Implementing a Hazard Elimination Analysis Tool
for SpecTRM-RL Using Backwards Reachability

by BARKER
MASSACHUSETTS INSTITUTE]
Kenneth K. Lu O TECHNOLOGY
S.B., Massachusetts Institute of Technology (2000) JUL 31 2002
Submitted to the Department of LIBRARIES

Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in
Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2002
© Kenneth K. Lu,‘M‘l\/III.hw All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author........... e e e e e

Department of
Electrical Engineering and Computer Science
M

May 28, 2002

Certiﬁed by Y R A N R g o o o
Nancy G. Leveson

L Professor

~ Thesis Supervisor

ACCGpted by Seee e R AL O B A A

Arthur C. Smith
Chairman, Department Committee on Graduate Students

Implementing a Hazard Elimination Analysis Tool for
SpecTRM-RL Using Backwards Reachability
by
Kenneth K. Lu

Submitted to the Department of
Electrical Engineering and Computer Science
on May 28, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in
Electrical Engineering and Computer Science

Abstract

Proper specification can improve the safety of a software system. Hazard elimination
analysis involves marking certain system states in a specification as “hazardous”,
searching for “critical states” which can lead to such hazards, and redesigning the
system to avoid the hazardous states. “Backwards reachability” is a technique that
can greatly reduce the number of operations required to perform this analysis.

This project implements a hazard elimination analysis algorithm that directly op-
erates on the data files of SpecTRM, a commercial specification environment. The
algorithm derives total system states from the various components of a SpecTRM
model and determines reachability between any two states. It then applies the Haz-
ard Automaton Reduction Algorithm using backwards reachability to determine the
critical states associated with any hazardous state in a given model. The implemented
algorithm demonstrates that the technique is effective and efficient.

Thesis Supervisor: Nancy G. Leveson
Title: Professor

Acknowledgments

A deluge of thanks to Prof. Nancy Leveson for her patience and for trusting me to
complete my thesis. A ludicrous amount of thanks to Natasha Neogi for her constant
encouragement and support. I couldn’t possibly have asked for a better mentor to
work with. When I doubted myself, she just urged me on nonjudgmentally, which was
exactly what [needed. Without her, I would still be running in circles like a headless
chicken. A plethora of thanks to Jeffrey Howard over at Safeware Engineering for
his unbelievably quick replies to all my emailed cries for help. “User support is part
of my job,” he’d say, after saving me hours of anguish by replying to a half dozen
emails.

A ton of distributed thanks to all the fine folks on the “help class” on MIT Zephyr
who are the very models of Good Samaritans.

An infinite amount of thanks to my parents, who I can rely on for understanding
and support.

And to my friends... A hop-hop of thanks to Willa AuYeung for always having
the knack of calming me down. Two degrees of thanks to Jesse Byler, who gave
me company in non-graduating misery and will soon give me company in graduating
delight. Many kilograms, kilometers, and kiloliters of thanks to Matt Deeds, who
helped me put my thesis on track by giving me honest criticism as I started to write
it, and who proofread my thesis after I wrote it. Many long early-morning hours of
thanks to Paul Lujan, my oldest friend, who’s responsible for keeping me sane with
his link-swapping company as I worked all night in these final weeks and also for
proofreading and advising fun. Sknaht to Tania Tam for being me. Without my
constant and unwavering phone support, I don’t know where she’d be today. She
certainly wouldn’t be finishing her thesis, that’s for sure! Gracias to Jenny Wang for
making the struggle of dealing with the Panamanian phone system worth the effort.

Finally, thanks and thanks again to all my friends at MIT this year for reminding

me that this place can be enjoyable, too!

Contents

1 Introduction
1.1 Motivation
1.2 Goal and Approach
1.2.1 Direction of Searching
1.2.2 Environment
1.3 Overview.
2 The SpecTRM Environment
2.1 Basic Structure
2.2 Condition Tables and Expressions
2.3 Execution and Total System State
3 Design Overview
4 The Model Object
4.1 Model Class Hierarchy
4.2 XML Parsing,
4.3 Index-Gathering.
4.4 Expression Parsing and Trigger Construction
4.4.1 Macro References
and Sugared Mode Syntax Expansion
4.4.2 Condition Table to Trigger Conversion
4.5 Design Decisions

13
13
14
14
15
15

17
17
18
19

21

5 The
5.1

9.2

6 The
6.1
6.2
6.3

6.4

6.5
6.6

7 The
7.1

7.2

4.5.1 Levels of Modularity,

4.5.2 Element And Position Referencing
453 Triggers
454 Power Up Assumptions
455 Macros

Reachability Table

Total State List Construction
5.1.1 Definition of Validity
5.1.2 Checking Validity
Matrix Constructiono
5.2.1 Definition of Reachability
5.2.2 Checking Reachability

Hazard Elimination Analysis Algorithm

The Final Algorithm
A Basic Algorithm
Detection of Previously Unknown Hazards
6.3.1 Avoiding Hazards Through Loops
Inheritanceo
6.4.1 An Example: Inheritance and Loops
Dead Ends

Running Time

Soda Machine Example
Description of Function

7.1.1 Internal Function

7.2.1 Origins of InternalFaultDetected

7.2.2 Hazard Discoveryo

33
34
34
36
36
36
37

39
40
41
42
44
45
45
46
47

8 Conclusions

8.1 Future Work . .

A Soda Machine Model

B Soda Machine State Transition Matrix

B.1 State Transition Matrix

B.2 Total State List

53
53

55

10

List of Figures

3-1

o-1

6-1
6-2
6-3
6-4
6-5

Execution Path 21
Pseudocode for validity checker 38
Basic State Tree 42
State Tree Requiring Hazard Detection 43
State Tree with Delayed Detection 43
State Tree with A Self Loop 44
Loops and Inheritance Problem 45

11

12

List of Tables

B.1 Soda Machine State Transition Matrix

13

14

Chapter 1

Introduction

The study of software safety is relatively new compared to other fields of engineering.
Poorly-written software specifications have contributed to a number of spacecraft and
other accidents. In software systems structured as state machines, “hazard elimina-
tion analysis” can improve system safety. This type of analysis involves marking
certain system states as “hazardous”, searching for “critical states” which can lead
to such hazards, and redesigning the system to avoid the hazardous states. Unfor-
tunately, mapping out all possible execution paths of a system can be very time-
consuming in a large system. Natasha Neogi has described a more efficient method
of searching for critical states using “backwards reachability”. [3] This project imple-

ments her algorithm and demonstrates its efficiency.

1.1 Motivation

Safety is a important concern when designing the complex systems found in such
applications as aircraft, missiles, and nuclear power plants. Human lives often de-
pend on the proper functioning of such systems. Hardware safety is fortunately
well-understood. Engineers can calculate overall probabilities of component failure
to great accuracy and precision, thus allowing decision makers to balance acceptable
risk and cost. Software safety, however, is a younger field. It differs from hardware

safety in key ways, both positive and negative.

15

Without the need for machining, a software package can be produced after a design
change in, minutes or hours, not days or months. Unfortunately, this capability for
fast feedback is often abused; software engineers tend to design their products by trial
and error without careful consideration. The SpecTRM requirements specifications
system is designed to encourage more deliberate design by easing the burden of writing
formal specifications. [2]

Even in engineering environments where specifications are written, most testing
tends to focus on ensuring that the software product conforms to those specifications;
little effort is dedicated to ensuring that the specifications are complete and correct
to begin with. Fortunately, because software does not generally deteriorate over time
by a probabilistic process, the consequences of various system states can be predicted,

and a specification can be analyzed for hazards.[3]

1.2 Goal and Approach

“Hazard elimination analysis” applies to systems that can be modeled as state ma-
chines. A “hazardous state” is a state of the system which leads to injury or losses.
“Critical states” are states which may or may not lead to hazardous states. Analysis

consists of the following three steps:

1. The user provides a system model and list of known hazardous states.
2. The analysis finds all derived hazardous states and all critical states.

