
Graphical Metadata Management

For the Context Mediation System

by

Usman Y. Mobin

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

January 28, 2002
CW'y

Copyright 2002 Usman Y. Mobin. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

January 28, 2002

Certified b

Accepted by

Stuart E. Madnick

---Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

Graphical Metadata Management for the Context Mediation System
by

Usman Y. Mobin

Submitted to the
Department of Electrical Engineering and Computer Science

January 28, 2002

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

A system is presented which allows users to author, edit, and view the ontological,

contextual and other metadata knowledge required by the reasoning engine of the Context

Interchange Mediator[2]. Context Mediation[1] involves bridging the interpretational

discrepancies between data provided by heterogeneous sources based on a common

semantic framework. This semantic framwork[4] is encapsulated by the ontology provided to

the mediation engine, while the actual interpretational differences between the sources are

represented in the context for each source. The proposed system makes it easy for the user to

represent, author, and edit such information and makes possible a certain level of

collaboration between individuals in maintaining such information. The ontology editor is

implemented in the JavaTM Programming Language[7] thus making it architecture

independent and also allowing it to be embedded in a web-based system. The metadata

management system, on a whole, is a web-based application which is developed using the

JavaServer Pages technology[20] with an Oracle database as the backend. This allows for

performance, reliability, and above all, portability. Thus, the system can be used on any

Interent terminal worldwide through the Java Virtual Machine[8] of a web browser without

the need to install any specialized software locally.

Thesis Supervisor: Stuart E. Madnick
Title: J N Maguire Professor Of Information Technologies, Sloan School Of Management;
and Professor of Engineering Systems, School of Engineering.

2

Table of Contents

1. Introduction .. 7
1.1 The Contexts of Sources and Recipients 7
1.2 The Semantic Framework .. 8
1.3 The Proposed System ... 9

1.3.1 M otivation .. 9
1.3.2 O bjectives ... 10

1.3.2.1 Intuitive D esign 10
1.3.2.2 Independence from Reasoning Engine 10
1.3.2.3 Minimal Training 11

2. R elated W ork .. 12
3. Design Overview .. 16

3.1 Overview of the system .. 16
3.2 Motivation for Context Mediation and Graphical Frontend 20
3.3 Motivational Guided Tour for Graphical Metadata Management 32
3.4 Modules of the System .. 46

3.4.1 The Applications Page ... 47
3.4.1.1 The Underlying Applications Architecture 48

4 O n tology ... 50
4.1 The O ntology Editor .. 50

4.1.1 Usage Guide .. 51
4.1.1.1 Ontology Color Guide 51
4.1.1.2 Semantic type creation and deletion 51
4.1.1.3 Modifier Addition 52
4.1.1.4 Attribute Addition 52
4.1.1.5 Specifying parental relations 52
4.1.1.6 Modifier and Attribute Deletion 52
4.1.1.7 Moving Semantic types 53

4.1.2 Dynamic Canvas Resizing 53
4.1.3 Graphics-related variables of interest to the developer 53
4.1.4 Source Files ... 54
4.1.5 Underlying Data Structures 56

4.1.5.1 Sem antic Types 57
4.1.5.2 M odifiers .. 57
4.1.5.3 A ttributes .. 58

4.2 O ntology G enerators ... 59
5. C ontexts .. 60

5.1 Contexts Management Page .. 60
5.1.1 U sage G uide .. 61
5.1.2 Dynamic Modifier Listing 62
5.1.3 Source Files .. 62
5.1.4 Underlying Data Structures 63

5.1.4.1 The Contexts Table 64
5.1.4.2 Table for Modifier Values 64

3

5.2 Internal Representation Generators 65
6. Sources ... 66

6.1 Sources Management Page ... 66
6.1.1 A note on terminology ... 67
6.1.2 Source Code Files ... 67
6.1.3 Underlying Data Structures 69

6.1.3.1 Data Source Descriptions 70
6.1.3.2 Relation Descriptions 71
6.1.3.3 Column Descriptions 72

6.2 Internal Representation Generators .. 73
7. E lev ation s ... 75

7.1 Elevations Management Page ... 75
7.2 Elevations through example .. 76
7.3 Internal Convention .. 76
7.4 Custom Abduction-time Code ... 77
7.5 A ttribute R ules .. 78
7.6 Details of the Elevations Page ... 79

7.6.1 Source Code for Elevations editor 79
7.6.2 Underlying Data Structures 80

7.6.2.1 Column Elevation Map 81
7.6.2.2 Context Subscription for Sources 81

7.7 Internal Representation Generators ... 82
8. C onversion s .. 83

8.1 Conversion Functions Page .. 83
8.1.1 U sage G uide .. 84

8.1.1.1 Our notion of conversions 84
8.1.1.2 Predefined variables 84
8.1.1.3 Simple Mathematical Conversions 85
8.1.1.4 Database-backed Conversion Functions 86
8.1.1.5 Advanced Constructs 87

8.1.2 Source Files ... 87
8.1.3 Underlying Data Structures 89

8.2 Internal Representation Generators .. 89
9. Conclusions and the Future .. 91

9.1 N eed for m ore testing ... 91
9.2 Application browsing ... 91
9.3 Navigational improvements .. 92
9.4 Q uery-building tool ... 92
9.5 Graphical attribute rules .. 92
9.6 Backend Improvement ... 93
9.7 Registry development ... 93
9.8 P ortable data .. 93

R eferen ces .. 9 5
A ppendix A 99

A .1 O ntology ... 99
A .2 C ontexts .. 100
A .3 Source D escriptions ... 102
A.4 Conversion Functions ... 105

4

A .5 E levations ... 107
A .6 Integrity C onstraints ... 111

5

List of Figures

1.1 T he big picture ... 11
2.1 A screen shot of EditML in "TreeView" mode 13
2.2 EditML in DTD-view mode ... 14
2.3 Popkin Software's EnvisionXML .. 15
3.1 Architecture of the context mediation system 18
3.2 the big picture, again .. 19
3.3 The medium sized picture .. 20
3.4 temporary applications page .. 27
3.5 sources description page for financial application 28
3.6 user issues query to the system ... 30
3.7 results of user query ... 30
3.8 contexts for the financial application .. 31
3.9 context definition for worldscope ... 32
3.10 results from user query on DiscAF .. 33
3.11 context addition dialog .. 34
3.12 a new ly created context .. 35
3.13 finding elevations information ... 36
3.14 specifying a modifier value ... 37
3.15 user specified context ... 38
3.16 updating the reasoning engine with the new context information 39
3.17 relation addition form ... 41
3.18 column addition to a relation ... 42
3.19 context specification for sources ... 43
3.20 the conversion functions editor .. 44
3.21 The A pplications Page .. 47
3.22 top level object/data structure of the system 48
4.1 T he ontology editor .. 50
4.2 Object/data structure of the ontology subsystem 56
5.1 Contexts Management Page ... 60
5.2 Edit Modifier Value Page .. 61
5.3 Object/data model for contexts subsystem 64
6.1 Sources Management Page .. 66
6.2 Object/data model for the sources subsystem 70
7.1 Elevations Management Page ... 75
7.2 Object/data model for the elevations subsystem 81
8.1 Conversion Functions Management Page 83
8.2 Object/data model for the conversions subsystem 89

6

1 Introduction

The Context Mediation System[2] allows users to see a contextually unified' view of data

obtained from disparate sources that potentially differ in their interpretation of the actual

data elements. The problem of the reconciliation of such semantic heterogeneity has been

elaborated most appropriately in [1] and the reader is referred to that paper if elucidation is

necessary. More details regarding our solution to the problem can be found in [43] and [44].

1.1 The Contexts of Sources and Recipients.

As an elaboration, consider two databases that provide information about the wealth of

individuals. Database One is based in the United Kingdom and contains a rccord of the

form wealth(name: 'William H. Gates', wealth:42111000) and Database Two is based in the

United States and contains a record of the form value(name: 'Bill Gates', wealth:56133). On

a purely physical level, Database One says that the "wealth-relation" of "William H. Gates"

is "42111000" and Database Two says that the "value-relation" of "Bill Gates" is "56133."

Instantly, we see that these two sources of information are not comparable unless there is

some explicit elaboration of the underlying assumptions about the data elements. For

example, the name fields use different formats for the name 2. Secondly, the wealth field in

Database One could be in Pounds Sterling, quoted as thousands, and the mean value of the

wealth over a specified period3. While Database Two might quote the wealth field as

millions, in the currency of the country of residence of the individual, and the instantaneous

value at a particular point in time.

Likewise, the user who wants to know the wealth of "Gates Bill" (perhaps, because

his culture makes the assumption that last name goes first4) should not receive a "record not

found" error because the database really does contain the required information. Also, the

user should not receive a mere "56133" as an answer because the user might be expecting

Of course, this contextually unified view is in the recepient's own context.
2 This particular example of disparity would be quite impossible to reconcile as there are no standards
pertaining to the names of individuals.
3 The mean value could be a good measure as most of the wealth is in risky assets and thus subject to a
variance.
4 Like many Asian cultures do.

7

the data in, say, Japanese Yen. Thus, the recipient of information also has hidden

assumptions about the data.

A context is an embodiment of the array of hidden assumptions each source or

recipient makes about data elements.

1.2 The Semantic Framework

Consider now the case where the user wishes to obtain the wealth value by averaging5 the

values provided by the two sources6. It is obvious that both the data elements need to be

elevated to a common semantic vocabulary before they may be compared on similar grounds.

In fact, even if the user requests a single data item from a single source, the data item still

needs to be elevated to a semantic vocabulary before an appreciation can be made of the

ways in which it differs within contexts.

The ways in which each semantic type can differ across contexts is encapsulated in the

concept of a modfier. In the example in section 1.1, the "wealth" field in the "value" relation

in Database Two could be elevated to a semantic type called, say, MoneyAmount. We have

already seen that this semantic type differed across the two databases in terms of the scale

factor and the currency among other possible ways. Thus, the semantic type MoneyAmount

has at least two modifiers: scale-factor, and currency. Other modifiers would pertain to time-

frame, taxation, and so on.

Now suppose that the "value" relation in Database Two had been value(name,

wealth, currency) instead of just value(name, wealth) then we notice that the currency for the

MoneyAmount corresponding to "wealth" is now explicitly mentioned in the relation itself.

Thus, MoneyAmount no longer contains a modifier currency but instead contains an attribute

currency. An attribute is some information about a semantic type that we obtain directly

from the database and does not vary based on context (except at the interpretational level).

The ontology or the domain model is the specification of the various semantic types

involved in the system and an enumeration of their modifiers (the values of which are

obtained based on context and alter the interpretation of the underlying data) and their

attributes (the value of which are obtained from the database).

5 To perhaps be subject to a lower standard deviation.
6 To be able to perfectly reconcile these two sources, we need to ignore the fact that one is a mean value
and the other is an instantaneous value.

8

We will describe the contexts, ontology, and other metadata required by the system

in more detail later.

1.3 The Presented System

The presented system provides the users of the Global Context Mediation System, as well as

its earlier implementation, the Context Interchange Mediator[2], with an easy-to-use

interface to author and edit the semantic framework for context mediation.

1.3.1 Motivation

The motivation for an easy-to use interface to author the semantic information comes from

the fact that the internal representations of the ontology; contexts; conversion functions;

elevation rules; and source descriptions, upon which the reasoning engine operates, are

somewhat non-intuitive and it is inappropriate to expect the end user to program directly in

them. In fact, authoring the metadata directly in the internal representation of the reasoning

engine is a nontrivial exercise in the least, and requires extensive training. This is not

desirable for a system that is intended for a reasonable sized audience.

Secondly, the internal representations are subject to change as the reasoning engine is

augmented, or rewritten, to support a wider range of phenomena. Each such change would

make the older metadata obsolete, and warrant retraining on the part of the users.

Thirdly, the internal representation of the semantic framework, inasmuch as it is

expressive, does not render a very visible manifestation of the big picture of the framework.

Such inability hampers further development of the semantic framework, and also does not

yield gracefully to end-users with minimal training.

Finally, and quite importantly, the different categories of metadata have varying

levels of dependence on each other. For example, if the ontology defines a semantic type

"money amount" and we change its name to, say, "financial unit," then such a change will

have repercussions for all other parts of the system. Changing the name of a semantic type,

for example, makes the rest of the metadata inconsistent with the ontology.

The presented system automatically keeps all data consistent at all times. So, if the

user changes the name of "money amount" to "financial unit," the context definitions and

the conversion functions and the other categories of metadata are automatically updated to

9

be consistent with the new vocabulary. Without the presented system, maintenance of an

application with very large amounts of metadata would become virtually impossible.

Automatic change propagation has proved to be a very useful feature even for very modest-

sized applications.

1.3.2 Objectives

The primary objective is to make the Context Mediation System usable for the end-user.

Thus, the system enables an end-user to author and edit applications of the Context

Mediation System with minimal training.

1.3.2.1 Intuitive Design

By providing a graphical interface to the Mediation System's semantic framework, the system

makes the design of the metadata structure more intuitive as compared to working with the

internal representation itself. The internal representation might be closer at heart to the

reasoning engine, but not to the end user. Modifying or authoring the semantic framework

by manipulating the internal representation might be quite a non-intuitive process for people

who didn't actually develop the system. Also, authoring the metadata directly in the internal

representation files is subject to consistency and maintenance problems as mentioned above.

This arises from the fact that most parts of the metadata have a dependence on other parts.

1.3.2.2 Independence from the Reasoning Engine

The system provides a greater level of independence from the implementation of the

reasoning engine. By not working directly at the internal representational level, the end-user

is buffered from possible augmentations in the reasoning engine itself. Furthermore, by

storing the semantic framework in an intermediate representation independent of the

internal representation, all changes to the internal representation require changes only to the

module that converts from the relevant database relations (intermediate representation) to

the internal representation. Thus, the architecture of the system may be broadly illustrated as

in figure 1:

10

0
Editors Generators

End User Internal Representation

figure 1.1: The big picture

Notice that changes in the internal representation, as mandated by changes in the reasoning

engine, are buffered from the structure of data in the database. Thus, a different reasoning

engine requires merely programming new generators for the new internal representations.

The presented system has the generators for the ontology, contexts, source descriptions,

elevation rules, and conversion functions for both the Context Interchange Mediator[2] and

its newer and more portable version, the Global Context Mediation System.

1.3.2.3 Minimal Training

The system requires very little training on the part of the end users as compared to the older

set-up where the user had to author the semantic framework directly at the level of the

internal representation. This makes it easier for the end-user to conceptualize about the

entire semantic picture. Of course, the design of the internal representation should be such

too that its use requires not-too-much training; however, working with any textual

representation is not quite scalable in terms of the conceptualization of the big picture. Thus,

a graphical representation seems necessary for complex semantic frameworks. Also, the

nature of the metadata is such that small changes in certain parts thereof need to propagate

to various other parts of the metadata. Working directly with a raw editor interface to the

internal representation offers no luxury of automatic propagation of changes in the metadata

to be reflected everywhere. Thus, the user has worry about consistency of, say, naming in the

metadata and so on. The presented system alleviates the user of such unnecessary worries

making the task of authoring and maintenance of metadata for context mediation

applications a much more manageable exercise.

11

2 Related Work

Various editors for metadata have been developed over the years. However, most of them

have been quite restricted in scope. Firstly, metadata editors have focused on particular

aspects of metadata and have failed to capture the entire body of knowledge that might need

representation in an environment where the semantic reconciliation of data can take place[4].

Just as it is important to have a metadata representation that is rich enough to describe

sufficient data semantics to be useful in methods of identification and reconciliation of

semantic heterogeneities, it is important to have editors that are able to support such

constructs so as to generate such rich representations. Secondly, the editors have been

primarily textual to semi-graphical and thus subject to considerable training requirement.

The editors presented in this system appear to be a first effort at graphically

representing the entire body of knowledge that might be required by an automatic-conflict-

detection based context mediation system[2], like the one described in [32].

The generators presented in this system, although re-programmable to generate any

equivalent representation of metadata, currently generate the one required by the Context

Interchange Mediator[5] and its later derivative, the Global Context Mediation System. This

representation is attributed to Cheng Goh[28], and as he notes in [28], is guided by the ideas

presented by Siegel and Madnick[4].

A significant body of related efforts has focused primarily on the edition and

representation of ontological knowledge, with no particular emphasis on the applications

towards the reconciliation of semantic heterogeneity.

A related effort was the domain modeler of Chris Leung, which was presented as his

master's thesis in our research group. Much of his work, unfortunately, has been lost. His

domain modeler was, in its functionality, similar to the ontology editor module of the

Graphical Metadata Management system presented here

Another related work is VisioDAML[33]. VisioDAML is a Visio application that

extends Visio so that it can be used to create graphical representations of DAML+OIL[17]

ontologies. The implementation described in [33] is intended to provide, as close as possible,

a direct one-to-one mapping between the DAML+OIL language constructs and their

graphical representation. Although VisioDAML requires Visio, ontologies authored using

12

that system may be viewed using Microsoft's freely available Visio Drawing Viewer[34] in

case Visio is not available.

Netbryx Technologies have developed an editor that, on the related side, allows users

to edit XML Document Type Definitions[35]. Currently, the editor, which the company has

named "EditML," is in version 2.5.

Figure 2.1: A screen shot of EditML in "TreeView" mode

Figure 2.1 shows a screenshot of EditML[36] when it is running in a mode called

"TreeView," allowing the user to see the data structure in a hierarchical tree view. Of greater

concern to us is the "DTD-view" of this program. This is shown in figure 2.2.

Notice that the editor is not very graphical, and at best the graphics are restricted to

the views afforded by a hierarchical tree structure.

13

1 EN book (title~author .price)>
!Y.*T.. * book genre C' :

title (# £TA: Y)>
I author (namte I(first-name last-name))>
V price (>

n .i-~ame(>>
I K:: first-name(.

I "Tls-name (P)

Figure 2.2: EditML in DTD-view mode

A simple Metadata Editor is the Reggie Metadata Editor[37], which is a Java-based Metadata

editor created by the Resource Discovery Unit of the Distributed Systems Technology

Center that exports HTML 3.2, HTML 4.0 and Resource Description Framework[3].

However, users have to author their own schema files, or use one of the predefined schema

available in that system. For more details, the reader is referred to [37].

A related effort is the KRAFT (Knowledge Reuse And Fusion/Transformation)

Ontology Browser developed at the University of Liverpool in the United Kingdom. Their

system is described in [38] and the KRAFT Ontology Browser is presented in [39].

A Java-based ontology editor, the Java Ontology Editor (OE) is maintained by the

Department of Computer Science and Engineering of the University of South Carolina. This

system is presented in [40]. These efforts are not suitable for our purpose as they are not

sufficiently customizable and are not as freely graphical as suits our fancy.

Popkin Software has developed a program, Envision XML, which on the related side

of things allows users to author document type definitions. Figure 2.3 shows a related screen

shot from this program. Details can be found in [41].

A very prominent related effort is Stanford's project protegd[18]. Its current

version, prot6g6-2000, is a tool which allows the user to construct a domain ontology,

customize knowledge-acquisition forms, and enter domain knowledge; and a platform

which can be extended with graphical widgets for tables, diagrams, animation

components to access other knowledge-based systems embedded applications. The

program requires the Java 2 plug-in to function (actually, so does our ontology editor).

14

However, the graphical presentation is limited to a highly structured tree-hierarchy and

does not allow the dexterity offered by tools that allow users to place objects on a canvas

(like our ontology editor, for example).

Figure 2.3 Popkin Software's EnvisionXML

15

3 Design Overview

This chapter presents an overview of the design of the system and describes the role of this

work in the grand scheme of the context mediation system. This chapter also provides

motivation for the context mediation system, and also for the Graphical Metadata

Management system. The chapter ends with the high-level details of the overall structure of

the Graphical Metadata Management system.

