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Abstract

Many extensions of the standard model predict heavy metastable particles which may
be modeled as solitons (skyrmions of the Higgs field), relating their particle number
to a winding number. Previous work has shown that the electroweak interactions
admit processes in which these solitons decay, violating standard model baryon num-
ber. We motivate the hypothesis that baryon-number-violating decay is a generic
outcome of collisions between these heavy particles. We do so by exploring a 241
dimensional theory which also possesses metastable skyrmions. We use relaxation
techniques to determine the size, shape and energy of static solitons in their ground
state. These solitons could decay by quantum mechanical tunneling. Classically, they
are metastable: only a finite excitation energy is required to induce their decay. We
attempt to induce soliton decay in a classical simulation by colliding pairs of solitons.
We analyze the collision of solitons with varying inherent stabilities and varying inci-
dent velocities and orientations. Our results suggest that winding-number violating
decay is a generic outcome of collisions. All that is required is sufficient (not neces-
sarily very large) incident velocity; no fine-tuning of initial conditions is required.
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Chapter 1

Introduction

1.1 Motivation

Many extensions to the standard model which involve strong dynamics at the elec-
troweak scale include new heavy particles which have been modeled as solitons. The
simplest model within which such particles can be analyzed is the standard elec-
troweak theory with the Higgs boson mass mpy taken to infinity and with a Skyrme
term [1] added to the Higgs sector. With these modifications, the Higgs sector sup-
ports a classically stable soliton whose mass is of order the weak scale, typically a few
TeV.[2]

To understand how solitons arise, note that in the absence of the weak gauge
interactions, the Higgs sector of the standard model is a four-component scalar field
theory in which a global O(4) symmetry is spontaneously broken to O(3), with vac-
uum manifold S3. In the my — oo limit, the dynamics is that of an O(4) nonlinear
sigma model. Field configurations are maps from three dimensional space onto S?,
and the solitons (skyrmions) are configurations which carry the associated winding
number. The winding number is topological and soliton number is conserved.

Gauging the weak interactions changes the picture qualitatively because the wind-
ing number of the Higgs field is not invariant under large gauge transformations. This
means that a soliton can either be described as a skyrmion of the Higgs field with

gauge field A, = 0 or, equivalently, as a topologically trivial Higgs field configuration
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with a suitably chosen nonvanishing A,. The latter description makes manifest the
fact that there are sequences of gauge and Higgs field configurations, beginning with
a soliton and ending with a vacuum configuration, such that all configurations in the
sequence have finite energy. This means that the soliton is only metastable: it is
separated from the vacuum only by a finite energy barrier and can decay quantum
mechanically by tunneling.[3, 4, 5, 6] Or, the soliton can be kicked over the barrier
if it is supplied with energy. The process in which an electroweak soliton is hit with
a classical gauge field pulse (a coherent state of W-bosons) and caused to decay has
been analyzed numerically.[7] It is even possible to find a limiting case of the theory
in which the quantum mechanical cross-section for a process in which a soliton is
struck by a single W-boson and induced to decay can be calculated analytically.[7] In
any process in which a soliton is destroyed, one net baryon and one net lepton from

each standard model generation is anomalously produced.[7]

Electroweak solitons have also been studied in the electroweak theory with finite
Higgs mass, in which the Higgs sector is a linear sigma model.[8] If a Skyrme term is
added to the theory, metastable solitons exist if my is sufficiently large. In the linear
sigma model, the Higgs field can vanish at a point in space with only finite cost in
energy. The Higgs winding number is therefore not topological even in the absence of
gauge interactions. This means that in a world with gauge interactions and a finite
Higgs mass, there are two ways for solitons to decay: either via nontrivial gauge field
dynamics, as sketched in the previous paragraph, or via the Higgs field itself simply
unwinding.[9]

The metastable electroweak soliton is an intriguing object to study. And yet, it
is not found in the standard electroweak theory where the Higgs sector is a linear
sigma model with no higher derivative terms. The Higgs sector of the standard
model is best thought of as an effective field theory describing the low energy (weak
scale) dynamics of the light degrees of freedom in some higher energy theory. The
simplest examples of higher energy theories which feature particles which can be
described as electroweak solitons in the low enefgy theory are technicolor theories,

in which the technibaryons play this role. Regardless of whether the underlying
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theory is specifically a technicolor model, it will introduce all higher derivative terms
allowed by symmetries, including the Skyrme term, into the Lagrangian of the low
energy effective theory. If the Higgs boson is discovered to be light (say, with mass
my S v = 250 GeV), the correct ldw energy effective field theory will almost certainly
not support solitons, regardless of the physics of the higher derivative terms. If the
Higgs boson is discovered to be heavy, there will be some class of appropriate high
energy theories whose low energy effective field theories, although more complicated

than that obtained simply by adding a Skyrme term to the standard model, feature

metastable electroweak solitons. Discovery of the corresponding TeV scale particles

would confirm that nature chooses such a theory.

Processes in which two metastable electroweak solitons collide have to date not
been studied. Our purpose in this paper is to use the analysis of a two dimensional
toy model which shares some (but not all) of the features outlined above to motivate
the hypothesis that the generic outcome of such collisions may be the destruction of
one or both solitons. This suggests (but certainly does not dem(;nstrate) that baryon
number violation is the generic outcome of collisions between two of the TeV scale

particles which can be modeled as solitons.

As a sideline, we note that our numerical methods work equally well for describ-

ing soliton—soliton and soliton—antisoliton collisions. Our focus is on soliton decay in
soliton—soliton collisions; we note, however, that the numerical simulation of soliton—
antisoliton annihilation in the Skyrme model is well-known as a difficult numerical
problem, plagued with instabilities.! We are able to follow soliton—antisoliton an-

nihilation without difficulty (with energy conserved at the part in 10* level). This

-suggests that our numerical methods — in particular the use of the linear sigma model

— may be of broad utility when generalized to 3+1 dimensions.

1See Ref. [10] for classical simulations of skyrmion-skyrmion scattering in the 3+1 dimensional
Skyrme model which report instabilities in the simulation of skyrmion—antiskyrmion annihilation;
see Ref. [11] for a discussion of the origin of the instabilities and Refs.[11, 12] for efforts to overcome
them.
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1.2 Metastable Baby Skyrmions

Let us now introduce the 2+1 dimensional model whose metastable solitons we an-

alyze. The Lagrangian density, which describes the dynamics of a three component
scalar field ¢ = (¢!, ¢2, ¢%), is

]_ - o — fﬁz - —, a - ﬁ -

L=F|50.6-0° — (0. x 90) - (0°F x 9°)

— pz(v—ﬁ-g)—)\(¢-¢—;—vz)2} . (1.1)

Here, 71 is a unit vector which we choose to be (0,0,1).

To understand the features of this Lagrangian, it is worth beginning by setting
p? = 0 and taking the limit A — co. When u? = 0, the theory has an O(3) sym-
metry. For A — oo, one removes the fourth term from (1.1) and instead imposes
the constraint that d—; . g; = v? at all points in space and time. Bgcause the field 5 is
constfained to take values on a two-sphere of radius v, field conﬁéurations with fixed

boundary conditions at infinity can be classified by their winding number

1
43

Q:

o f e - (0.8 % By dx = / F @.bxoddedy,  (12)

which is integer-valued and topological: configurations with different winding number
cannot be continuously deformed into one another. This suggests the possibility of
soliton solutions to the classical equations of motion. Solitons in 2+1-dimensional
O(3) sigma models were first discussed in Ref. [13], and their quantum field the-
oretic properties were analyzed in Refs. [14, 15]. Such solitons are often called
baby skyrmions [15] because of their similarity to 3+1-dimensional skyrmions. Al-
though our motivation is the analogy to 3+1-dimensional electroweak solitons, we
note that baby skyrmions themselves do arise in certain 2+1-dimensional electron
systems which exhibit the quantum hall effect [16], although the Lagrangian used in
their description differs from that in Eq. (1.1).

The four-derivative term in the Lagrangian (1.1) is the analogue of the Skyrme
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term. [t stabilizes putative solitons against shrinking to arbitrarily small size. If
we were working in three spatial dimensions, the two-derivative term would stabilize
putative solitons against growing to arbitrarily large size. In two spatial dimensions,
however, the two-derivative term cannot play this role because its contribution to
the energy of a configuration is scale invariant. We must therefore introduce a zero-
derivative term in order to stabilize solitons against growing without bound. Such
a term must explicitly break the O(3) symmetry, and therefore has no analogue in
3+1-dimensional electroweak physics, in which no explicit O(4) symmetry breaking
terms are allowed. The particular form of the u? term in (1.1) therefore has no

electroweak motivation; it is analogous to a pion mass term in the 341 dimensional

Skyrme model, but this is not relevant to us. This model (with u? nonzero and
A — 00) was considered in Ref. [17], and its solitons have been analyzed in detail in
Refs. [18, 19]. Similar models, differing only in the choice of the explicit symmetry

breaking term in the Lagrangian, have also been analyzed.[20]

The soliton mass and size in the theory with Lagrangian (1.1) with A = oo are

given by[19]

_ | K 0.316
Mso] = 1947F [al 0316 +a2] , Rsol (3 4)H Py y (1.3)

with a; and a, dimensionless constants (independent of xu) satisfying a; + ay = 1.

| The parametric dependence of these results can be understood by noting that the
energy of a configuration of size R receives contributions of order FR°, Fx?R~? and
Fup?R? from the first three terms in the Lagrangian (1.1) and that, as described

above, a soliton is stabilized by the balance between the four-derivative x? term and

the zero-derivative u? term.

If we stopped here, with A infinite, our solitons would be absolutely stable, rather
than metastable. Soliton—soliton collisions have been simulated in this theory, but of
course the solitons never decay.[19] Once A is finite, the fields are allowed to deviate

| from ¢ - ¢ = v2, and the soliton configuration with ¢ - ¢ = v? found previously in the

A — oo theory may unwind and decay. Indeed, we will see that soliton solutions do
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not exist for X less than some A.. If A > \., metastable solitons exist: these solitons
are classically stable if left unperturbed, but can be induced to decay if supplied with
sufficient energy. Our goal is to determine whether the means by which the energy is
delivered is important or whether soliton decay is the result of generic soliton—soliton

collisions, without finely tuned initial conditions.

For our purposes, A is the most important parameter in the theory because by
choosing its value, we control the energy required to make the soliton decay and
indeed control whether solitons exist in the first place. We are not interested in the
dependence on the other parameters, and indeed most of them can be scaled away.
We first set v = 1 by rescaling ¢. Next, the constant F' has units of energy and we
henceforth measure energy in units such that F' = 1. Next, « has units of length and
we henceforth measure length in units such that x = 1. Note that this means that
ki # 1 in our units, but this will not concern us as we only discuss the classical physics
of this model. We have set the speed of light ¢ = 1 throughout. The parameters p?
and A\~2 are also length scales in the Lagrangian, and the theory is therefore fully
specified by the two dimensionless parameters Ax? = A and px = u. Although results
do depend on p, we are not very interested in this dependence, and we choose to follow
Ref. [19] and set p? = 0.1 through most of the paper. The only time an alternate
value of 4 is used is outlined at the end of Section 2. Once we have chosen units with
F =k =1 and have chosen to set y? = 0.1, then M, = 19.47 and R ~ (3 — 4) in
the theory with A = co.

In Section 2, we find metastable soliton configurations for finite values of A with
A > A ~ 7.6. We shall see that for all values of A for which solitons exist, the soliton
mass and size change little from their values at A — oo. Although we do not fully
explore their dependence on u, we use the equations in (1.3) to make a rough estimate
of A, for an alternate value of u. In Section 3, we present our results on soliton—soliton
collisions. We find that soliton decay occurs for incident velocities greater than some
critical value v.. We explore how this critical velocity depends on A and on the initial
impact parameter and relative orientation of the two solitons. We find that v is less

than or of order half the speed of light regardless of the relative orientation as long

18



|
{
|
|

as A < 2A; and b is less than or of order the soliton size. Thus, inducing soliton
decay does not require specially chosen initial conditions; it is a generic outcome of
soliton—soliton collisions. We make concluding remarks in Section 4.

It perhaps goes without saying that our model is at best a crude toy model for the
electroweak physics which motivates our analysis. First, we work in 2+1 dimensions.
Second, in order for the theory to have soliton solutions we are forced to include a
zero-derivative explicit symmetry breaking term not present in the electroweak theory.
Third, we do not introduce a gauge field. Hence, our solitons can only decay via
unwinding the scalar field; in the electroweak theory, gauge field dynamics introduces
a second decay mechanism which has no analogue in our theory. Related to this, our
solitoné are absolutely stable for A = oo, whereas electroweak solitons are metastable
even for my = oo. This is perhaps the biggest qualitative difference between our
model and electroweak physics. Fourth, one may worry that even if an analysis

along the lines of ours were done in the 3+1 dimensional electroweak theory itself,

- the momenta required would make it impossible to analyze soliton decay within the

effective theory. This concern may be evaded for solitons which are almost unstable:
in this circumstance, for example, W-soliton collisions can result in soliton destruction
even if the W-boson momentum is small enough that the calculation is controlled.[7]
Soliton-soliton scattering in our model is far from being a complete analogue of the
scattering of TeV scale particles which can be modeled as metastable electroweak
solitons; we nevertheless hope that our central result, namely that metastable baby
skyrmions in 2+1 dimensions are destroyed in collisions with generic initial conditions,

motivates future work on baryon number violating scattering in this sector.
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Chapter 2
Finding Static Solitons

Before we can study soliton—soliton collisions, we must find the metastable soliton
configurations for different values of \. We do this by looking for configurations
which minimize the static Hamiltonian Hg,g;e at a given A\. The static Hamiltonian
is given by |

Hgiatic = — /dQ-Z' Lstatic ' (2'1)

where Lgatic 18 the Lagrangian density of (1.1) with all terms containing time deriva-
tives set to zero.

We discretize Hgaiic On a square lattice of 125 x 125 points, with the spatial
separation between points given by Az = 0.2 (in our units in which x = 1). We

discretize the two derivative term in the standard fashion, writing it as a sum over

terms like _ _ o
¢l(xa y) — ¢z(x — A‘Ta y) (2 2)
Az ' '
The Skyrme term is trickier to handle, because it involves terms like
0:9* 0y 0" 8,¢% 0, 0° . (2.3)

We discretize this contribution to the Hamiltonian as a sum over terms like

(¢1(£L' + A.’L‘, y) — ¢1(5L' — AIE, y)) (¢1(x,y + AJ;) — ¢1($’y B Al‘))
2Ax 2Az
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y <¢2(:v +Az,y) — ¢z — Az,y)) (¢2(I,y +Az) — ¢ (z,y — Aw)) (2.4)
2Azx 2Azx

In this way, we ensure ﬁhat within each term in the sum over lattice sites, all spatial

derivatives are centered at the same point in space. Discretizing the Hamiltonian in

this fashion ensures that discretization errors are of order (Az)? and is outlined fully

in Appendix A.

In order to find a soliton, we begin with a guess (which we describe momentar-
ily) for the configuration qg(a:, y) and perform a numerical minimization of the static
Hamiltonian using the conjugate gradient method of Ref. [21]. This method is thor-
oughly described in Section B.4 and the computer code can be found in Section C.6(It
is important to use a method such as this one, which minimizes a function of N vari-
ables using computer memory of order N rather than of order N? since we have an
N = 3 x 125 x 125 dimensional configuration space.) In order to minimize the énergy,
the conjugate gradient routine needs expressions for the gradient of the energy at
any point in our N dimensional configuration space, with respect to each direction
in this configuration space. We obtain these expressions by varying the discretized
Hg;atic with respect to the ¢* at each lattice site. (These expressions will of course als_o
appear as the terms with no time derivatives in the dynamical equations of motion

of Section 3.)

