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Abstract

This thesis contains a survey and a general quantitative analysis of a family of devices
based on magnetostatic interactions between a dipole magnet and a set of electro-
magnetic coils. Theoretical foundation is laid down for analyzing the dynamics of
magnetic dipole in a non-uniform magnetic field, computing the field due to a current
distribution in a set of solenoidal coils, and deriving optimal control strategies based
on the geometry of the field sources, the dynamics constraints of the problem, and on
the considerations of overall power efficiency. The issues of technological feasibility
and fundamental limitations of the proposed mechanisms for magnetic manipulation
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in the literature. Major technological challenges are identified and recommendations
are made for future research and developments in the area.
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Chapter 1

Introduction

Many of us have played, as children, with small magnets and acquired intuition about

some basic facts, such as that each magnet has two ends ("poles") and any two magnets

attract when facing each other in one orientation and repel in the other. We also learned

about the compass needle and its propensity to point in one particular global direction:

that of the magnetic field of the earth. Furthermore, we discovered how magnets move

about in space when their neighbors are displaced and how some nonmagnetic objects

start acting like magnets in the presence of one. All these phenomena are manifestations

of magnetostatics, a field that has been studied for many centuries, long before

magnetism was related to electricity via Maxwell's equations, before its nature was

elucidated with the aid of the special theory of relativity and before its origins in matter

were described with quantum mechanics.

The basic empirical principle of magnetostatics is very tangible and relevant to our

everyday experience: it is called "action at a distance." One magnet exerts a torque and a

force on another magnet in its vicinity; the torque acts to align the two magnets in a

parallel orientation and the force acts to pull them together. Magnetic forces, thus

produced, are arguably, the most convenient means of manipulating electrically neutral

7



objects at a distance: they directly involve no friction and require no medium for their

transmission, e.g., no physical connection between the interacting components.

1.1 Overview

The idea of magnetic manipulation has been utilized in various forms in a host of

important applications, most notable of which are:

1) Magnetomechanical conversion machines (motors and generators)

2) Pulsed eclectromagnetic power production (dynamo machines)

3) Magnetic bearings and suspensions (including atomic traps and wind tunnels)

4) Decceleration of an electric conductor crossing magnetic field (brakes)

5) Levitation of magnets over a magnetic or conducting track (MAGLEV trains)

All of these applications make use of the same physical idea, but none pursue it directly.

The idea consists of positioning and moving a magnet in space by adjusting the field

sources, which effectively serve as actuators. It corresponds closely with the basic

intuition that we gain from playing with toy magnets. However, in spite of the simplicity

of this idea, there are surprisingly few systems that are specifically designed to embody

it. Of the applications listed above, those from the third and fifth categories can, in

principle, serve the purpose. However, the former go only part of the way because they

always maintain a magnet in the same place and the latter do not fit the description

because the magnet that is being moved comprises an integral part of the actuating
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system. The subject matter of this thesis is concerned with a class of systems,

collectively termed magnetic manipulators, whose sole purpose is to produce a specified

motion of a dipole magnet in a contained region of space, where the dimensions of the

dipole are much smaller than those of the containment region. The objective of the

present study is to illuminate their principles of operation and outline their capabilities

and limitations, in the most general setting possible.

1.2 Background

1.2.1 Problem Definition

The fundamental principle of magnetic manipulators is that magnetic fields and their

gradients, typically generated by large electromagnetic coils, can be used to produce

torques and forces on a small permanent magnet in order to guide it along the desired

trajectory inside the operating volume. The design of such systems ultimately depends on

the intended regime of motion, the operating constraints, the specified performance

criteria, and the geometry of the problem. Accordingly, they can be broadly categorized

into magnetic levitation, rotation, and propulsion systems, depending on the type of

motion; one-, two-, and three-dimensional, small- and large-gap, depending on the

geometry; and, static (DC), quasi-static (low frequency), and dynamic (AC) depending on

the actuator control bandwidth.
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This list is by no means exhaustive, but even so, it spans a whole gamut of different

dynamical behaviors and requirements. Examples of levitation systems include magnetic

suspension and balance systems (MSBS) used to measure aerodynamic forces and

torques on model planes suspended in wind tunnels and frictionless magnetic bearings

used in ultracentrifuges and in various diagnostic systems. The former is inherently a

large-gap quasi-static 3-D application, while the latter is typically designed for small gaps

and 2-D AC fields. Homopolar generator (dynamo) is an example of a static small-gap

two-dimensional magnetomechanical system where current pulses are produced on the

surface of a metallic disc rotated inside the bore of a magnet. Exactly the opposite effect

is achieved in electric motors, where magnetic field is rotated in 2-D to produce

rotational motion of the shaft. Examples of translational 1-D systems include magnetic

braking, dipole suspension, and particle acceleration systems. High-speed ground

transportation of magnetically levitated vehicles (MAGLEV) exemplifies a 2-D

translational system that exists in both AC and DC configurations. The common trend is

for AC systems to be small-gap and usually confined to rotation in a plane while

translational systems are mostly DC and typically low-dimensional.

1.2.2 Technical Challenges

The most rare beast in this menagerie of magnetic systems is a large-gap configuration

where a time-varying field is used to produce translational motion in several dimensions.

This rarity can be attributed to some inherent problems in energetics and controllability

of such systems. Transmitting forces across large gaps typically requires powerful field
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sources, and the intrinsic properties of the magnetic field, dictated by the Maxwell's

equations, further complicate the matters by precluding the possibility of concentrating

useful energy in a localized region of space.' Most of the existing sources of strong

magnetic fields are DC because the time-varying systems dissipate a lot of energy in the

form of heat. The use of superconducting materials in the construction of electromagnets

alleviates the problem to some extent, because of the tremendous reduction in the amount

of resistive dissipation.

However, a host of new problems arises because the superconductors must be kept at

extremely low temperatures (<12*K for types I&II, - 754K for HTS) to maintain their

superconducting state and the heat produced as a result of inductive AC losses and eddy-

currents must be removed faster than it is generated. The capacity of the cryogenic

cooling systems thus determines the maximum allowable rate at which the fields can be

changed, and this limitation is typically stringent enough to seriously hinder the

development of any practical superconducting AC system. However, recent advances in

the superconducting technology have improved the situation considerably, and the

emerging generation of large gap superconducting AC systems is holding a great promise

for many potential areas of applications, such as medicine, manifacturing, and aviation.

Alongside the problems with energetics, another set of issues arises in the area of control

of such systems. The open-loop dynamics associated with magnetic fields and forces is

Potential energy of the magnet is proportional to the strength of the magnetic field. In the absence of
time-varying currents inside the operating space, the field must be a solution to the Laplace equation,

AB = -V x (V x B) =0, and thus a harmonic function. As such, it cannot have highly localized spatial

gradients. Thus, the field and the energy must remaing large in the vicinity of their maxima.
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inherently non-linear and unstable. In fact, it is impossible even to achieve stability at a

single point without the use of a feedback control or some non-magnetic damping forces.

The reason is another consequence of Maxwell's equations, as conveyed in the celebrated

Earnshaw's theorem.2 Active suspension systems, such as MSBS, are optimized for

using feedback position control optimized for a single spatial location of equilibrium.

However, for a translational system, the magnet is allowed to move inside the operating

volume and adequate control of the forces and torques must be achieved at all the points

along its trajectory. For large volumes and dimensions higher than one, this consideration

complicates the problem tremendously through the "curse of dimensionality" - the term

coined by Bellman for this kind of problems in optimal control. As a consequence, there

are very few magnetic systems, even resistive ones with small gaps, that are capable of

producing controllable motion along any trajectory within a contained volume of space.

1.2.3 The Roadmap

In order to investigate the issues presented above and to assess their solvability in a

systematic way, we will focus our attention on the subset of such systems consisting of

two-dimensional quasi-static large-gap manipulators. The first qualifier suggests that the

motion of a magnet is either restricted to a surface or can be approximated as planar for

any sufficiently long period of time. The second implies that characteristics of the field

2 The gradient of magnetic force is zero V -F =V -(p -V)B = -V -V x{V x (p x B)} =0 and the same

is true for the torque V -T =V .(pxB)=B.(Vxp)-p-(VxB)=0-0 =0. If an equilibrium

stable, the forces and torques must point toward it on the surface of some surrounding sphere. However, by

Gauss' theorem, 4F. ds = ffv -FdV = f0 dV =0 and likewise for the torque. There will

always be instability to some lateral displacement or rotation of the body about any position of equilibrium.