3. For each hazardous state, the analysis provides the nearest critical state if one

exists, allowing the system designer to find a way around the hazard.

1.2.1 Direction of Searching

A forward search from all possible start states would accomplish the analysis. Unfor-
tunately, whether the search is breadth-first or depth-first, a large percentage of the

total state space must be searched before all hazardous states are likely to be found.

16

Worse still, if a hazardous state is actually unreachable, the entire reachable state
space must be searched.

A backward search would start from the known hazardous states and recursively
check their predecessors until it finds critical states or dead-ends. Thus, it would
search through the minimum number of states required. This is the technique that

this project explores.

1.2.2 Environment

The SpecTRM environment is designed to be readable by both humans and machines.
The goal of this project is to implement a hazard elimination tool using backward
reachability which operates on SpecTRM data files, thus demonstrating the feasibility

of implementing automated hazard elimination analysis in a real-world product.

1.3 Overview

Chapter 2 explains the background of the SpecTRM environment. Chapters 3 through
6 describe the design of the various components of this tool. Chapter 7 provides
examples of operation. Finally, Chapter 8 reveals some additional features that should

be implemented in the future.

17

18

Chapter 2

The SpecTRM Environment

The tool written for this project operates on data files created in the SpecTRM
environment. SpecTRM allows users to write formal specifications in a unique doc-
umentation format. Appendix A contains the specification of a sample SpecTRM
model used in Chapter 7. The following sections will refer to portions of this model
specification and give a brief overview of relevant components. The SpecTRM User

Manual [4] contains a more detailed description of the SpecTRM environment.

2.1 Basic Structure

e “Device” elements send and receive signals to the system. They represent the

outside world.

e “Input” elements are interfaces between devices and the system. They describe
when to pass device inputs on to the rest of the system, and they do not rely

on the internal state of the system.

e “Output” elements specify the conditions under which signals are sent to de-

vices.

e “Messages” are the mechanism through which information is passed from de-

vices to inputs and from outputs to devices.

19

e “Mode” elements describe the mode that the system is in. They can only take
on enumerated constants as positions. “Condition tables” specify the triggering

conditions for these position.

e “State” elements (or “State Values”) represent portions of the internal state of

the system. They can also only take on enumerated constants as positions.

e “Macro” elements abstract portions of condition tables out to manage the com-

plexity of large systems.

e “Power Up” is not an explicit model element, though it may be considered a
singleton element. It is a global value which is true only during the very first

step of system startup.

The names of all model elements and all mode positions reside in the same name
space and must all be unique.
The hazard elimination analysis tool is only interested in the internal system state.

Thus, it is generally not interested in inputs, outputs, messages, and devices.

2.2 Condition Tables and Expressions

Each position in a mode or state element corresponds to a “condition table”. Cells in
this table can hold one of three values: “T” (true), “F” (false), and “*” (don’t care).
Each column represents a triggering condition for that position. That is, if every
value in any column of a condition table holds true, the model element in question
performs a transition to the associated position.

Behavior of the system is undefined if multiple condition tables in the same model
element contain valid columns simultaneously. SpecTRM has consistency and com-
pleteness checking tools to prevent such scenarios. The hazard analysis tool assumes
that all models have already been verified within SpecTRM, and it cannot guarantee
proper performance on incomplete or inconsistent models.

Expressions in condition tables can take one of many forms:

20

e “Foo in state S” holds true if state element Foo is in position S. The expression
refers to the current value of the element by default, but if “Last Value of” is
added to the beginning of the expression, it refers to the position the element was
in before the most recent transition. Mode element positions can be specified

with a similar expression, replacing “in state” with “in mode”.

e An identifier by itself can mean one of two things: It can represent a macro, in
which case it evaluates to true if the macro evaluates to true, and vice versa, or
it can be “syntactic sugaring” for a mode position. For example, “Operational”
can be syntactic sugar for “Soda Machine in mode Operational”. This syntax
is made possible by the requirement that all mode positions be in the same

namespace as model element names, so there is no possibility of name conflict.

e “Baz is X” holds true if the input element Baz carries the value X. Note that
input elements are generally required to carry a value of “Obsolete” at system
start, though this is not always the case. Similar expressions can use inequality

operator in the case of numerical input values.

e Expressions can refer to the time when a certain type of message was last sent

or received.

e “Power Up” is true if the system is at the first transition. It is false at all other

times.

2.3 Execution and Total System State

When the system begins execution, “Power Up” is set to “true”, and mode and
state elements transition to appropriate positions. Subsequently, they transition to
appropriate values based on inputs and internal state, while outputs send messages
to devices when appropriate.

At any point in time, the mode elements, the state elements, and the power up

variable sit in a specific set of positions. This set of positions is the “total state” of

21

the system. The hazard analysis algorithm operates on these total states; its purpose

is to generate portions of a tree that specifies transitions among total states.

22

Chapter 3

Design Overview

This tool has a modular design that facilitates maintenance and expansion. Each

stage of the tool creates a well-defined object as an interface to the next stage. New

applications can easily make use of various modules in this tool. In addition, pro-

cedural abstraction ensures that incremental changes to the file format in the future

may be supported with only minimal modifications to the tool. Figure 3-1 shows the

path of execution.

Model File Parser

Input File Parser

Model Object

A 4

Transition Table Builder

Hazard List

A 4

Transition Matrix

\ 4

Hazard Analysis/Backwards Searcher

Figure 3-1: Execution Path

1. The user creates a model using SpecTRM. This file must be complete and con-

sistent (as can be confirmed by SpecTRM’s built-in model verification tools);

the analysis tool does not guarantee proper operation otherwise (with the ex-

23

ception of omitted “Power Up False” expressions, as discussed in Section 4.5.4).

2. The model file parser reads in the XML data file and produces a model object,
translating XML formatting and textual expressions into custom objects. Al-
though these objects are designed for the purposes of reachability analysis, they

are also suitable for use by many other types of analysis.

3. The table builder module then uses this model object to create a list of valid
“total states” and a two-dimensional matrix of boolean values, mapping des-
tination total states to all the total states which may have been their direct
predecessors. Again, both the list of total states (which is tedious to build by
hand) and the reachability matrix are very useful for other types of analysis
which need to determine which states are possible predecessors or successors of

a given state.

4. The input file parser is a simple module which reads in a file containing the

initial list of hazardous states and passes them to the hazard analysis module.

5. Finally, the hazard analysis module makes use of the reachability matrix and

the input hazard list to perform various searches.

The following chapters will discuss each of these modules in greater detail.

24

Chapter 4

The Model Object

4.1 Model Class Hierarchy

The model class hierarchy is an abstract representation of the model read from the
data file. Its interface is completely file-format-agnostic, thus allowing revised file
formats to be supported with no impact to any higher-level functions of the tool.
The model class hierarchy is also designed to be as simple as possible, including only
those components of the model which are relevant to the problem at hand. If future
projects require additional components to be stored, the class can be easily extended

to incorporate them. Currently, the hierarchy involves the following:

e A single model object stores its name and an array of its mode and state ele-

ments.

e Each model element in turn stores its type, its index among elements of its type,

and a list of positions and the rules for transitioning to them.

e Each position stores its type, the index of its associated model element, its index

of among positions in that model element, and a list of triggers.

e Each trigger stores a list of expressions derived from SpecTRM-RL. If every
condition in a trigger holds true, the trigger holds true. If any of the trig-

gers associated with a position holds true, a transition to that position should

25

be made. A trigger loosely corresponds to a column in the truth tables of a

SpecTRM model.

