
Freebrain: A Distributed and Scalable

Interest-based Instant Group Communication

System

by

Kalpak Dilip Kothari

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© Kalpak Dilip Kothari, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author

MASSACH US[S INSITUIT
OF TECHNOLOGY

JUL 3 1 2 002

LIBRARIES

Deparfiient of Electrical Engineering and Computer Science
May 10, 2002

Certified by...
Stephen J. Garland

Principal Research Scientist
fhesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Freebrain: A Distributed and Scalable Interest-based Instant

Group Communication System

by

Kalpak Dilip Kothari

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Freebrain is a distributed and scalable interest-based instant group communication
system that enables people and on-line databases or services to share their knowledge
in a personalized way with those seeking help. The Freebrain architecture resembles
a publish and subscribe system. People and databases subscribe to categories of
questions they are interested in answering. When a user asks (i.e., publishes) a
question, an invitation is routed to the subscribers of the categories that match the
content of the question. Human invitees can choose to enter a group conversation
to answer the question. Machine invitees (on-line databases) can directly return
results. The system achieves load balancing and fault tolerance using Chord for its
subscription distribution. Instant-messaging (IM) is achieved using Jabber, an open-
source, distributed, IM system. The main contribution of Freebrain is a powerful, new
paradigm that enables users to obtain real-time answers from both people and on-line
services using a single, unified IM interface without requiring any prior knowledge of
the possible sources of information.

Thesis Supervisor: Stephen J. Garland
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to thank the following people who helped me (directly and indirectly)

with my thesis: my friend, Aakash Kambuj, for the initial discussion of the idea of

Freebrain; Ronnie Misra, for helping me with the initial implementation and subse-

quent discussions about the design; most importantly, my advisor, Steve Garland,

for allowing me to pursue my interest in Freebrain, for supporting and helping con-

cretize the Freebrain system, and his suggestions that have tremendously improved

the quality and presentation style of this thesis; other folks in the Network and Mo-

bile Systems group, namely, Hari Balakrishnan for some ideas and suggestions and

Magdalena Balazinska for the Chord code that Freebrain uses; and last but not least,

my family and friends.

5

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Goals. 16

1.3 System overview . 18

1.4 Contributions . 19

2 Related Work 21

2.1 Internet Relay Chat (IRC) . 21

2.1.1 Pros . 21

2.1.2 Cons . 22

2.1.3 Summary of Issues . 23

2.2 Newsgroups . 24

2.2.1 Pros . 24

2.2.2 Cons . 25

2.2.3 Summary of Issues . 25

2.3 Zephyr . 26

2.3.1 Pros . 26

2.3.2 Cons . 26

2.3.3 Summary of Issues . 27

2.4 Other related work . 27

3 Design 29

3.1 Introduction . 29

7

. 29

3.3 Design Choices

3.3.1 Improvement over IRC .

3.3.2 IM Substrate

3.3.3 Jabber Features

3.4 Freebrain Features

3.5 Freebrain Architecture

3.5.1 Overview

3.5.2 Layering Rationale . . .

3.5.3 Chord Key Router . . .

3.5.4 Freebrain Server

3.5.5 Freebrain Transport . .

3.5.6 Jabber Server

3.6 System Interaction

3.7 Integration with databases . . .

3.8 Summary .

4 Implementation

4.1 Introduction .

4.2 Freebrain Server. .

4.2.1 Category Selection .

4.2.2 Integration with Chord .

4.3 Freebrain Transport .

4.4 Freebrain Client .

4.4.1 Gabber .

4.4.2 W eb-based interface .

4.5 Summary .

5 Results and Discussion

5.1 Introduction .

5.2 Results. .

8

32

32

32

33

35

36

36

38

39

40

42

45

45

46

47

49

49

49

49

51

51

55

56

58

59

61

61

61

3.2 Design Challenges .

.

.

5.2.1 Basic performance . 62

5.2.2 Quality of service . 63

5.3 Design and Implementation Issues . 67

5.3.1 Achieving fault tolerance . 67

5.3.2 Graceful degradation . 68

5.3.3 Size and type of invitees . 68

5.4 Future W ork . 69

5.5 Conclusions . 71

9

10

List of Figures

1-1 Present World - Who do I ask for help? 14

1-2 Freebrain World - I simply ask Freebrain 15

3-1 Freebrain Architecture - Module Functions 37

3-2 Automated invitation - Find matching categories 43

3-3 Automated invitation - Find subscribers 43

3-4 Automated invitation - Forward invitations 43

4-1 Gabber: (a) Main Window, (b) Chat with Freebrain 56

4-2 Gabber: Freebrain Invitations . 57

4-3 Gabber: Group Conversation . 58

5-1 Automated Weather Response using Freebrain 66

11

12

Real Time: Here and now, as opposed to fake time,
which only occurs there and then.

On-line: The idea that a human being should always
be accessible to a computer.

Chapter 1

Introduction

1.1 Motivation

Consider when you've spent hours on the Internet searching for an answer to an

urgent or nagging question. The Internet presents you with a number of sources or

systems where you can seek help, as depicted in Figure 1-1. Irrespective of whether

you are a novice or an advanced Internet user, you must first ask yourself the question,

"Who do I ask for help?" Let's examine your options. Popular search engines like

Google [10] or content-based data servers allow you to find answers from machines.

Real-time chat systems like Internet Relay Chat (IRC) [13], popular instant-messaging

(IM) networks like Yahoo! Messenger or AOL Instant Messenger, private community-

based IM systems like MIT's Zephyr [30], and mailing lists or newsgroups [11] allow

you to find answers from other people. Thus, the Internet gives you a plethora of

options to seek answers. These options fall into two broad groups-seeking help from

machines (databases), and seeking help from people.

In spite of all the options we have for seeking help, we are often unsuccessful in

finding answers. If we hope to find a quick answer, we may find ourselves spending too

much time, or, perhaps, we many even give up the task all-together. If we try search

engines, we may be inundated with too much information or, sometimes, with too

little information. If we try mailing lists or newsgroups, we don't get instant answers.

If we try chat systems, we have difficulty finding the right chat room to enter and ask

13

IR Ze hyr

Yahoo IM
Google

AOL IM

MSN IM

Data Servers News Servers

Figure 1-1: Present World - Who do I ask for help?

our question. Above all, there is a more fundamental problem. There are thousands

of knowledgeable people as well as on-line resources, but all accessible in different

ways. For an end-user seeking help, this presents a big problem, especially if he is

looking for a quick answer. He faces a barrier to entry either because he does not know

all the available options, or because it requires too much effort to communicate with

people on the various systems. Finding the appropriate people or on-line resources in

real-time is thus a challenge. As an end-user, he wishes the Internet would present

itself as a more unified network where seeking help is as effortless as possible.

Can we build a system that simplifies the end-user's task of seeking help in real-

time? Consider the world depicted in Figure 1-2, a world that focuses on people's

interests, and a system that is aware of these interests. In this alternate world,

the end-user simply asks his question once, and the system takes care of everything

else-finding the right people who would be interested in answering or discussing the

question. This is the world of Freebrain. It brings a universal access point to the

end-user for real-time communication. For instance, if I ask the question, "Could

14

Figure 1-2: Freebrain World - I simply ask Freebrain

someone point me to a good on-line reference discussing the history of Sanskrit'?",

as shown in Figure 1-2, Freebrain will route my question to the people who have

expressed an interest in Sanskrit.

In this thesis, we discuss the architecture of Freebrain, a system that simplifies

the end-user's task of seeking help in real-time. The primary idea of Freebrain is

a system that allows people to ask questions and contribute answers in real-time

based on interests. A powerful derivative of this simple idea is to involve on-line

databases for contributing answers via the same real-time communication medium.

This allows both machines (databases) and people to be accessible to end-users under

one common medium. Freebrain tries to match a person seeking information not

only with interested people but also with databases that can offer answers. One can

imagine hundreds of ways on-line databases can provide us with useful information.

For instance, if I wish to locate the office room of a member of LCS, I could potentially

'Sanskrit is an ancient Indian language, considered to be one of the oldest and most systematic
languages in the world.

15

ask Freebrain a question, "What is the MIT LCS office for John Doe?", which in turn

could route my query to an LCS directory database. Another example would be

a medical dictionary that, when a user asks a question like "What is the dictionary

meaning of the medical term patellalgia?", receives this query and returns the meaning

of the word "patellalgia" to the user. The key benefit of Freebrain is the ability to

receive real-time answers from both people and machines using the same medium.

No present system does this.

We thus argue the need for a system like Freebrain because we believe there are

many people (and databases) willing to offer help. The problem lies in the fact that,

for real-time answers, the seekers of help may not find the right sources (people or

databases) or may be forced to use multiple mediums (web searches, chat systems,

IM networks, etc.). Moreover, existing systems do not provide an easy mechanism for

quickly alerting these sources about a seeker's question. Freebrain is an endeavor to

fix these problems and simplify a person's experience when he seeks real-time help.

1.2 Goals

If we seek real-time answers, we need a framework that allows us to locate others

with similar interests and chat (have a real-time conversation) with them. While this

is the primary goal, we also enumerate a set of intermediate and desirable goals that

we aim to achieve in the design and implementation of Freebrain.

Real-time messaging - Freebrain should provide people the ability to ask ques-

tions and receive answers from other people or databases in real-time. Our focus

in this thesis is on real-time text-based interaction, or instant-messaging (IM).

Subscribing to interests - In order to match people with common interests, Free-

brain should allow users to subscribe to the categories related to their interests.

Subscribing to a category (interest) means that the user is willing to receive

messages (questions) that match that interest.

16

Simple interface - Freebrain should provide a very simple interface to end-users to

ask questions and to respond with answers. As a result, Freebrain is integrated

within the current IM paradigm, which is familiar to nearly every user on the

Internet.

Automated category selection - Freebrain should be able to route a question

without requiring the user to manually specify what interests (categories) the

question belongs to. Freebrain may also provide the user with an option to

manually specify categories to which a given question should be routed, but

an automated category selection is essential to simplify the requirements for an

end-user.

Integrate benefits of related systems - Freebrain should integrate the benefits

of current systems that allow users to ask questions and receive help. In par-

ticular, it should retain the benefits of IRC, viz. allowing people to enter a

multi-user conference room to have a conversation on a particular topic (see

Section 2.1). Other important benefits from related systems like newsgroups

are a friendly categorization of interests and web-based access to everyone to

read, search, and learn from past conversations that Freebrain users have had

(see Section 2.2).