12



sources (such as currents in the coils) are adjusted slowly enough that their controls can

be considered as step inputs with smooth ramping between the constant levels. Finally,

the third qualifier can be interpreted as the requirement that the distance between the

manipulated object and the source of the field must be at least an order of magnitude

larger than the size of the object itself. The reasons for selecting this particular category

of magnetic manipulators are as follows.

Planar motion is chosen for simplicity of vizualization and computation: 3-D is too

complex, while 1-D does not demonstrate some essential aspects of motion, such as

"skidding" (moving sideways). However, some approximate analytical calculations will

be carried out in 1-D, where appropriate, while certain important issues, such as those

concerning static magnetic traps, will be discussed in the context of a 3-D problem

because they do not manifest themselves in the lower dimensions. The choice of the

quasi-static regime of motion represents a tradeoff between the ability to direct the

magnet along any desired trajectory and the constraints imposed on the actuators and

sensors by a high-bandwidth control. Furthermore, this regime represents well the

dynamics of motion in a damping medium and the control dynamics of a human operator.

Finally, the restriction of the frequency of inputs to a low range (- 1-10 Hz ) makes their

calculation more tractable and facilitates both the design and analysis of the control

algorithms and their real-time implementation on a micro-controller.

Accepting the practical necessity of the above limitations, we will otherwise consider the

problem of propulsion in the most general terms. No a priori assumption will be made
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about the geometry of the problem; thus, all directions of motion will be considered on

equal footing and the dynamic requirements will be the same for all spatial positions and

orientations of the magnet. The angular and radial symmetry of the problem, together

with the 2-D restriction, suggests a circular shape for the operating volume. In order to

make possible a wide repertoire of motion trajectories, the size of the operating volume

has to be sufficiently larger than that of the magnet itself; hence, the large-gap criterion:

r / 1 > 10:1, where r is the radius of the circle and / is the length of the magnet.

Likewise, no specific assumptions will be made about the torques and forces exerted on

the magnet, other than that their magnitudes and rates of change will be limited by some

maximum achievable values. Although these limiting values will have to be chosen

somewhat arbitrarily, their relation to the capacity of some real systems of actuators and,

in particular, their scaling properties with the inputs will be discussed in some detail.

Notwithstanding the generality of approach, certain performance measures corresponding

to some specific practical considerations, will be applied in the analysis and optimization

of different dynamical scenarios, so that some configurations of forces and torques will

be deemed more desirable than others. For example, the degree of allignment of the

magnet with its direction of motion will be accounted for in such analysis and the issues

of power efficiency will be investigated in the context of a particular system of actuators.

For the purposes of this analysis, the system of actuators will be modeled by a set of

circular electromagnetic coils, all centered on the plane of motion of the magnet, and

oriented perpendicular to it. Each coil will be driven by an independently controlled
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power supply, represented as a voltage source in series with some finite resistance. The

resistance of the coils themselves will be neglected and only their inductive properties

will be considered. Some of the calculations will account for the finite cross-section of

the coils while others will treat them as single windings. In either case, the thickness or

cross-sectional geometry of the coils will be considered fixed; however, the radius and

orientation of each coil, as well as the coordinates of its center on the plane of motion

will be adjustable for optimization purposes, subject only to the constraint that the coils

do not overlap in space and do not intersect the operating volume.

For the purposes of dynamic analysis, such a model should prove general enough to

encompass not only a variety of resistive and superconducting electromagnets, but also

some permanent magnet assemblies and combinations thereof. More comprehensive

models that include, for instance, the ramp-rate limitations of superconductors and the

limits on the capacity of the power supplies, will be in order when the dynamics,

constraints, and performance criteria of a particular system are specified in more detail.

The present analysis should be applicable as a starting point in the design and evaluation

of such a system.
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Chapter 2

Dynamics of Magnetic Dipole

2.1 Dipole Model of a Magnet

If the dimensions of the manipulated permanent magnet are very small compared to the

size of the coils, the former can be idealized as a point dipole, whose magnetic properties

can be summarized in a single vector, the total magnetic moment, p. Its direction is the

same as the north-pole orientation of an equivalent bar magnet and its magnitude is

proportional to the magnet's strength and volume. This vector represents the magnetic

field generated by the magnet itself, due to its intrinsic magnetic property, called

magnetization, M, and defined as the magnetic moment density,

p = JMV dV. (2.1)

Magnetic properties of materials, described by their magnetization, depend on two main

atomic effects, which can give rise to large local magnetic fields: the orbital motion of

electrons around the nucleus and the intrinsic spin of the electrons. In the presence of an

ambient magnetic field, H, these effects manifest themselves differently and produce a
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range of magnetic behaviors in different materials. The relationship between the

magnetic field, H, and magnetization, M, is captured by the material property called

susceptibility, ,,, defined as

M=,(H)*H . (2.2)

Magnetic susceptibility varies widely for different materials and, in general, depends in a

complicated way on both the present field, H(t), and on its past values {H(r) r < t}.

For heuristic purposes, materials are broadly categorized as diamagnetic, paramagnetic,

andferromagnetic. Diamagnetic materials have negative susceptibility and tend to push

themselves toward the regions of lower magnetic field. Their magnetization is usually

small compared to the strength of the external field. This group includes water, organic

compounds, and some metals, such as bismuth, copper and silver. Paramagnetic

materials have permanent magnetic moments that tend to align themselves in the

direction of the external field. The total magnetic moment points in the field direction

and varies nearly linearly with the field strength, yielding a relatively small positive

constant susceptibility coefficient. This group includes several gases, such as oxygen,

and light metals, such as aluminum and sodium. Unlike diamagnetics, paramagnetic

substances are strong field seekers - they tend to push themselves in the direction of the

field gradient. For the purposes of magnetic manipulation, the susceptibility of both

diamagnetic and paramagnetic materials is too small (- 10-) to produce forces and

energy densities of sufficient magnitude for most practical applications.
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By contrast, ferromagnetic materials exhibit exceptionally strong magnetization

(104 -106) and several other important properties which make them the primary choice

for the role of magnetically manipulated objects. Ferromagnetics are characterized by

microscopic domains (101o- 1015 atoms), where all magnetic moments are fully aligned,

due to certain quantum-mechanical properties of their crystalline structure. The total

magnetization of the material is a vector sum of each domain's magnetization. When the

orientation of the magnetic moment of each domain is at random, there is no total

magnetization in the bulk material. However, with the application of external magnetic

field, all domains gradually align in the field direction.

Unlike the paramagnetic interactions, this effect is emphatically non-linear and depends

strongly on the structure of the domains and the evolution of the fields. When a magnetic

field is applied, the domains change and their walls displace correspondingly across the

crystal until they reach an imperfection or a grain boundary in the lattice. These

imperfections introduce a resistance to falling back to the initial state when the external

field is removed. Thus, some induced magnetization, called magnetic remanence B,,

persists in the magnet in the absence of the applied field. Furthermore, if the field is then

reversed, it has to reach an appreciable value, called coercivity H, in order to cancel

remaining induction in the magnet. In general, magnetization and relaxation take place

along different curves in the B-H plane: the phenomenon known as hysteresis.

The existence of persistent memory in a ferromagnet and the way in which microscopic

imperfections of the lattice influence the magnetization process on a macroscopic scale,
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suggest an interesting possibility of controlling the global magnetic properties of a dipole

and hence, its potential energy in the presence of a large but uniform and constant

magnetic field, through local alterations of its mechanical or chemical structure. This

would be akin to the operation of a MOSFET transistor, where small voltage applied at

the gate terminal can control large currents flowing between the drain and the source. In

this case, the controlling variable may be a microscopic difference in chemical potential,

mechanical stress, or local temperature gradient, and the controlled variable would be the

potential energy of the dipole in a large ambient magnetic field. By exploiting such

possibility, one can, in principle, avoid the problem of large changing magnetic fields by

creating the same effect at the local level of the dipole. Furthermore, in this scheme

several dipoles can be controlled independently in the same field. However, for the time

being, we shall consider the properties of the dipole to be constant in space and time and

the dipole dynamics to be determined exclusively by the magnetic field and its spatial and

temporal derivatives.

