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Abstract

The capacity of the non-coherent channel in a two-user-multi-access channel is

investigated when a block length of N is used. The work here builds on the already

investigated case of a single user. The lower and upper limit for the capacity region

in this non-coherent multi access channel is established. In particular, it is shown

that the capacity achieving distribution of the signal resulting from the two users is

characterized by zero mean and uncorrelated components. It is also shown that a

Gaussian distribution for each of the two users does not achieve capacity. As the block

length N increases the capacity region approaches that of a coherent channel and

that a Gaussian distribution for each of the two users with I.I.D components achieves

capacity. Finally, the bounds of the channel cpacity region in a fading environment are

discussed. Direction in which follow up work can proceed is briefly mentioned.

Thesis Supervisor: Vahid Tarokh
Title: Professor
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1 Introduction

Phase noise in many communication scenarios makes it difficult to discern the phase of a

received signal and consequently the whole signal. Research in recent years has focused on

novel non-coherent methods which work with unknown phases. The performance of these

methods, in many instances, approaches those of coherent communication systems.

In band-pass transmissions coherent phase references are not usually available at the

receiver and thus its difficult to obtain the correct phases and information sequence. Non-

coherent channels are a good model for band-pass transmission channels. A non-coherent

channel in this respect refers to an Additive White Gaussian Noise channel (AWGN) with a

random phase rotation.

There are a number of approaches that are used to detect an information sequence trans-

mitted over an AWGN non-coherent channel. One of them employs the use of pseudo-

coherent receivers. This is an approximate coherent detection scheme that uses phase syn-

chronization. A phase reference is extracted from the incoming signal sequence and the

sequence is passed through a detection scheme that is optimal under coherent detection.

Over the years research has shown that the use of the pseudo-coherent detection technique

approaches that of an ideal coherent detector when the phase rotation introduced by the

channel is constant or slowly varying and the length of the block code is sufficiently large.

A second approach involves the use of non-coherent decoding scheme. These schemes

employ two main classes of algorithms. These are the Multiple Symbol Differentiation De-

tection(MSSD) [1] and the Non-coherent sequence detection (NSD)[2][3]. In these cases the

performances are also shown to approach those of ideal coherent detection. Analysis done
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in case of M-ary phase-shift keying [4] is one of the cases.

In order to investigate the performance of these non-coherent schemes it is important to

establish the capacity of a general AWGN non-coherent channel. The capacity of AWGN

non-coherent channel has been calculated in the case of input symbols belonging to an M-

PSK alphabet[5]. Capacity of the unknown phase channel but employing an orthogonal

multiple frequency-shift keying (MFSK) modulation was derived by Butman, Bar-David,

Levitt, Lyon and Klass [6]. Capacity of the non-coherent channel was further investigated

for spread spectrum systems by Chayat[7] with orthogonal modulation and by Cheun and

Stark [8] in relation to multiple access. Zhou, Mei, Xu, and Yao[9] calculated the capacity of

a block-wise fading channel whilst Chen and Fuja[10] calculated the capacity a non-coherent

differential MPSK (DMPSK) with block length of two.

This thesis discusses the capacity of the non-coherent AWGN in a multi-access setting. In

particular, the capacity in a two user setting is investigated. The work done by C. Colavolpe

and Ricardo Raheli [11] investigates, in a single user setting, the capacity of a random-phase

non-coherent additive white Gaussian noise channel. In their paper, they found that the

capacity achieving distribution is non-Gaussian. They also found that for increasing values

of the number of symbols transmitted , the capacity asymptotically approaches that of a

coherent channel. This two user case investigation is important as it helps develop a bench

mark for evaluating multiuser detection schemes in non-coherent AWGN channels.

The investigation in this thesis considers two users transmitting independently. There

are no constraints on both input symbols to the users. The situation investigated is meant

to mimic the real case situation where signals from two users have random phase noise
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added to them in addition to the Gaussian noise imposed by the channel. This phase noise

can be induced in several ways. In one instance its added during transmission by the RF

converters. In other instances, it is added by the digital modem during the generation of

reference signals. These reference signals involve the use of primary and secondary reference

oscillators which add the phase noise[12]. Yet another cause of the phase noise are signal

amplitude fluctuations during amplitude modulation[13].

