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Abstract

Mobile communication has become a significant part of everyday life. The advent
of mobile phones and PDA's has reinforced the necessity for people to be connected
without being physically tied down. Communication is key, but current modalities
are restricted to simple protocols such as telephony, and less expressive mediums
such as text messaging. TattleTrail is an archiving audio chat application for mo-
bile users that attempts to address current limitations in mobile communication by
exploring novel communication modalities using voice as a medium over the flexi-
ble Internet Protocol (IP) network. TattleTrail acts as an application server within
a mobile audio framework that supports different combinations of synchronous and
asynchronous communication channels, archiving of chat messages, and new methods
of interactively browsing speech. New transitions between synchronous and asyn-
chronous communication, as well as hybrid channels concurrently supporting both
modalities, have been explored, which point to new possibilities for mobile communi-
cation.
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Chapter 1

Introduction

Mobile communication has become a significant part of everyday life. The advent

of mobile phones and PDA's has reinforced the necessity for people to be connected

without being physically tied down to a workstation or desk. Cell phones, in par-

ticular, have revolutionized the lifestyles of millions of people by providing audio

communication anywhere that a strong enough signal can be obtained.

Another popular technology to keep people connected is the use of online chat sys-

tems that provide text messaging capabilities to users in disparate physical locations.

Online chat systems generally fall into two categories: instant messaging between

two users, or among a group of users. Instant messaging has popularized a new

communication protocol that enables users to instantly open communication chan-

nels with other users over Internet Protocol (IP), and to manage buddy lists which

provide peripheral awareness of other users. Instant messaging users are typically

stationary, communicating with each other from their desktop computers. However,

cell phones today that support these instant text messaging capabilities are quickly

gaining popularity, especially in Europe.

These popular methods of communication involve different media (audio, text)

over different networks (Internet, telephone, cell phones). The problem is that tra-

ditional telephony provides the rich medium that is desirable in conversational com-

munication, but it is restricted to a simple calling protocol for point-to-point com-

munication that forces a caller to intrude the receiver. This limitation in telephony
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is largely due to the characteristics of its underlying network. Chat systems, on the

other hand, offer greater versatility in modes of communication but use text, which is

not as expressive as voice. This flexibility in chat systems results from the capabilities

of the Internet as a communications network.

Audio spaces represent another method of communication that involves a rich

medium over a network capable of connecting groups of people concurrently. An

audio space is an environment that allows a group of users to share a common acoustic

space although they are physically separated. This acoustic environment combines the

benefits of traditional telephony and online chat systems to enhance communication.

But the downside is that audio spaces are usually implemented within stationary

environments using a dedicated network to connect specific users to each other.

For mobile users, audio communication is valuable because the eyes and hands

are sometimes necessary for other tasks. Therefore, an audio space for a group of

mobile users can satisfy the high demand for human connectivity as well as provide

a group chat environment similar to online chats and instant messaging, but with a

richer medium. TattleTrail is an archiving audio chat application that attempts to

address these current limitations found in mobile communication by exploring novel

communication modalities using voice as a medium over the flexible IP network.

More specifically, TattleTrail acts as an application server within a mobile audio

framework to provide a mobile audio space to users, support both synchronous and

asynchronous modes of communication, archiving of chat messages, and new methods

of interactively browsing speech.

1.1 Mobile Framework

TattleTrail has been built using an existing mobile development framework called

Impromptu [13]. Impromptu is a mobile audio framework that supports multiple

distributed applications over IP. It enables a mobile device to support multiple audio

applications, and gives the user speech and tactile interfaces to browse through and

interact with applications.
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Some audio applications that Impromptu supports are: live radio, news headlines,

MP3 player, telephone, and baby monitor. The user can actively use one application

at a time because the mobile device's speaker and microphone are shared resources

among all the applications. However, Impromptu provides an alerting mechanism

that allows inactive applications to interrupt the current active application for certain

events. For example, a user could be listening to music from the MP3 player, but

then get interrupted by an alert from the phone application about an incoming call.

Impromptu was designed to be extensible, allowing audio application development

for mobile devices to easily integrate into the framework. Therefore, TattleTrail has

been successfully integrated into Impromptu, which provides mobile audio communi-

cation with a wireless device.

The next section describes an example of how TattleTrail, implemented with the

Impromptu framework, could be used.

1.2 TattleTrail Example

TattleTrail is an audio chat system for mobile users over IP. With a wireless device,

a TattleTrail user can have instant access to a communication channel for a group of

users for an audio chat session. All users within the group are able to hear each other

and speak to each other in real-time, thus providing a shared audio space to users in

disparate physical locations.

All messages spoken in the chat session are recorded and archived so that users

can browse through past conversations. TattleTrail uses audio time-scaling techniques

to provide users with the ability to skim through previous recordings at high speeds

without altering the audio pitch. When a user leaves the chat and returns later, the

user first listens to an "audio history" of the chat messages missed while he/she was

not present.

TattleTrail users can also interact passively. A user can leave the chat session,

but choose to receive asynchronous alerts whenever there is activity within the actual

chat. In this way, passive users wish to remain within the mobile audio space and
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listen to semi-intrusive alerts in the background.

A possible scenario is described below, illustrating how TattleTrail could be used

to facilitate a mobile work force.

1.2.1 Mobilizing and Connecting a Work Force

Alice, Bob, Cindy, and David all work for the local cable company. Bob, Cindy,

and David are cable technicians, and drive around the city to perform residential

cable installations and repairs. Alice works at the company office, and is in charge of

dispatching new installation and repair requests received during the day.

Previously, the technicians each had a CB radio inside the van that was used to

communicate with each other and with Alice. If schedule changes were made, Alice

would have to contact the technicians by dispatching the changes over radio. The

problem was that these mobile technicians could only respond if they were inside their

vans at the exact time of the dispatch. This was inefficient, and required Alice to

constantly bark into the radio over and over for several new requests. Walkie-talkies

were considered, but their range was not large enough to span residential installations

in the city and the surrounding suburbs.

Alice realized the communication problem, and the cable company equipped a few

teams with mobile devices using the TattleTrail system. One morning, Bob, Cindy,

and David were all busy performing new cable installations across the city. Bob was

having some trouble setting up the cable in a suburb residence that required different

cable settings and channels for five separate televisions. So, while working, he spoke

into his mobile device to ask anyone else listening if they knew how to set up the

installation. Cindy, who was surveying an apartment residence in the city, responded

immediately with a few brief step-by-step directions because she had performed a

similar installation the week before. Bob thanked her, and began the installation.

Because the messages are archived, Bob was able to listen to an audio history of

Cindy's directions as many times as he needed to ensure a correct installation. The

time-scaling was helpful so that he could skim quickly through parts of the directions

he understood well, and slow down to listen to other steps that were more complicated.
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Meanwhile, Alice received a repair request for a residential customer that could

only stay home for an hour longer. She broadcast a message to the chat session asking

if anyone was available to pick up the new repair request. David was finishing up

a new installation at a residence across town. He had originally intended on going

straight to his lunch break after he finished, but instead, he replied to Alice and told

her he could squeeze that repair request in before lunch.

David serviced the repair request, switched to the background alerting mode in

TattleTrail, and went on his lunch break. This mode allows the user to hear asyn-

chronous alerts of the activity in the chat session. During lunch, he heard some

activity in the chat, but it sounded like a few technicians were discussing some prob-

lems and solutions. A few minutes later, he heard some more activity, but this time

it was Alice. He didn't want to devote much attention to the chat, but thought it was

nice to have some peripheral awareness of messages broadcast. Once David finished

his break, he entered the chat again, and listened to the audio history of what he

missed. He skimmed through the technicians talking, and reached Alice's message.

She needed someone to perform a new installation in the late afternoon, but all the

other technicians said they were booked the rest of the day. David had some free time

at the end of the day, so he responded and said he could service the new request.

Later that day, David went to perform the new installation. This residential

installation was similar to Bob's earlier that morning. David remembered some of the

steps Cindy had explained, but needed to refresh his memory. He quickly listened to

the audio history of Cindy's directions and was able to complete the new installation

without a problem.
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Chapter 2

Related Work

This chapter explores related research in order to justify the motivation for this thesis.

2.1 Audio Spaces

An audio space is an audio communication system for a group, the mem-

bers of which are in disparate physical locations; the audio space creates

the auditory illusion for each member that its users share a common acous-

tic space. [23]

An audio space is a subtype of the traditional media space, which typically pro-

vides audio and video streams [3].
Much research work has been devoted to the traditional media space, as shown in

[3, 7, 14], but little work has focused purely on connecting separated users in a com-

mon audio space. Most previous studies involved stationary spaces in the workplace

or school environment where audio and video equipment could be used to monitor a

physical space. The mobile nature of this thesis requires wireless transmission of data

over IP, which has bandwidth limitations. Streaming audio and video to a mobile de-

vice over IP in real-time would cause severe delays because of the rich data medium.

It is also important to note that video might not be appropriate at times to a mobile

user simply because the eyes might be needed for other tasks. Therefore, audio-only

media spaces are examined below.
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2.1.1 Thunderwire

The Thunderwire system provided an audio space that connected a group of employees

in a work environment [10]. This system hardwired user stations together to provide

continuous, high-quality audio to each user. All users had desktop microphones,

headphones, and a control box to switch the system to three settings: on, off, or listen-

only. When on, the user was able to hear all audio recorded by everyone's microphone,

and everyone could also hear what was recorded by the user's microphone. Listen-only

mode shut off the user's microphone, allowing the user to hear everything without

being heard by anyone. Off was a totally disconnected state. Any user that signed

off would miss the conversations within the audio space totally, unless someone that

was present relayed the information back at a later time.