2.2 Dipole Dynamics

Magnetic forces and torques exerted on the magnet can be derived most easily on the

basis of virtual work formalism. As a starting point, we consider the expression for the

potential energy of a dipole in the presence of magnetic field,

U= -p -B. (2.3)

The energy, in general, depends on several independent parameters, xi, so that the energy

increment can be expressed as
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U = 4xi . (2.4)

By the principle of conservation of energy, this increment corresponds to the work done

by the generalized force, F, and related to the change of parameters x, via

-SU =9W = IF,x . (2.5)

Therefore, the force components can be expressed as

_ BU
F. (2.6)

When the parameters are chosen to be the cartesian spatial coordinates, {x,y,z}, the

force vector becomes

F =-VU = V(p -B)=

JB] [ aB+ B B] (2.7)

S IZ,,,P as I Xax PYax PZax e [..]Y+ .

In the most general case, the dipole moment, p, is not fixed in space and can assume an

arbitrary angle 0 with the field vector, B. The dipole differential can then be defined as

dp = d~xp (2.8)

and the corresponding energy variation can be expressed as

dU=-p-dB-dp-B, (2.9)

where the first term corresponds to the translational motion in the field gradient, while

the second term corresponds to the rotational motion and leads to the following definition

of the torque

T=pxB. (2.10)
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Indeed,

dp. B=(d~xp)- B= dO-(pxB)= d.T. (2.11)

Thus, a dipole in a magnetic field tends to rotate to align itself with the direction of the

field, thereby acquiring its minimal potential energy; it is then accelerated most

effectively by the field gradient.

2.3 Translation vs. Rotation

A natural question at this time would be whether rotational motion precedes translation

entirely and, if not, to what extent is the dipole moment aligned with the field when it

begins to move forward. To answer this question definitively, we need to specify the

external dynamics: the non-magnetic forces and torques acting on the dipole. For

example, if the magnet is constrained to point in a certain direction, it need not align itself

with the field and, vice versa, if the drag on the magnet is much larger than the rotational

damping, there will always be perfect alignment before any translational motion ensues.

These issues are not that far-fetched and deserve a serious consideration in the context of

a real problem. However, for the present purposes, we will ignore all external dynamics

and analyze unconstrained motion of a dipole in the absence of any damping medium.

Assume the following parameters for the problem:

* The dipole is a circular cylinder, magnetized along its central axis, with

density p, length 1, radius r, and magnetization M.

21



0 Derivative properties of the dipole are: its mass m= p -V, magnetic

1 2)2
moment p = M -V, and the moment of inertia I= Im l'

m-1 2

12

* The magnitude of the magnetic field at a point s is denoted by B =11 B(s) 1

and the magnitudes of the associated force and torque are F and T, respectively.

* The center of mass of the dipole is located at point s and its angle with the field

vector B is 9. In unit time, the dipole is translated in space through the distance

/
of 3s and rotated through the arc of length A = - -p.

2

* To answer the original question, we define a dimensionless parameter

Ss ds 2
7=---.

2 dp l

7 >>1y«~1

(2.12)

=> rotation happens first

=> translation happens first

=> rotation and translation occur

on the same time scale.

In order to discuss the dynamics, we express y in terms of the second derivatives in time:

ds d 2 s./ d2

=7t -y.
d~p t
ddVd2

/

(2.13)

(2.14)

For translational motion,

22
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I F V(m-B) V (MI-I -KB-cos4p)
S m p-V p .\

= M -cos i VB
p

For rotational motion,

T p-B-sinp

I m-12/12

M.\-B-sinq
p.. 2 /12

(2.16)
12 M -sin (B

p.1 2

V 4-cos(o-||VB -.
x=-.-6 Zsino B

1 Cot. 11 VBI|
6 B

(2.17)

In the spirit of dimensional analysis, we define the critical length, D, via

(2.18)IIVB 1 - B/D.

r - (D)cot p.

Since we defined a large-gap system is defined by

/ 
1

D 10'

translation and rotation will occur on the same time scale if

cot (P =10

(2.19)

(2.20)

(2.21)P~ *=cot~110 ~ = 60
30

Therefore, in the most general setting, we can assume that the magnet is aligned with the

field to within - 6' before the translational motion becomes significant. Later on, when

23

(2.15)

Thus,

Then,



we compute the expression for the magnetic field as a function of spatial coordinates, this

assumption will be verified and refined.
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Chapter 3

Magnetic Field of a Coil

Throughout this work, we will make use of four different expression for the magnetic

field of a circular coil. First, we will consider a single circular winding and compute the

field produced along its central axis. This consideration will yield a very simple one-

dimensional analytical expression that can be used for preliminary optimization and first-

order analysis of the problem. Then, an exact analytical expression for the 2-D field of

the winding will be presented. The intrinsic symmetry of the problem will afford a

simple extension of this result to the three-dimensional space. This expression will be

used as a computational tool for dynamic simulations; its analytical form should prove

advantageous in facilitating the real-time calculations in MATLAB and Simulink.

Next, we will model the field of a more realistic coil with finite cross-section with the aid

of SOLDESIGN: a third-party finite-element code widely accepted in the scientific

community and calibrated against experimental data. The output of the program will be

tabulated on a spatial grid and interpolated for future computations. The resulting table

will form the basis for the most accurate of our representations of a hypothetical but

realistic system of electromagnetic actuators. In particular, it will serve as the input to
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our optimization code designed to evaluate the capabilities and limitations of such a

system. Finally, the tabulated data will be approximated with a family of simple

analytical functions in order to facilitate a formal analysis of the dynamics of the system

and aid in formulation of the optimal control strategies by enabling the use of classical

tools of the Variational Calculus together with the computational techniques in Dynamic

Programming.

3.1 Axial Field of a Circular Winding

The usual starting point for calculating magnetic fields produced by current-carrying

conductors is the law of Biot-Savart:

B (s)= ,L iXr (3.1)
4z r2

and its differential form

po I-dixr (3.2)
4r r3
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Fig. 3.1 Current Loop and Coordinate System3

where

PO = 4;r -1 % is the permeability of free space

I - is the total current flowing in the conductor

di - is the vector whose magnitude is the length of infinitesimal current

carrying segment and whose direction is that of the current

r - is the vector from the field point to the infinitesimal conductor element

For a circular loop of wire of radius a carrying current I , a small segment dl produces

magnetic field of magnitude

dB = 'o I -dl

dB=-- + 2 .(3.3)4)r z2 +a'

The direction of this magnetic field is perpendicular to the line connecting dl and the

point on the axis. The components parallel to the line cancel due to the symmetry of the

problem. Integrating the perpendicular components around the circle, we obtain

dl 2 +a2B = dB = --- =in _ dl
4)r z2+a2 4)r z2+ a2
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90 a 21ra= aoia2 (3.4)

(z2+a2 2(z2+a2

We can now proceed to compute the derivatives of this field:

vB a CB -3a 2z 2foja2z
aZ (a2+z2)Y (a2+z2)X

_B 2a 3a 3  poIa (a2 -2z2) (3.6)
5a (a2 + z2 ~(a2 +z2) 2 (a2 +z2)(3

a2B 4az 5az(a2 -2z2) (3a2 -2z2)

azaa (a2 + z2)X (a2 + z2) (a2 +Z2)Y (3.7)

a (a 2 B (3a2 -2z2) 12az2  
2 la2 (3a2 -2z2)

aa aZ2 (a2+z2)2 (a2+z2)2 (a2+z2)Y

(3a4 -24a 2z 2 +8z4)2 ( a 2 + 2 )Y=3
2~i0 Ia (a2+z2)%

3.2 Rotation vs. Translation Revisited

This would be a convenient point to revive the following questions regarding the relative

time scale for rotational and translational motions of a magnetic dipole:

" What is the critical length in this problem, as defined in Eqn. 2.18 ?

* How should we modify our analysis from section 2.3 ?