In addition, both model elements and positions store references to a master “name

lookup table” which maps indices to names.

4.2 XML Parsing

The first step toward analysis is to read the data from the file. SpecTRM data files
contain a hierarchical XML structure composed of the model and assorted other spec-
ification information. The parser uses the Apache Software Foundation’s “Xerces”
to parse the subtree containing the model into a Document Object Model (DOM).
Various helper functions in the parser are provided for traversing the DOM tree and

retrieving key components in accordance with the SpecTRM XML Schema. [5]

4.3 Index-Gathering

Before the bulk of processing, the parser gathers the name and order of all model
elements and positions in the model. It creates a number of name-to-index lookup
tables. Four tables respectively map names of mode elements, state elements, input
elements, and macros to their indices among elements of their type. Two arrays
contain, in order, tables which match the positions in each mode and state element
to their position indices. Finally, a “reverse mode lookup table” maps mode positions

to their respective mode elements. This table is discussed in section 4.4.1.

4.4 Expression Parsing and Trigger Construction

The parser processes each mode and state position’s condition table individually.
It first uses Etienne Gagnon’s “SableCC” to create parse each expression into an
abstract syntax tree (AST) based on the SpecTRM-RL grammar. [1] The grammar

distinguishes among “Power Ups”, mode references, and state references, and the AST

26

reflects that knowledge. The model file parser uses SableCC’s tree-walking framework
to parse the ASTs into its own custom expression objects which feature more intuitive

interfaces and occupy less memory.

4.4.1 Macro References

and Sugared Mode Syntax Expansion

SpecTRM-RL employs a “sugared” mode reference syntax where “Operational” can
actually mean “Last Value of Soda Machine in mode Operational”. Similarly, macro
references can simply be written as the names of the macros. In the AST, sugared
mode references and macro references are initially indistinguishable; since SableCC
reads each expression individually, it stores both as simple identifiers.

The model file parser uses its wider domain of knowledge to differentiate between
the two cases. First, it creates a macro name-to-index table and a “reverse mode
lookup table” during the “index-gathering pass” that looks up model element and
position indices. The reverse mode lookup table maps each mode position name to
its associated mode element.

Now, whenever the parser encounters a lone identifier, it looks up the name in the
macro and reverse mode lookup tables to determine its type and convert it into the
proper custom expression object. (The lookup is possible because mode names must

be unique in the same namespace as model element names. [4])

4.4.2 Condition Table to Trigger Conversion

Condition tables, which can require an expression to be false, must be converted to
triggers that always require expressions to be true. (See section 4.5.3 for justification

of this design decision.) For example:

Foo in state S1 T *

Bar in state S1 T *

Bar in state S2 * T

27

would be expanded to:

Trigger 1:
Foo in state S1
Bar in state S1

Trigger 2:
Bar in state S2

The absence of any mention to “Foo” in Trigger 2 implies that it can be activated
regardless of the position “Foo” is in. Accordingly, if a trigger is empty and contains
no condition restrictions, it can always be triggered.

The triggers define reachability. Therefore, triggers may overlap. It doesn’t mat-
ter which of the triggers is activated. As long as at least one of the triggers can be
activated by a given system state, this position is reachable from that system state.
References relevant to the internal state of the system are stored in triggers. Ref-
erences to input values need to be mutually consistent for a given set of triggers to
activate, so they are also stored.

Unless the “Relaxed Input Values” flag is set, the parser adds “Power Up is False”
as a condition to every trigger which refers to a non-Obsolete input value. (See section

4.5.4 for details.)

“False” Marks in the Condition Table

“False” marks in the condition table present unique challenges for each expression
type: “Power Ups” and macros each have only two “positions”: true and false. In
these cases, “false” marks represent references to the “false” positions of the element
in the associated expression, and the parser stores a “Power Up is False” or “Macro
Foo is False” expression in the trigger. Expansion becomes more involved in the case
of mode and state element references.

Assume that there are two state elements, Foo and Bar. Foo can be in the states

S1 through S3, and Bar can be in the states T1 through T4.

Foo in state S1 F

28

would be expanded to:

Trigger 1:
Foo in state S2

Trigger 2:
Foo in state S3

A more involved example would be:

Foo in state S1 F

Bar in state T'1

Bar in state T2

The parser would expand this in two steps. First, it would expand the “Foo”

reference, giving us two triggers with temporary place-holders for the false “Bar”

references:

Trigger 1:

Foo in state S2

Bar in state T1 FALSE
Bar in state T2 FALSE

Trigger 2:

Foo in state S3

Bar in state T1 FALSE
Bar in state T2 FALSE

Next, the “Bar” would be expanded. With two restrictions, Bar can only be

expanded to “T3” or “T4”:

Trigger 1:
Foo in state S2
Bar in state T3

Trigger 2:
Foo in state S2
Bar in state T4

Trigger 3:
Foo in state S3
Bar in state T3

29

Trigger 4:
Foo in state S3
Bar in state T4
In this way, the parser recursively expands the triggers with “false” references.

(References to current and “last” values are treated separately.)

There is one final case to consider:

Foo in state S1 T

Foo in state S2 F

In this case, the parser need not expand the second row because the first row more
strictly restricts the values which can trigger the column. In general, the parser only
expands “false” references when no “true” references to the same element appear in

the same column.

4.5 Design Decisions

4.5.1 Levels of Modularity

After reading in the DOM, the parser must perform complex trigger-expansion opera-
tions before it builds the final model. If the parser were to perform the post-processing
as it parses the file, trigger-expansion would be integrally tied to the DOM and the
SableCC AST, and modularity would be reduced. If it were instead to parse the
model into an intermediate representation before performing post-processing, Xerces
and SableCC could be replaced with different tools without modifying the trigger-
expansion code.

Unfortunately, with this added modularity would come greater complexity. We
would need an entirely separate model class hierarchy that provides a static interface
while storing the DOMs and ASTs internally. On the other hand, the reduction in
modularity is only partial. The expression grammar and XML schema can be changed
without affecting the majority of the code; changes to the code in such cases would

be limited to the procedurally-abstracted helper functions. 1 decided that the loss in

30

modularity was unimportant, and that the parser should build the model as it parses

the file to avoid unnecessary complexity.

4.5.2 Element And Position Referencing

One of my early design decisions involved component referencing. References to model
elements and to positions in those elements are stored by name in the data file, so
referencing by name appears to be the easy solution. Referencing by index is also
possible, but, because the indices are not directly stored in the file, they would not
be available on a single pass through the file; a two-pass parsing process would be

required. Nonetheless, the benefits of using indices outweigh the costs:

e The index-gathering pass only needs to traverse to the level of positions and

not through all the condition tables.

e Index-gathering and subsequent index lookup each need to run only once, and
they do not increase the order of growth of the running time. Referencing by
name, on the other hand, would require a name lookup every time a reference is
followed. (Even name lookup by hash tables would be slower than array index

lookups.)

e Names can still be stored along with indices, so human-readability need not be

sacrificed.

e Finally, indices provide a convenient interface for the input of a large number
of states during hazard analysis, and they may even be more clear than names
to human operators who deal with the same model for an extended period of

time.

Thus, the parser makes two passes: One to construct temporary name-to-index
lookup tables and one to build the model object, using the lookup tables to store

references as indices.