Results show that in general the distribution which maximizes the average mutual in-

formation is not composed of independent and identically distributed zero-mean bivariate

Gaussian components as in the coherent case. An asymptotically tight lower bound for the

two user capacity region is derived. The bound shows that the capacity bound of the non-

coherent AWGN channel approaches that of a coherent channel as N -+ 00. This implies

that the capacity achieving distribution as N --+ oc, for each user, is a zero-mean Gaussian

with independent, identically distributed components.

The following sections discuss the system model employed. The capacity achieving input

is characterized and a lower bound for the boundary of the two user region is derived. As

the block length goes to infinity the asymptotic behavior of the model is analyzed. Finally

the lower bounds of the boundary of the capacity region are investigated when fading is

employed in the model. A discussion of what the model implies together with future work

to extend the model to more than two users follows.
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2 The Channel Model

The system model consists of two users transmitting together in a non-coherent manner. The

input to the channel is modeled as two vectors x = (x 1 , x 2 , ... , XN)T and z= (ZI, Z2 , ... , ZN)T.

Each vector represents an input of N complex symbols and these two vectors are assumed to

be independent. The output is a vector y = (yI, Y2, ... , YN)T whose components are expressed

as Yk = Xkejox + Zkeioz + Wk. Ox and Oz are the phase shifts introduced by the channel. They

represent the phase noise discussed in the introduction. The phase shifts are considered

constant over a block of length N and for each user they are modeled as a continuous

random variable with uniform distribution. The noise elements Wk are independent and

identically distributed (i.i.d.), zero-mean, independent complex Gaussian random variables

whose components have a variance of o.2 for the real dimension. These random variables are

collected in a vector w = (wi, W2, ..- , WN)T

The components of vector x and z may also be expressed in polar coordinates as follows,

Xi = rxieex and zi = rzieOz. Therefore the vectors rx = (rx1,rx 2, ... , rxN) Tand Ox

(OX1, q x2, ... , kxN)T represent the vectors of the radii and the angles of the components of

x. In the same manner r7 = (r1z, rz2, ... ,r zN)T and . = (z1,$ z2, ---,zN)T represent the

vectors of the radii and the angles of the components of z.

The signal-to-noise ratio(SNR) per information symbol for each user is defined as follows,

El xI12  El x11 2

Ellwl12  2No.2(

Eflz|12  El z1 2

= Ejlw||2 2NO.2 (2)
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Given a variable v, flvyj stands for the Euclidean norm of v.

3 Properties of the Capacity Achieving Distribution

This section defines channel capacity (average mutual information) and then discusses the

properties of the capacity achieving distribution. It is shown that the average mutual in-

formation is maximized when the random vectors Ox and #., are independent of rx and r.

respectively and composed of independent uniformly distributed (IUD) components. Since

the components of vectors x and z, are independent the components of the vectors formed

from their polar coordinates are also independent.

3.1 Capacity

The information channel capacity , also known as the average mutual information (AMI), is

defined as follows

Inc = I(x, z; y) = E log 2 p(ylx, z) } (3)
pXy)

The capacity-achieving distribution of the vectors x and z is characterized by the probability

density function p(x,z) which maximizes (3). The random variables x and z are independent.

We express this distribution as follows,

p(x, z) = p(x + z). (4)
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The conditional probability density function p(ylxz) is expressed as follows

1 1 | x +z| 2  2 yT( )
p(yjx,z)= ( 2 )N exp 1- 2 } 10 ( . (5)

(2XU2)N 2or 2or2a2

10 is the Oth order modified Bessel function of the first kind. In the case of two users

transmitting with the same power the capacity per channel use of the non-coherent channel

under consideration is defined as follows,

Cnc= .maxI (6)
N

Note that this capacity is the capacity attainable by a single transmitter sending with a

power equal to the sum of the powers of user one and two. For comparison purposes we

define the capacity per channel use of a coherent channel as C,. This refers to the case when

both vectors Ox and 0, are known.

