may be on a local mail server,

or at an outside ISP-cases are stored there in encrypted form.) TMMReceiver sends emails to the referring

doctor and receiving specialist, notifying the former that his case was received, and the latter that she has a

case waiting, with a link to that case.

24

Figure 4.1 - Client-Server Model

Client Internet Server Receiver

SMTh Referral Notification-TeleMedMail > Emai TMMReceiver - - --- Specialist
S e r v e r E m a i l A c c o u n t

n i I

Referring Notification SQL File Web Browser
Doctor Email Database SytmJM

Reply
Email TMevrSSL

JSP
Web Server

Viewer

Figure 4.2 - Client-Server Model Case Packaging

Case Tex
XML Case

Image ZIP IDEA Base-64 MIME
Annotations Archive encryption encodin header

To
Session Email \ Server

Key RSA atcmn

encryption bd

Server Public Key:111

25

The second main server component is TMMServer (see Section 8), a JSP web application that serves

cases via HTTPS with SSL, allowing registered users to log in securely to view and reply to their cases

from any web browser. When the receiving specialist gets a notification that a case is waiting for her, she

browses to the website served by TMMServer, reads the case, and then replies to it.

In order to make the TeleMedMail system flexible, the specialist can reply to a case referral in three

ways: on the web, via secure email, or via unsecure email. All three types of replies are sent from the

TMMServer reply page and require the same work to be done by the specialist-she just has to specify

which delivery method the system should use.

A web reply (the preferred reply method) consists of posting a message on the TMMServer website.

TMMServer notifies the referring doctor that his case has a reply, and he logs into the website to view it.

If the referring doctor is so remote or poorly connected that he cannot view a reply on the web (he

might have only email access and not web access), then the specialist must reply to him via email. If she

specifies that the email should be secure, then TMMServer IDEA-encrypts the text of her reply with the

random session key originally used to send the case, and sends that ciphertext to the referring doctor via

email, along with English instructions on how to decrypt it. This means using the Decrypt Reply Email

feature of the TeleMedMail program he originally used to send the case. The TeleMedMail program

determines from the reply text which case it refers to, looks up the archived session key, decrypts the

ciphertext, displays the clear-text to the user, and archives it in the record of the relevant case. See Section

6.10.

An insecure email reply is simple: TMMServer just sends the plaintext of the specialists reply to the

referring doctor via email, along with the UID of the case it refers to. In order to protect patient

confidentiality, this reply method recommends that the specialist avoid mention of any identifying

characteristics of the patient. The other two reply methods are strongly preferred, but insecure email replies

are still allowed, to make the system more flexible. Doctors who are currently doing TeleMedMail's sort of

email-based telemedicine generally use insecure email replies, or alternatives such as fax or phone.

Figure 4.2 shows a more detailed view of the way the client-server-mode referral is packaged.

TeleMedMail packages the case text and images into a ZIP file, encrypts the zip with a randomly generated

session key, and encodes the result as a MIME email attachment. TeleMedMail then generates an email

26

message with the encrypted case as an attachment. The email message also contains the session key,

encrypted with the receiving server's public key, so that the server (and only the server) can later decrypt

the case. TeleMedMail sends this email message to the receiving server.

4.2 Discussion

The client-server model requires non-trivial computer power: the server needs to be running a JSP- and

SSL-enabled web server. That is, however, not an unreasonable requirement for a well-equipped hospital,

and, even in developing countries, the cost of computer hardware is cheap compared to the cost of human

expertise. (The TMMServer database front-end could easily be rewritten with ASP or ColdFusion; the

particular choice of JavaServer Pages technology should not prevent any institution from running a

TeleMedMail server.)

The client-server implementation also requires non-trivial configuration at the client end in order to

function. Remote referring locations need to be configured with the public key and email address of the

server they will refer cases to, along with the email addresses of specialists who are accepting referrals at

that server. This requirement is acceptable, because a hospital will not be accepting unexpected referrals

from unknown remote locations. When a server agrees to accept referrals from a client it can also provide

some expertise to help the client configure its software. It is likely that the server site will physically send

an IT worker to the client to set up the system, or else prepare a CD or download pre-configured with the

correct settings and address book: this makes configuration a less significant issue.

Once configured, the client-server implementation makes it very easy for the referring doctor to send

cases, and for the receiving specialist to view them. Neither user has to worry about managing multiple

passwords that they share with different doctors-TeleMedMail and TMMReceiver provide security

transparently. In fact, this implementation reduces the work the receiving specialist must do to view a case

to the minimum. To view a referral he only has to click on a link in the notification email he receives, and

enter his hospital system password; to reply he only has to click a link, type the reply text, and press a

button.

In exchange for the initial effort of setting up a server, the client-server model makes referring and

receiving cases easier-to-use and more flexible than non-server methods would allow. A specialist can view

27

and reply to his cases in a secure fashion, from any web browser anywhere, and not just locally at his

hospital. (Although this can depend on the hospital's firewall rules.) It also allows secure message passing

between the referrer and specialist, by two different methods. These capabilities make the client-server

model useful in situations beyond the specific one it was designed for. For example, an institution could

use it to act as a trusted intermediary that stores legal copies of data, to prevent disagreements and data loss,

as a service to unaffiliated specialists throughout its geographical region. (See Section 12.1.1.)

28

5 Peer-to-Peer Model

5.1 Workflow

The more general way to use the system follows a peer-to-peer model, in the sense that it doesn't count on

any central server. It requires only that the receiver have a ZIP program, and a Java-enabled web-browser.

These are easy-to-meet requirements-the vast majority of computers capable of checking email provide

these capabilities.

The strength of this model is that a doctor can refer a case to any specialist anywhere, with no special

software requirements. It is intended for use sending one-time referrals to doctors outside the system.

(Although it does allow any informal network of doctors to make regular referrals, this is better done in

other ways, as described in Section 12.1.1.) The main drawback of this referral method is that it requires

the receiving specialist to manually locate an email attachment in his filesystem, unzip it, and open the

contained HTML file. None of this is particularly difficult to do, but it is tedious and inefficient for a

specialist to spend time doing it frequently.

A further caveat of this model is that password exchange has to happen outside of the system. (The

doctor and specialist will probably agree on a secret key over the telephone or in person, at the same time

as the specialist agrees to take referrals from the doctor.)

Figure 5.1 shows a broad overview of the peer-to-peer security model. The referral begins in the same

way as a client-server referral, with the referring doctor assembling a case out of text and images. In the

peer-to-peer model, he does not specify a receiving server, but he must type in a case password manually.

Unlike the client-server model, there is no special software on the receiving end. The receiving

specialist uses his usual email client to retrieve the case, unpacks it with his unzip software, and opens the

case "index.html" file in his web browser, which loads the CaseViewer applet (see Section 10) in the web

browser's JVM. CaseViewer prompts the specialist for the case password (which the referrer shared with

him outside the system) and shows him the case.

Figure 5.2 shows a more detailed view of the way the case is packaged. TeleMedMail encrypts the

text of the case with the shared secret key and packages that along with the images and the CaseViewer

29

Figure 5.1 - Peer-to-Peer Model

Referrer Internet Receiver

TeleMedMail Sevr Eal Email Email Client Specialist
Account

Referring ,)Unzip Web Browser
Doctor UtilityJM

Email

Unzipped Case

CaseViewer

Encrypted Text

Figure 5.2 - Peer-to-Peer Model Case Packaging

Session Password HTML
Index

Case Tex XLIDEA Page

Image encryption a let
Annotations Case

ZIP
CaseViewerArhe

Applet

Base-64 MIME
encodin header

To

attachment Specialist

Email

30

applet into a ZIP file. The ZIP archive is then encoded as a MIME attachment, and sent via email.

5.2 Discussion

This implementation has two significant drawbacks beyond the inconvenience of having to manually unzip

the case and manage multiple passwords: it doesn't provide any way to send secure replies, and it doesn't

encrypt the images that are sent with the case. The first problem is easily solved: the CaseViewer applet can

be enhanced to be able to generate IDEA-encrypted reply text, which the specialist could then paste into his

usual email client and email back to the referring doctor. (The referring doctor would then use his

TeleMedMail application to decrypt the reply in the same way he would decrypt a secure client-server

reply.) The second problem stems from security restrictions on Java applets, although it can be fixed with

minor code modifications.

The justification for these shortcomings is that the peer-to-peer model is not meant for large-scale use.

The workarounds-making sure that images and replies don't contain patient-identifying information, or

perhaps replying by telephone-are not particularly onerous when done infrequently.

Taking a different approach to peer-to-peer referrals could alleviate these problems: the TeleMedMail

application could be enhanced to receive cases in addition to sending them. A symmetric peer-to-peer

system, where both the sender and receiver use the same software, would be more powerful and automated

than TeleMedMail's peer-to-peer referral model.

TeleMedMail purposely avoids this alternate approach. I elected to make the peer-to-peer model

flexible, not requiring installed software on the receiving end, rather than automated, since the client-server

model can provide that automation, along with other benefits as well. In particular, specialists need almost

no computer knowledge to accept case referrals-this would not be the case in a symmetric peer-to-peer

system.

31

6 TeleMedMail

The heart of the TeleMedMail system is a Java application called TeleMedMail, which allows the user to

assemble images and text into a structured case, and automates the process of packaging, encrypting, and

sending the case.

6.1 Workflow

The workflow of assembling a case is straightforward, and falls into three broad areas:

1. Specifying who is sending and who is receiving the case

2. Entering clinical text data about the patient

3. Attaching, cropping, and annotating images

The user can interleave tasks from each area however he chooses. (For example, the user can still type in

patient data while waiting for a particularly large image to load, even if he usually does all image

management first, and enters text last.) The conceptual distinction into three areas makes the workflow and

user-interface more coherent, and improves ease-of-use: each area falls in a distinct area of the GUI. (See

Figure 6.1.)

The Sender and Receiver Identification and Clinical Patient Data fields are implemented as user-

configurable standard fields, as described in Section 6.6.1. This allows the user to alter their placement and

default values, add other interesting fields, and remove unnecessary ones.

6.1.1 Sender and Receiver Identification

Specifying the sending hospital, sending doctor, receiving hospital, and receiving doctor happens in the

top-left of the GUI. These fields generally have one default value, or a few possibilities in a drop-down list,

and can be filled out quickly and routinely.

These text fields are placed together so that once the user has set the default values, and entered

addresses in his address book, he can enter this "book-keeping" information as efficiently as possible.

32

Figure 6.1 -TeleMedMail Main Window

sing tawara
jazayeri@mit.edu

MIT Test Server <teIemed@medg.lcs.mit.edu
Darius Jazayeri<Jazayeri@alum.mit.edu

25 February, 2002

00290

John Smith

215/77

Male

7 year history of TB. Remained culture positive for 1 year after starting f
indivdualized treatment for MDR. Current treatment
LevofloxacIn (500 mg)
Piridoxine (300 mg)
Rifabutin (150 mg)
Ethambutol (400 mg)
Ethionamid (250 mg)
Cycloserin (250 mg)
ArnoxfClav(g)
Respiratory rate: 18
Pulse: 78 RTF
BP: 130170
Chest Reduced movement on right. Diminished breath sounds over R apex and
anterior chest with creps and slightwheese. Reduced movement on right.

Figure 6.2 - TeleMedMail Attached File Panel

33

6.1.2 Clinical Patient Data

A TeleMedMail case contains certain standard fields giving clinical information about the patient, such as

date of birth, gender, patient history, and physical exam results. These fields are located in the bottom-left

of the GUI. Most of this information will be unstructured free text, without preset possible values, although

the user can still set default values and possibilities if the cases he refers follow a particular pattern.

Filling out these text fields will usually be the most time-consuming part of assembling a case-it is

unavoidably tied to the user's typing speed.

6.1.3 Images

The right side of the GUI is dedicated to attaching images (or other types of files) to the case. The user can

attach files to the case either by pressing the "Import Image" button, which brings up a File Chooser dialog,

or by dragging the file and dropping it onto the "Attached Files" portion of TeleMedMail's GUI. The drag-

and-drop method is more efficient, as it allows the user to drag file icons from the digital camera software,

or the Windows file manager, without having to browse through directories. Once the user has attached an

image to the case, it appears in the GUI on a panel.

6.2 Attached Files

Once a file has been attached to the TeleMedMail case, it shows up in the GUI as a panel (see Figure

6.2) that allows the user to give the file a short title and a longer comment. If the file is an image of a

recognized file type, the panel also has several buttons that bring up dialogs allowing the user to edit the

image. TeleMedMail provides only a few simple image-editing features, which are nonetheless sufficient

for almost all clinical referrals: the user can crop the image, rotate it in multiples of 90 degrees, and place

textual annotations on it. The user can also change the way the image is compressed.

TeleMedMail deliberately does not let the user change the brightness or contrast of an image,

although that would have been an easy feature to implement. If the quality of an image does not seem good

enough to the referring doctor, then he should re-photograph or re-scan the original data source, taking

special care to optimize the camera brightness to deal with the limited dynamic range of 8-bit JPEG

images. The referring doctor, and his TeleMedMail software, should provide as clean and faithful a

34

digitized image as possible to the specialist. The specialist can then use the Viewer applet's window level

controls (see Section 9.1) to enhance the image if he feels it is necessary-he knows better than the

referring doctor whether adjusting the image is clinically useful.

6.3 Editing an Image

The buttons on the attached image panel bring up dialogs allowing the user to edit the image in several

ways.

6.3.1 "Crop and Rotate Image" Dialog

The topmost button in the attached image panel allows the user to crop out unwanted portions of the image,

and to rotate the image in increments of 90 degrees (see Figure 6.3). In order to crop the image, the user

clicks and drags a rectangle to select the interesting portion: only that interesting portion of the image will

be sent in the case referral. The user can clear the crop rectangle by pressing the "No Crop" button.

This dialog also has buttons allowing the user to rotate the image left, right, or 180 degrees, and a

checkbox specifying whether the image should be shrunken to fit in the window, or shown at full-size.

(Many digital medical images are large; viewing the image at full-size often requires the user to scroll

around to see the whole image. Since having to scroll would be an inconvenience while cropping, this

checkbox defaults to fit-in-window mode.)

The button for the "Crop and Rotate" dialog is the topmost one for two reasons. First, it is probably

the most common way the user will edit the image. Second, cropping and rotating should be done before

annotating (as it may influence where the user places annotation text) and before changing the compression

level (since cropping will definitely affect the compressed filesize). Placing the button above the others

makes it easier to find, and more natural to press first.