Participants could not tell who was presently listening, which they found to be

bothersome. This resulted in group norms within the audio space of announcing

signing on and off to the system. The synchronous, always-on audio space also led

to norms of inattention and withdrawal. More specifically, expressing disinterest in

conversation through an audio-only medium required users to slowly utter "fill words"

or to simply pause the conversation entirely for several minutes [10]. The participants

liked the system, but wished that they could know who was present, and that they

could set up private, two-way conversations. Despite some of these problems, Hindus

et al found that audio was sufficient for a media space, and that audio spaces could

lead to social spaces that were governed by different norms.

2.1.2 Somewire

The Somewire system was a later audio space study that also provided Thunderwire

functionality, with different versions offering different graphical user interfaces (GUI)

and audio controls [23].

The setup was basically the same as Thunderwire, except some GUI's were created

to provide users with additional information about the audio space and the other

participants. Some versions of Somewire attempted to present social representations
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to users, while others tried to show presence.

Another new feature in Somewire was the ability to control the audio output of

specific users within the audio space (e.g. volume level, left and right balance). In

this way, users had full control of their specific acoustic space; users were able to

control who they heard, and who was able to hear them. This gave the participants

some privacy within the global audio space.

Somewire provided much more functionality and control over the audio space than

Thunderwire, but the results proved that simplicity was highly favored. Specifically,

the research results showed that GUI's were poor interfaces to audio spaces, and that

user-level control over audio localization (i.e. customizing one's own acoustic space)

and other audio attributes was unnecessary. Once again, peripheral awareness was

highly desirable.

2.1.3 ConcertTalk

ConcertTalk was a mobile audio space that was used for two days by groups of Lol-

lapalooza concert attendees [25]. The study involved the use of two-way radios that

transmitted low quality audio using push-to-talk. This was more of an experimen-

tal nature than the previous studies conducted for the Thunderwire and Somewire

systems. The important distinction, however, was the motivation behind the Con-

certTalk study:

Rather than look at a media space as a work tool that functioned as a

"medium for social activity," the current study found a social activity and

inserted an audio space to see what behaviors would emerge. [25]

ConcertTalk results were positive, in that the participants enjoyed the experience

and made good use of the system. A notable difference in this study from traditional

media space studies was that the audio space was not continuously recording because

of the push-to-talk transmissions. Therefore, Strub concluded that the intentionality

behind each utterance broadcast gave the participants privacy. The pertinent ideas

to be drawn from this study are that media spaces are not necessarily confined to
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stationary work environments, and that mobile audio spaces in purely social environ-

ments can be used to collaborate as well as to socialize.

2.2 Technology and the Mobile Workspace

Technology and the mobile workspace, until recently, has not been a heavily re-

searched area. Traditionally, the majority of studies involving the effect of technology

in the workspace have dealt with stationary environments. But, the surge of the In-

ternet and mobile communications popularity has opened new doors to incorporating

technology with the mobile workforce.

For mobile workers, the ability to communicate with others in the mobile and

stationary workspaces has been found to be a key factor in everyday work [8, 16, 17,

18]. This does not come as a surprise because of the necessity for communication in

the work environment and the nature of mobility. Because a central goal of TattleTrail

is to provide a communication channel (or audio space) for a group of mobile users,

the mobile workspace is an ideal application which must be reviewed.

2.2.1 Field Service Work

Field service work requires technicians from various types of companies to travel to

customer locations (business and residential) to perform installations, repairs, etc.

These technicians will often work and travel alone, or in pairs, by driving company-

owned vehicles equipped with the necessary tools for their specific tasks.

Communication

The Denver Project was a study performed on groups of rural and urban technicians

working for a large photocopier manufacturing company [17]. These technicians were

given radios that essentially provided them with a mobile audio space for communi-

cation.

After six months, the results from the technicians' perspective were overwhelm-

ingly positive. The technicians normally worked alone, but the radios provided a
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communication channel that joined them into a common workgroup. This provided

them with a means to actively cooperate and collaborate, which increased their effi-

ciency. The "accumulated expertise of the entire workgroup" provided support to each

individual technician, giving workers and customers greater confidence [17]. Story-

telling was found to be an important method of learning for the technicians, which

also improved efficiency. When asked if the use of text messages could suffice for

communication, the technicians responded that speaking to each other was preferred.

One problem that the corporation had with the experiment was that although the ra-

dios were helpful, all the lessons about learning that were broadcast over radio could

not be saved.

Knowledge Management

Fagrell et al performed a knowledge management study on employees working in the

electrical utilities industry [8]. The mobile technicians worked in pairs, and were

responsible for installing and maintaining energy equipment. Planners were responsi-

ble for scheduling assignments by allocating resources (e.g. personnel, raw materials,

vehicles), and administrators worked in the central office managing accounting and

communication with customers and planners. The technicians and planners were

equipped with cell phones and pagers.

The results revealed that the sharing and passing of knowledge among workers

was highly evident in the mobile workspace. For planners, "constant communication

is vital because of the need continually to change priorities" [8]. Story-telling, again,

was found to play an important role in transferring knowledge within the group. One

interesting conclusion made was that diagnosing problems was found to be a "truly

collaborative effort" among mobile technicians and planners, usually stemming from

immediate problems arising from the mobile context [8].

Using Mobile Devices

Kristoffersen et al explored some of the common problems found in using mobile

computers in the mobile workspace for technicians in telecommunications and mar-
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itime consulting [12]. In the study, several important observations about the mobile

workspace were made:

* The most important tasks for mobile workers are external to operating a mobile

computer.

" Hands are often used to operate physical objects, as opposed to the office envi-

ronment of keyboards, etc.

" Many tasks require high visual attention, as opposed to the office environment

where eyes are commonly directed at a computer monitor.

* Mobile workers are often moving around while performing tasks, as opposed to

the office environment where workers are typically stationary.

Many of the technicians in this study were given PDA's and small laptops, which

were found to be cumbersome at times because they required direct manipulation

and visual attention. These requirements are not ideal within many mobile contexts

because of the hassle and possible danger of distraction. Sometimes, to perform

tasks, the mobile technicians had to "make space" for the mobile devices so that they

could be placed down somewhere suitable for direct manipulation [12]. Requiring two

hands for input to the mobile device was also a problem. For mobile computing to

be effective in a mobile workspace, Kristoffersen et al stated:

Our claim is that users should not normally have to be engaged in [direct

manipulation]... They should not have to "make place" for the device in

the mobile situation, but just use it instantly in the situation at hand: it

should just "take place."

2.2.2 Mobile Professionals

The work of mobile professionals strongly differs from that of field service workers, yet

the necessity for communication remains paramount. Although mobile professionals

do not encounter the complications of technical service or repair within unpredictable
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physical environments, they are displaced from their normal information resources

and co-workers when working away from the office. According to Perry et al, one

of the motivations of mobile technologies is to bridge this gap between the many

resources available in a normal office space and those available while working in an

unfamiliar mobile environment [18].

A characteristic problem with the mobile environment is there is "less predictabil-

ity and more restricted access to information" [18]. E-mail affords a communication

channel to mobile workers, but its asynchronous nature is sometimes unsuitable for

situations that call for immediate attention or direct conversation. Because the mo-

bile phone provides verbal communication capabilities and nearly ubiquitous access,

it has become the most prominent technology used by mobile professionals [16].

Mobile phones provide instant access to colleagues when explicit information re-

trieval is necessary. This usage of mobile phones was very frequent with mobile pro-

fessionals, and usually required note-taking during the actual phone call [16]. This

simple observation exposes a practical problem for mobile workers that need to retain

the information heard over the phone, yet are busy driving or have limited resources

for note-taking (one particular participant in the study had to scribble notes on a

newspaper to capture main ideas during the phone call). O'Hara et al noted that en-

hanced mobile phone capabilities allowing the recording of audio snippets from phone

calls could facilitate mobile professionals with information retrieval.

Besides explicit information retrieval, mobile phones were also found to be useful

for providing a mobile worker with a level of remote awareness of developments at

the office and to maintain social connections with co-workers. In particular, many

mobile professionals would phone the office at convenient times just to remain up to

date with office proceedings and stay informed about general issues that might be

pertinent to their work [18].
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2.3 Instant Messaging

Instant messaging has emerged has a popular communication modality that allows

users to chat in real-time over IP, as well as organize "buddy lists" of close associates

to maintain a peripheral awareness of their chat activity. Most instant messaging

use occurs in stationary environments (e.g. home, school, or office). This type of

communication is only similar to TattleTrail in that users can chat with each other

or with a larger group over IP asynchronously. However, a mobile instant messenger

(IM) called Hubbub has recently been developed which has more in common with

TattleTrail, and is described below.

2.3.1 Hubbub

Hubbub is an instant messaging application that runs on PDA's and attempts to use

sound to support awareness and opportunistic interactions [11]. Hubbub provides

the standard instant messaging functionality, but also uses sound to send Sound

Instant Messages (SIM's), which are earcons with associated meanings such as "Hi"

or "Thanks." The major differences between Hubbub and other IM's is the presence

of an activity meter for each user in the buddy list, the type of device each buddy is

using, and possibly a short snippet from the buddy describing his/her location. Users

are also given the ability to log on at multiple places or devices, so the buddy list

could keep track of where the buddy was located. In this way, users' idle states were

calculated, and peripheral awareness of their activity could be obtained. SIM's were

used to indicate buddy activity states, as well as for sending instant messages.

Hubbub shares some traits with TattleTrail in that audio was used in a mobile

environment to enhance the user interface, and present some sort of audio space.

Many users of the Hubbub system enjoyed the auditory cues which helped provide a

sense of awareness. Some participants commented that the sounds gave them a closer

connection to others located on the opposite coast, while others said the audio alerts

gave them a sense of feeling for the group.
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2.4 Skimming Audio Documents

TattleTrail saves every message that is broadcast to the chat in order to allow users

to browse through the message archives. This functionality is necessary to provide

users with a means to listen to messages they may have missed in order to "catch-up"

with the current chat context before actually joining the live chat.