For A — oo, soliton solutions can be written in the form[17, 18]

sin f(r) cosé
$(r,0) = | sin f(r)sind (2.5)
cos f(r)

where f(r) satisfies the following conditions:

f(0) =m, (2.6)
lim f(r)=0. (2.7)

T—r00

(We define polar coordinates such that the soliton is centered at r = 0, # = 0 is
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the positive y-axis, and 6 increases in a clockwise direction.) Note that because of
the p? term in the Lagrangian which breaks the O(3) symmetry, 5 must point in
the ¢* direction at large 7. The O(2) symmetry associated with rotations in the
(¢!, ¢?) plane is not broken in the Lagrangian; in the solution, these rotations are
mapped onto rotation in the (z, y) plane about the soliton center. This configuration
is thus a two-dimensional analogue of what in three dimensions is called a hedgehog

configuration.

In our search for solitons at finite A, we therefore begin by choosing a reasonably
large A, namely A = 15, and making an initial guess of the form (2.5) with f(r) =
7rexp(_—r/ 2). We then run the conjugate gradient relaxation algorithm repeatedly,
until the change in the energy between successive relaxation steps is smaller than one
part in 10'%.! The soliton configuration we find is a hedgehog configuration, as at
A — o0o. However, when A\ is finite, 5 5 # 1. The soliton we find can be written in

the form
sin f(r) cosé

$(r,0) = o(r) | sin f(r)sind (2.8)
cos f(r)

with f(r) satisfying the same boundary conditions as above.? We depict the soliton
configuration in Fig. 2-1.

After obtaining a baby skyrmion at A = 15, we used the resulting configuration as
the initial condition for relaxation at A = 14, and so found the soliton configuration
at this A. We repeated this process step-by-step in A, finding solitons for values of A

down to A = 8. At A = 7, energy minimization led to a configuration with zero energy,

1As a check, we then used this configuration as an initial condition for the full time-dependent
dynamical equations of motion described in the next section. The total kinetic energy during the
time evolution was never more than one part in 107 of the soliton energy. This confirms that the
relaxation algorithm has indeed converged to a static solution to the full equations of motion.

2Note that we could have rewritten the static Hamiltonian in terms of o(r) and f(r), discretized
that Hamiltonian in 7, and then used a conjugate gradient algorithm to find these two functions of r.
This would have been less computationally intensive than finding ¢*(z,y) as we did. However, the
expressions we obtain by varying our static Hamiltonian relative to the fields ¢* at each lattice site,
and indeed the results we obtain for ¢ at each lattice site in a soliton configuration, are precisely
what we need in the next section when we analyze soliton—soliton collisions, which are of course not
circularly symmetric and so cannot be written in terms of o(r) and f(r).
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Figure 2-1: f(r), o(r) and the energy density for the solitons with A = 15 (solid
curves) and A = 7.7 (dashed curves).

instead of to a soliton. We then used the A = 8 soliton as an initial configuration for
relaxation at A = 7.9, and so on down to A = 7.6 where again no éoliton was found.
We therefore know that a stable soliton exists at A = 7.7. It is a logical possibility
that there is a stable soliton at A = 7.6 even though our relaxation algorithm did

not find one. We think this is unlikely, because the soliton configurations which we

“have found at A = 7.7 and )\ = 7.8 are very similar, and we therefore believe that the
A = 7.7 soliton is a very good starting configuration from which to find the A = 7.6
soliton if it existed. We therefore conclude that classically stable solitons exist only

for A > A, with 7.6 < A\, < 7.7.

In Table I, we give the energies of the solitons which we have found for various

values of A\. In Fig. 2-1, we depict the field configuration and energy density for the
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| A| Energy

15 19.1792
14 19.1503
13 19.1161
12 19.0751
11 19.0250
10 18.9618

9 18.8791

8 18.7619
7.9 18.7473
7.8 18.7309
7.7 18.7131
7.6 | no soliton

Table 2.1: Energy of Static Solitons at various Lambdas.

solitons we have obtained for A = 15 and A = 7.7. We note that even though A = 7.7
is only jusf above A, the soliton configuration does not look very different from that
at much larger values of A, and the soliton energy is also little changed.” Note that
the deviation from o(r) = 1 is only at most 20% for a soliton with A = 7.7 which
is on the edge of instability. The central energy density does increase by almost a
factor of two as A is reduced from 15 to 7.7. Note, however, that the total energy is
almost unchanged, and actually decreases slightly. The soliton radius decreases as A
is reduced towards A., but does not decrease dramatically. The definition of Ry, is
of course somewhat arbitrary; if we take it to be the radius inside which 90% of the
total energy of the soliton is found, we find Ry, = 3.31 for A = 15 and Ry, = 2.83
for A =17.T7. _

Although the energy density and \/ﬁ = o are circularly symmetric, the fields
#* and ¢? in a soliton configuration are not circularly symmetric. If we only observed
a single static soliton, this would be of no consequence: in a hedgehog cbnﬁguration,
the different possible choices for ¢' and ¢? are related simply by rotations in space.
However, when we describe a configuration of two well-separated solitons in the next
Section, the relative angle between their orientations does matter. That is, spec-

ifying such a configuration requires giving the relative position and velocity of the

25



centers of the two solitons and the angle a. The first soliton in such a configuration
can be mapped onto the second by a translation followed by a rotation by an angle
a about the soliton center. ' |

It is also possible to roughly estimate the dependence of A, on u. We argue that a
soliton is unstable when the energy density approaches the energy necessary for |$| to
pass through zero. According to the last term in the Lagrangian density (Eq. (1.1)),
the energy density when |$| =0is

~ Faut, (2.9)

We then make the rough approximation that the energy density must be of this order
in an area of order the soliton size. We write this area as nR2, where Ry, is given

by Eq. (1.3) and 7 is an unknown parameter. This results in a total energy of

31
Eiecay = FAvink? (iju(s) ‘ (2.10)

necessary for decay. The total energy available is just given by M,y of Eq. (1.3),

where the total energy is about 19.18 for our A # oo soliton;

M,y = 19.18F [a“/o'316 + a2] . (2.11)

We therefore expect fhe soliton to become unstable when Egyeeqy = Mg, OF

0.316
F)\C’U47]K,2 (H_I_L—) = 19.18F [al '(% + 0,2] . (212)

If we were then to do multiple relaxations and determine the dependence of )\, on

we would then expect it to have the form

Without doing such a thorough study we can obtain ), for another value of 1

using the relaxation algorithm and compare it to the estimate of Eq. (2.12). In our
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case we chose a new pu, = & ie. p2 = % As stated in Section [1], we have set

F =v =k =1, s0it is only necessary to determine values for 77, a; and a, to solve for
the new A in Eq. (2.12). A value for 7 is given from the fact that we found A, ~ 7.6
when p? = 0.1. Using these values in Eq. (2.12), we find n = 2.52. We performed a
relaxation with this new p, and found that the total energy of the static soliton was

16.30. Since we now know the mass of the soliton for two values of ;. we have the set

of equations

19.18 [a; + ap] = 19.18,
1
19.18 [al\/;+ as

This system gives the values a; = 0.51 and a; = 0.49. It is then trivial to solve for

= 16.30. (2.14)

the new A, at p,. Eq. (2.12) gives A, = 3.2. We can now compare this to a value
obtained from the numerical relaxation algorithm. In the same manner that we found
Ae 22'7.6 for u? = 0.1, using the relaxation method we found that A\, ~ 4.0 for p,.
The estimate and relaxation agree roughly, and the discrepancy can be attributed to
the fact that the energy density is not distributed evenly over the area of the soliton.
In fact, we expect the A, obtained by relaxation to be higher than our estimate, since

the energy becomes more localized near the center for smaller values of A.
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Chapter 3
Colliding Solitons

With solitons in hand, we are ready to study what happens when they collide. For
this purpose, we need discretized equations of motion and a numerical algorithm to
evolve an initial configuration, now specified by ¢ and éi at each lattice site, forward
in time. We begin by writing a discretized Lagrangian which is a function of ¢* and
¢t at each of the lattice sites, at a single time ¢. We discretize the time-independent
terms as described in the previous Section. There are no spatial derivatives of éSi in
the Lagrangian, so discretizing terms involving ¢’ is trivial. We then use the Euler-
Lagrange procedure on this Lagrangian written in terms of 3 x 125 x 125 ¢’s and
3 x 125 x 125 ¢’s, and obtain equations of motion which specify the 3 x 125 x 125
| #’s. These equations of motion take the form of three coupled linear equations for
¢', #* and ¢? at a given lattice site, which are easily solved. This entire derivation is
outlined in Appendix A. We now have an expression for éﬁ'i(t, z,y) written in terms of
the values of ¢' and gb’ at lattice sites within two spatial links of the site of interest,
all at the same time ¢.! We are now ready to take a step forward in time.
We evolve the system forward in time using the Runge-Kutta-Feldberg algorithni
and the adaptive algorithm of Ref. [21] for choosing the size of the time step At. That
is, we first use the fifth-order Runge-Kutta-Feldberg algorithm to obtain ¢* and ¢* at

!Note that because of the way we discretize spatial derivatives in the Lagrangian, expressions
in the equations of motion with mixed time-space derivatives such as 8;0,¢* end up discretized as

[¢i(z + Az,y) — ¢'(z — Az,y)]/2Az.
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time ¢ + At. This fifth-order method is special because a rearrangement of the fifth-
order function evaluation terms results in a fourth-order Runge-Kutta expression.2
We then have two different estimates (fourth order and fifth order) for ¢* at t+ At at
each lattice site, and can evaluate the discrepancy between the two estimates for each
of the 3 x 125 x 125 ¢’s and ¢’s. If the largest discrepancy is larger than a specified
tolerance, we reject the step and begin anew with a smaller At. We use the largest
discrepancy to estimate how much At should be reduced. If all discrepancies are
smaller than the specified tolerance, we accept the result of the fifth-order calculation
for ¢* and ¢’ at time t+At. After a successful step forward in time, we use the largest
discrepancy (which must have been less than the tolerance since the step forward was
acceptéd) to estimate by how much we can safely increase At when we take our next
step forward in time. In the simulations of collisions which we describe below, the

tolerance is approximately 0.01 < A¢ < 0.05. Note that we do not use conservation
| of energy as our criterion for acceptance or rejection of a step forward in time. This
makes it fair to use a check of the conservation of energy as an independent measure
of the accuracy of our evolution algorithm. We do this at various points below. A
full description of this algorithm can be found in Section B.5, and the related C code

can be found in Section C.7.

We choose fixed boundary conditions, with qg fixed to its vacuum value (0, 0, oyac)
at the boundaries of our 125 x 125 grid, where oyac solves (02, — 1)0yac = ;1”—; and
18 Oyac =~ 1+ g for large A. Since the solitons have radii of order Ry, ~ 3, we
choose initial conditions with two solitons whose centers are a distance 10 apart. We
initialize 5 by adding these two soliton configurations. (That is, we take $Vacuum +
(Bt sotiton — Gracuum) + (Becond solton — Buacuum).) The resulting configuration is not
precisely a minimum of the static Hamiltonian, but the two solitons are far enough

apart that this is not a big concern. To obtain a soliton moving with an initial speed

2This hidden fourth-order expression is referred to as an embedded Runge-Kutta formula due to
the fact that it can be obtained with no additional function evaluations.
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v in the positive z direction, we simply initialize

¢'(z,y) = —v[d'(z,y) — ¢'(z — Az,y)]/Az (3.1)

at time zero. For simplicity, we are using a Galilean boost. This is appropriate for
v < 1. When we use this prescription with a velocity at which relativistic corrections
are becoming important, the initial condition we have specified is not the correct
Lorentz-boosted, Lorentz-contracted soliton. In this circumstance, as the system is
evolved forward in time, the soliton radiates some energy and quickly settles down to
become a (correct) relativistic soliton moving with a velocity somewhat less than v.
For example, when we set v = 0.8 in our Galilean boost prescription for the initial

condition, we in fact end up with a soliton moving at a speed of 0.61.

We begin by analyzing collisions between two solitons in the theory with A = 10.
We choose initial conditions in which both solitons are moving (towards each other)
with velocity v = 0.25, with zero impact parameter. We choose an initial relative
orientation angle @ = 0, meaning that one soliton is obtained from the other by
translation without rotation. Previous work shows that two static solitons with this
relative orientation repel each other.[19] This is consistent with what we find: for low
velocities, as for example for v = 0.25, the two solitons bounce off each other and
return whence they came. We now increase v to 0.5. This time, the outcome, depicted
in Fig. 3-1, is that the solitons are destroyed in the collision. The final state is a cloud
of debris, namely small amplitude oscillations of the $ field spreading outwards from
the scene of the collision. In Fig. 3-2, we show the kinetic energy, potential energy
and total energy for the collision shown in Fig. 3-1. (By “potential energy” we mean
the contribution to the energy from all those terms in the Hamiltonian with no time
derivatives. Most of this energy is due to spatial gradients of the fields.) First, we
see that the total energy is conserved, in fact to better than two parts in 10°. The
kinetic energy is not zero initially, because the solitons are moving. As the solitons
approach each other, the kinetic energy decreases. This confirms that the interaction

is repulsive: the solitons slow down and deform as they approach. As the solitons
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Figure 3-1: Sequence of snapshots of the energy density during a collision between
two solitons which results in the destruction of both. The grey scale indicates energy
density. In this simulation, A = 10, the initial velocity of each soliton is v = 0.5, the
impact parameter is b = 0, and the solitons have a relative orientation angle o = 0 in
the initial configuration. The images are at times ¢t = 0,4, 8,12, 16, 20. In this and in
all subsequent figures showing soliton—soliton collisions, each panel shows a 25 x 25
square (in our units in which x = 1) and the initial separation between solitons is 10.
The lattice spacing is Az = 0.2.

approach each other more closely, at some point their deformation becomes sufficient
that they are no longer stable, and they fall apart. The resulting outgoing waves have
approximately equal kinetic and potential energy, as expected for traveling waves. It
is quite clear from Fig. 3-2, if it was not already clear from Fig. 3-1, that the solitons
have been destroyed. |

As a stringent check of the accuracy of our time evolution algorithm, we take
the final configuration from our simulation, reverse the sign of ¢*, and evolve it for
the same period of time as we did initially. The second panel of Fig. 3-2 shows the
behavior of the energies during this “backwards-in-time” evolution. It is clear that

the debris reconstitutes itself into two solitons! The sequence of snapshots of the

32



50 50
Aan s N PRt .
40y, Sintdd \ - A
v
i}
> |
; D) 30} \ .
= YA
: B - '|I| N a
' QC) M"‘" ":‘?'\"ﬂ‘ﬁ;\ r u‘ '.‘(.!"’-')"1“\-‘
! LLI 201 i . 't"b-"" ’
1
i
10t ‘ 1
e ! 5, A R AN "v,‘"'-
R A \l"‘~'\’\_lu\,\,-’ \-\.\_».,\.'.,/-1'\‘“""“' R ’
0 - 0 - * -
0 5 .10 15 20 0 5 .10 15 20
Time Time

Figure 3-2: Left panel: Kinetic, potential and total energies during the soliton—
soliton collision shown in Fig. 3-1 with A = 10 and v = 0.5. The topmost curve
(constant to better than two parts in 10°) is the total energy. Of the other two
curves, the one that begins low is the kinetic energy, the one that begins high is the
potential energy, including spatial gradient energy. Right panel: Same, during the
time-reversed evolution. We reverse the sign of all ¢* in the final configuration of Fig.

