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ABSTRACT

In this thesis we report two experimental phenomena which shed new light onto the behavior of
excitons in amorphous organic thin films. First, we report a controllable shift in the
photoluminescence of the red laser dye DCM2 from 563 nm to 605 nm in thin films of
polystyrene (PS) and camphoric anhydride (CA) by modification of the film CA concentration.
Measurements of the film electronic susceptibility, F, reveal that increasing the CA concentration
markedly increases a, and we show that the spectral shift in DCM2 can be attributed to a simple
solvation phenomenon, as observed for many years in liquids. We find that such "solid state
solvation" should operate in the entire class of amorphous organic solids, and play a major role
in determining absorption and emission spectra. The potential effect of permanent, internal local
fields is also described.

Second, we report the experimental measurement of dynamic spectral red shifts in the
photoluminescence of thin films of Aluminium Tris(8-hydroxylquinoline) (Alq 3) doped with the
red laser dye DCM2. These spectral shifts (in terms of the difference between final and initial
peak energies) have an average magnitude of- 0.08 eV over a time window of~ 4 ns, for
dopings ranging between 0.5% and 4.7%. We show that this previously unreported phenomenon
can be attributed to the diffusion of excitons through the film by means of Forster energy transfer
between DCM2 molecules. We present a theoretical model detailing this mechanism and a
Monte-Carlo simulation of the process. We find that the simulation results are consistent with
the experimentally observed data, and that the technique provides a sensitive probe of the Forster
radius and the excitonic density of states. The impact on these results of doping density
variations, which are common in doped, small molecule organic thin films, is also described.

Thesis Supervisor: Vladimir Bulovid
Title: Professor of Electrical Engineering and Computer Science
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SYMBOL LEGEND

V an electrical potential operator
H a Hamiltonian
E energy associated with a particular Hamiltonian
T) wavefunction solution to Time Dependant Schrodinger Equation (TDSE)

v) spatial wavefunction solution to Time Independant Schrodinger Equation (TISE)

0) temporal wavefunction solution associated with TISE

V,, electron-electron interaction potential in molecular Hamiltonian

V,, nucleus-nucleus interaction potential in molecular Hamiltonian

V,, electron-nucleus interaction potential in molecular Hamiltonian

He electronic Hamiltonian under Born-Oppenheimer approximation

Hnuci nuclear Hamiltonian under Born-Oppenheimer approximation

Eel electronic energy under Born-Oppenheimer approximation

Vye) electronic wavefunction under Born-Oppenheimer approximation

Vnuc) electronic wavefunction under Born-Oppenheimer approximation

G) ground state, equilibrium molecular wavefunction

E) lowest energy exciton state, equilibrium molecular wavefunction

g) ground state, equilibrium electronic wavefunction

e) lowest energy excited state, equilibrium electronic wavefunction

f9 a generic spin up wavefunction
U a generic spin down wavefunction
Co an angular frequency (in radians/second)
v an angular frequency (in hertz)

p a dipole moment (in debyes)

FTa molecular absorption transition rate (in 1/second)

F7 molecular emission transition rate (in 1/second)

C bulk electronic susceptibility (no units in cgs)

P an electric field
p a density of states

P an electronic potential function
c speed of light
FF Forster transition rate

FD Dexter transition rate

SD normalized donor emission spectrum

UA normalized acceptor absorption cross section (in Cm2)
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RF Forster radius

RF effective Forster radius

q/ radiative quantum yield (a.k.a. radiative quantum efficiency)

Trad radiative lifetime

v observed radiative lifetime
AE,01, energy shift due to solvation

AEtaic energy shift due to static fields
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1. INTRODUCTION AND BACKGROUND

1.1 Introduction

Over the last two decades interest in the optoelectronic properties of amorphous organic

thin films has risen dramatically, due to their potential application in devices such as light

emitting diodes, solar cells, photodetectors, and lasers [1-4]. As a result, it has become

increasingly important that we understand the physics underlying optoelectronic processes in

such systems. For organic materials in this field, the exciton has remained the fundamental

optoelectronic excitation of interest, and in this thesis we further develop the theory of excitons

in amorphous organic solids.

In the context of this paper, an exciton describes a molecular excitation in which a single

electron is displaced from one of the orbitals occupied in the ground state into one of the orbitals

unoccupied in the ground state. An exciton can be equivalently viewed as a bound electron-hole

pair (where the hole refers to the electronic state just vacated by the excited electron). There are

many possible excitons, depending on which molecular orbitals are occupied by the excited

electron and hole respectively reside. However, in the vast majority of cases only the lowest

energy exciton is of importance. The formation of this exciton involves the excitation of an

electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied

molecular orbital (LUMO).

Such excitons can be formed by the absorption of a photon (of sufficient energy) or by

the meeting of an electron and a hole on the same molecule. In this thesis we are only concerned

with the former formation process, which we refer to as optical excitation. (The latter is referred

to as electrical excitation.) Once the exciton has formed, there are a number of possibilities.

First, the exciton can relax emissively, in which case it emits a photon with energy

corresponding to the exciton energy. Second, the exciton can relax non-emissively, in which

case it transfers its energy into phonons (and locally heats the solid). Third, the exciton can

dissociate, in which case an electron (hole) will be left behind on that molecule and a hole

(electron) created on some nearby molecule. Finally, the exciton can move to another molecule,
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by some kind of energy transfer mechanism. All of these processes contribute to the behavior of

existing organic optoelectronic devices.

Therefore, to understand how such devices operate, we must understand nature of

excitons in amorphous organic solids: we must know how they are created, how they behave

over the course of their lifetime, and how they are destroyed. At first this might seem like a

simple problem. We could simply begin with first principles and describe the problem in terms

of the appropriate Hamiltonian for the molecule in question and all the surrounding molecules

with which it interacts. Then we could solve this Hamiltonian to determine the desired

molecular states, and since the original Hamiltonian would have in principle contained all the

physics, the problem at that point, would be done. With the relevant molecular states

determined, one could compute any experimentally measurable property that one desired.

Unfortunately, when dealing with amorphous molecular solids we are faced with a

situation where strong intermolecular interactions are present-after all, it is due to such

interactions that the material forms a condensed phase in the first place-but no long range order

exists. Because of the former, the Hamiltonian must include terms dealing with a large number

of molecules, but because of the latter, one can not invoke any of the group theory (developed by

the solid state physics community) used to simplify computations of large numbers of interacting

atoms. As a result, in the absence of serious approximations, first principles treatments of this

nature are not (yet) computationally feasible.

One need not be able to perform ab initio calculations, however, to have a useful

understanding of excitons in amorphous organic solids. Indeed, resorting to such calculations

exclusively could obscure the essential physical processes involved. Rather we could start by

first considering the behavior of isolated molecules and then attempting to identify the specific

ways in which the properties of these isolated molecules would be altered in the solid state. In

this thesis we present experimental results which allow us to better understand the behavior of

excitons in amorphous organic solids, providing a starting point for the development of a general

theory applicable to all disordered molecular solids.

For the remainder of this section we review the basic physics of excitons. In Section 2

we turn to the topic of local field effects on exciton energies. We review the physics underlying

such effects, and also present experiment results that demonstrate the phenomenon of solid state
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solvation, one of the main mechanisms by which exciton energies are modified in the solid state.

In Section 3 we address the process of Forster energy transfer, by which excitons can diffuse

through a solid. We present experimental results which measure the dynamics of this process,

along with a detailed simulation of the phenomenon. By varying the simulation parameters to

properly fit the data, we can probe such critical properties of our materials as the Forster radius

and the excitonic density of states. Finally, in Section 4, we review our findings and identify

how this work can be extended to yield yet further insights into exciton behavior in amorphous

organic solids.

1.2 The Molecular State of an Exciton

We begin by describing excitons on isolated molecules, which corresponds practically to

the case of molecules in the gas phase. For an isolated molecule, fairly sophisticated ab initio

computations are possible with modem techniques, and it is useful to begin from first principles.

We begin with a single particle system, for which the general Hamiltonian is simply,

H = h2 2+ 6H=--V 2 + VF, t) (1)
2m

where m is the particle mass, and V(F, t) is the potential function operating on the particle. (See

e.g. [5,6] for good reviews of quantum mechanics.) To obtain the set of wavefunctions, 'IT)},
describing the allowed states of the system, we solve the Time-Dependant Schr6dinger Equation

(TDSE),

ih aIT) = HIT)= h2 V2 +V(~t) IT). (2)
at 2m

The ( )) in principle provide us with all the physics of the system. Their squared magnitude

(i.e. IT1 ) describes the probability distribution for finding that particle at any given point in

space. With the 'P)} we can also obtain any observable (i.e. measureable quantity) o from,

0 = JW*0Td31r <> (JOpI)
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where 0 is the operator associated with the desired observable. In general, the T)} are all

functions of both space and time.

Even when considering a single atom (never mind the collection of atoms comprising a

molecule), the TDSE presents a mathematically intractable problem, leading us to make an

immediate simplification. Instead of considering a fully time-dependant problem, we instead

consider only a time-independent one; in other words, we only consider the case of

V(F, t) = V(F). This simplification allows us to separate the time and space dependant parts of

the Hamiltonian in the following way. First, we assume the following form for IT(F, t)),

I T(F, t)) = (F))l6(t))

which when plugged into equation (2) yields,

ihI V) a1) =_ - 1 )V 21V)+ V (F)0)1 V)at 2m

If we then divide by I v)I6) we get,

ih I B) a _v2 p+ V(j).
|at 2m yI)

Since the left side is only dependant on time and the right side is only dependant on space,

varying time can only vary the left side, while varying space can only vary the right side.