3.1 Overview of the system

This system works as the graphical front-end of the context mediation system. The context

mediation system may be divided into five main components. At the front are the graphical

metadata management tools that allow users to author the necessary metadata for their

applications using a friendly interface. This tool generates the internal representation of the

metadata for use by other parts of the system.

Also at the front is the Structured Query Language to datalog converter 7 which first

takes in a SQL query and parses it to generate the relevant datalog query. A typical SQL

query such as

select COMPANYNAME
from DiSCAF
where COMPANYNAME='DAIMLER-BENZ';

first gets converted to its datalog equivalent, which may be considered as a query in the

Prolog realm. The datalog for the above query would look like

answer('V7') :-
'DiscAF'('V7', 'v6', 'V5', 'v4', 'v3', 'v2', 'vi'),
'V7' = "DAIMLER-BENZ".

So basically, the system looks up the sources description and determines that the first

column in the DiscAF relation (variable V7 above) pertains to the requested column. This

datalog query gets elevated onto semantic space as follows. We will have more to say on

semantic space in our description of elevation rules.

16

answer('v9') :-
'DiscAFp'('V8', 'V7', 'V6', 'V5', 'V4', 'V3', 'V2'),
value('V8', datastream, 'V9'),
'Vl' = "DAIMLER-BENZ",
value('V8', datastream, 'Vi').

This result is an elevated datalog query' in the receiver's context. Here the receiver's context

is datastream.

The next main component of the context mediation system is the reasoning engine

which uses abductive logic to mediate the elevate datalog query so as to present it in the

context of the recipient. The result from the abduction engine for the above query would

look like:

answer("DAIMLER-BENZ") -
'DiscAF'('V7', 'v6', 'v5', 'V4', 'v3', 'V2', 'Vl'),
'Name-mapDtDs' ("DAIMLER-BENZ", 'V7').

The details of this process are not the subject of this thesis and are described in much detail

in [28] and [43]. The reader is referred to those papers if he or she would like to get the

mathematical model behind these transformations.

At the backend resides the executioner[29]. This system takes the output from the

mediation system and dispatches relevant queries to relational databases. The output from

the databases is then consolidated and presented to the end-user. This architecture of the

context mediation system is illustrated in figure 3.1, which is reproduced from Madnick[1].

7 Which was programmed by me earlier this summer.
8 Also referred to as context-sensitive datalog.

17

CONTEXT MEDIATION SERVICES Lengzth 2;
------ APPLICATIONS -- -o-.-r-ion Domain Meters /Feet

Conversion 'Model' -Context-

I- -iba _ _ _ . - - Axioms

Local Store Query Plan

Mediated - -
Executionera. El-

Query

Optimnizsr tQcery

Dadia Sour'ces

...................
Subqueries :i i1| *

Se. v A atiuonr oh Elevationa

Finally, uderdevelpent Aorrseac rup isteqeybidradapain

broertopo ims tAxioms a t
econtext mCao nte x c

Axioms Axioms , tr

presentd here

Semi-structured t
Data Sources:

DBMS (e-g., XML)

Figure 3.1: Architecture of the context mediation system.

Finally, under development at our research group, is the query-builder and application-

browser tool. This component manages the registry' and allows the users to create and

browse applications of the context mediation system. Of course, the metadata in those

applications is authored and managed using the graphical metadata management system

presented here.

9 Which integrates with the relational model of data used by this graphical metada management system

18

Editor s/Ge

design

display

Internal Rep.

physical semantic
datalog datalog

SQL to Datalog

'U

Abduction
mediate(
datalog

Exec.

physical
results

Figure 3.2: the big picture

Figure 3.2 shows the big picture of the context mediation system. However, the application

browser and query builder modules under development at our research group are not shown

in this figure. They are discussed more in a later section on future work.

Figure 3.3 zooms in on the presented system in the big picture

19

erator

)atabase

int.
I i~ rep.

query

design
/display

Internal rep. Database
generators

Internal Rep.

que Physical semasediat
ddata l tlg datalosz

SQL to Datalog Physial
8 results

Figure 3.3: The medium sized picture

3.2 Motivation for Context Mediation and Graphical Front-End

Users of the context mediation system use the system in one of two roles: information

retrievers, and information providers. Information retrievers use applications of the context

mediation system by entering SQL queries (as already shown in the previous section) and

obtaining mediated results back from the system in the context of their choosing.

Information providers are the class of users that author and manage the metadata

required for the applications of the context mediation system. The graphical front-end

presented here is a valuable tool for users operating in both the roles

In the past, information retrievers were provided with little or no knowledge of the

source structure and the contexts available in the application. It was assumed that the end-

user somehow knew the table definitions of remote sources as well as the context definitions

for the contexts in the system. The presented system allows the end user to see the source

structure and context definitions in a very user-friendly form. This equips the user with the

information needed to make queries to the system.

20

In this section, we describe a motivational example for the context mediation system

with an emphasis on the role of the graphical front-end in making the system usable. This

example will allow the reader to develop an appreciation for the entire system as well as the

need and value-added by the graphical front-end. Primary emphasis in this section will be on

the value of the system for the user operating in his or her role as the information retriever.

We will provide an example of building an application for the information provider, in a later

section.

The context mediation system makes the assumption that the relational data model is

the one exposed to the user[26] and the user makes queries in SQL or some extension

thereof. Of course, this does not mean that the actual data source must be relational. For

example, World Wide Web pages may be used as data source if they are appropriately

encapsulated with a relational interface. Such a program is referred to as a relational web-

wrapper[16] and allows the end user to obtain a relational view of a web source 0 . However,

as pointed out in [28], the choice of a relational data model is one of convenience and does

not signify any constraint imposed by the context mediation strategy. Consider the user has

access to three data sources containing financial information pertaining to companies:

disclosure, datastream, and datastream. Suppose the user wants the income per assets of, say,

British Telecom. Firstly, the user would like to query the database to know what information

is provided by each of the data sources. The user queries the database to obtain information

about the data sources disclosure and worldscope

SQL*Plus: Release 8.1.7.0.0 - Production on Fri Feb 1 04:35:44 2002

(c) copyright 2000 oracle corporation. All rights reserved.

Enter user-name: system@coin/manager

Connected to:
Personal Oracle8i Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> desc disclosure
Name Null? Type

COMPANY.NAME VARCHAR2 (40)
LATEST-ANNUALDATA VARCHAR2 (8)
CURRENTSHARES.OUTSTANDING NUMBER
N ETINCOME NUMBER

1 Of course, the capabilities of relationally wrapped web sources are less than those of innately relational
sources.

21

NETSALES NUMBER
LOCATIONOFINCORP VARCHAR2(20)

SQL> desc worldscope
Name Null? Type

COMPANY-NAME VARCHAR2(80)
LATESTANNUALFINANCIALDATE VARCHAR2 (10)
CURRENTOUTSTANDINGSHARES NUMBER
SALES NUMBER
TOTALASSETS NUMBER
COUNTRY-OFINCORP VARCHAR2(40)

The user notices that disclosure provides information regarding income, whilst worldscope

provides the information regarding the assets. The user first decides to query disclosure to

obtain the net income of British Telecom.

SQL> select company-name, net-income
2 from disclosure
3 where company-name = 'BRITISH TELECOM';

no rows selected

Notice that the database returned no results. The reason is that there is a contextual

difference between the user and disclosure in the naming of the company the user thinks is

"British Telecom." The user makes the assumption that the company's name is "British

Telecom" while disclosure assumes a different name that the user, perhaps, is not exactly

aware of. The user and disclosure, in this case, ascribe to different standards.

The user figures that disclosure might be using a different string to represent British

Telecom. So the user queries disclosure for all companies with names beginning with "B"

SQL> select unique(company-name)
2 from disclosure
3 where company-name like 'B%';

COMPANY-NAME

B F GOODRICH CO
BAKER HUGHES INC
BALL CORP
BANTA CORP
BASF CORP
BAUSCH & LOMB INC
BAXTER INTERNATIONAL INC
BECKMAN INSTRUMENTS INC
BECTON DICKINSON & CO
BEMIS CO INC
BERKSHIRE HATHAWAY INC

22

COMPANYNAME

BETHLEHEM STEEL CORP
BETZ LABORATORIES INC
BLACK & DECKER CORP
BLOCK DRUG CO INC
BLOUNT INC
BOEING CO
BOISE CASCADE CORP
BORDEN INC
BORG WARNER AUTOMOTIVE INC
BOWATER INC
BRIGGS & STRATTON CORP

COMPANYNAME

BRISTOL MYERS SQUIBB CO
BRITISH TELECOMMUNICATIONS PLC
BROWN FORMAN CORP
BRUNSWICK CORP
BURLINGTON INDUSTRIES EQUITY INC
BURLINGTON RESOURCES INC

28 rows selected.

Notice, that among the list is "BRITISH TELECOMMUNICATIONS PLC." Without

going into the philosophical issues of identity, the user can safely assume that this is the

company he or she was looking for. Using this newfound knowledge, the user can reissue

the initial query regarding the income of British Telecom.

SQL> select company-name, net-income
2 from disclosure
3 where company-name = 'BRITISH TELECOMMUNICATIONS PLC';

COMPANYNAME NETINCOME

BRITISH TELECOMMUNICATIONS PLC 1767000000

Good. The user next wants to find out the assets information from worldscope. The user

would ideally just like to "select totalassets from worldscope where companyname =

'BRITISH TELECOM'." However, now based on experience the user know that he or she

does not have the luxury of making queries in his or her own "context." So the user issues

the following query:

SQL> select company-name
2 from worldscope
3 where company-name like 'BR%';

COMPANYNAME

23

BRACKNELL CORPORATION
BRIGGS & STRATTON CORPORATION
BRISTOL-MYERS SQUIBB CO.
BRITISH TELECOMMUNICATIONS PLC
BROWNING-FERRIS INDUSTRIES, IN
BRUNO'S INCORPORATED
BRUNSWICK CORPORATION
BRUNSWICK MINING AND SMELTING

8 rows selected.

It just so happens that disclosure and worldscope ascribe to the same standard in naming

"British Telecom." This is not always the case though, as data sources can vary widely on the

naming standards used. As an example, notice the results from the following three queries:

SQL> select company-name
2 from disclosure
3 where company-name like 'DAIMLER%';

COMPANYNAME

DAIMLER BENZ CORP

SQL> select company-name
2 from worldscope
3 where company-name like 'DAIMLER%;

COMPANYNAME

DAIMLER-BENZ AG

SQL> select name
2 from dstreamaf
3 where name like 'DAIMLER%';

NAME

DAIMLER-BENZ

Coming back to our example, the user now finds the total assets of British Telecom as

follows:

SQL> select total-assets
2 from worldscope
3 where company-name = 'BRITISH TELECOMMUNICATIONS PLC';

TOTALASSETS

33528882

24

The data sources seem to work, though the user had to find out what name was assumed by

each source for British Telecom. Finally, the time to obtain the final result that the user had

sought out to explore at the beginning, the ratio of income to assets for British Telecom:

SQL> select (disclosure.net-income / worldscope.total-assets)
2 as ratio-of-income-to-assets
3 from disclosure, worldscope
4 where disclosure.company-name = 'BRITISH TELECOMMUNICATIONS PLC'
5 and worldscope.company-name = 'BRITISH TELECOMMUNICATIONS PLC';

RATIOOF.INCOMETOASSETS

52.7008327

Fifty-three? Something certainly is amiss here. Yes, something is. Integrating data from

heterogeneous sources is not as easy a task as it might appear at face value. Not only did the

user encounter contextual differences with the sources regarding the naming of the

company, the sources themselves differ in their assumptions underlying their reported data.

The user would have to browse through the fact sheets accompanying each data

source to find out that datastream reports all financial amounts in thousands, in the currency

of the country of incorporation of the company; disclosure, on the other hand, uses a scale

factor of unity for financial amounts and, again, the official currency of the country of

incorporation of the pertinent company; finally, worldscope uses a scale factor of a thousand

for financial amounts and United States Dollar as the currency.

Let's decouple the query back into two columns so that no single column in the

result is based on more than one data source:

SQL> select disclosure.net-income, worldscope.total-assets
2 from disclosure, worldscope
3 where disclosure.company-name = 'BRITISH TELECOMMUNICATIONS PLC'
4 and worldscope.company-name = 'BRITISH TELECOMMUNICATIONS PLC';

NETINCOME TOTALASSETS

1767000000 33528882

Based on the previous paragraph about the underlying assumptions of these sources, we

know the following about the results returned by the query:

25

Scale Factor Currency

NETINCOME One Official currency of country of incorporation of
the company

TOTALASSETS One Thousand United States Dollars

So the user would have to first look up the country of incorporation of British Telecom

(which, quite obviously is the United Kingdom) and then look up the currency of the United

Kingdom (British Pounds Sterling). Finally, suppose the user wants to see both results in

Japanese Yen, he or she would have to look up the conversion rates for both United States

Dollars and Pounds Sterling to Japanese Yen, and then finally have the information he or

she sought out to obtaining in the beginning.

This was a simple example. It involved two sources, two data items, one company,

and three currencies. Unfortunately, the real world is quite a bit more complex. Consider an

example involving ten data sources, five hundred companies spread over one hundred

countries, using fifteen standards for company names...

The context mediation system automatically reconciles these contextual differences

between heterogeneous data sources having different assumptions about their underlying

data, and presents the results to the user in a form that is familiar to the user. We have

developed an application of the Context Mediation System which is aimed at users like the

one above, and performs context mediation on the financial databases mentioned above.

Suppose the user above wanted to know the net income and total assets of British

Telecom using the context mediation system. The user would simply go to the sources page

of the graphical metadata manager for the appropriate application by clicking on "sources"

next to "TASC financial example" in the page shown in figure 3.4:

26

CurrencyScale Factor

...........t...a........I........ w ,j

Metadata ManacementI or the con text medl&P sy stem

TASC Financial Example[:: Ii mI I ': I
Disaster Relief Efforts [; + I .1 H I J

Figure 3.4: temporary applications page

However, as we mentioned earlier, the main query building and application browsing system

is in the works at our research group and as such, the page shown in figure ? is a temporary

placeholder for application browsing system.

Once the user clicks on sources, he or she is able to find out what databases are

available and what columns exist within each table. This makes the task of querying much

simpler for the end-user as the procedure for discovery of the underlying physical schema

description is much easier with the graphical metadata management system. Figure 3.5 shows

the sources description that the system displays to the user.

27

Sources: TASC Financial Example

data sources for

.banm.

Exchang.d
Exomessed

quot~

view i edit I delete I add relation

L'lw~.]

Figure 3.5: sources description page for financial application

Since the sources descriptions are a little too long, they are all not visible on the screen shot

in figure 3.5. So for the benefit of the reader, they are reproduced in textual form below:

data sources
cameleon
moneyrates

bankname

rate
yield
minbalance

olsen
Exchanged
Expressed
Rate
Date

quotes
Cname
Last

dateXform
datexfonn
Date 1
Format 1
Date2
Format2

for TASC Financial Example:
view I edit I delete I add relation

[editi delete add column]
[delete] order 1, string, part of the ke,. need not be bound in query, uniquely identifies other
values
[delete] order 2. real number, not a key, need not be bound in query
[delete] order 1. real nuniber, not a key, need not be bound in query

delete] order 4, real nuinber, not a key, neied not be bound in query
[edit I delete I add column]
delete] order 1. string, part of the key, must be bound in query
delete] order 2, string, part of the key, lnust be bound in quiery

[delete] order 3, real nanber, not a key need not be bound in query
[delete] order 4. strin, parl of the key, must be bound in query
[edit I delete I add column]

delete] order I string. part a/the key. must be bound in qu erv
delete] order 2, string, not a key, need not be bound in query

view edit I delete I add relation

[edit delete I add column I
delete] order I string, not a key, bound in one scenario, unbound in other
delete] order 2, string, not a key, must be bound in query
delete] order 3, string. not a key. unbound in one scenario, bound in other
delete] order 4, string, not a key., must be bound in quers

28

oat

oracle
Currency map
char3_currency
char2_currency

Currencytypes
country
currency

DiscAF
company-name
latest_annualdate
current_shares_outstanding
netincome
netsales
totalassets
countryofincorp
DStreamAF
asofdate
name
totalsales
totalextraorditemspreta
x
Earned_for_ordinary
currency

Name map Ds Ws
dsnames
wsnames

Name map Dt Ds
dtnames
ds_names

Name map Dt Ws
dtnames
wsnames

Ticker Lookup2
comp-name
ticker
exc
WorldcAF
company-name
latest_annualfinancialdat
e
currentoutstanding-shares
netincome
sales
totalassets
country-ofjincorp
WorldcAFT
company-name
latestannualfinancialdat
e
current_outstanding-shares
netincome
sales
totalassets
country-of-incorp

view I edit I delete I add relation

[edi delete I add column I
[delete] order 1, string, not a key, need not be bound in query, uniquely identifies other values
[delete] order 2, string, not a key, need not be bound in quety, uniquely identifies other values

[edit delte I add column I
delete] order 1, string, not a key, need not be bound in query uniquely identifies other values
delete] order 2, string, not a key, need not be bound in quer y uniquely identifies other values

[edit I delete I add column]
[delete] order 1, string, part of the key, need not be bound in query
delete I order 2, string, part of the key. need not be bound in query
delete] order 3, integer, not a key, need not be bound in query

[delete I order 4, integer, not a key, need not be bound in query
[delete] order 5, integer, not a key. need not be bound in query
[delete] order 6, integer, not a key, need not be bound in query
[delete] order 10, string, not a key, need not be bound in query

[ediitIdelete I add column]
[delete] order 1, string, part of the key, need not be bound in query

delete] order 2, string, part of the key. need not be bound in query
delete I order 3. integer, not a key, need not be bound in query

[delete] order 4, integer, not a key, need not be bound in query

[delete] order 5, integer, not a key, need not be bound in query
[delete] order 6, string, not a key, need not be bound in query
[edit delete I add column]
[delete] order 1, string, not a key, need not be bound in query, uniquely identities other values

delete] order 2, string, not a key, need not be bound in query, uniquely identifies other values
[edit j delete add column]

delete] order 1, string. not a key, need not be bound in query, uniquely identites other values
delete] order 2., string, not a key, need not be bound in query, uniquely identifies other values

[edit j delete I add column]
delete I order 1, string, not a key, need not be bound in query, unique4y identifies other values

[delete I order 2. string, not a key, need not be bound in query, uniquely identifies other values
[edit delete I add column]
[delete] order 1. string, part ofthe key. need not be bound in query
[delete] order 2. string, not a key, need not be bound in query, uniquely identifies other values
[delete] order 3, string, not a key, need not be bound in query
[edit I delete I add column]

delete] order ., string, part of the key, need not be bound in query

[delete] order 2. string, part ofthe key, need not be bound in query

delete] order 3, integer, not a key, need not be bound in query
delete] order 4. integer, not a key, need not be bound in querv

[delete] order .5, integer, not a key. need not be bound in query
[delete] order 6, integer, not a key, need not be bound in query
[delete] order 7, string, not a key, need not be bound in query

[edit I delete I add column]
[delete] order 1, string, part of the key, need not be bound in query

[delete I order 2, string, part of the key, need not be bound in query

[delete] order 3, integer, not a key. need not be bound in query
[delete] order 4, integer, not a key, need not be bound in query
[delete] order .5, integer, not a key, need not be bound in query
[delete I order 6, integer, not a key, need not be bound in query
[delete] order 7. string, not a key, need not be bound in query

29

Now, suppose the user wants to issue the query for net income and total assets for British

Telecom and obtain the results in worldscope's context. The user would simply issue the

query to the context mediation system, and that's it! All the cumbersome contextual conflicts

Are handled automatically!