6.3.2 "Annotate" Dialog

The second button in the attached image panel allows the user to place textual annotations on the image. An

annotation consists of a numeric label, a visual cue to the point or region on the image that the annotation

refers to, and a string of text. There are three types of annotations: point annotations, arrow annotations,

35

Figure 6.3 - TeleMedMail Crop and Rotate Image Dialog

Figure 6.4 - TeleMedMail Annotate Image Dialog

36

and rectangle annotations. (See Figure 6.4.) In an arrow annotation, an arrow points at the area of interest

of the image, with the label drawn at its tail. In a rectangle annotation, a rectangle is drawn around the area

of interest, with the label in the top-right corner. In a point annotation, the label is drawn without any extra

visual cue.

This dialog shows the image on the right side of the screen, and shows the text of existing annotations

on the bottom-left. The top-left of the screen either shows a new annotation being created (allowing the

user to enter its text), or the currently selected existing annotation (allowing the user to modify its text, or

delete it.)

Like the "Crop and Rotate" dialog, the "Annotate" dialog has a checkbox allowing the user to choose

whether to shrink the image to fit in the window or to view it at full size.

The Annotate dialog is not very intuitive at first use, although its operation is easily learned. (This is

partly because not all users will be familiar with the concept of annotating an image, although it is easily

explained.) Determining how to make this dialog's workflow more intuitive will require studying actual

first-time user interaction.

6.3.3 "Compression" Dialog

The Compression dialog (see Figure 6.5) shows the user exactly what the sent image will look like, and

exactly what its filesize will be, once it has been cropped and compressed. The top of the dialog's GUI

shows the image at full resolution, and allows the user to scroll around it. The bottom of the GUI has a

linked slider and text box that allow the user to set the image quality level, between 0 and 100%. The

default quality level is 90%.

The specified quality level defines the JPEG quantization coefficients, and corresponds to the idea of

JPEG compression level found in typical image-processing applications. (Most other imaging applications

have a default JPEG image quality of 70%, and call 80% "high quality.") The choice of a higher-than-usual

default quality level means that the image files TeleMedMail sends are larger than they perhaps have to be:

a file compressed at 90% quality is about 1/3 bigger than one compressed at 80% quality. Because the

effect of JPEG compression on specific types of medical images has not been thoroughly studied, I chose to

err on the side of (probably) compressing images too little rather than too much.

37

Figure 6.5 - TeleMedMail Image Compression Preview Dialog

Figure 6.6 - TeleMedMail Edit Comment Dialog

5 .eray 2002

38

Unlike the Crop and Rotate and Annotate dialogs, the Compression dialog does not have a fit-in-

window option. Viewing the image at anything other than full resolution introduces zooming artifacts: this

should not be allowed to influence the user's judgment as to whether the image is compressed too much.

6.3.4 "Edit Comment" Dialog

The Edit Comment dialog (see Figure 6.6) allows the user to enter text that applies to a specific image,

rather than to the entire case. Since the type of information the user might want to enter depends so heavily

on the type and contents of the file, I chose to have only a "Date" field, and a long generic "Comment"

field.

Unlike the other three dialogs, the Edit Comment dialog also applies to non-image files. In the

case of an image file, the specialist will see information the user enters in these fields as a comment along

the top of the image when he views it in the Viewer applet. (See Section 9.) In the case of a non-image file,

the user will see the comment next to the link to the file in the html case file.

6.4 Save Case, Open Case, New Case

TeleMedMail's File menu allows the user to save the current case for future editing, to load a previously

saved case, or to clear all data from the current case and start a new one.

Choosing "New Case" resets all text fields to their default values, clears those without default values,

removes all images from the case, and invalidates the Case ID (see Section 6.11).

Choosing "Save Case" brings up the Save Case dialog (see Figure 6.7). This dialog allows the user to

specify a filename (and possibly location), and choose whether the case should be saved for future editing,

or exported as a (view-only) sent case. If the user is saving the case for future editing, he can choose to save

copies of the attached files, or just save links to them. The second option takes less space, but requires that

attached files not be moved or deleted between when the case is saved and when it is reloaded. The first

option is safer, and is the default.

Choosing "Open Case" brings up a file chooser asking the user to specify the saved TeleMedMail

case to load (see Figure 6.8). Opening a case restores all textual data, attached files, and extra image data

(like crop and rotation information) that were in the case when it was saved.

TeleMedMail's saved cases have a ".tmm" file extension, but are actually just zip archives. The saved

39

Figure 6.7 - TeleMedMail Save Case Dialog

Figure 6.8 - TeleMedMail Open Case Dialog

40

Figure 6.9 - TeleMedMail Configuration Dialog

Figure 6.10 - TeleMedMail Compression Settings Dialog

41

case archive contains an XML file describing the case (see Appendix B) and possibly copies of attached

files.

The open case dialog should ideally show the user a preview of the contents of the cases he is

choosing from; this information could easily be extracted from the saved case archive and displayed.

6.5 Configuration

The user can configure TeleMedMail in via two configuration dialogs. The main configuration dialog (see

Figure 6.9) is accessible from the Settings menu. Its most important purpose is to allow the user to set

parameters related to sending email-SMTP server, username, and return address. This dialog also lets the

user set the default image directory and language file (see Section 6.6.2), or call up the Compression

Settings dialog (see Figure 6.10).

The Compression Settings dialog lets the user specify several settings generally related to image

compression. The user can specify whether to "burn" annotations directly onto the images it sends (so that

the images may be viewed with annotations in any standard image viewer) or whether it should send the

original images and include the annotations in the case's XML descriptor. The user can specify whether

TeleMedMail should by default convert images to black-and-white (e.g. if the user only sends X-Ray), treat

them as color images, or try to guess their image type based on the variance in hue of the image's pixels.

Finally, the user can set the default JPEG quality level. The values in the Compression Settings dialog are

not likely to be changed by most users. When a future version of TeleMedMail can do other types of file

compression besides JPEG, this dialog will become more useful.

The main configuration dialog pops up by default the first time the user runs TeleMedMail, prompting

him to enter his email information. Few users will see the configuration dialog more than that once:

TeleMedMail's default settings are appropriate for the vast majority of users.

6.6 Advanced Configuration

TeleMedMail can also be configured in two more advanced ways that are not accessible through the

program itself. First, an advanced user can modify the standard text fields, either to change which fields

appear in the GUI (for example to add a field for a common test in a particular specialty) or to change the

42

default values of the fields already there. Second, the user can change any of the text that ever appears in

TeleMedMail (for example to make the GUI use Spanish or UK English instead of US English).

6.6.1 Standard Fields

The left side of the TeleMedMail GUI is dedicated to "Standard Fields," or named text fields that contain

information about the case. Analogously, the Edit Comment dialog for an attached file (see Section 6.3.4)

stores textual information about an attached file. These fields are weakly-structured: they can have default

values, or drop-down lists of standard possibilities, but the user can ignore the defaults and enter arbitrary

free text if he chooses.

These standard fields are not hardwired-at startup TeleMedMail reads two files that specify the

types and default values of standard fields for the overall case, and on a per-attached-file basis. The file that

describes the overall case standard fields is called "overall.stf', while the one describing per-attached-file

standard fields is called "perfile.stf'. They function identically except that per-file fields file can inherit

fields from the overall fields file, as described below.

A standard fields descriptor file is a text file that describes the fields in the order they will be

displayed. Each line of the file describes one field, and takes the general form

NameOfField = TypeOfField

with some extra modifiers. TypeOfField can be any of the following: STRING, LONGSTRING, AUTO-

DATE, CASE-UID, CONFIG, ADDRESSBOOK, or SERVERS. Only the first two are useful to a user

changing TeleMedMail's standard fields; the last five serve specific purposes, and are already used in the

default standard fields descriptor file in ways that shouldn't be changed.

A STRING field is a one-line text field, which can have default values. These would be specified as

follows:

PatientName = STRING("Darius", *"Alice", "Bob")

A field with several default values will be displayed along with a button that allows the user to choose from

a drop-down menu of those values. If a field has just a single default value, or if it has multiple default

values and one is marked with an asterisk, then the field defaults to that one value when TeleMedMail is

started, and whenever the user starts a new case.

A LONGSTRING field is a multi-line text field, specified as:

43

PatientHistory = LONGSTRING<9>

where the parameter tells how many lines long the field should be. A LONGSTRING field can have default

values, but it generally won't-a multi-line field exists for free-text entry, not for situations with just a few

possibilities.

An AUTO-DATE field is a one-line text field that defaults to today's date. The user cannot specify

another default value, as that would be meaningless in the context of "today's date."

A CASE-UID field is a special field that cannot be edited by the user. It shows the unique identifier

for the current case, as described in Section 6.11.

A CONFIG field is a one-line text field whose drop-down list values are given in TeleMedMail's

config.ini file. For example a field specified as

ReferringDoctor = CONFIG(ReturnAddress)

where the config.ini file contains the line

ReturnAddress = alice@mit.edu, bob@mit.edu, carl@mit.edu

will have a button that allows the user to choose from a drop-down menu of the three addresses given in the

ReturnAddress config.ini entry. This field type exists for two reasons. First, it allows configuration-related

values to function as standard field defaults (something most users want, as in the case of Return Address)

without the user having to know anything about the standard fields descriptor file (which only very

advanced users will even be aware of); second, it prevents information from having to be duplicated

between the standard fields descriptor file and the TeleMedMail configuration file, where the two instances

will potentially become out of sync.

An ADDRESSBOOK field and a SERVERS field are similar, and related. They are both one-line text

fields that allow the user to choose from a drop-down menu of values from the user's address book. A

SERVERS field's drop-down shows all the Server entries in the address book, while an ADDRESSBOOK

field's drop-down list shows People entries. If TeleMedMail contains both a SERVERS and an

ADDRESSBOOK standard field (which should always be the case), then the two fields interact.

In the default setup (see Appendix C), TeleMedMail has a SERVERS field and an ADDRESSBOOK

field as follows:

ReceivingServer = SERVERS
ReceivingDoctor = ADDRESSBOOK(ReceivingServer)

44

If the ReceivingServer field has a value entered in it, and the user presses the drop-down-menu button for

the ReceivingDoctor field, then the list will only show the Person entries in the address book whose

affiliation matches the value in the ReceivingServer field, or who have no affiliation. On the other hand, if

the user chooses a value from the ReceivingDoctor drop-down while the ReceivingServer field is still

blank, then the ReceivingServer field will be automatically filled in with the server that the person chosen

from the ReceivingDoctor drop-down is affiliated with. This interaction between ADDRESSBOOK and

SERVERS fields does generalize to other fields of these two types, but there's no real need of it outside the

ReceivingDoctor and ReceivingServer fields. (See Section 6.8 for a description of Servers and People.)

The user can also put a vertical spacer in the standard fields list, specified as

<SEPARATOR (6)>

in the standard fields descriptor file, where the parameter tells how many pixels high to make the spacer.

This allows standard fields to be split into physical groupings, as in the case of "Sender and Receiver

Information" versus "Clinical Patient Data." Physically separating groups of fields from each other can

give the user hints as to how to work through the case most efficiently.

Per-file standard fields can be of one additional type not available in overall standard fields: they can

be "inherited fields." If the per-file field descriptor file specifies

CaseAssernblyDate = @Date

then the set of per-attached-file standard fields will contain a field called "CaseAssemblyDate" which takes

the value of the overall-case field called "Date." Any changes to one of the two will show up in the other.

Inherited fields allow data regarding the overall case to be displayed when the specialist views an attached

file, without requiring the referring doctor to enter that data multiple times.

TeleMedMail parses through the "overall.stf' and "perfile.stf" text files when it is run, and exits with

an error message if either file is missing or misformatted. The default overall and per-file standard fields

descriptor files are given in Appendix C.

Although the standard fields concept was designed to make TeleMedMail very generic, and allows a

great deal of user customization, it is missing a generalization that would make TeleMedMail more

powerful and useable: the user should be able to, within the TeleMedMail program, select one of several

45

sets of standard fields, each customized for a particular specialty. For example a dermatology referral

should include a field like

LocationOfRash = STRING("Head", "Chest", "Arm", etc)

which would be less relevant in other specialties.

Rather than using a single overall-case standard fields descriptor file, TeleMedMail should, on

startup, read a several such descriptor files, perhaps all those in a specified directory. The top-left corner of

TeleMedMail's GUI, just above all the standard fields, could then contain a drop-down menu or a group of

radiobuttons allowing the user to choose one particular set of standard field groups.

6.6.2 Text Labels and Internationalization

When the TeleMedMail program is run, it reads all the text that it will possibly display, from a text file

specified as "LabelFile" in the "config.ini" file, and referred to in the program itself as a "Language File."

This allows TeleMedMail's GUI to be easily translated into different languages merely by editing a text

file, and without having to change any of the Java code. The default installation of TeleMedMail contains

an English language file, and a Spanish language file: "english.lab" and "spanish.lab".

A language file is a standard text file, with a ".lab" (for "label") extension. Since Java is able to

correctly read text files with non-ASCII encodings (e.g. Unicode), this text file can contain fully

international text, with accent marks and non-English characters.

Each line in the language file specifies a "label", which maps an abstract name to a language-specific

value. A label can be a static string, or it can contain parameters to be filled in by TeleMedMail during

runtime. An example of a line in the English label file is:

ADDFILEFileAlreadyThere = File (%1%) is already in case.

This label can be referenced from anywhere in the program by calling

TeleMedMail .getLabel ("ADDFILEFileAlreadyThere", filename);

The language file also specifies the keyboard shortcuts associated with menu items (e.g.

"KEYBOARDSave = control S".) to allow further internationalization. Finally, the language file

specifies translations for TeleMedMail's standard fields, so that the standard fields descriptor file can be

independent of language. (For example "STFPat ientName = Nombre del Paciente".)

The default English language files is given in Appendix D.

46

The user can select which language file to use from the configuration dialog (see Section 6.5).

Choosing a different language file requires TeleMedMail to be restarted.

I have not tested TeleMedMail's ability to handle languages that are written right-to-left, or top-to-

bottom. I expect that the code would need modifications to do so, such as specifying the Java Locale

setting. Non-Latin left-to-right character sets, such as Cyrillic, do work properly.