Therefore, for the left and right to remain equal, they must be constant. This constant is in fact

the energy of the system, and we denote it by E. Setting each side separately equal to E yields

the following two differential equations,

ih- a0) = E|o)
at

h2 V2+V(F)] /)= EV (3)
2m_

the second of which is known as the Time-Independent Schr6dinger equation (TISE). The

associated time-independent Hamiltonian is trivially extracted from (3),

H = _ V2 +V
2m
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From the TISE, we can make the leap to a many particle problem, and write down the full

Hamiltonian for the general molecular system:

N h 2  m h 2
H =-Z V +- V+V +V Vn(5)

j=1 2m A=1 2mA

where

2 N N 1

4 i=1 >> r -F r

2 MM
__ eEj ZAZ

4ze0 A=1 A>B RA RB

2 N M Z
Ve e X1ZA .

47EO i=1 A=1 r - RA

In (5), the first term describes the kinetic energy of the electrons, the second term describes the

kinetic energy of the nuclei, the third term describes the electronic coulomb repulsion, the fourth

term describes the nuclear coulomb repulsion, and the final term describes the electron-nucleus

coulomb attraction. (See e.g. [7,8] for treatments of the molecular quantum mechanical

problem.) This general expression describes a system of N electrons (each with mass me) and M

nuclei (where the A'th nucleus has mass mA). In such a system, there are N+M different

particles, and therefore there are N+M separate coordinates; in other words,

I) = , , F 1.. I ' M ,)) where in this construction, the N F coordinates are associated

with the electrons, and the M f coordinates are associated with nuclei. The gradient operators

in (5) operate only on the coordinate associated with their subscript, such that V2 operates on F

and V2 operates on RA. As explained above, we have assumed that the potential function is not

time-dependant in obtaining the TISE. Since in the molecular problem V is determined by the

positions of the various particles in the system then the solutions to (5) clearly describe the states

of the molecule in which all the particles in the system are in equilibrium. If they were not in

equilibrium, they would not be static, and therefore V would be time-dependant, which is

explicitly forbidden in a time-independent treatment.
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The TDSE in (5) is still too complex to treat exactly for all but the simplest systems, and

we now apply the so-called Born-Oppenheimer approximation to proceed. In applying this

approximation, we argue that since the nuclei are so much heavier than the electrons, they move

much more slowly. Therefore, we can think of the electrons as being capable of instantaneously

responding to changes in the nuclear positions. As a result, we can solve the electronic part of

our Hamiltonian under the assumption that the nuclei are stationary. Within this assumption, the

term in (5) due to the kinetic energy of the nuclei is zero, and V, is a constant (so we can

temporarily drop it too, since it simply shifts E without affecting the I q)). This leaves us with

an electronic Hamiltonian of,
N 2

Hel =-X V +Ve +V. (6)
i_ 2me

and the associated eigenvalue problem,

He I Vlel) =EeFei 'l)

To solve this now purely electronic problem we need only deal directly with the electronic

coordinates r . The I Vel) still have an implicit dependence on the nuclear coordinates since

changing the nuclear coordinates changes Heil but the differential equation does not need to treat

these coordinates as free variables, making the problem mathematically much simpler.

Of course, the nuclear problem has not disappeared. But we note that if the electrons are

assumed to be moving much faster than the nuclei, then the nuclei only see their average

behavior, and we get a nuclear Hamiltonian of,

M h2  
2

Hnucl = -1 VA +Vnn + (He,
A=1 2m A

M 2

_j V 2 V +E .
= 2 A n + V Rl + Ee ,R, (7)

A1 2

with the associated eigenvalue problem,

1
Hnul yI nuci) = VYnuci)

As a result, under the Born-Oppenheimer approximation, the differential equations dealing with

the electronic and nuclear coordinates are decoupled. We find the solution by first solving the
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electronic problem, which gives us the { ig,)} and {E,) that describe the various physically

allowed electronic states. Then we plug into (7) the E,, corresponding to the electronic state of

interest and solve the nuclear problem. When solving the nuclear problem, V," and

Et ,- --, ) can be thought of as together comprising the potential within which the nuclei

reside. The total wavefunction, I v), in the Born-Oppenheimer approximation is just I Ynuc )I V).

The most fundamental molecular state is the equilibrium ground state, which is the state

with the lowest total energy. This state also serves as our starting point in discussing excitations,

for it is in reference to this ground state that our excitations are defined. Electronic excited states

for which there is no change in the number of particles in the system are called excitons, and as

discussed above, we are interested in the lowest energy such excitation. We can identify it by

finding the state with the second lowest value for the electronic energy, E,,, and the associated

IVe,). Since the specification of an exciton only defines the electronic arrangement of the

molecules, any choice of I Vnuc) is valid, so long as IV,,) still describes the state with the second

lowest value for the E,. Strictly speaking, which electronic state corresponds to the ground and

first excited state need not be unique to all nuclear positions, and therefore to all I Vnud ).

However, in this thesis, we can assume that the ground and first excited electronic states always

correspond to the same states for all physically reasonable I Vnud). As a result, we will not worry

about I Vnuc) when defining the electronic component of the exciton state.

To set up the discussion that follows, we identify the equilibrium molecular ground state

by IG) and our equilibrium molecular exciton state by IE). It is also useful to identify the I V,)

associated with each of these states as Ig) and Ie) respectively. The electronic wavefunctions

are called molecular orbitals in the common vernacular, and Ig) and Ie) are simply the HOMO

and LUMO levels alluded to earlier.

Before leaving the quantum mechanical development of our molecular electronic states

behind for good, we turn to one final issue: spin. In the above, no explicit mention of spin was

made. However, we know that the molecular orbitals must include a spin component if they are
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to adequately describe a full electronic state. So we say that the V ))0 are really spin orbitals

and have either up or down spin character. Furthermore, we know that each electronic level can

hold two electrons, one with spin up and one with spin down. As we will see presently, spin

plays an important role in the description of an exciton.

In the vast majority of cases, we are dealing with a molecule in which all of the electrons

are paired in the ground state. (Molecules with this property are sometimes referred to as

"closed.") In this case, the excitonic state includes two unpaired electrons, one in the HOMO

and one in the LUMO. The importance of this is that in a system of two particles with spin, we

are constrained by quantum mechanics to form states with total spin 0 or 1. If we represent a

spin-up state by P and a spin-down state by U, and denote our two particles as 1 and 2

respectively, we find that we can get three orthogonal total spin 1 states, given by,

f (1)f (2)

1 9(1) 4(2)+ (1)9 (2))

U (1) U (2)

and one orthogonal total spin 0 state, given by,

1 ( (1) U (2)- 4 (1)9 (2)).

These four orthogonal functions completely define the two-particle spin-space. Because states

made up of a combination of both the spin 0 and spin 1 states are disallowed (because they

would have a total spin between 0 and 1), we realize that our exciton is either in the single spin 0

state, or it is comprised of some combination of the spin 1 states. These two types of excitons

are fundamentally different, and in accordance with their respective multiplicities, the total spin

1 excitons are referred to as triplets, and the total spin 0 excitons as singlets.

In some cases, the spin of the electrons in a molecule are strongly coupled to other

angular momenta in the molecule (usually their own orbital angular momentum, but sometimes

that of the surrounding nuclei), and the total spin ceases to be a good quantum number. Then

one must consider the fully coupled system and look at the total angular momentum instead. In

such cases, excitons can be formed with both singlet and triplet character.
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1.3 Exciton Creation and Annihilation - State Energies

We have laid down the basic quantum mechanical groundwork that we require to

understand the essential physics of excitons, and now turn to the task of determining the creation

and annihilation energies of an exciton. Before we do this, we must first differentiate between

excitons formed by optical and electrical excitations. When an exciton is formed by the

absorption of a photon, the total electronic spin of the system remains unchanged (because

photons can not contribute or remove spin). For a closed system, the total electronic spin is

always 0, and so an exciton formed by the absorption of a photon will also always have spin 0.

Therefore, when the ground state is a singlet, only singlet excitons are created by optical

excitations. Conversely, when the exciton is formed by the meeting of an electron and a hole on

the same molecule, the spins of the two unpaired electrons are uncorrelated, and both singlets

and triplets can be formed. While such electrically excited excitons play a critical role in organic

optoelectronic devices, as we have noted above, in this thesis we are only concerned with

optically excited excitons. (As noted in the previous section, in some materials, the singlet-

triplet distinction does not hold. In such cases, one can optically excite an exciton that is

primarily singlet in character, but which can become primarily triplet in character over time.

While this phenomenon is critical in a number of important organic optoelectronic systems, in

this thesis we will not be dealing with this situation.)

To compute the energy to optically generate an exciton, one must recall the Born-

Oppenheimer approximation to determine the energy associated with the creation of the excited

state. Earlier we argued that electrons move much more quickly than nuclei (a concept also

known as the Franck-Condon principle). As a result, when discussing electronic excitations, we

are really describing excitations that are created within a fixed nuclear framework. Therefore the

energy required to create an exciton corresponds to the difference in the energy between the

excited and ground electronic states with the nuclei positioned in equilibrium with the electronic

ground state. So the energy for creating an exciton is not in fact the difference in energy

between the equilibrium ground and excited molecular states. Generally speaking, the nuclei

subsequently have enough time to achieve equilibrium with the electronic excited state before

the exciton is destroyed, and as a result, the energy released in destroying an exciton is given by
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the difference between the excited and ground electronic states with the nuclei positioned in

equilibrium with the electronic excited state.

This is illustrated schematically in Figure 1.1. The vertical scale reflects energy, while

the horizontal scale is a generalized "nuclear coordinate," which can be thought of as simply a

parameterized line of nuclear coordinates connecting the equilibrium ground and excited nuclear

configurations. The most important point to grasp here is that the minimum energy for the

electronic ground state and the electronic excited state need not correspond to the same nuclear

coordinates. Following the Franck-Condon principle we represent electronic transitions as

vertical lines. If we follow the sequence of events illustrated in the diagram, then first we excite

an electron from the minimum of the ground state (i.e we create the exciton). Over time, the

system relaxes to a new set of nuclear coordinates that minimizes the energy of the system in the

excited state. Once the system has fully relaxed in the excited state, the electron relaxes back to

the ground state (i.e. we destroy the exciton). Over time, the system again relaxes to a new set of

coordinates, now such that the energy of the system in the ground state is minimized. The

remarkable property of this system is that the excitation and relaxation energies of the exciton

are different. This energetic difference, first observed as a shift in the center wavelength of gas

phase absorption and fluorescence spectra, is known as the Franck-Condon shift.

This phenomenon can be straightforwardly integrated into our quantum development,

despite the fact that by starting with the TISE we technically limited ourselves to the

determination of equilibrium states. In short, since Ig) and I e) are implicitly dependant on the

nuclear coordinates, if we have determined them in the first place, then we know their (and their

associated energy's) dependence on the nuclear coordinates. Furthermore, in determining IG)

and IE) we determine the equilibrium nuclear coordinates in the ground and excited states,

which we define as RG and E respectively. With these definitions, we can describe the four

different states involved in the creation and destruction of our exciton,

1: gG E G ) 5 )E1

2: e(k G ,Ee(k)<* e* e*

3:1 e(kE , EN e (ke), Ee
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4: g (k)) Eg (jE)'> 1g*), E*

where the sense of the shorthand is that the asterisk denotes the non-equilibrium state. These are

the four states identified in Figure 1.1. (Note that state 1 is just IG) and state 3 is just IE).)