3-1, and then watch the evolution algorithm recreate the initial configuration of Fig.
3-1.

energy density looks almost exactly like those in Fig. 3-1, but in the opposite order
in time. The discrepancies between the energy density in the initial configuration and
that in the configuration obtained after soliton collision and destruction followed by
time-reversed evolution and soliton recreation differ by at most 1/40 of the energy
density at the center of the soliton. The total energy is conserved to better than one

part in 10%.

As a further check of the stability of our algorithm, we have also simulated soliton—
antisoliton annihilation. We obtain an antisoliton configuration from a soliton config-

uration by making the transformation ¢*> — —¢?, equivalent to taking § — —8 in (2.5)

or {2.8). This turns a hedgehog configuration into an anti-hedgehog configuration,
and hence yields an antisoliton. We find that analyzing soliton—antisoliton collisions
using our evolution algorithm is no more difficult than analyzing soliton—soliton colli-
sions. We were able to follow the annihilation process with energy conserved to better
than one part in 10%. Now, with confidence in the accuracy and stability of our evo-

lution algorithm, we proceed to analyze the outcome of soliton—soliton collisions with
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Figure 3-3: Outcome of soliton—soliton collisions with different initial velocities and
different values of the parameter ). All collisions have impact parameter b = 0 and
relative orientation angle o = 0. Note that v is the velocity parameter in (3.1). Ifvis
large enough that relativistic effects are significant, the actual velocity of the soliton
is somewhat less than v. For example, v = 0.3 yields a soliton with velocity 0.61.

a variety of initial conditions.

"'We first explore how the outcome of a collision depends on A and v, keeping the
impact parameter b = 0 and the relative orientation angle o = 0 as above. The
results of many simulations are suﬁmarized in Fig. 3-3. We discover that for any A,
there is a critical velocity v, below which the solitons rebound without decaying, and-
above which one or both (usually both) solitons are destroyed. This critical velocity
goes to zero as A= Ao As Ais increased, v, Increases, reaching about half t‘he speed

of light for X about twice Ac

We now return to A =10, v = 0.5, still keeping @ = 0 and ask how the outcome of
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Figure 3-4: Snapshots of energy density during a collision between two solitons with
impact parameter b = 2.0 in the theory with A = 10. The relative orientation angle
is o = 0. The initial velocity v = 0.5 is large enough that the solitons are destroyed.
The time between images is 4.0.

a collision depends on the impact parameter b. For b = 2.0, both solitons decayed into
traveling waves, as we found for b = 0 above. We show the outcome of this collision
in Fig. 3-4. Note that b = 2.0 is a substantial impact parameter, comparable to
the soliton radius Ry, ~ 3. We find that the solitons still decay if b = 3.2. An
impact parameter b = 4.0, however, yields a collision which is sufficiently peripheral -
that the solitons emerge intact, deflected from their initial directions of motion by
| about 45°. We can describe our results by saying that the critical velocity v, above
which soliton décay is the outcome of the collision increases with increasing impact
parameter. For b = 0, Fig. 3-3 shows that 0.27 < v, < 0.3. We now see that v, = 0.5
for a nonzero impact parameter in the range 3.2 < b < 4.0. We have also done
several more simulations with b = 2.0 and various initial velocities, and find that

for b = 2.0, the critical velocity is 0.3 < v, < 0.4. We conclude that soliton decay
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does not require collisions with small or finely-tuned impact parameters. Although
increasing b from zero increases the critical velocity v, required to destroy the solitons
somewhat, it remains easy to destroy solitons as long as the impact parameter is less

than or comparable to the soliton radius.

All the collisions we have described to this point have had the same relative
orientation. For oo = 0, low velocity collisions yield a rebound, in which each soliton
reverses direction, while higher velocity collisions lead to soliton destruction. We
now consider a collision (with A = 10, v = 0.25 and b = 0) between two solitons
with a relative orientation angle o = 180°. That is, the second soliton in the initial
configuration is obtainable from the first by a translation and a 180° rotation. The
interaction between static solitons with this orientation is known to be attractive.[19]
We show the outcome of a low velocity collision in Fig. 3-5. The work of Ref. [18]
reveals that in the A — oo theory, there is a stable, ring-shaped, soliton with winding
number 2. It appears that the final state of the collision in Fig. 3-5 will be a soliton
of this form, although it will differ in its details from that of Ref. [18] since ) is finite.
What we observe in Fig. 3-5 is that the incident solitons at first scatter by 90°, but
then do not escape to infinity. They fall back upon one another, and rescatter by 90°.
There are small outgoing ripples at late time, but they have too little energy density
to be visible in Fig. 3-5. We expect that were we to run the simulation for a long
time, in a big enough box that outgoing ripples never return, we would see repeated
90° scatterings, with the solitons escaping less and less far away each time, all the
while radiating small outgoing ripples, and eventually settling down to become the

static, ring-shaped configuration.

As we increase the incident velocity, we find that for v > v, with 0.43 < v,; < 0.48,
the outcome of the collision is soliton destruction rather than 90° degree scattering
followed by the formation of a bound state. We show an example of collision induced
decay in a collision With relative orientation o = 180° in Fig. 3-6. Note that the
critical velocity above which soliton destruction is the outcome is somewhat larger
than, but still comparable to, that we found previously for o = 0. We have not

mapped out v, vs. A for the o = 180° orientation as we did in Fig. 3-3, but we expect
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that the figure would be qualitatively similar. One new feature, though, would be
that at large A there would be two different outcomes possible for collisions with
v < v,: bound state formation (for low enough v) and 90° scattering followed by the
escape of the two intact solitons to infinity (for larger v which is still less than v,).
At A = 10, we do not find any velocities for which 90° scattering followed by escape
occurs. It must occur at larger A, since it certainly occurs at large enough velocities
for A — oo, when v, — 1.

The collision shown in Fig. 3-6 is an example of a simulation in which the initial
velocity (v = 0.5 in this case) is only just above the critical velocity (0.43 < v, < 0.48
in this case). In this circumstance, what we generically observe is that the solitons
scatter; separate a little, but are sufficiently distorted as a result of the scattering that
after separating a little they fall apart. We observe this phenomenon also at o = 0,
except in this case the solitons scatter by bouncing back in the direction whence they
came, then separate a little, and then fall apart. At velocities which are somewhat
larger than v,, as for example in the collision shown in Fig. 3-1, we find that soliton
destruction occurs more promptly, during the initial collision.

We now consider collisions between solitons with a relative orientation angle o =
90°, still with A = 10 and b = 0. For this relative orientation, there is no force between
static solitons.[19] We find the same possible outcomes as we did for o = 180°. As
a function of increasing velocity, the outcome of a collision is either capture to form
the ring-shaped bound state, or soliton destruction. (Again, scattering by an angle
of 90° followed by the escape of two intact solitons would be a possibility at larger

A.) The critical velocity above which soliton decay occurs is 0.25 < v, < 0.3.
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Figure 3-5: Snapshots of energy density during a collision between solitons with
relative orientation o = 180°, impact parameter b = 0, and initial velocity v = 0.25
in the theory with A = 10. The solitons are not destroyed and (eventually) form a
classically stable bound state. The time interval between images varies: the images
are at times t = 0,4, 8,12, 16, 20, 24, 28, 34, 42, 50.
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Figure 3-6: Snapshots of energy density during a collision between two solitons with
relative orientation o = 180° in the theory with A = 10. The impact parameter is
b = 0. The initial velocity is large enough (v = 0.5) that the two solitons decay. The
time between each image is 4.0.
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Chapter 4

Concluding Remarks

We have analyzed soliton-soliton collisions in a 2+1-dimensional theory with metastable
baby skyrmion solutions. We find classically stable soliton solutions for values of the
parameter A which are larger than A, ~ 7.6. These solitons are prevented from decay-
ing by a finite energy barrier and so can decay if supplied with sufficient energy, for
example in a collision with a second soliton. We have mapped out the space of initial
conditions under which the outcome of a soliton—soliton collision is the destruction of
one or both solitons. We find that soliton decay results whenever two solitons collide
with an incident velocity greater than some v.. This critical velocity depends on the
parameters in the problem. It goes to zero as A — 0 and the solitons cease to be
classically stable. It goes to the speed of light as A — oo and the barrier to decay
becomes infinite. However, v, does not rise particularly rapidly with A: with other
parameters chosen as in Fig. 3-3, v, is only half the speed of light for A ~ 2)\.. Thus,
soliton destruction does not require that the theory have a value of A lying in some
narrow range just above A.. The impact parameter b need not be finely tuned either.
Not surprisingly, v, is lowest for collisions with b = 0. However, v, increases by less
than a factor of two for b of order the soliton radius. v, also depends on the relative
orientation angle o between the two solitons in the initial state. Here too, the de-
pendence is weak. In the example we explored in detail, we found that as o changes
from 0° to 180°, v, varies between 0.25 < v, < 0.3 and 0.43 < v, < 0.48. Thus, al-

though v, does depend on A and on the parameters other than the velocity needed to

41



fully specify a choice of initial conditions, the variation of v, is not dramatic. Soliton
decay is not restricted to specially chosen velocities, impact parameters, orientations,
or values of ). Soliton decay is a generic outcome of soliton-soliton collisions.

Our findings motivate future investigation of collisions between metastable solitons
in the 3 + 1-dimensional electroweak theory. Previous work on two-particle collisions
involving these electroweak solitons has focussed on collisions between a W boson and
a soliton [7]. In such collisions, the probability for soliton decay falls exponentially
as the (rough) analogue of ) is increased above the (rough) analogue of A.. This was
traced to two facts: First, causing one of these solitons to decay requires delivering
sufficient energy to one particular mode of oscillation of the soliton. Second, a generic
incidenf W-boson couples very weakly to the mode which must be energized if decay
is to be induced. We find no analogue of this difficulty in our analysis of soliton—
soliton collisions in 2 + 1 dimensions. If there is a particular mode which must be
excited, then soliton-soliton collisions seem to generically deliver energy to this mode.
And, we certainly see no evidence of soliton decay being restricted to theories with
|A=Ac| < A.. This suggests that collisions between two TeV scale particles which can
be modeled as electroweak solitons (rather than between one W-boson and one such
particle) may be an arena in which two-particle collisions generically lead to baryon
number violation. As we stressed in the Introduction, however, the metastable baby
skyrmions we analyze differ in several important qualitative respects from metastable
electroweak solitons. Furthermore, our analysiis has been purely classical whereas
the analysis of W-soliton collisions in Ref. [7] is quantum mechanical. Although our
results motivate an analysis of collisions between electroweak solitons, they should

not be taken to provide even qualitative guidance as to the outcome of such a study.
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Appendix A

Derivation of the Equations of

Motion

A.1 Discretization Methods

In order to perform simulations of continuous systems, it is essential to develop a
corresponding discrete model. This discrete model no longer acts on continuous fields
in space, but on a discrete array of values referred to as a lattice. In our case we
began with a model intended to describe the evolution of three scalar fields in a 2-
dimensional space. Therefore, we construct a 2-dimensional grid of points and evolve
the field values at only these locations. The hope is that as long as the fields do
not vary highly between neighboring points, the dynamics of this discrete system is

a good approximation to the continuous system.

The next step is to determine how this new discrete system will evolve in time. In
a classical-continuous system, the value of a field ¢(z,y) and its current derivatives
in space and time at (z,y) completely determine it’s value at an infinitesimal time 6t
later!.

¢(t + 6t;$1 'y) = f(t,.”L‘, Y, ¢(t,$, y)v aa¢(t71'ay))' 7 (Al)

1This also requires that there is no action at a distance, or that the values of the fields and its
derivatives away from the point (z,y) have no bearing on the dynamics.
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In moving to the discrete system we give up the knowledge of the local spatial
derivatives, since we do not know the field values in the infinitesimal neighborhood of
the point (z,y). Asasubstitute, we assemble approximations to the spatial derivatives
at (z,y) from the values of ¢ at (z,y) and at the neighboring lattice sites. This process
is referred to as finite-differencing. For example a spatial derivative of the field ¢ at

a location (z,y) could be approximated as

BM%W_+ﬂ%w—¢@—ALw
oz Az

. (A.2)

Of course, the choice of approximation is not unique. One could just as well choose

to approximate the derivative in Eq. A.2 as

0¢(z,y) _, $(z+4z,y) ~ ¢(z — Az,y)
oz 2Azx '

(A.3)

The choice of discretization is determined by the form which minimizes the error
obtained by approximating derivatives with finite differences. The first choice gives
an estimate of 8¢ to order (Az)? at the location z = z + 4. The fact that this
is not located at = z is not a problem when discretizing terms like (8,4)?, since
in the equations of motion this will be of the form d2¢. You can approximate this
second derivative as the difference of the first derivatives located at z = z — % and
z =z + 4%. This difference will be accurate to O((Az)?) at the point z = z. When
your Lagrangian density contains terms of the form 0,¢0,¢, you will not have this
benefit. You should therefore use the symmetric form of Eq. A.3. The error of this
estimate is O((2Az)?) for the derivative at z = z. Fof terms of this form this is better
than Eq. A.2, whose error is O(Az) at z = z.

The next discretization problem enters the picture due to the fact that we do
not want to be restricted to infinitesimal steps in time as we evolve our system. In
general, we would like to take a finite step At forward in time. The larger step we
take, the faster we can evolve the system to achieve our desired results. On the other

hand, a larger step in time introduces more discrepancies between the discrete and

continuous models. It then becomes a balance of determining the largest timestep
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whose resulting dynamics deviate negligibly from those of the continuous model.

It is common to use the same discretization method for time derivatives as used
for the spatial derivatives. To do this one would store the value of the field at a
previous time, and use the above discretizations, only now in time, to approximate
time derivatives. If a discretization of a time derivative is chosen such that it involves
é(t + At) at some point in space, you would then solve your equations of motion
for this future value of ¢. In our case, we encountered instabilities when using this
method for performing the time evolution, and therefore did not discretize the time

derivatives as such.

An alternate method to deal with the time derivatives is to store a value of ¢ at
each lattice point as opposed to ¢(t — At). One then solves the equations of motion
for ¢ and uses this information to take steps forward in time. This is the method
“we used to perform our simulations. Furthermore, for dealing with mixed time-space

derivatives, we discretized them as

(z,y) R ¢(z + Az,y) — d(z — Az,y)
ozot 2AT

. (A.4)

After understanding the methods of finite-differencing, there is still an ambigu-
ity as to when to apply them. The easier method is to apply the Euler-Lagrange
equations for continuous systems to the Lagrangian density, thereby obtaining con-
tinuous equations of motion. One would then use these finite-differencing techniques
to implement these equations on a discrete lattice. The problem with this is that to
evaluate the energy of your system using the Lagrangian or Hamiltonian, you would
have to discretize these in a different manner than the equations of motion. This can
lead to energy conservation problems when performing time-evolution simulations. In
the case of our skyrmions, this discrepancy actually resulted in numerical instabilities

when attempting to simulate violent dynamics.