6.7 File Types

TeleMedMail can import JPEG, GIF, and TIFF images. It converts all of these to JPEG images before

sending them. TeleMedMail reads JPEG and GIF images via Java's built-in image loading capabilities; it

reads TIFF images using an open-source Java image-processing library called ImageJ2 I.

The user can also include any other type of file in a TeleMedMail case. Files of unrecognized types

are included in the referral zip archive as-is, and are accessible via a link on the case's index.html page.

Thus a case could conceivably include sound files or short video files (such as ultrasound), which the

receiving specialist's web browser would handle with whichever plug-in it has registered for that file type.

A more likely use of this feature might be to include a detailed patient history as an attached file, rather

than in the provided standard field.

6.8 Address Book

TeleMedMail provides a simple address book for the user to store the email addresses of the specialists he

will be referring cases to. This serves two main purposes: it saves the user the inconvenience of repeated

typing in the same few email addresses, and it allows server public keys (for client-server mode referrals)

to be handled transparently to the user.

All address book entries have a Name, and an Email address. (GUI elements that interface with the

address book will usually let the user select from a list of names, and then map that to "Name <Email

address>" in some way.) There are two different kinds of entries in the TeleMedMail address book: Server

entries, and Person entries. A Server entry represents a hospital server that will accept case referrals,

archive them, and forward them on to a specialist (i.e. a Server is a location running TMMReceiver. See

Section 7.) Beyond the standard Name and Email fields, a Server entry specifies the name of the file

47

Figure 6.11 - TeleMedMail Edit Address Book Dialog

jcrayV r IIL.UUU

- jazayeri@mit.edu
aLs zulrui

Darius Jazayern

Figure 6.12 - TeleMedMail Case Browser

48

UU[LJdF] OrVUr
MIT Test Server I1

containing the server's public key, which TeleMedMail needs to send a referral to that server. A Person

entry specifies which server, if any, the person is affiliated with.

Affiliating a doctor with a Server means that by default any cases referred to that doctor will actually

be sent to him via his affiliated server. A doctor should generally be affiliated with a server that he has a

fast Internet connection to, and where he has an account, although other usage models are possible. (See

Section 12.1.)

TeleMedMail's address book component is actually a Java interface, rather than a class. (See

Appendix E.) The config.ini file specifies which class (that implements the AddressBook interface) should

actually be instantiated when the program is first run. This allows the address book component to be easily

modified or improved without having to change (or understand) any of the rest of the TeleMedMail code.

While the default address book class provided with TeleMedMail has sufficient functionality, its GUI is not

production-quality-it is a likely candidate for open-source improvement. (See Figure 6.11.)

In the TeleMedMail system's most likely large-scale usage scenario, a member of the IT staff at a

server hospital will go around and install the TeleMedMail software at the nearby client clinics who will be

referring cases to that hospital. While doing so, this IT worker will configure the user's address book with a

Server entry for the server hospital, and Person entries for all relevant specialists. (Most likely he will copy

over a pre-compiled address book file, and the local server's public key.)

6.9 Sent Case Browser

TeleMedMail also provides a basic GUI for browsing through previously sent cases. (See Figure 6.12.) The

browser shows some basic information about each case the user has sent (including date sent, receiving

doctor, and patient name) and allows the user to view the full text

Like the address book, TeleMedMail's sent case browser is a Java interface (see Appendix F) rather

than a class, and the actual instantiating class is specified in config.ini. The default case browser included

with TeleMedMail implements that interface in a basic way, and the current version is meant just as a

placeholder for the improved browser that will replace it in a future release of TeleMedMail. The current

one has sufficient-though very basic-functionality, but its GUI is far from production-quality.

49

Figure 6.13 - TeleMedMail Secure Reply

Figure 6.14 - TeleMedMail Decrypt Reply Email Dialog

istart nerejuuzuy
173: NeidlglQ6jAxASTvtu3RDqrHB2dD~q0vRylUX5p+ll4KbKsZd6KRrp6wl4XzRbvqz
O5v5aFPhhjXONG~rnE+unMRRBGENDwJJXiuwcceL2loQ0QVjC~s7G6pznhrbP251qdszJ/y

iVwgdm4AoTEDli302TJJsXNcZM6nDyhrkJE2KsSDSoYiabPODdopZgu5Fcyk2aciil2q

iis is an example of a secure reply.
I would give a likely diagnosis here, and I would describe
several possible treatment strategies.

50

1 Date: Fri, 15 Mar 2002 11:21:06 -0500 (EST)
From: Darius Jazayeri<jazayeri@NIT.EDU>
To: jazayeri@mit.edu
subject: Secure TeleMedMail Reply

This is a secure reply to a case that you sent to the MIT Test TeleMed~ail
Server. To decrypt the text of this message, you need to do the following:

1. Copy the text after (start here].

2. Run the copy of TeleMedMail that you used to send the case referral.
3. Select Decrypt Reply Email from the Manage menu.
4. Paste the text you copied into the text box at the top of the

Decrypt Reply dialog.
5. Press the Decrypt button.

[start here]00289
173:NeidlqlQ6jAxASTvtu3RDqrHB2dD~qOvRylUXSp+ll4KbKKsZd6KRrp6wl4XzRbvqz
O5w5aFPhhjXONGOnE+unURRBGENDwJJXiuwcceL2loQOQVjCSs7G6pznhrbP251qdSzJ/y
UXjVwgdm4AoTEDli302TJJsXNcZM6nDyhrkJE2KsSDSoYiabPODdopZgu5Fcyk2aciil2q
0+MQa7649cThcD7WK+6eqvSFne55A=

6.10 Decrypt Replies

One of the ways the TeleMedMail system allows the specialist to reply to a doctor's referral is by

encrypting the reply text with the secret session key that was used to send the case in the first place, and

emailing it to the referring doctor. (See Section 8.1.4.) The referring doctor uses TeleMedMail to decrypt

such a secure reply, through the "Decrypt Reply Email" dialog in the Manage menu. This dialog (see

Figure 6.14) is very straightforward-it has a text area in which the user pastes the encrypted text, and a

button he presses to indicate that TeleMedMail should perform the decryption, and a text area that shows

the resulting decrypted text.

Once TeleMedMail has decrypted the reply text, it gives the user the option of saving the reply in the

archive of the case it refers to, or of viewing the relevant case beforehand. (The user should always save a

reply unless it was somehow corrupted in transit.)

A sample encrypted reply email is shown in Figure 6.13. The email contains instructions on how to

decrypt its contents along with the encrypted contents themselves. The instructions and contents are

separated by a line saying "Copy From Here-->" indicating what specific part of the text needs to be

copied and pasted into the Decrypt Reply Email dialog.

The Decrypt Reply Email dialog allows the TeleMedMail system to send secure replies using

standard email; as-is it is just a proof-of-concept of that possibility, and not meant to be used outside of a

pilot study. Even more so than in the Address Book and Case Browser dialogs, the GUI needs to be redone

to improve workflow and ease-of-training.

Beyond obviously needed cosmetic improvements, there are several easy changes to this dialog that

would improve the workflow of decrypting a reply email. First, the dialog should support dragging-and-

dropping of the decrypted text, as an alternative to copy-and-paste. The user could use whichever method

he felt more comfortable with. Second, the dialog should automatically decrypt the contents of the

encrypted text area whenever they change, rather than waiting for the user to press a button. Since the reply

text will be placed there all-at-once by a paste or a drag-and-drop, not typed in a character at a time, it is

easier for the user (and not computationally wasteful) to decrypt the text area whenever it changes. Third,

51

the dialog should recognize when the decrypted text is in the correct format (i.e. the email address of the

doctor who sent the reply, followed by a line break, followed by the text of the reply) and automatically

save the decrypted reply to the archive of the case it refers to. Replies that are decrypted correctly should

always be saved-there's no reason to make it possible for the user to forget to press the Save button.

Further, a single character data-transmission error will lead to unmistakably wrong decrypted text, so the

likelihood of accidentally saving a garbled reply is effectively zero.

6.11 Case UIDs

A unique case number, called a "Case UID" identifies each TeleMedMail case. This number serves two

purposes: first, it allows the sending and receiving doctors to discuss the case in an anonymized way over

an insecure medium, and second, it allows encrypted replies to be automatically stamped with an indication

of which case they refer to. This saves the replying specialist from having to include any case-identifying

information in his reply (a waste of time, since it is generally irrelevant to actually diagnosing the case),

and saves the referring doctor considerable work managing archived case files.

Each new TeleMedMail case starts without a UID assigned to it. Only when the case is sent does it

actually get assigned a UID. Modifying a case (e.g. changing a standard field, attaching an image,

modifying an attached image) after it has been assigned a UID causes the case to revert back to the

unassigned-UID state. Further, if the same case is sent out multiple times, even without being modified,

each sent instance gets its own UID. (The same case, sent twice, will have two different session keys-

TeleMedMail needs to be able to distinguish which is which.)

If a doctor uses the TeleMedMail system in the preferred client-server mode, and replies are made on

the web, or via secure email (see Section 8.1.4), then the user never has to pay attention to case UIDs.

However, making the Case UID visible to the user allows TeleMedMail to be used in other ways as well,

planned, (such as peer-to-peer usage mode, and client-server mode with unsecure replies) or ad-hoc. I

decided to make case UIDs visible to the user in order to make the system more flexible, even though that

risks confusing some users: placing a piece of important-sounding information prominently in the GUI, but

intending for most users to ignore it, is not usually good user-interface design.

52

6.12 Java 2 and Installation

TeleMedMail is a Java 2 application. This made it easy and fast to develop, due to standard Java libraries

for Internet connectivity, security, and graphics, but means that TeleMedMail needs a JVM with Java 1.2 or

later standard classes to run. This creates some issues in distribution and installation.

Since most PCs (Windows or Linux) do not have a Java 1.2 runtime installed, TeleMedMail needs to

be distributed with a Java Runtime Environment (JRE). The solution to this problem that I first

experimented with was distributing Sun's latest JRE along with TeleMedMail, and having the user install

the JRE before running TeleMedMail's installation. This turned out to be insufficient: although its

installation process is straightforward, users sometimes found it difficult to install the JRE properly. The

reason for this is not entirely clear, since users who had this problem were all remote and inaccessible until

weeks after it occurred, but it may be due to the JRE installation not correctly setting the classpath

environment variable on all versions of Windows.

To prevent users from having to install the JRE themselves, TeleMedMail's current installation CD

contains the JRE files in unpacked form, rather than as a single installation executable. The installation

copies the JRE files directly onto the users computer, placing them in the "c:\TeleMedMail\JRE" directory.

Knowing the precise location of the JVM and classes allows the TeleMedMail to be run from the program

directory with a command like "..\JRE\bin\java TeleMedMail".

Distributing the JRE like this has some incidental advantages. It allows the installation script to be

written in Java, since it can use the (unpacked) JRE on the distribution CD. Thus installation can be

arbitrarily powerful, without the monetary cost of an installer like InstallShield. In addition, since the

absolute pathname of the JRE\bin directory is known at install-time, the installation program can copy a

pre-made Windows shortcut to TeleMedMail onto the user's Desktop, which would otherwise be very

difficult using Java.

The downside of doing the installation in this way is that it installs a private copy of a large (-6.5

MB) program that was designed to be shared. If the user already did have Java installed, or if the user later

installs another Java application, this would waste several megabytes of space. A further downside is that if

the user installs later, improved versions of the JRE, TeleMedMail will see no improvement.

53

These disadvantages are all outweighed, however, by the main advantage of this installation method:

it is as simple as can be. The user merely has to insert the TeleMedMail CD-ROM, double-click on the

"Install TeleMedMail.bat" file it contains, and press an "Okay" once to accept the default installation

directory. The JRE and all TeleMedMail files will be copied over to the users computer (see Figure 6.15),

and a desktop icon will be created.

The standard TeleMedMail installation directory is "c:\TeleMedMail". Using this standard directory

makes it relatively easy to send updates and bugfixes to users who aren't very computer-savvy. At present,

these updates consist of a batch file which copies files into the appropriate TeleMedMail program

directory; in the future, however, the TeleMedMail application will probably need some automated way of

receiving updates and bugfixes.

One problem caused by TeleMedMail being written in Java, which has no workaround, is that the

standard distribution must necessarily be large: it has to include several megabytes of zipped JRE files.

(The non-JRE portion of the installation is under 1 MB.) This is a significant problem because remote users

with good dialup connections may be able to download one megabyte, but will not even consider

downloading 7.5 megabytes. As a result, TeleMedMail will have to be distributed on CD-ROM. This is not

such an onerous requirement-the most common large-scale installation scenario will probably involve an

IT worker from a server site physically traveling to a client site, and performing installation, configuration,

and training. In this scenario, CD-ROM based installation is actually preferred.

Figure 6.15 - TeleMedMail Installation

54

7 TMMReceiver

The first of two software components at the server end of the Client-Server model is TMMReceiver, a Java

application that runs on a hospital server, and handles incoming cases. TMMReceiver is implemented as a

POP client: it downloads referred cases from an email account, decrypts them, places any attached files in

the server's filesystem, and inserts the case data into a SQL database, where it can be served by

TMMServer (see Section 8). Finally, TMMReceiver sends notification emails to the sending and receiving

doctors.

TMMReceiver can be run either graphically, or in text mode. Graphical mode (see Figure 7.1) allows

the user to configure the program more easily, while text mode (see Figure 7.2) is more flexible-it can be

started remotely and in the background on a Linux server, for example. In text mode the user must edit

TMMReceiver's configuration file manually.

TMMReceiver has two modes of operation: an advanced mode where it uses a SQL database to

record received cases and manages permissions on those cases, and a basic mode where it merely places

unzipped cases in a directory to be served by an external web-server application.

In advanced mode, the TMMServer database front-end takes care of user-specific security, but it still

requires the JSP server to use SSL to encrypt communications. In basic mode, the external web-server must

provide security, by using SSL and requiring a user password.

The actual operation of the program is very straightforward. TMMReceiver runs in the background on

a hospital's server and, at regular intervals, connects to a POP mail server, downloads any messages and

deletes them from the server. It then handles all downloaded messages.