1.4 Exciton Creation and Annihilation - Transition Rates

We now understand the energies involved in creating and destroying our exciton but we

have not discussed yet the actual transitions themselves. Since these processes describe changes

to the molecular system, they do not fall under the purview of a static, or time-independent

picture, which forces us to employ a time-dependant approach. Fortunately, perturbation theory

allows us to treat the problem without having to go back to the beginning. The basic premise of

time-dependant perturbation theory is that the states of the system are not strongly affected by

the perturbing potential, and that the primary contribution of the potential is to induce transitions

between different states. (In this section we follow the time-dependant perturbation theory

development in [6].)

We begin by writing down the Hamiltonian of the perturbed system as,

H = HO +V(t)= HO + AV(t) (8)

where H0 is the Hamiltonian of the unperturbed system, and note that the objective of our

analysis is to determine the probability of finding the system in state If) at time t after being in

state I i) at time t = 0 . The V(t) is assumed to be small compared to HO . To formalize this, we

express V(t) as A J(t), where JV(t) is of the same order as H0 but A <<1. Since we will be

treating the potential as a perturbation, we start by solving the unperturbed, time-independent

problem,

Holn)= E,n) (9)

for the In) and E,. We then turn to the general problem of solving the TDSE,

ih a I (t)) = [HO +A V(t)] T(t)) (10)at

with the initial condition,
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I (t))= i).

The starting point of the method is to assume that,

T(t)) = Icn (t) n) (11)
n

which, we note, does not represent an approximation since the set of In) comprise an orthogonal

basis for the entire space. As we will see, the approximation only arises in our calculation of the

cn().

By left multiplying (11) with (n I we see that,

cn(t)= (nIT(t)). (12)

From (9) we have that,

(kH 0 In)= En 6nk. (13)

We also introduce the shorthand,

(k (t) n)= (14)

Using these relationships, we see that by inserting (11) into (10) and left multiplying by (k , we

get,

ih c(t )= Ecf(t )+ Vk,,ck(t ). (15)
dt k

Since we are assuming that the perturbing potential is small, we might be able to simplify the

problem by assuming that part of the time dependence of the C,(t) is the time dependence of the

unperturbed system. If we let A -> 0, then,

cn W3 -+>bne -iEnt lh

so, we propose that,

c, (t =b(t-iEntlh (16)

Plugging (16) into (15) and rearranging we get,

d Jih -b (t)= Aj e'"ktY (t t) (17)
wt k

where
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En - E , 
nE

h

To obtain our coefficients, we then must, in principle, solve (17).

To proceed, we now assume a power series expansion in A for the bn (t),

b W(t) V=b (t) b (t) + 2 b2 (t)"+--. (18)

If we plug (18) into (17) and then separately equate the coefficients of X we have for r = 0,

ihdb )(t)=0 (19)
dt

and for r 0,

ih b (t)= kef" ij/(t)1'~1)(t ). (20)
dtn kkW

We obtain the first order solutions from (19) and the initial conditions. Immediately we see that

b(0) (t) = b(0 ) (i.e. there is no time-dependance) and therefore the initial conditions trivially

determine the b . For our initial conditions,

b0)= 1 n=i
" 0 n#1

From (20) we can then obtain the r'th solution from the (r-1)'th solution. To obtain the first

order, we must then solve,

d Zi'nk Vntb iwit

d t = > eki 1, (t)

which means that,

bno (t) = fe in' (t')dt' .

0

The probability of finding a system in a state 12) at time t after starting in state 11) at

t = 0 , P1 (t), is given by the squared magnitude of the wavefunction overlap of the two states,

Pf,(t) = 2 11)1 .
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So to compute the transition probability that is the goal of this analysis, we need to express 11)

and 12) for our problem. By construction, state 2) is just the unperturbed If). State 11) is the

time-evolving perturbed state that we have been solving for, and to first order, it is just,

1)= i)+ Albk11(t) k)
k

so our transition probability to first order is,

P q(t)=2b(t
2 = 1 2ewftlVf, (t')dt' (20)

0

where in the last step we have reintroduced the true potential V(t).

If we take V(t) to have the form of a sinusoidal perturbation, as appropriate for a

radiation field,

(e' + e-'V(t) = V cos wt = V
2

then we can evaluate the integral in (20) to get,

2 e ( (w fl + wj - ( 2

4h 2  (of, +W0) C (ft 60
V 

_ 12

f 2 ic" O te''-1

h2  W 2

fV2 sin(co/2)]

To now connect this to the absorption and emission processes, we realize that the

radiation field itself constitutes a part of our "system." In short, when we describe absorption,

we mean not only a change in state of the molecule but also a change in state of the surrounding

radiation field. For absorption, the change in the radiation field involves the removal of a photon

from an existing field. For emission, the change in the radiation field involves the addition of

photon to the vacuum (or zero) radiation field. This latter case actually creates a problem for a

semi-classical treatment, because for emission (by which we mean spontaneous emission), there
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is no field initially present, and therefore no perturbing potential. If we introduced the radiation

field formally, using quantum electrodynamics, we could treat the problem without difficulty,

but this requires the quantization of the radiation field and the introduction of a number of new

operators (see e.g. [9]). To avoid this we proceed with a semi-classical development of the

absorption rate, and at the end we will follow Einstein's argument to derive the emission rate (as

done in [7]).

To proceed with obtaining the absorption rate with a semi-classical method, we note that

in the absorption process any degenerate final states with the proper molecular electronic

arrangement are equivalent, and so we must account for transitions into all of the possible final

radiation field states. Since the radiation field is given by a continuum of states, this requires

integrating over some density of states function. In other words,

'otai (t) = p2 sin((wfi wo/2)2(h))do (21)
Oj, -Aw/ 2 h (Ogf - 0) / 2

where Aw defines the energy uncertainty, hAw, of our final state, p(ho) is the density of states

of the radiation field, and we assume that the final state energy is centered around hcof . In

obtaining (21), we have noted that since p(ho) is really defined in terms of energy,

p(E)dE = hp(hwdco,

yielding an extra factor of h. In general we can assume that p(hw) should be slowly varying

with w near (ofi compared to,

sin((Oft / 2)_

so we take it to be approximately constant at its value at o = fi. This allows us to write (21) as,

2 Tw i 2 s 2 2 2 t o 'j s 4 2

Potai(t )= p, d of = 2 VfI t pti [ dx
h wi-AwI2 L fit/ =2-tAw / 4 -

where p. = p( = ,). For times sufficiently large that,

tAo >> 1

we can approximate the boundaries of integration as ± oo, and since
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isin(x)j2
f[ 'dx =,T

this then gives,

27 2
lotal W= PfiV| t'.

Differentiating with time, we get the associated transition rate, F

Ftotal = V2 (22)
h

which is just Fermi's Golden Rule, and applies generally to any transition rate in which the final

state is part of a continuum with state density at ofi given by pfi. Although we have made some

approximations in obtaining this expression, it holds for a surprisingly broad set of conditions.

We can reasonably assume its validity in our development of absorption and emission, though

precise calculations would involve, for instance, more than just the first order component of the

time-dependant perturbation solution.

In the semi-classical treatment, if the wavelength of radiation, and spatial variation of the

field intensity, is much larger than the size of the molecule, then we can operate in the so-called

electric dipole approximation. In this case, the radiation field interacts with the molecule

through the transition dipole, which is the difference between the ground and excited state

dipoles. Specifically, the interaction Hamiltonian is given by,

V =-P -F

where F is the radiation field vector at the center of mass of the molecule and / is the

molecular dipole operator. For this kind of interaction,

Ftotal = Pfp F 2i 2 (23)

where y is the normalized dot product of pf with the radiation field, i.e.,

- fii . F
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For the absorption process, p, is determined experimentally, i.e. one supplies a particular

density of photons, and this defines the density of radiation states. To obtain a more useful form

for (23) we first identify the volume energy density of the field, 4,

=2e0F 2

With this definition,

Ft, = P p y2(pfi
E0h f

Then if we define a radiative energy density of states, Prad (o), such that,

(phdo.= Prad (fP-

we get that,

Ft X 2 2 pw
t,, =-C h2 PfiY Prad fi'

80

The typical form for this rate is obtained by defining the incident light in terms of the irradiance

per unit frequency interval (W m-2 Hz-'), I(v). If we then note that,

Prad (c2)d~z) - I(v)dv
2w c

we get,

Ft, = 2C Ph2 (3y2)I(v)
6coh _r

When we are considering the absorption of unpolarized light, or absorption by an ensemble of

randomly oriented molecules, then one should take an orientational average of Y2 , in which case

Y2 = 1/3, and we have,

F P 6e2h2 c p cI)= P I(Vfi
total 6coh ci(V fi/

where,

A6h2
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We obtain the rate of emission from Einstein's argument that at equilibrium the rates of

emission and absorption due to the field should yield a radiation field consistent with the Planck

distribution. This allows us to relate the absorption coefficient A to the emission rate as follows,

8 I0hv) -
___= _ '2 ft 2Ftotal 3 3eAuhc 3 

""

where we note that the emitted radiation will be oriented along the transition dipole of the

molecule (however, in an ensemble of randomly oriented molecules, the emission will obviously

be randomly polarized). Since the transition rate is constant in time, the emission signal from an

ensemble of many simultaneously excited molecules has an exponential decay with a lifetime,

Tra , given by (F ). This lifetime is the so-called radiative lifetime of the state.

1.5 The Effect of Nuclear Excitations

To this point we have not explicitly discussed excitations of the nuclear wavefunction.

However, when describing absorption and emission, we saw from the Franck-Condon principle

that absorption initially creates a non-equilibrium nuclear state, as does emission. Such non-

equilibrium states imply nuclear excitations of some kind, even for a system at T=O. Therefore,

we can conclude that nuclear excitations play an important role in understanding the properties

of excitons, regardless of the system or experimental conditions.

These excitations are referred to collectively as phonons, and we can understand the

sense of vibrational phonons by recognizing that each bond in a molecule can be thought of as a

spring. Therefore the displacement of a single atom from its equilibrium position introduces

potential energy into the molecule. Once the system is allowed to develop from this state, the

displaced atom will be accelerated back towards its equilibrium position, but by virtue of the

restoring force being spring-like, it will overshoot and proceed to vibrate back and forth. This

vibration will continue so long as the energy of the vibration is not lost or transferred somewhere

else. Phonons can also describe the rotation of the entire molecule about it's center of mass, with

energy corresponding to kinetic energy of rotation. For a large molecule, there are many

different phonon modes. In general, the rotational phonons have much smaller energies than the
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vibrational phonons, which themselves have much smaller energies than the electronic

excitations.