Distributed and scalable architecture - In addition to ensuring that Freebrain

meets all the aforementioned goals, we aim to produce a distributed and scalable

architecture. This is necessary for achieving Internet-wide messaging at low

cost and for ensuring that there is no central server or authority that can bring

down the entire Freebrain network. Apart from the benefits of higher system

availability, a decentralized architecture can also provide greater privacy to

users.

The final outcome of our goals is simple - Freebrain must be able to enhance

productivity of information retrieval in the form of real-time answers from people

and on-line sources. In this thesis, we focus on the design and implementation of

17

the distributed and scalable interest-based instant group communication architecture

that achieves our goal-enabling people and on-line information sources (databases)

to share their knowledge in a personalized way with those seeking help using a common

medium for real-time communication.

1.3 System overview

The basic Freebrain architecture resembles a publish and subscribe system. People

and on-line information sources (such as databases) can subscribe to certain categories

(or interests) of questions they are interested in answering. When a user (called an

inviter) asks (publishes) a question, it gets routed to the subscribers (called invitees)

of the categories that match the content of the question. A human subscriber that

receives a question can choose to join a conversation, i.e., a real-time multi-user group

chat with the inviter, and help answer the question. If an invitee is a database it can

directly return results from a query to the inviter.

The front-end or the client-side interface for communication (sending and receiving

messages) is through instant-messaging (IM). We have also developed a preliminary

web-based front-end for secondary functionality such as allowing users to manage

their category subscriptions, or viewing and searching past conversations.

The back-end consists of a distributed network of servers that handle the delivery

of instant messages, host the category namespace and user subscriptions, and route

questions to invitees based on the categories that match the content. It also provides

the necessary conferencing capabilities as discussed in the goals. The back-end is

composed of several distinct modules. We discuss the design of this modular archi-

tecture in Chapter 3. In practice, we use several existing components (for instance,

the IM platform) and integrate them to achieve our goal, rather than build everything

from scratch.

18

1.4 Contributions

Our main contribution is the paradigm of interest-based real-time group communica-

tion where, apart from the intent (viz. the question), the person who seeks an answer

requires no prior knowledge of the possible sources of information. We design a frame-

work that automatically routes the person's question to subscribers with matching

interests, abstracting away the need to know where to ask or go look for an answer.

The concept of Freebrain for real-time communication is very powerful. We believe

it has a practical application given the popularity of instant-messaging and the desire

of people to offer help. Our system brings the seekers one step closer to the sources

of knowledge. In fact, our system allows non-humans such as on-line services to

easily participate and offer their knowledge by simply subscribing to their related

interests. In the past, the task of finding the right source (be it human or machine) of

information has often been a problem. Freebrain tries to bridge that gap by providing

an interesting, new IM-based medium for seeking real-time answers from any source

of information.

19

20

People who go to conferences are the ones who shouldn't.
- Ozman's Law

Chapter 2

Related Work

In this chapter we discuss several other systems that provide group communication.

We restrict our discussion to three systems that are in wide use by the general Internet

public or members of the MIT community, namely, Internet Relay Chat, Newsgroups,

and MIT's Zephyr.

2.1 Internet Relay Chat (IRC)

IRC is a protocol designed over a number of years (beginning in 1989) for use with

text-based conferencing. To facilitate group conferencing, IRC uses channels. A chan-

nel is a named group of one or more users who will all receive messages addressed

to that channel. The IRC protocol is based on a client-server model. Servers host

channels, provide the necessary message multiplexing, and manage channels by keep-

ing track of the channel members. Multiple servers interconnect with each other in a

spanning tree architecture. Further details of the IRC architecture are described in

RFC 2810 and other RFCs referenced from it [14].

2.1.1 Pros

IRC provides a virtual meeting place where people can meet and talk. Group discus-

sions can occur at varying levels of interest and depth on one of the many thousands

21

of IRC channels. People can also talk in private to family or friends.

2.1.2 Cons

Technical Disadvantages -

Scalability - IRC requires each server to have a copy of the global state infor-

mation; all servers must know about all other servers, clients, and channels,

and information regarding them must be updated as soon as it changes.

This is a serious handicap, which limits the maximum size an IRC network

can reach.

Reliability - The only network configuration allowed for IRC servers is that

of a spanning tree, so that each link between two servers is a serious point

of failure.

Network Congestion - A problem related to the scalability and reliability

issues, as well as the spanning tree architecture, is that the protocol and

architecture for IRC are extremely vulnerable to network congestion, espe-

cially during link failure between two servers: if congestion and high traffic

volume cause a link between two servers to fail, not only does this failure

generate more network traffic, but the reconnection (eventually elsewhere)

of two servers also generates more traffic.

Privacy - Since servers need to know all information about all other entities

(both local and non-local users), privacy is also a concern.

Social Disadvantages -

IRC has become a way for people to "hang out" with others on the Internet.

Getting help usually takes a back-seat unless one joins a specific channel for

help started by some company or organization wishing to provide chat-based

support. However, a large number of special channels makes it harder to reach

everyone who might have some related information to share.

22

Another disadvantage is that if a user wishes to seek information, he/she must

first find a channel that already has online users. The search process is often

non-intuitive, because it is hard to match interests to channel names. Also, it

can be hard to grab attention in a busy channel.

There is also very little personalization in common channels. Discussion in

public is easy, but it is much harder to form a coterie. Of course, one can set

up his/her own new channel and then hope that interested people join it, but

the difficulty of finding this new channel creates a barrier to entry. There is no

automated mechanism to get invitations for new channels. Thus, it is usually

the case that users just join existing channels that they know have lots of people.

Last but not least, the busiest channels always have some people who, over

course of time, begin to assume authoritative command over any ongoing dis-

cussion. Channels can have moderators, who can decide to kick out or ban

specific users. Moderation is often useful to get rid of spammers, but it can

turn into a power struggle.

2.1.3 Summary of Issues

In summary, there are various technical and social issues with IRC. Some of the

technical issues include ineffective advertisement of a channel's existence, difficulty

in finding interesting channels and the number of people each channel has, and diffi-

culty in controlling content (moderation vs. spam). The social issues for help-based

channels include difficulty in getting an optimal number of participants-too many

leads to noise, while too few means very low chance of getting help.

The social disadvantages of IRC are shared by group chat services provided by

proprietary IM networks such as MSN or AOL, which are, in essence, functional

replicas of the older IRC system.

23

2.2 Newsgroups

The help page of "Google Groups" [11] has a short history of newsgroups. To get

an idea about newsgroups, we quote a short paragraph from there - "Before the

Web and web browsers, and before email became ubiquitous, online communication

meant posting text messages on electronic bulletin boards where others could read

and reply to them. Usenet began as a collection of these bulletin boards (now called

discussion forums or newsgroups) started in 1979... Over the years, the number of

such newsgroups has grown to the thousands, hosted all over the world and covering

every conceivable topic about which humans converse."

Each newsgroup contains threads made up of messages (also referred to as "arti-

cles" or "postings") that look like e-mail between one user and another, but can be

read by anyone accessing that particular newsgroup.

2.2.1 Pros

A newsgroup is identified by its name, which can be thought of as a category. There

are more than 70,000 newsgroups (i.e., categories) to choose from for participating

in email-like discussions. The categorization is hierarchical, and there can be an

arbitrary number of levels. Most widely used newsgroups are at level 3 or 4 (e.g.,

comp. os . linux. redhat). This rich hierarchy simplifies the selection of a newsgroup

based on very specific interests.

Most newsgroups maintain a list of frequently asked (answered) questions called

FAQs, which can contain a wealth of information for newcomers. FAQs are period-

ically updated with the most commonly asked questions and answers seen on those

particular newsgroups.

Searchable newsgroup archives are maintained on Google and other search engines

for easy access to all the messages. This is a very useful feature, and often many

answers can be found by simply searching these archives.

24

2.2.2 Cons

The most important disadvantage of newsgroups is that they do not provide instant

communication. Newsgroup postings have a high latency because they are character-

ized by long messages that readers read and respond to like e-mail.

Another disadvantage is that it is very easy to spam newsgroups and hard to filter

it. The problem of spain is greater in newsgroups than in IRC, since IRC moderators

can ban the spammers. Although there are moderated newsgroups, the vast majority

are not, making it relatively easy for spammers to fill them up with messages that

none of the subscribers care about.

While there is incredibly valuable information available in the discussions taking

place on newsgroups, finding that information can be an exercise in frustration and

futility despite searchable archives available through Google. Searching takes time,

and it is often the case that one might find related information, but not quite a

solution to the exact problem one started the search with. In such cases, having a

form of instant communication is highly desired.

Creating new newsgroups can be a very lengthy process, and requests can be

rejected. Generally, a newsgroup creation request is made via a special message

that asks news server administrators everywhere to create the group locally on their

servers. Specific rules for requesting the creation of newsgroups are available on-

line [23].

2.2.3 Summary of Issues

The biggest disadvantage of newsgroups is the lack of real-time communication. News-

groups are good for asking questions that do not require an immediate response or

that are characterized by long messages requiring careful thought and analysis. Other

issues with newsgroups include excessive spam, and a very lengthy process for creating

a new category.

25

2.3 Zephyr

Zephyr [30] is Athena's [21] text-based communication system for sending instant

"zephyrgrams" (short text messages) among users. Zephyr also provides a centralized

means for finding users' locations while they are logged in, and it allows fast message

service (on the order of a few seconds) from a single sender to multiple recipients.

2.3.1 Pros

Apart from instant messaging, Zephyr's benefit is in its simple publish and subscribe

system. Users may elect to subscribe to specific classes, which allow them to receive

any messages that are sent to those classes. Classes are similar to IRC channels. A

secondary level of classification called instances is also provided. Users may subscribe

or send messages (publish) to specific instances within a class. A class and an instance

together provide a two-level hierarchical naming system.

2.3.2 Cons

Zephyr's use of Kerberos [19] for user authentication severely limits its deployment to

a few select colleges and organizations that currently use Kerberos authentication. A

world-wide deployment is harder, since it involves setting up both Zephyr servers as

well as Kerberos servers. In addition, Zephyr lacks a purely distributed architecture;

servers must stay in contact with one another and provide a reliable backup system

(via duplication) in the event of network failures. Thus every server replicates the

entire subscription database.

Zephyr was designed for small communities, so no filtering or anti-spain mecha-

nisms are built into the servers. It is relatively easy to flood or spam a given class or

instance.