* For a coil of given radius, where on its axis is the difference between rotational

and translational dynamics most pronounced ?
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The answer to the first question is,

D=VB = . (3.9)

F az I 31z

Computing the spatial derivative and setting it to zero:

aD I a2 +Z2 Z2 a2
-= sgnz-(2- =0, (3.10)

az 3 Z2 3Z2

we discover that D assumes one extremum value at z = a. Since

a
2 D 2a 2  2a 2

-~- sgnz---= 1 3 >0 Vz, (3.11)az2 3z-1 31

it is a global minimum. Therefore,

2a 2 2
D 2---=-a. (3.12)

3a 3

and

/ 3 1
y-cot .- = cot(P. (3.13)

6 2a 4a

Once again, assuming that <-, we obtain that the rotation is at least an order ofa 10

magnitude faster than translation for all angles

(PE r , , (3.14)
110 10 _

which applies to a smaller part of the circle than Eqn. 2.21, but also makes a stronger

statement. In either case, the qualitative result is the same: unless the magnet is aligned

fairly closely with the field (parallel or anti-parallel), rotation will dominate translation.

The above analysis shows that in the worst case scenario, z = a, the angular sector where

the time scales are comparable will be less than,( of the full circle.
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3.3 Coil Size Optimization

Based on the expressions for the field and its derivatives, we can now evaluate where on

the axis, the coil is most effective in creating a field or field gradient that would control

the dynamics of a dipole placed at that location, via equations 2.7 and 2.10. In order to

generalize our results for coils of arbitrary radii, we begin by expressing the field and its

derivatives in terms of the dimensionless scaling factor, = z / a.

B(, a)1= (3.15)
2 a ( +1 )X

VB( ,a) 11= (3.16)
2 a2(2 +1)Y2

B,(t a) =p1 ) (3.17)
a2 ( 2 +1)2

Baz(,a) = -3p01 2 (3.18)
a 3 ( 2 +i)

(3 -24 2+8g4)
-[B (4,a)]= Poi (324+ I) (3.19)
aa a4(2+1)

The expressions above show that for a given scaling factor, 4, the magnitude of the axial

field varies inversely with the coil radius; that is, when viewed on the same scale, smaller

coils produce larger fields. This fact is somewhat bewildering because one's intuition

would suggest that the physics remains the same when the coils are scaled the same way.

The phenomenon can be explained as follows. A field in space exists due to the motion

of charged particles, e.g. electrons inside a circular wire. The current in the wire is
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proportional to the linear velocity of the electrons passing through its cross-section at any

given time. However, to an observer sitting at the point where the field is measured, the

current appears proportional to the number of electrons passing through the cross-section

in unit time; hence - to the angular velocity of the electrons. When linear velocity is

fixed, the angular velocity is inversely proportional to the radius of the wire, and so is the

field magnitude. For the same reason, the n,, order derivatives of the field vary as 1 n+1.

The above result suggests that for a fixed ratio of the distance from a coil to its radius,

smaller coils are more effective at producing magnetic fields and gradients. However, if

we let the ratio change and measure the distance uniformly, it becomes apparent that the

field of smaller coils also dies out faster. Thus, there is a tradeoff between efficiency in

generating a field and its absolute size, and for a given distance from the center of the coil

there exists the optimal coil radii for producing the maximum field and its gradient at that

point. We proceed to calculate these radii by setting the appropriate derivatives to zero.

In all of the following cases the derivatives are taken with respect to the actual

variables a and z even though the results are expressed in terms of the dimensionless

factor 4.

By setting Ba =0, we observe that for a given distance z between a coil center and a

point on its axis, the coil that has the radius

aB argmaXa{B(z,a)}=.I-iz =1.4z = Az (3.20)
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creates the largest field per unit current. Likewise, setting B,, = Bza = 0,

similar result for the magnitude of the field gradient:

a A argmaxa{I B,(z, a) }= -z = 0.8z =z.

Finally, the optimal

we obtain a

(3.21)

coil size for changing the field gradient is found from - = 0:
aa

8x 2 -24x+3=0 - x 12± 4.3 =1.2,03
2 -8

a A g=120z = Z .aV = argmaX {j Bzz(z,a)I1 Y21z=Z,)z (3.22)

3.4 Off-axis Magnetic Field4

The exact analytical expression for the off-axis magnetic field of a circular winding can

be derived from the magnetic vector potential, expressed in spherical coordinates as

Atp4 dl p Ia 2z2 d
A,(p,)=- -I - , _cos

4z r 4r Ip2 +2 0 1-co
(3.23)

where

e= 2apsin9/(p2 + a 2 ),

and the rest of the elements are as defined in the figure below. For p >>a (near-field),

p>> a (far-field), or sin9 0 1 (near the axis), e is small and the potential can be

approximated as
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AO = uIa2 p sin9 (3.24)
4 (p2+a22Y2

The spherical components of the magnetic field B = V x A are then simplified to

B (p,9) = 1 a (sin 9A,) puIa2 cos9
psin9 a9 2(p2 +a2 )

(3.25)
1 (pA,) pIa2 (2a2 _p2)sin 0

Boq(p,0)=- 5

p ap 4(p2+a2)Y2

Having obtained an approximate analytical expression for the field, we proceed to

compute the exact field components, based on another analytical formula. From the

symmetry of the problem, the toroidal and poloidal components of the magnetic vector

potential are zero.5 Converting the azimuthal component to cylindrical coordinates

z=psin9, r=pcos9

and introducing the parameter

k2 (z,r)= 4ar (3.26)
(a+r) +z2

we obtain

A, (z, r)= 1 I K -E ,(3.27)
)rk r ( 2)

where K and E are the complete elliptic integrals of the first and second kind, defined as

5 From Ampere's law, V x H = j and the potential is defined via H = V x A, where j is the current that

generates the field H which is related to the flux density via B = uH. Because the current is contained in

a plane, the potential is perpendicular to the plane and thus contains only azimuthal component.
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ir/ 22

K(k)= (I-k'sin2 -,2dx

0
z12 2  

2X)Y 2

0

Magnetic field components are then obtained by differentiation:

+ 2 2

(a-r)
2 + 

-2

-K+ a2 +2 E
(a-r) +Z

2 2 -Y

These formulas apply both to 2-D and 3-D problems because B has only two components

Ar = Az =0 --+ B, =0

and dependence on 9 is removed by rotational symmetry: B(z,r,O) = B(z,r) VO.

values for the elliptic integrals are tabulated and easily obtainable on a computer.

The

For

that reason, equations 3.26 - 3.29 will form the basis for an exact numerical (MATLAB)

simulation, which we will introduce in the next chapter.
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Bz(z~r)= = -I ~A) l(a +
r ar 2)L

B,.(z, r)=-= --- [(a+ r)az 2yr r

r)2 +z2]r K

(3.29)
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Fig. 3.2 Magnetic Field of a Current Loop'

3.5 The Field of a Thick Solenoid

This section is intended as a brief reference to the simulation software used for field

computations. Our purpose here is to demonstrate how the fields were produced and to

comment briefly on the results. The code that we chose for our computation is

SOLDESIGN. It is a general purpose program for calculating and plotting magnetic

fields and Lorentz forces for a system of coaxial, uniform current density solenoids. It

was designed and tested at the Plasma Fusion Center at MIT. There are several versions

available both for the VAX cluster system and for PC. We used the PC version, which is

simplified via reduced dimensions and a lack of graphics, but is nevertheless perfectly

adequate for our purposes.
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Both the input and output to the program are passed in files of a certain format. The

input consists of a sequence of commands that prescribe the geometry of a solenoidal coil

and either the overall current density or the total ampere-turns of current flowing through

it. When viewed in cross-section, the coil is represented by two rectangles of equal sizes

and at equal distances from the origin. (i.e., the center of the solenoid) The geometry is

defined by specifying the coordinates of the lower left corner of the left rectangle, its

thickness in the x- and y- directions (the radial and axial builds), and a symmetry

parameter that allows to include certain reflections of the coils. (e.g., a split pair) The

output consists of the coordinates of the field points (the spatial grid), the flux, and the

components of the magnetic flux density. A Gaussian quadrature algorithm is employed

to integrate the flux and flux density components azimuthally around the perimeter of the

coil. Additional details can be obtained from the SOLDESIGN User's Manual available

at the Plasma Fusion Center at MIT.