If browsing through chat messages was simply performed at normal playback

speed, listening to numerous messages would be time consuming, especially if par-

ticular messages were not of importance to the browsing party. To enhance the user

interface, TattleTrail performs speech processing techniques for skimming recorded

chat messages. Therefore, techniques for skimming audio documents are examined

below.

2.4.1 SpeechSkimmer

SpeechSkimmer was a user interface for interactively browsing through speech record-

ings at different speeds [2]. A user could rapidly skim recorded speech through an

interactive touchpad supporting skimming both forward and backward at different

levels.

The system used the synchronized overlap-add algorithm for time-scale modifi-

cation to compress speech at varying rates, while applying techniques to partition

recordings into salient audio segments. The heuristic used to segment the audio re-

lied upon the premise that long, silent pauses in speech usually indicate a new topic

or a new speaker. Once these pauses were detected, the SpeechSkimmer would jump

to segments (backward and forward) and play only segments of audio following a long

pause. This special pause jumping heuristic was applied only at the fastest level of

compression. SpeechSkimmer performed normal time-scale compression with pause

removal techniques at slower speeds.

The next section describes audio indexing techniques used to skim audio docu-

ments in more detail.
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2.4.2 Audio Indexing Techniques

The previous section explored rapid interactive skimming of speech, with some heuris-

tic for segmenting recordings to aid in browsing. This section focuses upon audio

indexing techniques for structuring audio in order to facilitate browsing.

NewsComm

NewsComm was a system that delivered structured audio of personalized news and

other program material to mobile users [20]. Because the system handled a large

database of audio files containing speech, techniques were used to provide rapid brows-

ing of the structured audio.

Like SpeechSkimmer, NewsComm detected long pauses as points of possible in-

terest. Other audio structuring techniques were used to map "jump locations" within

the recording. Speaker differentiation algorithms were used to allow users to jump

to points at which speaker changes occurred. By combining multiple algorithms to

analyze audio, NewsComm was able to deliver highly structured audio to the mobile

device, which provided the user interface for navigating through the recordings. It

is important to note that NewsComm required much of the audio processing to be

performed on a server before the user could download the structured audio to the

mobile device.

Dynomite

Dynomite was a portable electronic notebook that was used for taking handwritten

and audio notes, which used computational resources to organize and search the notes

for easy retrieval [27]. Audio could be recorded synchronously using Dynomite, which

would manage the audio data. Possible user interface interactions were explored to

see how audio indexing by speaker identification could facilitate the audio note-taking

process.

The speaker identification algorithm explored was previously developed by Wilcox

et al [26]. When speakers are known a priori, real-time audio indexing could be
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performed for recordings of multiple speakers using hidden Markov model networks to

represent individual speakers and their interconnections. However, without knowledge

of speakers beforehand, real-time segmentation could not be performed.

Audio Notebook

Audio Notebook was another device used to facilitate pen and paper note-taking

by recording and structuring audio based upon audio structuring techniques coupled

with the user's activity while taking notes [24]. The user was not required to explicitly

mark important points during the recording to aid the segmentation of audio; natural

note-taking activity including page turns were used as indices into the recording. This

approach differs from the previous audio structuring works because of the additional

information retrieved from the user in real-time.

Stifelman also used pause and pitch detection to further segment audio recordings

at points of interest. In addition, Audio Notebook provided algorithms to find phrase

boundaries within the recorded audio as another heuristic for segmentation. Users

were then able to interactively browse through recordings and jump to locations of

possible importance or interest when reviewing their "audio" notes.

2.5 Impromptu Chat

The initial prototype that led to the creation of TattleTrail was implemented within

the Impromptu framework as a simple audio chat application. This application was

totally asynchronous; no messages were ever heard in real-time. When a user joined

the chat application, all other users currently in the chat were notified by a door

opening sound, followed by the user's distinct audio icon (usually a recording of the

user's name).

Any chat message sent was recorded to the chat server, which is similar to Tattle-

Trail's model. However, there was no floor control protocol involved because messages

were played individually to each user asynchronously. Once a user finished recording

a message, the chat application would then play that message to every other user in
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the chat. This eventually led to some synchronization problems, because people could

record messages at the same time, effectively speaking concurrently without knowing

it. Therefore, many messages recorded were unnecessary, or out of place due to the

recordings sent by other users at around the same time.

Browsing of messages was also supported in this chat prototype. The archive was

maintained in a similar list, but no special browsing techniques such as time-scale

modification were provided. To listen to a message, the user had to press the up or

down button to start playing each archived message.

Another difference was that the prototype made no distinction between modes

of interaction. TattleTrail provides browsing modes, chatting modes, and alerting

modes. The original prototype just had one mode of interaction, and therefore had

to deal with problems such as listening to a previously recorded message while another

user just finished recording a new message. In this case, an alert was played to notify

the user of a new message, and then the user immediately heard the new message

once listening to the previously recorded message was finished.

The poor user interface for chatting and browsing audio, the interleaving of mes-

sages, redundant messages, and weak alerting mechanisms led to disappointment with

the chat application. These weaknesses in the original prototype provided motivation

to rethink and redesign the mobile audio chat application into the current version,

TattleTrail.

2.6 Summary

The studies reviewed in this chapter indicate that audio spaces are suitable media

spaces, and that audio spaces provide a good communication channel for a group of

physically separated users. Not much work has been done within the mobile audio

space, but the studies examined give promising results, namely the high activity

in ConcertTalk and the sense of closeness afforded by sounds in Hubbub. Instant

messaging applications such as Hubbub attempt to provide a rich user experience in

a mobiles setting, but are still limited by text. Chalfonte et al found text as a medium
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to fall short of the expressive richness of voice, which was preferred when commenting

about higher level issues [4].

Research results show that communication is key within a mobile workspace, so

a mobile audio chat system has promising application within this field. As reported

by Kristoffersen et al [12], most mobile work situations studied could have been

enhanced if the user had audio feedback from their mobile computers. Many situations

in the mobile environment are not conducive to full visual attention, so audio-only

applications like TattleTrail which provide instant communication and passive alerting

could be helpful.

According to Fagrell et al [8], "knowledge management in mobile settings is so-

cial and dynamic." This further supports the applicability of a mobile audio chat

system to facilitate knowledge management, due to the highly social and dynamic

characteristics of chat.

In the mobile professional study by Perry et al, a participant remarked that "stay-

ing in touch is important, both from a management of the workload perspective, to

make sure there's not this enormous pile, and secondly to be in touch if there is any-

thing that comes up that needs a quick response" [18]. The passive alerting channels

provided by TattleTrail could again serve useful purposes for mobile workers with

peripheral awareness of the events back at the office. Perry et al conclude that "work

becomes explicitly collaborative as the mobile worker attempts to coordinate events

in their local environment with remotely accessed resources. Talk is central to the

mobile work described..." [18]
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Chapter 3

User Interaction

This chapter describes the user interaction experience of TattleTrail. TattleTrail

has been designed and developed to provide mobile users with novel communica-

tion modalities and audio processing techniques by using a flexible application server

framework over mobile IP. Users are not limited by location, less expressive media

such as text, or strict communication protocols of phone networks. Because it is in-

tegrated into an audio-only framework, much consideration was taken in defining the

audio interface to TattleTrail as well.

A Compaq iPAQ is used as the mobile client device through which all user inter-

action occurs (Figure 3-1). The iPAQ supports full duplex audio, with a microphone

in the top left corner, a headphone jack (necessary to prevent feedback from the

speaker), and several buttons. Currently, the screen is not used for TattleTrail be-

cause Impromptu is an audio-only framework.

All of the buttons on the iPAQ are used for sending user input events to the neces-

sary components in the Impromptu framework. The push-to-talk button is used only

for sending speech commands to the recognition server. Any time this functionality

is used, all audio to be played is muted. The record button is used to record audio

for applications. This button acts in push-to-talk mode as well. The function button

is application-specific; it performs different functions depending upon the current ap-

plication being used. The wheel at the center bottom of the iPAQ provides up, down,

left, and right button press events. The up and down buttons are application-specific,
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Figure 3-1: The Compaq iPAQ with 802.11b wireless LAN card.

usually used to browse through application content. The left and right buttons are

global browsing buttons that allow the user to switch between applications. The

activate and deactivate buttons are used to activate and deactivate applications.

When TattleTrail is activated, its audio icon is played on the client device.1 This

audio icon representing the TattleTrail application fades in musical notes mixed to-

gether with giggling children. Multiple applications are supported on the mobile

client device, so the application currently being used is known as the active applica-

tion. When TattleTrail is the active application, two modes of user interaction are

available: Catch-up Mode and Chat Mode. Users enter Catch-up Mode when

TattleTrail is activated; this mode allows browsing through previous or missed chat

messages to "catch-up" to the current activity in the chat room.

When finished browsing messages, the user enters the synchronous Chat Mode,

'All Impromptu applications have a distinct audio icon which is played to alert the user of

activation or an event triggered by that application.
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User Chat
Alice speaks
Bob speaks

Alice speaks
<Joins chat> Cindy speaks

Hears Alice <Alice leaves>
Hears Bob
Hears Alice
Hears Cindy

<Becomes synchronous>
Hears Bob Bob speaks

User speaks User speaks

<Leaves chat>

Hears alert Cindy speaks
Hears alert Bob speaks

<Bob, Cindy leave>
<Joins chat>
Hears Cindy

Hears Bob
<Becomes synchronous>

Chat
Mode

Catch-up Alert
Mode Mode

Figure 3-2: Sample TattleTrail Figure 3-3: Possible mode transi-
activity. Note the transitions tions in TattleTrail.
between synchronous and asyn-
chronous participation.

which uses push-to-talk similar to Nextel's Direct Connect system. 2 The push-to-

talk functionality is supported by a floor control protocol that allows only one user to

speak at a time; all other users in Chat Mode hear the speaker in real-time over IP.