While Zephyr facilitates group communication, it makes it hard for the partici-

pants to know who else is listening to messages sent to a particular class or instance.

This gives rise to "lurkers" who listen to all messages but do not participate in the

26

conversation. Thus, Zephyr lacks the notion of a group conference where the partici-

pants are visible to each other.

Another drawback is that it does not provide off-line messaging. Messages sent

to offline users are discarded.

Also, the level of classification is limited by two keywords, one word indicating a

class name, and the other indicating a particular instance within that class. While

sufficient for small communities, this granularity is very coarse (compared to news-

groups), which makes it hard to cater to the varying topics of interest on the wide

Internet.

Last but not least, Zephyr requires that the person sending a message know the

exact name of the class and instance. This works well as long as the number of classes

is small. For a richer categorization, the size is simply too large to expect an end-

user to scan and select categories. An automated mechanism for category selection

is much desired, as envisioned in the Freebrain system.

2.3.3 Summary of Issues

In spite of the similarities that Zephyr has with Freebrain, it has several drawbacks.

Zephyr lacks important functionality such as group conferencing with visibility of

participants. More importantly, Zephyr does not provide for an automated category

(class/instance) selection. While this does not pose a problem within small commu-

nities, it will have the same issues as IRC if it is deployed on the wide Internet. Other

issues include lack of off-line messaging and secure one-to-one messaging.

2.4 Other related work

Various search websites exist on the Internet like AskJeeves.com [2], that provide a

web-based interface for asking a question and return results by searching a large col-

lection of resources. AskJeeves also has a web-based forum where someone can can

post a question and others can post answers, similar to newsgroups. The main disad-

vantage with such websites is the lack of real-time communication as in newsgroups.

27

28

Adde parvum parvo magnus acervus erit.
(Add little to little and there will be a big pile.)

- OVID

Chapter 3

Design

3.1 Introduction

In this section we discuss in detail the design of Freebrain, the accompanying re-

search issues and challenges, the rationale that went into certain design choices, and

advantages and disadvantages of the overall architecture.

3.2 Design Challenges

Designing a system for instant group communication on the wide area Internet presents

several challenges:

Category Namespace - Since the goal of the system is to allow any user to ask

any question, and to receive an answer, routing questions effectively requires a

reasonably-sized namespace for the categories. With too large a namespace, the

probability of any two users subscribing to the same category is close to zero,

thereby defeating the primary goal of Freebrain, viz. bringing together people

with common interests. With too small a namespace, users may be inundated

with many questions that may not be of high interest to them. Thus, creating

an appropriate namespace for message routing is very important to the success

of Freebrain. We have chosen a public and open namespace provided by the

29

Open Directory Project (ODP) [24] used by some of the most popular web

search engines including Google [10], Netscape Search, AOL Search, Lycos, and

HotBot. The benefit of using the categorization of ODP as opposed to creating

a new one is that it is updated periodically and is widely used in search engines.

Easy access to the data from ODP was also an important factor that won over

alternative choices such as using the newsgroups categorization.

Category selection - Given an appropriate namespace, the next challenge is match-

ing a user's question with a set of matching categories. We do not directly tackle

this challenge of natural language processing in the research for this thesis. In-

stead, we focus on a modular design so that our naive category selection module

can be easily replaced with a smarter one. The algorithm currently used for

category selection (using the full-text indexing capabilities of MySQL [22]) is

sufficient and fairly powerful. We describe the details in Section 4.2.1.

Load balancing and fault tolerance - Centralized vs. Decentralized - In

principle, load balancing and fault tolerance can be achieved by either a cen-

tralized architecture or a decentralized architecture. In practice, a centralized

architecture only makes sense if the system is supported by a well-funded or-

ganization that can maintain a large set of machines in order to achieve the

necessary load balancing and fault tolerance. A decentralized approach shifts

control from a central authority to a wider audience. To facilitate open ex-

change of information, it is generally considered best to avoid control by a

central authority that can dictate the flow of information [4]. Achieving load

balancing and fault tolerance in a decentralized system is considerably more

difficult and challenging than in a centralized approach that uses a server farm

or a large cluster of machines [12]. For that reason, a decentralized system poses

more interesting research challenges. The two approaches present an interest-

ing trade-off between cost of deployment and performance. While a centralized

architecture (e.g., all the popular web search engines) requires high set-up cost,

it also assures very high performance. A decentralized approach, on the other

30

hand, requires practically no set-up cost, but may come with a hit on perfor-

mance. We chose the decentralized approach for the following reasons:

" Freebrain must not be controlled by a central authority.

* We wish to avoid a central point of failure that can potentially bring down

the entire Freebrain network.

" It should be easy to grow the Freebrain network by allowing users to par-

ticipate as in a peer-to-peer network like Gnutella [9]. A larger network

also means the system can effectively cater to more users, since each new

participant brings in more processor power and storage space.

Network bandwidth - Achieving efficient message delivery - With poten-

tially thousands of users, it is essential to have efficient message delivery for

invitations. The simplest option of sending unicast invitations to each invitee

has clear limitations on performance and bandwidth. A multicast algorithm

that takes into account geographic distribution and network latencies of invi-

tees would be the best in terms of performance and bandwidth [20], but it would

be overly complex for the purpose of an initial demonstration of Freebrain. The

principle we follow is to use a simpler and relatively sufficient multicast algo-

rithm that can easily be replaced by a more complex one, if the need arises. We

discuss our approach in Section 3.5.5.

Scale - Achieving Internet-wide group communication - As we discussed in

Section 1.2, one of the goals of Freebrain is to allow Internet-wide instant mes-

saging to the seekers and sources of information. We expect Freebrain to serve

anyone in the world. The challenge is to maintain a single global Freebrain

network that allows anyone to join it as a client (user) or a server (node) and

contribute "knowledge" or "resources" to the system. Choosing a decentralized

and distributed approach allows our system to be highly scalable. Our system

achieves scalability by using Chord [29] for distributing subscriptions, and by

using Jabber [15], a distributed and scalable, instant-messaging platform. We

discuss these components in Sections 3.3.3 and 3.5.3.

31

3.3 Design Choices

In this section, we elaborate on some of the choices we had among existing instant

messaging or group communication systems, the distinguishing characteristics of Free-

brain over those systems, and the criteria we used to select Jabber [15] as the instant-

messaging module in our design.

3.3.1 Improvement over IRC

The idea of instant group communication was first made popular by IRC. Hence, it

may appear that we can use IRC as a substrate to add the new Freebrain functionality.

However, as discussed earlier in Section 2.1, IRC has various technical pitfalls, and

thus we chose not to modify IRC to incorporate Freebrain concepts. Our goal was to

provide a scalable network, which IRC fails to achieve.

In terms of functionality, Freebrain improves on IRC by providing personalized

group communication. In IRC, the seeker has to join an existing chat room whose

participants may be already engaged in conversation, and hence, often has to find ways

to draw attention to his query. In contrast, a Freebrain conference (similar to an IRC

channel) is created dynamically based on the inviter's question, and invitations are

sent out to join that conference. The inviter can easily be given control (moderator

status) since the conference is created dynamically at his request and others join it.

3.3.2 IM Substrate

Since we ruled out IRC, we explored the next alternative, instant messaging (IM)

networks. We favored an IM platform as a substrate since it is a more popular and

prevalent environment for messaging today (e.g., Yahoo! Messenger, AOL Instant

Messenger, and ICQ). However, we could not use any proprietary IM network, since

we needed to add new functionality.

Jabber [15] is an open-source IM platform. It became our system of choice since

it did not have the shortcomings of an IRC network, but still provided instant group

32

communication. Apart from being open-source, Jabber provides features (described

in Section 3.3.3) that make it easier to implement our ideas.

Although Zephyr (which is also an IM system) is a potential substrate for Free-

brain, it has several deficiencies. In particular, it lacks several features that are

already provided (or easily implementable) in Jabber. Some of these features include

off-line messaging, filtering, spam control, secure SSL-based messaging, PGP-based

encryption, and non-textual data transfer.

In terms of functionality, Freebrain can be considered an extension of Zephyr

that pays attention to automated messaging without requiring manual specification

of class and instance names. Freebrain is also an extension of newsgroups that offers

real-time messaging while still providing the benefits of interest-based discussions.

3.3.3 Jabber Features

Jabber is an open, XML-based protocol for instant messaging, which is managed by

the Jabber Software Foundation [15]. An open-source server implementation of the

protocol (called jabberd [16]) is available as are a number of clients for practically all

OS platforms. Jabber servers run independently in a decentralized and distributed

manner and provide robust, XML-based message routing between each other similar

to the email system. Some of the important features of Jabber are:

e Users are associated with the particular Jabber server they register with and

log in to. This provides a mechanism for a globally unique Jabber ID, as in the

email system (viz. usernameOhostname).

e In order to send an instant message to another Jabber user, the sender simply

constructs an XML message that contains the Jabber ID of the receiver and the

sender, the message type1 , a subject tag, and a body tag. A sample message

may look like:

'The "type" attribute allows clients to determine how to display a message. For instance, a
"chat" type indicates that multiple messages of this type should be displayed in the same window,
while a "normal" type indicates a new window should be created for each message.

33

<message type='normal) to='kalpak@localhost' from='me@1oca1host'>

<subject>test</subject>

<body>hi there</body>

</message>

" Users can start a group conference to chat with other users by inviting them

manually. Note that this requires the inviter to know the Jabber ID for each

invitee and to send each invitee a message.

" Jabber provides the ability to add special server-side components or "proxy"

modules called transports to a server. Messages specially addressed to a trans-

port get routed by the Jabber server to the specified transport. The transport

can interpret the message and respond accordingly. The main motivation for

transports was for adding interoperability between Jabber and the various pro-

prietary IM systems. For instance, many on-line Jabber servers have transports

for AIM, Yahoo! Messenger, and MSN. This allows Jabber users to communi-

cate with people on proprietary networks using the same Jabber client. The

"transport" feature of Jabber is used in Freebrain to proxy messages from Jab-

ber clients (end-users) to the Freebrain network. Further details of the Freebrain

transport are described in Section 3.5.5.

* Jabber provides the ability to log messages on the server in a given group

conference. The log can be made available on the web similar to newsgroup

postings, or IRC chat logs.

" Unlike proprietary IM systems, Jabber's protocol is well documented and pro-

vides for extensibility through its use of XML for all messaging. Moreover, its

modular architecture allows developers to easily add voice interfaces, automated

agents, filtering mechanisms, etc.