Therefore, we had to discretize the model before solving for the equations of
motion. To do this we discretized the Lagrangian density and summed the resulting

terms on a lattice of 125 x 125 points. Since our model involves 3 fields, we had 3 ¢*
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and 3 ¢' at each lattice site, resulting in a system with a total of 2V = 6 x 125 x 125
variables. This in turn gave us a true Lagrangian for our discretized system of N
variables. From this we obtain a set of N = 3 x 125 x 125 equations of motion
by applying the Euler-Lagrange equation to each ¢*. To do the time evolution it is
necessary to solve these equations for the three ¢' at each lattice site. Luckily, this
set of equations is easy to solve explicitly, since only the three qb‘ that are at the same

* point in space are coupled. We will now go through the above process explicitly.

A.2 Discretized Lagrangian

Let us look again at our Lagrangian density,

L= FBBQJ - 9°¢ — _%2(8& x 8p) - (8¢ x 8°§)
- uZ(v—ﬁ-é’)—/\(q‘s‘-q‘s‘—fﬂ. (A5)

Note that as described in Section 1.2 we choose 7 to be (0,0,1) and F = x = 22 = 1.
Before we could discretize it, it was necessary to expand the first two terms. So

considering a single point (z, y), the first term in the Lagrangian density would be

N —

($6) - @b @) - (@), (A.6)

where 7 is summed over the three fields (1,2,3). We discretize the spatial terms

in the asymmetric fashion of Eq. A.2, and the time derivative term we leave as

The Skyrme term is not as easy. In summation notation it can be written as
(0ad X 856) - (9°6 X 0°B) = CtmneipyPad™ s %P P 1. (A7)

By applying the identity €tmn€ipg = OmpOng — OmqOnp, this can be expanded further to
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obtain

i

(6mp6nq - é‘mq(snp) (aa¢maﬂ¢n3a¢paﬂ¢q)
— aa¢maa¢m6ﬁ¢naﬂ¢n
~0a ¢ 0% $"Dp 0§, (A.8)

€lmn €lpqaoz ol 8[3 g"o” ¢paﬂ¢q

Of course, all of these terms are evaluated at the point (z,y).

The Skyrme term is not as easy to discretize due to its four-derivative structure
(Eq. A.8). To ensure that discretization errors are of order 2(Az)?, it is necessary
that each derivative is centered about the same point in space. Therefore symmetric
derivatives of the form of Eq. A.3 are used for this term. The remaining two terms
of the Lagrangian density are just explicit functions of the ¢*, and thereby pose no
difficulty. To obtain the full Lagrangian L for the lattice we just sum this discretized

Lagrangian £(z,y) over the entire 125 x 125 lattice.

A.3 Euler-Lagrange Equations

Given each coordinate ¢ (Tn, Ym) and its respective conjugate momentum qﬁ’(xn, Ym)s

we obtain an equation of motion by applying the Euler-Lagrange equation

oL d oL

= 4 9L _ A9
a¢z (xn; ym) dt 8¢2($n ym) 0 ( )

To simplify the problem, let us divide the Lagrangian into two parts; L,,, which
is dependent on ¢*(z,, y,,) and é)i(xn, Ym) at a given point (z,, Ym) , and L, which

is independent of these terms;

L= Lom (¢i(xm y’m)a éi(l‘m ym)) + Lip. (AlO)

This will simplify matters since Li will make no contributions to the equations of
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motion at the site (z,,ym) due to the fact that

{ . aLm _ 0

v a¢i(1'mym)

| _ O _ (A.11)
0P (Tn, Ym)

It now just becomes a problem of picking out every term in the full Lagrangian
L which involves ¢*(zp, Ym) and ¢*(zn,ym). We can step through the terms of L,
analyzing them by which term of the Lagrangian Density £ they arose from. The
first of these groups is terms of the form 8a$ . 8“(5. We discretized these terms in the

asymmetric fashion. Let us begin by looking at these finite-differences pictorially. In

Figure A-1 one can see the four asymmetric finite-differences that contain ¢'(z,, ym);

o . o
d ¢'(cy+Ay)
d 6'(xy) d ¢'(x+Ax,y)
d,0'xy)

- Figure A-1: Figure showing the asymmetric derivatives within the Lagrangian con-
taining ¢*(z,y) (central dot). Circles are lattice sites in our 2-D space and solid dots
connected by lines show the finite-differences which contain the term of interest.

050" (T, Ym), 0y (Tn, Ym), 050" (Tn+1, Ym), and 9y¢*(Tn, Ym+1). The only place asym-

metric finite-differences occur in our full Lagrangian L is in the terms coming from
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the first term in our Lagrangian density, 3,15 . 8°¢. Therefore, the terms

~ (026" (%0, Ym))?
~(8y¢" (Tn, Ym))”
~ (828" (Tn41,Ym))?
—(0y¢' (wn, Ym+1))” (A.12)

will contain ¢*(z,,y:,), and therefore will occur in Lp,. Furthermore, we must not

forget q'ﬁi (Zn, Ym) will occur in this category of terms as well.

(¢*(Tn, ym))? (A.13)

will also occur in Ly, due to the first term of the Lagrangian density.

The Skyrme term, on the other hand, is not as easy to see. We know that since we
discretized this term using symmetric derivatives, only these will occur in the Skyrme
term. Figure A-2 summarizes the symmetric terms containing ¢*(zy,, ¥m). As in the
previous case, one must not forget that gz'Si(xn,ym) will also appear in the Skyrme

term.

Although we still have only five elements we must look for within the Skyrme

term,

¢ (Tn—1, Ym)
0y (%n, Ym-1)
¢ (Zrn41, Yrm)
(xm Ym+1)

(bi(xm Ym) (A.14)

each will appear multiple times in the various permutations of Eq. A.8. Any of 8,¢™,
Oa®™, O™ or Osd™ of Eq. A.8 could take on the value of any of the five terms in
(A.14). This leads to quite a number of terms. In fact, after simplification and the
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| | | d 0/(x.y+4y)
) o o o o o
¥ d 0(x-Ax,y) d ¢l(x+Ax,y)
d 0 (xy-4y)
o o] (0] o (e}
o o [ ] o o]

Figure A-2: Figure showing the symmetric derivatives within the Lagrangian con-
taining ¢*(z,y) (central dot). Circles are lattice sites in our 2-D space and solid dots
connected by lines show the finite-differences which contain the term of interest.

grouping of terms, the Skyrme term adds the following 20 terms to Ly,

_(d)i(xm ym))z(amqu(xna ym))2
‘ _(3x¢i(xn—1, Ym))z(éj(mn—lu ym))2
_(axtbi(xn-!-l) Ym))z(q.sj (:Cn-f—l ) ym))z

& (Xn; Ym) 058" (T, Ym) & (Tn, Ym) Oc @’ (Tn, Yrm)
¢.31 xn—l; ym) ax¢i(xn-—17 Ym)¢] (xn—l) ym) aquj(xn—la ym)

(

¢ (Zn+1, Ym) Ox @' (Xnt1, Ym) & (Tnt1, Ym) 82 (Tt 1, Yim)
(& (Xn; Ym))? (8y¢’ (Tn, Ym))*
(8y @' (xn, Y1) (& (@, Ym-1))?
(3y¢i(x,)’m+1))2(<z7j($m Ymt1))?

¢Ei (xn: Ym)ay¢i(zn; ym)¢] (xm ym)ay‘»bj(l'm ym)
: éi(wm ym—l)ay¢i(xn; Ym—l)(ﬁj(xm ym—l)ay¢’j($na ym—l)

¢i (-Tm ym+1)ay¢i(xn: ym+1)457 (.’En, ym+1)5‘y¢j (mn: ym+1)
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Xn— laym)) ( Tn—1,Ym

(Bx'( ¢ ( )

(0x' (X041, Ym))*(8y ¢ (Znt1, Ym))

(9y ¢'(x mym—l)) (0z (ﬂlfn,ym—l))2

(0y®' (Xn, Y1) (8:¢’ (Tn, Yms1))?

—0x¢' (Xn-1,Ym) 0y 8" (Tn1, Ym) 0x¢’ (Tn—1, Um) By ' (
( )9y (

= 008" (Tn, Ym—1)8y " (Xn, Ym-1)3:4’ (Zn, Ym—1)0y ¢ (1, Yrm—1)
( )8y # (Tn, Ym1), (A.15)

Tn-1, ym)

- x¢i(xn+1;}’m)ay¢i(mn+lyym)azq&j Tn+1,Ym $n+1;ym)

"6x¢i(xn7ym+1)ay¢i(xm)'m+1)a:c¢j Tny Ym+1 ay

where the terms in bold contain either ¢*(z,, y) or ¢*(zn,ym) and j € {1,2,3| #4}

This leaves only the last two parts of the Lagrangian, the 42 and A terms. The

former will contribute the term

—1*(1 = ¢°(Zn, Ym)) . (A16)

to Lpm, but only for s = 3. The latter will contribute the term
_’\((¢1 (xm ym))2 + (¢2($m ym))2 + (¢3(xnv ym))z - 1)2- (A-17)

Therefore, each Euler-Lagrange equation now correlates 26 (4',¢? equations) or
27 (¢® equations) terms from the full Lagrangian. After allowing the index j to take

all its possible values, the number of terms increases to greater than 50.

A.4 Solving the System

Now, all that is required is to solve the entire system of N = 3 x 125 x 125 equations
of 50+ terms each for the N ¢*. Luckily, we found that only ¢ at the same lattice
site occurred in a single Euler-Lagrange equation. The equations at a single lattice

site (Zn, Ym) simplified to the form
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0 = a4+ bléél(xn,ym) + Clégz(mnwym) + dlﬁz's(xm ym)
0 = Q2 + b2$2(xn7 ym) + CZ$3(-’En7 ym) + dZ(}gl (xn: ym)

0 = as + b3(;z§3(:1;m ym) + 63451 ($naym) + d3§£2($n: ym)' (A18)

One further simplification comes from the fact that c¢; = dy, ¢, = d3, and ¢35 = d;.
Even more helpful was the fact that this system of equations is linear can be explicitly

solved for ¢¢. The solution is

Pz = _aacac1 — agbacz + arbabs — c102b3 — ay + caaacs
—c3b1 + 2cac3ey — c3bg + bobibs — bycl
(-152(3: y) = _eGan + eobiag + c1bsa; — asbibs + aaC3 — c1a3C3
’ —Cgbl + 2coc30) — C%bg + boby by — bgc§
s brasby — bicaas — ayc3by — aszc? + cic3az + caciaq
¢ (x,y) = -

= .. (A9
—C%bl + 2coc301 — C]Z_b3 + bbb — b2c§ ' ( )

Now that we can generate ¢' for all the lattice sites, we can apply any of the
traditional numerical methods for evolving our system of ¢'s and ¢'s. We describe

our choice in Section B.5.
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Appendix B

The Numerical Model

B.1 Data Structure

For the simulations in this paper all the code was written in C. For compatibility
with the functions used from Ref. [21], the lattice was a simple linear array of double-
preciSion floating point numbers. This :;rray had N = 3 x 125 x 125 elements for
the relaxation stage and 2N elements for the time-evolution. Although all the data
was stored in a linear array, the elements have a natural multi-dimensionality to
them. One could identify each element of the lattice array ¢() with 4 integer indices
(4,7, k, g): x-lattice-positicn, y-lattice-position, field, and time derivative. The first
two take a value from zero to n — 1, where n is equal to the number of sites along one
edge of the lattice. These two integers just index the lattice site to which an element
belongs. The third index takes a value of 0, 1 or 2 and allows you to select one of the

three fields. The last index has two values (0, 1) and chooses between ¢ and ¢. This

last index is always 0 during the relaxation stage, which involves finding the static

soliton configuration of ¢*.
So given the fact that we are using a linear array to store the numbers, one must
determine the location for each object given that they naturally have four indices.

For this reason we have two functions grid stor and grid_val which handle this for us.

void grid_stor(double grid[], int i, int j, int k, int g,
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double newval)

double grid_val(double grid[], int i, int j, int k, int g)

The first function takes a pointer to a grid and the value newval and inserts it into
the grid at the correct place using the indices i,j,k,g. The second function takes
a grid and all the indices, and returns the value at the specified location. By using
these two functions, we no longer need worry about the exact order in which the data
is stored in the linear array.

Two more functions complement the above. The functions

void put_datfile(double v[])
int get_datfile(double vI[])

allow us to save and recall the grid data structure to and from the filesystem. The
first takes in a pointer to a current grid and the prints the data in binary format to
a file. The file is given a standard name generated from the current date and time.
The current naming system is not sufficient given the fact that two files output in
the same minute will be given identical names. This results in the first file being
overwritten by the second. The second function takes in a pointer to an empty grid
and fills it with the data in a file named initcond.bd. This was sufficient for my
purposes, but it would be better to design this function to take in a arbitrary filename

as an argument.

B.2 Altering the Fields

~Given the data structure and methods for accessing it, we need functions that alter

the fields in a specific way. The first of these is init_cond
void init_cond( double vstart([] )

This function takes in a pointer to a grid and assigns values to each location based on
an algorithm of your choice. The two initial conditions we have used are a vacuum
and an approximated A = co Baby Skyrmion located at the center of the lattice.

The next function of use in transforming the field is translate:
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int trans(double v[], double vout[], int xdis)

This function takes in a pointer to a current grid, a pointer to an empty grid, and an
integer xdis. It then feads out the current grid and inserts the value into the new
grid displaced by xdis lattice sites in the x direction. This results in some lattice sites
in the new grid having no assigned values. Therefore, this function fills these sites
with the values taken from the border or the old grid, extending these edge values
until it fills the new grid.

The next function is rotate,
int rotate(double v[], double vout([])

which, similar to translate, takes in pointers to a current grid and an empty grid. It
then assigns values to the new grid by rotating the old square grid by 90° clockwise
about the center of the lattice.

Another useful function for acting on a single lattice is antisol,
int antisol(double v[], double vout([])

The effect of this function is that given a Baby Skyrmion field configuration, it will
change it to an anti-soliton. The method by which it does this is by copying the exact
fields from the old grid to the new grid with one minor change. The signs on all the
values of ¢* on the lattice are reversed, i.e. ¢2 — —¢2.

The next function is boost,
int boost(double v[], double vel)

which takes in a grid and assigns new values to the time derivatives by the equation

Q.Si(.’L‘, y) = _v[¢i($; y) - ¢Z($ - Az,y)]/Ax (Bl)

This is a simple Galilean transformation.

The final function for altering the grid is one of the most useful. So far using the
above functions, we can create a single soliton configuration and alter it in several
fashions. To do soliton collisions though, we need more than one soliton with different

locations, velocities, etc. We achieve this with addgrid,
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int addgrid(double vi[], double v2[], double vout[])

This function merges two grids into a third grid defined by d_;vacuum + ((stt soliton —

— - e
¢'vacuum) + (¢second soliton — ¢vacuum)-

B.3 Visualization functions

This next category of functions do not alter the fields in any fashion, but allow us
to read out certain numerical qualities about the fields. In essence, they process the
data within the grid and output it in a form that we can understand. The simplest

example of this is the snapshot function
void snapshot( double v[] )

which takes in a pointer to a grid. It then prints all the data within the fields to
the standard output (stdout). It prints it in a matrix format suitable for loading
into Matlab. The resolution at which it outputs the fields can be set with the global
snap_res. By default is set to 1, ‘which outputs every lattice site. Note that when
this function acts on a single 125 x 125 grid and outputs the data in every lattice site
to 6 decimal places, it produces about 1MB of output.