Fur Ent lylw Fcits Tonl Retp

[)~~ A -h VNIGCMS Demo - Tasc02 SQL

Queries Description Access is to only one datasource, and the user is in the same context as the datasource. Therefore there is no
mediation,

* New0l

* NeVD' SQL select DiscAF.net income, WorldcAF.totalassets
Nev#03 from DiscAF, WorldcAF

* NewO4 where DisckF.company naee = 'BRITISH TELECOMMUNICATIONS PLC'
NewO6 and WorldcAF.coipenynae = 'BRITISH TELECOMHUNICATIONS PLC'

* Newt-/
* New0hl

" Tasc01_-
" TascD2* Context 1Worldscope
* TascG3
" Tasc04 stage C Naive Datalog r SQL Translation
" TascO5 r Context Sensitive Datalog f* Execution
" Tasc06
" Tasc07 C Conflict Detection
" Tascti C Mediation
" Tasc09
" Tasc1t Subhmitj esef
STsc Resul

DiscAF.net income Wor dcAF total assets
2622228 33528882

gcms@mit.edu

Figure 3.6: user issues query to the system

Notice that the results are:

DiscAF.net income WorldcAF.total assets
2622228 33528882

Figure 3.7: results of user query

The important thing to notice is that all conflict resolutions, currency conversions, and

contextual disparities are transparently handled by the system and the user sees the results in

the context of his or her choosing. Of course, with the graphical metadata management

system, not only is finding out the source descriptions easier, it is also much more easy to

30

find context definitions. All the user has to do to view the context definitions is to click on

the "contexts" link in the applications window. In the case of our financial application, the

context window would look like:

Metadata Mnagerent
for the context media on system

Contexts: TASC Financial Example

conteKts for TASC Financial Example:

rename delete

companyFinancials scaleFactor 1000
companyFinancials currency > company > countryIncorp > officialCurrency
companyName format dtname
date dateFmt European Style - [
currencyType curTypesym Schar []

rename I delete
companyFnancials scaleFactor 1
companyFinancials: currency e > company > countrylncorp > officialCurrency [:^
companyName . format ds-name
date : dateFmt American Style /
currencyType : curTypeSym Schar

Figure 3.8: contexts for the financial application

The user can scroll down to view the context definition of worldscope. This is shown in

figure 3.9:

31

.... - ------ --------- --------- --

companrYFinanc-ials currency ': > company > countryIncorp - officitalCurrency
companyName :format ds-name[
date : dateFmt American Style (I
currencyType : cur TypeSym n 3char '-

- -- - rerenie delte

companyFinancials: scateF actor 1V'I
companyFinancials. currency > company > countryincorp > officialCurrency[
companyNamee: format v~ najime
date : dateFert European Style/
currencyType : curTypeSym 3-e c Scar

- -7 - rne Idetete
companyFinancials :scaleFactor ~e4'1000
companyFinancials :currency USI)
companyName: format Lzws-namne b~
data : dateFent American Style/[
currencyType :curTypeSym 3ciiar[]

Yahoo: '~ renamne delete
ompanyFina nciafs- : scale-Factor I ~

companyFinancials : currency srcUSO
companyName : format '-ya..nama

date : date~rmt ~ &:American Style
currencyType : curTypeSym 3ehar[-t]

Figure 3.9: context definition for worldscope

Notice, that the context for worldscope is to report financial amounts in thousands of

United States Dollars, among other things. This is exactly what the user found after going

through the cumbersome procedure of browsing the worldscope fact sheets.

3.3 Motivational Guided Tour for Graphical Metadata Management

Suppose the user mentioned above subscribes to his or her own naming standards" and

makes frequent queries based on those. For the purpose of this example, we will assume that

the user is an entity named "Microsoft" and assumes that financial amounts are in United

States Dollars with a scale factor of a hundred and, among other things, has a vocabulary of

company names in which worldscope's "British Telecommunications Plc" is named as

"British Telecom."

The Graphical Metadata Management system makes it very easy for users to author

their own contexts. Without the ability to author one's own contexts, one is restricted to

" As is not uncommon for big organizations to do.

32

viewing data in one of the existing contexts in the system. This might not be acceptable to

users who make frequent queries.

The user, while going through the sources description shown earlier, notices that the

table DiscAF reports both the net income and total assets for companies. Now to obtain

these values from DiscAF, the user needs to issue the following query:

select net-income, total-assets
from DiscAF
where company-name = 'BRITISH TELECOMMUNICATIONS PLC';

which, in disclosure's context returns the following results:

DiscAF.net income DiscAF.total assets

1767000000 22565000000

Figure 3.10: results from user query on DiscAF

Of course, the user would have preferred to query the database on "British Telecom"

directly irrespective of the vocabulary used by the queried database. Also, assume that the

user wants to know the results in hundreds' 2 of United States Dollars. To do this, the user

can author his or her own context.

Authoring contexts is much easier than before with the Graphical Metadata

Management system. First, the user goes to the contexts page shown earlier in figure 3.8 and

clicks on the "add context" link. This brings the user to the context addition dialog page

shown in figure 3.11

2 Hundred has not been a popular scale factor in recent historical times but is being used here just to
illustrate the power of authoring one's own contexts.

33

etadata a naement
for the context media on system

Contexts: TASC Financial Example

Conret Name ImrroContet Nae: fxah to: datastream)

Figure 3.11: context addition dialog

The user specifies a name for the context. We will assume that the user names the context

"microsoft." After filling in the context name field, the user clicks on the "okay" button.

This displays a confirmation and brings the user back to the contexts page. However, now

the context page displays "Microsoft context" as well as the previously existing contexts.

Notice that all the modifier values in this context display "null value." This simply signifies

that the user has not specified any modifier values in that context till now. This is illustrated

in figure 3.12 below

34

OGl tr !J http: ecaros.t/gCmIsjenJCLtexts.Jplappe-ZX=4Bu

contexts for TASC Financia/ Example:

rename t delete

companyFinancials: scaleFactor 1000
companyFinancials currency - > company > countrylncorp > officialCurrency [

companyName : format dt-name [1
date : dateFrnt i European Style - .

currencyType curTypeSym 3char []

'j ^ ,rename delete

companyFinancials scaleFactor 1 [i
companyFinancials: currency . > company > countryIncorp > officialCurrency [t I
companyName : format ds-name [*]

date : dateFmt American Style /

currencyType : curTypeSym 3char v-v]

rename delete

companyFinancials : scaleFactor > []
companyFinancials : currency
companyName : format []
date : dateFmt
currencyType : curTypesym (]

----....--.-....... ra .. [.....Ofsn: - ,rename deloto

companyFinancials scaleFactor

Figure 3.12: a newly created context

As mentioned before, a context contains modifier values. In the figure above,

"companyFinancials" is a semantic type and "scaleFactor" is a modifier thereof. The user

wants to see net-income and total-assets in relation DiscAF in hundreds of United States

Dollars. To do so, the user needs to set the appropriate modifier values to 100 and "USD."

But before the user can do that, he or she needs to know which semantic types are

netincome and totalassets elevated to when semantic reconciliation takes place. Again, the

Graphical Metadata Management system comes to the rescue. The system makes it very easy

for the user to find this information. All the user has to do is click on the "elevations" link

and elevations page shows up with all the appropriate elevation information for all the

physical relations in the data sources for the application. See figure below.

35

s-i-~-ri

Data elevat. s to: date [21 ,1

quotoo source context: yho [J:-1

Cname e1ate to: -oa. nyNa.e (-;

Last le-ate to: baf [

datexformn source context: no context [i]

Datal el-atao to nothing [

omati aleooae to, noting[

Dat.2 alooatas to! nothing

elavattstoi nothing

Jarencyjnap source context:. t r []
orcrncyo~ oltoatac to: baic [

ohar2_currency elevtes to. b-aic[
source context: 1i- (r .,]

seount.y ...vatee to: cure yNm

ourrnncv elevcts to:uevencymtype -

DiscAF source context: ds: ouro [-]

companyname elevate, to. companyNa-e [.

Iatest-annaldat. el-vt-s to, date[.
curent_shr......tstand-9 Ievat-s tot b.-k ' m
netmc-om- elewates to: comtpayFinancialv [)
tctajaotooeditao ata elat- to ba (e a C

eadtot o osita.'y leocat to, comopanyFenancaala [< 3

country of_icorp elevates to! comp.anyy e [' -

NaireimspA sWs source context: :n-nx. [

fd . el.vUt.. t-: d. d
name eltvates to: findingaele n r
tsm oracle"s elevates to: somcomngnabiaack
tttn s et- rdthes_pruetax n lkvates to; tt o s nsyfsnanteavau oft
saredfordnary companyFinancials 100ndh cr y o

rrency h u elias to:nte " edt l
Nam~rnpOWssource context: J s urn<. []

ris~~~~ ~~ Xa e i944 ntr Naai ira

Figure 3.13: finding elevations information

The user can easily see that both net-income and total-assets in relation DiscAF (see under

source named "oracle") elevate to semantic type "companyFinancials" so coming back to

the contexts page, the user now knows that he or she needs to set the value of the

scaleFactor modifier for companyFinancials to 100 and the currency modifier to "USD." To

edit the modifier values, the user clicks on the "edit" link for the particular modifier. Clicking

on the "edit" link for "companyFinancials : scaleFactor" brings the user to the page

illustrated in figure 3.14 below.

36

Metadata Mnaoement
for the context media on system

Contexts: TASC Financial Example

You are editing the value of the scaleFactor modifier of semantic
typo corponyFin ancels in the microsoft context.

Modifier value: p1 0t

Modifier Type: r static r dynamic

oky caneS

A quick tutorial on modifier values:

If the modifier value is a fixed string like "USD" or a fixed number like "1000", then the modifier value will
be this fixed value, and the modifier type will be "static". On the other hand, if you want the modifier
value to change based on data in the data source, set the modifier type to "dynamic". Now suppose
you want the modifier value of companyFinancials' currency to be the companyFinancial's company's
country of incorporation's official currency... then you can write an this using the appropriate attribute
values as "> company > countryIncorp > officialCurrency". Be sure to use the correct attribute names
when specifying this. For your reference, the list of all attribute names is available below.

A quick reference on attribute names:

company (companyFinancials)

Figure 3.14: specifying a modifier value

A quick tutorial is also shown on this page to help the user utilize some of the advanced

features offered by the context mediation system. Notice that the tutorial is dynamically

generated and changes based on the semantic framework of the application.

Coming back to the example, after the user has entered the appropriate modifier

values, the contexts page would show something like figure 3.15:

37

cnRexL5. |1AZA.. rinanciai nxd[pe

contexts for 7

rename t delete

> company > countryIncorp > officialCurrency
dt.name
European Style -

3 3char [e I

Figure 3.15: user specified context

Next, the user clicks on the "invoke internal generator for GCMS" link. This updates the

reasoning engine with the information about the new context and displays the generated

internal representation on the screen (see figure 3.16)

38

rule(modifier companyName, Object, format, disclosure, Modifier),
(cste~basic, Modifier, disclosure, dnme))

rule modifier(date, Object, dateFmt, disclosure, Modifier),
(cste~basic, Modifier, disclosure, "American Style I

rule modifier currencyType, Object, curtypeSym, disclozure, Modifier),
)cste(bsmic,.Modifier, disclosure, "lchar"))).

%k microsoft context

rule modifier companyFinancias, Object, scaleFactor, microzoft, Modifier),
(cste~bazic, Modifier, microsoft, 100))).

rule modifier~cmpanyFinanclais, Object, currency, microsoft, Modifier),

(cmte(currencyType, Modifier, microsoft, "USD")).rule mod fieicampanyName, Object, format, microsoft, Modifier),

(cste(basic, Modifier, microsoft, 'msft standsrd"))).
rule(mdifier(date, Object, dateFmt, microsoft, Modifier)

(cst e s a, Moii er, microzott, "Airerican Styl

rule(modifier currencyfype, Object, curTypeSym, microsoft, Modifier),
)cstebaic, Modifier, micromoft, "3char')))

olsen context

rue (modifier cospany~inancials, Object, scailactor, olsen, Modifier),
)cstembasi, Modifier, olsen, I))).

rule(modifier companyFinsnciaI5, Object, currency, olsen, Modifier),
)arttr (Object, company, IntermediateVariabiei),
attr)lotermedieteVariabiel, countrylncorp, IntrrmediateVarieableZ),

attr lntermediateVariabie2, officialCurrency, Modifier))).

Figure 3.16: updating the reasoning engine with the new context information

Now, the user needs to create a table that provides the system with conversion information

to and from Microsoft's vocabulary for company names (named "msftstandard" in the

context above). For the time being, we will create a table that maps names in the Microsoft

standard to ones in the Disclosure standard. Let's call this table "namemap-msft-ds"

SQL*Plus: Release 8.1.7.0.0 - Production on Sun Feb 3 03:43:53 2002

(c) copyright 2000 oracle corporation. All rights reserved.

connected to:
Personal oracle8i Release 8.1.7.0.0 - Production
Jserver Release 8.1.7.0.0 - Production

SQL> create table name-map-msft-ds (
2 msft-names varchar(100),
3 ds-names varchar(100)
4);

Table created.

39

As a start, we will add British Telecom to this table. Recall that Microsoft's context wants to

refer British Telecommunications Corporation as "British Telecom" while the Disclosure

context refers to the same company as "BRITISH TELECOMMUNICATIONS PLC"

SQL> insert into name-map-msft-ds
2 (msft-names, ds-names)
3 values
4 ('British Telecom', 'BRITISH TELECOMMUNICATIONS PLC');

1 row created.

SQL> commit;

Commit complete.

Of course, by adding a new table to the system, we have changed the sources information.

We will need to add this relation to the sources description to make it available in the

application. The Graphical Metadata Management system makes this very easy. The user just

needs to go to the sources editor by clicking on the "sources" link and then click on the

"add relation" link for the database oracle. This brings up the "relation addition" form

shown in figure 3.17

40

Metadata Mangement
for the context media on system

Sources: TASC Financial Example

siA~

oracL

lnm-asmstds

Simport - export (- bot

supply a comma delimited list of unsupported operations% (evample:
<, >, <>, =<, =>) For fuly-functional relational databases, tis should
be emp'ty.

okay------ armel-

Figure 3.17: relation addition form

Once we add the relation, it now appears on the sources editor but without any columns

underneath it. To add columns, we click on the "add column" link next to the relation and

add both the columns one after the other:

41

Source Name:

Relation Name:

Relation Type:

capability Record:

o n rna, .4- .4 1 tj; U -U

- 7: -~--~-. -- -

:afrasscmalaawetml.jsp?ap=2iel. rc-sae-,raekaellew-same map_551105s

6AtaaM la;en zement
to r t he Cn texIt raed fa P;n sy stern

Sources: TASC Financial Example

------- . -v -

Relation Name: oracle.namemapmsftds

Column Name: kmslnames

Column Type: fi string C integer C real number

Column Order:
A column is placed before all columns with larger orders

C yes C no C yes/no C no/yes

If this is a column in a fully functional database, then seLac t 'no* as
databases do have the ability to return all columns as a result of a

Must be bound in query? query. If the value of this column must be specified in the query,
then select 'yes'. The other two options are to provide support for
two oifferent binding scenarios (for advanced applications). If the
column must be bound in one scenario and not in the other, then
seact yes-no'. Note that the order of scenarios will be persistent
among all columns in the same relation.

Member of the key? C yes t no

Uniquely identifes record

Figure 3.18: column addition to a relation

Once, we have added both the columns for the source, our source description is complete.

We can then click on the "invoke internal representation generator for GCMS" link to

update the appropriate internal representation file.

However, specifying the sources description is not enough, we need to provide

elevation information for our new table. Again, the Graphical Metadata Management system

makes this a trivial job. All the user needs to do is go to the Elevations editor we mentioned

earlier and showed in figure 3.13 From here, the user can scroll down to the place where

"name-map-msftds" is mention. First, the user needs to set the context of this table. To

do so, the user clicks on the "change" link next to context and comes to the edit context

form shown below.

42

...

4(11e shttp-flocaetostjgcmsigmmrsettontex sptalpp' a-zare-l Mrsename-nsaemeapimsries

Metadata anacement
for t het context mnedfapo~n system

Elevations: TASC Financial Example

Source: name mar.msfet=ds

Contest:

disclosure nV

IwrdscpeI
Idatastreami
yahoo
microsoft

Figure 3.19: context specification for sources

Notice that the context specification form automatically generates a drop box with all the

available contexts to choose from. This makes the task of the user easier and also ensures

that a non-existent context cannot be specified for a source, preventing metadata corruption.

Also, if the context name is renamed from the contexts page, all references to that context

are automatically updated elsewhere in the metadata. Likewise, back at the elevations page,

the user can specify the semantic type "basic" to elevate both the columns to. Notice again

that the column elevation form already has a dynamically generated drop box with all the

semantic types define in the application using the ontology editor of the Graphical Metadata

Management system.

Now the final steps. The user needs to specify a conversion function for the

semantic type companyName with respect to the format modifier (recall, that the user had

selected "msftstandard" as the modifier value for companyName:scaleFactor). The

Graphical Metadata Management system makes this task quite a bit easier than before. The

user can click on the "conversions" link (from the temporary applications page, or from any

other editor's main page) to come to the conversion functions editor.

43

uonversions: i i-. rinanciai cxampie

conversions for TASC Financial Example:

conversions for compantyFinanciaft with respect to scaleFactor [add conversion I

3' *V:ur -*A ocr3 ,I. * 3 .ie
.dit d.Iete

conversions for companyFinanciais with respect to currency [add conversion I

va t *f~te 20 tLtx', Da ,u e)
t t r : :ar, - -iftr-

1.g~ TgetCor.*,'t ~t u-M-uf cr b

q :ue(':~ . Thgett t. fgPv de u

conversions for companyName with respect to format add conversion j

rnnvardnns fnr dhtR with rmnprft n a eFtnt T add rnnverdion I

......m...- u., ra r:e B

Figure 3.20: the conversion functions editor

Notice that there is one conversion functions already specified for the semantic type

companyName with respect to modifier format.

name-map(sourcevalue, SourceModifiervalue, TargetModifiervalue,
Ta rgetval ue) .

To be able to use this to make conversions from "msftstandard" to "ds-name," we need to

be able to add a rule in the system like:

name-map(V1, "msft-names", "dsname", v2)
name-map-msft-ds(v1, v2).

And likewise, for the reverse conversion, we'll need a rule of the form:

name-map(v1, "dsname", "msftnames", v2)
name-map-msft-ds(v2, v1).

44

Details can be found in [9]. However, there is one difference between the descriptions of [9]

and our current mediation system. The rules described in [9] are for the Context Interchange

Mediator[2], COIN, while our current implementation, the Global Context Mediation

System, GCMS, uses a deterministic variation of the rules used by [2]. Thus, the general

format for a rule:

<rule-coin> ::= <head-clause> :- <body-clauses>.
<body-clauses> <body-clause>, <body-clauses>

I <body-clause>

On the other hand, the GCMS metadata rules are:

<rule-gcms> ::= rule(<head-clause>, (<body-clauses>)).
<body-clauses> := <body-clause>, <body-clauses>

I <body-clause>

Thus, the two rules for namemap shown above would be written in the Global Context

Mediation System as:

rule(
name-map(v1, "msft-names", "ds-name", v2),

(namemapmsftds(v1, v2))).

rule(
name-map(v1, "ds-name", "msft-names", v2),

(namemapmsftds(v2, v1))).

These need to be entered in the "custom abduction-time code" section of the metadata. This

editor can be invoked by going to the elevations editor and then clicking on the "custom

abduction-time code" link. Finally, generating the internal representation for the elevations

by clicking on the "invoke internal representations for GCMS" from the elevations editor

page. The user also needs to invoke the internal representation generator on the conversion

functions page. This concludes the task of specifying one's own context that uses a custom

vocabulary for company names. To add conversions for specific company names, all the user

would need to do in the future is to populate the namemapmsft-ds table with the

appropriate name pairs. The reason for choosing this non-trivial example of different

45

vocabularies as opposed to a simpler example with only scale factor differences" was to

illustrate the power of the Graphical Metadata Management system and the generality of the

context mediation system. Of course, the custom abduction-time code option allows the

user to make use of the power of a programming language[13], if needed, to make the

system extremely powerful.