34

3.4 Freebrain Features

This Section describes the set of features of Freebrain. The focus here is on desired

functionality. The design details of how we provide these features are in Section 3.5.

Specific implementation details are deferred to Chapter 4.

Dynamic conferencing - with dynamic conferencing, a user is not required to

have a priori knowledge of the intended recipients (or classes and channels as

in Zephyr and IRC) in order to ask a question.

Category subscription - we allow users offering help to subscribe to their inter-

ests (in Freebrain terminology: category list). This forms the basis for dynam-

ically routing a question to a matching target audience.

Category namespace - we allow a rich and open categorization to which users

can subscribe. Rather than having all categories created by end-users (a system

that can easily be abused), we use the ODP categories to achieve a common

namespace. There are currently over 426,000 categories, all organized in a hier-

archical structure. We call the categorization open, since the ODP is an open

project and interested people can volunteer and participate in the maintenance

of the category list. Members collaborate to add new categories. Since creat-

ing new categories in the ODP may be cumbersome, end-users are allowed to

temporarily create new categories within the Freebrain system. Two or more

users can mutually agree on a unique category name and subscribe to that cat-

egory, thereby modifying the category namespace 2 . This feature is similar to

that provided in Zephyr.

Sending invitations - the Freebrain network allows a user to invite people or send

messages to databases based on interests (categories) in real-time. Invitations

are sent out based on categories that match the content of the inviter's question,

2 While adding and subscribing to new, non-ODP categories is possible, the current implementa-
tion does not support routing questions based on these categories (but it can easily be added). This
will allow Freebrain to provide functionality similar to Zephyr-allowing communities to directly
exchange messages, by-passing the automatic category selection.

35

thereby providing a high probability of bringing together those with common

interests. Details of the automated category selection are in Section 4.2.1.

Instant group communication - people that receive invitations can elect to have

a group discussion with the inviter by entering a conference (chat) room, which

is dynamically created for that particular question. People can also choose to

simply ignore the invitations. Invitees that are on-line databases may either

elect to join the conference or directly respond to the inviter. We also provide a

feature that allows non-invitees to join a particular discussion of interest. This

is achieved by allowing users to browse the list of on-going discussions via a

web-based interface.

Further desired features that would add more value to Freebrain include a search-

able history of conversations similar to newsgroup postings or mailing lists, integrated

web searches, and location-based routing to restrict messaging to smaller domains.

Another useful feature would be a user rating system that allows an inviter to gauge

the quality of an invitee. These features are detailed further in Section 5.4 discussing

future work.

3.5 Freebrain Architecture

So far, we have discussed some of the choices we made in designing Freebrain. We now

discuss the architecture and rationale, as well as the functionality of each module.

3.5.1 Overview

The Freebrain architecture consists of the following modules (see Figure 3-1):

* Lookup primitive (Chord Key Router) - provides the basic framework

to create a self-configuring, peer-to-peer network of Freebrain nodes.

" Freebrain Server - maintains category listings and user subscriptions. Mul-

tiple servers collaborate to maintain subscriptions in a distributed and fault

36

Front-end exposed to client, provides
instant-messaging interface to end-users

Provides Freebrain agent to end-user,
handles group conferencing,

e Tr serves as proxy to collect information
from Freebrain servers

Stores categories and subscription lists,
performs question c=category mapping,
exposes a simple API to add/remove
subscribers, locate other nodes

Provides lookup primitive that
enables Freebrain servers to

U.L distribute subscription lists and
locate other nodes

Figure 3-1: Freebrain Architecture - Module Functions

tolerant manner using the lookup primitive, Chord.

* Jabber Server - provides the instant-messaging service accessible to end-

users. Multiple servers can exchange messages to provide a distributed and

decentralized instant-messaging platform. Jabber is an existing IM platform;

its features are described in Section 3.3.3.

" Freebrain Transport - module within each Jabber server that acts as a

proxy to access the functions of a Freebrain server from within Jabber. The

transport receives a user's question, uses the Freebrain network to determine

the invitees, and sends out invitations. It also provides the necessary group

conferencing capabilities.

In addition to the aforementioned server-side modules, a Freebrain/Jabber

Client provides a GUI interface for an end-user to ask questions, receive invitations,

and initiate conversations to exchange answers. The client can be any regular Jabber

IM client with some added functionality for Freebrain's Q&A mode of messaging.

37

Thus, Freebrain has a layered and modular architecture. Every machine that

wishes to participate as a server in the Freebrain network must run at least the lower

two server-side modules, namely, the Freebrain server and the Chord key router. The

Freebrain server exposes its functionality via TCP sockets so that a Freebrain trans-

port can access it from another machine. However, typically we expect participants

to run all four modules together on the same machine, since that provides the best

performance (in terms of network latencies), and it does not require any knowledge of

the remote Freebrain server's IP address. The Freebrain transport runs as a plug-in

module within the Jabber server, and it interacts with the local Freebrain server via

local TCP (or UNIX) sockets.

3.5.2 Layering Rationale

The 4-layer modular architecture achieves maximum decoupling among the modules.

The order is shown top-down from a client's point of view. The Jabber server for

IM is the top-most module in our design. Clients need only connect to a Jabber

server in order to use the Freebrain services. All other components are abstracted

away from the user. Jabber's own modular architecture provides us with several

benefits. A Jabber server is easily extensible via its use of server-side components

such as transports. As a result, adding a Freebrain transport module was easy given

our choice of Jabber. An alternative design would have the Freebrain transport and

(Freebrain) server merged into one module. However we decided against it, since

the chosen design provides maximum decoupling between the front-end messaging

service and the Freebrain features for categories and subscriptions. First and most

importantly, if a Freebrain server crashes, it does not affect the Jabber server, which

can continue to provide regular instant-messaging service to its users. Secondly, the

design allows us to be Jabber agnostic. While Jabber fits the bill with its features

and its extensible protocol and architecture, if a better IM platform emerges, we can

easily switch to that because of the decoupling.

Thus far, we have reasoned about the top three modules, i.e., the Jabber server,

the Freebrain transport, and the Freebrain server. One could argue that the lookup

38

primitive module should really just be part of the Freebrain server. However, it

is intentionally kept separate for the same reasons, i.e., to maintain maximum de-

coupling from the various off-the-shelf components. Chord is used for the lookup

primitive since it exposes a very simple API and makes theoretically sound guar-

antees about fair distribution [29]. In addition since it is being developed at MIT

within LCS's NMS and PDOS groups, it was easy to incorporate. Since various other

systems use Chord as a lookup primitive, it runs as an independent service daemon.

A Freebrain server accesses the Chord service via a small network-based gateway

program. Another benefit of abstracting away the Chord lookup functionality from

the Freebrain server via a network interface is the ability to replace Chord with an

alternative lookup algorithm without requiring any changes in the server.

Having discussed the layering strategy, we now delve into details of the individual

functions of each module. We begin with the bottom-most module and move up the

module stack since each higher module depends on functionality of its lower one.

3.5.3 Chord Key Router

This module provides the basis for achieving a distributed network of Freebrain

servers. Chord is a peer-to-peer lookup algorithm developed at MIT LCS. It solves

the problem of locating a data item in a collection of distributed nodes. In particular,

it provides a primitive such that given the "key" of a piece of data (a 160-bit hash

of the data), it returns the IP address of the node responsible for that "key". We

use a prototype version of the Chord algorithm's implementation developed in the

PDOS group. A Chord client (or equivalently, server, since this is a flat peer-to-peer

network) runs as a daemon on a given machine and can join an existing network of

Chord peers using a simple bootstrapping mechanism. A Chord client provides a

simple yet powerful API that allows us to build peer-to-peer applications. Freebrain

specifically uses two methods from the API, getNode and getBackupNodes.

The specifications for the two methods are as follows:

* getNode(key) - Given a valid key, queries the Chord network and returns the

39

IP address and port of the node that is responsible for that key.

* getBackupNodes(key, address:port, maxnum) - Given a valid key and

the IP address and port of its responsible Chord node, returns the IP addresses

and ports of maxnum number of backup nodes.

Using these two methods, Freebrain servers can achieve the goal for decentralized

distribution of subscription lists. Chord makes several desirable guarantees that we

can leverage upon:

" It is completely decentralized and symmetric, and can find data using only log N

messages, where N is the number of nodes in the system.

" Chord's lookup mechanism is robust in the face of frequent node failures and

re-joins.

In our design, the keys are based on the names of categories. The way a Freebrain

server uses the Chord Key Router API is detailed in the next section.

3.5.4 Freebrain Server

This module is the heart of the Freebrain concept, interest-based group communica-

tion. An individual Freebrain server maintains subscription lists of several categories,

which can be dynamically updated through a simple network-based API. The server

uses a local database to permanently store valid lists of categories and maintains a

soft-state list of subscribers for a subset of the categories. It exposes a simple API

via TCP sockets with the following functionality:

Functions accessible to other Freebrain servers (or transports) -

" SUBSCRIBE(catname, username) - adds username to user list of category

catname.

" UNSUBSCRIBE(catname, username) - removes username from user list of

category catname.

40

* GETUSERS(catname) - returns all usernames from user list of category

catname.

Functions accessible only to local Freebrain transport

" LOCALSUBSCRIBE (catname, username) -calls getNode (catname) 3 to find

responsible server and sends SUBSCRIBE(catname, username) to it 4 .

" LOCALUNSUBSCRIBE(catname, username) - calls getNode(catname) to

find responsible server and sends UNSUBSCRIBE(catname, username) to

it.

" LOOKUP (catname) - calls getNode (catname) in local Chord key router and

returns <host, port> of the responsible server as the result.

* QUERY(question) - first performs lookup of words in question in local

category database to find matching categories, and then for each category,

determines responsible server using getNode. This function returns a list

of <catname, host, port>.

Using this API, Freebrain servers can collaborate to maintain subscribers of cat-

egories in a distributed manner. For instance, in order to subscribe a user to a

particular category, a Freebrain transport need only send a LOCALSUBSCRIBE message

to its local Freebrain server. Where the subscription is actually stored is abstracted

away from the transport. If necessary, the transport can verify that the subscrip-

tion was stored by using LOOKUP (catname) to find the responsible server and calling

GETUSERS (catname) on it. Specific details on how we achieve fault tolerance are dis-

cussed in Section 5.3.1. The way a Freebrain transport uses the Freebrain server API

is detailed further in the next section.

We note that in subsequent sections, we use the term Freebrain node to refer to

a Freebrain server along with its Chord key router. We use the term node since the

Freebrain servers essentially form a peer-to-peer network using a Chord substrate.