Any message spoken during Chat Mode is saved on the server for all users browsing

archived messages in Catch-up Mode.

A third mode of interaction is possible when the user has deactivated the applica-

tion, called Alert Mode. Deactivation, within the Impromptu context, is a result of

either switching to another application, or placing the mobile device in an idle state.3

Alert mode provides the user with peripheral awareness of chat activity at different

levels of awareness and participation.

Sample TattleTrail chat activity within different modes of participation is shown

in Figure 3-2. The user may switch back and forth between the asynchronous Catch-

up Mode and the synchronous Chat Mode at any time via the speech recognition

commands "history" and "chat." To enter Alert Mode, the user must explicitly

2 Nextel's Direct Connect gives mobile phones a virtual walkie-talkie functionality with floor
control.

3 1n Impromptu, applications are never "closed." Their resources are always available while they
remain online.
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deactivate the application with the commands "passive" or "background." These

will be explained in more detail in later in the chapter. The possible transitions

between modes can be seen in Figure 3-3.

The following sections describe the modes of interaction in more detail. The

first section examines Catch-up Mode and the different audio processing techniques

available to use asynchronously. The second section details the synchronous Chat

Mode. Finally, the user interactions supported by the Alert Mode are explained in

the last section.

3.1 Catch-up Mode: Asynchronous Audio History

When entering the TattleTrail application, users are placed into the asynchronous

Catch-up Mode, where archived messages are streamed to the user to present an

"audio history" of the chat. If the user is activating the application for the first

time, the audio history is started at the first message in the archive. The archive

currently stores every message recorded, but for practical use the active archive would

be limited by available hard disk space set aside for storage. If the user is returning

to the application, then the audio history starts a few messages before the point when

the user last exited the application.

Catch-up Mode allows the user to interactively browse through the audio record-

ings of the chat. Simple playback at normal speeds would provide a poor user interface

to skimming the audio messages because of the time required to listen to each record-

ing. It would be advantageous to be able to skim through voice messages just as if

skimming through text messages. TattleTrail uses time-scaling techniques to provide

this ability to rapidly "skim" chat messages at rates of up to six times normal speed.

The turn-taking protocol enforced by the push-to-talk floor control of Chat Mode

allows TattleTrail to group recorded messages into "chat clusters." Chat clusters are

determined by the pauses between subsequent chat messages. Currently, all messages

recorded within 30 seconds of each other are grouped together into a single cluster.

The motivation for this grouping of messages is that messages recorded closely to-
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gether are most likely related, and represent an actual conversation among the chat

participants. Chatting channels typically have bursty interactions separated by long

periods of silence. These bursts of activity within the chat are likely messages sent

in response to other recent ones.

When browsing through the audio history, the chat clusters help to give the user

a perception of the traffic on the chat channel. In particular, finding long breaks

in the chat recordings convey the low traffic within the chat. These long breaks in

conversation are represented by a clock ticking sound that is played to the Impromptu

client to indicate the passage of time. Therefore, when a user is browsing through

messages and traverses to the "next" or "previous" chat cluster, the clock ticking

audio is heard briefly before the new message is heard.

Upon entering Catch-up Mode, the streaming of the audio history to the user

begins. Each message is played in order at normal speed. In this mode, the user can

press the up, down, or function button to interactively control the playback speed and

direction (i.e. forward or backward). Generally, the up button will increase speed, the

down button will decrease speed, and the function button jumps back to the previous

message.

When playing a message at normal speed, pressing the up button increases the

speed by performing time-scale compression. If the button is pressed and held down,

the speed is gradually increased without stopping compression. To jump to the max-

imum speed, the user can double-click up. To slow down the playback speed, the user

can press the down button. Again, if the down button is pressed and held, the speed

will gradually decrease.

If the user wishes to decrease speed when the playback speed is normal, Tattle-

Trail begins to play the messages "backward." The archived recording is not played

backward literally, which would not be intelligible. Instead, it plays 4 second chunks

of audio at the user's desired speed, but in reverse order. Therefore, 4 second bits of

audio are heard, then TattleTrail jumps back 4 seconds to play the next chunk. This

technique is similar to the one implemented by SpeechSkimmer [2]. When playing

backward, and the speed is decreased, the rate of compression is actually increased,

37



which will allow the user to play backward faster. To jump to maximum speed going

backward, the user can double-click down.

Double-clicking up or down typically jumps to the maximum speed of time-scale

compression in the respective direction. However, if the user is listening to messages

forward, and double-clicks down, playback automatically changes directions and be-

gins playing at normal speed backward. Likewise, when listening to messages going

backward, a double-click up changes directions and begins playing forward at normal

speed.

If the user changes the direction of playback at any time, an audio cue (sounding

like a computer blip) is played to notify the user of the change. Originally, no sound

was streamed to the user, which sometimes caused confusion as to exactly when

playback switched directions. If the user is listening to the first message stored in the

archive, and attempts to move backward, a short "boing" springing sound is played to

alert the user that he/she is at the beginning. This sound represents "bouncing off the

beginning of the history" because normal forward playback is resumed automatically.

The function button can be used to jump to the previous message and begin

playing forward at normal speed. This is useful to stop and listen to messages when

browsing forward or backward at high speeds. If the user double-clicks function, then

TattleTrail jumps to the first message of the cluster and begins playing forward at

normal speed. If the user is currently at the beginning of the cluster, a jump is made

to the first message of the previous cluster.

The time-scale compression techniques to this point have been strictly linear.

The actual rate of compression stays constant once the user increases or decreases

the speed. Having the ability to browse voice messages at faster speeds is especially

valuable when skimming conversations for content is desired. However, once the time-

scaling speed is increased too much, all intelligibility of the message content may

be lost. The next section describes how TattleTrail attempts to solve this problem

involving high speed browsing.
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Figure 3-4: High speed browsing. Two different clusters are shown above. When
browsing, clusters are separated by a clock ticking sound. Note the non-linear scaling
at speed 4x.

3.1.1 High Speed Browsing

TattleTrail uses non-linear time-scaling when users are browsing forward through

chat messages at rates greater than twice normal speed. Once speeds surpass approx-

imately twice normal speed, time-scale compressed speech begins to lose intelligibility

rapidly. Simply skimming through messages at a static high speed would not convey

the content of messages appropriately. Therefore, the non-linear time-scaling used in

TattleTrail attempts to provide users with the ability to rapidly browse chat messages

while gaining some understanding of the content of the messages.

The non-linear technique compresses messages at varying speeds depending upon

its particular position in the chat cluster. As seen in Figure 3-4, the beginning of the

cluster is played slowly, and the end of the cluster is played extremely quickly. This

technique relies upon the assumption that the beginning of the cluster usually sets

the topic for the conversation.

The playback starts slowly at the beginning of each chat cluster at 1.5 times

normal speed. After a few seconds, the speed is gradually increased until it reaches a

maximum speed of 6 times normal. This non-linear scaling of audio provides the user

with an effective speed of compression that is approximately equal to the user's desired
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speed. The maximum desired speed for users is 4 times normal, so this effective speed

can be reached by playing unusually slow to start, and playing unusually fast to end.

3.2 Chat Mode: Synchronous Chatting

Once users are finished with Catch-up Mode, they enter the synchronous Chat Mode.

Chat Mode is the simplest mode of TattleTrail, in terms of usage and implementation.

In this mode, users speak to each other in real-time via IP. A floor control protocol

is used to allow only one user to speak at a time, or have "control of the floor."

This protocol is useful for allowing multiple networked users to share the same audio

channel in a constructive manner [6].

When a user wishes to speak, he/she simply presses and holds the record button,

which is push-to-talk. If control of the floor is granted, a short beep is heard, and the

user can begin speaking into the iPAQ microphone. At this point, all other users in

Chat Mode will be able to hear the speaker synchronously. The recording stops once

the users releases the record button, and the message gets archived.

If the floor control request was rejected, the user hears a sharp chord that slowly

fades away. If the user holds down the record button, the floor will be granted when

available, in the order the floor request was received by the TattleTrail server. When

granted, the same short beep is heard, which signifies control of the floor. Any

message broadcast to the chat during this "holding" period will still be heard. The

user may release the button at any time, but in doing so, will not be considered for

the floor when it becomes available.

3.3 Alert Mode: Peripheral Awareness

The Alert Mode for TattleTrail, contrary to the other modes of interaction, is only

entered upon explicit deactivation of the application. This mode is for passive users

who do not wish to devote all of their attention or audio focus to the application,

yet still wish to remain within the TattleTrail audio space by receiving alerts. These

40



alerts are of recently recorded messages from the users in Chat Mode, and are sent to

users in Alert Mode asynchronously. Users also have the option, of course, to simply

deactivate TattleTrail without explicitly setting a state of alert. This would follow

normal Impromptu deactivation, which results in the user not receiving any type of

alert from TattleTrail.

For those users in Alert Mode, the delivery of TattleTrail alerts strays from the

Impromptu alerting paradigm. Normally, an alert in Impromptu is overly intrusive; all

current audio being played or recorded on the client device is muted while the alert

is played. Once alerted, the user can specifically activate the alerting application

within 10 seconds by pressing the activate button.4 TattleTrail, however, attempts

to improve the alerting mechanism by delivering less intrusive alerts catered to the

user's desired attention level, and allowing passive interaction with the application

although in a deactivated state.

The Alert Mode supports two different levels of attention, Passive and Back-

ground, which have different levels of intrusion. Passive Alert Mode is discussed in

the next section.

3.3.1 Passive Alert Mode

The Passive Alert Mode has a higher level of attention and intrusion than the Back-

ground Alert Mode. While in the passive state, the user is allowed to freely activate

and use other applications in Impromptu. Whenever a new message is finished record-

ing in Chat Mode, it is broadcast to all passive users.