In our setup, the coil is a solenoid of radius 60cm (the average of the inner and outer

radii) with square cross-section of 8 cm on the sides and a total current of 500kA-turns

flowing through it. The field is computed on a rectangular grid of 61x61 points with the

corners at (-31,6), (29,6), (-31,79), and (29,79) cm measured away from the center of the

coil. The overall arrangement contains four such coils positioned along the sides of an

80cm square. Because our goal is to analyze the performance of a multi-coil system, we

are considering only those regions of space where more than one coil can make a

significant contribution to the total magnetic field, given the maximum allowable current

levels. Therefore, the operating region does not include 6cm strips adjacent to each of
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the coils, because inside these strips, the closest coil dominates all others and the problem

of controlling the fields effectively reduces to one dimension. For the multidimensional

problem that we are considering, the fields of all the coils are superposed and scaled by

their respective current levels. In a later section, we will define how the field values

computed for one coil are weighted, rotated, and superposed to produce the fields in a

multi-coil arrangement.

3.6 Analytical Approximation

The finite element code presented above produces the most accurate result of all the other

methods considered. However, it's disadvantage is that the field values are computed on

a discrete spatial grid and a continuous interpolation scheme is required to calculate the

fields at all other points in the operating region. There are many general numerical

techniques available for that purpose, but it behooves us to attempt a specialized

approach by approximating the field on the entire spatial grid by a single analytical

function with relatively few parameters. Some precision is necessarily compromised in

the process, but the benefits outweigh the losses. First, the computation time is shortened

dramatically due to the significant reduction in the complexity of the problem. Second,

the resultant expression is simple enough to facilitate analytical approaches to the

dynamical analysis and control strategies. In particular, the state-space system of

equations can then be expressed and analyzed in a functional form.

There is no reason to expect that dynamical behavior of the system will actually conform

to a certain known elementary function; in the most general case, we will merely have a
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table of values. A standard approach in such situation would be to approximate the table

with a series or an integral of some simple and well-behaved basis functions. However,

there is no guarantee on the rate of convergence of these sums, even if the data is

reasonably orderly. Furthermore, such representation will not likely be sufficiently

intuitive to contribute to the qualitative description of the system. The approach that we

have chosen is designed to reflect the qualitative features of our system. For that reason,

it is less systematic and, potentially, less precise than a quantitative method. However,

we will demonstrate with our approach that considerable numerical accuracy can be

achieved without significant increase in the complexity of the model.

3.6.1 The Radial Field Component

The output of the SOLDESIGN is shown in the figure below. The mesh is made crude

for enhanced visibility of the individual waveforms. The field is shown in Tesla.
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Fig. 3.3 Radial Field component

The shape of the mesh lines suggests that the field is exponentially decaying in the axial

(y-) direction and follows an odd-power polynomial in the radial (x-) direction. Focusing

on the particular mesh lines, we observe that the exponential curve also has a peak and

appears to consist both of the decay function and of its derivative. This type of behavior

is characteristic of the critically damped systems, that have time evolution

f (t) = p, (t) -e-'I'. For simplicity, we will limit our consideration to the first- and

second-order polynomials.

B(x, y) = po (x)e~'l'* + pi (x)ye~'l'' +p,2(x)y2e-,. (3.30)

........ . ................. .
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Alternatively, we can first look at the polynomials in x. A typical profile is presented in

the figure 1.3. The function appears anti-symmetric around the B-axis and its slope near

the origin is sufficiently non-flat to suggest a low degree polynomial, like 3rd or 5th order.

Radial Magnetic Field Component Along the Coil Axis
1.5-

0.5-

0 -

-0.5-

-1-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
y, cm

Fig. 3.4 Radial Field Profiles

Because polynomials are easier to approximate than the product of polynomials and

exponentials, we have chosen to model the field as

B,(xy) = co(y)x 5 +c1(y)x' +c 2(y)x (3.31)

Therefore, for each value of y = y* we approximate Bx (x, y*) by a polynomial of the 5 h

degree in the odd powers of x. The algorithm to retrieve coefficients {cO,c 1,c 2} is

MATLAB's non-linear best fit, nlinfit, based on Newton's method. It is convenient to
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use when the functional form of the approximation is well known and is neither a pure

polynomial nor an invertible function of one. (such as eP(x)

Radial Magnetic Field, T

0.5

-0.5 -

-1-

-0.2 -0.1 0 0.1 0 .2 0.3
Axid Istaice x, m

Fig. 3.5 Radial Magnetic Field (Radial Slice)

The function nlinfit requires four inputs: the values of the independent and dependent

variables; the functional expression relating the two, with unknown but adjustable

coefficients; and the initial values of the coefficients. The nature of the method is such

that its performance depends substantially on the quality of the initial guess of these

coefficients. Therefore, we have adopted an iterative/recursive scheme where the

coefficients are first iterated through a crude list of plausible values and the most accurate

representation is chosen. Then, starting with the corresponding initial values, the

program is run recursively, where the answer from the previous iteration is taken as the

input to the next one. The entire procedure is then repeated for each value of y, so that

the coefficients are themselves functions of y, as shown in Eqn. 3.31 and in Fig. 3.6,7.
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Selected field lines and their approximations

1 -
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Fig. 3.6 Radial Field Approximations

As expected from the above analysis, the coefficient curves resemble impulse response of

a critically damped system - that is they appear like a product of exponential and

polynomial functions of variable y. The fitting is done the same way as for x, with the

exception that a different functional relationship is chosen to estimate the coefficients.

co and c2 are estimated with f(y) = ae-'+ aiye-kIY, while cl is estimated with

g(y) = boe~"'*+ bye-"' + b2y2eM2y. In total, B, (x, y) is represented with 14 numbers

and has the form:
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B,(x, y) = [aO e~kO*y + aolye-k* ] + a10e-oY + a,ye-kiy + a12 y 2e-kl2y 3 +[a20ek2oy + a2 1ye-ksl ]

where the coefficients are:

a00 01 a 10  1 aI 2  a 20  a 21  k k01  k10  k11  k12  k k

-1.53e4 2e3 -433 1451 -99.4 12.42 0.26 14 15 7.7 13.5 14.9 5.04 1.23

Table 1: Radial Field Coefficients

500

400

300

200- I

cO

0 0.5 1
y, cm

20

15

10

5

0

-5

c1

0 0 .5
y, cm

c2
1.2

1.1

1-

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2'
0 0.5 1

y, cm

Fig. 3.7 Radial Field Coefficients

The resulting error in the radial field is computed as e, = Bx (x, y) -,fi (x, y), where the

second term represents the SOLDESIGN field and the first represents its approximation.
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It is apparent that the error can be bounded to within 10% of its maximum value for most

of the operating region and for y > 20cm it can be further contained by a factor of two.

This result is very promising, considering that we are replacing 612 = 3721 numbers with

mere 14. With the knowledge of error bounds, we can design robust controllers that are

capable of operating with imprecise but bounded measurements of the field. In reality, if

the error in the real measurements does not exceed these 10%, the controllers would

accommodate both the error in modeling and the errors in the sensor readings.

Error bounds in the radial field component, in Tesla
0 .0 3 , ---. ... .. .- ... --. .... ...-. ....-. .....- -. .. -.-- -- --.- -.--.- -.

0 .0 2 -- --. -. .. --..- -.--.-.--..-.--.-- --.-.-

0--

-0 .0 1 - - - - - --- -- - - -- -.-..-.-.--- --.

-0 .02 - -- -- - - --.-.-.-.-. ..-

-003- - -- -- - - --- -

-0 .0 4 -. .... ...- . -- -- ... ... .. .--.. -.- -.-.-.

-0. 05

0.5 0 -0.6 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Fig. 3.8 Radial Field Approximation Error
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3.6.2 The Axial Field Component

The approach is the same as for the radial component. First, the shape of the field is

determined both in the radial and in the axial cross-sections. Then, the simpler of the two

representations is considered and its coefficients are computed as a function of the other

variable. Then, similar fitting is performed for each of the coefficients.

The axial field is represented as a mesh in Fig. 3.9.

Axial Field Component, T

1.2 ---------- ----

0 - - - - - ~- - ----0.4 -- -

1.2 0

-0.4 0.8 0.7 0.6
radial distance (x), m axial distance (y), m

Fig. 3.9 Axial Field Component

Just like the radial field component, the axial one falls off exponentially in the axial

direction. However, unlike the radial component, it follows an even-powered polynomial
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in the radial direction. Approximating the field in the axial direction with the sum of

products of exponential and polynomial functions, we obtain

B,(x,y) = ao(x)ye* (x)y + a,(x)e-kl(xY (3.32)

The coefficients are then fitted with a polynomial in the even powers of x. As shown in

Fig. 3.10, the results are not very promising because the coefficients vary sporadically

and cannot be easily approximated with polynomials. Some of them (aO and a, ) actually

vary exponentially in the steep regions and polynomially in the valley around the origin.