3This is actually the chord ID of catname. The function call for converting catname to a Chord
ID is not shown here for brevity.

4 Note that this does not take into account replication, which can be achieved using getBackupN-
odes. We discuss how to achieve replication in Section 5.3.1

41

3.5.5 Freebrain Transport

This module serves as the main integrator between the Freebrain nodes and Jabber

servers. It combines vanilla instant-messaging with interest-based group communica-

tion.

The Freebrain transport provides the following functionality:

Group Chat/Conferencing - this provides the necessary functionality to host

multi-user chat, aka a group chat or conference. We use a modified version

of the "conference" server-side component that comes with the standard Jab-

ber distribution. The original component allows users to create chat rooms

and manually invite other users to it. Our modifications incorporate Freebrain

functionality that allows automated invitation based on categories.

Automated invitations - when the Freebrain transport receives a question from

an end-user, it performs the following steps:

* creates a new conference room for this question.

" sends an invitation to the inviter to join this new conference.

* calls QUERY(question) on its local Freebrain server, which returns the

names of matching categories and their responsible Freebrain servers (see

Figure 3-2).

* for each category, connects to the responsible Freebrain server, issues a

GETUSERS (catname), and gets back a list of subscribers (see Figure 3-3).

" groups subscribers that use the same Jabber server and, for each such

group, forwards an invitation to the Freebrain transport running on that

server containing the question, the list of categories, the list of subscribers

and the name of the conference room. The categories are included to

allow invitees to view them along with the question. The Freebrain trans-

port that receives such a forwarding invitation sends invitations to each

subscriber to join the newly created conference (see Figure 3-4). This

mechanism is detailed further in Section 4.3.

42

1. find matching categories

question

QUERY(question)I find categories
(full-text search)

matching categories:
catnamel, catname2, .

Figure 3-2: Automated invitation - Find matching categories

2. find subscribers

pGETUSERS(catname1)
GETUSERS(catname2)

Freebrain Server

Freebrain Server ,-

Freebrain Server

getNode
(catname)

Figure 3-3: Automated invitation - Find subscribers

3. Forward invitations

Jabber Cienv

for ward d_

FrFrerbra TrTrnspprt

Figure 3-4: Automated invitation - Forward invitations

43

Access via a Freebrain user (agent) - one feature of Jabber is that any server-

side component such as a transport can be made accessible to the end-user as a

special Jabber ID where the hostname is a subdomain of the Jabber server. For

instance, if we run a Jabber server on jabber.net, we can serve the Freebrain

transport off the subdomain freebrain. jabber. net (the subdomain must be

resolvable by DNS to an IP address.) Users can simply add to their contact list

a Jabber ID of the form freebrainefreebrain. jabber. net and have access to

the Freebrain network. We refer to such a Freebrain user as a Freebrain agent.

Access to add/remove user subscriptions - this allows users to subscribe to

or unsubscribe from categories. The interface is quite simple and is used by

a web-browser based client that the end-user can use to maintain subscrip-

tions (see Section 4.4.2). The transport exposes a "subscribe" Jabber ID (say,

subscribe~freebrain. jabber. net.) In order to subscribe to a category, we

simply send an instant message with the subject "add" and the body con-

taining the name of the category. Similarly, to unsubscribe we use the subject

"remove". To retrieve current subscriptions, we send a message with the subject

"get". The transport will return a message containing the names of subscribed

categories.

Log invitations and conference messages for web-based access -this allows

both Jabber and non-Jabber users to access message archives of the Freebrain

network via a web-based interface. This includes invitations, conference mes-

sages, and the current conference status (open or closed). This both allows

a Jabber user to join an active conference and also allows any user to search

these message archives as they can newsgroup archives on Google Groups. In the

current design, these messages are archived on a central server mainly for per-

formance reasons. A distributed archival is certainly possible using the Chord

key router; however, the access time to the archives for an end-user would be

substantially slower since it would involve aggregating archives from multiple

servers. We discuss the method we used for logging in Section 4.3.

44

3.5.6 Jabber Server

This module is the standard Jabber server distribution. It provides the XML-based

IM platform. The important features of the Jabber server were already discussed in

Section 3.3.3. The Jabber server is the only module that is directly visible to an end-

user. The user requires a Jabber client to connect to the Jabber server. If the Jabber

server has a Freebrain transport, she can use the Freebrain network for interest-based

group communication by simply adding the Freebrain agent in her contact list. To

ask a question, she simply sends an instant message to the agent.

3.6 System Interaction

So far we have described the functions of each module in our system, and the reader

may already have a fair idea of how all the modules in the system interact with each

other. This section elucidates the interaction of an end-user with Freebrain.

Create new Jabber account - Using a Jabber/Freebrain client, an end user (say,

John) must first create an account on a Jabber server that has a Freebrain

transport, say jabber.net.

Add Freebrain agent - After account creation, John can add the Freebrain agent

to his contact list in his client. Jabber clients provide a feature to browse the en-

tire list of transports available on the connected Jabber server. This allows John

to find the Freebrain transport and add freebrainefreebrain. jabber. net.

Ask a question - When John sends an instant message (a question) to the agent,

the corresponding Freebrain transport handles it as described in Section 3.5.5.

John receives an invitation to join a newly created conference room. All online

users who are connected to the Freebrain network via their respective agents

and have matching interests (categories) receive an invitation containing the

question. These invitees can passively ignore the invitations or take action such

as joining the conference to discuss the question.

45

Join group conversation - Invitees that choose to join the conference room can

have a group discussion with the inviter (John) and help answer his question.

This is similar to the chat room environment in IRC, except the participants

are only those who are interested in answering the question, unlike IRC.

3.7 Integration with databases

So far we have discussed the architecture of Freebrain and discussed the scenario in

which a person asks a question and interested people join the conference to share

their knowledge. Our architecture also enables machines to share their knowledge.

We focus on databases that serve specific information, such as weather, email ad-

dresses, or calendar information. Given the Freebrain framework, a database can

share its knowledge by adding a front-end proxy that can speak the Jabber proto-

col to send and receive instant messages. Specifically, the front-end will subscribe

to particular categories that match the content of the database. For instance, a

weather front-end can subscribe to any category that contains the word "weather"

(e.g., Regional/North America/United States/Weather and all its sub-categories such

as .. ./By State/Massachusetts/Boston). Whenever a person asks a question such as

"What is the weather in Boston, Massachusetts?", the top-ranked matching cat-

egory would be the one that contains the words "weather", "Boston" and "Mas-

sachusetts", i.e., Regional/North America/United States/Weather/By State/ Mas-

sachusetts/Boston. Since the weather database is subscribed to this category, its

front-end will receive the question. Now the front-end can query the database and

return the result directly to the inviter.

As an additional feature, which isn't part of the current design, if the message that

arrives at a database cannot be mapped to an appropriate query, the front-end can

return to the inviter an XML template that defines the fields it can understand. The

inviter's client program can now dynamically generate a form based on this template,

and the user can fill in the appropriate information. Since instant-messaging is done

using XML, exchanging structured information is fairly straightforward.

46

In retrospect, another advantage of the Freebrain architecture is that it allows

scalable dissemination of automated information from databases to people. In this

case, everyone interested in getting a periodic update about the weather in Boston

can simply subscribe to the appropriate category. The weather database, in turn,

periodically publishes the weather information (by sending an instant message to its

freebrain agent), and the information gets appropriately routed to all the subscribers

by the Freebrain network. This provides a very powerful, yet simplified push mecha-

nism for routing information to subscribers using instant messaging.

3.8 Summary

In this chapter we have seen the modular, layered architecture of Freebrain, the

functionality of each module, and how the modules interact with one another to

provide a distributed and scalable framework for interest-based instant-messaging.

We also discussed and dealt with the following research issues:

Naming - We selected the public domain and open ODP categorization as the

naming system for categories.

Load balancing and scalability - We designed a distributed and decentralized

architecture built upon Chord and Jabber.

Network bandwidth efficiency - We achieved efficiency by grouping invitations

based on common Jabber servers and multiplexing at the edge of the network.

In the next chapter, we discuss the details of our specific implementation and

focus on the end-user interface, i.e., the Jabber/Freebrain IM client and the web-

based interface for viewing categories and searching message archives.

47

48

The reward of a thing well done is to have done it.
- Emerson

Chapter 4

Implementation

4.1 Introduction

In this chapter we describe specific implementation details of the Freebrain server

and transport, the two modules that constitute the bulk of our implementation. We

further describe the clients that end-users can use to take advantage of Freebrain.

4.2 Freebrain Server

As described in Section 3.5.4, an individual Freebrain server maintains subscription

lists of categories which can be updated via a network-based API. In our current

implementation, a Freebrain server listens on TCP ports 12346 and 12347. Remote

Freebrain servers or transports connect to port 12346 while the local transport con-

nects to port 12347. Data exchange occurs via the simple text-based API described

in the previous chapter. Our implementation uses a simple regular expression parser

to detect the commands from the API. This implementation is sufficient for a working

demonstration of Freebrain.

4.2.1 Category Selection

As described in Section 3.5.4, the Freebrain server uses a local database to perma-

nently store valid lists of categories. Our implementation uses a MySQL database.

49

The current version of MySQL, 3.23.36, allows full-text search capabilities on spec-

ified columns in a given table. We use this feature to perform our category selec-

tion. Our database has a categories table with two main columns, category and

description.

In order to populate this table, we use an automated script that downloads and

parses the current RDF dump [25] of the ODP categorization from the ODP web-

site'. We chose to populate our own database, as opposed to directly querying (using

HTTP) the ODP website or the Google Directory website, so we can implement novel

algorithms to find matching categories rather than depend on the results provided by

these websites. For example, Google and ODP only return the top one or two match-

ing results even if there may be several more related categories. In addition, directly

querying the remote website would involve parsing its HTML response, which may

have a different format if the web page layout is changed. Thus, we chose to populate

our own local database and use the original RDF dump, which is in a consistent,

structured XML format.

When the Freebrain server receives a QUERY(question) message, it performs a

full-text search of question in the categories table and picks the n results with the

highest matching scores. In the current implementation, we limit n to 5. Although

a larger value of n may increase the target audience (since more categories will likely

have more subscribers), it results in a noisier set of categories with lower match-

ing scores and hence may cause the question to be forwarded to the wrong people.

Some careful analysis of how many matching categories to select may be necessary

to optimize quality over quantity, but we leave this as a task for future work. More-

over, the next version of MySQL will be equipped with more flexible full-text search

capabilities, which can improve the quality of our selection.