The next function produces more compact data about the fields.
void get_energy( double v[] )

This function takes in a pointer to a grid and computes the potential and kinetic
energy as well as the winding number of the fields. It then stores these values in the
global array ener_dat in the above order.

Closely related to this idea is the function ener_surf
void get_enersurf( double v[], double ev[])

This takes in a pointer to the current grid, and a pointer to an empty grid. It then
computes the potential, kinetic and total energies of each lattice site, storing these
values in the empty grid in the place of the three fields. This new grid is then passed

on to a modified snapshot function
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void esnapshot( double v[] )

which only prints out these fields.

B.4 Relaxation Method

In order to find the correct shape and energy of the Baby Skyrmions, we begin
with an estimated field configuration and relax it into a minimum of the potential
energy. We do this using an algorithm specifically designed to minimize a function
of multiple variables. In our case, we would like to minimize the potential energy,
which is a function of N = 3 x 125 x 125 variables (i.e. the three fields values at each
lattice site). There are many algorithms designed for this purpose, some of which are
outlined in Ref. [21]. The basic principle behind most of them is to choose a particular
direction in your N-dimensional phase space and then do a line minimization along
that direction. After the minimum along that direction is found, a new direction is
chosen and the process is repeated. The questions then comes down to how to choose
the direction along which to minimize at each step. The most obvious is called the
steepest descent method. This requires the ability to compute the local gradient at
any point of the multidimensional function you wish to minimize, and then to use
this as the direction for the line minimization. Luckily, this gradient information is
given to us by the terms in our equations of motion which contain no time derivatives.
The problem here is that the steepest descent method is not very efficient. By always
choosing to minimize in the direction of the local gradient, you tend to undo the
minimization you have done along other directions in phase space.

This is where the idea of conjugate directions comes into play. After minimizing
along the direction @ in phase space, we choose the new direction of minimization
b such that the local gradient remains perpendicular to @ as we minimize. This
guarantees that we need not redo our minimization along @ @ and b are referred
fo as conjugate directions. If this process is repeated, it should only require on the
order of N separate line minimizations to reach the local minimum of our function.

The application of this method is fully outlined in Ref. [21] in the section called
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Conjugate Gradient Methods in Multidimensions. The function which performs this

multidimensional minimization is

void dfrprmn(double‘p[], int n, double ftol, int *iter,
double *fret,
double (*func) (double []),
void (*dfunc) (double [], double []))

This is an exact copy of the function frprmn taken from Ref. [21] except that all the
variables are changed from single-precision to double-precision floating point numbers.
The function takes in the initial guess p, an array of n variables, and minimizes
the function func. The function dfunc takes in a pointer to the current location
in phase space and fills an empty array with the gradient at that location. The
minimization continues until the change of func is less than ftol between successive
line minimizations. The total number of iterations is stored in the variable iter, and
the final minimum of the function is stored in fret. In our case, p is our approximated
field éonﬁguration of a Baby Skyrmion, func is the potential energy function, and
dfunc are the equations of motion with the time derivative terms removed.

Another reason this algorithm was chosen over the other possible candidates was
that the number of variables it stores is on the order of N as opposed to other
algorithms which store N2. Given the fact that our data sefs are already quite large,
the other methods would require too much space, forcing us to use inefficient work-
arounds. The conjugate gradient method on the other hand has the drawback that
one must be able to compute the gradient at all points in phase space. This was not
an extra burden in our case since we already had the gradient information provided

by the equations of motion.

B.5 Time Evolution Algorithm

The idea behind all time evolution algorithms is to take some configuration 7, in
phase space and advance it some time At to a new configuration #,,;. The simplest

way of doing this is Euler’s method where we advance a function using the equation
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'!711+1 = gn + Aty—;n (Bz)

This is generally not used since it is not very accurate. A slight modification of this
result in Runge-Kutta methods, where the information gained from multiple smaller
steps are used to fit a Taylor expansion of the function. In general this provides for
a much more accurate time evolution. The most commonly used example of this is

the fourth-order Runge-Kutta formula,

ki = Aty,(tn:yn)

At -k
At k
ks = Aty’(tn + = Yn t ——2)
2 2
ky = Atyl(tn + At, Yn + k3)
k k k k
Ynil = Un+ M + n2 + 3 + 4 + O((At)s) (B3)

6 3 3 6

here presented in one dimension. This method disregards terms higher than fourth
order in the timestep At. Therefore, as long as your function is well-behaved (i.e. has
small higher-order terms in its Taylor expansion) one can achieve a desired accuracy
by choosing a sufficiently small timestep.!

The next optimization one can apply to the problem of time evolution then comes
directly from this issue of sufficiently small timestep. The requirements on the size
of the timestep of an average time evolution problem can vary from step to step. At
certain times the evolution may go smoothly and a largér timestep is good enough,
but you cannot increase it since it it not small enough for a few key moments during
the simulation. You could keep it small, but you then have a large loss in time as
it uses an extremely small timestep when it is not necessary. This is where adaptive
timestep algorithms enter the picture. The basic concept for these methods is to
change the timestep as needed, evolving the simple periods quickly, while focusing

computation time on the trickier parts. This is implemented by estimating the error

LOf course this has a lower limit based on a computer’s truncation error.
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after a step is taken. If this estimate is higher than some allowed value, then the step
is rewound and repeated with a smaller timestep. If the estimate is smaller than the
allowed value, then the step is accepted and a new larger timestep is chosen based on
the ratio of the error estimate to the allowed error.

The problem then boils down to estimating the error of the results of a step forward
in time. In the Adaptive Timestep method we used [21], an embedded Runge-Kutta
formula was used to estimate the error. It begins with a fifth-order Runge-Kutta

equation of the form
Yn+1 = Yn + C1k1 + Coka + csks + caka + c5ks + cke + O((At)s). (B.4)
where the individual components are intermediate steps of the form

ki = Aty,(tmyn)
ks

Aty’(tn + aAt, y, + b21k1)

k‘s = At'yl(tn + asAt, UYn + bﬁlkl + ...+ b55k5) (B5)

By changing the coefficients of the terms above, one can arrive at an embedded

fourth-order Runge-Kutta equation
Yri1 = Yn + Ciky + ok + ks -+ cika + ciks + chks + O((At)®). (B.6)

This is referred to as an embedded equation since it requires no additional function
evaluations to obtain it from the fifth-order expression. The values of the constants
a;, bij, c; and ¢ which we used were those found by Cash and Karp as presented in
Ref. [21]. The error estimate A is then
6
A=yYnpar — y,";+17 = z(ci — k. (Bb.7)
. i=1

In applying this to our multidimensional problem, if any single term in our array

60



1| a; by; C; c
1 37 2825
378 | 27648
1 1
2 z 5 0 0
3|3 3 9 250 | 18575
10 40 40 621 | 48384
41 2 3 =9 6 125 | 13525
5 10 10 5 504 | 55296
—11 5 —70 35 277
511 54 2 27 27 0 14336
6| 7 1631 175 575 44275 253 512 1
8 | 55206 512 13824 110592 4096 | 1771 1

j= 1 2 3 4 5

Table B.1: Cash-Karp Parameters for Embedded Runga-Kutta Method

of values has an error above the tolerance, then the step is not accepted for any of

the terms. The function which does this timestepping is

i void odeintd(double ystart[], int nvar, double x1, double x2,

| double eps, double hl, double hmin, int *nok, int *nbad,

void (xderivs) (double, double [], double []),

void (*rkgsd) (double [], double [], int, double *,
double, double, double []l, double *, double *,
void (*)(double, double [1, double []1)))

It is the same as the function odeint of Ref. [21], except that all the variables have

been changed from single-precision to double-precision floating point numbers. This

function takes in an initial field configuration vstart of nvar variables and advances
it from time x1 to x2. It uses hi as a guess for the first timestep, eps as the error
tolerance and hmin as the minimum allowed value for the timestep. It store the
number of good steps in the variable nok and the number of bad in nbad. You
are required to pass in two functions; derivs which fills and empty array with the

first derivative of each element in a configuration you pass in, and rkgsd which does
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the individual time steps. The function rkqsd is a copy of the function rkqs of
Ref. [21], except that all the variables have been changed from single-precision to
double-precision ﬂoating point numbers.

The fact that this function deals with the system as a linear array is the reason
we chose to store the grid as such. Using the grid reading and writing functions I
outlined in the section on data structures, we are able to transparently deal with it
as a linear array at one time and as a multidimensional array at other times.

The function deriv is specific to each time evolution problem. It is written based
on the equations of motion. The user passes in a pointer to the array of (¢, (b’)
and a pointer to an empty array. The function then fills the new array with the
corresponding (¢%, ¢*). The ¢’ are easy since they are just copied from the old array
to their new position. The é* are computed using the equations of motion. This is
where the entirety of the physics is contained.

As described in Section 3, this time evolution algorithm is stable. Even while
tracking violent soliton—soliton collisions and decay, energy was conserved to greater
than two parts in 10%. The energy was conserved to better than one part in 10¢ when
the remnants of two decayed solitons were time-reversed to recreate two solitons.
In most simulations a tolerance value of eps = 0.001 was used, which resulted in

timesteps around dt = 0.02.
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Appendix C

C Code

C.1 Constants, Macros and Global Variables

Here is a list of the constants, macros and global variables that are used by the
functions which will follow. '

-

#include <stdio.h>
#include <stdlib.h>
| #include <math.h>
C #include <time.h>
#define NR_END 1
#define FREE_ARG charx*
#define r_steps 0
#define start_t O
#define end_t 20.0
#define num_x 125
#define DX 0.2
#define DY 0.2
#define DT 0.001
#define mu2 0.1
#define kap 1.0
#define lam 15
#define kcoeff 1.0
#define s_res 1
#define e_res 1
#define snap_res 10
#define x_cen 62
#define y_cen 62
#define bound_12 0.0
#define bound_3 (sqrt(1.0 + (0.1 / (4 * 15))))
#define M_PI 3.14159265358979323846 /* pi */
#define DEBUG_VAR 0
#define EPS_ERR 0.001
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#define MAXSTP 25000

#define TINY 1.0e-15

#define SAFETY 0.9

#define PGROW -0.2

#define PSHRNK -0.25

#define ERRCON 1.89e-4

static double maxargl,maxarg?;

#define FMAX(a,b) (maxargl=(a),maxarg2=(b),(maxargl) > (maxarg2) 7\
(maxargl) : (maxarg2))

static double minargl,minarg2;

#define FMIN(a,b) (minargi=(a),minarg2=(b),(minargl) < (minarg2) 7\
(minargl) : (minarg2))

#define SIGN(a,b) ((b) >= 0.0 7 fabs(a) : -fabs(a))

int kmax,kount;

double *xp,**yp,dxsav;
int sct = 0;

int ect = 0;

int esct = 0;

double ener_dat[3];
double lcoeff = 1.0;
double **step_dat;
double *x*ep;

C.2 Numerical Recipes Functions
The following are helper functions used by the Conjugate Gradient and Adaptive

Timestep algorithms taken from Ref. [21].

void nrerror(char error_text[])
/* Numerical Recipes standard error handler */

{
fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(1);

}

double *dvector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */

{
double *v;
v=(double *)malloc((size_t) ((nh~nl+1+NR_END) *sizeof (double)));
if (!v) nrerror("allocation failure in dvector()");
return v-nl+NR_END;
}

double **dmatrix(long nrl, long nrh, long ncl, long nch)
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/* allocate a double matrix with subscript range m[nrl..nrh] [ncl..nch] */
{

long i, nrow=nrh-nrl+l,ncol=nch-ncl+1;

double **m;

/* allocate pointers to rows */

m=(double **) malloc((size_t) ({nrow+NR_END)*sizeof (double*)));
if (!'m) nrerror("allocation failure 1 in matrix()");

m += NR_END;

m -= nrl;

/* allocate rows and set pointers to them */

m[nrl]=(double *) malloc((size_t) ((nrow*ncol+NR_END)x*sizeof (double)));
if (!m[{nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += NR_END;

m{nrl] -= ncl;

. for(i=nrl+1;i<=nrh;i++) m[iJ=m[i-1]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

void free_dvector(double *v, long nl, long nh)
/* free a double vector allocated with dvector() */
{
free((FREE_ARG) (v+nl-NR_END));
}

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a double matrix allocated by dmatrix() */
{

free ((FREE_ARG) (m[nrl]+ncl-NR_END));

free ((FREE_ARG) (m+nr1-NR_END));

C.3 Data Structure Functions

double grid_val(double grid[], int i, int j, int k, int g)
L .
return (* (grid+num_x*6+i+6*j+2xk+g+1));

}

void grid_stor(double grid(l, int i, int j, int k, int g, double newval)
{
*(grid+num_x*6*i+6%j+2+k+g+l) = newval;

}

void put_datfile(double v[])
{
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}

int j;

FILE =*f;

char strr[40];

char news[40];

time_t now = time(NULL);

strcpy(strr, ctime(&now));
news[0] = ’d’;
neys[1] = ’a’;
news[2] = 't’;
news[3] = strr(4];
news [4] = strr[5];
news[5] = strr[6];
news[6] = strr[9];
news[7] = strr[i11];
news[8] = strr[i12];
news[9] = strr[14];
news[10] = strr[i5];

news[11] = ’.7;
news[12] = ’b?;
news[13] = °d’;

news[14] = ’\0’;

f=fopen(news,"w");

if(1f){

printf ("Error making file %s\n",news);
fflush(stdout);

exit(1);

} -
j=fwrite(v,sizeof (double) , (num_x*num_x*3*2),f);
fclose(f);

int get_datfile(double v[])

{

int j;
FILE *f;

f=fopen("initcond.bd", "r");
if(r£){
printf ("Error opening file initcond.bd\n");
fflush(stdout);
exit(1);
}
j=fread(v,sizeof (double) , (num_x*num_x*3*2) ,f) ;
fclose(f);
return(0);
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C.4 Field Altering Functions

void init_cond( double vstart(])

{

int i, j, k;
double sx, sy, r2, r, f;

for(i = 0; i<num_x; i++){
for(k = 0; k<2; k++){
grid_stor(vstart,0,i,k,0, bound_12);
grid_stor(vstart,num_x-1,i,k,0,bound_12);
grid_stor(vstart,i,0,k,0,bound_12);
grid_stor(vstart,i,num_x-1,k,0,bound_12);

¥

}

grid_stor (vstart,0,i,2,0,bound_3);
grid_stor(vstart,num_x-1,1i,2,0,bound_3);
grid_stor(vstart,i,0,2,0,bound_3);
grid_stor(vstart,i,num_x-1,2,0,bound_3);

for(i = 0; i<num_x; i++){
for(j = 0; j<num_x; j++){

}

}

for(k = 0; k<3; k++){
grid_stor(vstart,i,j,k,1,0.0);

.

for(i = 1; i < num_x - 1; i++){
for(j = 1; j < num_x - 1; j++){

}
}

}

sx = DX * (i - x_cen);
sy = DY * (j - y_cen);
r2 = (sX*sX + sy*sy);

r = sqrt(r2);
f = M_PI * exp(-0.5%r);
if( r == 0.0 ){

grid_stor(vstart,i,j,0,0,sin(f));
grid_stor(vstart,i,j,1,0,sin(f));
grid_stor(vstart,i,j,2,0,cos(f));