31

4.5.3 Triggers

The goal of the trigger list abstraction is to simplify model analysis by eliminating
conditions that require reference expressions to evaluate as “false”. Such “false”
references cannot be allowed when computing unique total system states, and it is
thus best to remove this abstraction as soon as possible to improve readability of

intermediate data structures.

4.5.4 Power Up Assumptions

It is standard practice within the SpecTRM community to write “Power Up” only

when it needs to be true. Condition tables containing the following row are rare:

Power Up F

Strictly speaking, any column which does not explicitly specify “Power Up” may
or may not be a start state. In practice, such columns usually require, directly or
indirectly, an input value to be in a position other than “Obsolete”. Since input
values must be in “Obsolete” when “Power Up” is true, any other position implies
that “Power Up” must be false.

Currently, whenever a column makes a reference to an input value other than
“Obsolete”, the parser inserts a “Power Up False” entry into the trigger. If for some
reason inputs can be non-Obsolete on startup in a given system, the tool contains a

“Relaxed Input Values” flag that prevents automatic insertions of “Power Up False”.

4.5.5 Macros

The parser does not expand macros. Instead, it treats them just like a mode or
state element which can only be in one of two states, true or false. (Macros only
need to store the contents of one transition table; the “false” position is simply
triggered whenever the “true” position isn’t.) Leaving macros as model elements

does not actually increase the number of total states because their values are strictly

32

determined by the positions of the remaining elements. On the other hand, expansion
of macros would lead to larger and more confusing triggers, which defeats the purposes

of macros in the first place.

33

34

Chapter 5

The Reachability Table

The reachability table is the centerpiece of the tool. More formally a “state transition
matrix”, it describes whether one given total state can transition in one step to
another given total state. It can thus also provide a list of all total states which are
successors or predecessors of a given total state. A variety of searching algorithms
can make use of the table, and the table itself will remain backward-compatible as
new features are added. The reachability table consists of two elements: a list of all
valid total system states and a square boolean matrix.

A “total system state” contains a specified position for every model element,
including state elements, mode elements, and the lone “Power Up” element. For

example, a total state might be represented as

{Mode Element Foo in mode M1,
State Element Bar in state S1,
State Element Quux in state T1,
Power Up False}

Not all total states are possible. Total states which are internally inconsistent
are logically impossible to reach (except in the case of a failure of the state machine
itself, in which case all analyses are meaningless anyway). Since no total state may
reach nor be reached from an invalid total state, they do not need to be part of the
reachability table, and only wvalid total states are included in the “total state list”.

(Because each element in a total state is mapped to exactly one position, it is safe to

35

refer to “the positions of the total state”.)

The square boolean matrix has as each axis a copy of the total state list. Rows
of the matrix refer to destinations, and columns refer to sources. If the cell at row i
and column j is “true”, then total state j may be a predecessor of total state i, and

total state i may be a successor of total state j.

5.1 Total State List Construction

The “table builder” routine first recursively iterates through all possible total states
and tests them for validity. The number of possible total states is the product of the
number of positions in each model element, so it can be quite large. This state space
is only sparsely populated with valid states, however, so it is efficient to traverse it

once so that invalid states can be quickly noted as such in the future.

5.1.1 Definition of Validity

A total state is “valid” if there exists a set of triggers, one in each position of the total

state, which are mutually consistent. Consistency tests fall under two categories:

1. Internal consistency within a trigger. This requires tests against the positions of
other elements. “Current Value” expressions that refer to the position of other
mode elements, state elements, and the power up status must be consistent with
the positions they actually hold in this total state. For instance, assume state

element “Foo” has the following trigger for position “S1”:

Trigger 1:
Bar in state T1

Any total state containing Foo=S1, Bar=T2 is “invalid” because Bar must

always be in state T1 when Foo is in state S1.

Note that each trigger can be invalidated based on this test independent of any

other triggers; only the positions of other elements are relevant for this test.

36

2. Mutual consistency among triggers of each element. Although “Last Values”
cannot be computed when testing the validity of a single total state, require-
ments among triggers must be consistent. Assume state element “Foo” has the

following trigger for position “S17:

Trigger 1:

Bar in state T'1

Quux in state V1

Last Value of Quux in state V1

Assume also that state element “Bar” has the following trigger for position

(¢T177 .

Trigger 1:
Quux in state V1
Last Value of Quux in state V2

Consider a total state containing Foo=S1, Bar=T1, Quux=V1. Although the
triggers for S1 and T1 are both internally consistent in this case, no previous
total state could possibly lead to this state. If Quux was in state V1 previously,
Bar would not be in T1 now, and if Quux was in V2 previously, Foo would
not be in S1 now. Any total state containing Foo=S1, Bar=T1, Quux=V1 is

therefore invalid because it is not reachable from any state.

The table builder must perform similar checks on references to input values.
Although input values can be anything at any time, only states which have
consistent requirements for input values are valid. This requires comparison

not just of discrete values, but also of ranges.

3. Consistency with the Power Up status. When “Power Up” is true, there have
been no previous states, so all “Last Value” references are undefined. Con-
sequently, any trigger which requires a specific “Last Value” is automatically
disqualified, and any total state which does not satisfy any other triggers in the

relevant position is invalid.

37

5.1.2 Checking Validity

Figure 5-1 details the pseudocode for the recursive algorithm that performs validity
checking. The algorithm accepts as input an index to a position in the total state and
a list of requirements on “Last Value” and input value references which must hold.

In each loop, the algorithm checks each trigger in the current position for internal
consistency and mutual consistency with previous triggers. Once it finds a candidate
trigger, it recursively analyzes all positions after the current one to verify the exis-
tence of a set of internally consistent triggers in these positions which are mutually
consistent with each other and with all triggers found so far.

If the algorithm is able to find a trigger in the current position that can lead to a
complete set of consistent triggers, it returns true. Otherwise, it returns false.

This algorithm ensures that these exists a complete set of triggers which are all

internally and mutually consistent.

5.2 Matrix Construction

The calculation of the content of each cell, representing whether a source state can
transition to a destination state, is independent of the calculation of any other cell.
This allows the state transition matrix to act as a cache.

Since backwards searches only read a small number of cells, the matrix only calcu-
lates the value of a cell when it is first requested. It then caches the value for future
requests. Section 6.6 demonstrates the benefits of this caching or lazy evaluation

system.

5.2.1 Definition of Reachability

For the purposes of this tool, a destination total state is “reachable” from a source
total state if the source can directly transition to the destination without first tran-

sitioning to a third total state.!

LGenerally, a destination total state is considered “reachable” from a source total state if it can
be reached after any number of transitions. The term is redefined in this tool for lack of a better

38

A destination is reachable from a source if, in addition to internal consistency, all
“Last Value” references in its triggers are consistent with the corresponding positions
in the source. For instance, assume that a state in the destination contains the

following trigger:

Trigger 1:
Last Value of Bar in state T1

The destination would only be reachable from the source if the source contains

the position Bar=T1.

5.2.2 Checking Reachability

The reachability checking algorithm is nearly identical to running the validity checking

algorithm on the destination. There are only two additions:

1. Instead of checking for mutual consistency of “Last Value” references among
triggers, the algorithm checks for consistency against the actual last values: the

positions in the source.

2. If a total state is in “Power Up”, it could not have come from any other total
state. Thus, if the destination’s power up status is true, the algorithm auto-

matically returns false.

adjective to describe the possibility of a one-step transition; its use is clear enough to avoid confusion
with the traditional definition.

39

Start with the first position in the total state list and no known
mutual consistency requirements.

Base case: If the algorithm is being called after all positions have been
checked--that is, if the position counter is beyond the number of
elements--we have found a valid set of triggers; return true.