'The RDF dump is updated on the ODP website once every two weeks.

50

4.2.2 Integration with Chord

As described in Section 3.5, the Freebrain server is layered on top of the Chord service.

However, one issue arose in the implementation. The current distribution of Chord

only exposes an RPC-based API, and it uses its own version of asynchronous I/O,

RPC, and various other libraries that cause conflicts when compiling other programs

that use standard C++ STL templates with Chord. As a result, a simple layering

would require that the Freebrain server be built with the entire Chord distribution

(due to the various library dependencies), and it would also prevent use of standard

C++ libraries. This led us to add another module between the Chord service and

the Freebrain server. From a software engineering standpoint, not only did this

make implementation of the Freebrain server easier, it also gave us a cleaner design

abstraction. The new module, a "Chord gateway", connects to the local Chord service

using RPC and exposes the Chord API via TCP network sockets. It simply receives

messages on the TCP socket, issues the corresponding Chord RPC call, and relays

back the results.

4.3 Freebrain Transport

The implementation of the Freebrain transport was governed primarily by the Jabber

API and the existing group conference support. Some particular implementation

choices we made were:

Storing subscriptions on Jabber server - in Chapter 3, we discussed how a

user's subscriptions are distributed and maintained by the Freebrain servers,

with each server responsible for specific categories. In practice, we keep the

user's subscriptions not only on the Freebrain servers but also his Jabber server.

We do this for two reasons. First, if an off-line user remains permanently sub-

scribed to his interests, the next time he logs in, lie will be inundated with all

invitations that accumulated while he was off-line (since Jabber supports off-line

messaging). Since the primary role of Freebrain is to assist in real-time answers,

51

it is not desirable to send invitations to off-line users. Second, if we store sub-

scriptions only on Freebrain servers, there is no way for a Freebrain transport

to determine on which Freebrain servers a user's subscriptions are stored (short

of querying all Freebrain servers) and, hence, to notify them about the status

of the user (whether on-line or off-line).

For these two reasons, we implemented a two-stage process. Freebrain servers

maintain subscriptions for on-line users as soft-state, and the Jabber server

that a user connects to permanently stores his list of subscribed categories.

The Freebrain transport automatically subscribes (by calling LOCALSUBSCRIBE

on the local Freebrain server) the user to all his categories when he connects

to Jabber and unsubscribes him when he disconnects. An alternative to per-

manently storing the list of categories on the Jabber server is to store it on the

end-user's client. However, in the Jabber framework, all information (such as

the user's contact list or his message filters) is stored on the server-side since

clients are meant to be very light-weight and also to allow users to have access

to the same information irrespective of which client they use. As a result, we

use the same strategy and store category subscriptions on the Jabber server.

We note that since we have an invitation-logging mechanism, a user may always

use the web-based interface to scan any invitations he may have missed while

he was off-line. The two-stage process we just described simply prevents the

user from receiving too many stale invitations everytime he logs in.

XML-based invitations - since instant messages in Jabber are exchanged using

XML between clients and servers, we took advantage of this and designed our

invitations so that the content is well-specified using XML tags. In particular,

we specify the question in a <question> tag, the Jabber ID of the inviter in

an <inviter> tag, and the categories that the question was matched against

within a <categories> tag. Each category is specified as a nested <category>

tag. A <conference> tag contains the identifier of the conference room that was

created for this question. Invitees can join the conference using this identifier.

52

After an inviter sends a question to his Freebrain agent and the question arrives

at the Freebrain transport, there are two further steps of messaging - first from

the Freebrain transport to remote transports that host invitees, and next from

those remote transports to the actual invitees. The message structure at each

step is as follows:

* Between two Freebrain transports -

<message ... >
<body>

<question>question text</question>
<inviter>inviter id</inviter>
<categories>

<category>catname1</category>
<category>catname2</category>

</categories>
<users total=num._invitees>

<user>user1</user>
<user>user2</user>

</users>
<conference>confname</conference>

</body>
</message>

The additional <users> tag contains the Jabber IDs of the invitees that

the remote transport must forward this invitation to. This tag has an

extra attribute "total", which indicates the total number of invitees to

which the invitation is being sent. This is the sum total of all invitees,

not just the ones listed in the <user> tags. This information allows each

invitee to learn how many others received the invitation, and can help them

determine whether they should consider joining the conversation with the

inviter.

* From a Freebrain transport to an invitee -

<message type='freebrain' ... >
<body>

<question>question text</question>

53

<inviter>inviter id</inviter>

<categories>
<subscribed>

<category>catname1</category>

</subscribed>

<unsubscribed>

<category>catname2</category>

</unsubscribed>

</categories>

<invitees>numinvitees</invitees>

<conference>confname</conference>

</body>

</message>

One difference in this message is that we do not include the <users> tag,

and we substitute the value num.invitees in an <invitees> tag instead.

More importantly, we separate the categories associated with the question

in two subsets, those to which the invitee is subscribed and those to which

he is not. We can do this because this message is forwarded to the invitee

by the Freebrain transport that has access to his permanently stored sub-

scriptions. The two subsets can help the invitee learn of categories that

he could possibly subscribe to since they will likely be of similar inter-

est. Also, we use a special value, "freebrain", for the type attribute of

message. This allows a Jabber/Freebrain client to detect that this is a

special Freebrain message (an invitation) and in turn specialize the GUI

for such messages. We give details of the GUI in Section 4.4.1.

Logging questions and conversations - while instant messages are useful to get

across to people in real-time, the system we described so far is ineffective with-

out the most useful feature of newsgroups, message archival. We have imple-

mented a simple message logging mechanism that allows anyone to browse the

list of questions and conference (conversations) logs via a web-browser. The

feature is implemented using Jogger [18], a Jabber-enabled web-log program.

Jogger runs as a server-side component and logs any messages that are sent

54

to it (e.g., if Jogger has the subdomain jogger. jabber.net, messages sent to

<anyuser>@j ogger. jabber .net get logged). Currently, all Freebrain servers

are configured to send a copy of the questions and conference messages to one

central Jogger service. Jogger maintains messages in a MySQL database, and

the data is accessible via a PHP [26] script. While the current single Jogger

service may pose a bottleneck problem, it is less of an issue since the purpose

of it is archival and not real-time messaging. Moreover, Jabber has a built-in

queuing mechanism, so bursts of messages can be easily handled. We discuss

possible solutions for decentralizing this logging service in Section 5.4.

4.4 Freebrain Client

The Jabber/Freebrain client is the most important part of the system from an end-

user's point of view. A user with a standard Jabber client can easily use the Freebrain

network to ask or receive questions and join a conference. However, the number of

questions received can quickly escalate as the number of Freebrain users increases,

thereby making current forms of displaying messages (as individual pop-up windows or

as raw text messages in a single chat-style window) fairly inadequate. One advantage

of Freebrain's design is that interested developers can easily add specialized Freebrain

functionality (e.g., for display) to existing Jabber clients. We developed a small

prototype extension to a commonly-used Linux-based GNOME Jabber client called

Gabber [6].

We believe a Jabber/Freebrain client should have the following important func-

tionality:

" Conferencing - it must have support for conferencing (group chat) similar to

IRC clients. Good Jabber clients already have this functionality built in.

* Invitations Viewer - a simple window interface that can list all incoming

invitations in a tabulated manner and allow the user to select an invitation,

view the details, and join the conference room corresponding to that invitation.

55

Advanced features would include the ability to sort and group invitations based

on categories, search through them, and delete them from the viewer.

4.4.1 Gabber

The wide availability of clients on multiple platforms is one of the key benefits of

having selected Jabber. We selected Gabber as our Jabber client since it is a popular

and open-source, Linux client. However, it is not cross-platform, and it will be nec-

essary to modify other clients 2 so that Freebrain features can be widely available to

users of all OS platforms, especially Windows and MacOS.

<kalpak> how do i use this?
-dreebrain> No matching categories
<kalpak> what is the weather in boston, MA?
<kalpak> I would like to know about the history of
s an skrit

Figure 4-1: Gabber: (a) Main Window, (b) Chat with Freebrain

The basic look and feel of Gabber is shown in Figure 4-1. The first image shows

that an end-user has added a Freebrain agent to his contact list. The second image

shows that the interface for asking a question is simply the one provided in Gabber for

sending an instant message. An enhanced interface for asking a question could allow

a user to select from various options such as manually specifying a list of categories.

2We started to work with Psi [27], an open-source QT-based cross-platform Jabber client. How-
ever, Psi currently lacks group conferencing support. The author of Psi plans to add group confer-
encing support in the next release, and we plan to incorporate the Freebrain Invitations Viewer at
that time.

56

Figure 4-2: Gabber: Freebrain Invitations

However, for the purposes of a demonstration of the Freebrain architecture, the simple

interface currently provided in Gabber is sufficient.

The only addition we made to Gabber was a new Freebrain Invitations viewer

for displaying incoming messages of the type "freebrain". The viewer we have cre-

ated is merely one possible interface. Other GUI developers are free to write their

own specialized viewers. Our viewer is characterized by a table with 5 columns, as

shown in the screenshot in Figure 4-2. The columns are Question, Status, Categories,

Invitees, and Time. The contents of an incoming invitation are mapped as per the

correspondence between the column name and the XML tag name. The questions are

arranged in a two-level tree. We specify the first category from the <subscribed>

tag as a parent in this tree. All invitations with the same first category are grouped

under that parent. The purpose of the Status column is to indicate whether the con-

ference room associated with an invitation is open or closed. This feature is easy to

implement on the server-side since a conference room can simply send out a "closed"

status message to all the invitees similar to the manner in which the initial invita-

57

tions were sent out. The Categories column indicates two numbers-the number of

known (subscribed) and unknown (unsubscribed) categories. The Invitees column

indicates the total number of invitees, and the Time column indicates the time at

which the invitation was received. A text pane at the bottom provides further details

of a selected invitation, such as the names of all the categories and the name of the

inviter.

elWhere can i learn Sanskrit?

Where can I learn Sanskrit? b G p v a
- kalpakhas become available

kalpak> Are you looking for a book or an on-line reference? on
-s ijohn> on-line reference...

ckalpak> Have you tried searching Google?
4John> yes, but I only get links to dictionaries, etc..

nothing related to learning Sanskrit.i

ell, I can suggest books, but

Figure 4-3: Gabber: Group Conversation

To join the conversation, i.e., the conference room, associated with a selected

invitation the user simply double-clicks on the selection or clicks on the "Join Con-

versation" button (upper-left icon), which initiates the standard Jabber conference

join protocoln sJabs ID a new conference window. A sample subsequent group

conversation is shown in Figure 4-3.