As noted above, even when considering absorption and emission from molecular states

without phonons, we end up generating a phonon (or collection of phonons) along with the

electronic transition. We can also consider the possibility of exciton creation or annihilation for

states with arbitrary phonon excitations, in which case, it becomes possible to absorb or emit a

photon over a range of energies. In fact, it is the presence of phonon modes that broadens

emission spectra around the fundamental emission energy, and likewise for absorption, at non-

zero temperatures. Since the wavefunction overlap determines the absorption and emission

transfer rates, it is also worth pointing out that the presence of excitations in the nuclear

wavefunction (of either the final or initial states) affects p , and so the rates are modified not

only by the presence or absence of appropriate energy phonons, but also by the specific motion

of the phonon.

It is also possible for an electrical excitation to decay directly into a phonon (or collection

of phonons). The sense of this is the same as for radiative decay, in that we can calculate the

transition rate so long as we can define the initial and final states. In this thesis we will not

generally treat the effects of phonons directly. However, it still is important to realize that this

non-radiative decay mechanism exists.

1.6 Exciton Dissociation

Besides generating photons and/or phonons, destroying an exciton can also involve

dissociation, in which case we generate free charge. In short, we can imagine removing the

excited electron from the molecule entirely by exciting it up to the vacuum level, in which case it

becomes unbound. We are then left with a free electron and positively charged molecule.

This can occur spontaneously from high energy phonons (i.e. large thermal energy), or as

a result of an applied electric field. Classically we can understand this in terms of the electron-

hole picture of an exciton. The external field will tend to drive the electron and hole apart, and if

the field is sufficiently large, the two will become unbound, in which case the electron leaves the

molecule. In a quantum mechanical picture, the field causes a distortion of the nuclei and
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electron clouds such that the excited electon's energy increases. For a sufficiently large field, the

distortion will drive the excited electron's energy up beyond the vacuum level, in which case it

can lower its energy by leaving the molecule behind. Excitons can also become dissociated by

absorbing energy from a photon; however, that process more properly falls under the aegis of

photo-ionization phenomena.

1.7 Excitons in Amorphous Solids - Modifications to Molecular Properties

To make the connection with a disordered solid state, we first consider the effect of the

surrounding medium on the properties of a particular molecular exciton. The presence of the

surrounding molecules, among other things, will introduce a local electric field that alters the

Hamiltonian describing the molecule, and therefore alters the excitonic energy. Often one

assumes that the disturbing fields do not significantly alter the charge distributions associated

with the ground and excited states (i.e. IG) or IE) remain approximately unchanged); however,

the interaction energy can still lead to a change in the exciton energy. We can understand this

classically by observing that if the molecule has a charge density of p, (F) in the initial state and

Pf (F) in the final state, then the presence of a static local field corresponding to a potential of

9ic (F) will lead to a change in the transition energy of,

AEf = frloc()[p(F) p1 r(F)] .

For the case of a uniform, static local field, F, then if we approximate the charge distributions

by their associated dipoles, j and jf , then this reduces to,

In other words, so long as the dipole of the excited state is different from the ground state (as is

generally the case) then the presence of a local field will alter the transition energy. If the local

medium actually responds to the excitation itself, then the local fields will not be static, and a

dynamic treatment must be employed. If the local fields appreciably change the charge

distributions of ground and excited states, then a more accurate treatment would be necessary
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which involves the recalculation of IG) and IE) in the presence of the local potential. We will

further discuss the issue of local field effects on excitons in the second section of this thesis.

In addition to local field effects, the surrounding medium will also change the distribution

of phonon modes. New modes may be introduced, which if well-coupled to the exciton state will

increase the likelihood that the exciton will be destroyed non-radiatively. Some modes may even

be destroyed due to the loss of steric freedoms, as in the case of rotational modes in most solids.

The surrounding medium will also lower the energy barrier to exciton dissociation, because in

the gas phase such dissociation would require the promotion of the electron to the vacuum level,

while in the solid state, the electron (or hole) need only overcome the barrier for exciting an

appropriate charged state on one of the neighboring molecules.

Finally, the surrounding medium can alter the intrinsic lifetime of the exciton. This can

occur in two ways. Recalling our expression for the rate of emissive relaxation,

fi 2
F " 3ecwhc3 ',total E7h ' f

we see essentially two parameters that could vary, oWf and u,. As discussed above, local field

effects can change the emission energy, and so clearly ofi can change. In addition, if the local

fields are strong enough, they can substantially alter the molecular wavefunctions, and so clearly

pf, can change as well. (The transition rate associated with absorption can be similarly altered,

only in that case only u, appears in the rate expression.)

1.8 Excitons in Amorphous Solids - Ensemble Effects and Energy Transfer

While certainly it is critical to understand how an individual exciton is affected by the

surrounding medium, this is not sufficient to fully understand excitons in the solid state. We

must also note that by placing two molecules in very close proximity to each other, we make

possible the transfer of an exciton from one molecule to another, by two different mechanisms:

Forster energy transfer and Dexter energy transfer. Forster energy transfer involves the resonant

interaction between the dipoles of the two molecules involved in the transfer process [10]. The
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expression for the Forster transfer rate between these two molecules (called the donor and the

acceptor respectively) is given by,

F = [K2 3 C 4 SD (W)A(W)d(O
Td R'd 47 (4 n

where Trad is the radiative lifetime of the donor, R is the distance between the two donor and

acceptor molecules, n is the index of refraction of the medium, SD (w) is the normalized

fluorescence emission spectrum of the donor molecule, oA (CO) is the normalized acceptor

absorption cross section in units of cm 2, and K 2 is an orientational term equal to,

K2 =3YD A A - 3k/D A2

Often the Forster transfer rate is written as,

FF = I RF 6

Trad R

where

R $ = 3 2 C 4 D A
47R c f cKJ4 n4D(w)0A(Co)dc

The parameter RF is known as the Forster radius, and describes the distance at which two

molecules can be separated for an exciton on one to be just as likely to emit as to energy transfer

to the other.

Sometimes it is simpler to deal with an expression for the Forster transfer rate which

employs the observed radiative lifetime, instead of the actual (or "natural") radiative lifetime.

The observed radiative lifetime, r, is related to the natural radiative lifetime, Trad , by,

T = rad

where q is the fluorescence quantum yield of the molecule. Therefore, we can define an

effective Forster radius, RF, such that,

F 

6

a R

and,
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R= KD 4FD( A(w)do

where qD is the fluorescence quantum yield of the donor.

Dexter transfer involves the correlated tunneling of the excited electron and hole from

one molecule to another [11]. As a result, the rate of Dexter transfer is directly dependant on the

overlap between the HOMO and LUMO wavefunctions of the initial and final molecules.

However, the transfer rate is often given simply as,

D 2 -2rL FD ()A()do

where P and L are parameters not easily related to experimental values. The sense of this form

is simply that, first, the rate is proportional to the donor emission - acceptor absorption overlap

and, second, it falls off exponentially with distance because wavefunction overlap falls off

approximately exponentially with distance. We will not discuss Dexter transfer further in this

thesis, and therefore forgo a more detailed discussion of this mechanism.

In addition to energy transfer, when understanding excitons in solids we also want to

understand the aggregate behavior of collections of molecules and excitons in a single sample

(which represents the bulk of practical systems in organic optoelectronics). The primary issue is

that in such systems the bulk behavior represents an ensemble average over all the individual

excitons. Above we outlined how the local medium might alter an individual exciton's

properties, and for amorphous solids, each of the local mediums is theoretically different.

Therefore, to treat such results, we need to consider distribution functions for the different

properties. In theory, we would need distributions to describe the exciton absorption and

emission energies and both transition rates. Depending on the specific mechanism one proposed

to explain the origin of the various changes in energy and rate, these distributions might even be

coupled.
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Configuration

Figure 1.1 Energy-Configuration diagram illustrating the
Franck-Condon (FC) shift. The vertical lines correspond to
the electronic transitions from the ground (g) electronic state
to the excited (e) electronic state. These are the 1-2 and 3-4
transitions. Following each transition, the system
equilibrates to the new charge distribution, attaining it's
lowest energy configuration. These are the 2-3 and 4-1
transitions.
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2. SOLID STATE SOLVATION

2.1 Background

The work presented in this section has grown out of two recent reports by Bulovic et al

describing spectral red shifts in the emission of amorphous organic thin films doped with the red

laser dye DCM2 [12,13] (see Fig. 2.1 for chemical structures). By changing the concentration of

DCM2 present in a film of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-

diamine (TPD) from 0.9% to 11%, the peak electroluminescence emission wavelength was

shifted from k=570 nm to k=645 nm (see Fig. 2.2). (For these measurements, the DCM2:TPD

film comprised the active layer of an OLED.) Because DCM2 is a highly polar molecule (with

- 1 D in ground state), and TPD is nearly nonpolar (with p-I D in ground state), increasing the

DCM2 concentration increases the strength of the local electric fields present in the film. This

increase in the local fields was associated with the spectral shift. Similar results were also

observed for DCM2 in Alq 3. A subsequent report argued that the spectral shift is actually due to

a progressive increase in the presence of clustered dye molecules with increasing dye

concentration [14]. In this case, the authors studied the electroluminescence of DCM2 in an

OLED structure, and saw that increasing the DCM2 concentration was correlated to a decrease in

the quantum efficiency of the device, which they attributed to the presence of an increase in the

prevalence of aggregated dye molecules (see Fig. 2.3). Since aggregated dye molecules are

generally thought to have red-shifted emission compared to the monomer, these authors

correlated the red shift in photoluminescence of Alq3:DCM2 films to the decrease in

electroluminescent quantum efficiency as the DCM2 doping was increased, and concluded that

red shifts simply reflected an increase in emission from aggregate states. We set out to clarify

this issue, by developing an experiment that isolated the "solid-state solvation" effect described

by Bulovic.