3.2 Maximum Average Mutual Information

The AMI is maximum when the the random vectors #x and #z are independent of rx and r,

respectively. The phase vectors are also characterized by uniformly distributed components.

This is derived in the following section.

Consider a virtual channel obtained from our original channel, having the phase vectors

Ox and 07 as inputs together with x and z. Let y be the output. The AMI of this channel
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can be represented as

IV = I(Ox,Ox,z;y) (7)

=I(Ox7, ,Nx,,rxrz; y) (8)

= I((x, z, rx, rz; y). (9)

In the above formulae (x =((x1, (22 ... , (xN) (x + O, x2 + Ox, ---, ON + Ox). And in

a similar manner z = ((Zi, (z2, ... , CzN) (qzl + Oz, Sz2 + Oz, --- , zN ± Oz). The distribution

of (x and (z are determined by those of 6 and Oz respectively as these are among the inputs

to the virtual channel and are therefore known.

Using the standard mutual information decomposition

I(a; b, c) =I(a; b) + I(a; c~b) (10)

We can relate the AMI of the AWGN non-coherent channel to that of the virtual channel.

This relation yields the following set of equations,

Inc= I, -- (O, ;yxz) (11)

= IV - (Ox, 2; y~rx, rz, Nx, z). (12)

Equation (12) describes the AMI of the diversity channel in which Ox and 6 are input, y is the

output and the receiver has the channels state information represented by x and z. It follows

that the AMI would depend on the joint distribution of (rx, r, z, Oxx). Using Bayes rule this
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translates to the factors p(rx, rz) and p(Ox, #z2rx, rz). Using the independence of x and z we

can rewrite the dependence as collection of the four factors p(rx), p(rz), p(Ox rx), p(#z rr).

Further analysis shows that the AMI is independent of p(oxjrx) and p(#zrz). This

follows because the phases #, 0, are perfectly known to the receiver. It's thus possible to

transform vector y using the diagonal unitary matrix diag (e-ox1, e-j4x2, ... , e-jxN) or diag

(e-ijz1, e-jz;2, ... , e-jOzN). Both transformations are reversible and they therefore do not

modify the AMI[14]. They also do not change the statistics of the noise vector. Therefore

the AMI of the diversity channel represented as I(9x, O2; ylrx, r, #x, #z) is independent of

p(Ox3rx) and p(ozlrz)-

The AMI of the virtual channel is represented as in [15],

I = I((x,(,rx,rz;y) (13)

= H(y) - H(yI(x, (z, rx, rz). (14)

H(y) and H(yI(x, (z, rx, rz) are the entropy and conditional entropy of y respectively. The

conditional entropy is the same as,

H(w) = E log 2  (15)

where p(w) is the complex Gaussian distribution of noise given as,

1 r-Hw||2
p(w) = (2 2 )eN exp 22 (16)
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Therefore as in [16],

H(y|(x, z, r., rz) = Nlog2 Te(o 2 (17)

independently of the joint distribution 0x, #0, rx, rz.

Changing to polar coordinates we can express yi as viev'. Using this new coordinates we

get the vectors v = (vi, V2 , ... , VN), 0 1 (1i, 02, --. , 4 ' N) -

H (y)
+0 +00 n

= H(v, ) + ... / p(vi, v 2 , ... , VN) 10 2 f i dvl ... dvN

N +)l
= H (v, +) + P(Vi) log2 vi dvi

(18)

(19)

The above equation is the multidimensional form of (33) in [16]. H(v, 0) < H(v) + H(O),

this is shown in [14]. The two sides are equal if and only if v is independent of 4.

Taking the equations (11),(14),(17) and the independence of vand 4 we get,

Inc 5 H(v) + H(O) + p(vi) log 2 vidv - Nlog 2 r 2 - I(, ; ,rzq0,#, z). (20)

The first and third terms of (20) are independent of the conditional distributionp(plrx, r., (x - (z).

This follows from the independence of p(v) from p(plrx, rz, z - (i). p is the exponent in the

polar coordinate version of the following new variable r.

r = xeO + zeo

reP = rxe&( + rze&( (21)
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Note that we can represent ri as a square root of the following function,

f (ri, rzZ, (x - (zi) = r2i + r 2 - 2rzirrzcos(27r - (xi + (zi). (22)

In other words r? f (rxi, rzi, (xi - (i).

