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Abstract

We implement a preemptive, non-idling EDF (earliest deadline first) real-time schedul-
ing algorithm for the FLEX compiler. Real-time threads extend Java threads with
timing constraints. The aim of the real-time thread model is to give programmers
better control over the order of execution of threads than the priority-based model.
The primary advantage is the ability to declare periodic threads with a highly pre-
dictable processor demand. The implementation meets the real-time specifications
for Java as defined by The Real-Time for Java Expert Group [2]. We use FLEX, the
Java bytecode to C compiler [10] as a framework for our implementation.
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Chapter 1

Introduction

1.1 Background

Java is a relatively new language, which learned many lessons from prior object-

oriented languages like C++. Its designers focus on the requirements of networked

computing. As a result, Java's main qualities, which have made it a preferred language

in recent years, are platform independence, trusty garbage collection, a wealth of

standard libraries, cleaner code and nice abstraction barriers.

One of the aspects where the Java designers had to cut back to obtain these

performances is real-time reliability. With most existing Java implementations,

consistent real-time behavior is impossible to attain, for several reasons:

1. The programmer has only loose control over the order of execution of differ-

ent threads, by using priorities, locks and synchronization. Moreover, existing

scheduling policies cannot make guarantees with respect to any timing con-

straints.

2. The threads in java. lang. Thread are vaguely characterized by their priority,

and the Java specification [11] only guarantees that "threads with higher priority

are executed in preference to threads with lower priority", but there are no

specific mentions about how the scheduler handles overloads.
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3. Garbage collection, while very convenient for the programmer, consumes exe-

cution time. Not only does it slow down the system, but it may become active

at unpredictable times, suspending all the other threads for an indefinite period

of time.

4. For real-time applications, the ability to safely and quickly interrupt an I/O

operation is vital. We also need to know how much of the I/O has been com-

pleted, so that it can be resumed the next time the thread is run. Java lacks

non-blocking and interruptible I/O ability.

Our research focuses on implementing a scheduling policy that will overcome these

drawbacks. This involves extending threads with timing constraints and designing

efficient algorithms for scheduling and feasibility analysis.

1.2 Related Work

The Real-Time Specification for Java [2] was crystallized in 1998-1999 in an attempt

to standardize the efforts to incorporate Java platforms into real-time systems. The

specification discusses several aspects of the Java platform which need to be revised

in order to include real-time support, including scheduling, threads, memory manage-

ment, synchronization, timers, asynchrony. Most of our research follows the specifica-

tions for the real-time scheduling system. We aim at implementing these specifications

using efficient feasibility and scheduling algorithms.

The FLEX compiler [10] provides an ideal starting point. It is a Java bytecode to

C compiler, with native support for several platforms, including Linux/i386. William

Beebee [1] already implemented parts of the real-time specifications, in particular the

real-time threads and the memory management system, so that we can focus directly

on the scheduling issues.
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1.3 Goals

In short, we want to provide an implementation of the real-time Java specifications for

the scheduler. The implementation will give programmers the ability to communicate

to the scheduler a more specific characterization of real-time threads. This includes

precise timing constraints of the form:

"This thread has to be executed every 10 milliseconds. During each period,

it must run for 3 milliseconds, and complete its work no later than 8

milliseconds after the start of the period. If the thread fails to meet these

constraints, the scheduler will trigger an asynchronous event and invoke

the event handler associated with this thread".

Thus, use of the real-time threads models a contract between the scheduler and

the threads, whereby the scheduler agrees to execute the threads, and the threads

promise to yield, according to the timing constraints specified in the contract.

More formally, here is the set of requirements we make of the implementation of

the scheduling system:

1. It must be able to quickly determine the feasibility of a proposed schedule for

a given set of threads.

2. It must produce an ordering for the execution of a set of threads which minimizes

the number of missed deadlines. In theory, the algorithm we use (EDF) is

optimal in that, if it fails to produce a schedule which meets all the deadlines,

then no such schedule exists.

3. It must allow some special real-time threads (see §3.4) to execute independently

of the garbage collection thread, so that timing-critical code can run according

to its schedule, without interruption from the GC thread.

4. It must be easily extensible to allow implementations of other scheduling algo-

rithms.
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Chapter 2 discusses the theoretical aspects of real-time scheduling and feasibility

analysis. Chapter 3 presents implementation issues in the FLEX framework as well

as the few places where due to efficiency considerations we slightly disobeyed the

specification. Chapter 4 presents results and benchmarks and draws conclusions about

the efficiency of the implementation.
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Chapter 2

The EDF Algorithm

In this chapter, we analyze the Earliest Deadline First (EDF) algorithm. Section 1

introduces the terminology we will need for the rest of the thesis. Section 2 discusses

the optimality of the EDF algorithm. It indicates the conditions under which the

optimality holds, and also analyzes the tractability of real-time scheduling as we try

to relax these conditions. Section 3 describes the feasibility analysis. Finally, section

4 gives the pseudocode for the actual scheduler we implemented.

2.1 Terminology, Assumptions and Notation

In this thesis, we follow the terminology presented in Deadline Scheduling for Real-

Time Systems [91.

Definition 1. A real-time thread is an executable entity of work which, at a mini-

mum, is characterized by a worst-case execution time (also known as cost) and a time

constraint.

Definition 2. A release time, r, is a point in time at which an instance of a real-time

thread is activated to execute.

Definition 3. A deadline, D, is a point in time by which an instance of a thread

must complete. The deadline is usually measured relatively to the release time of

that instance.
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Stankovic [9] differentiates between three types of deadlines:

" Hard deadlines. It is vital that these deadlines always are met.

" Soft deadlines. It is desirable that these deadlines are met, but no catastrophe

occurs if they are not.

" Firm deadlines. A thread which cannot complete by the given firm deadline

should not execute at all.

In the implementation, we do not explicitly use this differentiation. Instead, we use

priority and importance parameters (see §3.2) to separate soft from hard deadlines.

Thus, in the event of an overload, threads with higher priority and importance execute

in preference to threads with lower priority and importance. We do not, for the time

being, support firm deadlines in the code, because the real-time specifications [2] do

not mention them. The scheduling algorithm, however, is easy to extend to include

firm deadlines.

There are three types of real-time threads: periodic, aperiodic, and sporadic.

Definition 4. A periodic thread is a real-time thread which is activated (released)

regularly at fixed rates. The activation rate is known as the period of the thread and

is designated by T. The time constraint for a periodic thread is a deadline D that

can be less than or equal to the period.

In the most common case, the deadline for a periodic thread is equal to its period,

meaning that the thread has to complete the amount of work indicated by its cost

any time before the end of the period. Situations are conceivable where the deadline

is less than the period, meaning that the thread has to complete its work sometime

within D units of time from the beginning of the period. Stankovic [9] also allows

the deadline to be greater than the period, but the need for this generalization seems

rare for all practical purposes, and we do not handle this case in the thesis.

Definition 5. Synchronous periodic threads are a set of periodic threads where all

first instances are released at the same time, usually considered time zero.

11



Definition 6. Asynchronous periodic threads are a set of periodic threads where

threads can have their first instance released at different times.

Because of the theoretical results stated in §2.2, we can make our scheduling

algorithm work regardless of the synchronicity of the threads. Therefore, we will

assume every thread set to be asynchronous and we will not treat synchronous thread

sets in any special manner.

Definition 7. An aperiodic thread is a real-time thread which is activated irregularly

at some unknown and possibly unbounded rate. The time constraint is usually a

deadline D.

In our implementation, we treat all Java (non-real-time) threads as aperiodic

threads. We can do so because Java threads are characterized exclusively by priority

and have no timing constraints. Also, we treat real-time threads without release

parameters as aperiodic threads (§2.4). The best choice for the value of the deadline

for these threads was determined experimentally (see §3.8).