2.2 Photoluminescence of PS:CA:DCM2 Films
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We performed photoluminescence measurements (using X=480 nm light) on films

consisting of a polystyrene (PS) matrix, a small concentration of the laser dye DCM2, and a

range of concentrations of the polar small molecule material camphoric anhydride (CA). (In

these films, only the DCM2 molecules fluoresce upon excitation by k=480 nm light). The films

were spun cast at 2000 rpm from solutions with a total concentration of 30 mg/mL. The

solutions were all made by first massing out polystyrene into a vial and then adding appropriate

amounts of 20 mg/mL CA solution and 0.033 mg/mL DCM2 solution.

This material system was designed to allow us to keep the DCM2 concentration constant,

and thereby fix DCM2 aggregation effects, while still modifying the dipole concentration of the

film. We modified the dipole concentration by changing the concentration of CA, which has a

large dipole moment (p-6D in ground state) relative to its molecular weight and is essentially

optically inactive over the range of wavelengths relevant for studying the properties of DCM2.

The polymer host material polystyrene was chosen because it provides a transparent, non-polar

background for the system.

For a fixed DCM2 concentration of 0.005%, the DCM2 emission spectrum shifts

continuously from 2.20 eV (563 nm) to 2.05 eV (605 nm) for CA concentrations ranging from

0% to 24.5% (see Figs. 2.4 and 2.5). (Chemical structures of CA and PS are shown in Figure

2.4.) These results show that large shifts in emission spectra can be observed in films that have

negligible DCM2 aggregation. Furthermore, the spectral shift is clearly correlated with the

increase in the concentration of polar molecules in the amorphous host thin film. While these

results already make it difficult to support a theory that these spectral shifts involve the

aggregation of DCM2 molecules, we also performed the same experiments with DCM2

concentrations up to 0.05%, and observed no change, again indicating that the concentration of

DCM2, and therefore aggregation effects, do not contribute to the spectral shifts (at least for the

low level DCM2 concentrations employed.)

These results would then tend to suggest a "solid state solvation" effect like the one

presented by Bulovic. However, in that report, the physical mechanism for the spectral shifts is

described only generally, in that it is related to the presence of significant local fields in the

medium and that the local fields are due to the presence of dipolar molecules. We agree with
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this assessment, so far as it goes, but it is necessary to take this analysis further if we are to

evaluate quantitatively if such a mechanism makes sense.

2.3 Theory of Spectral Shifts due to Local Fields

As discussed in Section 1.6, the presence of local fields can modify the energy associated

with a molecular transition. In this section we further develop the theory of the changes in the

transition energy between an initial state Ii) and a final state If), where these wavefunctions

correspond to the molecule in the presence of zero field. In general, the changes to the transition

energy come from two sources.

The first source comes from a direct modification by the local field of Ii) and If), which

implies a modification of the associated E, and Ef . If we describe the exact states and energies

in the presence of the field by i), 4, ,, and kf then the change in the transition energy

due to this internal modification of the electronic structure, AEin, , is given by,

AEint ={Ef - (kf - ki

To determine the exact energies, E, and Ef, it is generally necessary to perform a full quantum

mechanical calculation of the molecular energy levels in the presence of the field. Clearly this is

not very desirable, because it makes it almost impossible to develop a straightforward

relationship between the external field and the change in transition energy. We will return to this

difficulty below.

The second source comes from the electrostatic interaction between the molecular charge

distributions of the initial and final states and the local field itself. This is the type of energy

shift mentioned in Section 1.6. As indicated there, the change in the transition energy is just

given by the difference between the electrostatic interaction energies in the two states (although

in that expression a static local field was assumed, which is not the case here). If we identify the

change in the transition energy due to electrostatic interactions by AEs , then we have,

AE = pOc (F)p(F - pOc (F)p, (F dPr
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where gp" (F) and q<'O (F) describe the potentials due to the local fields for the two states, and

p (F) and pf (F) are the charge distributions for the two states. In a more complete treatment,

one would determine the electrostatic interaction energies using the charge distributions due to

i) and but to simplify the analysis, we assume that I i) and If) are unaffected by the

presence of a local field. This allows us to use the p, (F) and pj (F) computed for an isolated

molecule. In addition, we know that AEn =0, and so we only have to determine AE, .

To do this, we first obtain a simpler form for the charge distributions. For excitons, we

are dealing with neutral molecules, in which case the dominant term of the multipolar expansion

of p(F) is the dipole moment. If we work within this dipole approximation, and note that the

electrostatic interaction energy between a dipole, j , and an electric field, F , is,

then we have that,

AEes= f- /)

where j, and fif are just the dipoles associated with p (F) and p1 (F). Now all that remains

(within our approximations) is to determine J, and F .

The first (and most straightforward) treatment of this problem is attributed to Onsager,

who can be thought of as the originator to the continuum approximation. In short, Onsager

recognized that one way to treat the field due to a collection of surrounding molecules was to

lump the surrounding molecules into a continuous medium characterized by a single parameter,

the dielectric constant, E. In the Onsager model, therefore, the surrounding molecules form a

homogeneous dielectric.

Since it is necessary to define a boundary between the medium and the molecule under

study, Onsager proposed that the molecule exists within a spherical cavity of radius a , and that

the charge distribution due to the molecule, in the dipole approximation, consists of an

appropriate point dipole located at the center of the cavity. In this model, the surrounding

medium produces an electric field in response to the presence of a charge distribution in the
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cavity (because the "medium" is just a dielectric), and for this reason, the resulting field is

known as the reaction field. For a dipole of pi we find that the reaction field, FR , is given by,

- A..

a

where

A = 2(c - 1)
2E +1

To illustrate the trends expected in FR as c changes, a plot of A over a range of e values is

shown in Figure 2.6. Note how the rise in A is steepest when c is smallest, indicated that even

small changes in E can yield large changes in FR if E is moderately small to begin with.

In solutions, the solvent molecules are relatively free to move and reorient, and the

simple dielectric description applies very well (in that the molecules typically have no intrinsic

orientation, and freely rearrange themselves in the presence of a field). As a result, Ooshika,

Lippert, and Mataga [15-17] subsequently applied the Onsager model to explain the shifts in

absorption and emission spectra of dye molecules in solution. To follow their development we

recall again the energy diagram used to explain the Franck-Condon shift, in Fig. 1.1. We recall

that the difference between the absorption and emission energies is due to electronic transitions

occuring much more quickly than the nuclear reorganization, and so the electronic transition

occurs within a fixed nuclear framework. However, while nuclear reorganizations might be slow

relative to electronic transitions, they are still fast compared to exciton lifetimes.

Now consider expanding our picture of the "system" to include the surrounding medium.

In addition to the nuclear response to an electronic transition, we now have to consider a

response (due to the surrounding medium) to the change in the charge distribution on the

molecule under study. If this response is to include molecular rearrangements, then clearly it

must occur on a time scale slow compared to electronic transitions. It might even occur on a

time scale slow compared to exciton relaxation, which would create a rather complicated

problem. However, measurements have shown that typically the solvent response is still fast

compared to the exciton lifetime. As a result, the reaction field due to the surrounding medium,

just like the nuclear framework of the molecule itself, is fixed during an electronic transition.
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However, since equilibrium can be achieved during the lifetime of the exciton, we assume the

absorption and emission processes to occur from the equilibrium states.

Figure 2.7 showns a new energy diagram which indicates the four different states of the

molecule required for computing the absorption and emission energies, now including the

solvation shift along with the Franck-Condon shift. Because this theory was originally

developed for solutions, the energy shifts are referred to as solvation shifts (or sometimes,

solvatochromic shifts). To compute the magnitude of the energy shift due to solvation, AE,01,,

for emission and absorption, we note that the dipole and reaction field present in each of the four

states is given by,

A A 2
1: P=, fi F= a 3P9 , ESI = p 1

a a

2: = AF/-IgE =4(p2 ji
a a

-AA
3: P=e F=~ye A -A 2

a a
4: fi=i, A PI sOlv A fe-ig

a 3a3

and so,
1AET _ (Ap'

solv 3 t AgJa

AE 1_
a

where the up and down arrows refer to absorption and emission respectively. The critical point

to observe here is that for a given molecule, every term in the shift is constant except for A.

Therefore, for different solvents, the spectral shift should always be proportional to A. Indeed,

it has been found that spectral shifts are proportional to A for a broad range of polar dyes and

solvents.

Nevertheless, one important refinement is necessary. In arguing that the entire response

of the surrounding medium is slow compared to the electronic excitation, we were actually

making an approximation that is not valid in general. Every molecule has a so-called electronic

polarization response, characterized by the molecule's electronic polarizibility, ael, which

35



describes the capability of a molecule to change it's dipole moment in response to a field by

modifying its electron orbitals. In the simplest case, if we include the electronic polarization

response, we have that,

fi = p0 +aFY

where fio is the dipole of a molecule in zero field, fi is the dipole in the presence of a field F.

Our solvent comprises a collection of molecules that are all in principle capable of electronic

polarization, and as a result, are capable of a response on the same time scale as the electronic

transition itself. Therefore, to properly treat an electronic transition in such a medium, we need

to somehow differentiate this fast response from the total response. This is done by employing

the index of refraction, n , of our medium in addition to the dielectric constant.

The index of refraction allows us to describe the component of the dielectric response of

the medium due to electronic polarization because it applies to the optical time scale, which is

too short to include any other kinds of response. The reaction field due to this "optically fast"

response, F"7 , is given by,

SA 0 ~

where,

A = 2n12 _
""2n2 ±+1

Incorporating the optically fast response of the medium into our development gives us the

following new results for the four different states,

AA A
a a

A A A A0
a a a3  a

A A
3: fi=,, f= i ,, Es, = 3 2

a a

4: A A f_ A (i A0P f

a a a a

and so,
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a

Asolv - 3 AP(- e +Aop + g)a

This allows us to compute the spectral shifts due to solvation from a knowledge of the charge

distributions and size of the isolated molecule and from the bulk dielectric constant and index of

refraction of our medium. In practice, however, this theory is more useful for predicting the

trends in the spectral shifts with e and n than for directly computing the shifts themselves, in

large part because the spherical cavity approximation is rather imprecise, making the proper

choice for a hard to determine from first principles.

As indicated above, this theory works quite well for predicting the trends in spectral

shifts in solutions. Since we can similarly measure an c and n for our solid films, we should be

able to straightforwardly apply the same theory to our data. Indeed, it should be pointed out that

the solvation theory applies to any system in which a dielectric response can be identified.

However, there are additional considerations in a solid sample. In particular, in a solid, the

individual molecules would not be expected to have as much steric freedom as the molecules in a

solution. This implies that unlike in a solution, in a solid the medium could support permanent

local fields. For a particular molecule, this would mean that in addition to the solvation spectral

shift, there would be a shift, AEstatic due to the presence of a static field, F , given by,

A.static -F P Afi.