A downloaded message consists of two parts: the body of the message contains the IDEA session key,

encrypted with the receiving server's RSA public key, while the message's one MIME attachment contains

the case data in a ZIP file, encrypted with the session key. Handling a downloaded message entails the

following steps:

1. Decrypting the body of the message, with the server's private key.

2. Extracting the IDEA session key from the decrypted body.

3. Extracting the attached file from the message.

55

Figure 7.1 - TMMReceiver Graphical Mode

Figure 7.2 - TMMReceiver Text Mode

(jazayeri@envinfo TMMReceiver]$./tmm.sh &
(1] 5297
[jazayeri@envinfo TMMReceiver]$ TMMReceiver started at Fri Mar 15 11:41:00 EST 2
002
TEST at Fri Mar 15 11:41: 00 EST 2002
OKAY: Connected to POP Server.
OKAY: Created Temp File
OKAY: Created a subdirectory under the server directory.
OKAY: Copied a file to server subdirectory.
OKAY: Database connectivity passed tests.

Connecting to POP Server (medg.lcs.mit.edu) ... (11:41:01)
No Messages.

56

Figure 7.3 - TMMReceiver Received Case Notification Email

J 0 Z: Case Notification IFrom=jazayeri@MIT.EDU
Date: Fri, 15 Mar 2002 11:42:36 -0500 (EST)
To: Darius Jazayeri <jazayerMimit.edu>
Subject: Case Notification I From=jazayeri@EIT.EDU
From: TeleHedMail.Automated.Server@DIT.EDU

You have received a case referral from jazayeri@NIT.EDU.

Please log in to the server at

https://envinfo.mit.edu/tmm/

and view the case.

You can view the case directly at

https://envinfo.mit.edu/tm/view.jspcase id=36

Figure 7.4 - TMMReceiver Received Case Reply Email

Lase UU2w Hecelved
Date: Fri, 15 Mar 2002 11:18:54 -0500 (EST)
To: jazayeri@mit.edu
Subject: Case 00289 Received
From: TeleMedMail.Automated.Server@MIT.EDU

Your referred case was received by our server, and was forwarded on to Darius
Jazayeri <jazayeri@mit.edu>.

57

4. Decrypting the message attachment with the session key.

5. Unzipping the resulting ZIP file and placing its contents in the server's filesystem.

In advanced (database connectivity) mode, TMMReceiver then:

6. Places the case details in a SQL database.

7. Grants permission on that case to the receiving doctor.

8. If the receiving doctor has an account on the server:

" Notifies the sender the case was received. (See Figure 7.4.)

* Notifies the receiving doctor of the received case, along with a link to TMMServer's login

page and a direct link to the case. (See Figure 7.3.)

9. If the receiving doctor does not have an existing user account on the system:

* Notifies the receiving doctor that he needs to request an account on the system, with a link to

the TMMServer account-request page.

* Notifies the sender that the receiving doctor will only get the case when he requests an

account on the system.

If TMMReceiver is configured to run in basic (web-server only) mode, it then:

6. Notifies the sender the case was received.

7. Notifies the receiving doctor of the received case, with a link to its web-viewable index file.

When running in advanced mode, TMMReceiver makes a receiving specialist's workflow very simple

and straightforward. He receives an email notifying him that the server has received a case referral for him,

and clicks on the link in that message. (See Figure 7.3.) The specialist then enters his username and

password to log into the system, and views the case as described in Section 8. All in all, the process only

requires a handful of mouse clicks, and a password dialog. (Of course manually typing in the reply is

unavoidable.)

The workflow is even less for a specialist who receives many TeleMedMail referrals: he can handle

several referrals while only having to log in to the system (and enter a password) once.

TMMReceiver's basic mode automates decryption and unzipping of cases, improving the workflow of

the TeleMedMail system over point-to-point referral mode, but it has two major shortcomings. First, it

doesn't allow the specialist to send encrypted replies back to the referrer, thus requiring replies to be made

58

outside the system (by phone, for example) or else requiring that replies don't include any patient-

identifying data. Second, it doesn't keep any structured record of past cases. TMMReceiver's advanced

mode is much preferred, as it solves these two problems.

The database structure used by TMMReceiver is simple, and really only serves as a proof of

concept-it doesn't allow any EMR functionality beyond permission-management. Getting sophisticated

functionality in the real world would require integrating TMMReceiver with the hospital's existing EMR

system. This is not difficult, because of TMMReceiver's open-source design, but it is a highly EMR-

specific task.

The SQL code used to produce this database structure is given in Appendix G. Case information is

stored in cases, patient-details, and casedetails, and replies tables. Information about files attached to

those cases is stored in attached-files, attachedimages, image_annotations, and image-fields tables. User

information is stored in a users table. User permissions on cases are given in the permissions table.

7.1 External Applications

The fundamental design choice in TMMReceiver is to use external applications to do all the real server-

related work. This decision happens three times: I chose to use an external SSL web server, SQL database

server, and SMTP mail server, rather than specialized components to serve, store, and receive cases. None

of the three decisions are difficult: they each allow the system to be more flexible and powerful, while

making implementation easier. For the first two, this is obvious, as SSL and SQL are the industry-standard

ways of storing and serving this sort of data, and provide all the necessary features with no downsides.

Implementing TMMReceiver as a pop client (using an existing mail server) rather than as a specialized

SMTP server (capable of receiving mail by itself) is a similarly easy decision. Although the latter method

would have offered the advantage of allowing the server to know as soon as a referral email was received,

rather than several minutes later when polling a mail account for messages, this advantage is very minor,

and the former method is far easier to implement.

59

7.2 Further Work

TMMReceiver's day-to-day operation is straightforward, and acceptable for large-scale use in its current

form. However one enhancement needs to be made to TMMReceiver's configurability before it achieves

wider use, so that administering it requires less specialized knowledge.

The text of the emails that TMMReceiver sends to the referring doctor and receiving specialist under

various circumstances is specified directly in TMMReceiver's code. As a result, changing those messages

(e.g. translating them for use with Spanish-speaking doctors) requires modifying Java code, and

recompiling TMMReceiver. Although the fragments of Java code that need to be modified are trivial,

requiring system administrators to know a particular programming language is not acceptable.

TMMReceiver needs to be modified to load a text file specifying the contents of the various emails it sends,

thus allowing a TeleMedMail server to be administered by an IT worker who knows nothing about Java.

60

8 TMMServer

TMMServer is the front-end to the database that TMMReceiver places cases in while running in advanced

mode. TMMServer allows specialists to log in and view referrals that have been sent to them, and reply to

those referrals. It also allows referring doctors to log in and see replies to their cases. TMMServer is

implemented as a JavaServer Pages based web application that can run on any JSP-enabled web-server. (It

could just as easily be implemented in any other server-side scripting language that can connect to a SQL

database and generate HTML output.)

TMMServer also provides very basic administrative user-management capabilities. These will need to

be enhanced before the system achieves widespread use.

8.1 Workflow

8.1.1 New Account Application

When TMMReceiver receives a referral for a specialist who does not have an account on the system, then it

sends that specialist a notification that he has received a case, along with a link to TMMServer's New

Account Application page. It is of course preferable for the TeleMedMail system administrator to introduce

a specialist to the system and create an account for him before this happens. But since TeleMedMail's

flexibility allows ad-hoc doctor networks to spring up unplanned, this may be the first interaction that some

specialists have with the system.

The New Account Application page is shown in Figure 8.1. The user is required to enter his name,

email address, requested username, and requested password. He may also specify whether he wants to get

the low- or high-bandwidth version of pages when he logs in.

When the user submits his account application, TMMServer enters it into the users table in the

database, marks it as inactive, and notifies the administrator via email that there is an account request

waiting to be approved.

Once the administrator approves the account, TMMServer sends the user an email with instructions

on how to log in to the system (see Figure 8.2).

61

Figure 8.1 - TMMServer Account Application Page

Welcome to the MIT Test TeleMedMail Server

I already have an account. Id like to log in.

New Account Appleation

Please fill out the following information to apply for an account on the server. This will allow doctors to refer cases
to you via this server, or and allow you to read replies to cases that you sent via this server.

You will receive an email notifying you when you have received a case referral, or when a case you referred has
been replied to.

=Required Field

Your full name:
(First Last) -eu Ja. yei.

Your email address: Iazayecriq alum. t.. edu

This must be the email address address that doctors refer cases to you at, and that you will refer cases from.
When you log in, you will only be able to see cases sent to or from this email address. (If you want to use
multiple email addresses with the system, then you need to email the administrator and explain this.)

Username: djazayeri

Password: .**...

r Low bandwidth?

Checking the "Low Bandwidth" box means that when you view a case, you will not download any attached
images by default. Instead you will have to click on a link to download images.
If you are only going to be logging in to this server to read replies to cases you refer, then you probably want to
check this box.
If you are going to be reading referrals and replying to them, then you probably want to leave the box
unchecked.

.. 2

Figure 8.2 - TMMServer Account Activation Email

our eleMedMail account is rea
Date: Fri, 1S Mar 2002 11:53:05 -0500 (EST)
Frora: Tele~ed~aii Server <jazayeri9XIT.EDU>
To: jazayerinalum.mit.edu
Subject: Your TeleedHail account is ready

Your account on the HIT Tele~edHail Test Server has been created. Your
usernae is

djazayeri

and your password is the one you requested when you applied for the
account.

Go to
https://envinfo-mit.edu/tnu/Iogin.jsp

to log in to the server and view any cases waiting for you.

62

Figure 8.3 - TMMServer Login Page

MIT TeleMedMail Server Login

Username: azayer

Password:

Log i to al

I don't have an account. I'd like to apply for one.

Figure 8.4 - TMMServer Case Index Page

63

Helo, Daiwu Jazayeri L A

MIT TeleMedMail Server

Received Cases

Date Received Referring Hospital Referring Doctor Receiving Doctor # Replies

[Toc* 12:1 Edward [azayenAh YoYe
Sent Cases

[Yuhavent sent any cases to this server.

I3 A aktk:CQ>.

8.1.2 Login and Case Index

TMMServer's login page (see Figure 8.3) is very straightforward, merely prompting the user for his

username and password. Once he has logged in, he is taken to the case index page. (Email notifications of

received cases and replies include a link that will take the user directly to the relevant case or reply after he

logs in. If the user reaches TMMServer by clicking on one of these, then he will skip the index page

entirely.)

The Case Index page (see Figure 8.4) shows the user a chronological listing of all the cases he has

received, followed by a similar listing of all cases he has sent. The received-case list has links next to each

case that allow the user to view or reply to that case, or to view previous replies to that case, if any exist.

Cases that are still awaiting replies are highlighted.

Each entry in the sent-case list has links allowing the user to view the case, or read replies that have

been made to that case. Cases that have already received replies are highlighted.

The Case Index page, like all pages the users sees after he has logged in, has a navigation bar at the

top, showing him who he is logged in as, allowing him to log out of the system, and allowing him to step

back to more general pages, if appropriate. (In the Case Index page, there is nowhere to step back to; all

other pages can at least step back to the index page.) In the future, this navigation bar may allow more

advanced features, such as user-to-user messaging.

8.1.3 Viewing Cases

When the user clicks on the "View" link for a case on the Case Index page, or when he clicks on a direct-

to-case link in a TMMReceiver case-notification email, he is taken to the View Case page (see Figure 8.5).

This page shows textual case details (i.e. Standard Fields, see Section 6.6.1), followed by attached files.

Attached images are shown first, and then attached non-image files.

The View Case page displays attached images differently depending on whether the user has

requested low-bandwidth pages or not. For each image, a high-bandwidth user will see an image thumbnail,

a button to view that image in the Viewer applet, and a link to view the image directly in his browser,

without the applet. (The button is in fact the applet itself. See Section 9.) In low-bandwidth mode, a user

will merely see the title of the image, and a link that will load the attached images. (See Figure 8.6.)

64

Figure 8.5 - TMMServer View Case Page

Figure 8.6 - TMMServer Low-Bandwidth View Case Page

Attached Fles

[Image not loaded] Load Images
CXR r

Send~~~~ a 'b:O!e vasv 4va ura orpiss

65

Attached non-image files are displayed the same way in both low- and high- bandwidth versions of

the page: the title of the attached file, followed by a link to the file. The user's web browser is responsible

for handling the file-it will generally guess its content type based on its file extension, and open it, save it,

or offer to download a plug-in to view it. Handing off unknown file types to the web browser makes the

TeleMedMail system very flexible: a TMMServer installation should be enhanced by adding Java viewers

for specific medical file types it will receive that are not handled by standards browser plugins, but even if

this is not done, unrecognized file types are handled gracefully.

The navigation bar at the top of the View Case page has a link back to the Case Index page. The

bottom of the View Case page has a Reply bar, which allows the user to reply to a case, or view any replies

that have already been made to this case. The Reply bar has links for each of the TeleMedMail system's

three types of replies.

8.1.4 Replies

The TeleMedMail system allows specialists to send replies with three different transport mechanisms: the

text of the reply can be posted on the TMMServer website, it can be IDEA-encrypted and sent via email, or

it can be sent as a plain-text email. The reply-on-web mechanism is the preferred one in all situations where

it can be used; in situations where it cannot, the secure email mechanism should be used. The unsecure

email mechanism should not really be used at all, but the TeleMedMail system provides in the interest of

flexibility, and for emergency situations where a speedy, instantly-readable reply is more important than a

secure one that may take extra minutes to read. (The TMMServer administrator can disable any of the three

transport mechanisms, and in some scenarios may disable the unsecure one.)

The appearance of the pages for the three different types of replies (see Figures 8.7, 8.8, and 8.9) is

similar overall, to emphasize the fact that it is only the transport mechanism that differs, and not the content

of the message. Still, they have subtle differences. Each page looks generally like an email message, with

To, From, and Subject fields filled out to the correct values by TMMServer, a large text area for the user to

enter the text of his reply, a description of the message transport mechanism that will be used, and a button

to send the reply.

66

Figure 8.7 - TMMServer Send Web Reply

Ha o D as J azan Case Index Current Case Lon

Send W eb R eply Secure Email Reply Unsecure Email Reply

To: jazayeri@rit.edu
From: Darius Jazayeri <jazayeri@alum.mit.edu>
Subject: Notification of Web-viewable TeleMedMail Reply

The text of your reply will be posted on this website. An email contaiang a link to your reply will be sent to the
referring doctor to notify him that his case has received a reply. He will have to log in to this site to read the reply.