Yelse{

grid_stor(vstart,i,j,0,0,sin(f)*sx/r);
grid_stor(vstart,i,j,1,0,sin(f)*sy/r);
grid_stor(vstart,i,j,2,0,cos(f));

}

int trans(double v[], double vout[], int xdis)

{

int i,j,k,p;

for(i=0;i<num_x;i++){
~ for(k=0;k<3;k++){
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for (p=0;p<2;p++){
grid_stor(vout,i,0,k,p,grid_val(v,i,0,k,p));
grid_stor(vout,0,i,k,p,grid_val(v,0,i,k,p));
grid_stor(vout,i,num_x-1,k,p,grid_val(v,i,num_x-1,k,p));
grid_stor(vout,num_x-1,i,k,p,grid_val(v,num_x-1,1,k,p));
}
}
}
/*printf ("before loop\n");*/
if (xdis<0){
for(j=1;j<num_x-1;j++){
for (k=0;k<3;k++){
for (p=0;p<2;p++){
for(i=1;i<num_x-1+xdis;i++){
grid_stor(vout,i,j,k,p,grid_val(v,i-xdis,j,k,p));
}
for(i=num_x-1+xdis;i<num_x-1;i++){
grid_stor(vout,i,j,k,p,grid_val(v,num_x-1,j,k,p));
}
}
}
¥
}elsed{
for(j=1;j<num_x-1;j++){
for(k=0;k<3;k++){
for(p=0;p<2;p++){
for(i=1;i<xdis+1;i++){
grid_stor(vout,i,j,k,p,grid_val(v,1,j,k,p));
}
for (i=xdis+1;i<num_x-1;i++){
grid_stor(vout,i,j,k,p,grid_val(v,i-xdis,j,k,p));
}
}
}
}
}
/*printf ("after loop\n");*/
return(0);

}

int rotate(double v[], double vout([])
{
int 1i,j,k,p;

for (i=0;i<num_x;i++){
for (j=0;j<num_x;j++){
for (k=0;k<3;k++){
for(p=0;p<2;p++){ :
grid_stor(vout, j,num_x-1-i,k,p,grid_val(v,i,j,k,p));
}
1
}
}

return(0);
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}

int antisol(double v[], double vout[])
{
int i,j,k,p;

for(i=0;i<num_x;i++){
for(j=0;j<num_x;j++){
for (k=0;k<3;k++){
for (p=0;p<2;p++){
grid_stor(vout,i,j,k,p,grid_val(v,i,j,k,p));
}
}
: }
}
: for(i=0;i<num_x;i++){
for (j=0;j<num_x;j++){
grid_stor(vout,i,j,1,0,-grid_val(v,i,j,1,0));
}

}
return(0);

}

int boost(double v[], double vel)
{

int i,j,k;

printf("before loop\n");
for(i=1;i<num_x-1;i++){
for(j=1;j<num_x-1;j++){
for (k=0;k<3;k++){
/*if (i==60 && j==60)
{printf("phidoti = %f\n", grid_val(v,i,j,k,1));
I*/
grid_stor(v,i,j,k,1,vel
i _ *(grid_val(v,i-1,j,k,0)~grid_val(v,i,j,k,0))/DX);
E /*1if (1==60 && j==60)
: {printf("phidotf = %f\n", vel
*(grid_val(v,i-1,j,k,0)-grid_val(v,i,j,k,0))/DX);

i
i
i
i
|
i

I/
}
}
} ,
printf ("before loop\n");
return(0);
}

int addgrid(double vi[], double v2[], double vout[])
{
int i,j,k,p;

for (i=0;i<num_x;i++){

for (k=0;k<3;k++){
for (p=0;p<2;p++){
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grid_stor(vout,i,0,k,p,grid_val(vi,i,0,k,p));
grid_stor(vout,0,i,k,p,grid_val(vi,0,i,k,p));
grid_stor(vout,i,num_x-1,k,p,grid_val(vi,i,num_x-1,k,p));
grid_stor(vout,num_x-1,i,k,p,grid_val(vl,num_x-1,1,k,p));
}
}
‘E /*printf ("before loop\n");*/
: for(i=1;i<num_x-1;i++){
for(j=1;j<num_x-1;j++){
for (k=0;k<2;k++){
for (p=0;p<2;p++){
grid_stor(vout,i,j,k,p,(grid_val(vi,i,j,k,p)+grid_val(v2,i,j,k,p)));
}
}
grid_stor(vout,i,j,2,0, (grid_val(vl,i,j,2,0)+grid_val(v2,i,j,2,0)
-bound_3));
grid_stor(vout,i,j,2,1,(grid_val(vi,i,j,2,1)+grid_val(v2,i,j,2,1)));
}
}
/*printf ("after loop\n");*/
return(0);

}

C.5 Visualization Functions

void snapshot( double v[] )
{
int i, j, k;

for( k = 0; k < 3; k++){
printf ("p%did=[\n", (k+1), sct);
for(j = 0; j < num_x; j+=s_res){
for(i = 0; i < num_x; i+=s_res)q{
printf("%f ", grid_val(v,i,j,k,0));
}
prinmtf("\n");
}
printf ("]1;\n\n\n");
}
for( k = 0; k < 3; k++){
printf("dp%did=[", (k+1), sct);
for(j = 0; j < num_x; j+=s_res){
for(i = 0; i < num_x; i+=s_res)q{
printf("%f ", grid_val(v,i,j,k,1));
}
printf("\n");
}
printf("];\n\n\n");
}
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}

sct++;

void get_energy( double v[] )

{

int i,
double
double
double
double
double
double
double
double

for (i

for(
ph

rh

j» k, m, n;
phi2;

d_t[3], d_x[3], d_y[3], dd_xx[3], dd_yy[3];

dd_tx[3], dd_ty[3], dd_xy[3];

ener = 0;

kener = 0;

windnum = O;

wd_x(3], wd_y[3], phi2x3y2, phi2x1y2, phi2x2y3, phi2x2y1;

d_xal3], d_yal3];

= 1; 1 < num_x-1; i++){

j=1; j < num_x-1; j++){

i2x3y2 = grid_val(v,i+1,j,0,0)*grid_val(v,i+1,j,0,0)
+ grid_val(v,i+1,j,1,0)*grid_val(v,i+1,j,1,0)

+ grid_val(v,i+1,j,2,0)*grid_val(v,i+1,j,2,0);
i2x1y2 = grid_val(v,i-1,j,0,0)*grid_val(v,i-1,j,0,0)
+ grid_val(v,i-1,j,1,0)*grid_val(v,i-1,j,1,0)

+ grid_val(v,i-1,j,2,0)*grid_val(v,i-1,3j,2,0);

phi2x2y3 = grid_val(v,i,j+1,0,0)*grid_val(v,i,j+1,0,0)

+ grid_val(v,i,j+1,1,0)*grid_val(v,i,j+1,1,0)
+ grid_val(v,i,j+1,2,0)*grid_val(v,i,j+1,2,0);

.phi2x2y1 = grid_val(v,i,j-1,0,0)*grid_val(v,i,j-1,0,0)

fo

}
ph

+ grid_val(v,i,j-1,1,0)*grid_val(v,i,j-1,1,0)
+ grid_val(v,i,j-1,2,0)*grid_val(v,i,j-1,2,0);

r(k = 0; k < 3; k++){
d_xalk] = (grid_val(v,i,j,k,0) - grid_val(v,i-1,j,k,0)) / DX;
d_yalk] = (grid_val(v,i,j,k,0) - grid_val(v,i,j-1,k,0)) / DY;

d_t[k] = grid_val(v,i,j,k,1);
d_x[k] = (grid_val(v,i+1,j,k,0) - grid_val(v,i-1,j,k,0)) / (2 * DX);
d_y[k] = (grid_val(v,i,j+1,k,0) - grid_val(v,i,j-1,k,0)) / (2 * DY);
dd_xx[k] = (grid_val(v,i+1,j,k,0) + grid_val(v,i-1,j,k,0)

- 2%grid_val(v,i,j,k,0)) / (DX * DX);
dd_yy[k] = (grid_val(v,i,j+1,k,0) + grid_val(v,i,j-1,k,0)

- 2#grid_val(v,i,j,k,0)) / (DY * DY);

dd_tx[k] = (grid_val(v,i+1,j,k,1) - grid_val(v,i-1,j,k,1)) / (2+DX);
dd_tylk] = (grid_val(v,i,j+1,k,1) - grid_val(v,i,j-1,k,1)) / (2+DY);
dd_xyl[k] = (grid_val(v,i+1,j+1,k,0) - grid_val(v,i-1,j+1,k,0)

- grid_val(v,i+1,j-1,k,0) + grid_val(v,i-1,j-1,k,0))
/ (4*DX*DY) ;
wd_x[k] = (grid_val(v,i+1,j,k,0)/phi2x3y2
- grid_val(v,i-1,j,k,0)/phi2x1y2) / (2 * DX);
wd_y[k] = (grid_val(v,i,j+1,k,0)/phi2x2y3
- grid_val(v,i,j-1,k,0)/phi2x2y1) / (2 * DY);

i2 = grid_val(v,i,j,0,0)*grid_val(v,i,j,0,0)
+ grid_val(v,i,j,1,0)*grid_val(v,i,j,1,0)

+ grid_val(v,i,j,2,0)*grid_val(v,i,j,2,0);
=1; -

=2;
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}

for(k = 0; k < 3; k++){
ener += 0.5%(d_xa[k]*d_xalk] + d_yalk]*d_yalk])
+ kap*kap*kcoeff*0.5
* (d_x[k]*d_x[k]*d_y[m]*d_y[m]
+ d_x[m]*d_x[m]*d_y[k]*d_y[k]
- 2%d_x[k]*d_y[k]*d_x[m]l*d_y[ml);
kener += 0.5*d_t[k]*d_t[k]
+ kap*kap*kcoeff*0.5
* (d_t[k]*d_t[k]*d_x[m]*d_x(m]
d_t [m]*d_t [m]*d_x[k]*d_x[k]
2+d_t [k]*d_x [k]*d_t [m]*d_x [m]
d_t[k]*d_t [k]*d_y[m]*d_y[m]
d_t [m]*d_t [m]*d_y [k]*d_y[k]
2%d_t [k]*d_y[k]*d_t[m]*d_y[m]);

o+ 1+

windnum += grid_val(v,i,j,k,0)*((wd_x[m]*wd_y[n])-(wd_y[ml*wd_x[nl));

m = n;
n = k;

}

ener += mu2*(1-grid_val(v,i,j,2,0)) + lam*lcoeff*(phi2 - 1)*(phi2 - 1);

}
}
for(i=1;i<num_x-1;i++){
for (k=0;k<3;k++)q{
ener += 0.5*%(1/(DX*DX))
*((grid_val(v,i,num_x-1,k,0)-grid_val(v,i,num_x-2,k,0))
*(grid_val(v,i,num_x-1,k,0)-grid_val(v,i,num_x-2,k,0)));
ener += 0.5%(1/(DX*DX))
*((grid_val(v,num_x-1,i,k,0)-grid_val(v,num_x-2,i,k,0))
*(grid_val(v,num_x-1,i,k,0)-grid_val(v,num_x-2,i,k,0)));
}
}
ener_dat[0] = ener*DX*DY;
ener_dat[1] = kener*DX*DY;
ener_dat [2] = windnum*DX*DY/(4*M_PI);

void get_enersurf( double v[], double ev([])

{

int i, j, k, m, n, p;

double phi2;

double d_t[3], d_x[3], d_y[3], dd_xx[3], dd_yy[3];
double dd_tx[3], dd_ty[3], dd_xy[3];

double d_xal3], d_yal3];

for(i = 0; i < num_x; i++){
for(j = 0; j < mum_x; j++){
for(k = 0; k < 3; k++){
for(p = 0; p < 2; p++){
grid_stor(ev,i,j,k,p,0);
}
}
}
}

for(i = 1; i < num_x-1; i++){
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}

}

for(j = 1; j < num_x-1; j++){

}

for(k = 0; k < 3; k++){

d_xal[k] = (grid_val(v,i,j,k,0) - grid_val(v,i-1,j,k,0)
d_yalk] = (grid_val(v,i,j,k,0) - grid_val(v,i,j-1,k,0)
d_t[k] = grid_val(v,i,j,k,1);

d_x[k} = (grid_val(v,i+1,j,k,0) - grid_val(v,i-1,j,k,0)) / (2 * DX);
d_y[k] = (grid_val(v,i,j+1,k,0) - grid_val(v,i,j-1,k,0)) / (2 * DY);
dd_xx[k] = (grid_val(v,i+1,j,k,0) + grid_val(v,i-1,j,k,0)

- 2*grid_val(v,i,j,k,0)) / (DX * DX);

) / DX;
) / DY;

dd_yy[k] = (grid_val(v,i,j+1,k,0) + grid_val(v,i,j-1,k,0)

- 2*grid_val(v,i,j,k,0)) / (DY * DY);
dd_tx[kx] = (grid_val(v,i+1,j,k,1) - grid_val(v,i-1,j,k,1)) / (2%DX);
dd_ty[k] = (grid_val(v,i,j+1,k,1) - grid_val(v,i,j-1,k,1)) / (2*DY);
dd_xy[k] = (grid_val(v,i+1,j+1,k,0) - grid_val(v,i-1,j+1,k,0)

- grid_val(v,i+1,j-1,k,0) + grid_val(v,i-1,j-1,k,0))
/ (4%DX*DY);
}
phi2 = grid_val(v,i,j,0,0)*grid_val(v,i,j,0,0)
+ grid_val(v,i,j,1,0)*grid_val(v,i,j,1,0)
+ grid_val(v,i,j,2,0)*grid_val(v,i,j,2,0);
m=1;
n = 2;
for(k = 0; k < 3; k++){
grid_stor(ev,i,j,0,0, grid_val(ev,i,j,0,0) + 0.5%(d_xal[k]*d_xalk]
+ d_yal[k]*d_yalk])
+ kap*kap*kcoeff*0.5
* (d_x[k]*d_x[k]*d_y[ml}*d_y[m]
+ d_x[m]*d_x[m]*d_y[k]*d_y[k]
- 2#¢d_x[k]*d_y[k]*d_x[ml*d_y[m]));
grid_stor(ev,i,j,1,0, grid_val(ev,i,j,1,0) + 0.5*d_t[k]*d_t[k]
+ kap*kap*kcoeff*0.5
* (d_t[k]*d_t[k]*d_x[m]*d_x[m]

+ d_t[m]*d_t[m]*d_x[k]*d_x[k]
- 2xd_t[k}*d_x[k]*d_t [m]*d_x [m]
+ d_t[k]*d_t [k]*d_y[m]*d_y [m]
+ d_t[m]*d_t [m]*d_y[k]*d_y[k]
- 2xd_t[k]*d_y[kl*d_t[m}*d_y[m]));
m = n;
n = k;
}

grid_stor(ev,i,j,0,0, grid_val(ev,i,j,0,0)

+ mu2*(1-grid_val(v,i,j,2,0))

+ lam*lcoeff*(phi2 - 1)*(phi2 - 1));
grid_stor(ev,i,j,0,0, grid_val(ev,i,j,0,0)*DX*DY);
grid_stor(ev,i,j,1,0, grid_val(ev,i,j,1,0)*DX*DY);
grid_stor(ev,i,j,2,0, grid_val(ev,i,j,0,0)+grid_val(ev,i,j,1,0));

void esnapshot( double v[] )