If these fields are random, as one might expect to be the case in a completely amorphous

solid, then after averaging over all the molecules in the film, there should be no net shift in either

the absorption or emission spectra. (Depending on the magnitude of the shifts, however, one

might observe a broadening of the spectra, due the dispersion in the absorption and emission

energies that such fields would produce.) However, if the fields are somehow correlated, then it

is possible for them to produce an overall shift. There is at least one obvious form such

correlation might take.

We have said that onceformed the molecules in a solid are generally not capable of

significant reorientation. However, during formation, the molecules in the film may have

substantial orientational freedom. For spun films, we observe that while still in solution, the
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molecules are clearly free to move around, and presumably become progressively less free as the

solvent evaporates and the molecules come out of solution during the spinning process. If the

film formation is not too abrupt, such a process would be expected to yield a film that has

achieved a fair degree of local equilibrium. Similarly, for an evaporated film, since the film is

formed extremely slowly (e.g. a few mono-layers a minute) and the molecules have fairly high

kinetic energy upon deposition, each molecule should be able to establish a reasonable local

equilibrium. Thus, while we describe our films as being amorphous, we must admit the

possibility of local order corresponding to the attainment of some kind of local equilibrium.

Within the Onsager model, we can identify the field corresponding to the maximal degree

of local equilibrium from the standpoint of the molecule under study. It is simply the reaction

field for state 1 from the discussion above. However, this reaction field would have been set-up

while the film was in a state with a presumably much higher E, and clearly, it is not

straightforward to determine the value of that e. Nevertheless, we keep in mind that static fields

might play an important role in spectral shifts if local ordering of the molecules occurs, and that

the form of the spectral shifts in that case will be such that,

A.static _ iRstic A

for both absorption and emission, where,

static =A.

a

with e and a in this case correspond to the film duringformation.

There are various ways to further refine the theory presented here for treating the effect

of local fields on exciton energies. As noted earlier, we have generally neglected the possibility

that the local field could modify the intrinsic energy difference between the two states, and have

similarly neglected the potential for the local fields to modify the charge distributions which are

involved in the electrostatic energy shifts. Furthermore, the use of the dipole approximation and

the spherical cavity approximation are both potentially inappropriate. All of these shortcomings

are remedied by performing a self-consistent quantum mechanical calculation of the molecule

within an arbitrary cavity surrounded by a dielectric, as pioneered by Tomasi et al. Moving

beyond the dielectric continuum approximation altogether remains a challenge, and practically

useful techniques have not yet been developed. However, we conclude by recalling that while
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more accurate methods might be possible, the expressions derived above still hold very well for

identifying the trends in solutions. And so we begin with those expressions for the analysis of

our data, which requires a knowledge of e and n in our films.

2.4 Dielectric Measurements of PS:CA:DCM2 Films

We performed measurements of the electronic susceptibility of our PS:CA:DCM2 films

by measuring their capacitance when sandwiched between two aluminum electrodes. The

bottom electrodes were 300 A thick and deposited using the shadow mask shown in Figure 2.8

(a). The top electrodes were 500 A thick and deposited using the shadow mask shown in Figure

2.8 (b). In each case, the metal layers were deposited by thermal evaporation at a pressure of

~1x10-6 torr and at a rate of~2 A/s. The total device area, AD, was 2.5x10-6 M2. The film

thicknesses were determined by profilometry (by measuring the profile across a scratch through

the film to the glass substrate). Exactly the same solutions and spin conditions were used to

make these PS:CA:DCM2 films as were used in the fluorescence measurements.

The capacitances were measured at 10 KHz, 100 KHz, and 1 MHz using an HP4192A.

No significant change in the capacitances was observed when changing frequencies. Above,

1 MHz, the HP4192A measurements rapidly become unreliable (in part because of the presence

of stray inductances in probe lines). As we discussed above, it has been found that in solutions

the dielectric response generally occurs on a time scale short compared to the exciton lifetime.

However, this need not be the case in solids. We can state this in a more useful way: we are only

interested in dielectric response that occurs at frequencies equal to or higher than the inverse of

the radiative lifetime. In the case of DCM2, the radiative lifetime is - 2 ns, so we are really

interested only in dielectric response at frequencies of 500MHz or higher. Therefore, we have

measured the susceptibility at the highest frequency for which we can obtain reliable results.

While we have no reason to expect the susceptibility to change substantially between 1 MHz and

500 MHz, such a change is technically possible, and this limitation of the measurement should

be kept in mind. (In nearly all liquids and most solids, however, dielectric responses are

approximately constant below the GHz regime. The main exception to this is mobile ion motion,

which is not present in our films.)
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The film susceptibilities are plotted in Figure 2.9, and have all been calculated assuming

that our device structure forms a parallel plate capacitor with a (potentially leaky) dielectric in

between. (Because the HP4192A measures capacitance and conductance independently, it does

not matter if the film is not perfectly insulating.) We find that the susceptibility increases

markedly with increasing CA concentration, following a linear relationship given by

c = 2.44 + 0.13 (CA%). For the calculations of E we have assumed that both electrode interfaces

are flat. This is the case for the bottom interface, however, the top interface is formed on top of

the spun PS:CA:DCM2 film, and does have some roughness. In particular, profilometry

measurements show approximately sinusoidal roughness with a lateral period of about 50pm and

a vertical amplitude of about 1 oooA peak-to-peak. All of the film thicknesses were between

2200A and 3200A, and accounting E for such roughness yields a correction to e of between 1%

and 3% depending on the film. Since other experimental errors account for a larger uncertainty

in e than this correction, we have neglected it.

We also measured the index of refraction of the films, and found it varied between 1.55

and 1.65 for all of the samples. Within the error of 0.10, n is nearly constant. Even if the

measurement error was zero, however, the total change in n (or, more appropriately, n2 ) is

would still quite small compared to the change in e.

2.5 Comparison between Measurement and Theory

We now have sufficient data to compare our spectra shift in DCM2 emission in

PS:CA:DCM2 films with the solvation theory presented above. We can rewrite our expression

for the change in emission energy due to solvation effects such that,

AE =-AA - BA

where,

1

a

and

1
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As we have discussed, this level of theory is only useful for predicted trends, so we now propose

a functional form for the emission energy of,

E = C+ AE 0

where C is some constant. Because the change in the index of refraction with CA concentration

is so small, we can take the AO, term as approximately constant and lump it into C, leaving us

with,

E =C-AA

In Figure 2.10 we plot three different fits to the data, indicating the sensitivity of the fit to the

choice of A. (No particular significance is accorded to the value of C in this treatment.) We

find that the trend in the spectral shift is in excellent agreement with the solvation theory, with

the optimal fit obtained for A = 0.57 eV. It is difficult to determine how reasonable this value is

based on the definition for A because of the inherent arbitrariness of a and the necessity of

knowing the exact ground and excited state dipole vectors. However, we can look at solvation in

solutions, as within our theory DCM2 would be expected to have a similar solvation response in

solutions as in solids. A plot of the peak emission energy for DCM2 in different solvents is

shown in Figure 2.11 against each solvent's value for F . (Because n does not change much

from one solvent to the other, ranging from ~1.4 up to -1.5, we again take the A, term to be

constant.) We observe that again the solvation theory is in excellent agreement with the data

(which is not surprising for a solution system) with the optimal fit obtained for A = 0.55 eV.

The remarkable agreement between the two values for A makes a strong case for the solvation

theory being the operating mechanism in the spectral shifts observed in PS:CA:DCM2 films.

While we had cautioned that in solids one would also expect some degree of static field effects,

and that it was not unreasonable to believe such static fields were correlated in such a way that

they could produce spectral shifts, the fact that c increases so much with increasing CA

concentration would suggest that within the PS matrix, the CA molecules are relatively free to

reorient (which would tend to reduce any static field effects). Thus it is not surprising that

solvation effects to dominate in this system.
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Figure 2.1 Chemical structures of TPD, Alq3, and DCM2.
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Figure 2.3 (a) Evolution of the peak photoluminescence of films
of Alq3 :DCM2 with different DCM2 concentrations. (b) The
evolution with DCM2 concentration of the quantum efficiency of
OLEDs with Alq 3:DCM2 films as the active layer. (From [14].)

44

2.15

,2.10
S2.05
2. 00

CD1.95
1.90

1.85
1.80
I.7

1

0.1E
M4-

0.01 1



1.0-

0.8-

0.6 -

0.4 -

0.2 -

0.0

0

O n
0

0

Camphoric
Anhydride (CA) Polystyrene (PS)

(a)

PL Spectra of Different PS:CA:DCM2 Films

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

Energy (eV)

(b)

Figure 2.4 (a) Chemical structures of camphoric anhydride
(CA) and polystyrene (PS). (b) Photoluminescence spectra of
PS:CA:DCM2 films with different CA concentrations
ranging from 0% to 24.5%. In each of the PS:CA:DCM2
films, the DCM2 concentration was 0.005% by mass.
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Peak PL Energy of PS:CA:DCM2 Films
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Figure 2.5 Evolution of the peak photoluminescence
of PS:CA:DCM2 films with CA doping.
doping level was fixed at 0.005%.
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Figure 2.6 Plot of A as a function of . Note how
changing & from 1 to ~3 results in as large a
change in A as changing & from ~3 to >*.
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Figure 2.7 Energy-Configuration diagram illustrating the
Franck-Condon (FC) and solvation (Sol) shifts. The vertical
lines correspond to the electronic transitions from the ground (g)
electronic state to the excited (e) electronic state. These are the
1-2 and 3-4 transitions. Following each transition, the system
equilibrates to the new charge distribution via both FC and
solvation responses, attaining it's lowest energy configuration.
These are the 2-3 and 4-1 transitions. Note that in addition to
the developing shifts shown above, implicit in the diagram is the
solvation induced overall shift of the (g) and (e) curves, which
could either reduce or increase the energy separation.
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Figure 2.8 Drawings of shadow masks used to define
bottom (a) and top (b) electrodes of capacitor structure
used in measurements of the electronic susceptibility of
PS:CA:DCM2 films.
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Bulk Electronic Susceptibility of PS:CA:DCM2 Films
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Figure 2.9 Evolution of the bulk electronic susceptibility
at 100 KHz of PS:CA:DCM2 films with changing CA
concentration. The DCM2 doping was 0.005% for all of
the films.
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Evolution of Peak PL Energy for PS:CA:DCM2 Films
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Figure 2.10 Comparison of theoretical fit using simple
solvation theory and measured shifts in the
photoluminescence of PS:CA:DCM2 films for different CA
concentraions. The fit for three different values of A are
shown, indicating the sensitivity of the fit. The best
agreement with experiment was obtained for A=0.57 eV.
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DCM2 Peak PL in Various Solvents
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Figure 2.11 Plot of DCM2 peak photoluminescence in
different solvents. When plotted against the value of A
for each solvent, we get a straight line, with negative slope
equal to 0.55 eV.
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3. EXCITON DIFFUSION

3.1 Dynamic Spectral Shifts in Alg 3:DCM2 Films

We performed measurements of the time resolved photoluminescence of thin films of

Alq3 doped with the red laser dye DCM2 (with dopant concentrations ranging from between

0.5% and 10% by mass). All of our films were grown by thermal evaporation at a pressure of

~1x10-6 torr and at a rate of -2A/s. In our experiments, each film was optically excited with k=

400 nm 100 fs laser pulses, generated by directing the mode-locked output of a Coherent Mira

Optima 900 (Ti-Sapphire) laser through a BBO frequency-doubling crystal. The resulting

emission signal was directed into and detected by a Hamamatsu streak camera. For all of the

data presented here, a measurement time window of 5 ns was used, yielding a time resolution of

- lops.