When the alert is received by the client device, the audio for the current application

is faded down. The first half of the TattleTrail audio icon is faded up briefly to indicate

to the user that the following alert is from the TattleTrail application. The audio icon

fades out and is immediately followed by the newly recorded chat message. Once the

alert is played, the muted application audio fades back up to normal audio levels.

This level of alert is semi-intrusive in that the active application's audio is muted

'This use of the activate button only applies when specified by the alerting application.
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briefly, but it is not sharply interrupted as normal Impromptu alerts are. The semi-

intrusive behavior is indicative of the user's desired state of attention. In this case,

the user wishes to be able to use other Impromptu applications such as the Radio

or Music application, but still has a particular interest in hearing TattleTrail chat

activity.

Passive users are also allowed to actively participate in the chat, although they are

not in Chat Mode. This is another significant change to the Impromptu paradigm of

application interaction, which typically allows the user to only interact with the active

application. In the passive case, the user may press the record button to attempt to

gain floor control just as if in Chat Mode. This will mute any audio being played by

the active application to signify to the user that recording is possible. All interactions

in this state when the record button is used follow the Chat Mode behavior. If floor

control is granted to a passive user, the user's audio is broadcast to others in the

chat synchronously, and is recorded as well. When the passive user releases the

record button, the active application audio begins playing again. Passive users do not

receive asynchronous alerts of their own messages.

The Passive Alert Mode, therefore, provides a hybrid communication modality

through a channel that is both synchronous and asynchronous. A subtle line is

drawn between the two; passive users receive asynchronous alerts of recently recorded

messages, but can speak to others in Chat Mode synchronously. This subtlety helps

define the passive state in TattleTrail, where a passive user gains peripheral awareness

of chat activity through semi-intrusive alerts, yet can send "intrusive" messages to

all Chat Mode users. All Chat Mode users are, of course, actively engaged and desire

this intrusive level of interaction.

Some TattleTrail users may not wish to have such a high level of attention to chat

activity as provided by the Passive Alert Mode. For those users, the Background

Alert Mode is more appropriate, which is described in the following section.
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3.3.2 Background Alert Mode

The Background Alert Mode also allows the user to freely navigate and activate other

Impromptu applications. Similar to the passive state, alerts of recently recorded chat

messages are sent asynchronously to the background user, with the same format of a

leading TattleTrail audio icon followed by the chat message itself.

When the alert is received, however, it is treated differently than in the passive

state. The background state is less intrusive in nature, so alerts received are mixed in

with the current application's audio at an attenuated level. Therefore, the background

user's application audio is not interrupted or faded out at any time; the TattleTrail

alert is simply mixed in together at a low audio level. This level of attention differs

from both the passive state and the Impromptu alerting paradigm as well.

The Background Alert Mode does not support active participation in the Tat-

tleTrail chat. Users only lurk in the background, which reflects their desire to gain

peripheral awareness of the chat activity without being intruded upon in a destructive

manner.

The following section explores the mode transitions in TattleTrail.

3.4 Switching Between Modes

The previous sections of this chapter gave detailed descriptions of each mode of in-

teraction. TattleTrail supports synchronous, asynchronous, and hybrid channels of

communication between mobile users. This final section examines how they fit to-

gether through user interactions.

Asynchronous Catch-up Mode is first entered upon activation of TattleTrail. When

a user transitions to Chat Mode, a stereo chime consisting of two tones that fade from

left to right is played. This sound is reflective of the transition being made from an

asynchronous channel to a synchronous channel. A user can make this switch after

reaching the end of the audio history, or by speaking the command "chat."

When in Chat Mode, the user can switch back to Catch-up mode by speaking

the command "history." A different chime, also consisting of two tones, is played to
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Figure 3-5: The synchronous and asynchronous boundary between different modes of

interaction in TattleTrail.

represent this transition from synchronous to asynchronous modes. The first recording

played in the audio history will be the first message of the chat cluster that precedes

the most recent cluster in the archive. This is based on the assumption that if a Chat

Mode user wishes to listen to the audio history, he/she most likely desires to start at

a message at least a cluster before the current message.

At any time that TattleTrail is the active application, the user may switch to

one of the two Alert Modes by speaking "passive" or "background." This explicitly

deactivates TattleTrail and sets the user's alert state. No audio cue is played for this

transition because Impromptu has a strict activation/deactivation audio protocol. An

application being activated has its audio icon played, while direct deactivation puts

the Impromptu client in an idle state signified by an audio icon of a man yawning.

Therefore, playing an audio cue directly before the yawning sound would lead to some

confusion, as excessive audio input can become destructive. Instead, the yawning

snippet can be used as feedback to the user that his/her "passive" or "background"

command was correctly recognized.

Once the user has slipped into Alert Mode for the first time, the specific state

(passive or background) is saved by TattleTrail as a preference. Thereafter, when the

user deactivates TattleTrail, he/she will automatically be placed into that same state

of alert. This is to simplify user interaction when deactivating the application by not
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requiring an explicit "passive" or "background" command each time, assuming that

the user wishes to remain in that state of alert whenever TattleTrail is not the active

application. If the user wishes to change this, an explicit command must be used the

next time TattleTrail is deactivated. To avoid the Alert Mode altogether, the user

may speak the command "kill" to deactivate the application and receive no alerts. 5

A diagram of the possible transitions within TattleTrail is again shown in Figure

3-5, but with the synchronous and asynchronous boundary displayed.

5 Before a user activates TattleTrail for the first time, he/she is in an inactive alert state by
default.
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Chapter 4

Design and Implementation

This chapter describes the software architecture of TattleTrail. The chat system

essentially operates as an application server that provides audio content and services

for multiple remote clients. All TattleTrail components are implemented in C++ and

run on Linux.

TattleTrail performs substantial audio processing and management, streams audio

to and from clients over IP, and handles client control messages (i.e. user input via

speech recognition and button press events). Therefore, performance and scalability

were heavily considered during the design and implementation.

The rest of the chapter is divided into four sections. The first section explains

the Impromptu framework in more detail, and how TattleTrail fits in. The second

section discusses the general TattleTrail design. The third section describes the catch-

up mode implementation. The fourth section details the design of the synchronous

chat functionality. The fifth section describes the passive awareness and alerting

mechanism.

4.1 Impromptu Framework

Impromptu is a mobile, IP-based framework for an audio device, providing support

for multiple audio applications and speech processing services such as speech recog-

nition and speech synthesis. It is an audio-only platform composed of distributed
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Figure 4-1: The Impromptu architecture. Note that different types of connections
are made for audio, text, and control channels.

components over the IP network that interact together to service mobile clients. The

distributed components allow the mobile device to offload processor-intensive ap-

plications and services, giving the user the ability to manage and operate several

applications in a mobile environment.

As seen in the architecture diagram in Figure 4-1, TattleTrail (labeled "Chat")

acts as a distributed application component within the Impromptu framework. Tat-

tleTrail maintains audio socket connections to each mobile client device, control socket

connections to the Application Manager, and text socket connections to receive speech

recognition output for each client. A direct connection to the client device is neces-

sary for audio content in order to minimize network delay. Control messages from the

client, however, are channeled through the Impromptu Application Manager. Speech

recognition is used heavily by Impromptu clients, so some of TattleTrail's function-

ality can be managed through voice commands that are processed by the speech

recognition component and output to the application. More information about the

Impromptu architecture and design decisions can be found in [13].

Impromptu currently supports different applications that work effectively within

an 802.11b wireless network. In addition, the author joined the Impromptu project

when development efforts first began. Therefore, implementing TattleTrail within this

framework has given further proof of the architecture, as well as provided a mobile
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audio development platform for rapid implementation and integration.

The following section describes the Impromptu application development platform.

4.1.1 Application Servers

Applications within the Impromptu framework act as application servers that provide

a wide range of audio services for a mobile client device. But, each application must

follow Impromptu connection and control protocols in order to integrate into the ar-

chitecture and behave properly. Therefore, much of the necessary initialization and

protocol logic was carefully embedded into generic super classes and utility classes

in order to allow application developers to concentrate on implementing application-

specific functionality. This application development platform facilitated rapid proto-

typing and implementation of new applications, as well as stand-alone applications

that have been transported into the Impromptu framework.

TattleTrail has been implemented using the Impromptu application development

platform. Without additional work, this gave TattleTrail logic to support multiple au-

dio connection management, user control processing, speech recognition capabilities,

and existing Impromptu alerting mechanisms.

A brief overview of the Impromptu client, and its interactions with applications,

is discussed in the next section.

4.1.2 Mobile Client

Impromptu clients are run on Compaq iPAQ's running Linux (Familiar vO.5.1 distri-

bution) with an Intel StrongARM processor and a standard 802.11b wireless network

card. The client software manages multiple audio connections to different applica-

tions and speech services, and sends all control messages to the Application Manager,

a central communication hub (Figure 4-1). The software accepts user input through

button presses and voice commands. Button press events are sent to the Application

Manager to be routed to the intended distributed component, while voice commands

are streamed to a speech recognition server to be processed and then output to the
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appropriate component as well. Buttons and voice commands are used to switch

between applications, and to perform application-specific functions (e.g. jumping to

a random song in the Music application's play list).

In addition to detecting user events, the Impromptu client has an existing alerting

mechanism for receiving events triggered by applications or other Impromptu clients.

For example, a user could be listening to MP3's through the Music application, and

then suddenly receive an Impromptu phone call from another user. The Music ap-

plication, known as the active application in this context because it currently has

control of the device's audio focus (i.e. microphone and speaker), is then interrupted

so that the user can be notified of the phone call event. The MP3 playing on the

device temporarily stops so that an audio alert specific to the Phone application can

be played.

This alerting mechanism always forces the active application's audio to be com-

pletely stopped until the alert is finished playing. The new, additional alerting mech-

anism introduced by TattleTrail will be discussed in a later section. The next section

examines the TattleTrail application design, which was built upon the Impromptu

application development platform.