Equation (20) achieves equality when v and V are independent and if their components

are independent and uniformly distributed. H(O) and H(v) are maximized when they have

independent, uniformly distributed components as shown in [15]. In the next two sections

it's shown that 4 has independent uniformly distributed components if p and hence (, and

(, have independent uniformly distributed components independent of the distribution of

r i.e (rx, rz, (x - (z). Note that this implies that Ox and 07 have independent uniformly

distributed components independent of distribution of r.

In the next three sections we prove that Ic is maximum when vectors r and p are

independent and p has I.U.D components. p having I.U.D. components implies that (x and

thus Ox has I.U.D. components too. The same applies for (z and Oz - both have I.U.D.

components too.

3.2.1 Probability Distributions in Polar coordinates

Before we proceed on to prove the independence of p(v) from p(pjrx, r., (1 - (Z) and that vec-

tor p has independent uniformly distributed components, independently of the distribution

of r, we express the Gaussian probability function p(ylx, z, Ox, 0.) in polar coordinates.

N Vi V 2 + r2 - 2vjrjcos(V'j - pi)
p(v, OjrX, r, (x - (z, p) = 272 e exp 2o 2 (23)
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r is defined in (21) and it's components values are defined as the square root of (22). p on

the other hand can be defined in reference to C( or ( as follows,

i = COS -(
pA = (xi =i

(.i = COS -

pi = (zi +Pi

T2 -r2 r2\

2rxi

2 2 2
r - Tzi - T

2rzj

With the above definitions the marginal probability density functions are described as

follows,

p(vIrx, rz, (x - (z, p) = p(vlr., r., ( -

= p(vlr)

N V

27ro.2 exp -

p(r, p)

N 2

i=1 27 2o .2 -

.Q rCOS(V - p

+TriCOS('} - pi)+ ruexp
rlsi 2Qt'

2o2 I

Here Q(x) is the Gaussian Q function defined as follows,

Q(x) =
2wa

(24)

(25)

2o 2} 10 ( 2) (26)

}
(27)

r
exp

dt

2
(28)

15
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3.2.2 Independence of p(v) from p(pjrx, r7, (, - (2) = p(pjr)

In this section, it is shown that the probability density function p(v) is independent of the

conditional distribution p(pjr). We start by noting that p varies in [0, 27r] and that

p(vlr) =p(vrp)p(plr)dp (29)

In general p(vlr) depends on p(pjr). However,(26) shows that p(vlr) is independent of p(pjr).

As a direct result, it is independent of p((,,Ir) and p((2|r). This can be observed by noting

the alternative definitions of pi in (24) and (25). As a consequence p(vlr) is also independent

of p(#2|Ir) and p(q#xIr). This property is true also for p(v), as it's obtained by averaging with

respect to r.

3.2.3 V has I.U.D Components and is Independent of r if p has I.U.D. elements

From (28) , we get

p(o|r) = j p(ojr, p)p(plr)dp (30)

p is independent of r therefore p(p~r) is equal to p(p). If we assume that p has independent

components that are uniformly distributed we get the following,

N

p(pjr) = flp(pi)
=

1N

27

= p(p) (31)
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p has range [0 - 2-r]. The dependence on 4'i - pi of the integrand in (30) means that the

integrals with respect to p and 4 are equal. As shown in [11] we obtain

N

p(V|r) - p(Vi)
i:=1

1N

= p(4). (32)

The range of 4 is the same as that of p. From (23) and (26) it can be deduced that if

p(p) = p(O) = (_)N then p(v, 01r) = p(vlr)p(V)). It then follows that,

p(v, 4) = IN p(vlr)p(O)dr. (33)

Thus from (33) we ascertain that p(v, 4) = p(v)p(4) and therefore the independence of v

and 4.