We observed that in each film the emission spectra shifted to lower energies with

increasing time, and that this trend persisted for the entire duration of the emission pulse.

Selected time-resolved spectra are shown in Figure 3.1 for a 4.7% DCM2 doped sample to

illustrate this shift qualitatively. The evolution of the peak emission energy with time for all the

samples is shown in Figure 3.2.

3.2 Interaction between Excitation Pulse and Alqg:DCM2 Film

To understand the physical mechanism underlying the observed spectral shifts, we must

first clarify how the excitation pulse interacts with our sample. The laser pulse initially excites

both Alq 3 and DCM2 molecules. However, Forster energy transfer from Alq 3 to DCM2 occurs

extremely quickly (due to the large overlap between the DCM2 absorption and Alq 3 emission

spectra), and within the first few ps all the Alq 3 excitons transfer to nearby DCM2 sites. This is

confirmed by the absence of any Alq 3 emission, even when performing the measurement with a

Ins window, where our time resolution is down to 2 ps. In addition, we have performed our

measurements using pulses of k = 490 nm light (to which Alq 3 is essentially transparent) and

53



observed exactly the same dynamic spectral behavior, though with lower intensity responce, due

to the reduced absorbtivity of the film at this wavelength.

Since the incident photons and Alq 3 excitons both have far more energy than required to

excite the DCM2 singlet exciton, we must assume that there is no significant energy preference

in the excitation of DCM2 sites (irregardless of how the excitation occurred). Therefore we

conclude that by the time we begin detecting our emission signal with the streak camera, we

have a system of DCM2 sites that have been randomly populated with excitons. This defines the

starting state of our film.

3.3 Exciton Diffusion and Spectral Shifts

As indicated by the discussion in Section 1.8, since our Alq 3:DCM2 film is amorphous,

each DCM2 molecule observes a different local environment. This should lead a distribution of

exciton energies. Once we recognize the presence of a distribution of exciton energies on our

DCM2 sites, then it becomes clear how energy transfer might lead to spectral shifts over time.

In short, we argue that the dynamic spectral response observed in the Alq 3:DCM2 system

is a side-effect of exciton diffusion by Forster energy transfer between DCM2 sites. In the

simplest picture, Forster transfer only occurs when the final site has energy equal to or less than

the initial site energy. (Strictly speaking, transfer to higher energy sites is possible, just much

less likely. This is further discussed below) By virtue of there being a distribution of site

energies, Forster energy transfer should progressively drive excitons towards the lowest energy

sites in the system. Since the emission spectrum is simply a snapshot of the current exciton

population in the film, then over time we should observe the emission spectrum shift to lower

and lower energies.

3.4 Simulating Exciton Diffusion

While the diffusion mechanism qualitatively explains the presence of a dynamic spectral

red shift, it is not immediately clear whether or not this mechanism is quantitatively consistent

with the observed phenomena. To determine if this is the case, we have developed a detailed
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simulation of the diffusion process with which to test our theory. In the simulation, our system

consists of a collection of sites, where, in the simplest case, each site resides on a vertex of a

cubic lattice. The lattice spacing corresponds to the mean inter-site spacing in an actual film.

(All spatial coordinates are scaled to this value.) Each site has an exciton energy associated with

it, and the ensemble average of all the site energies reproduces the excitonic density of states

(DOS) of the system. This DOS is one of the required input parameters.

Once the system of sites has been created, each site is populated with an exciton, and then

for each time step (of length r,,,p), each exciton can relax, with probability Ts,,,p /r where r is

the observed radiative lifetime, or energy transfer to another site, with probability,
~6

Tstep RF
T R

where RF is the effective Forster radius, as defined in Section 1.7, and R is the distance

between to the two sites. The r and RF values are the remaining required input parameters,

where RF is supplied in terms of the mean inter-site spacing. There is no energy dependence to

the transition probability in our simulation, beyond forbidding transitions to higher energy sites.

We obtain r directly from the decay profile of the total intensity of our emission pulse

(which, ideally, follows a single exponential decay). We obtain the DOS by first assuming that

the DOS has a gaussian shape. We then position the DOS so that it peaks at the same energy as

the PL spectrum measured at the start of the emission pulse (when, as discussed above, excitons

should have populated the dye sites in the film uniformly, and therefore should, as an ensemble,

reflect the film's true excitonic DOS). To finalize the DOS, we must choose its width, and,

along with RF , this is retained as a parameter for fitting the simulation results to the data.

Figure 3.3 shows the simulation results for a series of values for RF ranging from 0 to

2.0 inter-site spacings. All of the simulations were run for a total time of 3 emission lifetimes,

and as shown in the plot, these results are all normalized to wDOS in energy and r in time. As

implied by this normalization, the dynamic spectral shift profiles have the same shape regardless

of wDos and r, and, in fact, the simulation internally works only with time units normalized to r

and energy units normalized to wDOS. Besides indicating an important fundamental invariance in

55



the system, this also means that by simply scaling the profiles shown in Figure 3.3, the curves for

any WDOs and r can be obtained.

The remaining parameter, RF, does not yield simulation results that are invariant under

scaling, and the series of profiles is shown to illustrate the effect of modifying RF . In short,

increasing RF increases the initial slope and total magnitude of the shift. It is also worth noting,

however, that for the larger values of RF the shift begins to saturate, an indication that the

excitons have diffused far into the low energy tail of the DOS, where there are very few available

transition sites. Of course, increasing wDOs also increases the magnitude of the shift (because the

entire curve is scaled up proportionally). However, as we will see in the next section both

parameters are sufficiently differentiated that both must be properly chosen to obtain a good fit

to the measured data.

3.5 Comparison Between Simulation and Experiment

For each of the four doping levels, we achieved excellent agreement between the

simulated and the measured data. In Figure 3.4 we show the data for a 4.7% DCM2 doped

sample along with various simulation results. This plot illustrates the sensitivity of the

simulation to changes in the input parameters, and indicates how accurately fitting the simulation

to the data determines RF and wDOS. The simulation parameters for the optimal fit for all the

samples are tabulated in Table 3.1, and the associated fits are shown in Figure 3.5.

We find that to within the error of our measurement, wDOS is constant in each of the

films. Unfortunately, it is not straightforward to interpret the significance of this result without

knowing more about the physical mechanism that underlies the observed energy dispersion. One

can argue that this result indicates that the dominant contributor to wDOS is dye-host interactions,

and that dye-dye interactions play only a small role (since no doping dependence was observed).

However, many other factors may contribute, and even this seemingly straightforward

conclusion may prove incorrect. We do, however, note that the wDOS we calculate are

comparable to the wDOs calculated by others (e.g [18]) for conducting states in amorphous
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organic materials, which we consider to be the most comparable system for which wDOS values

have been determined.

In addition to wDOS, the fitting process also yields a measurement of RF and we find that

as the doping increases, RF decreases, from 41 A for the 0.5% doping level to 22 A for the 4.7

% doping level. We argue that this trend arises from two factors: a doping dependant reduction

in the absorption-emission overlap, and a doping dependant reduction in the DCM2 quantum

efficiency. To understand this, we first recall from the introduction the expression for RF,

R = 3  K 2qD 4 4 FD A

47 co n

Here we are only interested in the trends, so we drop the constants, to get,
-6 K2 JFD ()UA (dW

n Co

We measured that n does not change substantially with doping for the doping levels we used.

Furthermore, we expect K 2 to be approximately constant with doping since for a fully

amorphous solid state film, the average relative orientation between dye molecules is the same at

all doping levels. However, as observed in our measurements, and reported elsewhere [12-14],

increasing the DCM2 dye concentration substantially red shifts the emission spectrum. At the

same time, we find that oA remains nearly unchanged with doping. As a result, as the doping

level increases, the overlap integral between FD and 0 A decreases. For the ensemble, CW

spectra, the overlap integral decreases by about a factor of 6 from 0.5% to 4.7% DCM2 doping.

We note that this calculation should be considered quite rough because the above overlap

integral is meant to apply to the individual molecular absorption and emission spectra, while we

have used the ensemble, CW spectra.

Additionally, as reported by Baldo et al [14], the quantum yield of DCM2 doped Alq3

films decreases with increasing doping concentration. Specifically, a film doped to 0.5% should

have a DCM2 quantum yield of ~ 5 times that of a 4.7% sample. Combining these effects, we

find that to a first approximation one would expect a factor change of~ 1.8 in RF from 0.5%

doping to 4.7% doping, which is in reasonable agreement with our calculated values for RF.
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3.6 Simulation Refinements and their Effects

It is important to keep in mind the extent to which our treatment of exciton diffusion is

approximate, and the manner in which a more sophisticated model might differ from the one

presented here. In particular, in the simulation results presented above, all the DCM2 molecules

are positioned precisely on lattice sites of a square lattice. This certainly does not reflect the

actual distribution of DCM2 molecules in our films. Rather, one would expect the DCM2

molecules to be dispersed randomly such that on average the density corresponds to the bulk

concentration but with some variations in the local densities. We can achieve this condition by

allowing each DCM2 site to deviate from its "home" lattice site following a spherical Gaussian

distribution. Because the Forster transfer function goes as R6 , the introduction of such positional

variations (which causes some neighbors to be closer than before and some farther away) leads

to, on average, an increase in the aggregate rate of energy transfer. Locally, this increase can be

quite dramatic, as one can see by considering a simple example. Imagine a dye site with two

neighbors, each initially located 1.0 F away. The aggregate rate of transfer is then 2/r. If we

introduce positional variations, however, and end up with, for instance, one neighbor located 0.5

RF away and another located 1.5 RF away, then the average dye site concentration is still the

same, but the aggregate rate of transfer is now,

6  
= 64.1/r0.5 1.5

a factor increase of more than 32! This example rather overstates the real effect of positional

variations in our system, where the aggregate rate of transfer is averaged over many sites, some

that, being far from the initial site, are only negligibly affected by the variations. Even so, it is

clear that the failure to consider positional variations in a film in which they are present will

cause one to compute values for RF that are too large. To determine more exactly the

magnitude of this potential error, we need to directly simulate the diffusion process in a system

with different amounts of positional variation.