Definition 8. A sporadic thread is a real-time thread which is activated irregularly

with some known bounded rate. The rate is known as the minimum interarrival

period, which is the minimum rate at which instances of this thread may be activated.

The time constraint is usually a deadline D.

The rationale for making some threads sporadic is to limit the workload generated

by these threads. Notice that, once activated, sporadic threads must complete their

work units for that activation before their deadline, just as periodic threads. The

minimum interarrival time is also noted by T, since there is no danger of confusion

with the period T (which is only defined for periodic threads).

Definition 9. A hybrid thread set is a thread set containing both periodic and spo-

radic threads.

The implementation that we provide assumes all thread sets to be hybrid.

Definition 10. A set of threads is schedulable or feasible if all timing constraints

are met, that is, all threads complete by their respective deadlines.
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Definition 11. An optimal real-time scheduling algorithm is one which may fail to

meet a deadline only if no other scheduling algorithm can meet the deadline.

Definition 12. A non-idling scheduler is a scheduler that never leaves the processor

idle when there are pending jobs.

Definition 13. A preemptive scheduler is a scheduler that interrupts a thread of

execution when its time slice runs out.

Definition 14. A non-preemptive (or "cooperative") scheduler is a scheduler that

always waits for the thread to yield control.

2.2 Optimality of the EDF Algorithm

The earliest deadline first algorithm is perhaps the most intuitive approach to schedul-

ing: whenever the scheduler has to make a choice among the available threads, it

activates the one with the earliest deadline. If several threads are tied for the earliest

deadline, the scheduler may activate any of them (possible using other criteria, such

as thread priorities, to further distinguish among threads).

Jackson [6] was the first to show the optimality of the EDF algorithm with respect

to the maximum lateness. However, Jackson's rule only holds under a strict set of

conditions:

1. There are n threads with a single instance each;

2. The threads are independent (there is no synchronization);

3. The release time is 0 for all the threads;

4. The scheduler is non-preemptive.

Real-life requirements force us to extend the theorem beyond all these assump-

tions: threads normally have multiple instances (that is, their existence spans several

time slices), they may be dependent and may have different release times. With a
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non-preemptive scheduler, the task of scheduling becomes NP-hard. However, with a

preemptive scheduler the problem remains tractable and the EDF algorithm optimal.

The following theorem, due to George [5] shows that EDF is optimal for asyn-

chronous hybrid thread sets, given that all threads have their deadline equal to their

period (for periodic threads) or to their minimum interarrival time (for sporadic

threads):

Theorem 1. (George et. al.) Non-preemptive non-idling EDF is optimal.

If asynchronous periodic threads are permitted with deadlines not necessarily

equal to the periods, then scheduling was shown to be NP-hard [7]. However, such

cases are the norm in practice and we must deal with them. Therefore, our implemen-

tation provides a preemptive non-idling EDF scheduler in an attempt to minimize

the deadline overruns. Users implementing their own scheduling algorithm within

our framework can choose to make their scheduler preemptive or non-preemptive (see

§3.8).

Figure 2.1 shows an example of EDF scheduling for a set of two periodic threads

and one sporadic thread. The real-time parameters for these threads are summarized

in Table 2.1. The scheduler is preemptive and gives each thread a time slice of at

most two time units.

Thread Type Release time Period / MIT Deadline Cost Priority
1 Periodic 0 7 7 3 20
2 Periodic 2 10 10 3 15
3 Sporadic 5 9 9 3 15

Table 2.1: A hybrid asynchronous thread set

In this case, each thread has the deadline equal to the period or to the minimum

interarrival time. The black blocks in Figure 2.1 indicate idle time units. The upward

arrows indicate release times, while the downward arrows indicate deadlines. For

periodic threads, the deadline of one instance coincides with the release time of the

'Minimum interarrival time.
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Figure 2.1: EDF schedule for a set of two periodic threads and one sporadic thread
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next instance. Notice that, at times 7 and 28, the scheduler had to make a choice

among threads 1 and 3, which were tied for the earliest deadline. Any choice would

have generated a feasible schedule; in this case, thread priorities were used and thread

1 was selected in both instances.

2.3 Feasibility Analysis Under EDF Scheduling

In the previous section, we have shown that the EDF algorithm is optimal in that it

always finds a feasible schedule if one exists. Now we approach the task of determining

whether a feasible schedule exists for a given set of threads. A set of theorems, which

we include here without proof, allow us to work our way from a particular case to the

more general case.

Consider a set of n threads with cost Ci and period T (for periodic threads)

or minimum interarrival time T (for sporadic threads). Each thread has deadline

Di = Ti.

Theorem 2. (Liu and Layland) [8] Any set of n synchronous periodic tasks with

processor utilization U = ,_1 is feasibly scheduled by EDF if and only if

U < 1.

Theorem 3. (Coffman) [3] Any set of n asynchronous periodic tasks with processor

utilization U = E'_1 L is feasibly scheduled by EDF if and only if

U < 1.

We now turn to the analysis of hybrid thread sets:

Definition 15. A sporadic thread set is feasible if for any choice of release times

compatible with the specified minimum interarrival times, the resulting job set is

feasible.

Stankovic [9] proves that the worst-case scenario for a set of sporadic threads

occurs when all the threads are activated synchronously and at the highest possible
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rate. Therefore, it suffices to analyze the corresponding synchronous periodic thread

set:

Definition 16. The synchronous periodic thread set corresponding to a sporadic

thread set is obtained by replacing each sporadic thread with a periodic thread with

release time 0 and period equal to the minimum interarrival time of the sporadic

thread.

Theorem 4. A sporadic task set is feasible if and only if the corresponding syn-

chronous periodic thread set is feasible.

Theorem 4 shows that feasibility analysis is as simple as summing up the processor

utilization of all threads. Finally, we have to deal with aperiodic threads. In an

attempt to comply with The Real- Time Specification for Java [2], aperiodic threads

include non-real-time threads and real-time threads without temporal constraints.

We decided to only schedule these threads for running when none of the periodic and

sporadic threads are eligible. In Figure 2.1, we could run aperiodic threads at times

11, 20 and 34 when the processor is idle.

It is easy to see that this approach to aperiodic threads does not affect the feasi-

bility of periodic and sporadic threads, because it is absolutely non-intrusive. On the

other hand, the expected fraction of time when we can schedule aperiodic threads is

F = 1 -( n .
_1T

Aperiodic threads may starve if F is close to zero, and they are definitely the

first to starve in an overload situation. However, we assume that to be safe. If

programmers want to avoid the starvation of a particular thread, they can make that

thread real-time and give it some appropriate timing constraints.

2.4 EDF Pseudocode

The pseudocode uses lowercase variables (di, tj etc.) for absolute times, and uppercase

variables (Di, T etc.) for relative times. We associate with each thread i the following
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values:

" di is the next deadline, expressed as an absolute time (as opposed to Di, which

is a relative time)

* tj is the end of the next period, expressed as an absolute time. For sporadic

threads, t designates the earliest absolute time when the thread can be resched-

uled for execution.

" P is the amount of processor time that the thread has to receive before the

deadline di. This value gets initialized to C at the beginning of each activation.

Algorithm SCHEDULER-INIT()

Comment: Initializes the set of threads to be scheduled;

1: for i <-1, 2, ... , n do

2: t2 +- the starting time of thread i

3: di +-oo

4: P *- 0 /7 No work to be completed before the starting time

5: end for

Algorithm SCHEDULER(now)

Comment: Chooses the next thread to run, given the absolute time now.