3.2.4 Capacity achieving distribution has zero mean uncorrelated components

From the two previous sections, the independence of r and p is shown. It follows from

above that both #. and #, are independent of r, and r, respectively. As a consequence the

components of both x and z exhibit circular symmetry. From these facts, it follows that the

capacity-achieving distribution of the joint distribution x + z is characterized by zero mean

and uncorrelated components as shown below,

E{x+z} = Jfp(x,z)(x+z)dxdz

17



S fp(x, z)p(x) + p(x, z)p(z)dxdz

J xp(x)dx + zp(z)dz (34)

We note that the above equations consists of the summation of the mean of x and z and

both have 0 means. Therefore, (34) integrates to zero. The components are uncorrelated by

the nature of transmission. Transmissions of one symbol to the next are independent.

3.2.5 The capacity achieving distribution is not Gaussian

In this section, it is shown that for a transmission of N symbols by each user the capacity

achieving distribution is not Gaussian. We first establish the capacity achieving distribution

under a constant power constraint. Another constraint that is implicit is the fact that the

integral of the probability distribution of p(x, z) with respect to both z and x is one. By

using Lagrange multipliers and variational techniques we establish the conditions the capacity

achieving distribution must satisfy. We then proceed to show that a Gaussian distribution

does not satisfy this conditions.

We maximize p(x, z) under the following constraints,

J J 11x + z|| 2p(x, z)dxdz = C (35)

J Jp(x, z)dxdz = 1. (36)

When maximizing Incp(x, z) we are looking for the distribution p(x, z) that satisfies the

following condition,

Ic (p(x, z)) + FU(p(X, z)) = 0 (37)

18



Lagrange multipliers are used to maximize the above expression and come with the following

expression, which is the same as (14) in [11],

I p(yx, z) log2 p(y)d(y) = A- log2 e + Px + Z112 + Jp(yx, z) log 2p(y x, z)d(y). (38)

Thus any capacity achieving distribution of (x + z) must satisfy the above equation. Using

(5) , we get

I p(yIx, z) log2 p(yIx, z)dy = -Nlog 2 27ra 2 - log2 e 2c+2

- g2 e (2Nu 2 + |Hx + z112 )

+ Jp(yx + z) log 2 I0 ( yIT(x + z)*1)dy.

The above has been reached by using the following relation,

J 1y 2 p(yIx, z)dy = j 2 , f f y 2 |p(yYx, z, OX, Oz)dydOxdOz

= 2Na 2 + Ix + z112

(38) can then be represented as follows ,

J p(yIx, z) log 2 p(y)d(y) = A' + I' x + z112 + p(yjx, z) log2 Io(IyT(x + z)*1)

The following substitutions have been made,

A' = A -log 2 e- Nlog 2 27re 2

19
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g - 2 e (43)

We now proceed to show that x + z having a Gaussian distribution cannot achieve ca-

pacity because it doesn't satisfy (38). If x + z were a Gaussian distribution, it would have

independent, uncorrelated components and thus satisfied the condition discussed in 3.2.4..

We can think of the random variable x + z being made by the summation of two multi-

dimensional Gaussian random variables x and z. It's probability density function would be

1 |f x + z112

p(x,z)= (2 7(o + )N) 2(U (2

It follows that the distribution of y would be Gaussian with independent components.

{)( )= x 11yJ1 (45)p~)=(27ay)N 22 45

Above cry = ax + a,+ -. Using (44) and (45) we can represent the left side of (41) as follows,

Jp(yx, z) log 2 p(y)d(y) = -N0log 2 (27ro-2 _ og 2 e j y 2 p(yx + z)dy
y

= -N log2 (27r-2) _ og 2 e (2NO2 + 11x + z112 ) (46)

(46) exhibits a quadratic dependence on jx + zj, but the right hand-side of (41) is not a

quadratic form due to the presence of f p(yIx, z) log 2 1o(jyT(x + z)*|). Thus (x + y) that is

capacity achieving is not a Gaussian distribution.

20



3.3 Lower Bound on Channel Capacity Region

In this section, a lower bound on the capacity region for two users transmitting under

the channel model, described in section 2, is derived. The argument follows closely that

in [11]. First, a review of the channel capacity region for two users in an additive white

Gaussian channel is done. Then, it is shown that the capacity region achievable in the non-

coherent channel is larger than the capacity region achievable when a particular non-optimal

distribution of x and z is used. From section 3.2.5, it was noted that a Gaussian distribution

for both users does not achieve capacity for a non-coherent channel. Therefore the Gaussian

distribution is non-optimal and is used for both users x andz when deriving the lower bound.