.4 -0.2 0 0.2 0.
X, Cm

-0.2 0
X, Cm
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-0.4 -0.2 0 0.2 0.
X, Cm10

4

0.2 0.4

15

10

5

-0.4 -0.2 0
X, Cm

0.2 0.4

Fig. 3.10 Axial Field Coefficients (axial)

Alternatively, we can first approximate the axial field in the radial direction and then fit

the coefficients along the y-axis. As evidenced in Fig. 3.11, the functions of x are all
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even and B, can be approximated directly as a polynomial in x2 . Furthermore, we can try

to normalize either x or x2 by their variances to obtain a better fit with fewer coefficients.

The procedure for polynomial approximation is more straightforward than nlinfit. First,

the Vandermonde matrix V is formed, whose elements are the powers of = x2 .

V =4,"~, (3.33)

where n is the largest power of 4 and thus 2n is the largest power of x. Then, the

coefficient vector, p, is a solution to the least-squares problem:

p = V-1 -y =(Q -R)' -y =R-1 -Q- 1 -y =R 1 .QT .y, (3.34)

where y is the vector of data points and QR-factorization (Cholesky) decomposes V into

an orthonormal matrix Q and an upper-triangular matrix R. It is, essentially, an instance

of the Gram-Schmidt orthogonalization, where

T T T .1 qv, q, v 2  q1 , v3 :

V =v, v2 v3 '' j=q q1 2  3 2v 2 qv 3  - QR, (3.35)
q3 V3

and the columns of Q are chosen so that q, is in the direction of v1, q2 is in the plane of

v, and v2, etc. The key is to make R invertible, which will happen whenever the number

of data points is greater than the degree of the polynomial and whenever the data points

are not repeated. Normalizing the data can also effect the conditioning of R and so, we

will consider the polynomials in
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{=x 2  a X and A=x2 x
std(x 2)I var(x)

The data is not centered because the coefficient functions are already symmetrical around

the origin. The least-square procedure thus projects, one by one, the powers of x onto the

data, so that at each step, the approximation error is orthogonal to all the powers

considered.

The first five terms in the polynomial expansion were sufficient to approximate the field

to within several percents of its nominal value. The coefficient functions are displayed

for three different representations of data in Fig. 3.12. Certain complications arise when

the data is not normalized. For example, there is a large spread in the coefficient values

even though, as verified experimentally, all five coefficients are needed to achieve a

reasonable fit. The first representation is thus discounted and the other two are

compared. As expected, they appear fairly similar in coefficient values, although the

waveforms in the third representation are slightly more amiable to approximation.

Therefore, the third approximation is chosen and curve fitting is performed with nlinfit

using exponential-polynomial functions of the type considered above. (Eqn. 3.32)
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The axial component of the field is then approximated as

B,(x,y) = {a0eko"' + aoyekoy}KLXJ

6

+{a1 0e-oy +a,1ye

+{a20e k2oy + a2lye k2lY}X)j

+{a3 0e k3oy + a 3lyek3lY}XL)2

+{aek4Y},

o, =std(x)= 1 D - 2

where Xfl X

x avg(x)= "ma " .
2

There axial field is thus represented with 18 coefficients. Their values are:

Table 2: Axial Field Coefficients

49

(3.36)

a0 0  a01  a10  a11  a 20  a 21  a 3 0  a 31  a 4

5.33 -0.36 -39.27 2.04 72.29 -2.92 -2.11 0.37 1.04

koo ko, kjo k, 1 k20 k21 k3O kl k4

23.81 19.35 24.19 18.12 23.89 15.16 5.40 5.36 2.54
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Fig. 3.11 Axial Field Profiles
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Fig. 3.12 Axial Field Coefficients (radial)

The error in the axial field approximation is e, = B, (x, y) - by (x, y), where the first term

represents the approximation and the second - the nominal field obtained with

SOLDESIGN. It is bounded between -0.017 and 0.004 Tesla, which is again within 10%

of the field's maximum value for the part of the operating region

with y > 20cm. Furthermore, it can be contained by another factor of two for y > 30cm.

In this case, the 61x61 grid is replaced by a total of 18 numbers, as opposed to 14 for

the radial field component. However, the error bounds thus obtained are also a bit

tighter: 0.021 vs. 0.025. Once again, it is reasonable to expect that the other uncertainties
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in the system will have at least a 10% error bound and so, the approximation error will

not be a major hurdle in the design of a robust controller.

Error bounds in the axial field component, in T
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Fig. 1.13 Axial Field Approximation Error
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Chapter 4

Control of Magnetic Manipulators

4.1 Single Input Dynamics

In Chapter 2, we have formulated the equations of motion of a magnetic dipole in the

presence magnetic field. For convenience, we repeat them here:

F=V(p -B) (4.1)
T=pxB

The dipole experiences a torque that tends to align its magnetic moment with the

direction of the field and a force that tend to accelerate it in the direction of the field

gradient. Assuming that rotational motion will entirely precede translation for any

appreciable angle between the dipole and the field, (this assumption has been quantify in

the previous chapters and also verified experimentally for a variety of dynamic scenarios)

we can approximate the dipole moment of the magnet in the force equation via

p=p -B= B (4.2)
B

Therefore, magnetic force acting on the dipole can be expressed as
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F =V LB- B = pV -- = p -VB, where B IBII. (4.3)
(B ()K

The field acting on a dipole is a function of the spatial coordinates of its center of mass.

It is also dependent on the location, orientation, and the strength of the field sources. In

our formulation, the sources are always fixed in place, so that their only controllable

attribute is their strength, which can be manipulated by adjusting the currents in the coils.

In the last chapter, we have shown that for a single solenoid, the strength of the field is

proportional to the total current flowing through the coil cross-section. Therefore, in the

most general terms, the field can be expressed as

B(s)= h(s)- i, (4.4)

where s contains the coordinates of the dipole's center of mass, i is the coil current, and

h(s) is the field for at the location of the dipole for a unit current in the coil.

If the dipole's state consists of its location, orientation, and the linear and angular

velocities, then the state evolution can be described by the following dynamical system:

s= v, rp = O

iV = F / R -V| |B1 =--V lh(s) i (4.5)
m P

d6= T / I= p x B=[P ((P) x i(s)] i
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4.2 Superposition of Inputs

The system presented above is severely over-determined because it contains only one

input, which means that the space of the achievable state trajectories is one dimensional.

In this section, we consider the superposition of several inputs to improve the

controllability of the system. For simplicity of exposition, the problem will be formulated

in two-dimensional Eucledian space; however, all derivations are presented in a general,

vector form, and so extension to three dimensions should be relatively straightforward.

The following notational convention shall be adopted. The dipole is located at a

point s in space; a particular coil of radius a is centered at c with the normal vector

oriented at an angle 9 with the y-axis; a unit-radius circular winding centered at the

origin, with the normal pointing along the positive y-axis and with current i flowing

through it, produces the field at s is described by the Eqn. 4.4.

In the frame of reference of the coil at {c,}, the point s appears to be at

coso -sinO T
s*= q_,{(s-c)}, jq, arot,= , cos ) 5 =, . (4.6)

sin9 cos9)

The field generated by the coil at s*, expressed in the coil's frame of reference, is

B*(s*) =h(s*)i=h(jq_ .s-_ -. c)i=h(_, .s-r)i, where r : 1_, -c. (4.7)

In the standard frame of reference,

B(s) = JR9 -B* (s*) = Jq, - (J_, -s - r) i

B(s) = J, -f{$9_, -(s -c)} i (4.8)
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If h(-) is approximated by a linear function,

h(s)= J -(s -so)= J -s+K, (4.9)

where

J = - (4.10)
ds g, 9,)

is the Jacobian matrix for the system, then the linearized field is

B(s) ={,- A -J/_,- s - e,- A r + 57 K} i (4.11)

={A9 -(s -c)+Ko}i,

where A 9 A R, -A - 92_,, K R -, -K.

Because differentiation is a linear operation, it commutes with multiplication by a

constant matrix or a vector. This circumstance considerably simplifies the derivation of a

general expression for the field gradient of a coil. In fact,

s* =Q_?-(s-c) and B= 3f,.B (4.12)

3S* -Js and 9B = R, -JB*.