Figure 8.8 - TMMServer Send Secure Email Reply

Hcllo, Dius Jazaytn C ase Index Current Case L4 Oul

Send Secure Reply Web Reply Unsecure Email Reply

To: jazayeri@mit.edu

From: Darius Jazayeri <jazayeri@alum.mitedu>

Subject: Secure TeleMedMail Reply

Body:

The text of your reply will be encrypted and eenailed to the referrmg doctor. He will have to use the TeleMedMail
program that he used to send the case to decrypt the text of your reply.

67

Figure 8.9 - TMMServer Send Unsecure Email Reply

Helo. Darinus Xayeti Casthdadx Cortent Case L.ggu4

Send Unsecure Reply Web Reply Secure Email Reply

To: jazayersrnmit edu

From: Darius Jazayesi <jazayeri@alum.nsitedu>

Subject: Unsecure TeleMedMail Reply

Body: Case ID 37

Warring: This infosenation is confidential. Email about this case should not use the patient's
name. (Tre Case ID Ntuber will be automatically included.)

The text of your reply will be emailed to the referring doctor without any sort of security. If possible, you should use
Web Reply or Secure Email Reply instead.

*,d 1.) 1&M

Figure 8.10 - TMMServer User Management

Ii I name eman usernme password admrn
DariuJazye .. azayen....edu _ [Long Not Vared

2 Harmish Fraser edtSh ot Vaed

3 Bdrdaiyenmt, Alan Bedfrd~w f
isMaunice Mars marsI§Th ili Long Nat Varied

azayensinrstedu ___

5Prof LeclhfBanach azayern~rur edrs i'lsbanrach Long Somewhat aniei
[Darius Jarsyen azayenriut cidu jgzaven Long N ot Vans's T

7 [Dr MshanmmraAGolam hsstafa azayenis~mitedu miio cLsta e oo YVeds ff
9 [aulhe.n. eam azayer@mit edu -ph2065 Shot Not Vaed f
to fdoo rcer&i ~ - azayerdsurtedu iltoine
12ufB~risr F iazayen@mt edis bchsk

T3[DaOs Jazaye azayer@altmrmst edu d Lon Not Varied

.r 1 t *'

68

*Hell0o, DaisJam y (A dnrstratLr) Cut Inde

MIT TeleMedMail Server - User Management
Create User

Users awaiting activation

Aae eali ernme !assword

Active Users

In addition to this, the Unsecure Email Reply page shows an obvious warning, in large red text, that

the text of the reply should not contain the patient's name, and a reminder that TMMServer will

automatically include the appropriate Case ID number.

The navigation bar at the top of the Reply pages has links back to the Case Index page and the View

Case page.

8.2 Administration

TMMServer's administrative toolset is currently very limited, providing only the bare minimum of

functionality necessary to run the TeleMedMail system. When an administrator logs is, he is taken to the

standard Case Index page, with three changes:

1. His received-case list shows all cases sent to any doctor.

2. Each displayed case has an extra link, to delete that case.

3. His navigation bar has an extra link, which takes him to the User Management page.

8.2.1 User Management

TMMServer's User Management page (see Figure 8.10) allows an administrator to approve and create

accounts, view user account information, or assume the identity of any active user. The top of the page

shows a list of user accounts awaiting approval, while the bottom of the page shows a list of active user

accounts.

The most important function of the User Management page is to allow the TMMServer administrator

to approve accounts for users that have requested them. To approve an account, the administrator just has to

select the checkbox of an account in the awaiting-approval list at the top of the page, and press the

"Activate" button. Activating an account will send a notification to that user that his account is ready, and

move that account from the awaiting-approval list to the active list at the bottom of the page.

An administrator can also create a user account without waiting for that person to request an account,

via a link at the top of the page.

As an aid to troubleshooting, the administrator can also log in to the TMMServer system as any of the

active users by clicking on that user's username in the active list. This allows the administrator to see pages

exactly as a particular user would, which can help him better answer questions about the system.

69

8.3 Further Work

TMMServer is currently little more than a simple front-end to the SQL database storing referred cases. It

has sufficient functionality to demonstrate the possibilities of a store-and-forward telemedicine system, but

it lacks features that might make it more powerful for real-world use. The lack is not fundamental to the

TeleMedMail system-these features can easily be added at a later date.

One shortcoming of the current implementation of TMMServer is its simplistic view of case

permissions. At present, the specialist to whom a case is referred, and the doctor who referred the case, are

the only two users with permission to view a case; only the receiving specialist can reply to that case. This

makes sense, since some users who have accounts on a particular TMMServer instance (such as a remote

referring doctor whose account exists only to view replies) should not have permission to view and reply to

all cases on the server.

This shortcoming could be fixed by implementing the idea of different user groups and roles, but that

solution would complicate the system considerably. A much simpler improvement would be to allow any

user with permission on a case to grant permission on that case to other users as well. This would allow

fairly sophisticated case permission management, while keeping TMMServer just as simple as it currently

is. Specialists could ask a colleague for help on a difficult case, or "refer" it along to someone with more

relevant knowledge; the referring doctor could ask a second specialist for an opinion on a case without

having to send an entire new TeleMedMail referral. Allowing a case's receiver to grant permissions to

other users would also make it possible for TeleMedMail to be run as a sort of clearinghouse system, where

all referrals to a hospital would go to a single user, who would then assign them to the appropriate

specialists, thus relieving the referring doctors from the burden of keeping track of where various

specialists work.

A trivial but necessary improvement would be to allow the administrator to delete or deactivate users,

and to modify their email addresses and passwords-currently there is no web front-end for this, and the

administrator has to do it directly in the SQL database.

Another trivial adjustment involves having TMMServer store some sort of information about referring

doctors, specifying whether they can read replies on the website, or whether they need to have replies

delivered to them by one of the email methods. (This information could be used to pick the correct default

70

reply mechanism for a particular recipient.) A third would be to establish two distinct types of user

accounts, one geared towards receiving cases, and one towards sending them, and have visually different

index pages for each user type.

A more significant weakness of the current TMMServer implementation is that it doesn't allow any

sort of sophisticated user-to-user messaging. One particular way this can be fixed is by allowing referring

doctors to post messages about cases they sent to the server. (TMMServer would then have to notify the

receiving specialist, and anyone else who previously replied to that case, that there was a further

development or question.) Currently only the receiving specialist can post replies, so if the referring doctor

has any questions about the specialist's reply, the system doesn't provide any way to address them.

Allowing him to post replies on the TMMServer website would allow such follow-up questions to be asked

in a secure manner, and make the entire referral process more of a dialog.

71

9 Viewer

Viewer is a very small Java Applet (-21 kb) that the receiving specialist uses to view images attached to a

TeleMedMail case. Web browsers already have the built-in capability of displaying images, but the simple

image display they provide does not allow the sort of viewing that a specialist needs when looking at

clinical images. In particular, while looking at an image in a web browser, the user must view the image at

full-size. Since digital camera images will often be larger than the specialist's screen (most clinical image

types should be at least 1600x1200, while a typical screen resolutions is 1024x768), he would often not be

able to see the whole image at once. This is not acceptable-at the very least it will be an inconvenience to

the specialist, and more likely it will hurt his diagnostic accuracy. The problem of zooming an image can

be easily solved by a Java applet, which can perform arbitrarily complicated image manipulations.

Viewer pops up an external window (see Figure 9.1) with a small toolbar on the left, and a large

image display on the right. The toolbar has four sections: zoom controls, window level controls, the

navigation thumbnail, and annotation view controls.

The zoom controls allow the user to scale the image to fit in the window, view it at full resolution, or

zoom in or out. Zooming in or out enlarges or reduces the size of the image, to the nearest power-of-two

zoom. (Thus if the image is currently at 35% zoom due to fit-in-window, and the user presses "Zoom In,"

the image will scale to 50% zoom.) I chose to use only power-of-two zooms when possible because that

probably minimizes the zooming artifacts that are inevitable when viewing the image at anything other than

full resolution.

The window level controls allow the user to brighten and darken the image, either by pressing the

"Darken" or "Brighten" buttons or by directly entering high and low window levels. ("Window levels" is a

radiological term, described below in Section 9.1.) The user can also choose to invert black and white in the

image display, possibly making some image features more visible.

The navigation thumbnail is a scaled down version of the image, with a box highlighting the portion

of the image that is currently visible on the right side of the window. The user can drag the mouse around

on the navigation thumbnail to move the rectangle around, thus scrolling the view on the right side of the

window. (The user can also scroll the image by dragging the view on the right side around directly. The

72

Figure 9.1 - Viewer Window

Figure 9.2 - Viewer Window Levels Intensity Transfer Curve

"Interesting" input window

255--

0--
o Low-255 Hi-255 255

Input intensity

73

navigation thumbnail merely provides another mechanism, which can provide a better perspective when

Viewer is zoomed in.)

The annotation view controls allow the user to specify whether or not Viewer should display

annotations, and whether or not it should show the image comment. When visible, annotations are drawn

directly on the image; the user might want to hide them if one is obscuring a feature of the image. The

comment is displayed in a fixed position towards the top of the image display on the right side of Viewer's

UI. Since it doesn't scroll with the image, the user will rarely need to hide it.

Both the comment and annotation are drawn in red. This makes them easily visible on many images

(such as X-rays), but very difficult to see on red-biased images (such as some pathology slides). Viewer

should be enhanced to automatically display text in a color that doesn't show up in much in the rest of the

image, or at least allow the user to toggle between different text colors.

The text of the image comment that Viewer displays is specified in the HTML file containing the

APPLET tag for Viewer-as such it is specified by TeleMedMail when it sends the case in peer-to-peer

mode, or by TMMServer when it generates the "view.jsp" page. This comment text will generally consist

of the per-file standard fields (see Section 6.3.4) concatenated together.

Once it has been downloaded and initialized, the Viewer applet shows up in its containing web page

as a button labeled "View In Applet." (The button is not visible before Viewer is ready to display its

image.) When the user presses the button, Viewer brings up the image and associated toolbar in a new

window. (Since the new window is a Java Frame object rather than a new browser window, the user's web

browser will generally label it with some sort "Untrusted Applet Window" warning.)

9.1 Window Levels

Viewer provides some simple image filtering capabilities, allowing the user to change the image's

brightness and contrast, or to invert light and dark. This filtering is done on a per-pixel basis-it is not

affected by other nearby pixels, or global image characteristics.

Regardless of whether it is displaying a color image or a grayscale image, Viewer uses the standard

Java Image class, at the default 32-bit RGB color depth, with the alpha channel set to be fully opaque. The

74

red, green, and blue channel values can vary from 0 to 255; for a grayscale image, all three channels have

the same value at each pixel.

Each color component of each pixel in the image is modified by a filtering function before being

drawn to the screen. This function, which maps actual pixel channel intensity to displayed pixel channel

intensity, is piecewise linear, and depends on three user-specified parameters: High, Low, and Invert. (See

Figure 9.2.)

High and Low are real numbers between 0 and 1. Color components with values below (Low x 255)

are mapped to 0, while color components above (High x 255) are mapped to 255. The intensity transfer

function between those two values is a straight line connecting the points (Lowx255, 0) and

(Highx255, 255).

These controls are referred to as Window Level controls because High and Low together specify a

window of interesting color component values which is mapped to the entire 8-bit displayable range.

Invert is a boolean value which, when true, specifies that the color component value resulting from

the transfer function just described should be inverted (i.e. subtracted from 255) before being drawn to the

display.

If the user chooses, he can enter values of High and Low directly as real numbers. More likely,

however, the user will change window levels by pressing the Darken and Brighten buttons. The former

increases High if possible and if not increases Low, while the latter decreases Low if possible and if not

decreases High. For a single press of either button, the total change in High and Low is 0.1, unless the

image is already so bright or so dark that this is not possible.

Enhancing the image by changing the window level does not happen instantaneously, and depends on

the speed of the user's computer. Future work should go into optimizing the window-level algorithms for

speed. The results of Brightening and Inverting an image are shown in Figures 9.3 and 9.4.

9.2 Multiple Languages

Viewer's is built such that its user interface can be easily translated into different languages. The APPLET

tag in the HTML file containing Viewer can specify all strings that show up in the UI with parameters.

75

Figure 9.3 - Effect of Brightening an Image (After/Before)

Figure 9.4 - Effect of Inverting an Image (After/Before)

76

Any labels not specified in the HTML file default to standard phrases in English. The configurable

parameters, and their default values, are shown in this HTML fragment:

<APPLET CODE="Viewer.class" ... >

<PARAM NAME="VIEWBUTTON" VALUE="View in Applet">
<PARAM NAME="ZOOM" VALUE="Zoom">
<PARAM NAME="ZOOMIN" VALUE="Zoom In">
<PARAM NAME="ZOOMOUT" VALUE="Zoom Out">
<PARAM NAME="RESETZOOM" VALUE="Zoom to (1:1)">
<PARAM NAME="ZOOMFIT" VALUE="Fit In Window">
<PARAM NAME="BRIGHTEN" VALUE="Brighten">
<PARAM NAME= "DARKEN" VALUE= "Darken ">
<PARAM NAME="RESETBRIGHTNESS" VALUE="Reset">
<PARAM NAME="WINDOWLEVELS" VALUE="Window Levels">
<PARAM NAME= "WINDOWLEVELHIGH" VALUE= "High">
<PARAM NAME="WINDOWLEVELLOW" VALUE="Low">
<PARAM NAME= "INVERT" VALUE=" Invert Video">
<PARAM NAME="SHOWANNOTATIONS" VALUE="Show Annotations">
<PARAM NAME="SHOWCOMMENT" VALUE="Show Comment">

</APPLET>

77

10 CaseViewer

CaseViewer is a small Java applet (-39 kb) that the receiving specialist uses to view a peer-to-peer referral.

(Viewer only displays a single image, while CaseViewer displays the entire case, text and images.) Once

unzipped, a peer-to-peer referral consists of an index.html file (which contains the APPLET tag necessary

to load CaseViewer, and the XML information describing the case, IDEA-encrypted, and stored in a

PARAMETER tag for the applet) and any files attached to the case. (These attached files are not

encrypted.)

The CaseViewer applet shows up in an HTML page as a button labeled "Open Case" (see Figure

10.1). When clicked, the user is prompted for the case password. CaseViewer tries to use the user-entered

password to decrypt the XML ciphertext; if the resulting decrypted text is of the correct format (i.e.

<TELEMEDMAIL TYPE=" SEND"> .. .) then the password was correct, otherwise CaseViewer prompts

the user for the password again.