For each trigger in this position:

For each expression in the trigger:

Tests 1 & 3: Check for internal consistency of this trigger,
and check against power up status.

Test 2: Check against the mutual consistency requirements list
from previous positions, and take note of any new requirements.

End For.
If this trigger is internally consistent:

Recursively run this algorithm on the next position, taking note of
the requirements from this position.

If there exists a set of triggers in the remaining positions which
are consistent with what we have so far:

This trigger is good. No need to check any more triggers in
this position. Break out of loop.

Else:
This trigger isn’t good; continue loop and check the next one.
End If.
Else if this trigger isn’t even internally consistent:
This trigger isn’t good; continue loop and check the next one.
End If.
End For.

Return true if we’ve found a good trigger; return false otherwise.

Figure 5-1: Pseudocode for validity checker

40

Chapter 6

The Hazard Elimination Analysis
Algorithm

In a safety-critical system, states fall into several categories:

More precisely, these are the three types of states in question:

e Safe states. A safe state is any state which does not necessarily lead to a hazard.

e Hazardous states, or “hazards”. A hazard is any state which leads to unaccept-
able failure (in such forms as damage of equipment or injury to people). If a
state causes no problems at the moment but may only lead to hazardous states,
it is also hazardous. But if an otherwise safe state has any safe successors, it is

not a hazard.

e Unsafe states. These form a superset of hazardous states which have at least
a high likelihood of failure. For the purposes of this tool, all unsafe states are

considered hazardous.

e Critical states. These form a subset of safe states that have at least one haz-

ardous successor (but also have at least one safe successor).

“Hazard elimination analysis” involves finding the critical states that will lead to

each hazardous state. The designer of the system can then reanalyze and redesign

41

the system at those points to prevent or reduce the probability of a transition to a
hazardous state, thus increasing the safety of the system.

These are the inputs the user will give to the analysis algorithm:

e A system model. The algorithms discussed in the previous chapters will create

a list of valid system states and a (lazily evaluated) transition matrix.

e A list of system states known to be hazardous.

After analysis, the algorithm will provide the user with the following outputs:

(There may or may not be actual entries in any given category.)

e A list of input hazards which are invalid.

A list of input hazards which are valid.

A list of newly discovered hazards which were not in the input.

A list of hazard states which are actually start states. This would represent a

serious flaw in the design of the system.

For each hazard, a list of critical states which may eventually lead to that

hazard, if any.

This chapter will outline the final algorithm and then justify its design.

6.1 The Final Algorithm

Each hazard has a list of corresponding “sources”. At the end of execution, each list of
sources will be a list of critical states corresponding to that hazard. During execution,
however, sources are merely the closest ancestors of a hazard which are not known
hazards. They may be critical states or unanalyzed hazards. The corresponding list
of hazards for a source are its “targets”.

The algorithm keeps a list of “known hazards” which it expands as it discovers

new hazards. It also keeps track of “already processed hazards”.

42

For each valid input hazard, the final algorithm first looks for and handles dead-

end cases. (See Section 6.5.)

The algorithm then looks up the predecessors of this hazard:

If this predecessor is the hazard itself, it is ignored.

If this predecessor has already been processed, the current hazard “inherits”
this predecessor’s list of sources. (See Section 6.4.) The algorithm does not add
any of these sources that is the current hazard, since a hazard cannot be its

owIn source.

If this predecessor is a known hazard which has not yet been processed, it is
added as a source. That known hazard will later update this hazard’s source

list.

If this predecessor is not a known hazard, the algorithm checks its successors.
If at least one of the successors is not a known hazard, this predecessor is
a “possible critical state”; it is simply added to the current hazard’s list of

sources.

If all the successors of that predecessor are known hazards, this predecessor is
itself a newly discovered hazard; it is added to the list of known hazards as well

as to the current hazard’s list of sources.

Finally, after analyzing all the predecessors, the algorithm updates the source

lists of all targets of the current hazard. It removes the current hazard itself from

the source lists, and it adds the current hazard’s list of sources to these source lists.

Section 6.4.1 will provided a step-by-step sample execution of the algorithm.

6.2 A Basic Algorithm

The high-level approach of a backwards searching algorithm is to check the predeces-

sors of each hazard. If the predecessor is a known safe state, it must be a critical state

43

(since it has a hazardous successor), and the basic algorithm associates that critical
state with the hazard and stops execution. If the predecessor is itself a hazard, the

algorithm should continue searching until it discovers critical states or a dead end.

Safe State
Hazardous State

fout
I

Figure 6-1: Basic State Tree

In Figure 6-1, states 1 and 3 are safe, and states 2 and 4 are hazards. When the
basic algorithm searches up from state 2, it sees that state 1 is a critical state, and
it associates it with state 2. When the algorithm searches up from state 4, it sees
that state 2 is a hazard, so it continues upward until it finds state 1, and it then also
associates state 1 with state 4. Neogi describes this basic algorithm in Section 5.4 of
her thesis. [3]

Note that the algorithm is performing redundant work by searching state 2’s
predecessors twice. In fact, when the algorithm finds that state 4’s ancestor is also a
hazard, it need not continue. It can simply allow state 4 to inherit state 2’s critical
states.

Unfortunately, there are several factors which complicate this simple approach.

6.3 Detection of Previously Unknown Hazards

The algorithm must be able to detect states that only have hazardous successors, but
that the user did not provide as inputs. This means that, whenever a predecessor

is checked, the algorithm must check all its successors to see if there are any non-

44

hazards. If there are not, it can label the state a newly-found hazard. Unfortunately,

even if there is a successor that is not a known hazard, that successor may itself turn

Figure 6-2: State Tree Requiring Hazard Detection

out to be a newly-found hazard later on.

In Figure 6-2, when the algorithm looks at state 4’s predecessor, state 2, it sees

that it only has hazardous successors (namely, state 4). Thus, the algorithm marks

Figure 6-3: State Tree with Delayed Detection

state 2 as a newly discovered hazard.

In Figure 6-3, assume that the hazards are analyzed in numerical order. When

the algorithm looks at state 4’s predecessor, state 2, it seems that it is a critical state.

45

Unfortunately, state 5 is actually a hazard, and state 2 is thus also actually a hazard.

One obvious solution in this situation would be for the algorithm to continue
searching downward whenever a successor is not a known hazard, stopping only when
it finds hazards or dead ends. Unfortunately, this could lead to searching through a
large number of irrelevant non-hazardous states, which defeats the purpose of using
a backwards searching algorithm.

There is a more efficient approach: Simply assume that this predecessor is a critical
state for the time being. If its seemingly safe successors turn out to be a hazard later
on (state 5 in this case), that state will need to be analyzed. At that point, the
algorithm will look at state 5’s predecessor, state 2 again, and see that it is now a
hazard, marking it for future analysis.

When the algorithm analyzes state 2, it will discover that state 1 is its source,
and it can then propagate that source to state 2’s children, including state 4. (See
section 6.4 for details.)

At the very end of execution, the critical states are any sources that the algorithm

never discovered to be hazardous.

6.3.1 Avoiding Hazards Through Loops

Figure 6-4: State Tree with A Self Loop

Consider Figure 6-4. Although the only apparent successor of state 1 is state 2,
state 1 is not a hazard. This is because state 1 is also its own successor. Conceptually,

one might imagine that a system could simply loop in state 1 forever, never reaching

46

state 2. State 1 is, however, a critical state, since it has both hazardous and safe

Successors.

6.4 Inheritance

The process by which changes are propagated is a key feature of the final algorithm.
During analysis, the final algorithm actually associates each hazard with a list of
sources which may be either critical states or other hazards which have yet to be
analyzed. When a predecessor of a hazard has already been analyzed, the hazard
inherits that predecessor’s sources.