1: Update the units of work left for the previously running thread

2: for i +- 1, 2, ... , n do

3: if now > di and Pi > 0 then

4: // This thread has exceeded its deadline

5: Schedule the deadline miss handler for thread i

6: end if

7: if now > t2 then

8: // This thread has finished one period

9: if thread i is periodic then

18



10: di +- tj + Di / Set the next deadline

11: ti +- ti + T /7 Set the next period

12: Pi +- Ci 77 Reset the processor usage counter

13: else

14: di <- oc

15: tj <- t +T, // Cannot reactivate this thread before T units have elapsed

16: end if

17: end if

18: end for

19: /7 Now select the thread to run. First look at periodic threads and sporadic threads

20: /7 which are in the middle of an instance

21: deadline +- oo; thread <- 0;

22: for i +- 1, 2, . .. , n do

23: if ti < now + Ti and Pi > 0 and di < deadline then

24: deadline +- di

25: thread +- i; 7/ thread i still has some work to complete during this period

26: end if

27: end for

28: if thread $ 0 then

29: return thread

30: end if

31: // Next, try to activate the highest-priority, idle sporadic thread

32: priority +- 0; thread +- 0;

33: for i +- 1, 2, ... , n do

34: if t2 is sporadic and di = oo and priority, > priority then

35: priority +- priorityi

36: thread +- i;

37: end if

38: end for

39: if thread : 0 then
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40: tthread - now // Mark the time when we activated this thread

41: dthread now + Dthread

42: Pi +- Ci

43: return thread

44: end if

45: 7/ Finally, try to activate the highest-priority, idle aperiodic thread

46: priority +- 0; thread +- 0;

47: for i - 1, 2, ... ,n do

48: if tj is aperiodic and priorityi > priority then

49: priority +- priorityi

50: thread +- i;

51: end if

52: end for

53: // If still no thread, return 0, meaning the processor stays idle

54: return thread

The main principles beyond this scheduler design are:

" Lines 2 - 18 use the current time now to determine which threads to advance to

their next periods. The deadline miss handlers are invoked for threads which

advance to their next periods without having completed the work units for the

current period.

" Lines 19 - 30 determine whether there are any periodic threads that still have

work to do before their deadline. If so, the thread with the earliest deadline is

returned.

" Lines 31 - 44 select and return the highest-priority sporadic thread that can be

activated without violating the minimum interarrival interval constraints.

" Lines 45 - 54 select the highest priority aperiodic thread and return it, if no

periodic or sporadic threads can be scheduled.

20



" The scheduler must keep track of what thread was running, and for how long

it had been running, when the scheduler was called, so that it can correctly

update the work units remaining for that thread.

" Once released, sporadic threads must complete before the deadline. For exam-

ple, in Figure 2.1, thread 3 is released at time 26 and it must complete by time

35. In an overload situation, inactive sporadic threads will not be activated

until the overload goes away. However, active sporadic threads are just as im-

portant as periodic threads and may preempt them in an overload situation,

depending on their priorities. "Sporadic" should therefore not be confused with

"unimportant".

* Aperiodic threads are only activated when all the periodic threads have com-

pleted their work units for their respective periods, and when there are no

sporadic threads to run. Priorities are only used to distinguish between aperi-

odic threads. A high-priority aperiodic thread cannot preempt a low-priority

periodic thread. The situation of a high-priority, aperiodic thread is inherently

ambiguous and we assume that it is more important to meet the real-time con-

straints, whenever they exist, than to avoid priority inversion.

* The time slice allotted to the selected thread is the minimum between the default

time slice and the work left for the thread before its deadline. For aperiodic

threads, the default time slice is always allotted, because aperiodic threads do

not have a per-period cost.

The feasibility algorithm simply checks whether the sum of the processor utiliza-

tions i for periodic and sporadic threads is at most 1. Aperiodic threads are ignored

in this analysis.
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Chapter 3

Implementation Key Points

The previous chapter discussed scheduling and feasibility analysis from a purely theo-

retical point of view. Now we move on to presenting the practical aspects of real-time

scheduling and how we implement these in the FLEX compiler. Section 1 shows how

we employ program hooks to keep track of the elapsed time and to call the scheduler

at appropriate times. Sections 2 and 3 present the class hierarchy associated with the

priority parameters and with the release parameters of real-time threads. Section 4

presents no-heap real-time threads, a special class of real-time which is independent

of the garbage collector. Section 5 talks about asynchrony and how we employ it

to detect and handle threads that fail to meet their temporal constraints. Section 6

gives a detailed example of how the programming interface should be used to achieve

functional real-time code. Section 7 compares the results from an actual program to

the theoretical expectation. Section 8 describes the benchmarks we ran to determine

what the appropriate time slice was for our scheduler, and how well it performs under

various thread sets and loading factors. Finally, section 8 assesses the results and

gives some ideas for future improvements.

3.1 Program Hooks

Each real-time thread runs for a time quantum which is determined by the scheduler.

When the quantum expires, the system does a user-thread-level context switch; the
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next thread to run is selected according to the policy of the scheduler.

At compile time, we insert program hooks at several points in the compiled pro-

gram. The purpose of the program hooks is to determine whether the time quantum

of the currently running thread has expired. At run time, a function CheckQuanta

is called from each point where program hooks were inserted. If CheckQuanta de-

termines that the quantum of the current thread has expired, then the scheduler is

invoked; it suspends the currently running thread and it selects the next thread to

be executed.

We are inserting program hooks at the beginning of each method and at the

beginning of each loop, based on the reasonable assumption that these program

points occur frequently enough to allow for a reliable timing behavior. We hoped

it would be enough to insert hooks at the beginning of each method only, which

would have avoided the slowdown from the numerous quanta checks. However, some

computationally-intensive programs, such as the simple example given in Figure 3.1

may run for a long time without calling any functions. The benchmarks for these

programs show an unacceptable number of deadline misses unless program hooks are

inserted at the beginning of each loop as well (see §3.8).

3.2 Priority and Importance Parameters

Like j ava. lang. Thread's, real-time threads have an associated priority - an integer

from the range 10 to 37. Notice that the real-time priorities lie above the priorities

of non-real-time threads, to make it clear that threads having any kind of real-time

constraints are considered more important than non-real-time threads.

An additional scheduling metric is the importance of a thread, which the sched-

uler uses as a tie-breaker to differentiate among threads of the same priority. This may

be useful, for example, if the scheduler manages a synchronous collection of periodic

threads with the same period and the same priority level. In a situation of system over-

load, the importance values can help the scheduler decide which threads have prece-

dence. The class ImportanceParameters extends the class PriorityParameters,
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static SchedulingParameters sp = new ImportanceParameters(0, 9);

static RelativeTime rtl = new RelativeTime(10, 0);
static RelativeTime rt2 = new RelativeTime(3, 0);

static ReleaseParameters rp =
new PeriodicParameters(null, rtl, rt2, null, null, null);

static RealtimeThread thread = new RealtimeThread(sp, rp) {
public void runO {

System.out.println("Starting Thread!");
long sum = 0;
int i, j, k;
for (i = 1; i <= 1000; i++) // No function calls within these loops

for (j = 1; j <= 1000; j++)
for (k = 1; k <= 1000; k++)

sum++;

System. out .println(sum);

System. out.println(PriorityScheduler. invocations + " invocations,
+ PriorityScheduler.missed + " missed deadlines");

}

Figure 3.1: Sample source code that runs for a long time without calling any functions

which in turn extends from the abstract class SchedulingParameters.

The minimal scheduler required by the Real-Time Specification for Java [2] is

priority-based. However, the EDF scheduler takes its decisions using the temporal

constraints of threads and only uses priorities for breaking ties. We opted to overrule

the specification here because explicit time constraints are a much better guide for

the scheduler than priorities. Specifically, a real-time thread with tight timimg con-

straints will always preempt a real-time thread with more relaxed timing constraints,

regardless of their relative priorities.