In addition to positional variations, in the fitted simulation results we have assumed that

the effect of energy on the Forster transfer rate is simply to forbid transfer to a higher energy
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state and allow transfer to an equal or lower energy state. It is more accurate to say that

transitions to higher energy states are simply less likely than transition to lower energy states

because the overlap integral will be smaller (see Figure 3.6 for a schematic illustration of this

point). It is difficult to include this effect in the simulation directly without knowing the

molecular absorption and emission spectra for each molecule (as noted earlier when discussing

the general trends observed in RF .) Nevertheless, it is worth noting that if we did know those

spectra, we could reimplement the simulation to compute the correct RF for each pair of

molecules. Lacking this data, however, we are constrained to make do with a single RF and our

simple "on" or "off' energy dependence to Forster transfer. Qualitatively, if we approximate the

true energy dependence to yield a change in the overlap integral which is close to linear over the

range of energies present in the system, then one would expect the primary effect of including a

more accurate energy dependence to be a broadening of the spectra and little or no change in the

peak evolution. As a result, it would seem reasonable to conclude that though not strictly

correct, our simplified treatment of the energy dependence of the Forster transfer process should

not appreciably change our results.
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DCM2:Alq 3 PL Spectral Evolution with Time
1 n-
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Figure 3.1. Selected normalized spectra from
the time evolution of the photoluminescence of
a film of Alq3 doped with 4.7% DCM2.
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Time Evolution of Peak Photoluminescence
of DCM2:Alq3 Films
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Figure 3.2 Time evolution of the peak of the
photoluminescence spectra of Alq3 films doped
with different concentrations of DCM2.
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Comparison of Simulated Dynamic Spectral Shift
for Different Values of RF
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Figure 3.3 Time evolution of the peak of the
simulated photoluminescence spectra for
different values of the effective Forster radius.
Note that the results are scaled in energy to the
density of states width, wDOS, and in time to the
observed radiative lifetime, T.
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Comparison of Fits to Peak Photoluminescence
of 4.7% Doped DCM2:Alq, Film
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Fit Parameters
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18 A 0.187 eV

20 A 0.152 eV
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Table 3.1 Summary of optimal simulation
parameters for fitting the measurements of each
film. Note the marked decrease in~ with
increased doping, in contrast to wR, which
remains approximately constant to within our
experimental errors.
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DCM2 Doping % T RF WDOS

0.5 2.5 ns± 0.1 ns 41A± 8 A 0.134± 002 eV

1.0 1.8 ns± 0.1 ns 31 A± 7 A 0.148± 0.02 eV

2.3 1.6 ns± 0.1 ns 27 A± 5 A 0.174 ± 0.02 eV

4.7 1.4 ns± 0.1 ns 22A± 3 A 0.152± 0.02 eV
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Figure 3.5 Comparison between optimal
simulation fits (see parameters in Table 3.1) and
measured time evolution of the peak of the PL
spectra for each film.
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Figure 3.6 Cartoon illustrating why Forster energy transfer
is more likely to occur from higher to lower energy sites than
vice versa. On the top are emission (dashed lines) and
absorption (solid lines) spectra for two molecules, one with
"high" energy and one with "low" energy. On the bottom
are overlaid the emission-absorption pairs for the two
directions of energy transfer. Observe that the overlap is
higher for high to low energy transfer.

66

C,)
Co



4. Conclusions

4.1 Solid State Solvation

In this thesis we have presented data demonstrating a controllable shift in the emission

spectra of the red laser dye DCM2 which can be attributed to the "solid state solvation" effect.

The essential development of the solvation theory assumes only a dielectric response by the

surrounding medium, and therefore the solid state solvation effect should be present in all

amorphous organic solids (by virtue of the c in such solids always being greater than in a

vacuum). Therefore it is critical to take into account solvation effects when trying to predict the

energy structure of molecules in solid films. We also described the possibility of static fields

being present in the film. In the PS:CA:DCM2 system, we do not find it necessary to invoke

such mechanisms, and indeed consider the marked increased in , with CA doping as an

indication of the relatively high steric mobility of the CA molecules, which would tend to limit

the presence of static fields. However, this need not always be the case. Perhaps for larger

dopant molecules, or for a different host, the steric freedom could be reduced, allowing for the

formation of large static fields. Therefore it may be possible to produce substantial spectral

shifts without any significant change in c. Further work must be done to determine if this can be

experimentally observed, and whether or not the static field mechanism can be clearly

distinguished from the solvation mechanism (aside from the different c trends).

There are a number of ways this might be accomplished. For instance, in our material

system, we have used a polymer host. This was done because we wanted to use trace

concentrations of DCM2 (to eliminate any DCM2 concentration effects), and therefore were

constrained to spun films (where the relative concentrations are determined in solution), which

are generally of higher quality for polymers than for small molecule materials. Nevertheless, it

might be useful to perform the same experiments with a non-polar small molecule material like

TPD, because in such a film the degree of steric freedom of the various film components might

be different. To distinguish the static field shifts from the solvation shifts, we have two

possibilities. First, we note that for a static field, the spectral shift is the same for absorption as

for emission. On the other hand, for solvation, except in the pathological situation where,
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Agg - Aope = AAe + AOpg

the absorption and emission shifts are of different magnitudes. Therefore, by looking at both the

absorption and emission shifts with different concentrations of dipolar dopant, one should be

able to differentiate the two types of spectral shift. However, because spectral shifts may also

arise from intrinsic changes in the ground and excited state wavefunctions, it may not be

reasonable to assume that the emission and absorption spectra shift in lock-step the way the

simple static field theory would predict. (This issue is mediated in the standard solvation theory

by the fact that the theoretical relationship between the absorption and emission shifts is not

directly considered. Rather, they are simply treated as two processes that can be related to , and

n, through A and AO,. By imposing a relationship between the two shifts, we make the test of

the static field theory more stringent, and it may not continue to be valid.)

We might, however, take note of the fact that the static shift is not time dependant, and

try to perform a dynamic measurement which separated the two. In a general system, we have a

polarization shift (characterized by n within the solvation formalism) occurring on the same time

frame as the electronic transition, followed by the Franck-Condon shift, followed by the "slow"

solvation shift (characterized by c). Practically, we can only hope to experimentally measure the

dynamics of the "slow" solvation shift, but with such a measurement, we could distinguish

systems with traditional solvation response and static field shifts. A time resolution in the range

of 1 to 10 fs would likely be required, however, so a different approach from a streak camera

would be required.

4.2 Exciton Diffusion

We have presented measurements of a dynamic spectral shift in the emission of DCM2

doped into films of Alq 3. We have shown that this phenomenon can be explained as a side effect

of exciton diffusion between DCM2 sites, and that through our simulation of the process, one

can obtain a measurement of the Forster radius, RF , and the width of the density of states, wDOS.

We found that wDOs remains approximately constant, and that RF increases with decreasing

doping. We demonstrated how this trend in RF is plausible, but further work must be done to
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determine if this trend can be quantitatively supported. One of the methods by which this might

be done would be to study films with even lower concentrations than those used here, as for

concentrations below ~0.5% the quantum yield, rj, of DCM2 saturates at about -1. This should

lead to a noticeable change in the trend in RF as in this "very low doping" regime, only the

overlap function will be changing. (Specifically, we would expect RF to increase more slowly

for the same shift in absorption and emission spectra.)

Because we argue that this phenomenon is general to systems with an appreciable wDos,

measurements of other systems should be performed to determine if these results are not peculiar

to the Alq 3:DCM2 system. Also, we have not explored here the physical origin of the

broadening of the density of states. However, as alluded to in the introduction, there is likely a

correlation with the density of dipolar molecules. This connects our diffusion work with our

solid state solvation work, in that both are concerned with changes in energy structyre to local

fields. However, in the solvation work we were interested in determining net shifts, while here

the issue is determining the degree of energy dispersion.

One of the difficulties of the diffusion measurement, however, is that relatively large dye

concentrations are required to obtain appreciable diffusion, but at the same time, in our DCM2

system, the dye concentration itself clearly has a strong effect on the DCM2 properties (as noted

when discussing the spectral shifts and changes in quantum yield). We would like to work with

a system in which the ground state dye molecules did not interact with one another, even in

relatively large concentrations. One possible approach would be to find a dye molecule with no

ground state dipole moment, but a large transition dipole moment (i.e. a large excited state dipole

moment.) In that case we would not have to worry about the influence of one dye molecule on

the other, but would still observe large spectral dispersion due to internal static fields. In such a

system we would then controllably introduce a third material (e.g. CA) to modify the dipole

concentration and thereby modify the energy dispersion. For such a measurement, it might prove

useful to employ a non-polar host, like TPD, instead of Alq 3.

In addition, further work should be done to determine the specific effects of positional

variations, as discussed in Section 3.6. We could trivially include such positional variations into

our simulation by introducing random deviations from the lattice vertices with a uniform

distribution for the angular component and a Gaussian distribution for the distance, such that,
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P=e -41og2(rwde,

is the normalized likelihood of deviating a distance r (in intersite spacings) from the vertex. (In

this form wde, corresponds to the FWHM of the Gaussian.) To avoid artifacts resulting from two

molecules being anomalously close to each other (i.e. separated by less than a molecular

"diameter") one would likely want to enforce a minimum separation distance. In addition to

illuminating the relationship between microscopic film disorder and bulk film properties,

determining the effects of such positional variations would also provide a better sense of the

accuracy of our calculation of the effective Forster radius and density of states widths.
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