Conversely, each unanalyzed hazard or possible critical state corresponds to a
number of targets. Whenever a hazard is analyzed (whether it was already known as
one or whether it was previously a “possible critical state”), the algorithm updates

its targets by making them inherit its own sources.

6.4.1 An Example: Inheritance and Loops

Figure 6-5: Loops and Inheritance Problem

The inheritance algorithm can function even when loops are involved. In Figure 6-
9, state 3 has two sources: state 1 and state 4. The list of target «— source associations

is

47

31,4

State 4 also has two predecessors: state 2 and state 3. It adds state 2 as a source
and it inherits state 3’s sources. State 1 is thus added as a source, but since state 4

cannot be its own source, that is not added. The list of associations is now

3—1,4
41,2

The list can also be viewed in source — target form as

1—3,4
2 —4
4 — 3

Finally, state 4 propagates its own sources to its sole target, state 3. First, it
deletes itself from state 3’s source list, since, as a hazard, it was only a temporary
source. Since state 3 already has state 1 as a source, that doesn’t need to be added,
but state 3 does inherit state 2 as a new source. We thus have the final target «

source association list:

31,2
41,2

A visual inspection shows that, yes, both states 1 and 2 can lead to state states 3
and 4, and states 1 and 2 could also lead to the safe state 5. States 1 and 2 are thus

critical states corresponding to states 3 and 4.

6.5 Dead Ends

There may be hazards in the system with no predecessors. There are two possible

reasons for this:

48

1. The hazard may simply be unreachable from any start state. The algorithm
removes it as a source from all of its targets’ source lists. Any targets which no

longer have any sources are themselves unreachable.

2. The hazard is a hazardous start state. The algorithm notes it as such. Any
states which have this hazard as a source keep that association so the user can
see how much of the system is affected by this hazardous start state in case the

system has multiple start states.

6.6 Running Time

Assume that there are n valid total states. Calculating all cells of the state transition
matrix a priori would require O(n?) time. During the execution of the backwards
searching hazard elimination analysis algorithm, however, fewer cells need to be cal-
culated. For each hazard and critical state, the algorithm compares the state with
every other state to look for predecessors or successors.

Now assume that there are h hazardous states and c critical states. Calculating
cells lazily requires only O(n - (h + ¢)) time. This lazy evaluation system can provide
significant time savings when n >> h + ¢, which should generally be the case in a

large model.

49

50

Chapter 7

The Soda Machine Example

The latest release of SpecTRM ships with an Altitude Switch Model (ASW) that
is almost entirely input-driven. Hazard analysis does not provide very interesting
results on this system, since, for nearly any given state, nearly every other state is a
predecessor. Thus, for any given set of hazards, the list of critical states would be just
about every other state. More complex models exist which are more input-driven,
but their complexity obfuscates the results of hazard analysis. The Soda Machine
Example is a heavily state-driven system that serves as an effective testing ground
for the hazard analysis. Appendix A details the relevant portions of the SpecTRM

model.

7.1 Description of Function

This model represents a soft drink vending machine. The machine has a coin slot
which accepts nickels or dimes, and it sports a “dispense” button. Sodas cost (only)
ten cents. If the operator inserts any extra money, the machine returns any change
immediately, leaving its internal count at 10. The operator must press the dispense
button after inserting sufficient funds in order to get a drink. At that point, the
machine dispenses a drink and resets the total to zero.

The coin slot weighs the coin and sends a message to the controller every second,

stating its current status. The detection mechanism only detects whether a coin is

o1

currently in the slot; that is, if a coin remains in the slot for more than a second
before falling through, the coin slot may report the same coin twice. In order to allow
the software to distinguish this case from two consecutively inserted coins of the same
type, a hardware interlock prevents a new coin from falling into the slot for 2 seconds
after the previous coin leaves. This means that the slot will send at least one “no
coin” to the controller between coins.

Finally, if the software receives invalid inputs from the hardware, the controller

turns on an “error” light and ceases to dispense any money or sodas.

7.1.1 Internal Function

Internally, the “Coin Status” state element mirrors the status of the coin slot. When
its state transitions from “None” to “Nickel” or “Dime”, the “Coin Inserted” state
element transitions as well; it remains in this state only until the next transition,
however, before returning to the “None” state. The “Total” state element transitions
appropriately based on the the last value of “Total”, the current value of “Coin
Inserted”, and incoming messages from the “Dispense” button. Likewise, outputs

commands trigger the dispensing of change and sodas based on the internal state.

7.2 Tests

The following discussion will refer to total state indices, which are indices in the list
of all valid total states. Appendix B.2 provides the list of valid total states in index
order for the Soda Machine model.

7.2.1 Origins of InternalFaultDetected

When the system receives no inputs for over 3 seconds at startup, it enters “Internal-
FaultDetected” mode, and the error light is turned on. The system cannot exit this
mode; the operator must reboot the system in this case.

The internal state of the system can still change if a foolhardy operator continues

52

to insert money, however. States 27-51 are all in InternalFaultDetected mode, but we
need not be concerned with exactly which of them the system is in.

Assume that we want to find out how the system might enter the InternalFaultDe-
tected mode. We can provide it with states 27-51 all marked as hazards. The hazard

analysis algorithm provides the following output:

Results:

Hazard 27 <- critical states: 0 1
Hazard 28 <- critical states: 0 1
Hazard 29 <~ critical states: 0 1
Hazard 30 <- critical states: 0 1
Hazard 31 <- critical states: 0 1
Hazard 32 <- critical states: 0 1
Hazard 33 <- critical states: 0 1
Hazard 34 <- critical states: 0 1
Hazard 35 <- critical states: 0 1
Hazard 36 <- critical states: 0 1
Hazard 37 <- critical states: 0 1
Hazard 38 <- critical states: 0 1
Hazard 39 <- critical states: 0 1
Hazard 40 <- critical states: 0 1
Hazard 41 <- critical states: 0 1
Hazard 42 <- critical states: 0 1
Hazard 43 <- critical states: 0 1
Hazard 44 <- critical states: 0 1

Hazard 45 IS UNREACHABLE!

Hazard 46 <- critical states:
Hazard 47 <- critical states:
Hazard 48 <- critical states:
Hazard 49 <- critical states:
Hazard 50 <- critical states:
Hazard 51 <- critical states:

O O O O OO
e

All InternalFaultDetected states can only come from the low-risk states 0 or 1.
State 0 is the system start state, and state 1 is the state in which no inputs have been
received since system start.

Running a one-step successor search on states 0 and 1 (or by looking down the

first two columns of Table B.1), we can see that the successors of both states are

53

states 1, 5, 10, 19, and 27.
We have thus verified that the system is correctly designed in this case, states 0

and 1 may transition to state 27 if 3 seconds have passed without any inputs.

7.2.2 Hazard Discovery

Now consider if we wish to consider any operational state with an element in “Un-
known” or “FaultDetected” to be a hazard. We provide the hazard analysis algorithm

with the hazardous states {2, 3, 4, 8, 9, 13, 18, 22, 26}:

Input Hazards, Valid: (2 3 4 8 9 13 18 22 26) Newly Discovered
Hazards: (17 25)

Results:

Hazard 2 <- critical states: 5 6 7 10 11 12 14 15 16 19 20 21 23 24
Hazard 3 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 4 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 8 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 9 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 13 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 17 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 18 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 22 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 25 <- critical states: 10 11 12 14 15 16 19 20 21 23 24
Hazard 26 <- critical states: 10 11 12 14 15 16 19 20 21 23 24

The algorithm discovers that states 17 and 25 can only transition to other haz-
ardous states, so they must be hazardous themselves. (Unlike most states, they cannot
self-transition. In both cases, CoinStatus is not currently “None”, so Coinlnserted

must become something other than “Nickel” or “Dime” after the next transition.)