3.3 Release Parameters

Timing constraints are stored in objects inheriting from the abstract class

ReleaseParameters. Every real-time thread will be associated with an instance of a

subclass of ReleaseParameters. All types of timing constraints have these common

properties:
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" a deadline, meaning the maximum time for which the associated thread is

permitted to run upon each invocation.

" a deadline miss handler, namely a method that is invoked every time the

runO method of a thread is still executing after the deadline has passed (that

is, if the thread fails to yield within the allocated time frame).

Periodic threads are associated with an instance of the PeriodicParameters class.

In addition to the deadline, periodic parameters also include a start time (the first

time when the associated thread must be executed) and a period (the interval between

successive invocations of the thread). Knowing the deadline and the period of a

periodic thread, we can get a very good approximation of the load the thread will place

on the system. For example, a thread that requires invocation every 10 milliseconds

and promises to yield in 3 milliseconds will roughly use 30% of the resources.

Sporadic threads are associated with an instance of the SporadicParameters class.

In contrast with the periodic threads, they requested invocation at most as often as

a given interarrival time. Together with the deadline, the minimum interarrival time

gives us an upper bound on the load incurred on the system by this thread.

Aperiodic threads are associated with an instance of the AperiodicParameters

class. The release parameters of an aperiodic thread include a cost, namely the

amount of time that the associated threads is executed upon each invocation.

The release parameters of a thread can be changed at run time. The period or

minimum interarrival time of a thread can be altered, and threads may even switch

from periodic to aperiodic. However, there is no guarantee that the changes will take

effect before the end of the current period.

3.4 No-Heap Real-Time Threads

As long as a real-time thread accesses the heap, it will be subject to unforeseen

and indefinitely long interruptions from the garbage collector. Therefore, the Real-

Time Specification for Java [2] defines NoHeapRealtimeThread, a subclass of the
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RealtimeThread with additional memory constraints. Specifically, no-heap real-time

threads are never allowed to allocate or reference any object allocated in the heap, or

to manipulate the references to heap objects. Therefore, no-heap real-time threads

may execute in preference to the garbage collector, or even interrupt it, without

causing any inconsistencies in the program.

A sound implementation of the NoHeapRealtimeThread class was provided by

William Beebee [1] for the FLEX compiler [10]. The implementation conforms to the

Real-Time Specification for Java [2], and it provides a natural starting point for the

scheduler implementation.

3.5 Asynchrony

In addition to real-time threads, the scheduler must be able to manage asynchronous

event handlers. According to The Real-Time Specification for Java [2], "an

AsyncEventHandler encapsulates code that gets run at some time after an asyn-

chronous event occurs". An example of an asynchronous event is the execution of a

deadline miss handler, which the scheduler calls whenever a real-time thread exceeds

its deadline.

In the implementation, we do not execute the code for asynchronous events im-

mediately. Instead, we schedule them for execution using the same scheduler we

use for the real-time threads. Event handlers have real-time parameters just like

normal threads. We are trying not to impose any limitations on the running time of

AsyncEventHandlers, so they do not have to complete in a single invocation. We sug-

gest however that they should have higher priorities and tighter temporal constraints

than real-time threads. For example, in the case of the deadline miss handler, it is

desirable to execute the handler before the next invocation of the thread that caused

the event.

Sometimes it is convenient to run the even handler only once even if several events

were triggered in connection with this handler. For example, we may only be inter-

ested in the number of missed deadlines, without executing code for each of them.
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Therefore, the AsyncEventHandler declares a private field fireCount, accessible

through three observers: getAndClearFireCount 0, getAndIncrementFireCount 0,

and getAndDecrementFireCount 0. These methods return the pending number of

executions of the handler, and they also clear, increment or decrement this number

respectively. Event handlers are not implemented by overriding the run() method.

Instead, the run() method is predefined as:

public final void run() {

while (fireCount > 0)

handleAsyncEvent 0;

}

The programmer now has to implement the function handleAsyncEvent 0. To

execute the handler once for each pending invocation, this method can be written as:

public void handleAsyncEvent() {

while (getAndClearPendingFireCount() > 0) {

// Handle the event here

}

}

To handle multiple firings at once, the handleAsyncEvent () method can be im-

plemented as:

public void handleAsyncEvent() {

int f = getAndClearPendingFireCounto;

System.out.println("Missed " + f + " deadline(s).");

// Handle all the events at once

}

3.6 The Programming Interface

Here are the general steps that the programmer should take in designing a real-time

system using FLEX:
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3.6.1 Rewriting the Scheduler

If a different scheduling policy better fits the needs, the user can implement it by

extending the abstract class Scheduler defined in The Real-Time Specification for

Java [2], §4.2. The key method to override is chooseThread, which, given the current

time, selects the next thread to be executed. The default implementation we provide

is PriorityScheduler, whose complete code is given in Appendix A.

3.6.2 Defining the Real-Time Threads and Parameters

Real-time threads should implement the method run(), just like Java threads. Asyn-

chronous event handlers (if desired) should implement the method

handleAsyncEvent (. Below is a simple example of a program that defines two

real-time threads which simply print a series of messages.

// Define a simple deadline miss handler that handles the deadlines

// missed by the realtime threads in this program. THe handler simply

// prints the number of missed deadlines. Notice that both threads in

// this program use the same handler; of course, the programmer can

// write a different handler for each thread.

// These are the real-time parameters of this handler

static SchedulingParameters spi = new ImportanceParameters(O, 9);

static RelativeTime rtl = new RelativeTime(10, 0);

static RelativeTime rt2 = new RelativeTime(3, 0);

static ReleaseParameters rpl =

new PeriodicParameters(null, rtl, rt2, null, null, null);

// This is the actual handler code

static AsyncEventHandler handler = new AsyncEventHandler(spl, rpl) {

public void handleAsyncEvent() {

int f = getAndClearPendingFireCounto;

System.out.println("Missed " + f + " deadline(s).");

}
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// Now we define the real-time parameters for the real-time threads

static SchedulingParameters sp2 = new ImportanceParameters(0, 9);

static SchedulingParameters sp3 = new ImportanceParameters(0, 9);

// Define the timing constraints to be used by the release parameters

static RelativeTime rt3 = new RelativeTime(5, 0);

static RelativeTime rt4 = new RelativeTime(2, 0);

// Define the release parameters for our threads.

// These parameters define a periodic thread that will run for

// 3 milliseconds out of every 10 milliseconds

static ReleaseParameters rp2 =

new PeriodicParameters(null, rtl, rt2, null, null, handler);

// These parameters define a periodic thread that will run for

// 2 milliseconds out of every 5 milliseconds

static ReleaseParameters rp3 =

new PeriodicParameters(null, rt3, rt4, null, null, handler);

// Here is the code that each thread has to execute. The constructor

// of each real-time thread must include the real-time parameters

// according to which the thread will run

static RealtimeThread thread2 = new RealtimeThread(sp2, rp2) {

public void runO {

System.out.println("Starting Thread 2!");

for (nt i = 1; i<=300; i++)

System.out.println("*** 2: " + i);

}

static RealtimeThread thread3 = new RealtimeThread(sp3, rp3) {

public void runO {

System.out.println("Starting Thread 3!");

for (int i = 1; i<=300; i++)

System.out.println("--- 2: " + i);
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waitForNextPeriodo;

}

};

At this point in the program, the scheduler does not take any action regarding

these threads. The threads are created, but the scheduler will not be notified of their

existence until they are started with the RealtimeThread. start 0 method.