4.4.2 Web-based interface

While Gabber provides the real-time instant messaging environment, certain other

important features are currently provided via a web-based interface, namely, the

ability to navigate the current category structure and add or remove subscriptions to

these categories. We have written a PHP script that allows a Jabber/Freebrain user

to log in using his Jabber ID and password. It then presents the user with a list of the

categories he is currently subscribed to, allowing him to unsubscribe from them. The

58

interface also allows him to search through all the available categories and subscribe

to the ones he wants.

On the back-end, the PHP script connects to the user's Jabber server and speaks

the Jabber XML-based protocol. Thus, adding or removing categories from the user's

subscription is simply a matter of sending a message to the subscribe Jabber ID of

the Freebrain transport (e.g., subs cribe~freebrain. jabber. net), as described in

Section 3.5.5.

As discussed in Section 4.3, a modified version of Jogger that allows users to view

or join conversations is also part of the web-based interface.

4.5 Summary

This chapter discussed the implementation details of the two main modules of the

Freebrain architecture, the Freebrain server and the Freebrain transport. It intro-

duced the various clients that end-users can use to access the features of Freebrain.

In particular, it discussed modifications we made to a Jabber IM client to aid the

display of invitations, and also described details of the web-based interface that allows

easy access to Freebrain conversations, similar to web-based interfaces to newsgroups.

59

60

In the pursuit of learning, every day something is acquired.
In the pursuit of Tao, every day something is dropped.

-The Tao Te Ching

Chapter 5

Results and Discussion

5.1 Introduction

This chapter discusses issues related to the design and implementation of Freebrain,

and it presents some preliminary results of our implementation. Finally, it makes

several suggestions for future work.

5.2 Results

The implementation of Freebrain is dependent on several existing components, espe-

cially the Jabber IM platform and the Chord lookup service. While it is important

to evaluate the performance of the entire system, we are aware that our initial im-

plementation is not geared towards high performance. Rather than quantify specific

details such as the number of messages each node can handle per second, or the num-

ber of subscriptions we can maintain on a given server, we evaluate our system by

focusing on the main modules and analyzing their basic performance.

First, we note that the initial implementation achieved the key goal of Freebrain-

creating a simple, intuitive interface for end-users to ask questions and have interest-

based conversations. Freebrain abstracts away the process of finding an appropriate

category (or channel, as in IRC), and not only brings together the benefits of instant

responses from peers, but also allows existing on-line services to provide results, via

61

the same IM interface. Thus, Freebrain acts as a universal access point for asking

questions and receiving answers in real-time.

5.2.1 Basic performance

Jabber Server - the relevant metric for evaluating the Jabber server is the number

of concurrent users it can handle. This translates to the number of concurrent

users that can send/receive messages using that server. The server is limited

by the number of socket connections possible on the particular system and the

GNU pth (Portable Threads) [8] (which the server uses for multi-threading).

For instance, on a standard Linux machine the limit is 1024 simultaneous socket

connections. There are currently efforts underway, in concert with the Open

Source Development Lab, to improve the scalability of the Jabber server [17].

Freebrain Server - the initial implementation of the Freebrain server is a sim-

ple, single-threaded event loop that blocks on all socket I/O calls. The most

resource-intensive API call of the server is QUERY, which involves a full-text

lookup against a MySQL database of approximately 426,000 categories. This

call blocks from anywhere between 1-4 seconds on an Intel Pentium-II 450MHz

machine. Since this is primarily a disk-intensive task, the lookup time should

not be too different on a faster CPU. However, since MySQL caches recent

queries, subsequent similar queries are significantly faster. All other delays

are accountable to network lag associated with locating and connecting to an-

other Freebrain server for (UN)SUBSCRIBE calls. However, we are guaranteed

by Chord that locating another node will take no more than O(logn) delay,

where n is the number of nodes in the Freebrain network [29]. Since the server

is single-threaded and it blocks on every socket call, other users must wait till

it finishes servicing one entire request (be it QUERY or (UN)SUBSCRIBE).

Naturally, to increase performance perceived by users, we should move to a

multi-threaded or asynchronous I/O architecture for the Freebrain server so we

can handle simultaneous connections like the Jabber server.

62

Freebrain Transport - since the Freebrain transport runs as a server-side mod-

ule within the Jabber server, it benefits from the multi-threaded architecture

and can handle simultaneous connections. Thus the only limiting factor in its

performance is the fact that it relies on the single-threaded Freebrain server.

Forwarding invitations - our system is quite efficient in forwarding invitations

as it distributes the load towards the edge of the network. Thus, the number of

invitations that a source Freebrain transport has to send out only grows as the

size of the network (number of Jabber servers) and not as the size of the user

base. The edge servers must deal with multiplexing the invitation to their local

users, which they can handle since they already support those users.

Overall scalability and load-balancing - owing to the distributed nature of both

the Jabber and Freebrain servers, we can achieve a highly scalable network as

we add more servers. Jabber can presently handle up to 1024 simultaneous

connections, and the multi-threaded release of the Freebrain server will be able

to provide faster service to each user. Thus, with every new Jabber and Free-

brain node we add, we can allow about 1000 new users to use the system (i.e.,

ask questions and have conversations). We also achieve good load-balancing

characteristics, since all Freebrain servers are equal. Since we use Chord, the

distribution is fair among all participating servers. Each server is responsible for

an equal number of categories. We do not think the actual number of subscribers

in any given category is a concern, since memory is cheap and even 10Mb can

accommodate approximately 350,000 entries (using an average Jabber ID size

of 30 bytes), a number sufficiently large for most practical purposes.

5.2.2 Quality of service

Ideally, we should evaluate the quality of Freebrain service as perceived by end-users

by collecting comments and evaluations from them after they have used Freebrain

for some time. However since the system is yet to be polished for public release, we

have not yet conducted such a study. Moreover, the success of Freebrain is directly

63

dependent on the size of the user base-too few users will not provide the true benefit

of Freebrain. Developing a sizable user base is a matter of time as word spreads and

more users start using Freebrain. Naturally, we want the first release of Freebrain

to be good enough to attract users. The framework we have currently built will be

ready for public use this summer, after we have integrated some of the suggestions

for robustness and performance made in this chapter. The Freebrain/Jabber client

will need special work since that is the only element in our system that end-users will

interact with and will determine the popularity of Freebrain.

For now, we restrict our present discussion to components that we can evaluate

independent of the user base:

Automatic category selection - the results from our simple full-text search of

the flat ODP category database in MySQL are roughly equivalent to results

obtained by running the same query on the Google Directory or the original

ODP website [24]. In particular, most queries produce the same top-ranked

matching category. Our simple search however is, at present, limited by the

features of the current version of MySQL. For instance, MySQL can only index

words that have 4 or more letters, rendering it incapable of a full-text search of

important 3-letter words (for instance, LCS, SSL, etc.) 1

In addition, the lower-ranked results often include categories that only match

insignificant keywords from the query, producing some undesirable category

selections. For instance, if the query is "Where can I learn Sanskrit?", the top

5 ranked matching categories are:

1. Reference/Dictionaries/World.Languages/S/Sanskrit

2. Arts/Literature/Drama/Sanskrit

3. Arts/Literature/Drama/Sanskrit/Bhasa

'The 4-letter limit can be changed, but since it requires re-compiling MySQL, it will be harder
to deploy Freebrain servers on standard machines. Besides, since the next version of MySQL fixes
this problem via a user configurable file, it is prudent to simply wait until standard Linux (or other
OS) vendors ship with the newer version, which will happen within a month or two.

64

4. Science/Social-Sciences/Language-andLinguistics/NaturalLanguages/Indo-

European/Indo-Iranian/Indo-Aryan/Sanskrit

5. Recreation/Outdoors/Survival-and-PrimitiveTechnology/

Schools-and..Courses

Although the top 4 matching categories are related to Sanskrit, the last one is

a noisy category, which shows up because its description (not shown here) has

the word "learn". Based on these results, we realize that adding extra logic to

the automatic category selection process is much desired.

As we noted in Section 4.2.1, the next version of MySQL has more powerful

full-text search features, and so our system will produce better results. It is

important to realize that a simple full-text search is still surprisingly useful even

though the category database has 426,000 categories; we originally thought the

amount of noisy categories would be very high, but it is evident that if questions

have sufficient context, the top matching categories are quite accurate. Also,

restricting the search to a narrower interest domain will certainly produce far

more accurate results as it will reduce further the space for noisy categories.

The benefit of using the ODP data is that many users are familiar with this

categorization, having used Google or other web search engines, and hence will

be able to easily determine whether the matching category is appropriate or

whether they should try rewording their question to add more context.

Unified IM interface - to demonstrate the true power of our architecture, viz. the

ability to find not only people but also on-line databases, we created a sample

automated weather report application (called "weatherdb"). We used a small

Perl library [7] that can fetch weather information from weather.com and added

a Jabber front-end client [3] that can connect to a Jabber server like a regular

user. We subscribed weatherdb to all the categories concerned with weather,

which accounts for about 4,000 categories in the ODP (every known city in the

US as well as cities from several other major countries). We added some logic

to the front-end so it can parse certain questions (messages) and return results

65

to the inviter. If it cannot understand the format of an incoming message, it

returns a message to the inviter indicating the format that it does understand.

Using Gabber, we asked the following questions to Freebrain:

* What is the weather in Boston, MA?

o weather boston, ma

o weather 02141

When we ask any of the above questions, Freebrain picks the matching weather

category, and in this case, since weatherdb is subscribed to all weather cate-

gories, it receives our question. We include a screenshot of a sample reply from

weatherdb in Figure 5-1.

Figure 5-1: Automated Weather Response using Freebrain

The weather application reflects the simplicity that Freebrain provides to end-

users and content providers to find one another with minimal effort. An attrac-

tive point about Freebrain is that an end-user may get an automated response

from a knowledge database and also be able to have a quick real-time conver-

sation with other interested people.

66

5.3 Design and Implementation Issues

5.3.1 Achieving fault tolerance

So far our discussion of the Freebrain servers has considered only how to achieve load

balancing and scalability using a decentralized and distributed architecture. But what

happens to the subscription lists when a particular Freebrain server fails? We need

to add fault tolerance to build a robust Freebrain network.