Once the user has entered the correct password, and CaseViewer has decrypted the case XML, it

opens a new window containing the case data. (See Figure 10.2.) The left side of the window shows the

textual case data (i.e. overall-case Standard Fields from TeleMedMail as described in Section 6.1.2), while

the right side shows thumbnails of the attached images, along with a button to view each image. These

buttons begin grayed out, and only become active when CaseViewer is prepared to display the relevant

image. This preparation happens in a background thread, so as not to prevent the user from viewing the rest

of the case while it happens.

When the user presses one of the image buttons, CaseViewer displays the image in a new window that

looks exactly like the window brought up by Viewer (see Section 9), and has exactly the same functionality

and interface. CaseViewer's image-displaying code is the same as Viewer's, with very minor

modifications: the variables specifying UI-component labels are taken from the CaseViewer class, and the

window popped up is a Dialog window rather than a stand-alone Frame window.

The index.html page containing the CaseViewer applet also has links to any non-image attached files

(CaseViewer wouldn't be able to handle them-that is left to the web browser's standard mechanisms), and

a mailto link allowing the specialist to send a reply back to the referring doctor.

78

Figure 10.1 - Peer-to-Peer HTML Index Page

azayer~

Store and Forward Telemedicine
Patient Referral

This information is confidential. Email about the case should use the
Case ID number, not the patient name.

Send reply email to referring doctor

Please contact sending physician if any data is missing or damaged.

Figure 10.2 - CaseViewer Window

79

X.hM

10.1 Further Work

The TeleMedMail system's peer-to-peer referrals do not provide any mechanism for the specialist to send a

secure reply back to the referring doctor. But CaseViewer already includes all the Java classes necessary to

generate such a reply. CaseViewer should be extended to allow the specialist to type in a reply to the case,

and then to IDEA-encrypt the text of that reply with the case password. CaseViewer could then produce

instructions and ciphertext for the user to copy and paste into his standard email client, and send to the

referring doctor. The referring doctor's TeleMedMail application has an archived copy of the case

password, and can decrypt the reply with its existing Decrypt Reply Email function.

One shortcoming of peer-to-peer referrals is that attached files are not encrypted, so to ensure patient

confidentiality, they should not include any patient-identifying information. This is not a desirable

situation, however, since in general files should contain patient-identifying information, in case they ever

become separated from the XML information that describes them. In the case of image files, this can be

fixed with a small change in the image-loading code, and a change in TeleMedMail to specify in the XML

whether an image is encrypted or not.

In the case of non-image files, there is no easy solution to this problem: CaseViewer could decrypt

them, but due to security restrictions on Java applets, it would not be able to write the decrypted file to disk.

To address this shortcoming, CaseViewer would need to request permission to write to disk, which

involves making CaseViewer a signed applet. This would inconvenience the user, as few people are used to

granting permission to signed applets. It would also introduce security risks-even an unsophisticated

adversary could easily exploit users' acquired propensity to grant write-permission to applets.

80

11 Security Risks

TeleMedMail has all the security risks of a distributed computer system: passwords can be compromised

due to human error or cracked by brute-force attacks, or an adversary can break into a client or server

machine and steal data. These risks are unavoidable in any distributed computer system, and the system

administrator should be familiar with how to deal with them.

The TeleMedMail system has two security risks particular to its design, besides familiar issues

common to all client-server systems. First, secure reply emails from the server to a referring doctor are

encrypted but not authenticated, so they are vulnerable to a limited type of forgery attack. Second, referring

clients do not have their own RSA keypairs, so a server does not know for certain whether a referral really

comes from the client it claims to have been sent by.

Both of these attacks are extremely unlikely: they require far greater effort and expertise than would

plausibly be employed by an attack on a remote, poor area of a developing country.

11.1 Forged Replies

An adversary can break in to the client or server computer, steal an archived session key, and then use that

key to send an encrypted reply to the client who referred that case. This forged reply might contain an

incorrect diagnosis, which could lead the referring doctor-trusting the reply-to perform a harmful

procedure on the patient. (This attack requires the adversary to write some Java cryptography code-an

unlikely scenario.)

Even if replies were authenticated, a successful break-in at the server end of the system would still

allow an adversary to send this kind of forged reply. Since replies are not authenticated, a break-in at the

client end of the system allows the same forgery. This is significant, because the client end of the system is

likely to be physically less secure than the server.

On the one hand, an adversary who breaks into the system at the client end can do significantly more

damage by other means than by forging a reply, so this type of attack is not a big deal. On the other hand,

this kind of attack could go unnoticed, while more damaging attacks (deleting files, etc.) have a noticeable

impact.

81

This risk can be avoided entirely (assuming the server is never compromised) by using on-the-web

replies instead of secure email replies (see Section 8.1.4). Since on-the-web replies are the preferred reply

method, most users will already be immune to this risk.

One change that would make this kind of attack more difficult would be to have the server sign the

ciphertext of secure email replies with its private key. (This requiring TeleMedMail to decrypt incoming

replies first with the public key of the server it sent the case to, and then with the archived session key for

that case-not difficult, since TeleMedMail has a copy of the public key, and a record of which server that

case was sent to.)

An intruder who changes the server public key file in TeleMedMail's keystore could circumvent this

additional security measure. So a further security enhancement, which would make forged replies nearly

impossible, would be to modify the TeleMedMail client application to require a password, and to use that

password to encrypt sensitive information (i.e. the sent-case archive, and the keystore). This would prevent

an intruder with access to the client computer from being able to copy archived session keys, or modify

server public keys.

Under the current TeleMedMail system, the risk of forged replies is acceptably small for pilot studies

and small- to medium-scale use. Specifically, it requires an attacker to break in to the client machine, and

such a break-in would cause larger security problems. The TeleMedMail client application should be

enhanced with a password before large-scale use, however.

11.2 Spurious Referrals

Under the TeleMedMail system, referring clients do not have any way of certifying their identity. As a

result, a server cannot know whether a case was really referred by the client that the case claims to be from.

This is not really a security risk, as it doesn't allow any data to be stolen or modified, but it does allow an

adversary to send case referrals to a server, claiming they are from some other (real or fake) person. This

could be a type of Denial of Service attack, causing receiving specialists to waste time reading bogus cases.

Another variant of this attack would be for an attacker to get a receiving specialist to diagnose a real

case, but charge a referral fee to some other referring client. (In order to succeed, this type of attack would

require that the user network be very large, or that the system administrator be particularly inattentive.)

82

In small- to medium-scale uses of the TeleMedMail system, these types of attacks would be quickly

noticed, because the system administrator and users would be relatively familiar with each other. Very-

large-scale use of the system, however, would probably require that messages be cryptographically

authenticated. Large-scale health-care providers whose concerns go beyond the purely medical (such as a

multi-hospital organization or an entire country) should probably not use the TeleMedMail system until

these changes have been made.

Solving this problem, by requiring client locations to register their RSA public keys with servers

before sending cases actually makes the TeleMedMail system considerably less flexible, especially before

it is widely installed. Registering public keys takes time on an administrative scale, which is generally slow

in developing countries. This would mean, for example, that a doctor who travels to a remote clinic and

installs TeleMedMail there would probably not be able to use it for a considerable amount of time.

For TeleMedMail's initial users, especially those involved in well-supervised pilot studies, the small

risk of spurious referrals is far preferable to the considerable inconvenience and lack of flexibility required

to prevent that risk. Thus the changes necessary to eliminate this risk are not warranted unless they are

particularly required in a specific situation.

83

12 Conclusions

The TeleMedMail system fulfills its design aims of security, ease-of-use, automation, low cost, flexibility,

and openness. As such it makes the large-scale use of low-cost store-and-forward telemedicine a real

possibility; this can be a powerful tool, allowing developing countries to spread the reach of their expertise.

Telemedicine has been shown to be cost-effective in some specific situations22 . TeleMedMail is a

simple, efficient, and inexpensive system that can make telemedicine more widely useful, allowing its use

by less computer-savvy doctors.

But there is a larger question. Beyond lacking specialists, developing countries often lack the funding

and resources necessary for even very basic health services. Is it worthwhile to divert a portion of that

scarce funding towards telemedicine infrastructure, when the cost of a single laptop and digital camera

could buy hundreds of doses of basic vaccinations? The existence of the TeleMedMail system does not

answer these questions. Rather it helps lower the costs of telemedicine (software, training, and labor) and

makes it easier to perform studies quantifying the real costs and benefits that telemedicine will bring to

specific clinical areas in specific locations and scenarios.

In addition to gathering data for future cost-benefits analyses, these sorts of pilot studies will also

provide valuable user-driven insight into the strengths and weaknesses of the TeleMedMail system, and

suggest the ways in which it should be modified and improved.

After pilot studies have been carried out, and a few minor improvements are made to the

TeleMedMail system (see Section 12.2), low-cost store-and-forward telemedicine will be a useful tool for

developing countries' health-care systems, with evidence to support its real utility and costs.

12.1 Other Usage Scenarios

12.1.1 Remote Specialists

I designed the TeleMedMail system under the assumption that all specialists would be located at central

hospitals with good IT support. In practice this is usually, but not always, the case. Remotely located

specialists do exist, and they are just as valuable as centrally located ones. In fact they are more valuable in

some ways: since remote specialists may be physically located in underserved areas that have no easy

84

access to large central hospitals, they may be able to recommend more practical local treatment, or that the

patient travel to their clinic for further consultation. A centrally located doctor might not be able to make

such a recommendation.

The options that the TeleMedMail system provides to such a remote specialist are not sufficient in all

cases. Under the constraints of the system, the preferred way for a remote specialist to receive case referrals

would be for him to have a user account on a TMMServer installation that he can reach via a dialup web

connection. This is satisfactory for most remote specialists-the idea of giving server accounts to

specialists not actually located at that hospital is very flexible and powerful-but does not work in two

cases: if the specialist has only email access and cannot use the web, or if the specialist needs a local copy

of case referrals, for offline viewing.

In these two scenarios, where a remote specialist cannot use an account on a server, he instead has to

rely on peer-to-peer referrals. But TeleMedMail's peer-to-peer referral method is designed for one-time

communications rather than frequent traffic, and as a result does not optimize the workflow of the receiving

specialist. In particular, a specialist who receives many TeleMedMail peer-to-peer referrals has to unzip

attachments and archive past cases in the same inconvenient way a specialist not using the TeleMedMail

system would have to.

The best solution to this problem would be to enhance the TeleMedMail application such that it

automates the process of receiving, decrypting, and archiving cases. Instead of opening received cases with

his standard unzip client, the specialist would open them with (enhanced) TeleMedMail.

This particular solution has two key strengths. First, it would not require any changes to the case-

sending portion of TeleMedMail: as such it would happen completely transparently to the referring doctor.

Second, these enhancements could directly use TeleMedMail's existing code: referring doctors could

automatically be put in the Address Book, and cases could be displayed using the existing Case Browser

infrastructure.

Implementing this TeleMedMail enhancement would make handling peer-to-peer referrals nearly as

easy as handling client-server referrals. But the actual implementation of this TeleMedMail enhancement

should wait on one important thing: a demonstrated need. It is not worthwhile to expend effort enhancing

85

the system unless there actually are enough specialists who need the enhancement because they cannot use

TeleMedMail's existing client-server referral method.

12.1.2 Trusted Third-Party Record-Keeping

Although the TeleMedMail system was designed under the assumption that an installation of TMMServer

would serve several specialists at a single institution, this is not a requirement. As alluded to in the

discussion of remote specialists, the fact that specialists with server accounts can be physically far from the

server makes the TeleMedMail system very flexible. One particular usage scenario it allows is that of an

institution serving as a third-party record-keeper and arbitrator of disputes. A well-staffed and trusted

institution such as a University teaching hospital could run a TeleMedMail server, and provide an account

to any interested specialist. This server would store (and backup) a permanent record of the interactions

between referring doctors and specialists. This would both allow specialists to accept telemedicine referrals

without needing any local IT expertise, and allow any disputes about cases to be resolved by a trusted third

party.

This record-keeping function works even though referring clients do not have RSA keypairs: any case

residing on the server is guaranteed to have been unaltered since it was sent. Even the risk of forged replies

(see Section 11.1), does not affect this arbitration function: any reply stored on the server is guaranteed not

to have been the result of such a forgery attack following a break-in at the client.

The trusted server does not solve the problem of spurious referrals (see Section 1.2)-it has no way

to be sure that a message is actually from the person it claims to be from. But since this cannot lead to

misdiagnoses, only to Denial of Service-style wasted specialist time, it is an acceptable risk if the server is

well administered and monitored.

12.2 Further Work

In its current state, the TeleMedMail system is perfectly sufficient for use in pilot studies measuring the

costs and benefits of store-and-forward telemedicine. However, a few minor improvements need to be

made before it is ready for daily use. In addition, it will probably need one fundamental change before

being used in a very-large-scale enterprise, such as an entire country's medical system.

86

12.2.1 Minor Improvements for Broader Use

The TeleMedMail system's software components need the various minor improvements already mentioned

in previous sections. Among the key ones:

TeleMedMail needs to have multiple different sets of standard fields, each customized for a particular

clinical specialty. (See Section 6.6.1.)

Pilot studies can use a single standard field configuration, since they will probably geared to study referrals

of a particular clinical type, but a general-purpose telemedicine application needs to provide its users with

the flexibility to choose what type of referral they are sending, and provide data required by that particular

specialty.

TeleMedMail's Address Book, Case Browser, and Decrypt Reply Email components need to have their

GUIs reworked. (See Sections 6.8, 6.9, and 6.10.)

The present user-interfaces of TeleMedMail's plug-in components provide the necessary functionality, but

their appearance is not as professional, and their workflow is not as well streamlined, as the rest of the

TeleMedMail application.

TeleMedMail should be password-protected. (See Section 11.1.)

In order to lessen security risks in scenarios that are larger-scale and not as well monitored as a pilot study,

TeleMedMail should password-protect the sensitive data it contains.

The text of reply and notification emails sent by TMMReceiver and TMMServer needs to be easily

configurable. (See Section 7.2.)

Presently, the text of reply and notification emails TMMReceiver and TMMServer send is defined directly

in the Java and JSP code. This is not a problem in a pilot study with a highly skilled system administrator,

but if general users should be able to translate and customize email text in a single text file, without having

to see any Java code. This same configuration file should also specify other information (e.g. the name of

the server) that will need to be changed at each installation of the TeleMedMail server.

TMMServer should have more sophisticated case-permission management. (See Section 8.2.)