Notice that one of the threads is calling the method RealtimeThread.

waitforNextPeriod(0. This is not mandatory in our implementation, because the

scheduler is preemptive and will interrupt the running thread when its quantum

expires. However, the method waitForNextPeriod() may be called explicitly if the

thread wants to postpone the remaining work until the beginning of the next period.

In the above example, the real-time thread will print approximately one line of output

per time period.

3.6.3 Writing the Main Method

Notice that, under normal circumstances, the main() method will run in a Java

(non-real-time) thread. As mentioned before, our scheduler gives non-RTJ threads

the lowest priority. If the maino method is too long, it may starve after it invokes

the first real-time thread. Therefore, we encourage the programmers to either make

the maino method a real-time thread in itself, or to make it as short as possible.

Using the thread definitions above, the appropriate main function would be:

public static void main(String[] args) {

PriorityScheduler scheduler = PriorityScheduler.getSchedulero;

scheduler.setDefaultQuanta(2, 500000);

System.out.println("Starting. . .*");

thread2.start(;

thread3.start(;

System.out.println("Is feasible: " + scheduler.isFeasibleo);

}
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The call to isFeasible() should return true, because the total load is 3/10 +

2/5 = 0.7. There are two observations to make about the main function:

* The scheduler is not created by a call to the constructor, but by a call to the

static method getScheduler(). We used this approach to ensure that the

scheduler is allocated in an immortal memory area, which will allow it to live

until the end of the application; also, immortal memory areas are never subject

to garbage collection [1].

" For real-time threads, the methods RealtimeThread. addToFeasibility0 or

Scheduler.addToFeasibility() don't have to be called explicitly to inform

the scheduler of new real-time threads. These methods are called implicitly

whenever the method RealtimeThread. start () is invoked. By default, threads

are never removed from the scheduler until they terminate. To remove them

explicitly, the programmer must call the removeFromFeasibility method.

" For non-real-time threads, the method addToFeasibility needs to be called

explicitly if the scheduler must also handle those threads. By default, non-real-

time threads are not handled by the scheduler.

3.7 Sample Output

Consider a thread set containing two periodic threads. The first one runs for 2

milliseconds every 10 milliseconds. The second one runs for 1 millisecond every 4

milliseconds. Thus, the total load incurred upon the scheduler is 0.45. Both threads

are released at time 0. Figure 3.2 compares the schedule we expect to see in theory

to the schedule generated by our scheduler.

The main differences are:

1. The threads do not start at time 0. Starting the threads is in itself a real-time

job which implies the execution of RealtimeThread. start (). This method is

long and takes a while to complete. In this case, the main() method started the
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second periodic thread. While it was also starting the first thread, the second

thread had enough time to complete its first two periods. That is why the

actual release times of the threads are different in practice.

2. Consecutive activations of threads are often separated by an amount of internal

work executed by the scheduler. That is why the threads drift away from

their ideal schedule. For example, the activation of the second thread that was

supposed to begin at the 20-th millisecond was actually pushed back by nearly

one millisecond.

3. Although in this short graph no deadlines were missed, it is conceivable, under

heavier loads and larger thread sets, that the scheduler may begin missing

deadlines. The delays observed in practice may have cascading effects. For

example, the late activation of thread 1 at the 19-th millisecond also caused a

delay in the activation of thread 2 at the 20-th millisecond. These delays can

accumulate over time and cause deadline misses.

These glitches become apparent under heavier loads. We ran the same experiment

with thread 1 running for 4 milliseconds every 10 milliseconds, and thread 2 running

for 2 milliseconds every 4 milliseconds. The total load was 0.4 + 0.5 = 0.9. Figure

3.3 shows the results. The negative effects we notice are:

1. The scheduler took a longer time to start the first thread; this is a direct con-

sequence of the heavier load. While the main thread was busy trying to start

the threads, the second real-time thread began running, consuming 50% of the

processor.

2. The first thread missed a deadline at time 21, and only ran for 3 milliseconds

(instead of the required 4) between times 31 and 41.

3. The second thread missed two deadlines at time 24 and 32, and only ran for 1

millisecond (instead of the required 2) between times 28 and 32.
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3.8 Benchmarks

We tested the robustness and scalability of our system from three points of view.

Section 3.8.1 analyzes the performance of the scheduler to various loading factors,

and gives an idea of the overhead it adds to the system. Section 3.8.2 analyzes the

performance of the scheduler on thread sets of various sizes, to give an idea of its

practical applicability. The last section presents the results of several tests we ran to

determine what the optimal time quantum should be.

3.8.1 The Maximum Processor Load

Table 3.1 summarizes the results of a test set designed to determine the maximum

processor load that our scheduler can handle without severe deadline misses. We

compiled programs with processor loads varying from 0.2 to 0.9; the results for each

program are averaged over 10 executions. Column 3 gives the total (real) running

time of the program. Columns 4 and 5 provide scheduler statistics: the number of

invocations and the total time consumed by the scheduler.

CPU Load J Deadline Misses Running time [Invocations Scheduler Time

0.2 0.4 3.43 s 13600 450 ms
0.3 0.7 3.15 s 10200 320 ms
0.4 1.4 2.91 s 8300 300 ms
0.5 1.9 2.53 s 5600 160 ms
0.6 2.0 2.28 s 5900 180 ms
0.7 3.3 1.85 s 4600 140 ms
0.8 6.8 1.96 s 2300 160 ms
0.9 9.6 2.02 s 1600 180 ms

Table 3.1: Behavior of the scheduler under various load factors

The execution time of the program decreases as the processor load increases,

because there are fewer idle times. As expected, for low loads the time spent in the

scheduler's chooseThread(o method is proportional to the number of invocations of

the scheduler, and missed deadlines are not an issue. At loads exceeding 0.7, anomalies
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begin to occur. The frequency of deadline misses increases significantly; also, the

duration of the program begins to increase at high loads, because the scheduler itself

consumes more processor time. Overall, the scheduler performance is satisfactory

given that the CPU load is below 0.7.

3.8.2 The Maximum Number of Supported Threads

Table 3.2 summarizes the results of a test set designed to determine the behavior of

the scheduler when confronted with thread sets of various sizes. We ran experiments

ranging from thread sets of size 2 to thread sets of size 8. All the threads where

periodic, with identical parameter. The cumulative load of each thread set was 0.6

(so, for example, each thread in the thread set of size 2 incurred a load of 0.3, and

each thread in the thread set of size 5 incurred a load of 0.12).

# of threads I Deadline Misses Running time Invocations Scheduler Time
2 2.0 2.28 s 5900 180 ms
3 5.1 3.53 s 6800 340 ms
4 7.5 4.83 s 9100 720 ms
5 10.2 5.17 s 10500 1210 ms
6 16.1 6.71 s 13500 2300 ms
7 43.3 9.80 s 41800 4900 ms
8 85.0 18.30 s 76000 8300 ms

Table 3.2: Behavior of the scheduler under various sizes of the thread set

Because the implementation of the EDF algorithm is linear in the number of

threads, the work load of the scheduler increases as the number of threads increases.

This has an impact on the general behavior of the program, even though the work

load generated by the threads is fixed at 0.6. Not only does the scheduler consume

more CPU time, but the threads begin missing more deadlines and therefore they

take longer to complete.
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3.8.3 The Optimal Time Slice

Our real-time scheduler is preemptive. This means it has to make decisions regarding

the duration that each thread must be allowed to run before it is replaced. Tables 3.3

and 3.4 summarize the experiments we ran to determine the appropriate time slice.

The columns are:

" The default quantum in milliseconds;

* The number of scheduler invocations (averaged over 20 experiments);

" The number of deadlines missed (averaged over 20 experiments);

" The average number of deadlines missed per 10,000 invocations of the scheduler.