3.3.1 Capacity of Gaussian Multiple Access Channels

Assume that two transmitters, X 1 and X 2 , communicate to a single receiver Y. The received

signal at time i is

Yi = X1i + X2i + Z (47)

Where Zi is a sequence of independent, identically distributed , zero mean Gaussian random

variables with variance N. From [14], it is observed that the capacity region for a Gaussian

multiple access channel with two users is the convex hull of the set of rate of pairs satisfying,

R, < I (X1; Y lX2), (48)

R 2 < I(X 2 ; YIXI), (49)

R 1 + R 2 I(XI, X 2 : Y) (50)
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for some input distribution f(xI), f(x 2) satisfying some power constraint E{X'} < P and

E{X } < P2 . Calculating the mutual information for this channel yields the following

bounds,(the full calculations of are shown in [14])

R1 < C (51)

R 2  C , (52)N

R1 + R 2  C (53)
N

3.3.2 Lower Bound

We will assume that x + z is Gaussian and that x and z are each Gaussian with in-

dependent real and imaginary components, each with a variance a and or respectively.

Thus we define for each real component Re(xi) ~ N(O, o ) and Re(zi) - N(O, a 2) such that

Re(xi + zi) ~ N(O, o + a ). In a similar manner we define for each imaginary component

Im(xi) ~ N(0, o ) and Im(zi) ~ N(O, o) such that Im(xi + zi) - N(O, o + o2). The prob-

ability density function of x + z is given by (44) and the signal to noise ratio is,

o2 + o2

XZ- 2 (54)

The probability density of y given the input distribution of x and z being Gaussian is given

by (45). The average mutual information per channel given the Gaussian inputs x and z is

22



as calculated as follows,

Inc 1 / p(yIx, z)p(x, z) log2 p(y x, z) dxdzdy
N Ni p(y)

- fP(y) log 2 p(y)dy

+ I ] p(y x, z)p(x, z) log 2 p(yIx, z)dxdzdy

= log 2 27re2 + p(y x, z)p(x, z) log2 p(yx, z)dxdzdy (55)

Using (5) and (40) we get the following set of equations,

= log 2 2we 2  1 P (YIx, z)p(x, z) lo2(2wr 2 -NdXdy dz

+ p(y1x, z)p(xz)log2 exp 2 - 1 (Y T ( + z)*1 dxdydz

log 2 27ea - log 2 (2o) + 2J2 2 p(y~x, z)p(x, z) log 2 edxdydz

+JJJp(y x, z)p(xz) log2 I( yT(x + z)* dxdydz

log 2 27reo - log 2(2 rT 2) _g 2 e22 fp (x, z)dxdz

-02 e2fifI 2 p(yIx, z)p(x, z)dxdydz

+ J(y x, z)p(x, z) log 2  + + z)*) dxdydz (56)

If we define the capacity of a coherent channel I(x, z; y) = C, where Cc is defined as follows,

Cc = log 2(1 + 7Y2) (57)
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we can write equation (56) as follows,

n log2 (1 +7xz) - 2(7x.) log 2 e+ p(x z)p(x, z) log 2I o + z)* dxdydz
N 1 0 2 ( + - - -)1 0 9 2 e + N f f 2 0(x z )2 *

= Cc - 2(2) log2 e + JJyp(yxz)p(xz) log2 I ( 2 z)dxdydz (58)

Therefore the lower boundary of the channel capacity region of the non-coherent channel for

the two user case is given by the convex hull of the set of rate of pairs satisfying,

R1 < Cc - 2(yx) log2 e+J P(y x)P(x) log 2 o dxdy (59)

R 2 < Cc, - 2(-y) log 2 e + I ff P(Y Iz)p(z) log 2 1l dzdy (60)

Cc < C, - 2(x) log 2 e + NJJ p(yx, z)(x, z) log 2 1y ( xY + z)*) dxdyd61)