Now, the user can actually make queries in, and get results in, his or her own context

(context "microsoft" in this case). The context mediation system would accept queries in the

user context, queries like:

select net-income, total-assets
from disclosure
where company-name = 'British Telecom';

and return the results in the user's context. This is precisely what makes the context

mediation system such a remarkably powerful tool in a world that contains a myriad of

context-bearing entities and data sources.

3.4 Modules of the System

As of this writing, the Graphical Metadata Management system consists of 72 Java source

files, totaling over 15,000 lines of code. The system also defines, and makes use of numerous

database tables, sequences, indices, and integrity constraints. This section starts to describe

the top-level structure of the system. Subsequent chapters describe the source files of the

system, the interfaces defined, and the data structures shared. The primary audience of this

section and future chapters are developers of other parts of the context mediation system, as

well as the future developer or maintainer of the Graphical Metadata Management system.

We begin to give an in-depth knowledge of the details of the Graphical Metadata

Management system and equip the future developer with the knowledge necessary to

customize1 4 and extend this system to adapt to future needs or augmentations. Also,

subsequent chapters describing the various subsystems provide the reader with some useful

end-user oriented documentation in addition to the technical documentation.

13 would not have required any changes to sources and elevations and custom abduction-time code.
14 Including, but not limited to, the ability to support future context mediation reasoning engines.

46

For our convenience, we will divide the system into eleven top-level modules: The

applications page; the editors for ontology, sources, contexts, elevations, and conversions;

and the generators for ontology, sources, contexts, elevations, and conversions.

3.4.1 The Applications Page

The applications page displays the list of applications in the system. This page is a temporary

placeholder for the much-more-functional applications-browser and query-builder

application under development at our research group. Thus, emphasis has not been given to

exposing functionality to the user through this page. The applications-browser and query-

builder will allow users to create, save, edit, and copy their applications in much the same

way as the editors presented in this thesis allow users to create, save, edit, and copy metadata

within applications. Currently, the applications page looks something like:

Fie Edcl View F avo<te Tc-ds H*l

Ea - ka seach *jFavckt5 8"tt j Aw d -
%64 P http: /avocado mit edu/gcms/gmm/ -

Metadata naement
f r 1h e c on te xIt m e dIia s ys te m

TASC Financial Example [n nu -n r I .'t I n y I
Disaster Relief Efforts n I I I rnt

Usman Mobin's Test Application [.............I | I | I
Harry Zhu's Scratch Pad S]
Temporary Everyone's Scratch Padf[dt&3y I P: i tnt I I I :- :

Figure 3.21: The Applications Page

47

3.4.1.1 The Underlying Applications Architecture

For the benefit of the future developer, or anyone who wishes to gain a detailed insight into

the functionality of the applications subsystem, we now present a precise definition of what

data is stored in the system and what relationships exist between the various entities in the

system. The complete object-model would be too large to fit in any one page, so we have

broken it down into six parts. The top-level object model pertaining to the Graphical

Metadata Management system is shown in figure ? below. It tells us precisely what entities

can exist in the system at any one time, and what phenomena need to be handled by any

physical implementation of the data model of the system. Also, the object model tells us

about the limitations of the system'"

F_ String
user code

*

Onversions+- ConversionFun
ction

Metadlata

--- name String
Application

short-name

String

Wrapped read-only
Source >ntology boolean

Data Source

contexts
Direct Source

Ontology

*

Context

Figure 3.22: top level object/data structure of the system

15 Which future developers of the system might wish to relax in their extensions of the system.

48

To gain more insight into the interpretation of such specification as depicted in the diagram

above, the reader is referred to [30]. The marks (*), (+), (!), (?) represent cardinalities of "zero

or more," "one or more," "exactly one," and "zero or one." Thus, as an example, the mark

of (*) on the arrow-head from 'Application' to 'Context' depicts the fact that one application

can have zero or more contexts. The (!) on the base of that arrow represents that a context

belongs to one application (a limitation future versions of the system might want to relax).

More than just providing a big picture of the relationships between the entities in the

system, the above diagram allows us to arrive at an efficient and normalized[22] relational

data model[21] for the system. Based on this, the information relating to applications is

stored in the table coinapps. The oracized[10] data definition language[31] instruction for

this table is given below

create table coin-apps (
app-id integer primary key,
app-short-name varchar(50) not null,
app-name varchar(500) not null,
read-only-p varchar(1) default 'f'

The future developer will need to do either of two things to support additional functionality

pertaining to applications: either the developer will need to alter this table to add new

columns, or create new tables which have a column that references the primary key of this

table. Also, for the developer's convenience, a sequence has been defined which allows us to

generate the primary keys for adding applications to this table.

create sequence coin-apps-app-id-seq start with 2;

Thus, for the addition of a new application, the following data modification language[31]

instruction needs to be issued:

insert into coin-apps
(app-id, app-short-name, app-name, read-only-p)
values
(coin-apps-app-i dseq.nextval, 'application',
'Our sample application', 'f');

49

4 Ontology

This section focuses on the design, implementation, and usage of the ontology editor, its

underlying data model, and the generators that generate the internal representations from the

database tables populated by the ontology editor.

4.1 The Ontology Editor

The ontology editor allows users to author and edit ontologies for their applications. The

ontology forms the semantic framework based on which the reconciliation of heterogeneous

sources takes place[1]. We have discussed this earlier in more detail.

Figure 4.1: The ontology editor

Figure 4.1 shows a screen shot of the ontology editor for the TASC Financial Example

application first developed for the initial context interchange mediator[5] and later ported to

the Global Context Mediation System.

50

4.1.1 Usage Guide

The ontology editor can be invoked by clicking on the "ontology" link from the applications

page. The editor requires the Java 2 Plug-in[41], just like Stanford's prot6g6[18] does, to

function from within a web browser. This usage guide is reproduced at the bottom of the

ontology editor web page.

4.1.1.1 Ontology Color Guide

The blue ovals represent semantic types. the dashed arrows represent parental relations with

the arrow pointing at the parent. The solid white arrow represents modifiers with modifier

name on the arrow in a dark red and the modified semantic type as the source of the arrow.

A gray arrow represents attributes likewise.

4.1.1.2 Semantic type creation and deletion

To create a semantic type, click on the create button. This puts the editor in the "create"

mode. Now when you move your mouse over the canvas area, a rectangular outline will

appear showing where the new semantic type would appear if you clicked the mouse. If this

outline is red then you are either overlapping with an existing semantic type or too close to

it. Clicking will pop-up a dialog box requesting the name of the new semantic type. You

should choose a unique name for the semantic type. If a type with the requested name

already appears on the canvas then the request to create the new semantic type will be

rejected. (Note: the canvas automatically resizes as the ontology size grows so you don't have

to worry about the initial canvas size).

To delete a semantic type",. click on the delete button and then select the semantic

type to be deleted. Answer yes on the confirmation dialog

51

4.1.1.3 Modifier Addition

To add a modifier: click on the "modifiers" button. First select the semantic type that is

being modified, and then select the semantic type of the modifier itself. Name the modifier

in the dialog box. If a modifier for the initially selected semantic type already exists with the

name you request, then the old modifier's target semantic type will be overwritten.

4.1.1.4 Attribute Addition

To add an attribute, click on the "attributes" button. First select the semantic type that is

being attributed, and then select the semantic type of the attribute itself. A dialog box will

pop-up asking you for the attribute's name. Name the attribute in this dialog box. If an

attribute for the initially selected semantic type already exists with the name you request,

then the old attribute's target semantic type will be overwritten.

4.1.1.5 Specifying parental relations

To specify a parent for a semantic type, click on the "parent" button. First select the

semantic type whose parent you want to specify, next click on the semantic type desired to

be the parent. This should create a parental relation. Notice, that the ontology editor

imposes a single inheritance model.

To remove a parental relation, while in the "parent" mode, click on the child

semantic type and then click on it again (to make it its own parent, and thus effectively

removing the parental relationship).

4.1.1.6 Modifier and Attribute Deletion

To delete a modifier, click on modifiers button to go to "modifiers" mode and then select

the semantic type whose modifier is to be removed. Click again on this semantic type and

then type the name of the modifier in the pop-up box. This will remove the modifier. Similar

instructions for attribute removal.

16 This should be used with extreme caution

52

4.1.1.7 Moving Semantic types

To move semantic types: click on the "move" button if not already in the "move" mode and

then select the semantic type to be moved. An outline rectangle will appear wherever you

move the mouse, click again to move the semantic type to the rectangular box's location.

Notice that the rectangular box becomes red when the target location is not empty and thus

the semantic type cannot be moved there.

4.1.2 Dynamic Canvas Resizing

The ontology editor canvas (the place where the user draws the ontology) automatically

resizes itself when the system feels that the user ontology needs more space. The canvas

resizing is determined by the value of the extensionMargin variable in the OntEdCanvas

class.

4.1.3 Graphics-related variables of interest to the developer

The ontology editor canvas offers considerable room to the future developer for

customization. All the developer has to do is to initialize many of the class variables in the

OntEdCanvas class to the desired values. These variables of interest are:

private final int bubbleHeight = 52;
private final int bubblewidth = 98;
private int preferredwidth = 500;
private int preferredHeight = 250;
private int extensionMargin = 150;

private ImageIcon semtypeIcon;
private ImageIcon semtypeIconHighlighted;
private ImageIcon mazeBackgroundIcon;
private Font semtypeFont;
private Font modifierFont;
private Font attributeFont;
private stroke linestroke;
private stroke dashstroke;
private float[] dashi = {5.0f};

private int canvasHeight;
private int canvaswidth;

private color selectboxcolour;

53

private Color semtypeFontColour;
private Color parentArrowcolour;
private Color modifierArrowColour;
private Color modifierTextcolour;
private color attributeArrowcolour;
private color attributeTextcolour;
private Color parentArrowAntialiasColour;

Also, from the constructor to the OntEdCanvas class, here are the values these variables are

initialized to, in the current version:

public OntEdCanvas(Image bubbleImage,
Image bubbleimageHighlighted,
Image mazeBackgroundImage) {

super(new BorderLayout());

this.setBackground(new color(110,110,110));
mode = OntEditor.DEFAULTMODE;
g-canvas = getGraphicso;
semtypeFont = new Font("Times", Font.BOLD, 12);
modifierFont = new Font("Times", Font.BOLD, 10);
attributeFont = new Font("Times", Font.BOLD, 10);
linestroke = new BasicStroke(2, BasicStroke.CAPROUND,

BasicStroke.JOINROUND);
dashStroke = new BasicStroke(2, BasicStroke.CAPROUND,

BasicStroke.JOINROUND,
10.0f, dashi, 0.0f);

types = new vectoro;

this.setPreferredsize(new Dimension(preferredWidth,
preferredHeight));
this. revalidate();
canvasListener = new CanvasEventListenero;
this.addMouseListener(canvasListener);
this.addMouseMotionListener(canvasListener);
mousex = 0;
mouseY = 0;
mouseAdjx = 0;
mouseAdjY = 0;
subMode = 0;
displayselectbox = false;
overrideBoxHide = false;
selectboxcolour = Color.lightGray;
semtypeFontColour = color.white;
parentArrowColour = color.white;
modifierArrowColour = color.white;
modifierTextColour = new Color(178,48,48);
attributeTextColour = new color(183,233,0);
attributeArrowColour = new color(180,180,180);
parentArrowAntialiasColour = color.gray;

semtypeIcon = new ImageIcon(bubbleImage);
semtypeIconHighlighted = new ImageIcon(bubbleImageHighlighted);
mazeBackgroundIcon = new ImageIcon(mazeBackgroundImage);

54

4.1.4 Source Files

The following table lists the source files used by the ontology editor and a short description

of their use:

Lines Function

31 This is thrown when the user

clicks on the cancel button in

any dialog box.

56 Used for making connection

to the databases. Makes use of

the

oracle.j dbc. driver. OracleDriver

class, which is contained in the

classesl2.zip file in the same

directory.

158 A generic frame for getting

textual input from the user

1,214 This class implements the

actual canvas on which

ontologies are drawn

56 Cell rendering class for lists

Filename

CancelException.java

DatabaseAccess.java

InputFrame.java

OntEdCanvas.java

OntEdCellRenderer.java

OntEditor.java

SemanticType.java

SemanticTypeGraphical.java

Extends

java.lang.Exception

java.lang.Object

javax.swing.JDialog

javax.swing.JPanel

javax.swing.

DefaultListCellRenderer

javax.swing.JApplet

java.lang.Object

java.lang.Object

for a

for a

also

raphical

ndering

55

625 The main ontology

applet.

50 Abstract data type

semantic type

56 Abstract data type

semantic type

encapsulating g

information such as re

editor

coordinates

SemtypeEditFrame.java javax.swing.JDialog 177 A frame window for editing

semantic type s

YesNoFrame.java javax.swing.JDialog 134 A generic Yes-No dialog box

Ontology.jsp 171 The main JavaServer Page

which contains the ontology

editor

Thus, the ontology editor comprises of 2,778 lines of code in eleven files (18% of the code

base).

4.1.5 Underlying Data Structures

We continue the object model we presented in an earlier section on "applications" and show

the relevant relationships for the ontology-related entities in the system

parent-

String

name
Ontology o SemanticType

modifier xs Integer
y

-modifiec
attributd

Modifiers -- Modifier attributed + Integer
*

Attributes * Attribute

name

name

String String

Figure 4.2 Object/data structure of the ontology subsystem

56

4.1.5.1 Semantic Types

As seen from figure 4.2, each ontology contains zero or more semantic types. We store the

information about these semantic types in the table ont-semtypes7 that is presented below:

create sequence ont-semtype-id-seq start with 2;

create table ont-semtypes (
semtype-id integer primary key,
parent-id integer references ont-semtypes(semtype-id)

on delete set null,
ontology-id integer references coin-apps,
name varchar(100) not null,
render-x integer,
render-y integer,
render-height integer,
render-width integer,
parent-arrow-xl integer,
parent-arrow-yl integer,
parent-arrow-x2 integer,
parent-arrow-y2 integer,
parent-arrow-curve-depth integer,
parent-arrow-curveintensity integer,
parent-arrow-special-text varchar(100),
constraint ont-semtype-unique unique(name, ontologyid)

create index ont-semtypes-idxl on ont-semtypes(semtype-id, parent-id);

4.1.5.2 Modifiers

To ensure normalized data structure[12], the modifiers and attributes are stored in tables of

their own. Modifiers are stored in the table ontmodifier-map:

create sequence ont-modifier-id-seq start with 2;

create table ont-modifier-map (
modifier-id integer primary key,
modified-semtype references ont-semtypes on delete

cascade,
modifier-name varchar(100) not null,
modifier-semtype references ontsemtypes on delete cascade

Each row of this table represents one modifier between modified-semtype and modifier_

semtype (both reference ontsemtypes).

17 Please note that all the tables for the Graphical Metadata Management system are stored in an Oracle
schema named "gmm"

57

4.1.5.3 Attributes

Attributes are stored similarly to modifiers, in the table ontattribute-map:

create sequence ont-attribute-id-seq start with 2;

create table ontattribute-map (
attribute-id integer primary key,
attributed-semtype references ont-semtypes on delete

cascade,
attribute-name varchar(100) not null,
attribute-semtype references ont-semtypes on delete

cascade

4.2 Ontology Generators

The ontology generators read data from the tables described above and generate some

representation of this data. The biggest advantage in decoupling the actual editor from the

generation of the final form of the data is that it allows the editor to be used as a front-end

to many systems (each system requiring the programmer to program a generator). Also, it

ensures that if there is a change in the internal representation to be generated then the editor

does not need to be changed in response.

There are two internal representation generators provided for the ontology in the

current system. These are summarized in the table below:

Filename

GeneratorOntologyCOIN.jsp

GeneratorOntologyGCMS.jsp

Lines Functionality

189 Generates the internal representation of the

domain model required by the context

interchange mediator[5]

199 Generates the internal representation of the

domain model required by the Global Context

Mediation System, which is a successor to the

context interchange mediator. In case the future

developer would like to program a new

58

generator (in case there is a change in the

internal representation, or a change in the

reasoning engine itself,) he or she should take a

look at this file and the SQL queries it makes.

Also, this file creates an internal representation

file and places it in the value of the

"applicationPath" parameter in the servlet

context's environment (the web server) thus

updating the abduction engine with the new file.

For customized functionality on this front, the

future developer should, again, look at this file.

Recall that there is a simple transformation for converting a rule in the COIN format to one

in the GCMS format. This was discussed earlier in chapter 3.

59

~umJ~ t* - -~.-~-

5 Contexts

This section focuses on the design, implementation, and usage of the contexts editor, its

underlying data model, and the generators that generate the internal representations from the

database tables populated by the contexts editor.

5.1 Contexts Management Page

The contexts management page allows the user to create, edit, and manage the contexts

defined within each application. The notion of contexts has been explained earlier in this

thesis and an illustration of how they are used in the reconciliation of semantic heterogeneity

has also been demonstrated. However, if the reader would like to gain a precise

understanding of the role played by information contained within contexts in the functioning

of the system, he or she is referred to [28].

Sa Sarh -_Nrae 7'
A ss http:lavoca mteduecemslgm Contexts)spapp.-4

Metadata Management
for the context nedl, -on Systern

Contexts: Disaster Relief Efforts

conexts frDisaster Reie ffobrts:

ren~ame d eelete
currencyType :curTypeSymbol 3char
weight unit pounds
dimensions : format > formatromdb
price currency USD
price tax-to-include 0.10 E %

_____ _____ ____renarne delete -

cu _IrrecyType : curTypeSymbol -:z char
weight : unit ~ :~kilograms. I
dimensions : format cm by cm I
price :currency GBP
price :tax-.to-include 0.175

Figure 5.1: Contexts Management Page

60

Figure 5.1 above displays the contexts management page for an application that contains two

contexts.

5.1.1 Usage Guide

To add a context, the user needs to click on the "add context" link above the contexts

display panel. The exercise of adding contexts has been explained in much detail in an earlier

part of this thesis.

Renaming and deleting contexts can be achieved by clicking on the "rename" and

"delete" links, respectively, in the gray bar that displays the name of the relevant context.

Editing the value of a modifier within a context can be achieved by clicking on the

"edit" link in line with the entry for that particular modifier. This brings up the "edit

modifier value" page. A quick tutorial which appears on this page, is also shown in figure 5.2

v You are editng the value of the currency modifier of semantic type

companyt~tnancials in the datastreamn context.

modifier value: 1> company > countrylncorp > officialCurrenc

Modifier Type: Cstatic r~ dynamic

A quick tutorial on modifier values:

If the modifier value is a fixed string like "USD" or a fixed number like 1000", then the modifier value will
be this fixed value, and the modifier type will be *static*. On the other hand, if you want the modifier
value to change based on data in the data source, set the modifier type to "dynamic". Now suppose
you want the modifier value of companyFinancials' currency to be the companyFinancial's company's
country of incorporation's official currency... then you can write an this using the appropriate attribute
values as "> company > countryIncorp > officialCurrency". Be sure to use the correct attribute names
when specifying this. For your reference, the list of all attribute names is available below.

A quick reference on attribute names:

* company (companyFinancials)
* fyEnding (companyFinancials)
* countryIncorp (companyName)
* curTypeSym (currencyType)
* txnDate (exchangeRate)
* fromCur (exchangeRate)
* toCur (exchangeRate)

officialCurrencv (countrvName)

Figure 5.2: Edit Modifier Value Page

61

5.1.2 Dynamic Modifier Listing

The contexts editor automatically generates a list of modifiers when a new context is created.

This was illustrated earlier when the user created the context "Microsoft." However, the

important thing to note is that changes to the ontology are automatically reflected in the

contexts page. So if the ontology defines a new modifier, all contexts automatically get a slot

for the newly defined modifier".