The first set of data are collected from a program which consists of two periodic

threads. Thread 1 has a period of 10 milliseconds and a cost of 3 milliseconds. Thread

2 has a period of 5 milliseconds and a cost of 2 milliseconds. The total workload on

the scheduler is 70%. The approximate duration of the program is 0.35 seconds.

Quantum [ps] Invocations I Deadline misses I Average deadline misses

500 66000 45 6.81
1000 43800 21.6 4.93
1500 17500 17.75 10.14
2000 11900 5.8 4.87
2500 11300 5.7 5.04
3000 10800 10.2 9.44

Table 3.3: Default quantum benchmarks for short-lived threads

The second set of data are collected from a program which consists of two periodic

threads. Thread 1 has a period of 100 milliseconds and a cost of 30 milliseconds.

Thread 2 has a period of 50 milliseconds and a cost of 20 milliseconds. The total

workload on the scheduler is again 70%. The approximate duration of the program

is 3.3 seconds.
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Quantum [p-s] I Invocations J Deadline misses j Average deadline misses
1000 74200 12.0 1.61
2000 61600 12.4 2.01
3000 83700 16.3 1.94
4000 94500 14.2 1.50
5000 88700 21.0 2.36

10000 95300 11.9 1.24
15000 94000 8.9 0.94
20000 70700 9.1 1.28
25000 68800 9.4 1.36
30000 85000 10.3 1.21

Table 3.4: Default quantum benchmarks for longer-lived threads

For the first program, the best default time slice to use is somewhere between

2000 and 2500 microseconds. If the quantum is lower than 1000 microseconds, the

number of scheduler invocations increases dramatically and the overhead slows down

performance.

On the other hand, the number of deadlines missed by the second program is

lowest when the time slice is around 15000 microseconds. Not contrarily to the

intuition, the most appropriate quantum depends on the nature of the program being

run. We have therefore decided to allow the programmer to invoke the method

Scheduler.setDefaultQuantao to define a time slice specific to the code being

run.

3.9 Conclusions and Future Work

The FLEX compiler is a well-structured environment that permitted us to obtain

fully functional code. The real-time scheduler performs well under reasonable loads

(up to 0.7 of the CPU) and on average-sized thread sets. Its limitations stem mainly

from. The linear complexity of the EDF algorithm, which creates a big scheduler

overhead. FLEX makes it easy to explore new directions in scheduler designs. Here

are a few ideas that deserve further investigation:

1. Implement firm deadlines. If the scheduler detects that an activation of a
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thread will fail to meet its deadline, the scheduler should block the activation

of that thread. This may prove beneficial in an overload situation if the firm

thread has a low priority, because blocking it for a few periods may lighten the

pressure on the system and give the scheduler time to cope with the overload.

A possible approach to handling firm deadlines is to give the scheduler a small

look-ahead, or the ability to analyse the evolution of the system in the short

future and decide whether it can afford to activate a firm thread.

2. Make the scheduler priority-based, rather than EDF, under heavy overload.

When the scheduler determines that it cannot avoid deadline overruns by one

or more threads, it may consider switching to priority-based scheduling. Under

EDF scheduling, priority inversion may occur if a lower-priority thread has an

earlier deadline than a higher-priority thread. Under priority-based scheduling

and in the event of an overload, the scheduler can at least attempt to satisfy

the deadlines for vital threads.

3. Implement scheduling in time logarithmic in the number of threads. For now

it is not obvious how this can be accomplished, because the scheduler must

take into account the current time, and information (such as the deadline and

the work units left during a period) needs to be updated frequently for most

threads. A good starting point is provided by Dannenberg [4], who proposes a

strategy with 0(1) scheduling / dispatching and O(logn) background work.

4. Switch to a more real-time environment than standard Linux. This will give

a more accurate evaluation of the efficiency of this scheduler, for two reasons.

First, the finest clock measurements that one can make on a standard Linux

machine are in the order of microseconds, which may be too coarse to allow

accurate results. Second, threads under Linux have a latency which can reach

seconds in the worst case. A solution would be to install a real-time kernel

patch. The default time slice needs to be reevaluated to accommodate the new

environment.
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Appendix A: Code

Below is the source code for the most important classes in the real-time package.

The complete source codes can be found on the FLEX web page at http://www.

flex-compiler.lcs.mit.edu/

PriorityScheduler.java

// PriorityScheduler.java, created by cata

// Copyright (C) 2001 Catalin Francu <catacmit.edu>

// Licensed under the terms of the GNU GPL; see COPYING for details.

package javax.realtime;

import java.util.HashSet;

import java.util.Iterator;

public class PriorityScheduler extends Scheduler {

// Real-time thread priorities

static final int MAXPRIORITY = 38;

static final int MINPRIORITY = 11;

static final int NORMPRIORITY =

(MAXPRIORITY - MINPRIORITY) / 3 + MINPRIORITY;

static HashSet allThreads = null;

static HashSet disabledThreads = null;

// The runtime constraints for the threads we're maintaining

static ThreadConstraints thread[] = null;

public static RelativeTime defaultQuanta = null;

static PeriodicParameters mainThreadParameters = null;
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static PeriodicParameters noRTParameters = null;

// The first threadID that we can allocate

long nextThreadID = 0;

// The number of threads we are maintaining

int nThreads = 0;

// The number of missed deadlines and thenumber of times that the

// scheduler was invoked

public static long missed = 0;

public static long invocations = 0;

// The thread that chooseThread selected upon the previous invocation,

// and how long we've allowed that thread to run

long runningThread = 0;

RelativeTime runningTime = null;

static PriorityScheduler thisScheduler;

// Do not call this constructor; instead, call

// PriorityScheduler.getSchedulero.

public PriorityScheduler() {

superO;

if (thread == null) {

thread = new ThreadConstraints[10];

allThreads = new HashSeto;

disabledThreads = new HashSeto;

defaultQuanta = new RelativeTime(2, 0);

runningTime = new RelativeTime(0, 0);

mainThreadParameters =

new PeriodicParameters(null, new RelativeTime(5, 0),

new RelativeTime(1, 0), null, null, null);

noRTParameters =

new PeriodicParameters(null, new RelativeTime(50, 0),

new RelativeTime(1, 0), null, null, null);

}
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}

// Creates and returns a scheduler of this type

public static PriorityScheduler getScheduler() {

ImmortalMemory. instance(). enter(new Runnable() {

public void run() {

PriorityScheduler.thisScheduler = new PriorityScheduler();

}

return thisScheduler;

}

// Start maintaining this thread (called by the runtime system during

// execution of the thread.start() method).

public void addToFeasibility(final Schedulable t)

{

allThreads.add(t);

thread[nThreads] = new ThreadConstraints(;

thread[nThreads] .threadID = ++nextThreadID;

thread[nThreads].schedulable = t;

thread[nThreads] .beginPeriod = null;

nThreads++;

ImmortalMemory. instance().enter(new Runnable() {

public void run() {

// Give the runtime system a chance to update its data structures

addThreadInC(t, nextThreadID);

}

}

protected native void addThreadInC(Schedulable t, long threadID);

// Remove this thread from the list of maintained threads (either

// from an explicit call or when the thread ends)

public void removeFromFeasibility(Schedulable t) {
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long threadID = removeThreadInC(t);

allThreads.remove(t);

int i = 0;

while ((thread[i] == null II thread[i].schedulable != t)

&& i < nThreads)

i++;

if (i < nThreads) {

thread[i] = null; // To ensure deallocation

thread[i] = thread[--nThreads];

}

protected native long removeThreadInC(Schedulable t);

// Use this to notify the runtime system of the time slice we want

// to allot to the selected thread

protected native void setQuantaInC(long microsecs);

public long chooseThread(long micros) {

invocations++;