4.2 The TattleTrail Application

TattleTrail is implemented as a multi-threaded application server that is integrated

into the Impromptu framework. Parts of the TattleTrail application implementa-

tion are tailored to follow certain Impromptu protocols, such as control messages,

establishing socket connections, registering application information, etc., and are de-

scribed in more detail in [13].

When the TattleTrail application starts up, several threads are spawned. The

RecordThread and AlertThread are created, which handle the recording and alerting

of chat messages. In-depth explanations of these processes follow in later sections of

this chapter.

After the application has registered its status within the Impromptu framework,
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the ControlThread is created. This thread handles all control messages that are sent

to the application, including user input and general Impromptu-specific commands or

data. The ControlThread manages multiple Transmission Control Protocol (TCP)

sockets for receiving control messages, including one socket for each Impromptu user

subscribed to the TattleTrail application. The ControlThread receives user input,

such as button press events, and processes them accordingly.

The next section describes the TattleTrailUser class, which represents a single

user subscribed to the application.

4.2.1 The TattleTrailUser Class

The TattleTrail server receives user information for each subscribed Impromptu user

that joins the Impromptu network. From this information, a TattleTrailUser object

is created when the user first activates the TattleTrail application.

The TattleTrailUser object stores user-specific data. This consists of the user's

Impromptu identification, network address, and speech information. Other informa-

tion is stored, which will be explained later in the chapter. TattleTrailUser also con-

tains thread synchronization routines in order to control each user's SpeechThread.

The TattleTrailUser object establishes a socket connection with the speech

recognition server running within the Impromptu framework upon a user's first activa-

tion of the application. A new SpeechThread is then spawned, one for each user. The

SpeechThread simply listens for any commands recognized by the speech recognition

server for the particular user that are sent to the application. Any speech command

received in this thread is processed, which is similar to the ControlThread processing

of button press events. TattleTrailUser only allows the user's SpeechThread to run

when the user is active by waking and sleeping the thread.

The next section describes the Catch-up Mode implementation that provides an

audio history with novel browsing techniques for chat users.
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4.3 Asynchronous Audio History

The audio history functionality is the most processor-intensive and complicated com-

ponent within TattleTrail. The audio history essentially provides a mobile TattleTrail

user with rapid, interactive audio browsing capabilities of previously recorded chat

messages in real-time. This includes time-scale modification of speech on-the-fly to

allow for users to speed up or slow down, non-linear time-scaling for high speed

browsing, and the ability to "play backward."

When the TattleTrail application gets activated, the user immediately enters

Catch-up Mode, which presents the audio history of the chat messages. When a

user enters, the TattleTrail application object spawns a new HistoryThread, which

handles all audio history processing for the user. The thread is destroyed once the

user exits Catch-up Mode, which frees server resources.

Once the HistoryThread starts, a new TCP socket connection is negotiated with

the Impromptu client device as a channel to stream audio history content. Although

TCP sockets can introduce unwanted network delay, ensuring the delivery of all audio

packets proved to be more important because the intelligibility of time-compressed

speech sharply dropped when a User Datagram Protocol (UDP) socket connection

was used.1 In addition, Catch-up Mode is asynchronous, so minimal network delay

was not an issue. This is the only instance in TattleTrail where TCP sockets are used

as an audio channel.

Once the TCP connection is established, the HistoryThread instantiates a new

AudioHistory object. After AudioHistory has initialized, the HistoryThread be-

gins listening to user input via the TattleTrailUser object maintained by the

TattleTrail application object. As previously described, the TattleTrailUser class

stores all user state information. For the audio history, TattleTrailUser stores user

state information concerning which message to begin with, desired time-scale modi-

fication speeds, and direction of playback. The user state may change whenever user

input is received.

'UDP does not guarantee packet arrival, so packets may be lost in the network.
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Figure 4-2: Architecture diagram of Catch-up Mode.

Depending upon the input received, AudioHistory will speed up time-scale mod-

ification of chat recordings, slow it down, or play backward. Some of the previous

works reviewed used audio indexing techniques such as speaker identification to seg-

ment audio recordings of speech in order to facilitate browsing later [20, 26]. This,

however, is not necessary in Catch-up Mode because the chat recordings are already

segmented into separate messages recorded by each speaker. Another audio indexing

technique explored in previous works was using long pause detection to indicate pos-

sibly interesting points or changes in topic of discussion [2, 20, 24]. Pause detection

was not used in Catch-up Mode because chat messages tend to be short in duration,

making the beginning of each message a logical point of interest. Figure 4-2 shows a

high level architecture diagram of Catch-up Mode.2

The following sections describe the different modules used to implement the audio

history in more detail. The next section describes how time-scale modification was

implemented in TattleTrail by the Sola class.

4.3.1 The Sola Class

Background

Time-scale modification in TattleTrail is performed using a variation of the synchro-

nized overlap-add algorithm (SOLA) presented in [9]. The SOLA algorithm was first

2Note that user input is received by the global ControlThread and the user's dedicated

SpeechThread. These are not shown in the architecture diagrams for clarity.
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Figure 4-3: Time-scale modification using the SOLA algorithm.

Window Length (winlen) 32 msec

Analysis Shift (Sa) 32 msec

Shift Search Interval (Kmax) 12.5 msec

Table 4.1: Optimal parameter values for time-scale compression using SOLA.

described by Roucos and Wilgus [19], and has become a common method of time-

scale modification of speech in real-time. It is computationally efficient because no

complicated mathematical operations such as frequency-domain calculations, pitch

extraction, and phase unwrapping are required for processing [15]. This computa-

tional efficiency makes SOLA suitable for real-time applications [1].

In the SOLA algorithm, a speech signal is separated into windows for analysis and

processing. For time-scale compression, each window is shifted backward over the end

of the preceding window, which shortens the entire speech signal (Figure 4-3). An

optimal region of overlap between the windows is found by determining the highest

point of cross-correlation. In other words, the current window is overlapped with

the preceding window at a point where the intersection has a maximum similarity of

signals. This region of overlap is then added and averaged together. SOLA can be

viewed as a greedy algorithm, which always selects a locally optimal choice between

subsequent windows, ultimately preserving the pitch, magnitude, and phase of the

signal [1]. The overlap and adding of windows effectively removes redundant pitch

periods in speech in the time-domain, which provides efficient time-scale modification

outside of the frequency domain.
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Implementation

The Sola class, which implements the SOLA algorithm, only supports time-scale

compression because only rapid browsing of audio was desired.3 Therefore, the op-

timal values of three parameters for time-scale compression reported by Hejna in [9]
were used for the implementation (Table 4.1).

The Sola class is used to retrieve a block of audio from a .way file, analyze it, and

apply the SOLA algorithm to output a smaller block of time-scale compressed audio.

Once Sola opens a .wav file and loads the audio data, the method getNextBlocko

grabs a block of audio that is four windows long (128 msec). Each four-window block

is analyzed, shifted with respect to a given speed scaling factor, and then output to

the calling process by the method compressBlockO. In this way, an entire speech

signal can be time-scale compressed on-the-fly with variable speeds by processing

only small blocks of the signal at each iteration. Therefore, this implementation

could support an entire speech recording to be time-scaled by a different speed factor

for every four-window block it grabs and processes.

Processing small blocks of audio at a time forced the TattleTrail implementation

of SOLA to perform extra computations. The SOLA algorithm initializes an entire

speech signal, and processes it from beginning to end in a continuous manner. But

because a TattleTrail user has the ability to interactively control the speed and direc-

tion of time-scale modification of speech in real-time, an entire speech signal must be

initialized and processed in small blocks. Because the overlap and add step involves

analyzing the current and preceding window, a pointer to the last window, the last

windowing function w(n), and buffer offsets from the preceding window are stored

to allow correct processing of the next window. This was necessary when process-

ing a new block of audio that needed the preceding window from the previous block

processed. Therefore, each call to compressBlock() initializes parameters from the

last block processed before analyzing the current block in order to perform correct

time-scale compression.

3 The SOLA algorithm can be used for time-scale expansion as well.
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Figure 4-4: Playing backward. The audio is divided into segments of 4 seconds.
Segments are played at each iteration (the gray boxes), then the pointer is set back

to the previous segment for the next iteration. Note at times t2 and t3 , the playback
speed is twice as fast, so the algorithm jumps back 2 segments in order to play 4

seconds of time-scale compressed audio.

An optimization to the SOLA algorithm helped counter the extra computations

necessary for block-by-block processing. The original SOLA algorithm uses a nor-

malized cross-correlation function to find the point of maximum similarity between

two windows. This function, however, accounts for more than two-thirds of all com-

putations performed in the algorithm. This is due to division by a computationally

expensive square root operation. Hejna suggested to use a least difference estimation

instead of the normalized cross-correlation function as a possible optimization, which

was found to produce time-scale compressed speech that was indistinguishable from

the original function [9]. Therefore, the Sola class uses the least difference approach,

which uses no square roots or multiplication, to increase performance.

The Sola class implementation also supports scaling audio "backward" for users

wishing to jump backward during the audio history processing in Catch-up Mode.

Samples of audio are not scaled and played in reverse order; this would result in

unintelligible speech. Instead, the SpeechSkimmer technique of playing backward is

used [2]. The speech signal to be processed is broken into segments of 4 seconds,

then each segment is time-scaled normally (i.e. forward). Once an entire segment is

processed, the following call to getNextBlockO returns the first block of audio in

the previous segment for processing, as shown in Figure 4-4.

The ChatCluster class is examined in the next section.
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4.3.2 The ChatCluster Class

Chat messages in TattleTrail are grouped into "clusters" of messages depending on

the time each message was recorded. All chat messages are saved as timestamped

files of the approximate start and end times of the recording.