{

int i, j, k;
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for( k = 0; k < 3; k++){
printf ("ephd%d=[\n", (k+1), esct);
i for(j = 0; j < num_x; j+=s_res){
{ for(i = 0; i < num_x; i+=s_res){
i printf("%f ", grid_val(v,i,j,k,0));
} }
‘ printf("\n");
}
printf ("1;\n\n\n");
}
esct++;

}

The following functions access the specific global variables generated by the rou-
tines taken from Ref. [21].

void print_stepdat(int outvar, int nok)
{

int i, j;

printf("\nsd=[\n");

for (i=1;i<=nok;i++){
for(j=1;j<=outvar;j++){

.printf("%4f ", step_dat[jI[i]);

}
printf("\n");

}

printf("];\n\n");

}

void print_times()
{

int i;

printf ("\nxp = [\n");
for(i=1;i<=kount;i++){
printf ("%f\n", xplil);
}
printf ("] ;\n\n");
}

i
i
i
|
!

void print_field(int nvar)
{

int i, j;

double *fld;

fld = dvector(l,nvar);
for(i=1;i<=kount;i++){
for(j=1;j<=nvar;j++){
£1d(jl=ypl(j1[il;

snapshot (f1d) ;
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}

free_dvector(fld, 1, nvar);

}
: void print_enersurf(int nvar)
g {
5 int i, j;

double *£fld;

f1d = dvector(1,nvar);
for(i=1;i<=kount;i++){
for(j=1;j<=nvar;j++){
f1d[jl=ep[j1[il;
}
esnapshot (£1d) ;
}

free_dvector(fld, 1, nvar);

C.6 Relaxation Functions

void mnbrak(double *ax, double *bx, double *cx, double *fa,
double *fb, double *fc, double (*func) (double))
{

i double ulim,u,r,q,fu,dunm;

§ *fa=(*func) (*ax) ;
*f£b=(*xfunc) (*bx) ;
if (%fb > *fa) {
SHFT (dum, *ax, *bx,dum)
: SHFT (dum, *fb, *fa,dum)
; }
: . *cx=(*bx) +GOLD* (*bx~*ax) ;
*fc=(*func) (xcx) ;
while (*fb > *fc) {
r=(*bx-%ax) * (xfb-*fc) ;
gq=(*bx—*cx) * (*fb-*fa) ;
_u={xbx) - ((*bx-*cx)*q- (*bx-*ax) *r) /
(2.0*SIGN(FMAX(fabs(q-r) ,TINY) ,q-1));
ulim=(*bx)+GLIMIT* (*cx-*bx) ; )
if ((*bx-u)*(u-*cx) > 0.0) {
fu=(*func) (u);
if (fu < *xfc) {
*ax=(*bx) ;
*bx=u;
*xfa=(*fb);
*fb=fu;
return;
} else if (fu > *fb) {
*CX=U;
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}

*fc=fu;
return;
}
- u=(*cx) +GOLD* (*cx-*bx) ;
fu=(*func) (u);
} else if ((*cx-u)*(u-ulim) > 0.0) {
fu=(*func) (u);
if (fu < *fc) {
SHFT (*bx, *cx,u, *cx+GOLD* (*cx-*bx))
SHFT (*fb,*fc,fu, (*func) (u))
}
} else if ((u-ulim)*(ulim-*cx) >= 0.0) {
u=ulim;
fu=(*func) (u);
} else {
u=(*cx)+GOLD* (*cx-*bx) ;
fu=(*func) (u);
}
SHFT (*ax, *bx,*cx,u)
SHFT (*fa,*fb,*fc,fu)

double dbrent(double ax, double bx, double cx, double (xf) (double),

{

double (*df)(double), double tol, double *xmin)

int iter,okl,ok2;
double a,b,d,d1,d2,du,dv,dw,dx,e=0.0;
double fu,fv,fw,fx,olde,toll,tol2,u,ul,u2,v,w,x,xmn;

a=(ax < ¢cx 7 ax : cx);
b=(ax > cx 7 ax : cx);
X=w=v=bx;
fu=fv=Ffx=(*f) (x);
dw=dv=dx=(*df) (x) ;
for (iter=1;iter<=ITMAX;iter++) {
xm=0.5%(a+b) ;
toll=tol*fabs(x)+ZEPS;
t0l2=2.0%*toll;
if (fabs(x-xm) <= (tol2-0.5%(b-a))) {
*Xmin=x;
return fx;
}
if (fabs(e) > toll) {
d1=2.0*(b-a);
d2=d41;
if (dw != dx) di=(w-x)*dx/(dx-dw);
if (dv != dx) d2=(v-x)x*dx/(dx-dv);
ul=x+d1;
u2=x+d2;
okl (a-u1)*(ui-b) > 0.0 && dx*dl <=
ok2 = (a-u2)*(u2-b) > 0.0 && dx*d2 <=
olde=e;
e=d;

1}
o O
o o
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if (oki || ok2) {
if (okl && ok2)
d=(fabs(dl) < fabs(d2) ? d1 : d2);
else if (okl)

d=dil;
else
d=d2;
if (fabs(d) <= fabs(0.5%o0lde)) {
u=x+d;
if (u-a < tol2 |] b-u < tol2)
d=SIGN(toll,xm-x);
} else {
d=0.5%(e=(dx >= 0.0 7 a-x : b-x));
} N
} else {
d=0.5%(e=(dx >= 0.0 ? a~-x : b-x));
}
} else {
‘ d=0.5%(e=(dx >= 0.0 ? a-x : b-x));
} .
if (fabs(d) >= toll) {
u=x+d;
fu=(*£f) (u);
} else {
u=x+SIGN(toll,d);
fu=(*f) (u);
if (fu > fx) {
*xXmin=x;
return fx;
}
}

du=(*df) (u);
if (fu <= fx) {
if (u >= x) a=x; else b=x;
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, x,fx,dx)
MOV3(x,fx,dx, u,fu,du)
} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, u,fu,du)
} else if (fu < fv || v ==x || v == w) {
MOV3(v,fv,dv, u,fu,du)
}
¥

nrerror ("Too many iterations in routine dbrent");
return 0.0;

double dfidim(double x)
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double df1=0.0;
double *xt,*df;

xt=dvector(l,ncom);

df=dvector(1,ncom);

for (j=1;j<=ncom;j++) xt[jl=pcom[j]+x*xicom[j];
(*nrdfun) (xt,df);

for (j=1;j<=ncom;j++) dfl += df[jI*xicom[j];
free_dvector(df,1,ncom);

! free_dvector(xt,1,ncom);

return df1l;

}

double fidim(double x)

{
int j;
double f,*xt;
xt=dvector(1,ncom);
for (j=1;j<=ncom;j++) xt[jl=pcom[j]+x*xicom[j];
f=(*nrfunc) (xt);
free_dvector(xt,1,ncom);
return f;

}

void dlinmin(double p[], double xi[], int n, double *fret,
double (*func) (double []),
void (*dfunc) (double [], double []))

double dbrent(double ax, double bx, double cx,
double (*f)(double), double (*df) (double),
double tol, double *xmin);

double fidim(double x);

double dfidim(double x); ) ]

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
double *fc, double (*func) (double));

int j;

double xx,xmin,fx,fb,fa,bx,ax;

ncom=n;
pcom=dvector(l,n);

- xicom=dvector(1,n);
nrfunc=func;
nrdfun=dfunc;
for (j=1;j<=n;j++) {

pecom[jl=p[j];
xicom[j1=xi(j];

}
ax=0.0;
xx=1.0;
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,fldim);
*fret=dbrent (ax,xx,bx,fldim,df1dim, TOL,&xmin) ;
for (j=1;j<=n;j++) {

xi[j] *= xmin;
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pljl += xi[j];
}
free_dvector(xicom,1,n);
free_dvector(pcom,1,n);

}

void dfrprmn(double p[], int n, double ftol, int *iter, double *fret,
double (*func) (double []), void (*dfunc) (double [], double []))

. { -
§ void dlinmin(double p([], double xi[], int n, double *fret,
: double (*func) (double []),
void (*dfunc) (double [], double [1));
) int j,its;
; double gg,gam,fp,dgg;
double *g,*h,*xi;
g=dvector(1l,n);
~ h=dvector(i,n);
xi=dvector(1,n);
fp=(*func) (p);
(*dfunc) (p,xi);
for (j=1;j<=n;j++) {
gljl = -xil[j];
xi[j1=hnljl=g[j1;
}
printf ("rxvar)d=[", rxnum);
for (its=1;its<=ITMAX;its++) {
*iter=its;
: printf("%d %2.10f %f\n",its,fp,ener_dat[2]);
E dlinmin(p,xi,n,fret,func, dfunc);
[ if (2.0*%fabs(*fret-fp) <= ftol*(fabs(*fret)+fabs(fp)+EPS)) {
| FREEALL
: return;
}
fp= *fret;
(*dfunc) (p,xi);
dgg=gg=0.0;
for (j=1;j<=n;j++) {
gg += gljl*gljl;
dgg += (xil[jl+g[j1)*xilj]l;
}
if (gg == 0.0) {
FREEALL
return;
}
gam=dgg/gg;
for (j=1;j<=n;j++) {
glil = -xilj1;
xi[jI=hljl=g[jl+gam*h[j];
}
}
/*nrerror("Too many iterations in frprmn");*/
fprintf(stderr, "Not yet converged to within ENER_TOL\n");
}
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C.7 Time Evolution Functions

void rkckd(double y[], double dydx[], int n, double x, double h, double yout[],

{

double yerr[], void (*derivs) (double, double [], double []))

int i;

static double a2=0.2,a3=0.3,a4=0.6,a5=1.0,a6=0.875,b21=0.2,
b31=3.0/40.0,b32=9.0/40.0,b41=0.3,b42 = -0.9,b43=1.2,
b51 = -11.0/54.0, b52=2.5,b53 = -70.0/27.0,b54=35.0/27.0,
b61=1631.0/55296.0,b62=175.0/512.0,b63=575.0/13824.0,
b64=44275.0/110592.0,b65=253.0/4096.0,c1=37.0/378.0,
c3=250.0/621.0,c4=125.0/594.0,c6=512.0/1771.0,
dc5 = -277.00/14336.0;

double dcl1=c1-2825.0/27648.0,dc3=c3-18575.0/48384.0,

dc4=c4-13525.0/55296.0,dc6=c6-0.25;
double *ak2,*ak3,*ak4,*akb,*ak6,*ytemp;

ak2=dvector(1,n);
ak3=dvector(l,n);
ak4=dvector(l,n);
ak5=dvector(l,n);
ak6=dvector(1,n);
ytemp=dvector(1,n);
for (i=1;i<=n;i++)
ytemp[i]=y[1]+b21*h*dydx[i];
(*derivs) (x+a2*h,ytemp,ak2);
for (i=1;i<=n;i++)
ytemp[i]=y[i] +h* (b31*dydx[i]+b32*ak2[i]);
(*derivs) (x+a3*h,ytemp,ak3) ;
for (i=1;i<=n;i++)
ytemp [i]=y[i]+h* (b41*dydx [i]+b42*«ak2[i]+b43*ak3[i]);
(*derivs) (x+ad+*h,ytemp,ak4) ;
for (i=1;i<=n;i++)
ytemp[i]=y[i]+h* (b51i*dydx[i]+b52*ak2[i]+b53*ak3[i]+b54*ak4[i]);
(*derivs) (x+ab*h,ytemp, ak5) ; .
for (i=1;i<=n;i++) :
ytemp [i]=y [1] +h* (b61*dydx [i] +b62*ak2[i]+b63*ak3 [i] +b64*ak4 [i]
: +b65*ak5[i]);
(*derivs) (x+a6*h,ytemp,ak6) ;
for (i=1;i<=n;i++)
yout [i]=y[i]+h*(cl*dydx[i]+c3*ak3[i]+c4*ak4 [i]+c6*ak6[i]);
for (i=1;i<=n;i++)
yerr[il=h#* (dci*dydx [i]+dc3*ak3[i]+dc4x*ak4 [i]+dc5*ak5[i]
+dc6*ak6[i]);
free_dvector(ytemp,1,n);
free_dvector(ak6,1,n);
free_dvector(ak5,1,n);
free_dvector(ak4,1,n);
free_dvector(ak3,1,n);
free_dvector(ak2,1,n);
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void rkqsd(double y[], double dydx[], int n, double *x, double htry, double eps,
double yscall[], double *hdid, double xhnext,
void (*derivs) (double, double [], double []))

{ ‘
i void rkckd(double y[], double dydx[], int n, double x, double h,
i double yout[], double yerr[],
i void (*derivs) (double, double [], double [J));
int i;
double errmax,h,htemp,xnew,*yerr,*ytemp;
yerr=dvector(l,n);
ytemp=dvector(1l,n);
h=htry;
for (;;) {
rkckd(y,dydx,n, *x,h,ytemp,yerr,derivs);
/*snapshot (yscal);
snapshot (yerr) ;
for (i=1;i<=n;i++) ytempl[i] = fabs(yerr[i]/yscallil);
snapshot (y) ;
snapshot (ytemp) ;
exit(1);*/
errmax=0.0;
/*fprintf (stderr, "errmaxl = %f, eps = %f\n", errmax, eps);*/
for (i=1;i<=n;i++) errmax=FMAX(errmax,fabs(yerr[i]/yscallil));
/*fprintf (stderr, "errmaxl = %f, eps = %f\n", errmax, eps);*/
errmax /= eps;
/*fprintf (stderr, "errmax2 = %f\n", errmax);*/
if (errmax <= 1.0) break;
: htemp=SAFETY*h*pow (errmax ,PSHRNK) ;
: h=(h >= 0.0 ? FMAX(htemp,0.1xh) : FMIN(htemp,0.1xh));
; xnew=(*x)+h; v
if (xnew == #x) nrerror("stepsize underflow in rkqsd");
}
if (errmax > ERRCON) *hnext=SAFETY*h*pow(errmax,PGROW);
else *hnext=5.0%h;
*x += (*hdid=h);
for (i=1;i<=n;i++) y[il=ytempl[il];
free_dvector(ytemp,1,n);
free_dvector(yerr,1,n);
} .

void odeintd(double ystart[], int nvar, double x1, double x2,
double eps, double hi,
double hmin, int *nok, int *nbad,
void (*derivs) (double, double [], double [1),
void (*rkgsd) (double [], double [], int, double %, double, double,
double [], double #, double *,
void (*)(double, double [], double [])))

int nstp,i;

double xsav,x,hnext,hdid,h;
double *yscal,*y,*dydx;
double *ey;
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yscal=dvector(l,nvar);
y=dvector(1,nvar);
dydx=dvector(l,nvar);
ey=dvector (1,nvar);
x=x1;
h=SIGN(hi,x2-x1);
*nok = (*nbad) = kount = 0;
for (i=1;i<=nvar;i++) yl[i]=ystart[il;
if (kmax > 0) xsav=x-dxsav*2.0;
; , v for (nstp=1;nstp<=MAXSTP;nstp++) {
(*derivs) (x,y,dydx);
for (i=1;i<=nvar;i++)
yscal[il=fabs(y[i])+fabs(dydx[i]*h)+TINY;
if (kmax > O && kount < kmax-1 &% fabs(x-xsav) > fabs(dxsav)) {
xp [++kount]=x;
get_enersurf (y, ey);
for (i=1;i<=nvar;i++){
- yplil [kountl=y[i];
epli] [kount]=ey[il;