AbsoluteTime now = new AbsoluteTime(0, (int)micros*1000);

if (nThreads == 0)

return (runningThread = 0);

ReleaseParameters rp = null;

int earliest = -1; // The periodic thread returned by EDF

// If earliest = -1, we'll choose the sporadic thread with the

// earliest starting time

int earliestSporadic = -1;

for (int i = 0; i < nThreads; i++)

if (thread[i] != null) { // if this thread is still alive

// First, if this was the running thread, reduce its workLeft

if (runningThread == thread[i].threadID) {

thread[i] .workLeft = thread[i] .workLeft. subtract (runningTime);
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if (thread[i] .workLeft.compareTo(RelativeTime.ZERO) == -1) {

AsyncEventHandler h = thread[i].schedulable

.getCostOverrunHandler();

if (h != null) h.run(;

}

}

// Second, update the thread parameters

if (thread[i].threadID == 1)

rp = mainThreadParameters;

else if (thread[i].schedulable instanceof RealtimeThread)

rp = thread[i] . schedulable. getReleaseParameters ();

// If the thread has no real time parameters, make it aperiodic

if (rp == null)

rp = noRTParameters;

// System.out.println(rp);

if (thread[i] .beginPeriod == null) {

// This is the first time we're handling this thread.

// If the thread is sporadic, we'll set its endPeriod when we run

// it for the first time.

thread[i] .beginPeriod = now;

thread [i] .endPeriod = (rp instanceof PeriodicParameters) ?

thread[i] .beginPeriod.add(((PeriodicParameters)rp) .getPeriod()

new AbsoluteTime(AbsoluteTime.endOfDays);

thread[i].workLeft = rp.getCost(;

thread[i] .deadline = thread[i] .beginPeriod.add(rp.getDeadline();

}

else if (now.compareTo(thread[i].endPeriod) >= 0) {

// This thread is passing into a new period

// (1) Check to see if the thread missed its deadline

if (thread[i].schedulable instanceof RealtimeThread &&

thread [i] .workLeft.compareTo(RelativeTime.ZERO) == 1) {

missed++;

AsyncEventHandler h = rp.getDeadlineMissHandler(;

if (h != null) h.run(;

}
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// (2) Update the thread constraints

thread [i] .beginPeriod. set (thread [i] .endPeriod);

if (rp instanceof PeriodicParameters)

thread[i] .beginPeriod.add(((PeriodicParameters)rp) .getPeriod(,

thread[i].endPeriod);

else

thread [i] .endPeriod. set (AbsoluteTime. end0f Days);

thread[i] .workLeft.set(rp.getCost());

thread[i].beginPeriod.add(rp.getDeadlineo, thread [i]. deadline);

}

// Third, use the thread for the EDF algorithm The thread must

// (1) not be disabled, (2) have some work left to do during

// this period, (3) have the earliest deadline among all threads

if (!disabledThreads. contains(new Long(thread[i] .threadID)))

if (rp instanceof PeriodicParameters 11

(rp instanceof SporadicParameters &&

thread[i].workLeft.compareTo(rp.getCostO) == -1)) {

// This thread is either periodic, or it is sporadic AND we have

// started running it, so now we have to finish this period in time

if (thread[i].workLeft.compareTo(RelativeTime.ZERO) == 1 &&

(earliest == -1 11

thread[i].deadline.compareTo(thread[earliest].deadline)==-1))

earliest = i;

}

else if (rp instanceof SporadicParameters &&

thread[i].workLeft.compareTo(rp.getCost()) == 0) {

// This thread is sporadic and we haven't started this period yet,

// So we'll remember it in case we have nothing urgent to do

if (earliestSporadic == -1 ||

thread[i].beginPeriod.

compareTo(thread[earliestSporadic].beginPeriod) == -1)

earliestSporadic = i;

}

}
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// If nothing urgent, run a sporadic thread

if (earliest == -1 && earliestSporadic != -1) {

earliest = earliestSporadic;

// We're activating a new period for this sporadic thread, so we have to

// set startPeriod and endPeriod

thread[earliest].beginPeriod.set(now);

thread[earliest].beginPeriod

.add(((SporadicParameters)thread[earliest].schedulable.

getReleaseParameterso).getMinInterarrival(),

thread[earliest].endPeriod);

}

// If the thread has enough work left to do, give it a full

// quanta. Otherwise, give it only the time it needs.

if (earliest != -1) {

runningThread = thread[earliest].threadID;

if (thread[earliest] .workLeft.compareTo(defaultQuanta) == -1)

runningTime. set(thread[earliest] .workLeft.getMilliseconds(),

thread[earliest].workLeft.getNanoseconds());

else

runningTime. set (def aultQuanta. getMilliseconds(),

defaultQuanta.getNanoseconds());

setQuantaInC(runningTime.getMilliseconds 0*1000);

return runningThread;

}

// Nothing to do, remain idle

return runningThread = 0;

}

public void stopAll() {

}

public void fireSchedulable(Schedulable h) {

h.run();

}
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public boolean noThreads() {

return nThreads == 0;

}

public void disableThread(long threadID) {

disabledThreads.add(new Long(threadID));

}

public void enableThread(long threadID) {

disabledThreads.remove(new Long(threadID));

I

public String getPolicyName() {

return "EDF";

I

/******************************* Priorities ********************************/

public int getMaxPriorityo {

return MAX-PRIORITY;

I

public int getMaxPriority(Thread thread) {

return (allThreads. contains (thread)) ?

MAXPRIORITY : Thread.MAXPRIORITY;

I

public int getMinPriority() {

return MIN-PRIORITY;

I

public int getMinPriority(Thread thread) {

return (allThreads. contains (thread)) ?

MINPRIORITY : Thread.MINPRIORITY;

I
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public int getNormPriority() {

return NORMPRIORITY;

}

public int getNormPriority(Thread thread) {

return (allThreads.contains(thread)) ?

NORMPRIORITY : Thread.NORMPRIORITY;

}

/************************** Feasibility algorithm **************************/

protected static native int stopSwitchingInCO;

protected static native int restoreSwitchingInC(int state);

// This one's a bit twisted, but it's much more

// implementation-friendly. We decide feasibility by calling

// changeIfFeasible with no parameters.

public static boolean isFeasible() {

return changeIfFeasible(null, null, null);

}

// changeIfFeasibleo)

// This is where the actual feasibility decision is made.

// Algorithm: Plain EDF -- add up the fractions cost/period for

// periodic threads, cost/minInterarrival for sporadic threads.

public static boolean changeIfFeasible(Schedulable schedulable,

ReleaseParameters release,

MemoryParameters memory) {

if (schedulable != null &&

!allThreads.contains(schedulable)) {

return false; // We are not responsible for this thread.

}

int switchingState = stopSwitchingInCo;

double load = 0.0;

HashSet groupsSeen = new HashSet(;
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for (Iterator i = allThreads.iteratoro; i.hasNexto; ) {

Schedulable s = (Schedulable) i.nexto;

// Use the release parameters for each Schedulable, except for the one

// we are trying to change, for which we'll use the newly proposed

// parameters.