The ChatCluster class represents an individual chat cluster. It stores a list of the

filenames of the chat messages in the cluster, as well as methods to navigate through

the list. ChatCluster also stores the relative duration of the entire cluster (i.e. total

duration of all messages) in number of 128 msec blocks.4 An internal pointer exists to

represent a block position within this cluster time frame. When processing messages

in a ChatCluster, these block structures give a relative "position" with respect to

the entire cluster at any given time. Therefore, when Sola is used to time-scale a

chat message in a ChatCluster, the controlling process can keep track of its progress

in terms of position within the cluster of messages.

The relevance of determining position within a cluster of messages is described in

more detail in the following section, which discusses the AudioHistory class and how

the ChatCluster and Sola classes are used to help present a highly interactive and

flexible audio history.

4.3.3 The AudioHistory Class

In TattleTrail, the AudioHistory class produces an audio history for the user by

performing variable time-scale modification in real-time. AudioHistory manages

which recorded messages to read from disk, at what speed to perform time-scale

compression, and in which direction to play back audio.

When AudioHistory is instantiated, it examines the list of chat messages that

are archived, and groups them into ChatCluster objects. AudioHistory then pro-

ceeds to process the first chat message using Sola to open the file and time-scale it

according to the user's desired speed. If the user was previously participating in the

synchronous Chat Mode, and just returned to TattleTrail, AudioHistory determines

4Note that this is the same size as blocks processed by the Sola class.
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Figure 4-5: Non-linear time-scale compression of a chat cluster. The first 30 blocks
(3.84 seconds) of the cluster are scaled at a speed of 1.5x. Thereafter, speeds are
gradually increased until a breakpoint is reached at the max speed of 6x. The user's
desired speed of 4x is effectively reached, as the shaded regions are of approximately
equal area.

the last message, if any, that the user heard within the chat. It then begins processing

the beginning of the ChatCluster preceding the cluster of the last message heard.

This functionality allows the user to skim one cluster before reviewing the messages

missed while away.

High Speed Browsing

TattleTrail performs non-linear time-scaling for users browsing chat messages at rates

greater than twice normal speed. This non-linear time-scaling is structured around

chat clusters, relying on the assumption that the first message of the cluster (or

conversation) usually sets the topic for the rest of the messages in the cluster. This

browsing technique differs from previous works that used structured audio to find

meaningful points to emphasize [2, 20, 24, 26].

Therefore, the AudioHistory class processes the beginning of each ChatCluster

object at a slower speed, and rapidly speeds up time-scale compression of subsequent

messages in the ChatCluster. This non-linear time-scaling delivers all the messages

in a single cluster at an effective high speed desired by the user while providing some

intelligibility of the chat content.
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The non-linear rate of compression is determined by the relative position within

the ChatCluster before processing each block. Once a user's desired speed breaks

the threshold of twice normal speed, AudioHistory begins applying the non-linear

technique to the time-scaling of the cluster. The beginning of the cluster is compressed

by a static speed of 1.5 times normal for an established duration of 3.84 seconds

(30 blocks of 128 msec each). Then the speed is gradually increased linearly until

the cluster position reaches a breakpoint calculated from the ChatCluster (Figure

4-5). Thereafter, the speed stays constant until the end of the cluster is reached.

This non-linear compression technique allows the user to skim the entire cluster at an

effective rate, while actually varying the speed during browsing. This is accomplished

by finding the correct slope and breakpoint of the cluster depending upon its total

duration. Note that if the cluster is not long enough, the actual effective rate may

not be reached due to the initial 30 block compression stage and the maximum speed

of 6 times normal.

Audio History Termination

After the user reaches the last chat message of the audio history, or explicitly leaves,

the HistoryThread begins termination procedures by closing the TCP socket con-

nection to the Impromptu client device. If the user left the TattleTrail application

entirely, the HistoryThread simply terminates and the application deactivates the

user. Otherwise, the user proceeds into Chat Mode.

The next section describes Chat Mode and its implementation.

4.4 Synchronous Chat

Chat Mode allows users to speak to each other synchronously over IP. More specif-

ically, when a user speaks, all others currently in Chat Mode hear the user syn-

chronously (i.e. real-time, but with slight network delay). To minimize delay, all

audio sent over IP during the synchronous chat are sent using UDP sockets. Con-

tinuously streaming audio over a TCP socket connection would gradually increase
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delays due to packet loss. All packets received by the TattleTrail server are saved

during the chat so that all messages can be archived for browsing. When a user

leaves the Chat Mode, a pointer to the last message heard in real-time is stored in

the TattleTrailUser object to provide an audio history "bookmark."

The next section describes how recording is implemented.

4.4.1 The Record Thread

When the TattleTrail application object is started, the RecordThread is spawned.

Only a single thread is necessary per chat group for recording purposes because only

a single user can speak at a time.5

The RecordThread operates simply and efficiently because all messages spoken

during Chat Mode are sent as IP multicasts, allowing audio packets to be sent peer-

to-peer rather than being channeled from one client to all other clients through the

server. This offloads sending and receiving processes equally among all Chat Mode

users and the TattleTrail server.

When a user speaks, his/her audio is broadcast to a specific IP multicast address.

All multicast traffic is handled at the transport layer via UDP, forwarding multicast

packets to all routers for a certain number of hops designated by a time-to-live [5].

All IP multicast Level 2 network hosts receive and ignore multicast traffic unless the

kernel is told specifically to "watch" for packets sent to a certain multicast address

[5]. When a host "joins" a multicast group address, it is actually informing the kernel

to pick up any packets with that specific multicast address instead of ignoring them.

Therefore, a chat group in TattleTrail is actually represented by all those users that

have "joined" a specific IP multicast group address.

The RecordThread opens a UDP socket and joins the multicast group for the chat.

Any user in Chat Mode will have joined this multicast group as well. All spoken mes-

sages are sent to this group, so the RecordThread simply reads all IP multicast traffic

and saves it to a file. The push-to-talk mode allows only one speaker at a time, which

5 The current implementation only supports one chat group, but support for multiple chat groups
is a practical extension.
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Figure 4-6: Architecture diagram of Chat Mode.

conveniently divides all bursts of multicast traffic to belong to a single user, allowing

for easy message archiving. When no user is speaking, the RecordThread is suspended

to save server resources. This is done through thread synchronization controlled by

the AudioFloorControl class. When a message is to be recorded because a user

wishes to speak, AudioFloorControl wakes the RecordThread. Likewise, the thread

is put to sleep when a user is finished recording. Figure 4-6 shows the high level

architecture diagram of Chat Mode.

The next section describes how the floor control protocol used to enforce push-to-

talk mode is implemented.

4.4.2 The AudioFloorControl Class

TattleTrail provides a first come, first served floor control protocol for users wishing

to speak during Chat Mode. This protocol is suitable for groups of users sharing

networked audio resources because conversations naturally follow turn-taking behav-

ior [6, 22]. It also eliminates possible interruptions and false starts that could result

from network delay and lack of visual cues if the chat channel had an open floor [21].

Another benefit of using a floor control protocol is to avoid some of the problems

found in previous audio-only media spaces where a participant's environment was

constantly being recorded, which was sometimes unnecessary and slightly intrusive

[10, 23]. The floor control ensures that audio is only recorded when a user wishes to

do so, which maintains privacy and reduces unnecessary audio broadcasts to the rest
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of the group.

The AudioFloorControl class is used to manage which user receives control of the

"floor," and consequently manages the recordings of the floor that are saved during

the chat. Control of an "open" floor is given to any user requesting to speak. If the

floor is open, the first user to request the floor receives control. A user request is

determined by the TattleTrail application from a specific button press event (the

Impromptu record button). The first-to-press detection is fair because TattleTrail

listens over the network for user input messages, so the first user request message

received wins floor control.'

Once a user gains control of the floor, AudioFloorControl stores the current

time and wakes the RecordThread. Because it is push-to-talk, the user must keep the

record button pressed while speaking. When the user releases the button, this event

is relayed to TattleTrail. AudioFloorControl determines the finishing time, puts

the RecordThread to sleep, and saves the file under a time-stamped name indicating

the start and end time (represented in seconds elapsed since January 1, 1970):

1021401507-1021401513.way

As mentioned earlier, the start and end times give an estimated duration of

the chat message, which is pertinent to the AudioHistory class in structuring chat

clusters according to pauses between subsequent messages, and for non-linear time-

scaling.

If a user requests the floor, but does not receive it, then another user must

have floor control. All requests made after control has been issued are queued by

AudioFloorControl and dequeued in a first in, first out (FIFO) order. When the

user with the floor finishes speaking, the floor is released and given to the first user

in the request queue. Any user waiting in the queue must also keep the record button

pressed in order remain in the queue. If the user releases the button while waiting,

the AudioFloorControl is notified of the event and pops the user from the request

queue.

6It is unfair, however, if network delay causes a user that pressed first in real-time to not gain
control. This exception is acceptable because network delay cannot be controlled.
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AudioFloorControl currently does not prevent abuses of floor control. There-

fore, any user in control can hold the floor indefinitely, causing starvation of other

users requesting the floor. The floor control implementation relies upon responsible

Impromptu users; a more strict protocol could be implemented by setting a timer

thread for a maximum length of a recorded message in order to prematurely retract

the floor from a user if necessary.

The next section describes how the new alerting mechanism is implemented.

4.5 Alerting

Alert Mode delivers asynchronous alerts to passive and background users in Tattle-

Trail. Once a message is finished recording, it is streamed via UDP. As mentioned

earlier, streaming audio data using UDP sockets minimizes network delay and pro-

vides IP multicast functionality. When sending data to multiple recipients simulta-

neously is necessary, IP multicasting is an obvious choice. Therefore, all TattleTrail

alerts are broadcast to Alert Mode users via IP multicasting.