54

Chapter 8

Conclusions

This implementation of a backwards searching hazard elimination analysis algorithm
is functional and effective. It is capable of directly reading SpecTRM data files, allow-
ing system engineers to use a single model for design and analysis. It can determine
the validity of a system state, and it can provide the successors and predecessors of
a system state. These features can form the basis of a variety of future algorithms,
and this tool is sufficiently modular to make that task easy. Finally, this tool can
successfully determine the critical states that correspond to a given set of hazardous
states. Along the way, it can discover any hazardous states the user did not provide,
and it can handle a variety of challenging scenarios.

The algorithm needs to support additional SpecTRM features before it can analyze
larger existing real-world models, but its design should ensure that it would be faster
than a forward-searching algorithm that needs to calculate a larger portion of the

reachability matrix.

8.1 Future Work

There are two categories of future work necessary for improvement of this tool:
expanded support of SpecTRM features and improved interface for the backwards

searcher.

Some SpecTRM features used by many real-world models but which were not

95

essential for a demonstration of the algorithm have yet to be implemented. Two
SpecTRM features discussed in this paper, macros and input consistency checking,
are not yet supported by the tool. Support for some complex features such as timing
would also broaden the scope of models that the tool supports.

Currently, the tool only supports the direct input and output of individual, unique
total system states. Wild card support, both during input and during output, would

improve ease of use and readability when using larger models.

o6

Appendix A

Soda Machine Model

o7

Display Output

FaultDisplay

Destination: ErrorLight
Message: FaultMessage
Acceptable Values: BadCoinSignal

TRIGGERING CONDITION

Operational T

Total in state FaultDetected T *

InternalFaultDetected * T

MESSAGE CONTENTS

Field Value
FAULT | BadCoinSignal

o8

Output Command

SodaDispense

Destination: Dispenser
Message: SodaMessage
Acceptable Values: DispenseSoda

TRIGGERING CONDITION

Operational T

Last Value of Total in state Ten T

DispenseButton is Pressed T

MESSAGE CONTENTS

Field | Value
SODA | DispenseSoda

59

Output Command

ChangeDime

Destination: Dispenser
Message: ChangeMessage
Acceptable Values: Dime

TRIGGERING CONDITION

Operational

Last Value of Total in state Ten

M=

Coinlnserted in state Dime

*

Last value of CoinStatus in state Unknown

CoinStatus in state Dime

MESSAGE CONTENTS

Field Value
CHANGE | Dime

60

Output Command

ChangeNickel

Destination: Dispenser
Message: ChangeMessage
Acceptable Values: Nickel

TRIGGERING CONDITION

Operational T T
Last Value of Total in state Five T *
Coinlnserted in state Dime T *
Last Value of Total in state Ten * T
CoinlInserted in state Nickel * T
Last value of CoinStatus in state Unknown * *
CoinStatus in state Nickel * *

MESSAGE CONTENTS

Field Value
CHANGE | Nickel

61

Control Mode

Soda Machine

DEFINITION

= Startup

Power Up

*

Startup

Total in state Unknown

Time Since Soda Machine Entered Startup > 3 seconds

ml3 |4

= Operational

Startup T *

Operational * T

Total in state Unknown F *

= InternalFaultDetected

InternalFaultDetected

*

Startup

Time Since Soda Machine Entered Startup > 3 seconds

Total in state Unknown

Sl

62

Supervisory Mode
Soda Machine Supervisor

DEFINITION

= Soda Controls

Power Up T *
Soda Controls * T

63

State Value

CoinStatus
DEFINITION
= Startup
Power Up T *

CoinStatusSignal is Obsolete * T

= None

CoinStatusSignal is None T

= Nickel

CoinStatusSignal is Nickel T

= Dime

CoinStatusSignal is Dime T

64

State Value
Coinlnserted

DEFINITION

= Unknown

Power Up T *

CoinStatus in state Unknown * T

= None

Last Value of CoinStatus in state Unknown

CoinStatus in state Unknown

CoinStatus in state None

Last Value of CoinStatus in state Nickel

CoinStatus in state Nickel

*

Last Value of CoinStatus in state Dime

CoinStatus in state Dime

Last Value of Coinlnserted in state FaultDetected

H3 |

= Nickel

Last Value of CoinStatus in state None

CoinStatus in state Nickel

Last Value of Coinlnserted in state FaultDetected

= Dime

Last Value of CoinStatus in state None

CoinStatus in state Dime

Last Value of Coinlnserted in state FaultDetected

65

= FaultDetected

CoinStatus in state Dime

Last Value of Coinlnserted in state FaultDetected *
Last Value of CoinStatus in state Dime T
CoinStatus in state Nickel T
Last Value of CoinStatus in state Nickel *

*

66

State Value

Total

DEFINITION
= Unknown
Power Up T *
CoinlInserted in state Unknown * T
= Zero
Last Value of Total in state Unknown * *
Last Value of Total in state Zero T *
Coinlnserted in state None T *
Last Value of Total in state Ten * T
DispenseButton is Pressed * T
Coinlnserted in state FaultDetected * F
Coinlnserted in state Unknown * F
Last Value of Total in state FaultDetected F F
= Five
Last Value of Total in state Five *
CoinInserted in state None *
Last Value of Total in state Zero T
Coinlnserted in state Nickel T
Last Value of Total in state FaultDetected F

67

= Ten

Last Value of Total in state Ten T * *
Last Value of Total in state Five * T *
Coinlnserted in state Nickel * T *
Last Value of Total in state Zero * * T
Coinlnserted in state Dime * * T
DispenseButton is Pressed F * *
Coinlnserted in state FaulDetected F * *
Coinlnserted in state Unknown F * *
Last Value of Total in state FaultDetected F F F
= FaultDetected

Last Value of Total in state FaultDetected T * *
CoinInserted in state FaulDetected * T *
Last Value of Total in state Ten * * T
CoinlInserted in state Nickel * * T

* X *

Coinlnserted in state Dime

68

Other Elements

Inputs:
CoinStatusSignal {None, Nickel, Dime}
DispenseButton {Released, Pressed}

Messages:
DispenseButtonMessage
SodaMessage
ChangeMessage
FaultMessage

Devices:
CoinSlot
Dispenser

ErrorLight

69

70

Appendix B

Soda Machine State Transition
Matrix

B.1 State Transition Matrix

Figure B.1 is the state transition matrix for the Soda Machine example. Rows are
destinations and columns are sources. Section B.2 contains the list of valid total

states that form the axes of this matrix.