Furthermore,

3B* = J -Ss* -i. (4.13)

Thus,

45B = JR0 -9B* = 31q - s* -i = jo -i -lf_,9 -Js -i.(4.14)

Jo
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Finally,

VB - aB - lim (4B \ 4s) = lim {(i -JO -45s). 3s~} = J9 -i
as s--40u

VB= J9i= 52 -3q_9 i (4.15)
aP

It remains to determine the scaling of the field with the radius. The following derivation

is based on the field equations for a unit winding and, therefore, is only approximately

valid for a finite-size coil. However, unless field measurements are taken at points very

close to the coil, (which are not considered in the operating region of interest) the validity

of such approximation is maintained, as has been verified experimentally. With the

scaling coordinate transformation:

p=r/a, 4=z/a, (4.16)

the field equations (1.54) take the form

(r A+) UI F2 jX1p ;B ( ,jp)- I-~A) U a- ( + + Y2 K + I-D2 _ 2 E
r ar 2)r (I-p) +2

B,. (1,p) -(1+,P) +2] -K+ 2 2 E
az 21r pp) +{

so that

Ba(z,r) = a-' B(z/a, r/a) . (4.17)

Likewise, the gradient of the field scales inversely with the square of coil radius.

Therefore,

VBa(z,r) = a-2 VB(z/a, r/a). (4.18)
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Hence, for a circular coil of radius a, centered at c, with the normal vector oriented at an

angle 9 with the y-axis, and with the total current i flowing through it, the magnetic field

and its gradient at a point s can be expressed as

Ba(s) = a(?/, {R_0 s -c)/a}i

VB'(s) = a-2 j,-( _ - (s -c)/ajetO i
as

The functional form of fi(.) depends on the method of field calculation and on the type of

the coil used. The equation is also valid for non-circular coils and, in general, for any

field source (electromagnetic or permanent), so long as the coil parameters: a, c, 9, and i

are defined appropriately.

Extending the above results to a multi-coil (multi-source) system with general parameters

=^ a , 5c, n 1 f} In=1...N 5

we obtain general 3 order tensor expressions for the total field and its gradient at some

point s in the operating region. Each 2 "d order component in these expressions represents

a matrix equation for the individual components of the field and gradient vectors.
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N

B,,,(s) =L B,(s)
n=1

VB,,(s)= " (S)
n=l as

[a,1 N 01, h .N- (s -c)/a}] [1i]

- = G-i

a N N (S-N } LNj
G

2 3i5 1
a2 %01 ( ( -(s C,)/a, -

aN-2 A Jh ~ s N N lN
LNi~ a{s 9 ' NJNJ-&Nj

4.3 MIMO Controller

Equations 4.8 and 4.20 together describe the dynamics of the multiple-input multiple-

output (MIMO) dynamical system. The equations are linear in the inputs and nonlinear

in the states. In general, they can be represented in the following format:

' )5, (4.21)

where j is the state vector, i is the vector of inputs (ii i), and f is a known matrix

whose entries are nonlinear functions of the state. Our goal is to maintain a tracking

control of the full state or of its part, which we denote as the output,

y=C-4. (4.22)

Depending on the objectives, the output may be position or orientation of the dipole, but

it can also contain velocities. We can also consider direct control of the forces and

torques controls in the same general framework, because there exists a unique forward

map from the forces and torques to the elements of the state vector, as described in

eqn. 1.1.
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The system described by equation 4.21 is, in principle, state-linearizable, if the full state

is measured precisely. This assumption is almost never entirely valid, but it leads to a

useful approach nonetheless. Since f(-) is a matrix, we can represent it in a matrix form

as f() = Q. If 2 is full rank, non-linearity in the states can be reversed and the inputs

can be computed via

i = 92-' -(-K ), (4.23)

where K is a positive-definite gain matrix designed to set the poles of the resultant linear

system

K - 0. (4.24)

If the state matrix Q is singular, the above approach has to be modified. Singularity of

0 means, in general, that the number of inputs is insufficient to control the dynamics of

the system. This may happen when there are not enough controllable field sources, but it

can also occur when the sources are sufficiently coupled. The latter situation is quite

common, but it occurs only at certain points and magnet orientations in the operating

volume where the field lines from several sources coincide or lie sufficiently close to

reduce the dimensionality of the control space. These points typically lie along the axes

of symmetry of the coil system.

For an overdetermined system the above approach is best mended by making changes to

the coil placement or by adding more coils. However, when that is impossible to do, we

have to make the best of the situation by affecting the state dynamics to the extent that it

60



is controllable with the given inputs and avoiding the regions of the state-space where

desired trajectory is unachievable. From the Pythagoras' theorem it follows that the

tracking error is at its minimum when it is orthogonal to the space of the inputs.

Therefore, by inverting the independent columns of the state matrix, (adjusting the

independent field sources) we can minimize the error to the fullest extent possible. That

is accomplish with the aid of left pseudoinverse, L (LTL) '2. It represents our best

options at inverting the singular matrix 9. The inputs, then, take the form

i = L -(-K4). (4.25)

The other scenario, which we haven't yet considered, but which is usually the most

common of the three, is that the system is underdetermined, so that several combinations

of inputs achieve the desired result. This situation typically occurs on a subset of the

operating region which contains all the desired trajectories of the dipole. Because the

number of field sources (EM coils) is usually limited by the cost and by the geometric

and power constraints of the problem, sufficient number is chosen so that all undesirable

trajectories can be controlled or eliminated, and the placement of the coils is designed in

such a way as to optimize the performance in a small subspace of the operating region

where the magnet is most likely to remain or where it is best manipulated by the fields.

Since an underdetermined system has many solutions, a certain measure of cost is

invented to evaluate and compare the quality of these solutions and to aid in choosing the

most appropriate one. The cost function, in general, depends on the particular application

and we will consider an example of such consideration in the next section; however, there
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do exist general recipes regarding desirable performance criteria, the most common of

which is minimization of the 2 norm of the input, i -ii, which is typically proportional

to the energy or power expenditure. (In the case considered below, it is a measure of

static power consumption)

The solution that minimizes the square norm of the inputs is obtained with the aid of

another "approximation" to the inverse of a state matrix, its right pseudoinverse,

R ~T (~ T) ,which is derived from the following identity: (AA T)(AA T)' =I.

The right pseudoinverse, AR , provides the shortest possible solution x' to the equation

Ax=I-y=>Ax=A{ AT (AA =yx+ AT (AAT y, (4.26)

because the difference of x+ and any other solution i is in the nullspace of A T A, and so,

it is also in the nullspace of A. Thus,

1k1 2 = x +1 +1[-X+12 1x+ 112. (4.27)

The inputs to the original problem are then computed as

i = QR -(-K ). (4.28)

If the inputs or the errors are weighted differently in the optimization process, a matrix of

weights, W, is introduced to reflect these differences. The weights are incorporated into

the state equation via Wi2i = W4 and the pseudoinverses are adjusted accordingly:

= (gTWTWg)l QTWTW
(4.29)

,R Tw T WO W )w.
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Then, the left pseudoinverse minimizes

05- ~~~ ~ i W- -) W-0 -)= W ee, (4.30)

and the right pseudoinverse minimizes i7Bi~ = (wii)T (Wii) = VIwjujuj . (4.31)
i,i

4.4 Power Optimization

A general cost function is formulated as the inverse of the Useful Work Coefficient for

the system, which in turn, is defined as the ratio of the power output to the power input.

Thus,

C =IN (4.32)
OUT

P, represents the cost of controlling magnetic field in the operating region, which is

accomplished by setting and changing currents in the coils. We will consider a simple,

resistive, coil system connected to a set of quasi-static power supplies. The "quasi-static"

qualifier implies that the sources will operate mostly in a DC mode, but can be ramped up

and down between their constant levels. This model is general enough to extend in a

relatively straightforward manner to the superconducting systems, but sufficiently

specific to capture the main aspects of the system's energetics.
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4.4.1 Input Power

Consider a pair of inductive coils each connected to an independent voltage source and

arranged in a transformer configuration, as shown below.

RI M R2

+i Li L2 + VV1 _*L 2*V2

Fig. 4.1 Solenoidal Coil Pair: RL circuit model

For each individual coil, the circuit simplifies to an L-R configuration which includes the

effects of the self-inductance, L, and the mutual inductance, M, as displayed in Fig. 4.2.