The alerting mechanism in TattleTrail added a new alerting paradigm to the

Impromptu framework, as described in the previous chapter. Therefore, some addi-

tional functionality was implemented within the Impromptu client software module

to provide a separate alert channel (i.e. a UDP socket), as well as audio processing

techniques such as mixing and fading two streams of audio together.

When a user requests to drop into either Passive or Background Alert Mode, Tat-

tleTrail instructs the client device to join a different IP multicast group for receiving

alerts, and adds the user to hash maps representing passive or background users. The

same multicast address is used for both passive and background users. This is pos-

sible because both types of users receive the alerts; they just perform different audio

processing techniques locally on the client device like fading or mixing audio. When

a user leaves either mode of alerting to rejoin the TattleTrail chat, the client device

also leaves the multicast group so that future alert packets sent will be ignored. Users

are, of course, removed from the internal TattleTrail hash maps as well.
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The main module used to provide alerting is the AlertThread, which is described

in the next section.

4.5.1 The Alert Thread

When the TattleTrail application object starts up, the AlertThread is spawned.

The AlertThread can be compared to the RecordThread in that they provide exactly

opposite functionality, yet are implemented similarly. Both rely upon IP multicasting

to efficiently send or receive audio by requiring the underlying network to perform

the grunt work of forwarding packets to multiple destinations. The RecordThread

simply received all IP multicasts sent to a particular multicast address representing

the chat. The AlertThread does the opposite; it sends audio packets to a particular

multicast address representing Alert Mode users.

After the AlertThread is first created, it establishes an inter-process TCP socket

connection to itself. This internal socket is then passed to the AudioFloorControl

class, which manages all the creation and saving of chat messages. The socket acts

as an inter-process message channel between the main TattleTrail processing loop

and the AlertThread. Thread synchronization procedures used for the RecordThread

were considered, but the TCP socket implementation was chosen instead because of

simplicity and efficiency.

When AudioFloorControl saves a chat recording to a file, it also sends the file

name over the TCP socket to the AlertThread. The AlertThread blocks on that

socket until data is received, which keeps the thread asleep until a new message is

recorded. This allows TattleTrail to save server resources by minimizing thread cycles.

Once the filename is received, the AlertThread loads the file data, appends the first

half of the TattleTrail audio icon to the message by mixing and fading the two files

together, streams the processed audio to the alert IP multicast group, and begins

blocking on the message socket again.

Streaming audio from files on the server to clients via IP multicasts proved to be

problematic initially. Because of UDP properties, an entire file cannot be sent at a

time; overloading any IP host's internal network buffer with UDP packets will result

64



Impromptu
Com Input

All User N
Input - (Passive User) Client Client Client

Peer-to-Peer IP Multicasts

Figure 4-7: Architecture diagram of Alert Mode.

in packets getting dropped, thus never reaching the application layer. To counter this,

the AlertThread pauses for a certain number of milliseconds between each buffer sent

over the network.

In addition, UDP does not guarantee packets will be received, nor the order in

which they will be received. Therefore, a client device receiving UDP alert packets

cannot know if a packet received is from the beginning of the alert message, the

middle, or the end. Client devices must know the beginning and end of each alert

message received in order to correctly mix, scale, or fade the audio as described in the

previous chapter. Therefore, before starting to stream the alerts, the AlertThread

sends appropriate messages to passive and background users stored in the hash maps

via the Impromptu message channel. When the last alert UDP packet is sent, the

AlertThread similarly sends all passive and background users messages signifying the

end of the alert UDP multicast. In this way, both passive and background users can

be listening to the same IP multicast address, but receive different control messages

from TattleTrail about how to present the audio to the user. Figure 4-7 shows a high

level diagram of the architecture of Alert Mode.

4.5.2 Passive User Interaction

Passive users in TattleTrail are permitted to record messages to the chat synchronously,

although they are not actively using the application. The architecture of Tattle-

Trail allowed support for this functionality without any changes, besides allowing the

AudioFloorControl class to accept a request from a TattleTrailUser that was in
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Passive Alert Mode. All of the major changes were implemented in the Impromptu

client software module.

The Impromptu client was changed to send record button press and release events

to the TattleTrail application whenever the user is in Passive Alert Mode. When

pressed, the client device temporarily joins the Chat Mode IP multicast group and

sends all recorded audio until the button is released. This is assuming that floor

control is granted; nonetheless, all interactions while the record button is held down

exactly mimic those interactions of active users in Chat Mode. TattleTrail treats the

user as if he/she were actively in chat due to the button press and release events

received. When the button is released, the client device leaves the IP multicast group

and ignores the ensuing asynchronous alert multicast sent by the AlertThread. This

prevents a passive user from hearing his/her own recorded message.

4.6 Summary

This chapter has presented the software architecture of TattleTrail. The chat system

has been designed to support multiple mobile clients within the Impromptu framework

with synchronous and asynchronous communication channels offering wide ranges of

audio processing techniques. An overall architecture diagram of TattleTrail with all

modes of interaction is displayed in Figure 4-8.

The design and implementation made heavy use of IP multicast via the UDP layer

to offload the sending of packets to multiple recipients onto the network. The peer-

to-peer framework also allowed flexibility in establishing "chat rooms" and awareness

groups. Whenever sending data packets from one to many is required over IP, using

the built-in multicast protocol ensures simplicity and efficiency as long as packet loss

can be tolerated.

The major bottleneck in the system is the Catch-up Mode implementation, which

performs interactive time-scaling. Because audio history cannot be handled in a peer-

to-peer fashion where processing can be equally divided, TattleTrail must establish

a point-to-point connection to service a particular user. Providing audio history
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Figure 4-8: Architecture diagram of TattleTrail. The clients in Catch-up Mode have
a dedicated HistoryThread streaming audio. Chat Mode users IP multicast audio
packets to each other and the RecordThread. Users in Alert Mode receive asyn-
chronous IP multicasts from the AlertThread. Note that the passive user can syn-
chronously send IP multicast chat messages to those in Chat Mode.

capabilities forces the server to devote a single thread per Catch-up Mode user to

process several audio files while responding to user input events. This is much more

draining than using a single recording thread to support multiple users that are in

Chat Mode, or using a single alert thread to provide awareness to multiple users in

Alert Mode.
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Chapter 5

Conclusion

TattleTrail has been designed and developed to address current limitations in mobile

communication, namely resulting from a lack of flexibility of protocols and commu-

nication modalities, in order to shed light upon different approaches toward staying

connected. It is no doubt that for mobile users, the ability to communicate with

others is paramount. Although text based systems offer mobile users a wide variety

of applications such as email and instant messaging, communication by voice remains

superior.

This is evident by the soaring use of mobile phones today. Whether for work

or play, people on the move have made connectivity a necessity. The glaring issue,

however, is the old, restrictive communication protocols enforced by traditional tele-

phony. TattleTrail demonstrates that when using a more flexible underlying network

such as the Internet, these old barriers and confinements can be broken, and new

communication modalities explored.

TattleTrail provides mobile users with the ability to instantly communicate to a

group of users synchronously, anywhere and anytime Internet connectivity can be

obtained. Although this is currently not ubiquitous, the assumption is that wireless

networks will soon provide this type of access just as mobile phones today can obtain

service signals from almost anywhere in the country. Judging from the high popularity

of mobile phone use and instant messaging use, combining the two into a mobile voice

chat system logically follows as a next step in mobile communication.
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This ability to actively chat in real-time over IP, however, is not the only communi-

cation modality supported by TattleTrail. Through the use of passive, asynchronous

alerts, TattleTrail also provides mobile users with a less intrusive mode of communi-

cation while maintaining peripheral awareness of chat activity.

Another feature drawing from online chats is the ability to catch-up to a chat

conversation by asynchronously skimming through an audio history of chat messages

previously recorded. This can be especially useful in a mobile environment where

connectivity can be sparse, and external events can cause long periods of interruption

or separation from the communication channel. In these cases, it is advantageous to

provide a means to asynchronously listen to any message that may have been missed.

The interactive browsing techniques of conversations using time-scale modification

also raise the important issue of how to peruse recorded speech when treating voice

as a data type.

The different combinations of synchronous and asynchronous communication mod-

alities implemented within TattleTrail offer new points of direction for mobile commu-

nication, and is perhaps the most important contribution of this thesis. Of particular

interest is the new alerting model which provides a hybrid communication channel

that receives asynchronous alerts while sending synchronous messages. TattleTrail has

demonstrated that transitions across these synchronous-asynchronous boundaries do

not necessarily imply that communication among parties must be halted. In other

words, communication between two parties in real-time can be continued even when

one party drops, either willingly or possibly from loss of wireless connectivity, through

asynchronous messaging.

TattleTrail has explored various aspects of mobile communication modalities af-

forded by the flexibility of IP, and has proven that new models of interaction via

mobile devices will become a possibility in the near future. Hopefully, the feasibility

of providing such functionality found in TattleTrail can soon become a reality in order

to break the current limitations in mobile communication today.
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5.1 Future Work

TattleTrail has quite a few areas where expansion and future work can be applied.

Most important is the ability to support several chat groups simultaneously. The

architecture of TattleTrail is conducive to this type of expansion due to the simplicity

of using IP multicasting.

An additional function that could be supported in the future is the ability to open

a private, full duplex audio connection with another user in the chat. This would be

useful if two people became engaged in a conversation in the chat that would be more

suitable to a continuous duplex connection similar to a phone call rather than using

push-to-talk mode.

A popular feature of online chat systems that has not been replicated in TattleTrail

is the use of buddy lists to help give a sense of awareness of a specific group of

people. Because TattleTrail was integrated into an audio-only framework, a graphical

user interface (GUI) was not an option, so displaying a buddy list was not possible.

However, ways in which buddy list information could be relayed should be explored.

One possible solution is to provide awareness of buddies using specific earcons, as

implemented by the Hubbub instant messenger [11].
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