At the very least, the TMMServer administrator should be able to see which cases do not belong to any

user, and to grant permissions on those cases to the appropriate doctor, without having to access or modify

87

the SQL database directly. (As an example, if a referring doctor's Address Book contains an incorrect

email address, the TMMServer administrator can assign cases sent to that wrong address to an appropriate

specialist, without requiring the referring doctor to resend the case.)

In addition, letting users to grant other people permissions on their cases will make the TeleMedMail

system more flexible, and allow interesting usage scenarios. (See Section 8.3.)

Since this improvement requires such a small change in TMMServer, yet would make the whole

system much more flexible, it should be implemented before putting the system in large-scale use. In fact,

as soon as this change is implemented, a pilot project should be designed to study the strengths and

weaknesses of the current TeleMedMail system as compared to a clearinghouse-style system where all

referrals to a server go to the TMMServer administrator, who then assigns them to the appropriate doctors.

Peer-to-peer referrals should encrypt images. (See Section 5.2.)

I have discovered a simple modification to the CaseViewer applet and to the format of peer-to-peer XML

case descriptors that would allow attached images to be encrypted in peer-to-peer referrals. At present

TeleMedMail's peer-to-peer referral method is easier to use, but no more powerful, than a process that can

be performed with other standard tools-implementing this change would make TeleMedMail's peer-to-

peer referrals not just easier than existing current methods, but also functionally better.

12.2.2 Message Authentication for Large-Scale Use

At present, referring locations do not have any way of certifying their identity. This is not really a security

risk (see Section 11.2) but it means that messages sent by the system are not authenticated. A very large

health-care provider (e.g. an entire country) would require message authentication, so in its current form

the TeleMedMail system should not be used by such a large provider.

Before such very-large-scale use, the system would need to be modified by giving referring locations

their own RSA keypairs (server locations already have them), and requiring remote locations to register

their public keys with the central servers that they intend to refer cases to before they can actually send any

cases. The structure of referral and reply messages would also have to be altered to support include

authentication. (This could involve including private-key-signed checksums of message content, or private-

key-signing the messages themselves.)

88

This change should only be made if necessary for very-large-scale use, since it makes the system less

flexible for general use. (See Section 11.2).

89

13 References

WHO Estimates of Health Personnel; 1998.

http://www3.who.int/whosis/health-personnel/health-personnel.cfm?path=whosis,health-personnel

2 WHO advisory meeting on radiology education. Geneva: World Health Organization; 1999.

3 Wootton R. The possible use of telemedicine in developing countries. J Telemed Telecare

1997;3(1):23-6.

4 Della Mea V, Beltrami CA. Telepathology applications of the Internet multimedia electronic mail.

Med Inform (Lond) 1998;23(3):237-44.

5 Corr P, Couper I, Beningfield S, Mars M. A simple telemedicine system using a digital camera.

Journal of Telemedicine and Telecare 2000;6:233-36.

6 O'Mahony D, Banach L, Mahapa D, Lancaster E, van derLinde G, Williams B, et al.

Teledermatology in a Rural Family Practice. S Afr Fam Pract 2001(In Press).

7 Seckler W, Hoffman N, Banach L. A practical approach in Teleconsultation using standard

technologies in rural areas of Eastern Cape.

http://www.nemc.org/itmi/presentations/conf/seckler/tsId001.htm

8 Ssrensen T, Rundhovde A, Kozlov VD. Telemedicine in north-west Russia. J. Telemed and Telecare

1999;5(3):153-56.

9 Malani J, Dever GJ. Telemedicine demonstration projects in the Western Pacific. J Telemed Telecare

1997;3(Suppl 1):43-6.

10 Johnson MA, Davis P, McEwan AJ, Jhangri GS, Warshawski R, Gargum A, et al. Preliminary

findings from a teleultrasound study in Alberta. Telemed J 1998;4(3):267-76.

" Vassallo DJ, Hoque F, Farquharson Roberts M, Patterson V, Swinfen P, Swinfen R. An evaluation of

the first year's experience with a low-cost telemedicine link in Bangladesh. J Telemed Telecare 2001;

7: 125-138.

12 Jazayeri D. XraySender: A System to Digitize and Transport Medical X-ray Images. AUP Writeup,

May 2000.

90

13 Fraser H. S. F., Jazayeri D., Szolovits P., McGrath S. D . Appropriate technology for telemedicine in

developing countries. Proc AMIA Symp 2000;:1010

14 Fraser HS, Jazayeri D, Bannach L, Szolovits P, McGrath SJ. Telemedmail: free software to facilitate

telemedicine in developing countries. Medinfo. 2001;10(Pt 1):815-9.

15 Brauchli K. iPath: Internet Pathology Suite. http://ipath.sourceforge.net/

16 Excelsior JET: The Java Performance Solution. http://www.excelsior-usa.com/jet.html

17 Tuberculosis in Russia. http://www.tuberculosis.ru

18 GNU General Public License: http://www.fsf.org/copyleft/gpl.html

19 PostgreSQL. http://www.postgresql.org/

20 Jakarta Tomcat. http://jakarta.apache.org/tomcat/

2 ImageJ: Image Processing and Analysis in Java. http://rsb.info.nih.gov/ij/

22 Wootton R, Bloomer SE, Corbett R, Eedy DJ, Hicks N, Lotery HE, et al. Multicentre randomised

control trial comparing real time teledermatology with conventional outpatient dermatological care:

societal cost-benefit analysis. Bmj 2000;320(7244):1252-6.

91

Appendix A - TeleMedMail Sent Case Archive

ZIP Contents
The TeleMedMail application archives copies of cases that it sends for future reference. A sent case archive
is a standard ZIP file, with a ".zip" file extension, containing:

info.xml - An XML text file describing the sent case. (See below.)
key.dat - The IDEA session key used to send this case. (See below.)
index.html - The html index file that was sent with the case
Applet JAR - The applet (Viewer.jar or CaseViewer.jar), if any, sent with the case.
Attached Files - Any files that were sent with the case.
Replies - The text of any secure replies regarding this case. (See below.)

XML Descriptor
The XML case descriptor is formatted as follows:

<TELEMEDMAIL TYPE="CASEINFO">

<CASEINFO caseid = ...
date
referringhospital = ". . .

...all overall standard fields...
/>

<ATTACHEDIMAGE TITLE=". .. " FILENAME=" .. . " WIDTH= "X" HEIGHT= "Y"

BW="truejfalse" COMMENT=". .. ">
<ANNOTATION NAME="..." TEXT="..." TYPE="ANCHORIARROWIRECTANGLE"

P1="X,Y" [P2="X,Y"1/>

... all annotations...
<FIELD NAME=" ... 1" VALUE=".. ."/>
...all per-file standard fields...

</ATTACHEDIMAGE>

...all attached images...

<ATTACHEDFILE TITLE=". . ." FILENAME=". . ./>
...all attached files...

</TELEMEDMAIL>

Each XML attribute value is URL-encoded. (E.g. an image whose title is "Chest X-Ray" would have the
attribute:

TITLE= "Chest+X-Ray+%28CXR%29"

key.dat
The "key.dat" file contains the raw 128-bit IDEA session key, with no encoding.

Replies
Replies are stored in text files named "reply#.txt" where # generally increases sequentially starting from 1.
(This order may not always hold, since replies can be deleted.) The first line of a reply text file gives the
name and email address of the person who sent it, followed by a blank line, followed by the text of the
reply.

92

Appendix B - TeleMedMail Saved Cases

A TeleMedMail saved case is a ZIP file with a ".tmm" file extension. The ZIP contains a text file called
"save.xml" that contains all the case data, and possibly copies of images that are attached to the case.

save.xml

<TELEMEDMAIL TYPE="SAVE1" ID=" . .. ">

<FIELD NAME="ReferringHospital " VALUE="... "/>
<FIELD NAME= "ReferringDoctor " VALUE="... "/>

...all overall fields...

<IMAGE FILENAME=".. ." TITLE=".. ." TARGET=".. ." FORCEBW="truelfalse">

<INFO CROP="NONEIX,Y" ROTATION="019011801270" COMPRESSIONTYPE="JPEG"

COMPRESSIONLEVEL=". . . "/>
<ANNOTATION TEXT=". .. " TYPE="ANCHORIARROWIRECTANGLE" P1="X,Y"

[P 2 ="X, Y"] />

... all annotations...
<FIELD NAME= "CaseID" VALUE=". . . "/>
..all per-file fields...

</IMAGE>

<IMAGELINK FILENAME="..." TITLE=".. ." TARGET="..." FORCEBW="truelfalse">

<INFO CROP="NONEX,Y" ROTATION="019011801270" COMPRESSIONTYPE="JPEG"

COMPRESSIONLEVEL=" ... "/>
...all annotations...
..all per-file fields...

</IMAGE>

<FILE FILENAME=". .. " TARGET=". . ." TITLE="...">

.all per-file fields
</FILE>

<FILELINK FILENAME=" ... " TARGET="..." TITLE="...">

...all per-file fields
</FILE>

</TELEMEDMAIL>

All XML attribute values are URL-encoded.

The attached files in a saved case can take two forms: physical copies of the original files, or links to the
original files. The former are stored in the save ZIP, and are specified by IMAGE or FILE tags. The latter
are specified by IMAGELINK or FILELINK tags.

93

Appendix C - Standard Fields Descriptor Files

TeleMedMail's default Standard Field descriptor files are called "overall.stf' and "perfile.stf'. Their
contents are as follows:

overall.stf

ReferringHospital = STRING
ReferringDoctor = CONFIG(ReturnAddress)
ReceivingServer = SERVERS
ReceivingDoctor = ADDRESSBOOK(ReceivingServer)
<SEPARATOR (6)>
Date = AUTO-DATE
CaseID = CASE-UID
PatientName = STRING
DOBAge = STRING
Sex = STRING("Male","Female")
PatientHistory = LONGSTRING<9>
PhysicalExam = LONGSTRING<8>
Investigations = LONGSTRING<8>
ProvisionalDiagnosis = LONGSTRING<2>

perfile.stf

@CaseID
Date = AUTO-DATE
Comment = LONGSTRING<20>

94

Appendix D - english.lab

#General

EncryptedHTML = encrypted.html
UnencryptedHTML = unencrypted.html
Yes Yes
No No
Apply = Apply
Cancel = Cancel
Done = Done
Okay = Okay
Close = Close
Delete = Delete
Quit = Exit
CloseMenu = -Close Menu-
Error = Error
ERROR = ERROR:

NotYetImplemented = This feature is not yet implemented by the programmer.
Title = Title
NoTitle = NO TITLE
FitInWindow = Fit in Window
AllFiles = *All Files*
ShowFieldsInteresting = Show Interesting Fields
ShowFieldsAll = Show All Fields
ShowExtraFields = Show Extra Fields
Message = Message
Select = Select
None = None
Date = Date

#Error Messages

ERRORErrorAddingFile = Error adding file (%1%) to case.
ERRORInvalidImageFile = Error: Image file (%1%) is invalid.
ERRORUndefinedLabel = Error: "%l%" does not define "%2%".
ERRORErrorInOverall = Error: Error in overall standard fields file (%1%).
ERRORErrorInPerFile = Error: Error in per-file standard fields file (%I%).
ERRORCantWriteConfigFile = Error: Can't write to CONFIG.INI.
ERRORWorkingDirDNE = Error: Default Image Directory specified in CONFIG.INI
(%1%) doesn't exist. Using "images\" instead.
ERRORWorkingDirCantCreate = Error: Specified Default Image Directory (%l%)
exists, and is not a directory. Please delete it and re-run TeleMedMail.
ERRORErrorReadingConfig = Error: Can't read CONFIG.INI.
ERRORErrorConnecting = Error: Can't connect to SMTP Server. %1%
ERRORErrorSending = Error: Error sending email message. %1%
ERRORCantSave = Error: Can't save case. %1%
ERRORCantLoad = Error: Can't load case. %1%
ERRORErrorWritingJPG = Error: Error writing jpeg file (%1%). %2%
ERRORNoWildcardsYet = Wildcards not supported yet.
ERRORCantWriteAddressBook = Error: Can't write Address Book file (%1%). %2%
ERRORIllegalCompressionLevel = Error: Compression level must be an integer
between 0 (highest compression) and 100 (lowest compression).
ERRORInvalidLabelFile = Error: The language file chosen (%I%) is not valid.
ERRORFileDNE = Error: Chosen file ("%1%") does not exist.
ERRORUIDFileInvalid = Error: Cannot read the UID data file (%I%).
ERROR UIDFileCantCreate = Error: The file "nextuid.dat" is missing, and
TeleMedMail can't create a new copy. (%1%).
ERROREncryptedHTMLFileMissing = Error: encrypted.html file is missing.
ERROREncryptedHTMLFileError = Error: encrypted.html file has errors. %1%
ERRORUnencryptedHTMLFileMissing = Error: unencrypted.html file is missing.