ReleaseParameters rp = (s == schedulable) ?

release : s.getReleaseParameterso;

if (rp != null) // Main thread (and possibly other threads) have null rp

// Periodic threads already have a cost and a period

if (rp instanceof PeriodicParameters) {

load += (double)((PeriodicParameters)rp).getCost().getMillisecondso/

((PeriodicParameters)rp).getPeriod().getMillisecondso;

}

else if (rp instanceof SporadicParameters) {

load += (double)((SporadicParameters)rp).getCost().getMilliseconds(/

((SporadicParameters)rp).getMinInterarrival().getMilliseconds();

}

// We must look up the period in the ProcessingGroupParameters

// of the thread.

else {

ProcessingGroupParameters pgp = s.getProcessingGroupParameters(;

if (!groupsSeen.contains(pgp)) { // Haven't seen this group before

groupsSeen.add(pgp);

load += (double)pgp.getCost().getMilliseconds() /

pgp. getPeriod() . getMilliseconds 0;

}

}

}

System.out.println("Load " + load);

if (load <= 1.0 && schedulable != null) {

schedulable. setReleaseParameters(release);

schedulable.setMemoryParameters(memory);

}
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restoreSwitchingInC(switchingState);

return (load <= 1.0);

}

}

ThreadConstraints.java

The runtime parameters associated with each thread are:

" threadID - An identification number used to communicate between the real-

time Java package and the runtime component written in C. Passing the threads

themselves would have been time-consuming and error-prone.

" workLeft - A relative time indicating the amount of processor time that the

thread needs before its deadline. When this value is negative, the cost overrun

handler needs to be called. When this value is positive and the deadline has

passed, the deadline miss handler needs to be called.

" beginPeriod - An absolute time indicating the beginning of the current period.

For periodic threads, the beginning of a period is equal to the end of the previous

period. For sporadic threads, the beginning of the period is set to the time when

the thread is released.

" endPeriod - An absolute time indicating the end of the current period (for

periodic threads) or the end of the minimum interarrival time (for sporadic

thread). After this time, all the runtime parameters need to be updated: pe-

riodic threads are advanced to the next period, and sporadic threads become

eligible for reactivation.

" deadline - An absolute time indicating the point in time by which the thread

has to complete all its work for that period.

// ThreadConstraints.java, created by cata

// Copyright (C) 2001 Catalin Francu <cata@mit.edu>
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// Licensed under the terms of the GNU GPL; see COPYING for details.

package javax.realtime;

// These are the runtime-constraints associated with a thread.

public class ThreadConstraints {

Schedulable schedulable; // The thread itself

long threadID;

RelativeTime workLeft;

AbsoluteTime beginPeriod, endPeriod, deadline;

}

Other Examples

Here are two other examples of programs we have run through our real-time system.

ToyTree.java

This is a program that builds a complete binary tree of given depth and then it rotates

random nodes a given number of times.

class ToyTree {

public static void main(String [] args) {

int asize=O;

int repeats=O;

boolean RTJ = false;

boolean stats = false;

javax.realtime.MemoryArea ma = null;

javax.realtime.MemoryArea mb = null;

try {

asize=Integer.parseInt(args[0]);

repeats=Integer.parseInt(args [1]);

if (RTJ=!args[2].equalsIgnoreCase("noRTJ")) {

if (args[2].equalsIgnoreCase("CT")) {

ma = new javax.realtime.CTMemory(Long.parseLong(args[4]));

mb = new javax.realtime.CTMemory(Long.parseLong(args[4]));

} else if (args[2].equalsIgnoreCase("VT")) {
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ma = new javax.realtime.VTMemory(1000, 1000);

mb = new javax.realtime.VTMemory(1000, 1000);

} else {

throw new ExceptionO;

}

stats = args[3] equals IgnoreCase ("stats");

}

} catch (Exception e) {

System.out.println("Toy Tree <tree depth> <repeats> " +

"<noRTJ I CT I VT> [stats I nostats] [ctsize]");

System.exit(-1);

}

long start;

if (RTJ) {

ToyTreeRTJ ta=new ToyTreeRTJ(ma,asize,repeats);

ToyTreeRTJ tb=new ToyTreeRTJ(mb,asize,repeats);

start=System.currentTimeMillis();

ta.start(;

tb.start(;

try {

ta.join(;

tb.join(;

} catch (Exception e) {System.out.println(e);}

} else {

ToyTreeNoRTJ ta=new ToyTreeNoRTJ(asize,repeats);

ToyTreeNoRTJ tb=new ToyTreeNoRTJ(asize,repeats);

start=System.currentTimeMillis(;

ta.start(;

tb.starto;

try {

ta.join(;

tb.join(;

} catch (Exception e) {System.out.println(e);}

}

long end=System.currentTimeMillis();
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System.out.println("Elapsed time(mS): "+(end-start));

if (stats) {

j avax. realtime. Stats. print();

}

}

}

class ToyTreeRTJ extends javax.realtime.RealtimeThread {

public ToyTreeRTJ(javax.realtime.MemoryArea ma, int size, int repeat) {

super(ma);

this.size=size;

this.repeat=repeat;

}

int size;

int repeat;

static class TreeEle {

public TreeEle(TreeEle 1, TreeEle r) {

left=l;

right=r;

}

TreeEle left;

TreeEle right;

}

TreeEle buildtree(int size) {

if (size==O)

return null;

return new TreeEle(buildtree(size-1) ,buildtree(size-1));

}

void fliptree(TreeEle root) {

if (root==null)

return;

TreeEle left=root.left;
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TreeEle right=root.right;

if (left!=null) {

TreeEle temp=left.left;

left.left=left.right;

left.right=temp;

fliptree(left.left);

fliptree(left.right);

}

if (right!=null) {

TreeEle temp=right.left;

right.left=right.right;

right.right=temp;

fliptree(right.left);

fliptree(right.right);

}

root.left=right;

root.right=left;

}

public void runo {

TreeEle root=buildtree(size);

for(int i=0;i<repeat;i++)

fliptree(root);

}

}

class ToyTreeNoRTJ extends Thread {

public ToyTreeNoRTJ(int size, int repeat) {

supero;

this.size=size;

this.repeat=repeat;

}

int size;

int repeat;
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static class TreeEle {

public TreeEle(TreeEle 1, TreeEle r) {

left=l;

right=r;

}

TreeEle left;

TreeEle right;

}

TreeEle buildtree(int size) {

if (size==0)

return null;

return new TreeEle(buildtree(size-1),buildtree(size-1));

}

void fliptree(TreeEle root) {

if (root==null)

return;

TreeEle left=root.left;

TreeEle right=root.right;

if (left!=null) {

TreeEle temp=left.left;

left.left=left.right;

left.right=temp;

fliptree(left.left);

fliptree(left.right);

}

if (right!=null) {

TreeEle temp=right.left;

right.left=right.right;

right.right=temp;

fliptree(right.left);

fliptree(right.right);

}
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root.left=right;

root.right=left;

}

public void run() {

TreeEle root=buildtree(size);

for(int i=O;i<repeat;i++)

fliptree(root);

}

}

Fib.java

This is a program that computes the n-th Fibonacci number recursively (i.e., in time

exponential in n).

import javax.realtime.RealtimeThread;

import javax.realtime.CTMemory;

class Fib {

public static void main(String args[1) {

int i = Integer.parseInt(args[O]);

System.out.println("fib("+i+")")

Compute c = new Computeo;

c.i = new Integer(i);

CTMemory scope = new CTMemory(1000000);

scope.enter(c);

}

}

class Compute2 implements Runnable {

Integer i;

public void run() {

Compute c = new Compute(i);

c.starto;

try {

c.join();

I catch (Exception e) { System.out.println(e); }
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System.out.println("fib("+i.toString()+")="+c.target.toString();

}

}
class Compute extends RealtimeThread {

Integer source;

Integer target;

Compute(Integer s) {

source = s;

}

Integer target() {

return target;

}

public void run() {

int v = source.intValueo;

if (v <= 1) {

target = new Integer(v);

} else {

Compute ci = new Compute(new Integer(v-1));

Compute c2 = new Compute(new Integer(v-2));

ci.start(;

c2.start(;

try {

ci.joino;

c2.join(;

} catch (Exception e) { System.out.println(e); }

target = new Integer(cl.target().intValue() + c2.target().intValue();

}

}
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