R L

_r \ -El +

+- E2 M11V r E2 M

Fig. 4.2 Single Coil: Transformer Model

The inductive voltage drops are generated by changing currents in each of the coils, via

91 = -L-J- and S2 =-M d. (4.33)
dt dt

Computing KVL around the loop, we obtain

V = 4R+L+ i2 M 12  (4.34)

PIN I = 1=
2R+ii'L+ili|M, .
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Likewise, for the second coil:

IN2 = 2 V 2 2 2 R+i2i 2 L +' 2 i'M 2 .. (4.35)

The total power input for the pair is simply the sum of the two components. Due to the

symmetry of the problem, the mutual inductances are equal: M12 = M 2 1 . To simplify the

computation, we can also consider the coils to be equivalent, so that

RI= R2 and L, = L2 . The total power is then equal to

PIN PIN IN2 = I 2V2= R(i2 + + L +v + d (iii2). (4.36)
)N2 dt dt

Generalizing the results to a multiple-coil arrangement and introducing the resistive and

inductive coefficient matrices,

RI

R _ 2 R R- I (identity matrix)

(4.37)
L4 M1 M13 L M1 M _(

M 2 L2 M :3 L M 2 :

M31 M32 L3 L

we obtain the total power input as a sum of bilinear products:

PIN kRkik 2 + dLi2 + dM,, i, i"
2 dt dt mn

= iT* _i + iT M. i'

PiN i +01

(4.38)

(4.39)
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The first term in the sum represents resistive (DC) losses corresponding to the static

power dissipation, whereas the second - represents inductive (AC) losses corresponding

to dynamic power dissipation.

4.4.2 Output Power

The output power, Pour, represents the rate at which useful work is done on the system.

In this context, the work is exerted in accelerating a dipole in a magnetic field. It

depends both on the inputs (coil currents) and on the outputs (dipole position and

orientation) of the system. By definition, the work equals the change in potential energy.

Since the force on a dipole is equal to F = V (p -B), its potential energy can be expressed

as U = -p -B. The work SW exerted in unit time St can be approximated as

SW = -SU= p -dB+dp -B, where

dp A (dd x p) and A <{p,B}. (4.40)

Taking the limit as St --> 0,

dW =p-dB+(ddxp)-B

= p dB+d (p x B) (4.41)

= p d+ d T,

where T represents the torque exerted on the dipole to align its moment with the field.

The instantaneous power output is then equal to

. dW dB dd
OUT dt dt dt (4.42)
dB ds 3B
d =VB--+
dt dt at
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where s denotes the position of the dipole center of mass and so, the first summand

represents the change in the field due to translation of the reference point (for static

fields), while the second summand represent the change in the field due to the sources.

(changing currents) Putting it all together,

ds 3B d9
OUT=p.VB--+p-+T-dt at dt

F v (4.43)

=F-v+T-&+p .
at

If the dipole is allowed to allow itself with the field (in the absence or total external

torque),

B
T =O, p||B->p = p -- , (4.44)

then

POUT = P- (B -VB) -V +L- B - BB B at (445)

. F-v+ B2} (
B dtI

The first term is proportional to the "effective" force exerted on the dipole, while the

second term is proportional to the rate of change of the energy density stored in the

magnetic field at point s.

aB d dUl
B-VBocF, B-- -a - - ,

at dt dV (4.46)
where Uoc JJ B2dV.

volume

B= gi, VB= D -i, where g and D are functions of s and 9,
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POU r [T ) i + iTgTg'

Translational cost function:

POUT (i i + i i') p
(4.48)

Rotational cost function:

-i i), +(i iIM oi i),+(i i') 4i -iU
(p xgi)-3 cos( -sin9 60 (i i)g p

I ifT=O
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Chapter 5

Conclusion

Non-contact manipulation of magnetized objects by means of electrically generated

magnetic fields is a novel technology that has great potential benefits in a variety of

application. Despite its promise and simplicity, the idea of magnetic manipulation has

not been researched or explored in a centralized way and thus far it has led to relatively

few commercial developments, especially in the area of large-gap systems. Part of the

reason for the apparent lack of progress in the area has to do with the considerable

technical difficulties inherent both in the construction of large electromagnets of

sufficient strength and operating bandwidth and in the active control of the dynamics of

manipulated objects. However, the idea is still to promising to abandon and recent

advances in the superconducting magnetic technology have helped to renew the interest

in the field.

The goal of this thesis is to provide a theoretical foundation that would elucidate and

quantify the basic operating principles of magnetic manipulation technology and that
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could serve as a convenient starting point for the new developments in the area. In the

first chapter, several major implementations of the technology were surveyed and

categorized according to their structure, size, and the intended mode of operation. A

rather broad but virtually unexplored category of hypothetical devices has been chosen

for detailed investigation and the main technological challenges inherent in their

operation were identified and addressed in a general context.

The second chapter served to provide the quantitative background necessary for the

design and analysis of the magnetic manipulation systems. Dynamics of a small

permanent magnet was studied in the context of a point dipole model and equations of

motion were developed for the interactions between the dipole and the ambient field.

The issues of the relative importance of rotational and translational motions were

investigated and theoretical prediction were formulated for some general operating

scenarios.

The third chapter was devoted entirely to the computation of the magnetic field of a

single solenoid. An accurate numerical representation of the field is of paramount

importance to any successful dynamical analysis or control design of a magnetic system.

Magnetic field was modeled for a range of simplifying assumptions of increasingly wider

applicability and complexity. Both numerical and analytical expressions were derived to

for use in the off-line and on-line field computations, and in the simulation of the

dynamical behavior of the system. Although no physical field measurements were

actually performed to verify the numerical predictions of the models, a previously
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developed and experimentally calibrated finite element code was adopted for verification

purposes. Within the scope of the operating assumptions, the various field

representations were found to be in excellent agreement with the data. In particular, a

very simple and accurate heuristic model of the fields was derived on the basis of the

finite element code.

In the fifth chapter, the crucial equations describing the dynamics of the magnet and the

structure of the fields were collected and expanded upon to provide a comprehensive

quantitative description of the complete dynamical system. A general framework was

laid down for analyzing the problem of the optimal selection and positioning of the

magnetic field sources. Although solenoidal coils were used as the primary model for the

sources, several general results were derived applicable to the coils of other geometries

and to the stationary and movable permanent magnets. A simple MIMO controller was

developed on the basis of feedback linearization technique and the concept of left- and

right- pseudoinverses was introduced to deal with the over-constrained and under-

constrained systems. Finally, a simple circuit model was developed for evaluating and

optimizing the power efficiency of the entire system.

5.1 Future Directions

The present work was intended primarily as a starting point for subsequent analysis and

new technical developments in the area of magnetic manipulation. Due to the rather

large scope of the field and the generality of our approach, we decidedly refrained from

focusing on any particular application or physical implementation of the system. In this
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section, we point out some of the areas of investigation where we believe our efforts can

be gainfully extended.

1. It would be instructive to perform a rigorous analysis of the optimal shapes and

placements of electromagnetic coils in order to create magnetic field profiles appropriate

for different dynamical tasks. For example, it is still unclear to what extent the fields can

be shaped to independently manipulate several magnets at the same time. A thorough

assessment of the fundamental limitations on field shaping, akin to Earnshaw's theorem,

would be of great value in delineating the impossible and saving fruitless efforts.

2. Magnetic fields are generally inefficient for concentrating energy in a localized region

of space. A careful study needs to be done to assess the maximum attainable efficiency

for a general class of magnetic systems. Moreover, a consistent method for addressing

these issues in the context of a particular application would be extremely useful both at

the early stages of conceptual design and in the performance evaluation of a real system.

3. For any particular physical system, the fields should be carefully mapped out to insure

that the models bear sufficient semblance to reality. Likewise, the forces and torques on

a bar magnet should be measured experimentally to assess the validity and the limits of

application of the point dipole model.

4. For a particular dynamical application, the repertoire of executable maneuvers should

be cataloged and fundamental limitations on the performance of the system should be

examined. A question of particular interest to us is to what extent the torques and forces

on a bar magnet can be controlled independently and, in particular, what range of angles
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between the field and the gradient can be achieved, for limited currents, at different

points in the operating region.
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