We achieve this goal by replicating the subscription lists. Essentially, whenever

we wish to add a new subscriber to a particular category, rather than find just one

responsible server, we find k backup nodes (using getBackupNodes from the Chord

API) and store the subscription on all k servers. If the primary node fails, we can

get the subscription list from among the remaining k backup nodes.

To increase robustness further, the network ought to recover even when all k

responsible servers for a particular category fail. We can achieve this by periodically

refreshing the subscriptions, thereby always maintaining k backup nodes for any given

category. In particular, we can use two methods:

9 the Freebrain transport initiates periodic renewal of subscriptions for its local

users (those that connect to its parent Jabber server).

* one or more of k + 1 nodes responsible for a category initiate periodic renewal

of subscriptions. This assumes that not all k + 1 servers will fail within the

refresh time interval.

We note that the periodicity of the renewal should be dependent on the number

of servers participating in the network, their arrival and departure rate, and average

rate of failure of each server. However, the basic assumption is that Freebrain servers

will be permanent nodes, so dealing with frequent node arrival or departure is not

the primary concern. The main element to be concerned with is network link failure,

whereby a particular node may get temporarily disconnected from the remaining

Freebrain network. This failure can easily be taken care of by the k-replication of

subscriptions and a relatively low subscription renewal rate.

67

5.3.2 Graceful degradation

When a Jabber or Freebrain server fails, our system provides graceful degradation of

service. We discuss these two cases individually:

Jabber Server failure - when a Jabber server fails, it disconnects all users that

login to it and prevents them from using instant-messaging, let alone using

Freebrain. However, it affects only these local users. All others that are con-

nected via other Jabber servers experience no effect on their service, including

Freebrain. If necessary, the users that get disconnected can resume service by

creating an account on another Jabber server.

Freebrain Server failure - when a Freebrain server fails, it affects the local Free-

brain transport that uses it to perform QUERY and (UN)SUBSCRIBE operations.

When a Freebrain server fails, it prevents the local Freebrain transport from

allowing its users (those that are connected to the parent Jabber server) to ask

questions or modify subscriptions. However, these are the only services that are

affected. Users of the Jabber server continue to receive invitations from people

connected to other Freebrain servers, and they can also join conversations.

The distributed nature of Jabber and Freebrain servers, as well as the system

modularity, allows this graceful degradation of service, in comparison to complete

failure in a centralized approach.

5.3.3 Size and type of invitees

While technically our system can handle forwarding an invitation to thousands of

users, that does not make practical sense. Sending someone's question to thousands

of people could result in too many responses. Also, if knowledgeable people get

too many invitations they may begin discarding most of them, in which case the

inviter may not get a good response. A better approach is that if there are too

many invitees, Freebrain should select only a subset (possibly random) to which to

forward the invitation. Another mechanism would, if the inviter does not get any

68

response from the initial set of invitees, forward the invitation to a different subset.

Based on observations in current chat systems like IRC, the largest (and hence, least

constructive) chat rooms have no more than a thousand participants. Most chat

rooms have fewer than 50 participants. In Freebrain, the equivalent of participants

are invitees. A more detailed study is needed to determine the right number of

invitees. However, we note that Freebrain is far more passive (and hence better) in

nature than current chat systems. Invitees who receive a question may simply ignore

it. They do not have to be present for the actual conversation, unlike IRC or other

IM networks where presence in a chat room translates to receiving all messages in

that room.

A second related issue has to do with the type of invitees, particularly, machines

(on-line services or databases). What should Freebrain do if there are multiple ma-

chine subscribers in a given category? In some cases (such as weather), forwarding

an invitation to all machine subscribers is unnecessary; it is better to just pick one.

But in other cases (such as a knowledge-based question or a search), an end-user may

wish to receive responses from multiple sources.

The ability to handle issues related to the size and type of invitees can help improve

the quality of service. There is opportunity to study current systems and also gather

empirical evidence from the initial Freebrain release to tackle these issues.

5.4 Future Work

Implementing fault tolerance - we should add fault tolerance to the Freebrain

servers by implementing the suggestions made in Section 5.3.1. We should

also consider how a Freebrain transport can contact another Freebrain server if

the local one fails. This is relatively simple to add, since we only require the

Freebrain transport to be able to query its local Chord node to locate another

Freebrain server.

Searchable conversations history - although we have already implemented the

ability to log conversations, it would be desirable to allow users to search

69

through the archives to find answers. Besides web-based search, we can re-

use Freebrain's message routing capabilities to provide domain-specific results

as instant-messages to inviters. For instance, we can add front-ends that sub-

scribe to specific (or all) categories; when these front-ends receive questions,

they can search the archives and return appropriate results.

Decentralized message archival - the current logging mechanism for archiving

invitations and conversations uses a central server. However, a decentralized

approach would allow the message archival process to be highly scalable and

robust to failure of any particular log server. One idea is to spread the logs

to different servers based on the categories (using Chord's getNode). All invi-

tations and conversations concerned with one category will be logged on one

server, and those with a different category on another.

Tight integration with web searches - when a user asks a question to Free-

brain, the query can (optionally) start with a search through popular search

engines (say, Google) and return the results. This provides a tight integration

of IM with web search engines.

Location-based routing - we could allow the scope of invitations to be restricted

based on location. This would be useful if the inviter wishes to first ask his

question to a small community such as a research lab like LCS, a student dor-

mitory, or a corporate office floor, and then gradually increase the scope to the

wider Internet if he does not receive any response. Location-awareness can be

obtained using existing systems such as Cricket [5] for indoor geographic loca-

tion. Other notions of location can be obtained using domain names (say, to

reach users connected to a particular Jabber server), IP addresses (say, to reach

users only at LCS), etc..

User rating - we should allow an inviter to rate an answer (hence, indirectly rating

the user who answered) to improve the quality of content over time, especially

in conversation histories, and to assist other inviters in deciding the reliability

70

of answers from users. Freebrain could benefit from existing research done in

peer-based user ratings in systems such as Advogato [1] and Slashdot [28].

Improve category selection - we should improve the category selection by using

novel algorithms. One idea is to weight a category based on the number of

conversations that have occurred in it and the current number of subscribers.

Forwarding the invitations to subscribers of a category that is more popular can

improve an end-user's chance of receiving an answer.

Achieve interoperability - we initially proposed the idea of Freebrain with the

desire to reach people across different IM systems. Although Jabber already

provides an infrastructure for interoperability, we have yet to add the hooks so

users from other IM networks (such as Yahoo! or AOL) can add a freebrain

agent to ask questions and contribute answers.

5.5 Conclusions

Freebrain augments the current IM paradigm by providing a framework that allows

people to have dynamic, interest-based group conversations in real-time. Unlike any

present system, Freebrain offers both personalized conversations and a universal ac-

cess point for seeking help from both machines and people. Freebrain has a distributed

and scalable architecture that enables real-time response systems to plug into Free-

brain and immediately offer their knowledge to seekers.

In accomplishing our initial goal, we realized the breadth and scope of work re-

quired to enable Freebrain to reach its full potential. The technical challenges in

implementing the full vision of Freebrain include not only some of the hardest prob-

lems in the computer science (and artificial intelligence), such as natural language

processing, but also encompass a broad set of areas such as distributed network sys-

tems, human-computer interaction, and information retrieval. Still, Freebrain is an

important step in the right direction-of making the Internet friendlier and more

useful, not only to the novice but also to the advanced user.

71

72

Bibliography

[1] Advogato's trust metric. http://www.advogato.org/trust-metric.html, Apr 2002.

[2] Ask Jeeves. http://www.askjeeves.com, Apr 2002.

[3] Chatbot. littp://www.jabberstudio.org/cgi-bin/viewcvs.cgi/chatbot, May 2002.

[4] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:

A distributed anonymous information storage and retrieval system. In Workshop

on Design Issues in Anonymity and Unobservability, pages 46-66, 2000.

[5] The Cricket Indoor Location System. http://nms.lcs.mit.edu/projects/cricket/,

Apr 2002.

[6] Gabber: The GNOME Jabber Client. http://gabber.sourceforge.net, Apr 2002.

[7] Geo::Weather. http://freshmeat.net/projects/geoweather/, May 2002.

[8] GNU Pth - The GNU Portable Threads. http://www.gnu.org/software/pth/,

Feb 2002.

[9] Gnutella. http://gnutella.wego.com, Apr 2000.

[10] Google. http://www.google.com, Apr 2002.

[11] Google Groups. http://www.google.com/googlegroups/basics.html, Apr 2002.

[12] Google Technology. http://www.google.com/technology/, Apr 2002.

[13] Internet Relay Chat. http://www.irc.org, 2002.

73

[14] Internet Relay Chat: Architecture. http://www.ietf.org/rfc/rfc2810.txt, 2000.

[15] Jabber Software Foundation. http://www.jabber.org, Sep 2001.

[16] jabberd the original open server implementation of Jabber.

http://jabberd.jabberstudio.org, Feb 2002.

[17] Jabberd FAQ. http://jabberd.jabberstudio.org/faq.html#AEN93, Mar 2002.

[18] Jogger - A Jabber Powered Weblog. http://jogger.jabber.org, Apr 2002.

[19] Kerberos: The Network Authentication

http://web.mit.edu/kerberos/www/, Dec 2000.

[20] Kalpak Kothari and Nikolaos Michalakis. Design and Implementation of an

Efficient Late-binding Mechanism in Twine. Final Project Report for Computer

Networks course, Dec 2001.

Information Systems: Athena Computing

http://web.mit.edu/is/athena/, Mar 2002.

[22] MySQL Full-text Search. http://mysql.org/documentation/mysql/bychapter/

manuaLReference.html#Fulltext-Search, Apr 2002.

[23] Newsgroup Creation Procedure. http://www.geocities.com/ResearchTriangle/

Lab/6882/ncreate.html, Sep 2001.

[24] ODP - Open Directory Project. http://dmoz.org, Apr 2002.

[25] Open Directory RDF Dump. http://dmoz.org/rdf.html, Apr 2002.

[26] PHP: Hypertext Preprocessor. http://www.php.net, Apr 2002.

[27] Psi Jabber Client. http://psi.affinix.com, Apr 2002.

[28] Slashdot's moderation system. http://slashdot.org/faq/com-mod.shtml, Apr

2002.

74

Protocol.

[21] MIT Facility.

[29] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.

In ACM SIGCOMM 2001, Aug 2001.

[30] Zephyr Answers. http://web.mit.edu/answers/zephyr/, Apr 2001.

75