Equations (59) and (60) have been derived in [14] where Ce, and C,, are defined as follows,

CcX= log 2 (1 + 7Yc), (62)

Cc =log2 (1 + 'Y). (63)

(64)

The integrals in (59) , (60) and (61) are numerically calculated. It turns out that only one

calculation that sweeps over a range of SNR is necessary to establish the boundary for a

given SNR of the variable given by x + z. Assuming the noise has constant power evaluating

the lower bound capacity for a range of power values for the random variable x + z implicitly

yields the capacity for both x and z. This occurs because the sum of their powers is less than
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or equal to that of x + z. The integral in (61) is numerically calculated using the results of

Appendix B in [14].

Figure 1 shows the proposed lower bound on channel capacity for various values of N. The

capacity of the coherent channel is given for comparison purposes. The lower bound curve

on the channel capacity region is given in Figure 2 together with the curve for a coherent

case. User one and two transmit using the same power and the SNR as seen by x + z is

given by (54). If we let the SNR = 5dB, we obtain the region in Figure 2.

Lower Bound on channel capacity for different values of N
2.5
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-e- N=3
N=5 4

1.5 - N=1O -
0 N=30

i E Coherent

0. C0.

o0

0.5-

...... ...

-10 -5 0 5
SNR (dB)

Figure 1: Lower bound on channel capacity for different values of N
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3.4 Upper Bound on Channel Capacity Region

In the previous section, we came up with the lower bound area of the channel capacity

region for two users. In this section, we show that as N -+ oo the area of the capacity region

approaches that of the coherent channel. We again follow closely the arguments presented

in [14] in establishing the asymptotic behavior of this model.

As shown in (7) we can express the average mutual information of the virtual channel as

follows,

IV = I(-X, OZ,

= 1(OX, O ;

x,z; y)

y) + I(x, Z; yjOX, 02)
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- I(OX, 0; y) + Ic. (65)

I, is the capacity of the additive white Gaussian coherent channel where 0, and O are known.

The first term of (36) is the average mutual information of the diversity channel mentioned

in Section 3.2 except in this case the channel state information is not known. Substituting

(36) into (11) we get,

Inc = Ic + I(Ox, 0z; y) - I(OX, z; yx, z) (66)

Lets consider the Gaussian distribution p(x, z) in (44). It has been shown in section (3.3)

that,

Cc 
Inc
N

Ic I(Ox, Oz; Y) I(OOz); yx, z)
N N N

c + ±I (6X, Oz; y) I(Ox, Oz; yx, z) (67)
N N

Being that x + z is Gaussian the resultant y is also Gaussian and thus independent of Ox 6.

This implies that I(Ox, Oz; y) = 0. Therefore (67) reduces to

Cnc > Cc - I(OX, Oz; y xz). (68)N

It was shown in section (3.2.3) that V) has I.U.D. components if p has independent com-

ponents. This further implied that Ox and therefore Ox had I.U.D. components. The same

27



argument applied for #2. This property of the capacity achieving distribution allows us to

conclude that I(0x, 07; y) = 0 for any distribution that achieves capacity.

It follows therefore that C,, < Cc. This can be readily observed from equation (66)

where the second term is zero as explained above and the third term is positive [14]. Using

(68) we end up with the following bound for Cn,.

c I(x, ; yx, Cnc CcN cc(9

As in [14] we now consider the following diversity channel,

y = zu + w

Where z is input and and y is the output. If we define u = x + y the capacity of this channel

is given as ,

C < log 2 (1 + Ny). (71)

If we define z - ef(o,9z,x,z) we end up with

I(f (Ox, OZ, x,z); yIx, z))

I(OX, ) X), x, X ;yxz)

I(OX, OZ; yIx, z)

K

K

K

log2 (1 + Ny)

log 2 (1 + Ny)

log 2 (1 + Ny)
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Now incorporating (69) we get the following new bounds for C,

log 2 (1 + N-y22) < < Cc (73)
N

Using the squeeze theorem we note that as N -+ oc, the value of Cnc tends to C, which

is the capacity of a coherent channel. Because the lower bound tends to Cnc which in turn

tends to Cc the Gaussian distribution used to calculate the lower bound achieves capacity

as N -+ oc.