Now, we can explain why we noted earlier that deletion of semantic types should be

exercised with utmost care. In deleting a semantic type, we implicitly delete all the attributes

and modifiers that it has. Thus, the modifiers would disappear automatically from all

contexts as the implicitly deleted modifiers would not exist anymore.

5.1.3 Source Files

The following table lists the source files used by the contexts editor and a short description

of their use:

Filename Lines Functionality

Contexts.jsp 181 This JavaServer page source generates the main context

management page for each application. It requires as input the

value of variable "app-id" to be bound to the app-id of the

application (the same app-id used in the coinapps table, of

course).

addContextl.jsp 162 This page shows the "add context" form. The user can click

on cancel to go back to Contexts.jsp or click on okay to

proceed to addContext2.jsp

addContext2.jsp 192 This page creates new contexts based on the values passed to

it by addContextl.jsp. Displays a confirmation or error in case

of success or failure respectively.

delContexti.jsp 160 Displays the confirmation form before deleting a context.

18 the initialvalue assigned to this modifier is null in all contexts.

62

delContext2.jsp

editContextl.jsp

editContext2.jsp

editModifieri.jsp

editModifier2.jsp

Pressing "okay" proceeds to delContext2.jsp

164 This page deletes contexts based on the values passed to it, by

delContext1.jsp, using the HTTP GET method.

166 This page displays the "edit context" form and allows the user

to rename the context. Pressing okay on the form proceeds to

editContext2.jsp with the new name entered by the user

190 Uses the new name entered by the user in the previous form

to rename contexts. Displays a confirmation or error in case

of success or failure respectively

234 Brings up the form that allows one to change the value of a

modifier within a context. Pressing okay transfers control to

editModifier2.jsp with the user's inputs on the form

191 Takes the inputs from the previous form to edit the value of a

modifier in the database. Displays a confirmation or error in

case of success or failure respectively

The contexts editor thus consists of 9 source files with 1,640 lines of code (11% of the

Graphical Metadata Management system's code base).

5.1.4 Underlying Data Structures

We continue the object model we presented in an earlier section on "applications" and show

the relevant relationships for the contexts-related entities in the system

63

Context - name--> String

modifier values
--. ModifierValue -modifier+ Modifier

"static"

-type- String

"dynamic"

value I String

Figure 5.3: Object/data model for contexts subsystem

5.1.4.1 The Contexts Table

From figure 5.3, we see that a context contains a name. Also, from our earlier object model

from the "applications" page, we saw that an application contains zero or more contexts.

Thus, a context also contains a notion of which application it belongs to. Using this, we

arrived at the following table for storing basic information about contexts:

create sequence cxt-context-idseq start with 2;

create table cxtcontexts (
context-id integer primary key,
name varchar(100) not null,
owner-id integer references coin-apps on delete

cascade,
parentid integer references cxt-contexts

5.1.4.2 Table for Modifier Values

The values for modifiers within contexts are stored in the table cxtmodifiervalues. This is

shown below:

64

create table cxt-modifier-values (
modifier.id integer references ont-modifier-map

on delete cascade,
context-id integer references cxt-contexts on delete

cascade,
modifier-type varchar(100) default 'static' not null,
constraint cxt-modifier-type-ck check(modifier-type in

('static', 'dynamic')),
modifier-value varchar(4000) not null

5.2 Internal Representation Generators

The internal representation generators for contexts read data from the tables described

above and generate both the COIN-based, and the GCMS-based internal representations of

this data. The biggest advantage in decoupling the actual editor from the generation of the

final form of the data is that it ensures that if there is a change in the internal representation

then the editor does not need to be changed in response.

There are two internal representation generators provided for the contexts in the

current system. These are summarized in the table below:

LinFilename

GeneratorContextsCOlN.jsp

GeneratorContextsGCMS.jsp

es Functionality

214 Generates the internal representation of the

contexts required by the context interchange

mediator[5]

229 Generates the internal representation of the

contexts required by the Global Context

Mediation System, which is a successor to the

context interchange mediator.

Appendix A.2 contains an internal representation file for contexts generated by

GeneratorContextsGCMS.jsp.

65

6 Sources

This section focuses on the design, implementation, and usage of the sources editor, its

underlying data model, and the generators that generate the internal representations from the

database tables populated by the sources editor.

6.1 Sources Management Page

The sources management page allows the user to create, edit, and manage the source

descriptions defined within each application.

Mtadata Managment
for? the context rnedia s sy ste m

Sources: Disaster Relief Efforts

data sources for Osaster Rebef Efforts:

:__________' view i edit I delete add reation

antarctica [dit I d4ete I add -km I

.I..ping.capacity [dkt. .

nftyeight [d.Iet..] e *2
nat d..k. 3

g- s~eight [dtlt.] <

price
Currencymap jddic I -deket I r k-..'

char.currencv [delet I %, : b - . ' -

ch.r2_cur-ency [dclete I - : 2 I - -

efunctncnal dit Idelete i dd cokumn 3
mk- dlte>
meodel [delete]-- >
ame[del.t. -

,leepng.capacity [delete 3 . --

dimensich [.lcet c 3
dimension format 3 delete] -

-eight[ee ,- ~

Figure 6.1: Sources Management Page

The main page for the sources editor is shown in figure 6.1. It lists in a structured

hierarchical form, the databases, their tables and the columns within these.

66

6.1.1 A note on terminology

In the real world, we have databases. Within these databases we have tables; and these tables

consist of columns. In the Graphical Metadata Management system, we refer to a database

as a "data source." And as we will see in our object model diagram for this subsystem of the

Graphical Metadata Management system, a data source can either be a physical database or a

wrapped web source[15]. In a sense, then, the term data source is being used in a more

encompassing fashion, to encapsulate both relational as well as wrapped sources of data.

We refer to a table as a "relation." However, we should point out that most of the

context interchange literature refers to a table as a "source." This is perhaps to signify that

table is the unit in SQL which you select from. So if you look at figure 6.1 above, all the

tables are in the database oracle. Oracle is our data source, and antarctica etc are our

"sources." I understand that the terminology might be confusing at first, but the easiest way

to look at it is to 'think' that each source has only one table".

6.1.2 Source Code Files

The following table lists the source files used by the sources editor and gives a short

description of their functionality:

Filename Lines Functionality

Sources.jsp 199 This generates the main sources management page shown in

figure 6.1. The page shows a hierarchical structure of all

physical data available in the application. Expects app-id as

input and selects the application based on the value of appid.

addColumnl.jsp 213 This page generates the form that allows the user to enter the

name, type, and other characteristics of a column to add to a

table. The results are submitted to addColumn2.jsp

addColumn2.jsp 206 This page takes its input from addColumnl.jsp and attempts

to create the requested column. Displays a message on success

19 I hope this doesn't further confuse the reader. For some elaboration, the reader might want to read
through chapter 3 of [28].

67

addSourcel.jsp

addSource2.jsp

addTablel.jsp

addTable2.jsp

delColumn1.jsp

delColumn2.jsp

delSourcel.jsp

delSource2.jsp

delTablel.jsp

and error on failure.

182 This page generates the form that allows the user to enter the

name, connection information, type (web-wrapped or

relational database) and other characteristics of a data source

to add to the application. The results are submitted to

addSource2.jsp

198 This page takes its input from addSourcel.jsp and attempts to

create the requested data source. Displays a message on

success and error on failure.

187 This page generates the form that allows the user to enter the

name, type, and capability record of a table to add to a data

source. The results are submitted to addTable2.jsp

197 This page takes its input from addTablel.jsp and attempts to

create the requested table Displays a message on success and

error on failure.

162 This page displays the confirmation form when the user first

requests the deletion of a column. Pressing cancel takes back

to Sources.jsp, while pressing okay transfers control to

delColumn2.jsp

165 This page contains code that deletes the requested column.

Displays a success message on success, or error message on

failure.

160 This page displays the confirmation form when the user first

requests the deletion of a data source. Pressing cancel takes

back to Sources.jsp, while pressing okay transfers control to

delSource2.jsp

164 This page contains code that deletes the requested data source.

Displays a success message on success, or error message on

failure.

162 This page displays the confirmation form when the user first

requests the deletion of a table. Pressing cancel takes back to

68

delTable2.jsp

editSourcel.jsp

editSource2.jsp

editTablel.jsp

editTable2.jsp

viewSource.jsp

viewTable.jsp

Sources.jsp, while pressing okay transfers control to

delTable2.jsp

165 This page contains code that deletes the requested table.

Displays a success message on success, or error message on

failure.

201 Displays the form that allows the user to edit the information

stored about a data source. The updated values are passed on

to editSource2.jsp for actual processing.

197 Takes the values passed on by editSourcel.jsp and makes the

requested changes to the data source description.

209 Displays the form that allows the user to edit the information

stored about a table. The updated values are passed on to

editTable2.jsp for actual processing.

195 Takes the values passed on by editTablel.jsp and makes the

requested changes to the table description.

184 Allows the user to view the description of a data source.

187 Allows the user to view the description of a table.

Thus, the sources editor consists of 19 files totaling 3,533 lines of code (23% of the

Graphical Metadata Management system's code base).

6.1.3 Underlying Data Structures

We continue the object model we presented in an earlier section on "applications" and show

the relevant relationships for the sources-related entities in the system:

69

DataSource name String
type

* - "db"

DatabaseType 4--

- web"

relations

connection info t ConnectInfo -connect string-p String

String capabilty Relation InfoType

name-

String RelationType "wrapper" "dburl" String

*name-

* data type
"import" "export" * Column order String

-key menber? - _ 'must be bound?

T ~ ~~unique id?IFnter
Integer

boolean boolean boolean

Figure 6.2: Object/data model for the sources subsystem

6.1.3.1 Data Source Descriptions

Of course, figure 6.2 suggests that for a normalized data model, we would need to store data

source, relation, and column descriptions in different tables. We store the data source

descriptions in the table schdatabases:

create sequence sch-database-id-seq start with 2;

create table schKdatabases (
database-id integer primary key,
name varchar(100) not null,
owner-id integer references coin-apps on delete

cascade,
database-type varchar(100) default 'db' not null,
constraint sch-db-type-ck check(database-type in ('web', 'db')),
-- useful for providing wrapper url etcetra

70

connect-information varchar(1000) not null,
connect-type varchar(100) default 'wrapper' not null,
constraint sch-db-connect-type-ck check(connect-type in

('wrapper', 'dburl'))

Just for the reader's information, the data model presented in sections 6.1.3.1 to 6.1.3.3

underwent the largest number of revisions before arriving at what is presented here0 .

6.1.3.2 Relation Descriptions

Likewise, we store relations in the schrelations table. Of course, each relation has a notion

of which database it belongs to.

create sequence sch-relation-id-seq start with 2;

create table sch-relations (
relation-id integer primary key,
name varchar(100) not null,
parent-db integer references sch-databases on delete

cascade,
relation-type varchar(100) default 'both' not null,
unsupported-operations varchar(500),
constraint sch-rel-type-ck check(relationtype in ('import',

'export', 'both'))

Notice that the schrelations table does not directly contain information about which

application it belongs to (This is due to a high degree of normalization in our data model).

This can e inferred though. Notice that the arrow from DataSource to Relation has a (!) at its

base (in figure 6.2). This means that a particular relation belongs to one data source. Now in

figure 3.22, all the arrows coming out of "Application" have the (!) mark. This means that a

data source belongs to one application. Thus, the application of the relation can be inferred

from the application of its parent data source referenced by the parentdb column.

Normalization also means that we need to perform joins in our queries when we

want to see, say, all the tables in a particular application (as opposed to the simpler case of

seeing all the tables in a particular data source.) For example, to see the names of all the

relations in a particular application, we would issue a query like:

71

SQL> select sch-relations.name
2 from sch-relations, sch-databases
3 where sch-relations.parent-db = sch-databases.database-id
4 and sch-databases.owner-id =
5 (select app-id from coin-apps
6 where app-short-name = 'tasc')
7 order by lower(sch-relations.name)
8 asc;

NAME

CNames
countryIncorp
currency-map
currencytypes
datexform
DiSCAF
DStreamAF
moneyrates
Name-map-DSWs
Name-mapDtDs
Name-mapDtWS

NAME

name-map-msft-ds
olsen
quotes
Ti ckerLookup2
WorldcAF
Worl dcAFT

17 rows selected.

6.1.3.3 Column Descriptions

Finally, the columns are stored in the table schcolumns whose definition is given below.

create sequence sch-column-id-seq start with 2;

create table sch-columns (
column-id integer primary key,
relation-id integer references sch-relations on delete

cascade,
name varchar(100) not null,
column-type varchar(100) default 'string' not null,
constraint sch-col-type-ck check(column-type in ('string',

real', 'integer')),
column-order integer default 0,
keymemberp varchar(1) default 'f',
constraint sch-key-memb-ck check(key-member-p in ('t', 'f')),
-- integrity support for non-normalized data sources
unique-id-p varchar(1) default 'f',
constraint sch-unique-id-ck check(unique-id-p in ('t', 'f')),

20 As more integrity constraints were added, cascaded deletion was introduced, columns were added to
support a richer set of features etc.

72

binding-restriction varchar(2) default 'f',
constraint sch-col-cap-ck check(binding-restriction in ('t',

'f', ' tf', 'ft'))

6.2 Internal Representation Generators

The internal representation generators for sources read data from the tables described above

and generate both the COIN-based, and the GCMS-based internal representations of this

data. The advantages of decoupling the actual editor from the generation of the final form of

the data have been mentioned before and will not be repeated here.

There are two internal representation generators provided for the sources in the

current system. These are summarized in the table below:

LinFilename

GeneratorSourcesCOIN.jsp

GeneratorSourcesGCMS.jsp

es Functionality

268 Generates the internal representation of the

sources required by the context interchange

mediator[5]

278 Generates the internal representation of the

sources required by the Global Context

Mediation System, which is a successor to the

context interchange mediator. In case the future

developer would like to program a new

generator, he or she should take a look at this

file and the SQL queries it makes. Also, this file

creates an internal representation file and places

it in the value of the "applicationPath"

parameter in the servlet context's environment

(the web server) thus updating the abduction

engine with the new file. For customized

functionality on this front, the future developer

should, again, look at this file.

73

Appendix A.3 contains an internal representation file for source descriptions generated by

GeneratorContextsGCMS.jsp. For more details on the structure of the internal

representation, the reader is referred to section 4.4 of [9].

74

_ ~ffiffi,

7 Elevations

This section focuses on the design, implementation, and usage of the elevations editor, its

underlying data model, and the generators which generate the internal representations from

the database tables populated by the this editor.

7.1 Elevations Management Page

The elevations management page allows the user to specify the semantic types to which

physical columns in our sources elevate to.

Currenrymap source context: i ot [

a r3_our*n-y I-vts to: hat (b s }

cha,2_rncy elevates to: baskc [',

Currencytypes source context: d . -.o re [

country sI-eate- to; contryN ,

-uny l"astaso cun'encyrype [

DiscAF source context: Js...t]

m y-ats to! cmpanyN

lats.st.axnu.Ldata elevates to:data [

rent-share~soutstanding elevates to! basc [

etinm el-*ats to cwepanyFinan.ed. [

net-s-le% IQ-as to, basic [; -
total~ssetselevates to i cofpany~insncialis[]

c-untry_ofjincorp aI-st-. t-, CompayNama [- .]
DStemAF source context: Jd--T a [

totsLs.Iesj

eamrnefrerdhanry

Name mrnap. Ds/s
ds~nms

Name mrapOt_Ds
dt_nams

dsna-ms
Name map_tws

name map msft ds
m 8 ,s me s.

as~nms

elevates to, dat. (: ,]

.e..t- to. -m pyName

.letas to conWykna.cias [

e1sat-s to: coa .eyFIeancia. [

elevates to: cnVpanyFin-ncaI. 1[-I6
elevates to: curencyTypa C ,

source context: o- r' I..["
elmt- S b [t b-4
elevates to: basic [,

source context: Ja [-

late..s to: basc [f u]
.Imt t.: bSe [

source context: 1atorcn []
.::te.s t.: basis [l
elevates to, basi [>2

source context: r , ouf [

el-ate to, bask [A, , .
.1- iS.. , lb-k I..

-J

Figure 7.1: Elevations Management Page

This page also allows us to specify the context to which each source subscribes to. To we

have an example of this earlier in out motivational guided tour.

The elevations management page automatically gets the list of available source

descriptions for the tables described in the later part of chapter 6, and displays them on the

75

screen. Sources for which no context has been specified, have a "source context: no

context" message in front of them, others have the context name in place of "no context".

Columns that elevate to a semantic type, have the name of the semantic type in bold next to

them. This can be seen in figure 7.1.

7.2 Elevations through example

As an example, let us look again at figure 7.1. Notice that the column netincome in the

source DiscAF elevates to the semantic type companyFinancials. All this implies is, that at

the time of semantic reconciliation, the value of the netincome column of DiscAF will be

subject to modification based on the modifiers of the semantic type companyFinancials.

Assume now that there are two contexts, A and B. Suppose that context A has the

value of companyFinancials : scaleFactor set to 1, while context B has this modifier value set

to 1000. In this scenario, if DiscAF subscribes to context A, then whenever the value of

netincome will be requested in context B, it will be subject to a division by 1000.

7.3 Internal Convention

This section describes some internal conventions followed by the Graphical Metadata

Management system. This section should not concern the normal user of the system.

Firstly, the underlying system represents relations as relation-name(column1,

column2, ... , column-n) in much the same way as Prolog[13]. Thus, the relation DiscAF can

be referenced to in the underlying system using

'DiscAF'(C1, C2, C3, C4, C5, C6, C7).

Also, it is a notational convention followed by the system that the elevated version of this

relation has the same name but with "_p" appended to it21. Thus, the elevated axiom for

DiscAF-p will look like:

2 In case the reader is wondering about the significance of "_p" then it just refers to "prime," a
mathematical convention of sorts in naming variables related to other variables.

76

rule(
'DiSCAF.p'(

skolem(companyName, C1, disclosure, 1,
'DiscAF'(Ci, C2, C3, c4, C5, c6, C7)),

skolem(null, C2, disclosure, 2,
'DiscAF'(Cl, C2, C3, c4, C5, C6, C7)),

skolem(basic, C3, disclosure, 3,
'DiscAF'(Cl, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C4, disclosure, 4,
'DiscAF'(Cl, C2, C3, C4, C5, C6, c7)),

skolem(basic, C5, disclosure, 5,
'DiscAF'(Cl, C2, C3, C4, c5, c6, C7)),

skolem(companyFinancials, C6, disclosure, 6,
'DiscAF'(Ci, c2, C3, c4, C5, c6, c7)),

skolem(companyName, C7, disclosure, 7,
'DiscAF'(Cl, c2, C3, c4, c5, c6, c7))),

('DiscAF'(C1, C2, C3, c4, c5, c6, C7))).

Of course, the user never has to worry about writing these elevation rules as they are

automatically generated. However, it might be important for advanced users to be familiar

with this underlying mechanism.

7.4 Custom Abduction-time Code

The elevations page also has a link that allows the user to author custom abduction-time

code for the system. These are not required of the user but are only there to facilitate the

advanced user who might want to use the full power of the underlying system. Custom

abduction-time code has to be authored in the prolog style and can directly reference

prolog[13] constructs and the underlying metadata rules available to the reasoning engine. Of

course, the rules must be transformed from the pure prolog style to the GCMS-rule format

to be useful to the Global Context Mediation System's reasoning engine. The custom

abduction-time code for an application is stored in the elvcustom table:

create table elv-custom (
owner-id integer not null references coin-apps,
custom-body varchar(4000)

The advanced user might want to refer to [9], [13], and [28] to be able to use this feature to

the fullest. Also the user might want to review the earlier discussion on GCMS-style rules,

also repeated in the next section.