}

Xsav=x;
}
if ((x+h-x2)*(x+h-x1) > 0.0) h=x2-x;
get_energy(y);

- _ printf ("%ctime = %f, h¥%d = %1.10f, energy = %f, wind = %f,
step = %d\n", ’%’, x, (*nok), h, (ener_dat[0]+ener_dat[1]),
ener_dat[2], nstp);

(*rkqsd) (y,dydx,nvar,&x,h,eps,yscal ,&hdid,&hnext ,derivs);
if (hdid == h) {
++(*nok) ;
step_dat[1] [(*#nok)]=h;
step_dat [2] [(*nok)]=x;
. get_energy(y);
step_dat [3] [(*nok)]=(ener_dat [0]+ener_dat[1]1);
step_dat [4] [ (*nok)]=ener_dat[0];
step_dat [5] [(*nok)]=ener_dat[1];
step_dat[6] [(*nok)]=ener_dat[2];
}else {++(*nbad);}
if ((x-x2)*(x2-x1) >= 0.0) {
for (i=1;i<=nvar;i++) ystart[i]=yl[i];
if (kmax) {
xp [++kount]=x;
get_enersurf(y, ey);
for (i=1;i<=nvar;i++){
yp[i] [kount]=y[i];
ep[i] [kount]=ey[i];

E
|
|
|

}
}
free_dvector(dydx,1,nvar);
free_dvector(y,1,nvar);
free_dvector(yscal,l,nvar);
free_dvector(ey,1,nvar);
return;
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¥
if (fabs(hnext) <= hmin) nrerror("Step size too small in odeint");
=hnext;

}

: nrerror("Too many steps in routine odeint");

C.8 Deriv Function

This function contains the equations of motion for our model. If you would like to
use the Conjugate Gradient or Adaptive Timestep algorithms with a different model,
you must alter this function.

void derivs(double x, double v[], double dv[l)
{
int i, j, k, p, m, n;
double phi2, denom;
double cal[3], cb[3], ccl[3];
double d_t[3], d_x[3], d_y(3], dd_xx[3], dd_yy[3];
double dd_tx[3], dd_ty[3], dd_xy[3];
double gridd_x[num_x] [num_x] [3];
double gridd_y[num_x] [num_x] [3];

for(i = 0; i < num_x; i++){
for(k = 0; k < 3; k++){
for(p = 0; p < 2; p++){
grid_stor(dv,0,i,k,p,0);
grid_stor(dv,num_x-1,i,k,p,0);
© grid_stor(dv,i,0,k,p,0);
grid_stor(dv,i,num_x-1,k,p,0);
}
}
}
for(i = 0; i < num_x; i++){
for(j = 0; j < num_x; j++){
forfk = 0; k < 3; k++){
grid_stor(dv,i,j,k,0,grid_val(v,i,j,k,1));
}
}
}
for(i = 0; i < num_x; i++){
for(k = 0; k < 2; k++){
gridd_x[0][1] [k]=(grid_val(v,1,i,k,0) - bound_12)
/ (2 * DX);
gridd_x[num_x-11[i] [k]=(bound_12 - grid_val(v,num_x-2,i,k,0))
/ (2 * DX);
gridd_x[i] [0] [k]=0.0;
gridd_x[i] [num_x-1] [k]=0.0;
gridd_y[0][i] [k]=0.0;
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gridd_y[num_x-1] [i] [k]=0.0;
gridd_y[i][0] [k]=(grid_val(v,i,1,k,0) - bound_12)
/ (2 * DY);
gridd_y(i] (num_x-1] [k]=(bound_12 - grid_val(v,i,num_x-2,k,0))
/ (2 % DY);
}
gridd_x[0][i]l [2]=(grid_val(v,1,i,2,0) - bound_3)
/ (2 * DX);
gridd_x[num_x-1] [i] [2]=(bound_3 - grid_val(v,num_x-2,i,2,0))
/ (2 * DX);
gridd_x[i] [0] [2]=0.0;
gridd_x[i] [num_x-1][2]=0.0;
gridd_y[0][i][2]=0.0;
gridd_y[num_x-1] [i][2]=0.0;
gridd_y[i][0] [2]=(grid_val(v,i,1,2,0) - bound_3)
/ (2 * DY);
gridd_y[i] [num_x-1][2]=(bound_3 - grid_val(v,i,num_x-2,2,0))
/ (2 * DY);
}
for(i = 1; i < num_x-1; i++){
for(j = 1; j < num_x-1; j++){
for(k = 0; k < 3; k++){
gridd_x[i][j][k]=(grid_val(v,i+1,j,k,0) - grid_val(v,i-1,j,k,0))
/ (2 * DX);
gridd_y[i][j][k]=(grid_val(v,i,j+1,k,0) - grid_val(v,i,j-1,k,0))
/ (2 * DY);

}
}
}
for(i = 1; i < num_x-1; i++){
for(j = 1; j < num_x-1; j++){
for(k = 0; k < 3; k++){
d_t[k] = grid_val(v,i,j,k,1);
d_x[k] = (grid_val(v,i+l,j,k,0) - grid_val(v,i-1,j,k,0)) / (2 * DX);
d_y[k] = (grid_val(v,i,j+1,k,0) - grid_val(v,i,j-1,k,0)) / (2 * DY);
dd_xx[k] = (grid_val(v,i+1,j,k,0) + grid_val(v,i-1,j,k,0)
- 2xgrid_val(v,i,j,k,0)) / (DX * DX);

dd_yy[k] = (grid_val(v,i,j+1,k,0) + grid_val(v,i,j-1,k,0)

- 2*%grid_val(v,i,j,k,0)) / (DY * DY);
dd_tx[k] = (grid_val(v,i+1,j,k,1) - grid_val(v,i-1,j,k,1)) / (2*DX);
dd_ty[k] = (grid_val(v,i,j+1,k,1) - grid_val(v,i,j-1,k,1)) / (2x%DY);
dd_xy[k] = (grid_val(v,i+1,j+1,k,0) - grid_val(v,i-1,j+1,k,0)

- grid_val(v,i+1,j-1,k,0) + grid_val(v,i-1,j-1,k,0))
/ (4xDX*DY) ; "

}
if (DEBUG_VAR==1) {printf ("deriv call 2\n"); fflush( stdout );}
phi2 = grid_val(v,i,j,0,0)*grid_val(v,i,j,0,0)
+ grid_val(v,i,j,1,0)*grid_val(v,i,j,1,0)
+ grid_val(v,i,j,2,0)*grid_val(v,i,j,2,0);
m=1;
n = 2;
for(k = 0; k < 3; k++){
calk] = dd_xx[k] + dd_yy[x]
/*0.0 - gridd_x[i-1]1[j1[k] / (2*DX) + gridd_x[i+11[j][k] / (2*DX)
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- gridd_y[il[j-1]1[k] / (2*DY) + gridd_y[il[j+11(k] / (2+DY)*/
- 4 x lam * lcoeff * (phi2 - 1) * grid_val(v,i,j,k,0)
~kap*kap*kcoeff
*(0.5)*(0.0
-({gridd_x[i-11[j] [k1/DX)
*(grid_val(v,i-1,j,m,1)*grid_val(v,i-1,j,m,1)
+grid_val(v,i-1,j,n,1)*grid_val(v,i-1,j,n,1)))
+((gridd_x[i+1][j] [k]/DX)
*(grid_val(v,i+l,j,m,1)*grid_val(v,i+1,j,m,1)
+grid_val(v,i+1,j,n,1)*grid_val(v,i+1,j,n,1)))
+(1.0/DX)*(grid_val(v,i-1,j,k,1)*((grid_val(v,i-1,j,m,1)
*gridd_x[i-1][j][m])
+(grid_val(v,i-1,j,n,1)
*gridd_x[1-11[j] [n1)))
-(1.0/DX)*(grid_val(v,i+1,j,k,1)*((grid_val(v,i+1,j,m,1)
*gridd_x[1+1][j][m])
+(grid_val(v,i+1,j,n,1)
*gridd_x[i+1][j] [n])))

-((gridd_y[i] [j-1] [k1/DY)
*(grid_val(v,i,j-1,m,1)*grid_val(v,i,j-1,m,1)
+grid_val(v,i,j-1,n,1)*grid_val(v,i,j-1,n,1)))
+((gridd_y[i] [j+1] [x]/DY)
*(grid_val(v,i,j+1,m,1)*grid_val(v,i,j+1,m,1)
+grid_val(v,i,j+1,n,1)*grid_val(v,i,j+1,n,1)))
+(1.0/DY)*(grid_val(v,i,j~-1,k,1)*((grid_val(v,i,j-1,m,1)
*gridd_y[i] [j-1] [m])
+(grid_val(v,i,j-1,n,1)
*gridd_y[i]l[j-1]1[al)))
-(1.0/DY)*(grid_val(v,i,j+1,k,1)*((grid_val(v,i,j+1,m,1)
*gridd_y[i] [j+1] [m])
+(grid_val(v,i,j+1,n,1)
*gridd_y[i][j+1]1[n])))
+((gridd_x[i-1]1[j] [k]1/DX)*((gridd_y[i-1][j] [m]
*gridd_y[i-11[j] [m])
+(gridd_y[i-1]1[j] [n]
_ *gridd_y[i-1]1[j][nl)))
, -((gridd_x[i+1] (3] [x]1/DX)*((gridd_y[i+1] [j] [m]
; *gridd_y[i+1][j] [m])
+(gridd_y[i+1][j] [n]
*gridd_y[i+1]1[j]1[n])))
+((gridd_y[i] [-1] (k] /DY) *((gridd_x[il[j-1] [m]
*gridd_x[i]1[j-1][m])
+(gridd_x[i]1[j-1][n]
*gridd_x[1][j-11[n1)))
-((gridd_y[i1[j+1] [x]1/DY) *((gridd_x[i] [(j+1] [m]
*gridd_x[i] [j+1] [m])
+(gridd_x[i] [j+1] [n]
*gridd_x[i] [j+11[n])))
-(1.0/DX) *(gridd_y[i-11[j] (k1*((gridd_x[i-1][j] [m]
*gridd_y[i-11[j] (m])
+(gridd_x[i-11[3]1[n]
*gridd_y[i-1][j][n])))
+(1.0/DX)*(gridd_y[i+1] [j] [k]* ((gridd_x[i+1] [j] [m]
*gridd_y[i+1][j][m])
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+(gridd_x[i+1][j] [n]
*gridd_y[i+1][j]1[nl)))
-(1.0/DY)*(gridd_x[i] [j-11 [k]1*((gridd_x[i] [j-1] [m]
: *gridd_y[i] [j-1] [m])
+(gridd_x[iJ [j-1][n]
*gridd_y[i] [j-1][nl1)))
+(1.0/DY) *(gridd_x[i] [j+1] [k]*((gridd_x[i] [j+1] [m]
*gridd_y[i] [j+1] [m])
+(gridd_x[i] [j+1] [n]
*gridd_y[i] [j+1]1[n1))))
tkapxkapxkcoeff
*(0.0
-d_t[k]*2*(d_x[m]*dd_tx[m]+d_x[n]*dd_tx[n])
+dd_tx[k]*(d_t[m]*d_x[m]+d_t[n]*d_x[n])
+d_x[k]*(d_t[m] *dd_tx[m]+d_t [n]*dd_tx[n])
-d_t [k]*2x*(d_y[m] *dd_ty[m]+d_y[n]*dd_ty[n])
+dd_ty[k]*(d_t[m]*d_y[m]+d_t[n]l*d_y[n])
+d_y[kl*(d_t[ml*dd_ty[m]+d_t[nl*dd_ty[nl));
cb[k] = 0.0 - 1.0 - kap*kapxkcoeff*((d_x[m]*d_x[m])
+ (d_x[n]*d_x[n])
+ (d_y[ml*d_y[m])
+ (d_y[nl*d_y[nl));
cc[k] = kapxkapxkcoeff*(d_x[k]l*d_x[m] + d_y[k]l*d_y[ml);
m=n;
n = k;
}
cal2] += mu2;
/*if (i==15 && j==15){
printf ("\ncal[0]=Y%f\ncal[1]=Yf\nca[2]=%f\n", cal0], calll, cal2]);
printf ("\ncb[0]=%f\ncb[1]=Yf\ncb[2]=V%f\n", cb[0], cb[1], cb[2]);
printf ("\ncc[0]=Y%f\ncc[1]=Y%f\nc[2]=%£\n", cc[0], ccl1], ccl2]);
fflush( stdout );
exit(1);
Ix/
if (DEBUG_VAR==1){printf("deriv call 3\n"); fflush( stdout );}
denom = 1.0/(-cc[1)*cc[1)*cb[0]+2%cc[1]*cc[2]*cc[0]-cc[0]*cc[0]*cb[2]
+cb[1]*cb[0]*cb[2]-cb[1]*cc[2]*cc[2]);
grid_stor(dv,i,j,0,1,-(cal2]*cc[1]*cc[0]-cal[2]*cb[1]*cc[2]
+cal0]*cb[1]*cb[2]-cc[0]*cal1]l*cb[2]
-cc[1I*cc[1]*cal0]+cc[1]*ca[1]*cc[2])*denom) ;
grid_stor(dv,i,j,1,1,(-cc[1]*cc[2]*ca[0]+cc[1]*cb[0]*cal2]
+cc[0]*cb[2]*cal[0]-cal[1]*cb[0]*cb[2]
+cal1]*cc[2]*cc[2]-cc[0]*cal[2] *cc[2])*denom) ;
grid_stor(dv,i,j,2,1,-(cb[0]*cal[2])*cb[1]-cb[0]*cc[1]*ca[1]
~ca[0]*cc[2] *cb[1]-ca[2] *cc [0] *cc [0]
+cc[0)*cc[2]*cal1]+cc[1]*cc[0]*ca[0])*denom) ;
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C.9 Example Main Program

Here is an example of these functions used in conjunction to perform a time evolution

on a pre-existing grid.

int main()

{
double *vstart;
char ener_flag[5];
int nok, nbad;
int outvar = 6;

kmax = 6;

dxsav = (end_t - start_t) / (kmax-1);

vstart = dvector (1, (num_x*num_x*3%2)) ;

xp = dvector(l,kmax);

yp = dmatrix(l, (num_x*num_x*3%2), 1, kmax);
ep = dmatrix(l, (num_x*num_x#*3%2), 1, kmax);
step_dat = dmatrix(1, outvar, 1, MAXSTP);
get_datfile(vstart);

/*init_cond(vstart);*/

ener_flag[0] = ’e’;

ener_flagli] = ’n’;

ener_flagl[2] = ’e’; -
ener_flag[3] = ’r’;

ener_flagl[4] = ’\0’;

lcoeff = 1.0;

odeintd( vstart, (num_x*num_x*3*2), start_t, end_t, EPS_ERR, DT,
0, &nok, &nbad, derivs, rkqsd);

printf ("\nnok=%d;\nnbad=%d;\n", nok, nbad);

print_stepdat (outvar, nok);

print_times();

print_field((num_x*num_x*3%2));

print_enersurf ((num_x*num_x#*3%2)) ;

put_datfile(vstart);

free_dvector(vstart, 1, (num_x*num_x*3*2));

free_dvector (xp,1,kmax) ;

free_dmatrix(yp, 1, (num_x*num_x*3+%2), 1, kmax);

free_dmatrix(ep, 1, (num_x*num_x*3%2), 1, kmax);

free_dmatrix(step_dat, 1, outvar, 1, MAXSTP);

return O;
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