95

ERRORUnencryptedHTMLFileError = Error: unencrypted.html file has errors. %1%
ERRORNoContents = Error: Case contains no data to be sent.
ERRORBadAppletSize = Error: Applet Width and Height must be positive integers.
ERRORFillInFrom = Error: In order to send a case to a server, both the
Referring Doctor and the Receiving Doctor fields must be filled in.
ERRORErrorExporting = Error: Can't export file. %1%
ERRORMailTimeout = Error: Timeout connecting to SMTP Server. (limit = %1%
seconds)
ERRORKeyFileMissing = Error: The server's public key file (%I%) is missing, or
can't be opened.
ERRORFailedToDeleteReply = Error: Failed to delete reply. File is locked.
ERRORCantDeleteFile = Error: Failed to delete file "%l%". File may be locked.
ERRORCantReadZip = Error: Can't read ZIP file. %1%
ERRORErrorInXml = Error reading XML file. %1%
ERRORCantFindSentCase = Can't find the sent case this reply refers to.
ERRORCantFindKey = Can't find secret key used to encrypt this case. (Perhaps
it was sent with a previous version of TeleMedMail.)
ERRORBadAddressXml = The following entry in the address book file is invalid:
%1%

#Main TeleMedMail Frame

MAIN_Title = TeleMedMail - Store & Forward Telemedicine System (GPL, by Darius

Jazayeri and Hamish Fraser)
MAINImportImage = Import Image
MAINRemoveImage = Remove Image(s)
MAINSendEmail = Send Email
MAINSaveCase = Save Case
MAINLoadCase Open Case
MAINNewCase = New Case
MAINSetup = Edit Settings
MAINCaseBrowser Browse Sent Cases
MAINDecryptReply Decrypt Reply Email
MAINAttachedFiles = Attached Files
MAINFileMenu = File
MAINCaseMenu = Case
MAINSettingsMenu = Settings
MAINManageMenu = Manage

#Keyboard Shortcuts

KEYBOARDNew = control N
KEYBOARDSave = control S
KEYBOARDLoad control 0
KEYBOARDExit = alt X

KEYBOARDImport = control M
KEYBOARDSend = control E
KEYBOARDAddress = control A
KEYBOARDCases = control B
KEYBOARDDecrypt = control D

#Add File

ADDFILEFileAlreadyThere = File (%I%) is already in case.
ADDFILEAddingImage Loading Image (%1%)
ADDFILEAddingFile = Loading File (%I%)

#Setup

SETUPTitle = TeleMedMail Configuration
SETUPEmailAddress = Your return address
SETUPLabelFile = Language file
SETUPLabelFileFilter = Language files

96

SETUPSMTPServer = Outgoing SMTP server
SETUPSMTPUsername = SMTP Username (leave blank to use Return address)
SETUPWorkingDirectory = Default Image Directory
SETUPEditAddressBook = Edit Address Book
SETUPCompressionSetup = Compression Settings
SETUPAdvancedSetup = Advanced Settings
SETUPLabelsChanged = Label file changed. Please restart TeleMedMail for
changes to take effect.
ADVANCEDSETUPTitle = TeleMedMail Advanced Configuration
ADVANCEDSETUPOverallFile = Overall Case STF file
ADVANCEDSETUPPerImageFile = Per-Image STF file
ADVANCEDSETUPAppletWidth = Applet Width
ADVANCEDSETUPAppletHeight = Applet Height
COMPRESSIONSETUPTitle = Compression Setup
COMPRESSIONSETUPBurnOnAnnotations = Burn On Annotations
COMPRESSIONSETUPSendOrigImage = Send Original Images
COMPRESSIONSETUPDefaultJPEGLevel = Default JPEG Compression Level
COMPRESSIONSETUPImageType = Default Image Type
COMPRESSIONSETUPGuess = Guess Image Type
COMPRESSIONSETUPXRay = X-Ray Image
COMPRESSIONSETUPColor = Color Image

#Edit Address Book

EDITADDRESSTitle = Edit Address Book
EDITADDRESSAdd = Add Address
EDITADDRESSDelete = Delete
EDITADDRESSSave = Save
EDITADDRESSNotSavedTitle = Save Address Book?
EDITADDRESSNotSavedQuestion = Address Book has been changed. Do you want to
save those changes to disk?
EDITADDRESSName = Name
EDITADDRESSEmail = Email Address
EDITADDRESSIsServer = Server
EDITADDRESSIsPerson = Person
EDITADDRESSKeyFile = Server Public Key File
EDITADDRESSComment = Affiliated with
EDITADDRESSPeople = People
EDITADDRESSServers = Servers
EDITADDRESSAddPerson = Add Person
EDITADDRESSAddServer = Add Server
EDITADDRESSPublicKey = Public Key

#Attached File Panel

ATTACHEDTypeXRay = X-Ray
ATTACHEDTypeColor = Color Image
ATTACHEDCompressionLevel = Compression: %1% (%2%%)
ATTACHEDEditFields = Edit Comment
ATTACHEDAnnotate = Annotate
ATTACHEDRemove = Remove From Case
ATTACHEDCropRotate = Crop and Rotate Image

#Compression Level Dialog

COMPRESSIONTitle = Compression Preview for
COMPRESSIONSmaller = Smaller Filesize
COMPRESSIONBetter = Better Quality
COMPRESSIONPercentQuality = % quality
COMPRESSIONFilesize = Filesize
COMPRESSIONShowDegredation = Show Image Degredation

#Edit Fields Dialog

97

FIELDSTitle = Standard Fields for

#Annotate Dialog

ANNOTATIONTitle = Annotating
ANNOTATIONNewAnnotation = New Annotation
ANNOTATIONExistingAnnotation = Annotation #
ANNOTATIONExistingAnnotations = Existing Annotations
ANNOTATIONDefaultAnnotationText = Enter Annotation Text Here
ANNOTATIONDelete = Delete

#Crop Image Dialog

CROPTitle = Cropping
CROPNoCropping = No Cropping
CROPRotate90 Rotate Right
CROPRotate180 = Rotate 180
CROPRotate270 Rotate Left

#Save Dialog

SAVETitle = Save Case
SAVEFilename = Filename
SAVESaveCase = Save case for future editing
SAVEExportCase = Export as a sent case
SAVESaveCopies = Save copies of images
SAVESaveButton = Save
SAVENothingToSave = There is no data in this case to save.

#Load Dialog

LOADTitle Open Case
LOADButton = Open
LOADFileFilterTitle = TeleMedMail Saved Cases

#Send Mail Dialog

SENDMAILTo = To:
SENDMAILFrom = From:
SENDMAILSubject = Subject:
SENDMAILBody = Body:
SENDMAILEncrypt = Encrypt Case
SENDMAILSendApplet = Send Applet
SENDMAILSend Applet = Send Applet
SENDMAILSend = Send
SENDMAILSendServer = Send To Server
SENDMAILExport = Export
SENDMAILMessageSize = Message Size
SENDMAILFillInHeaders = Please fill in all header fields.
SENDMAILBuildingCase = Preparing Case...
SENDMAILSendingMessage = Sending Message...
SENDMAILStatusBuilding = Building Recipient List...
SENDMAILStatusEncoding = Encoding Attached Files...
SENDMAILStatusEncodingFile = Encoding %1%...
SENDMAILStatusConnecting = Opening Connection to SMTP Server...
SENDMAILStatusConnected = Connected to SMTP Server...
SENDMAILStatusSendingRecipients = Sending Recipient List...
SENDMAILStatusSendingHeaders = Sending Message Headers...
SENDMAILStatusSendingBody = Sending Message Body...
SENDMAILStatusSendingFile = Sending %1%...
SENDMAILStatusAssembling = Assembling images and other files.
SENDMAILStatusGeneratingHTML = Generating HTML files.

98

SENDMAILStatusGeneratingKey = Generating session key.
SENDMAILStatusEncrypting Encrypting Case.
SENDMAILStatusBuildingZIP Building ZIP file.
SENDMAILStatusSending = Sending Email...
SENDMAILMessageNotSent = Error: Message not sent.
SENDMAILMessageSent = Message sent.

#Password

PASSWORDTitle = Enter Password
PASSWORDEnterPassword = Enter Password:

#Standard Fields

STFCaseID = Case ID
caseid = Case ID
STFReferringHospital = Referring Hospital
referringhospital Referring Hospital
STFReferringDoctor = Referring Doctor Email
referring doctor = Referring Doctor Email
STFReceivingHospital = Receiving Hospital
receiving-hospital Receiving Hospital
STFReceivingServer Receiving Hospital Server
receiving server = Receiving Hospital Server
STFReceivingDoctor = Receiving Doctor Email
receiving doctor = Receiving Doctor Email
STFPatientName = Patient Name
patientname = Patient Name
STFDOBAge = DOB / Age

dob-age = DOB / Age
STFSex = Gender
sex = Gender

STFPatientHistory = Patient History
patienthistory = Patient History
STFPhysicalExam Physical Exam
physicalexam = Physical Exam
STFInvestigations = Investigations
investigations = Investigations
STFProvisionalDiagnosis = Provisional Diagnosis
provisional-diagnosis = Provisional Diagnosis
STFDate = Date
date = Date

STFComment = Comment
numberofimages = # Images

#Date

DATEJanuary = January
DATE-February = February
DATEMarch = March
DATEApril = April
DATEMay May
DATEJune = June
DATE-July = July
DATEAugust = August
DATE-September = September
DATE-October = October
DATENovember = November
DATEDecember = December

#UID

99

UIDUnassigned = [UNASSIGNED]

#APPLET

APPLETPopupButtonLabel = Open Case
APPLETUnencryptedPopupButtonLabel View In Applet
APPLETAttachedFile = Attached File : %1%

#IMAGE FILTERS

IMAGEFILTER_0 = Image Files III jpeg, jpg, tiff, tif, gif
IMAGEFILTER_1 = JPEG and GIF images II jpeg, jpg, gif
IMAGEFILTER_2 = TIFF images III tif, tiff

#REPLY

REPLYDialogTitle = Reply #%I%
REPLYReplyFrom = Reply From: %1%

#CASE BROWSER

CASEBROWSERTitle = Case Browser
CASEBROWSERFilename = Filename

CASEBROWSERUID = Case ID

CASEBROWSERReceivingDoctor = Receiving Doctor
CASEBROWSERPatientName = Patient Name
CASEBROWSERNumImages = # Images
CASEBROWSERView = View
CASEBROWSERAttachedImage = Attached Image:
CASEBROWSERAttachedFile = Attached File:
CASEBROWSERCase = Case #%l%

#DECRYPT REPLY

DECRYPTTitle = Decrypt Reply Email
DECRYPTPassword = Password:
DECRYPTPassword2 = (leave blank if this is a reply from a server)
DECRYPTEnterHere Enter Encrypted Reply Here:
DECRYPTDecrypt = Decrypt Reply
DECRYPTDecryptedText = Decrypted Text:
DECRYPTSave = Save Decrypted Reply
DECRYPTView = View This Case
DECRYPTBadInput = Error in the encrypted text. Failed to decrypt. (%I%)

#Default email fields

EMAIL-Subject = Telemedicine Referral
EMAIL-Body = Telemedicine Referral. Please unzip the ZIP file attachment, and
open the "index.html" file it contains.

100

Appendix E - TeleMedMail AddressBook Interface

import java.io.File;
import javax.swing.JDialog;

* Rather than implementing this Interface, you probably want to
* subclass DefaultAddressBook, and override the editDialog()
* method.

interface AddressBook {

* Sets the File that load and save will read from and write to.
* This method must be called before load and save can be called.

public void setFile(File f);

/*
* Returns the File that load and save will read from and write to.

public File getFile(;

* Writes the contents of the address book to the file specified
* by the last call to setFile.
* Returns null if the saving worked, or an error message if not.
*/

public String save();

* Empties the address book, then reads the contents of the file
* specified by the last call to setFile into it.
* Returns null if load worked, or an error message if not.

public String load);

* Adds or overwrites an entry to the address book.
*/

public void add(AddressEntry e);

/*
* Removes an entry from the address book.

public void remove(String name);

/*
* Returns the entry in the address book for a given name,
* or null if that name isn't in the book.

public AddressEntry get(String name);

* Returns an array of all entries in the address book.
*/

public AddressEntry[] entries();

101

* Returns the filename (relative to the KEYS directory)
* of the public key of the server with a given email address.
* email can be of the form "name@email.com" or
* "Real Name <name@email.com>".

public String getKeyFor(String email);

* Brings up a dialog allowing the user to edit the address
* book.

public JDialog editDialog(;

}

adrbook.dat

The TeleMedMail AddressBook is stored as XML in a text file ("adrbook.dat" by default). It has the
following form:

<ADDRESSBOOK>
<SERVER NAME="..." EMAIL="..." KEY=" ... "/>
... all server entries...

<PERSON NAME= . . . " EMAIL=". . ." [COMMENT=". .

...all person entries...

</ADDRESSBOOK>

All XML attribute values are URL-Encoded.

The key attribute for a server entry specifies the filename (relative to the keys directory) of that server's
public key file.

The comment attribute for a person entry specifies the server that person is affiliated with. It should match
the name of one of the server entries.

102

Appendix F - TeleMedMail CaseBrowser Interface

interface CaseBrowser {

/*

* Classes which implement CaseBrowser must support these two constructors:

* public CaseBrowser(JFrame parent);
* public CaseBrowser(JDialog parent);

*/

* This pops up a modal dialog allowing the user to browse through sent
* cases.
*/

public void display);

}

The contents of the TeleMedMail sent case folder are ZIP files as specified in Appendix #.

The sent case folder can be obtained with the

TeleMedMail . getSentCaseFolder ()

method.

103

Appendix G - TMMServer SQL Database Setup Code

Before TMMServer can be run for the first time, its database structure must be created with the following
SQL statements:

create table users (
id
name
email
email2
email3
username
password
admin
active
addedby
addeddate

integer not null primary key,
varchar(100),
varchar(100) not null,
varchar(100),
varchar(100),
varchar(100) not null,
varchar(32) not null,
boolean not null default false,
boolean not null default false,
integer references users,
timestamp default CURRENTTIMESTAMP,

lowbandwidth boolean default false

create sequence userid-seq;

create table cases (
id integer not null primary key,
referring-hospital varchar(100),
referring-doctor varchar(100),
receivingdoctor varchar(100),
datesent varchar(32),
datereceived timestamp default CURRENTTIMESTAMP,
sendercaseid varchar(32),
url varchar(100),
session-key varchar(256),
oldstyle boolean not null
--an old style case must be viewed by going to the case's index.html

create sequence caseid-seq;

create table patient-details (
caseid integer not null references cases on delete cascade,
name varchar(100),
sex varchar(16),
dobage varchar(32)

create table casedetails
case-id integer not null references cases on delete cascade,
name varchar(100),
value varchar(4000)

create table attachedjimages
caseid integer not null references cases on delete cascade,
image-id integer not null primary key,
old-style boolean not null,
filename varchar(100) not null,
title varchar(100),
width integer,
height integer,
comment varchar(4000)

104

create sequence attachedjimages-idseq;

create table
imageid
name
text
type
p1
p2

create table
image-id
name
value

create table
caseid
filename
title

image annotations (
integer not null references attachedimages on delete cascade,
varchar(20) not null,
varchar(4000) not null,
varchar(20) not null,
varchar(20) not null,
varchar(20)

image-fields (
integer not null references attachedimages on delete cascade,
varchar(100) not null,
varchar(4000)

attachedfiles (
integer not null references cases on delete cascade,
varchar(100),
varchar(100)

create table permissions (
caseid integer not null references cases on delete cascade,
userid integer references users on delete cascade,
email varchar(100)

create table replies
caseid integer not null references cases on delete cascade,
userid integer references users,
reply-text varchar(4000),
replydate timestamp default CURRENTTIMESTAMP,
encrypted boolean

105