77

7.5 Attribute Rules

The elevations page has a link that allows the user to enter and edit attribute rules in the

system. These are very easy to do and are explained in the last paragraph of section 4.5.2

of [9]. Of course, the only difference is that the entered rules should be made GCMS-

style. We have discussed this before. The general way of converting rules to GCMS style

is presented again, just for convenience. The normal format for a prolog rule is:

<rule> ::= <head-clause> :- <body-clauses>.
<body-clauses> := <body-clause>, <body-clauses>

I <body-clause>

On the other hand, the GCMS style rules are:

<rule-gcms> ::= rule(<head-clause>, (<body-clauses>)).
<body-clauses> <body-clause>, <body-clauses>

I <body-clause>

Thus, the following prolog:

(b,c,d) :- e(f), g(h,i).
j(k,l,m).

would be converted to GCMS-style as:

rule(a(b,c,d),(e(f),g(h,i))).

rule(j(k,I ,m),(true)).

The attribute rules pertaining to an application are stored in the elvattrs table. The data

definition language instructions for this table are presented below.

create table elvattrs (
owner-id integer not null references coin-apps,
attrs-body varchar(4000)

78

7.6 Details of the Elevations Page

This section describes the source code GavaServer Pages) of the elevations editor and

describes the underlying data structure.

7.6.1 Source Code for Elevations editor

The following table lists the source files used by the elevations editor and gives a short

description of their functionality:

Filename Lines Functionality

Elevations.j sp 208 This is the main elevations management page. It displays all

the sources described in the system, their contexts, and the

elevations schedule for their columns. This is illustrated in

figure 7.1. The file expects as input the variable "app-id" and

displays the elevations information and the editor for the

particular application that has its app-id in the coin-apps

table equal to the "app-id" passed on to this page as input.

editAttrsl .jsp 165 This page invokes the form that allows the user to edit

attribute rules[9]. Changes are submitted to the page

editAttrs2.jsp for further processing

editAttrs2.jsp 182 This JavaServer page takes the new attribute rules passed on

to it by editAttrsl.jsp and replaces the old set of rules in the

database with this new one.

editCustoml.jsp 165 This page invokes the form that allows the user to edit

custom abduction-time code. Changes are submitted to the

page editCustom2.jsp for further processing

editCustom2.jsp 182 This page takes the new custom abduction-time code passed

on to it by editCustoml.jsp and replaces the old set of custom

abduction-time code in the database with this new one.

setContext1.jsp 178 This page generates a drop box containing all the contexts

79

setContext2.jsp

setElevationi.jsp

setElevation2.jsp

defined in the system and allows the user to select a context

when a source is being subscribed to a context. The selected

context is passed on to setContext2.jsp for back-end

processing.

166 This page takes the source and selected context from

setContextl.jsp and updates the database to reflect the source

as subscribing to the context. Displays a success-message on

success, or an error message on failure.

179 This page generates a drop box containing all the semantic

types defined in the ontology and allows the user to select a

semantic type when a column elevation is being specified. The

selected semantic type is passed on to setElevation2.jsp for

back-end processing.

165 This page takes the column and the selected semantic type

from setElevationi.jsp and updates the database to reflect the

column's elevation to the particular semantic type. Displays a

success-message on success, or an error message on failure

Thus, the elevations editor comprises of 9 JavaServer Pages totaling 1,590 lines of code (over

10% of the entire code-base of the Graphical Metadata Management system).

7.6.2 Underlying Data Structures

We continue the object model we presented in an earlier section on "applications" and show

the relevant relationships for the elevations-related entities in the system:

80

Elevations -elevations- Elevation -physical type+ Column

source contexts
-semantic type- SemanticType

SourceContext relation Relation

context W Context

Figure 7.2: Object/data model for the elevations subsystem

7.6.2.1 Column Elevation Map

We store the elevation information for columns in the table elyelevations. The

physical-type column of this table refers to the column defined in schcolumns, while the

semantic-type column of this table refers to the semantic type in ontsemtypes.

create table elv-elevations (
physical-type integer not null references sch-columns on

delete cascade,
semantic-type integer not null references ont-semtypes on

delete cascade

7.6.2.2 Context Subscription for Sources

The information about the context subscription of a source is stored in the

elvysource contexts table.

create table elv-source-contexts (
relation integer not null references sch-relations on delete

cascade,
context integer not null references cxt-contexts on delete

cascade

81

7.7 Internal Representation Generators

The internal representation generators for elevations read data from the tables described

above and generate both the COIN-based, and the GCMS-based internal representations of

this data.

There are two internal representation generators provided for the elevations in the

current system. These are summarized in the table below:

Filename

GeneratorElevationsCOIN.jsp

GeneratorElevationsGCMS.jsp

Lines Functionality

263 Generates the internal representation of the

elevation axioms required by the context

interchange mediator[5]

276 Generates the internal representation of the

elevation axioms required by the Global Context

Mediation System, which is a successor to the

context interchange mediator. In case the future

developer would like to program a new

generator, he or she should take a look at this

file and the SQL queries it makes. Also, this file

creates an internal representation file and places

it in the value of the "applicationPath"

parameter in the servlet context's environment

(the web server) thus updating the abduction

engine with the new file. For customized

functionality on this front, the future developer

should, again, look at this file.

Appendix A.5 contains an internal representation file for elevation axioms generated by

GeneratorElevationsGCMS.jsp. For more details on the structure of the internal

representation, the reader is referred to section 4.5 of [9].

82

8 Conversions

This section focuses on the design, implementation, and usage of the conversion functions

editor, its underlying data model, and the generators which generate the internal

representations from the database tables populated by the this editor.

8.1 Conversion Functions Page

The conversion functions management page allows the user to author, edit, and delete

conversion functions for the application.

Addrt-5 http-//avocadomrit edugcrmslgm/Conersions jsp?app_id-4 G k

Metadata Manaementfor the context media on System

Conversions: Disaster Relief Efforts

conversions for Digsster Rehef Efforts:

fcore, tsr cua encyTge o wt respectto curTypsymbo fdd cionverst

convrs-- ----.-------

..... - - - - . ..- .

corivqrsons for weight withi respect to Unit a dd conversion'I

Zk det.

Figure 8.1: Conversion Functions Management Page

Figure 8.1 shows an example of a conversion functions main page. As is visible from the

figure, this page allows us to add conversion functions, as well as edit or delete existing

conversion functions.

83

8.1.1 Usage Guide

This section provides a quick introduction and user documentation for conversion function,

and the conversion functions management page.

8.1.1.1 Our notion of conversions

Firstly, it is important to point out that our conversion functions are quite a bit different

from our usual understanding of a function (mathematical construct that is applied to an

input, returns an output). Our conversions define relations between variables and are used

automatically whenever applicable. A conversion pertains to a semantic type with respect a

modifier... so for example, a conversion for companyFinancials with respect to scaleFactor

will define a conversion scheme for a companyFinancials object across contexts based on

the scaleFactor's value.

The normally understood notion of a conversion function in computer programming

is something like:

Function(input)
1. Do something to input in finite number of steps
2. Return the result to the parent environment

On the other hand, our conversion functions aim to establish a relationship between a

certain number of variables. Whenever, a sufficient number of these variables can be bound

to actual values, the unbound variables can be deduced.

8.1.1.2 Predefined variables

The following variables are predefined and can be used directly in your conversion function.

They are provided to you by the system:

Predefined Variable Name Usage

Object Refers to the semantic object being converted. The name of

the context of the semantic object is encapsulated in the

84

TargetContext

SourceModifierValue

TargetModifierValue

SourceValue

TargetValue

A conversion function will define a relationship between these variables. The usage of these

variables will be explained below.

8.1.1.3 Simple Mathematical Conversions

Suppose, you wanted to write a conversion function for companyFinancials with respect to

scaleFactor, and suppose you wanted to scale the values based on the magnitude of

scaleFactor, then your conversion function will be:

Targetvalue is sourcevalue * (Sourceodifiervalue /
TargetModi fi erval ue).

Notice the use of our predefined reserved variables (see section 8.1.1.2). Also, you have the

entire flexibility of prolog[13] at your hands, which means that you could have very well

written the same conversion function as

x is sourceModifiervalue / TargetModifiervalue,
Targetvalue is Sourcevalue * X.

85

object itself, thus the conversion function does not have a

predefined variable called SourceContext. See later for details.

Refers to the context to which we are converting to.

This variable refers to the value of the modifier in the source

context (recall that our conversion functions define

conversions for semantic types with respect to modifiers)

This variable refers to the value of the modifier in the target

context.

This is the actual value undergoing conversion. This variable

refers to this value in the source context

This is the actual value undergoing conversion. This variable

refers to this value in the target context.

Just as a refresher, variable names begin with uppercase letters while atoms begin with

lowercase letters. More details about prolog conventions can be found in [13].

8.1.1.4 Database-backed Conversion Functions

Assume you wanted to write a conversion function that converted currency names from one

format to another (say, a conversion for semantic type currencyType with respect to

currencyTypeSymbol modifier. assume, modifier takes values "3char" or "2char"). Assume,

we have a table, currencymap, in the database which has two columns and defines a

mapping between the two currencyType symbols. Rows in this table would be like ("USD",

"US"), ("PKR", "PK") etc. To define a conversion that is equivalent to "when the modifier

value in source is 3char, and the modifier value in target is 2char then the relation between

value in source and value in target is currency-map(value in source, value in target)." We

define this conversion as

sourceModifiervalue = "3char",
Targetodifiervalue = "2char",
currency-map(sourcevalue, Targetvalue).

Notice how our prolog-style instructions logically represent our earlier conceptual

understanding of the conversion function. Of course, if the name of the relation had begun

with an uppercase character, we would have had to write the atom with single quotes as

'Currency-map'(SourceValue, TargetValue).

In order to assist the user in writing such conversion functions, the "add

conversions" page lists not only this quick tutorial but also the list of all the available source

relations in the system at that point in time. For example, my "add conversions" page for the

financial example application lists the following relations available to me:

currencytypes(country, currency) in oracle
currency-map(char3_currency, char2_currency) in oracle
olsen(Exchanged, Expressed, Rate, Date) in cameleon
datexform(Datel, Formati, Date2, Format2) in datexform
quotes(cname, Last) in cameleon
DiscAF(company-name, latest-annual-data, current-shares-outstanding,
net-income, net-sales, total-assets, country-of-incorp) in oracle
worldcAF(company-name, latest-annual-financial-date,
current-outstanding-shares, net-income, sales, total-assets,
country-of-incorp) in oracle

86

worldcAFT(company-name, latest-annual-financial-date,
current-outstanding-shares, net-income, sales, total-assets,
country-of-incorp) in oracle
Name-map-DsWs(ds-names, ws-names) in oracle
TickerLookup2(comp-name, ticker, exc) in oracle
Name-map-DtDs(dt-names, ds-names) in oracle
Name-mapDtWS(dt-names, ws-names) in oracle
DStreamAF(as-of-date, name, total-sales, total extraord-items-pre-tax,
earned-for-ordinary, currency) in oracle
countryIncorp(company-name, country) in view
CNames(company-name) in view
moneyrates(bankname, rate, yield, minbalance) in cameleon
name-map-msft-ds(msft-names, ds-names) in oracle

8.1.1.5 Advanced Constructs

This section describes the use of attr/3 and value/3 in conversions, for advanced users only.

The Object variable mentioned earlier represents the data object being modified and

encapsulates the source context of the object. To get the value of an attribute "whatever" of

the object and assign it to a variable X, we will use a clause "attr(Object, whatever, X)". X

will now contain the object represented by the "whatever" attribute of object Object (X also

is a skolemized object like Object and encapsulates its source context). To get the value of a

skolemized object in a different context, use the value/3 atom. For example, to get the value

of X in context "reuters" and bind it to variable Y, we will use a clause "value(X, reuters, Y)".

Of course, the direction of assignment in attr/3 and value/3 depends on which variable is

unbound. Likewise, you can also use elevated data source relations to operate on skolemized

objects. The reader is advised to refer to an existing application for illustration.

8.1.2 Source Files

The following table lists the source files used by the conversion functions editor and gives a

short description of their functionality:

Filename Lines Functionality

Conversions.jsp 191 This is the main conversion functions management page. It

displays all the modifiers described in the system (with

their semantic types) and for each modifier displays the

existing conversion functions defined. This is illustrated in

87

addConversionl.jsp

addConversion2.j sp

delConversioni.jsp

delConversion2.j sp

editConversionl.jsp

editConversion2.jsp

figure 8.1. The file expects as input the variable "app-id"

and displays the conversion functions information and

editor for the particular application which has its app-id in

the coinapps table equal to the "app-id" passed on to this

page as input

240 This page generates the form that allows the user to enter a

new conversion function for a specific modifier to a

semantic type. The results are submitted to

addConversion2.jsp

194 Takes the newly defined conversion function from

addConversionl.jsp and adds it as a conversion function

for a specific semantic type with respect to a modifier.

159 Gets invoked when the user clicks on the "delete" link for

a conversion function. Displays a confirmation dialog. If

the user confirms, control is passed on to

delConversion2.jsp with identification information

regarding the conversion function to be deleted.

164 Takes the identification of a conversion function and

deletes it from the database. Displays a success message on

success or an error message on failure.

244 Displays a form that allows the user to edit an existing

conversion function. The new function information is

passed on to editConversion2.jsp for further processing.

192 Takes the new conversion function from

editConversion2.jsp and replaces the old conversion

function with the new one.

The conversions subsystem thus comprises of seven JavaServer Pages comprising of about

9% of the code-base of the Graphical Metadata Management system.

88

8.1.3 Underlying Data Structures

We continue the object model we presented in an earlier sections, and show the relevant

relationships for the conversion-functions-related entities in the system:

*

ConversonFun modifier-* Modifier

*

-function--- -- String

Figure 8.2: Object/data model for the conversions subsystem

Thus, in this simplistic yet flexible representation of a conversion function, we can store our

conversion functions in the table below:

create sequence cnv-functions-id-seq start with 2;

create table cnvjfunctions (
function-id integer primary key,
owner-id integer references coin-apps on delete

cascade,
modifier integer references ont-modifier-map on

delete cascade,
function-body varchar(4000) not null

8.2 Internal Representation Generators

The internal representation generators for conversion functions read data from the table

described above and generate both the COIN-based, and the GCMS-based internal

representations of this data.

There are two internal representation generators provided for conversions in the

current system. These are summarized in the table below:

89

Filename

GeneratorConversionsCOIN.jsp

GeneratorConversionsGCMS.jsp

Lin

Appendix A.4 contains an internal representation file for conversion functions generated by

GeneratorElevationsGCMS.jsp. For more details, though not very insightful, on the

structure of the internal representation, the reader is referred to section 4.8 of [9].

90

es Functionality

263 Generates the internal representation of the

conversion functions required by the context

interchange mediator[5]

276 Generates the internal representation of the

conversion functions required by the Global

Context Mediation System, which is a successor

to the context interchange mediator. In case the

future developer would like to program a new

generator, he or she should take a look at this

file and the SQL queries it makes. Also, this file

creates an internal representation file and places

it in the value of the "applicationPath"

parameter in the servlet context's environment

(the web server) thus updating the abduction

engine with the new file. For customized

functionality on this front, the future developer

should, again, look at this file.

9 Conclusions and the Future

The Graphical Metadata Management system described in this thesis is running successfully

on our demonstration website's developmental mirror. Also, the internal representation

being used by the reasoning engine on our demonstration website" is the generated output

from the internal representation generators of this system.

It is indeed obvious that the Graphical Metadata Management system makes the

tasks for users operating in both the roles of information retrievers and information

providers much easier and remarkably more automated than before. In general it appears

that the Graphical Metadata Management system fulfils its aims and objectives to a

considerable degree.

9.1 Need for more testing

Although some testing of the system has been performed, it has not been of a satisfactory

rigor for a system of such size. The reason is that I have performed a sizeable part of the

testing. For the person who develops the system, most things appear to be natural and

intuitive, otherwise they wouldn't have been developed the way they were. It is important to

point out that while users have tested parts of the system and played around with it, the task

of developing an entire application from scratch still requires a certain amount of maturity

with the underlying mediation system, and still remains to be an art. Some amount of

documentation will need to be written in order to equip users with the usage-style necessary

to develop entire applications using this system.

9.2 Application browsing

Although the Graphical Metadata Management system makes the task of managing metadata

within applications much easier, it provides only a little amount of support for managing

applications themselves. This has not been unintentional, as we have mentioned earlier in

this thesis. An application-browser and manager is being developed at our research group

91

22 For our financial example

and this tool aims to continue the task of applications management from where the

Graphical Metadata Management system left it. The need for an application browser and the

facilities it is expected to offer has been discussed earlier in this thesis.

9.3 Navigational improvements

Although consideration has been given to the overall navigational structure of the Graphical

Metadata Management system, it is obvious that this is far from perfect. It is hoped that

once the application browser and other related tools are ready, a more complete picture of

the system with emerge, and thus we will be in a better position to make a navigational

policy for the system that is both lasting and intuitive.

9.4 Query-building tool

After having a Graphical Metadata Management system, the next big step seems to be the

query-building tool under development at our research lab. The tool would allow users to

select an application (and thus is closely tied to the application-browser) and then run a

query on that application.

In much the same way as the Graphical Metadata Management system aims at the

user operating in the role as an information provider, the query-builder would have its

primary emphasis on the user operating in his or her role as an information retriever.

9.5 Graphical attribute rules

The Graphical Metadata Management system requires users to author attribute rules in

textual form. Although this task is not a difficult one, it is felt that a more graphical way of

dealing with these would greatly benefit users of the system. It might be pointed out that this

task is much less trivial than it might seem at face value. In a resource-constrained (primarily

time-constrained) environment, many other issues seem to take dominance over the issue of

implementing graphical attribute rules. Nonetheless, this would be a very welcome future

development.

92

9.6 Backend Improvement

There seem to be some need for improvement in the abduction engine and the optimizer of

the execution engine. The abduction engine, which was adopted from the older context

interchange mediator[5], has certain problems. Firstly, it has problems with integrity

constraints, and the integrity constraints for the financial example seem to be hard-coded

into it. There needs to be a mechanism for allowing the abduction engine to read integrity

constraints from a file just like all other metadata. Secondly, the abduction engine does not

have support for an ontology that has semantic types exhibiting a hierarchical structure. This

needs to be implemented. Finally, the executioner needs to address some infinite recursion

possibilities in its optimization code.

9.7 Registry development

The Graphical Metadata Management system introduces a new data model for the storage of

all the metadata required by the context mediation system. It introduces the use of a

relational database system for such storage, and provides the new "glue" for putting all the

components of the context mediation system together. In future it appears to be very

important that all parts of the system read their metadata directly from the database tables of

the Graphical Metadata Management system. Once this advancement is made, we will be

able to phase out the cryptic internal representations completely. This would truly be a giant

leap for the entire context mediation system.

9.8 Portable data

Another important future development would be the introduction of generators that export

data in a portable format such as the Resource Description Framework. A step further than

this would be the ability to import such data too. These were in the initial goals of this

project but had to be later dropped in favor of other augmentations due to time and human-

93

energy constraints. The ability to import RDF would translate into the ability to use tools

like VisioDAML[33] indirectly to author our ontologies.

94

References

[1] Madnick, S. E. (1999). Metadata Jones and the Tower of Babel: The Challenge of Large-Scale
Semantic Hetergeneity, 1999 IEEE Meta-Data Conference, April 6-7, 1999.

[2] Bressan, S., Fynn, K., Goh, C. H., Jakobisiak, M., Hussein, K., Kon, H., Lee, T.,
Madnick, S. E., Pena, T., Qu, J., Shum, A., and Siegel, M. (1997). The COntext
INterchange Mediator Protoype, ACM SIGMOD International Conference on
Management of Data, 1997

[3] Resource Description Framework (RDF), http://www.w3.org/RDF/

[4] Siegel, M., Madnick, S. E. (1991). A Metadata Approach to Solving Semantic Conflicts. In
proceedings of the 17 th international conference on very large databases, pages 133-
145. 1991.