4 Fading non-coherent channel

In this section, the lower bounds of the capacity region considering the case of a non-coherent

channel with fading is explored. This is motivated by the fact that propagation through

wireless channels is characterized by various effects such as multi-path fading[17]. Precise

mathematical description of fading poses an intractable analysis problem. Therefore several

relatively simple but accurate models are used to represent fading channels.

In this section I will use the Rayleigh distribution to model multi-path fading. The

probability density function of a Rayleigh variable is (3) in [18]

12
p(7) = - . (74)

T

Where -y is the signal to noise ratio and T represents the average power of -y i.e T = E{Y}.
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The system model presented in section two now becomes,

y = axeox + bze&o + w, (75)

where a and b represent the fading coefficients of both users. It has been assumed in this

model that the two users signal experience different fading. We note that Y. and 7, vary

in time due to the Rayleigh fading. Therefore, -y, + 7 also varies in time. To calculate the

channel capacity in a fading environment we have to do it in an average sense. Therefore

to find the lower boundary region of a non-coherent fading channel we do it in an average

sense.

As in section 3.2.2. the lower boundary area of the fading non-coherent channel for a two

user case will be given by the convex hull of the set of rate of pairs satisfying,

R 1 < 10 P(7) cc. - 2(y) log 2 e + ] ] p(yIx)p(x) log 2 1 2 dxdy dy

R 2  P(7z) (cc - 2 (yz) log2 e + 1 JJ p(y Iz)p(z) log 2 1o l dzdy d7z

Cnc < p(7 + yz)Cc - 2(7xz) log2 e +..

- ff Jp(yjx, z)p(x, z) log2  l (T(X z)* dxdydzd(yx + yz) (76)

Figure 3 shows the lower boundary of the capacity region for each value of N in a fading

environment when both users are transmitting at 2dB. It can be seen that the lower boundary

of the channel capacity region for a given value of N is lower in a fading channel compared to

that of a non fading channel. This can be better seen by looking at figure 4 which shows the

capacity regions lower boundaries for different values of N for both fading and non-fading
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channels when both users transmit at 2dB. This is expected as the channel capacity in

a Rayleigh fading environment is always lower than that of a Gaussian noise environment

without fading[18].

Lower bound on channel capacity region for different values of N
in a fading environment
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User X capacity (bits/symbol) SNR (2dB)

Figure 3: Lower bound on channel capacity region for different values of N for a fading non-coherent
channel
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5 Conclusions

1.4 1.6 1.8

values of N for both fading and

This thesis set out to find a lower and upper limit for the capacity region in a multi-access

setting involving two users transmitting in a random-phase additive white Gaussian noise

channel. The case for a single user transmitting in a non-coherent channel has been investi-

gated in [14]. That investigation is carried on to a multi-user setting. The investigation is

carried out in a similar manner to [14] and the results are similar. In particular, it is shown

that the capacity achieving distribution for the two users is characterized by zero mean

and uncorrelated components. It is also shown that a Gaussian distribution for each of the

two users does not achieve capacity because it doesn't satisfy the properties of a capacity
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achieving distribution. Using a Gaussian distribution for each of the two users, a capacity

region that is a lower bound is derived. It is shown that as the block length increases the

capacity region approaches that of a coherent channel and that a Gaussian distribution for

each of the two users with I.I.D components achieves capacity. Since the two users have

both Gaussian distributions the joint distribution of x, z can be thought of as a Bivariate

Gaussian distribution at the component level. Finally, the case of fading is introduced into

the model. Its found that the lower boundaries for the capacity regions for a given block

length is lower in case of fading compared to a non-fading environment.

Further work will involve extending this model to a N user setting. From the results

gathered from this thesis and prior work, it seems likely that the capacity region of the

non-coherent channel as the block length increases will approach that of a coherent channel.

Moreover, the results suggests that the capacity achieving distribution as the N -+ oc will

be a multivariate Gaussian. Further work will also involve evaluating this model with other

fading models. For instance, fading phases may be considered as well as phenomena such as

shadowing.
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