[5] Daruwala, Goh, Hofmeister, Husein, Madnick, Siegel. (1995) The Context Interchange
Network Protoype, Centre for Information Systems Laboratory, working paper 95-01,
Sloan School of Management, Massachusetts Institute of Technology, February
1995.

[6] Goh, Madnick, Siegel. (1994). Context Interchange: Overcoming the Challenges of Large-Scale
Interoperable Database Systems in a Dynamic Environment. Proceeding of International
Conference on Information and Knowledge Management, 1994.

[7] Ken Arnold, James Gosling, David Holmes. (2000). The JavaT M Programming Language,
Third Edition. Addison-Wesley Pub Co., April 2000.

[8] Tim Lindholm, Frank Yellin. (1999). The Java Virtual Machine Specfication, Addison-
Wesley Pub Co., May 1999.

[9] Syed Ahmed Zaman Shah. (1998). Design and Architecture of the Context Interchange
System. Centre for Information Systems Laboratory, working paper 98-05, Sloan
School of Management, Massachusetts Institute of Technology, May 1998.

[10] G. Koch, K. Loney, Oracle8: The Complete Reference, Oracle Press, 1997

[11] James R. Groff, Paul N. Weinberg, SQL: The Complete Reference, McGraw-Hill
Higher Education, 1999

[12] W. Kent, A Simple Guide to Five Normal Forms in Relational Database Theory,
Communications of the ACM, Februay 1983 Volume 26.

[13] Leon Sterling. (1994). The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge, Massachusetts. 1994.

95

[14] Guy Zimmer, S. David Kwak, Frank Manola. (2001). The Semantic Web Problem -
Disaster Relief Context. Mitre Corporation working paper, September 2001.

[15] Firat, A., Madnick, S., Siegel, M. (2000). The Cameleon Approach to the Interoperability of
Web Sources and Traditional Relational DataBases. Proceedings of the 10th Annual
Workshop On Information Technologies and Systems, Brisbane, Queensland,
Australia, 2000.

[16] Firat, A., Madnick, S., Siegel, M.. (2000). The Cameleon Web Wrapper Engine.
Proceedings of the VLDB Workshop on Technologies for E-Services, Cairo, Egypt
2000.

[17] The DARPA Agent Markup Language Specification, http://www.daml.org/
2001/03/daml+oil.daml

[18] Stanford University Project Prot6g6, http://protege.stanford.edu/index.shtml

[19] GraMToR Resource Description Framework schema editor, http://nestroy.wi-
inf.uni-essen.de/xwmf/

[20] Hans Bergsten. (2000). JavaSener Pages. O'Reilly & Associates, first edition December
2000

[21] W. Kent, A Simple Guide to Five Normal Forms in Relational Database Theory,
Communications of the ACM, February 1983 Volume 26.

[22] E. F. Codd, Normalized Database Structure: A Brief Tutorial, ACM SIGFIDET
workshop on data description, access and control, November 1971

[23] E. F. Codd, Further Normalization of Database Relational Model, International
Business Machines Corporation, Research Report RJ909, 1972

[24] P. Greenspun, Philip and Alex's Guide to Web Publishing. Morgan Kaufmann
Publishers, April 1999; also available online at http:/ /www.arsdgita.com/ books/panda!

[25] C. Date, Introduction to Database Systems, sixth edition, New York Addison-Wesley,
1995.

[26] C. C. Fleming, B. Vonhale, Handbook of Relational Database Design, Addison-Wesley
Pub Co, 1988

[27] G. Koch, K. Loney, OracleS: The Complete Reference, Oracle Press, 1997

[28] Cheng Hian Goh, (1996). Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems, Ph.D. Thesis, MIT Sloan School of
Management, 1996.

96

[29] Kofi Fynn, (1997). A Planner/Optimizer/Executioner for Context Mediated
Queries. MIT Master Thesis, Electrical Engineering and Computer Science.

[30] Guttag, Liskov, (2000). Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. 1" edition, Addison-Wesley Pub Co. 2000

[31] Groff, Weinberg, (1999). SQL: The Complete Reference. McGraw-Hill Professional
Publishing, March 1999.

[32] St6phane Bressan, Kofi Fynn, Cheng Hian Goh, Stuart E. Madnick, Tito Pena, and
Michael Siegel, (1997). Overview of the Prolog Implementation of the COntext
INterchange Prototype. Fifth International Conference on Practical Applications of
Prolog

[33] VisioDAML: A Visio application to illustrate how Visio can be used to create
graphical representations of DAML+OIL ontologies, http://www.daml.org/
visiodaml

[34] Microsoft Visio Drawing Viewer, http://office.microsoft.com/downloads/
2002/VWC10.aspx

[35] Steven Holzner, (2000). Inside XML. New Riders Publishing, 1" edition November
2000.

[36] Netbryx Technologies, EditML version 2.5. http://www.editml.com/

[37] The Reggie Metadata Editor. http://metadata.net/dstc/

[38] Gray, Preece, Fiddian, Gray, Bench-Capon, Shave, Azarmi, Wiegand, Ashwell, Beer,
Cui, Diaz, Embury, Hui, Jones, Jones, Kemp, Lawson, Lunn, Marti, Shao, Visser,
(1997). KRAFT: Knowledge Fusion from Distributed Databases and Knowledge
Bases. Eighth International Workshop on Database and Expert Systems Applications,
DEXA'97

[39] Knowledge Reuse And Fusion/Transformation Ontology Browser. University of
Liverpool. http://www.csc.iv.ac.uk/~pepijn/OB/

[40] Java Ontology Editor (OE) of the University of South Carolina. http://
www.cse.sc.edu/research/cit/demos/java/joe/

[41] Popkin Software's Envision XML, http://www.popkin.com/products/envision/
dtd/dtd.htm

[42] The Java Plug-In. http://java.sun.com/getjava/

[43] Cheng Hian Goh, St6phane Bressan, Stuart Madnick and Michael Siegel, (1999),
Context interchange: new features and formalisms for the intelligent integration of
information. ACM TOIS 17(3): 270-293 (1999).

97

[44] Bresson, Stephane, C. Goh, N. Levina, A. Shah, and M. Siegel, "Context Knowledge
Representation and Reasoning in the Context Interchange System," The
International Journal of Artificial Intelligence, Neutral Networks, and Complex

Problem-Solving Technologies, Volume 12, Number 2, September 2000, pp. 165-
180, [SWP #4133, CISL #00-04].

98

Appendix A - Internal Representation of Financial Example's Metadata

This appendix presents the internal representation of the metadata for the TASC Financial
Example mentioned at various places in this thesis. The representation presented here is
generated by the GCMS generators of the Graphical Metadata Management system.

A.1 Ontology

%% domain model for TASC Financial Example
%% generation timestamp: Sun Feb 03 05:46:31 EST 2002

%% by module: ontology-gcms-internal
%% in package: edu.mit.gcms.gmm (graphical metadata management)
%% programmed by usman y. mobin (mobin@mit.edu)
%% massachusetts institute of technology

%% Semantic types

rule(semanticType(basic), (true)).
rule(semanticType(companyFinancials), (true)).
rule(semanticType(companyName), (true)).
rule(semanticType(countryName), (true)).
rule(semanticType(currencyType), (true)).
rule(semanticType(date), (true)).
rule(semanticType(exchangeRate), (true)).

%% Modifiers
%%y
rule(modifiers(basic, []), (true)).
rule(modifiers(companyFinancials, [currency, scaleFactor]), (true)).
rule(modifiers(companyName, [format]), (true)).
rule(modifiers(countryName, []), (true)).
rule(modifiers(currencyType, [curTypeSym]), (true)).
rule(modifiers(date, [dateFmt]), (true)).
rule(modifiers(exchangeRate, []), (true)).

%%5y
%% Attributes
5%
rule(attributes(basic, []), (true)).
rule(attributes(companyFinancials, [company, fyEnding]), (true)).
rule(attributes(companyName, [countryIncorp]), (true)).
rule(attributes(countryName, [officialcurrency]), (true)).
rule(attributes(currencyType, [curTypesym]), (true)).
rul e(attri butes (date, [1), (true)).
rule(attributes(exchangeRate, [fromCur, toCur, txnDate]), (true)).

9%
%% Contexts

m%
rule (context (datast ream), (true)).
rule(context(di sclosure), (true)).
rule(context(microsoft), (true)).
rule(context(olsen), (true)).
rule(context (worl dscope), (true)).
rule(context(yahoo), (true)).

99

A.2 Contexts

%% context definitions for TASC Financial Example
%% generation timestamp: sun Feb 03 05:47:26 EST 2002

%% by module: contexts-gcms-internal
%% in package: edu.mit.gcms.gmm (graphical metadata management)
%% programmed by usman y. mobin (mobin@mit.edu)
%% massachusetts institute of technology

%%0/
%% datastream context

rule(modifier(companyFinancials, Object, scaleFactor, datastream,
Modifier),

(cste(basic, Modifier, datastream, 1000))).

rule(modifier(companyFinancials, Object, currency, datastream,
Modifier),

(attr(Object, company, Intermediatevariablel),
attr(Intermediatevariablel, countryIncorp,

Intermediatevariable2),
attr(Intermediatevariable2, officialcurrency, Modifier))).

rule(modifier(companyName, Object, format, datastream, Modifier),
(cste(basic, Modifier, datastream, "dt-name"))).

rule(modifier(date, Object, dateFmt, datastream, Modifier),
(cste(basic, Modifier, datastream, "European style -"))).

rule(modifier(currencyType, Object, curTypeSym, datastream, Modifier),
(cste(basic, Modifier, datastream, "3char"))).

%%
%% disclosure context
%%0
rule(modifier(companyFinancials, object, scaleFactor, disclosure,

Modifier),
(cste(basic, Modifier, disclosure, 1))).

rule(modifier(companyFinancials, Object, currency, disclosure,
Modifier),

(attr(Object, company, Intermediatevariablel),
attr(Intermediatevariablel, countryincorp,

Intermediatevariable2),
attr(Intermediatevariable2, officialcurrency, Modifier))).

rule(modifier(companyName, Object, format, disclosure, Modifier),
(cste(basic, Modifier, disclosure, "dsname"))).

rule(modifier(date, object, dateFmt, disclosure, Modifier),
(cste(basic, Modifier, disclosure, "American Style /"))).

rule(modifier(currencyType, Object, curTypeSym, disclosure, Modifier),
(cste(basic, Modifier, disclosure, "3char"))).

9%
%% microsoft context
%%o
rule(modifier(companyFinancials, object, scaleFactor, microsoft,

Modifier),
(cste(basic, Modifier, microsoft, 100))).

100

rule(modifier(companyFinancials, object, cu
Modifier),

(cste(currencyType, Modifier, microsoft,

rrency,

"USD"))).

microsoft,

rule(modifier(companyName, Object, format, microsoft, Modifier),
(cste(basic, Modifier, microsoft, "msft-standard"))).

rule(modifier(date, object, dateFmt, microsoft, Modifier),
(cste(basic, Modifier, microsoft, "American style /"))).

rule(modifier(currencyType, object, curTypeSym, microsoft, Modifier),
(cste(basic, Modifier, microsoft, "3char"))).

%% olsen context
?/%
rule(modifier(companyFinancials, Object, scaleFactor, olsen, Modifier),

(cste(basic, Modifier, olsen, 1))).

rule(modifier(companyFinancials, Object, currency, olsen, Modifier),
(attr(Object, company, Intermediatevariablel),
attr(Intermediatevariablel, countryIncorp,

Intermediatevariable2),
attr(Intermediatevariable2, officialcurrency, Modifier))).

rule(modifier(companyName, object, format, olsen, Modifier),
(cste(basic, Modifier, olsen, "ws-name"))).

rule(modifier(date, object, dateFmt, olsen, Modifier),
(cste(basic, Modifier, olsen, "European Style /"))).

rule(modifier(currencyType, object, curTypeSym, olsen,
(cste(basic, Modifier, olsen, "3char"))).

%% worldscope context

rule(modifier(companyFinancials, object, scaleFactor,
Modifier),

(cste(basic, Modifier, worldscope, 1000))).

rule(modifier(companyFinancials,
Mdfie r)i -Fi

object, currency,

Modifier),

worldscope,

worldscope,
,

(cste(currenCyType, modifier, worldscope, "USD"))).

rule(modifier(companyName, object, format, worldscope, Modifier),
(cste(basic, Modifier, worldscope, "ws-name"))).

rule(modifier(date, object, dateFmt, worldscope, Modifier),
(cste(basic, Modifier, worldscope, "American style /"))).

rule(modifier(currencyType, object, curTypeSym, worldscope, Modifier),
(cste(basic, Modifier, worldscope, "3char"))).

/0%
%% yahoo context

rule(modifier(companyFinancials, Object, scaleFactor, yahoo,
(cste(basic, Modifier, yahoo, 1))).

Modifier),

rule(modifier(companyFinancials, Object, currency, yahoo, Modifier),
(cste(currencyType, Modifier, yahoo, "USD"))).

101

rule(modifier(companyName, object, format, yahoo, Modifier),
(cste(basic, Modifier, yahoo, "ya-name"))).

rule(modifier(date, object, dateFmt, yahoo, Modifier),
(cste(basic, Modifier, yahoo, "American style /"))).

rule(modifier(currencyType, object, curTypesym, yahoo, Modifier),
(cste(basic, Modifier, yahoo, "3char"))).

A.3 Source Descriptions

%% source descriptions for TASC Financial Example
%% generation timestamp: Sun Feb 03 05:58:12 EST 2002

by module: sources-coin-internal
in package: edu.mit.gcms.gmm (graphical metadata management)
programmed by usman y. mobin (mobin@mit.edu)
massachusetts institute of technology

%0/0
%% Source Information
%%5Y
rule (sou rce (camel eon,

web,
'http://context.mit.edu/-coin/demos/wrapper/cgi-bin/prolog-

wrapper.cgi'), (true)).

rule(source(datexform,
web,
'http://context.mit.edu/cgi-bin/qbe-dev/cl

(true)).

rule(source(oracle,
db,
'avocado.mit.edu:gmm@coin/madnickrules'),

rule(source (vi ew,
db,
'ignore'),

ient/datexform.cgi'),

(true)).

(true)).

%% Relations

rule(relation(cameleon,
moneyrates,
ie,
[[bankname, string],
[rate, real],
[yield, real],
[minbalance, real]]
cap([[0, 0, 0, 0]],

I '<', ' >', '<>' '=>'])), (true)).

rul e (rel ati on (camel eon,
ol sen,
ie,
[['Exchanged', string],
['Expressed', string],
['Rate', real],
['Date', string]],
cap([[1, 1, 0, 1]],

['1<', ' >', '<>', ' =<', '=>'])), (true)).

102

0%
/0/0V

%% 5V

'=<' I

rule(relation(cameleon,
quotes,
ie,
[['Cname', str
['Last',
cap([[1,

['I<'I

ing],
string]],
0]],

'=<', '=>'])), (true)).

rule(relation(datexform,
datexform,
1,
[['Datel', string],
['Formati', string],
['Date2', string],
['Format2', string]]
cap([[1, 1, 0, 1], [

'<' ' 1>' ' 1<>'

rul e(rel ation (oracle,
'Currency-map',

[[charcurrency, s
[char2_currency, s
cap([[0, 0]],

[])), (true)).

,
0, 1,I =<I

1, 1]],
(true)).

tring],
tring]]

rule(relation(oracle,
'Currencytypes',
i,
[[country, string],
[currency, string]],
cap([[0, 0]],

[])), (true)).

rule(relation(oracle,
'DiscAF',
ie,
[[company-name, string],
[latest-annual-data, string],
[current-shares-outstanding,
[net-income, integer],
[net-sales, integer],
[total-assets, integer],
[country-of-incorp, string]],
cap([[0, 0, 0, 0, 0, 0, 0]],

[])), (true)).

integer],

rule(relation(oracle,
'DStreamAF',
ie,
[[as-of-date, string],
[name, string],
[total-sales, integer],
[total-extraord-items-pre-tax, integer],
[earned.for-ordinary, integer],
[currency, string]],
cap([[0, 0, 0, 0, 0, 0]],

[])), (true)).

rule(relation(oracle,
'Name-mapDsWs',

[[ds-names, string],

103

[ws-names, string]],
cap([[O, 0]],

[])), (true)).

rul e(rel ation(oracle,
'Name-mapDtDS',
1,
[[dt-names, string],
[ds-names, string]],
cap([[0, 0]],

[])), (true)).

rul e(rel ati on(oracle,
'Name-mapDtWS',
1,
[[dt-names, string],

[ws-names, string]],
cap([[0, 0]],

[])), (true)).

rul e(rel ation(oracle,
name-map-msft-ds,
1,
[[msft-names, string],
[ds-names, string]],
cap([[0, 0]],

[])), (true)).

rul e(rel ati on (oracle,
'TickerLookup2',
1,
[[comp-name, string],
[ticker, string],
[exc, string]],
cap([[0, 0, 0]],

[])), (true)).

rule(rel ation(oracle,
'worldcAF',
ie,
[[company-name, string],
[latest-annual-financial-date, string],
[current.outstanding.shares, integer],
[net-income, integer],
[sales, integer],
[total-assets, integer],
[country-of-incorp, string]],
cap([[0, 0, 0, 0, 0, 0, 0]],

[])), (true)).

rule(relation(oracle,
'worldcAFT',
ie,
[[company-name, string],
[latest-annual-financial-date, string],
[current-outstanding-shares, integer],
[net-income, integer],
[sales, integer],
[total-assets, integer],
[country-of.incorp, string]],
cap([[0, 0, 0, 0, 0, 0, 0]],

[r)), (true)).

rul e(rel ati on (vi ew,

104

'CNames',
e,
[[company-name, string]],
cap([[0]],

[])) , (true)).

rul e(rel ati on(vi ew,
countryIncorp,
e,
[[company-name, string],
[country, string]],
cap([[0, 0]],

[])), (true)).

A.4 Conversion Functions

%% conversion functions for TASC Financial Example
%% generation timestamp: Sun Feb 03 05:52:23 EST 2002

%% by module: conversions-gcms-internal
%% in package: edu.mit.gcms.gmm (graphical metadata management)
%% programmed by usman y. mobin (mobin@mit.edu)
%% massachusetts institute of technology

%%
%% conversion functions for companyFinancials
%% with respect to scaleFactor

rule(cvt(companyFinancials, Object, scaleFactor, TargetContext,
sourceModifiervalue, sourcevalue, TargetModifiervalue,
Targetvalue),

(Ratio is SourceModifiervalue / TargetModifiervalue,
Targetvalue is Sourcevalue * Ratio)).

%% conversion functions for companyFinancials
%% with respect to currency
%%
rule(cvt(companyFinancials, Object, currency, TargetContext,

SourceModifiervalue, sourcevalue, TargetModifiervalue,
Targetvalue),

(attr(object, fyEnding, FyDate),
value(FyDate, TargetContext, DateValue),
olsen-p(FC, TC, Rate, TxnDate),
value(FC, TargetContext, SourceModifiervalue),
value(Tc, TargetContext, TargetModifiervalue),
value(TxnDate, TargetContext, DateValue),
value(Rate, TargetContext, RV),
Targetvalue is sourcevalue * RV)).

%% conversion functions for companyName
%% with respect to format
%%5Y
rule(cvt(companyName, Object, format, TargetContext,

sourceModifiervalue, sourcevalue, TargetModifiervalue,
Targetvalue),

(name-map(sourcevalue, sourceModifiervalue,
TargetModifiervalue, Targetvalue))).

%% conversion functions for date
%% with respect to dateFmt

o%
rule(cvt(date, Object, dateFmt, TargetContext,

105

SourceModi fi erval ue, S
Targetvalue),

(datexform(sourcevalue,
TargetModifiervalue))).

TargetModifiervalue,

SourceModi fi erval ue, Targetvalue,

9/0/1

%% conversion functions for currencyType
%% with respect to curTypeSym
%%y
rule(cvt(currencyType, object, curTypesym, TargetContext,

SourceModifiervalue, Sourcevalue, TargetModifiervalue,
Targetvalue),

(sourceModifiervalue = "3char",
TargetModifiervalue = "2char",
'currency-map'(sourcevalue, Targetvalue))).

rule(cvt(currencyType, object, curTypesym, TargetContext,
SourceModifiervalue, Sourcevalue, TargetModifiervalue,
Targetvalue),

(SourceModifiervalue = "2char",
TargetModifiervalue = "3char",
'currency-map'(Targetvalue, sourcevalue))).

rule(currentDate(Date),
({date(D),
substring(D, 5, 3, Month),
substring(D, 9, 2, Day),
substring(D, 23, 2, Year)},
month(Month, NumMonth),

{concat-string([NumMonth, /, Day, /,

01)
02)
03)
04)
05)
06)
07)
08)
09)
10)
11)
12)

rule(month("Jan",
rule(month(" Feb",
rule (month ("Mar",
rule (month ("Apr",
rule(month("May",
rule (month ("Jun",
rule(month("Jul",
rule(month("Aug",
rule(month("Sep",
rule (month ("Oct"
rule(month(" Nov",
rule (month ("Dec",

Year] ,Date)})).

(true)).
(true)).
(true)).
(true)).
(true)).
(true)).
(true)).
(true)).
(true)).
(true)).
(true)).
(true)).

rule(name-map(val, "ds-name", "ws-name

rule(name-map(val, "ws-name", "ds-nam
val))).

rule(name-map(val, "dt-name", "ds-name

rule(name-map(val, "ds-name", "dt-nam
val))).

rule(name-map(val, "dt-name", "ws-name

rule(name-map(val, "ws-name", "dt-nam
val))).

rule(name-map(val], "ws-name", "ya-name",
_8071))).

rule(name-map(val, "ya-name", "ws-name",
_8115))).

rule(name-map(val, "dt-name", "ya-name",
'TickerLookup2'(Z, v, _8162))).

rule(name-map(val, "ya-name", "dt-name",
_8218), 'Name-mapDtWs'(V, Z))).

rule(name-map(val, "ds-name", "ya-name",
'TickerLookup2'(Z, v, -8264))).

",
el

e",l

e",l

v), ('Name-mapDsWs'(val,

v), ('Name-mapDsWs'(v,

v), ('Name-map-DtDS'(val,

v), ('Name-mapDtDs'(v,

v), ('Name-mapDtWS'(val,

v), ('Name-mapDtWs'(v,

('TickerLookup2'(val, V,

v), ('TickerLookup2'(v,

v), ('Name-mapDtWs'(Val,

v), ('TickerLookup2'(Z,

v), ('Name-mapDSWs'(Val,

Val,

Z),

Val,

106

ourcevalue,

rule(name-map(val, "ya-name", "ds-name", V), ('TickerLookup2'(z, val,
8320), 'Name-mapDsWs'(V, Z))).

rule(name-map(val, "msft-standard", "ds-name", V),
(name-map-msft-ds(val, v))).

rule(name-map(val, "ds-name", "msft-standard", v), (name-map-msft-ds(v,
val))).

rule(currentDatep(
skolem(date, v, worldscope, 1,

currentDate(v))),
(currentDate(v))).

rule('CNames'(Name),
('DiscAF'(Name, -, 8395, _8396, 8397, _8398, _8399))).

rule('CNames'(Name),
('worldcAF'(Name, 8429, _8430, _8431, 8432, _8433, _8434))).

rule('CNames'(Name),
('DStreamAF'(_8462, Name, 8464, _8465, 8466, _8467))).

A.5 Elevation Rules

%% elevation axioms for TASC Financial Example
%% generation timestamp: sun Feb 03 05:59:25 EST 2002

%% by module: elevations-gcms-internal
%% in package: edu.mit.gcms.gmm (graphical metadata management)
%% programmed by usman y. mobin (mobin@mit.edu)
%% massachusetts institute of technology

rule(
olsen-p(

skolem(currencyType, C1, olsen, 1,
olsen(C1, C2, C3, c4)),

skolem(currencyType, C2, olsen, 2,
olsen(c1, C2, c3, c4)),

skolem(exchangeRate, c3, olsen, 3,
olsen(C1, C2, C3, c4)),

skolem(date, C4, olsen, 4,
olsen(C1, C2, C3, c4))),

(olsen(cl, C2, C3, c4))).

rule(
quotesp(

skolem(companyName, C1, yahoo, 1,
quotes(cl, C2)),

skolem(basic, C2, yahoo, 2,
quotes(cl, c2))),

(quotes(c1, C2))).

rule(
'Currency-map-p'(

skolem(basic, Cl, disclosure, 1,
'Currency-map'(Cl, c2)),

skolem(basic, C2, disclosure, 2,
'Currency-map'(c1, C2))),

('currency-map'(cl, C2))).

rule(

107

'Currencytypes-p'(
skolem(countryName, C1, disclosure, 1,

'Currencytypes'(Ci, C2)),
skolem(currencyType, C2, disclosure, 2,

'Currencytypes'(Ci, C2))),
('Currencytypes'(Cl, C2))).

rule(
'DiscAF-p'(

skolem(companyName, C1, disclosure, 1,
'DisCAF'(C1, C2, C3, C4, c5, c6, C7)),

skolem(null, C2, disclosure, 2,
'DiscAF'(Cl, C2, C3, C4, C5, C6, C7)),

skolem(basic, C3, disclosure, 3,
'DiscAF'(Cl, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C4, disclosure, 4,
'DiscAF'(C1, C2, C3, C4, C5, C6, C7)),

skolem(basic, C5, disclosure, 5,
'DiscAF'(Cl, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C6, disclosure, 6,
'DiscAF'(C1, C2, C3, C4, C5, c6, C7)),

skolem(companyName, C7, disclosure, 7,
'DiscAF'(C1, C2, C3, C4, CS, C6, C7))),

('DiscAF'(C1, C2, C3, C4, C5, C6, C7))).

rule(
'DStreamAF-p'(

skolem(date, C1, datastream, 1,
'DStreamAF'(C1, C2, C3, C4, C5, C6)),

skolem(companyName, C2, datastream, 2,
'DStreamAF'(C1, C2, C3, C4, C5, C6)),

skolem(companyFinancials, C3, datastream, 3,
'DStreamAF'(C1, C2, C3, C4, C5, C6)),

skolem(companyFinancials, C4, datastream, 4,
'DStreamAF'(C1, C2, C3, C4, C5, C6)),

skolem(companyFinancials, C5, datastream, 5,
'DStreamAF'(C1, C2, C3, C4, C5, C6)),

skolem(currencyType, C6, datastream, 6,
'DStreamAF'(C1, c2, C3, C4, C5, c6))),

('DStreamAF'(Cl, C2, C3, C4, C5, c6))).

rule(
'Name-mapDSWS-p'(

skolem(basic, C1, disclosure, 1,
'Name-mapDsWs'(Cl, C2)),

skolem(basic, C2, disclosure, 2,
'Name-mapDSWs'(Cl, C2))),

('Name-mapDSWs'(Cl, C2))).

rule(
'Name-mapDtDS-p'(

skolem(basic, C1, datastream, 1,
'Name-mapDtDS'(Cl, C2)),

skolem(basic, C2, datastream, 2,
'Name-mapDtDS'(Ci, C2))),

('Name-mapDtDS'(C1, C2))).

rule(
'Name-mapDtWS-p'(

skolem(basic, C1, datastream, 1,
'Name-mapDtWS'(Cl, C2)),

skolem(basic, C2, datastream, 2,
'Name-mapDtWs'(C1, C2))),

('Name-mapDtWs'(C1, C2))).

108

rule(
name-map-msft-dsp(

skolem(basic, C1, microsoft, 1,
name-map-msft-ds(C1, C2)),

skolem(basic, C2, microsoft, 2,
name-map-msft-ds(C1, C2))),

(name-map-msft-ds(C1, C2))).

rule(
'Ti ckerLookup2-p'(

skolem(basic, C1, worldscope, 1,
'TickerLookup2'(C1, C2, c3)),

skolem(basic, C2, worldscope, 2,
'TickerLookup2'(C1, C2, C3)),

skolem(basic, C3, worldscope, 3,
'TickerLookup2'(C1, C2, C3))),

('TickerLookup2'(C1, C2, C3))).

rule(
'worldcAF-p'(

skolem(companyName, C1, worldscope, 1,
'worldcAF'(Cl, C2, C3, C4, C5, C6, C7)),

skolem(date, C2, worldscope, 2,
'worldcAF'(Cl, C2, C3, C4, C5, C6, C7)),

skolem(basic, C3, worldscope, 3,
'worldcAF'(Cl, C2, C3, C4, C5, c6, C7)),

skolem(companyFinancials, C4, worldscope, 4,
'worldcAF'(C1, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C5, worldscope, 5,
'worldcAF'(C1, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C6, worldscope, 6,
'worldcAF'(C1, C2, C3, C4, C5, C6, C7)),

skolem(countryName, C7, worldscope, 7,
'worldcAF'(C1, C2, C3, C4, C5, C6, C7))),

('worldcAF'(C1, C2, C3, C4, C5, C6, C7))).

rule(
'worldcAFTp'(

skolem(companyName, C1, worldscope, 1,
'worldcAFT'(C1, C2, C3, C4, C5, C6, C7)),

skolem(date, C2, worldscope, 2,
'worldcAFT'(C1, C2, C3, C4, C5, C6, C7)),

skolem(basic, C3, worldscope, 3,
'worldcAFT'(C1, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C4, worldscope, 4,
'worldcAFT'(C1, C2, C3, C4, C5, C6, C7)),

skolem(companyFinancials, C5, worldscope, 5,
'worldcAFT'(C1, c2, C3, C4, C5, c6, C7)),

skolem(companyFinancials, C6, worldscope, 6,
'WorldcAFT'(C1, C2, C3, C4, C5, C6, C7)),

skolem(countryName, C7, worldscope, 7,
'WorldcAFT'(C1, C2, C3, C4, C5, C6, C7))),

('worldcAFT'(C1, C2, C3, C4, C5, C6, c7))).

rule(
'CNames-p'(

skolem(companyName, C1, disclosure, 1,
'CNames'(Cl))),

('CNames'(Ci))).

rule(attr(x, countryIncorp, Y),
('DiscAF-p'(X, _4981, 4982, _4983, 4984, 4985, Y))).

109

rule(attr(x, officialcurrency, Y),
('currencytypes-p'(Z, Y),
'DiscAF-p'(_5041, 5042, 5043, 5044, 5045, 5046,
value(x, disclosure, U),
value(z, disclosure, U))).

rule(attr(x, company, Y),
('DiscAF-p'(Y, 5085, 5086, x, 5088, 5089,

rule(attr(x, fyEnding, Y),
('DiscAF-p'(_5125, Y, 5127, X, 5129, 5130,

rule(attr(x, company, Y),
('DiscAF-p'(Y, 5167, 5168, _5169, 5170, x,

rule(attr(x, fyEnding, Y),
('DiscAF-p'(_5207, Y, _5209, _5210, _5211, X,

_5090))).

_5131))).

_5172))).

_5213))).

rule(attr(x, countryincorp, '

('worldcAFp'(X, 5249,

rule(attr(x, company, Y),
('worldcAF-p'(Y, 5290,

rule(attr(x, fyEnding, Y),
('worldcAF-p'(_5330, Y,

rule(attr(x, company, Y),
('worldAF-p'(Y, 5372,

rule(attr(x, fyEnding, Y),
('worldcAF-p'(_5412, Y,

rule(attr(x, company, Y),
('worldcAF-p'(Y, 5454,

rule(attr(x, fyEnding, Y),
('WorldcAF-p'(_5494, Y,

5251, 5252, _5253,

_5291, X, _5293, _5294, _5295))).

_5332, X, 5334, _5335, _5336))).

_5373, _5374, X, _5376, _5377))).

_5414, _5415, X, 5417, _5418))).

_5455, _5456, _5457, X, _5459))).

5496, -5497, _5498, X, _5500))).

rule(attr(x, officialcurrency, Y),
('currencytypes-p'(Z, Y),
'worldcAF-p'(_5555, 5556, _5557, _5558, _5559, _5560, x),
value(x, worldscope, U),
value(z, worldscope, U))).

rule(attr(x, countryIncorp, Y),
('worldcAFTp'(X, _5599, _5600, _5601, _5602, _5603,

rule(attr(x, company, Y),
('WorldcAFT-p'(Y, _5640, _5641, x, _5643, _5644, _5645))).

rule(attr(x, fyEnding, Y),
('worldcAFTp'(_5686, 5687, 5688, X, _5690, _5691, _5692),
currentDate-p(Y))).

rule(attr(x, company, Y),
('worldcAFT-p'(Y, _5727, _5728, _5729, x, _5731, _5732))).

rule(attr(X, fyEnding, Y),
('worldcAFTp'(_5773, _5774, 5775, 5776,
currentDate-p(Y))).

rule(
attr(x, company, Y),

X, 5778, _5779),

110

Y))).-

('worldcAFTp'(Y, 5814, 5815, 5816, 5817, X, _5819))).

rule(
attr(x, fyEnding, Y),
('WorldcAFT-p'(_5860, 5861, -5862, _5863, 5864, X, 5866),
currentDate-p(Y))).

rule(
attr(x, officialcurrency, Y),
('currencytypes-p'(z, Y),
'worldcAFTp'(_5920, _5921, -5922,
value(X, worldscope, U),
value(z, worldscope, U))).

_5923, 5924, _5925, x),

rule(attr(x, company, Y),
('DstreamAF-p'(_5963, Y, X, 5966, _5967,

rule(attr(X, fyEnding, Y),
('DStreamAF-p'(Y, _6004, X, _6006, _6007, _6008))).

rule(attr(X, company, Y),
('DStreamAF-p'(_6043, Y, 6045, X, 6047, _6048))).

rule(attr(X, fyEnding, Y),
('DStreamAF-p'(Y, _6084, 6085, X, _6087, _6088))).

rule(attr(x, company, Y),
('DStreamAF-p'(_6123, Y, 6125, 6126, x, -6128))).

rule(attr(x, fyEnding, Y),
('DStreamAF-p'(Y, _6164, 6165, 6166, x, _6168))).

rule(attr(x, countryIncorp, Y),
('DStreamAF-p'(_6212, x, 6214, _6215, 6216, z),
attr(Y, officialCurrency, z))).

rule(attr(x, officialcurrency, Y2),
('currencytypes-p'(X, Y1),
'DStreamAFp'(_6271, _6272, 6273, _6274, _6275, Y2),
value(Y1, datastream, Y),
value(Y2, datastream, Y))).

rule(attr(x, txnDate, Y),
(olsen-p(_6313, 6314, x, Y))).

rule(attr(x, fromcur, Y),
(olsen-p(_6351, Y, X, _6354))).

rule(attr(x, tocur, Y),
(olsen-p(Y, 6390, X, _6392))).

rule(attr(x, countryincorp, Y),
(quotes-p(x, _6457),
'worldcAF-p'(c, _6448, 6449, 6450, -6451, _6452, Y),
value(X, yahoo, Y1),
value(C, yahoo, Y1))).

A.6 Integrity Constraints

%% integrity constraints for TASC Financial Example
%% generation timestamp: Sun Feb 03 06:00:30 EST 2002
%% by module: integrity-constraint-coin-internal

111

_5968))).

%% in package: edu.mit.gcms.gmm (graphical metadata management)
%% programmed by usman y. mobin (mobin@mit.edu)
%% massachusetts institute of technology

icloracle-currencytypes @ '?''Currencytypes'(A, B1),
'?''Currencytypes'(A, B2)
==> B1 = B2.

ic2_oracle-currencytypes @ '?''Currencytypes'(Al, B),
'?''Currencytypes'(A2, B)
==> Al = A2.

ic3_oracle-currency-map @ '?''Currency-map'(A, Bi),
'?''Currency-map'(A, B2)
==> B1 = B2.

ic4_oracle-currency-map @ '?''Currency-map'(Al, B),
'?''Currency-map'(A2, B)
==> Al = A2.

%% olsen(Exchanged, Expressed, Rate, Date).
%%
ic5_cameleon-olsen @ '?'olsen(A, B, C1, D),

'?'olsen(A, B, C2, D)
==> C1 = C2.

%%
%% quotes(Cname, Last).
%oO
ic6_cameleon-quotes @ '?'quotes(A, Bi),

'?'quotes(A, B2)
==> B1 = B2.

%%
%% DiscAF(company-name, latest-annual-data, current-shares-outstanding,

net-income,
%%0 net-sales, total-assets, country-of-incorp).
%%
ic7_oracle-discaf @ '?''DiscAF'(A, B1, C1, D1, El, F1, Gi),

'?''DiscAF'(A, B2, C2, D2, E2, F2, G2)
==> B1 = B2, Cl = c2, D1 = D2, El = E2, F1 = F2, G1 = G2.

worldcAF(company-name, latest
current-outstanding-shares, net-income,

_annual-financial-date,

%% sales, total-assets, country-of-incorp).
%%
ic8_oracle-worldcaf @ '?''worldcAF'(A, B, C1, D1, El, F1, G1),

'?''WorldcAF'(A, B, C2, D2, E2, F2, G2)
==>Cl = C2, D1 = D2, El = E2, F1 = F2, G1 = G2.

%%
%% worldcAFT(company-name, latest-annual-financial-date,

current-outstanding-shares, net-income,
%%TO sales, total-assets, country-of-incorp).

ic9_oracle-worldcaft @ '?''worldcAFT'(A, B, C1, D1, El, F1, Gi),
'?''worldcAFT'(A, B, C2, D2, E2, F2, G2)
==> Cl = C2, D1 = D2, El = E2, F1 = F2, G1 = G2.

iclOoracle-name-map-ds-ws @ '?''Namemap_DS_ws'(A, Bl),
'?''NamemapDsWs'(A, B2)

==> B1 = B2.

112

%0/0
%%0/

iclloracle-name-map-ds-ws @ '?''Name-mapDSWS'(Al, B),
'?''Name-map-DsWs'(A2, B)
==> Al = A2.

%% TickerLookup2(comp-name, ticker, exc).

icl2_oracle-ticker-lookup2 @ '?''TickerLookup2'(A, B1, Cl),
'?''TickerLookup2'(A, B2, C2)
==> B1 = B2, ci = c2.

icl3_oracle-ticker-lookup2 @ '?''TickerLookup2'(Al, B, Ci),
'?''TickerLookup2'(A2, B, C2)
==> Al = A2, ci = C2.

ici4_oracle-name-map-dt-ds @ '?''Name-mapDtDS'(A, Bl),
'?''Name-mapDt-DS'(A, B2)
==> B1 = B2.

icl5_oracle-name-map-dt-ds @ '?''Name-mapDtDs'(Al, B),
'?''Name-mapDtDS'(A2, B)
==> Al = A2.

icl6_oracle-name-map-dt-ws @ '?''Name-mapDtWs'(A, B1),
'?''Name-mapDtWS'(A, B2)
==> B1 = B2.

icl7_oracle-name-map-dt-ws @ '?''Name-mapDtWs'(Al, B),
'?''Name-mapDtWS'(A2, B)
==> Al = A2.

%
%% DStreamAF(as-of-date, name, totalsales,

total-extraord-items-pre-tax,
%%?/ earned-for-ordinary, currency).

ic18_oracle-dstreamaf @ '?''DStreamAF'(A, B, C1, D1, El, Fl),
'?''DStreamAF'(A, B, C2, D2, E2, F2)
==> Cl = C2, D1 = D2, El = E2, F1 = F2.

icl9_cameleon-moneyrates @ '?'moneyrates(A, B1, C1, Dl),
'?'moneyrates(A, B2, c2, D2)
==> B1 = B2, Cl = C2, D1 = D2.

113