71

Key: "1" = reachable, "." = unreachable

s S e s s s s I

Table B.1: Soda Machine State Transition Matrix

72

B.2 Total State List

xxx Total State 0 *k*x*xx

Power Up True

Mode (0,0) MODE #0:Soda Machine in #0:Startup

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,0) STATE #0:CoinStatus in #0:Unknown

State (1,0) STATE #1:CoinInserted in #O:Unknown

State (2,0) STATE #2:Total in #O:Unknown

*kkkk Total State 1 *kkxkxk

Power Up False

Mode (0,0) MODE #0:Soda Machine in #0:Startup

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,0) STATE #0:CoinStatus in #0:Unknown

State (1,0) STATE #1:CoinlInserted in #O:Unknown

State (2,0) STATE #2:Total in #O:Unknown

**kkx*% Total State 2 **xkx*

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0Operational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,0) STATE #0:CoinStatus in #0:Unknown

State (1,0) STATE #1:CoinInserted in #0:Unknown

State (2,0) STATE #2:Total in #0:Unknown

*x*xkx*k Total State 3 **kkxxk

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,0) STATE #0:CoinStatus in #0:Unknown

State (1,0) STATE #1:CoinInserted in #O:Unknown

State (2,4) STATE #2:Total in #4:FaultDetected

*kkkk Total State 4 *k*kkxk

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,0) STATE #0:CoinStatus in #0:Unknown

State (1,4) STATE #1:CoinInserted in #4:FaultDetected

State (2,4) STATE #2:Total in #4:FaultDetected

73

sxkkkk Total State 5 Hkkxkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:CoinInserted in #1:None

State (2,1) STATE #2:Total in #1:Zero

fkkkk Total State 6 **kkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:CoinlInserted in #1:None

State (2,2) STATE #2:Total in #2:Five

*kkkk Total State 7 *kkkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:Coinlnserted in #1:None

State (2,3) STATE #2:Total in #3:Ten

*xkkkx Total State 8 *kk*x

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:CoinInserted in #1:None

State (2,4) STATE #2:Total in #4:FaultDetected

kkkk Total State 9 Fkkkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0Operational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,4) STATE #1:CoinInserted in #4:FaultDetected

State (2,4) STATE #2:Total in #4:FaultDetected

**xxxx Total State 10 *xkkx*x

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor im #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,1) STATE #1:CoinInserted in #1:None

State (2,1) STATE #2:Total in #1:Zero

74

*x*xx* Total State 11 **kxxx*

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,1) STATE #1:CoinInserted in #1:None

State (2,2) STATE #2:Total in #2:Five

*kkxx Total State 12 *kkxkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,1) STATE #1:CoinInserted in #1:None

State (2,3) STATE #2:Total in #3:Ten

**kxkk Total State 13 *kk*x

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,1) STATE #1:CoinInserted in #1:None

State (2,4) STATE #2:Total in #4:FaultDetected

*x*k*x*k Total State 14 *kxkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,2) STATE #1:CoinInserted in #2:Nickel

State (2,1) STATE #2:Total in #1:Zero

skxkk Total State 15 *kkkx

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,2) STATE #1:CoinInserted in #2:Nickel

State (2,2) STATE #2:Total in #2:Five

*x*k*x*% Total State 16 Fokk*x

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,2) STATE #1:Coinlnserted in #2:Nickel

State (2,3) STATE #2:Total in #3:Ten

75

*xkxkx Total State 17 *dkxxk

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0Operational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,2) STATE #1:CoinlInserted in #2:Nickel

State (2,4) STATE #2:Total in #4:FaultDetected

wxxkk Total State 18 **kkk*k

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0Operational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,4) STATE #1:CoinIlnserted in #4:FaultDetected

State (2,4) STATE #2:Total in #4:FaultDetected

*xxkkx Total State 19 *kkxxk

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,1) STATE #2:Total in #1:Zero

*xkkk Total State 20 *kkxk*

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,2) STATE #2:Total in #2:Five

*xkkkx Total State 21 *kkxx*

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,3) STATE #2:Total in #3:Ten

*xxxx Total State 22 *kkk*

Power Up False

Mode (0,1) MODE #0:Soda Machine in #1:0perational

Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,4) STATE #2:Total in #4:FaultDetected

76

*)kkkk Total State 23 *k*kx

Power Up False

Mode
Mode

(0,1
(1,0

State (0,3)
State (1,3)
State (2,1)

MODE #0:Soda Machine in #1:0perational

MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinInserted in #3:Dime

STATE #2:Total in #1:Zero

*k*kkxk Total State 24 **¥*x

Power Up False

Mode
Mode

0,1
(1,0)

State (0,3)
State (1,3)
State (2,3)

MODE #0:Soda Machine in #1:0perational

MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinInserted in #3:Dime

STATE #2:Total in #3:Ten

*xkx*k Total State 25 **kkkx

Power Up False

Mode (0,1)
Mode (1,0)
State (0,3)

State (1,3)
State (2,4)

MODE #0:Soda Machine in #1:0perational

MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinInserted in #3:Dime

STATE #2:Total in #4:FaultDetected

skkkk Total State 26 *¥k*kx

Power Up False

Mode
Mode

(0,1)
1,0

MODE #0:Soda Machine in #1:0perational
MODE #1:Soda Machine Supervisor in #0:Soda Controls

State (0,3) STATE #0:CoinStatus in #3:Dime
State (1,4) STATE #1:CoinInserted in #4:FaultDetected
State (2,4) STATE #2:Total in #4:FaultDetected

**kkx*k Total State 27 *kkkkx

Power
Mode
Mode
State
State
State

Up False

(0,2)
(1,0)
(0,0)
(1,0)
(2,0)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #0:Unknown

STATE #1:CoinInserted in #0:Unknown

STATE #2:Total in #0:Unknown

*xkkk Total State 28 *kkxx

Power
Mode
Mode
State
State
State

Up False

(0,2)
(1,0)
0,0
(1,0)
(2,4

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #0:Unknown

STATE #1:CoinInserted in #0:Unknown

STATE #2:Total in #4:FaultDetected

77

*¥xkkk Total State 29 *kxkxx

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,0) STATE #0:CoinStatus in #0:Unknown

State (1,4) STATE #1:Coinlnserted in #4:FaultDetected

State (2,4) STATE #2:Total in #4:FaultDetected

*x*xx*x Total State 30 **kkxxk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:CoinInserted in #1:None

State (2,1) STATE #2:Total in #1:Zero

**x*k*x Total State 31 *kk*kx*

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:Nomne

State (1,1) STATE #1:CoinIlnserted in #1:None

State (2,2) STATE #2:Total in #2:Five

*x*x*xk Total State 32 *k¥xxk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:CoinInserted in #1:None

State (2,3) STATE #2:Total in #3:Ten

sxxkk Total State 33 skkkk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,1) STATE #1:CoinlInserted in #1:None

State (2,4) STATE #2:Total in #4:FaultDetected

*xxkk Total State 34 **xxk*x

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,1) STATE #0:CoinStatus in #1:None

State (1,4) STATE #1:CoinInserted in #4:FaultDetected

State (2,4) STATE #2:Total in #4:FaultDetected

78

**kkkk Total State 35 *xkxxx

Power Up False

Mode (0,2)
Mode (1,0)
State (0,2)

State (1,1)
State (2,1)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #2:Nickel

STATE #1:CoinlInserted in #1:None

STATE #2:Total in #1:Zero

*rkkkk Total State 36 *kk*kx

Power Up False

Mode (0,2)
Mode (1,0)
State (0,2)
State (1,1)
State (2,2)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #2:Nickel

STATE #1:CoinlInserted in #1:None

STATE #2:Total in #2:Five

**k*kx* Total State 37 *kxxx

Power Up False

Mode (0,2)
Mode (1,0)
State (0,2)
State (1,1)
State (2,3)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #2:Nickel

STATE #1:CoinInserted in #1:None

STATE #2:Total in #3:Ten

*xxxx Total State 38 *kxx*xx

Power Up False

Mode (0,2)
Mode (1,0)
State (0,2)
State (1,1)
State (2,4)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #2:Nickel

STATE #1:CoinInserted in #1:None

STATE #2:Total in #4:FaultDetected

*x*kx*x Total State 39 *kkxkx*xx

Power Up False

Mode (0,2)
Mode (1,0)
State (0,2)
State (1,2)
State (2,1)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #2:Nickel

STATE #1:CoinInserted in #2:Nickel

STATE #2:Total in #1:Zero

*x*xx*x Total State 40 **x*xxx

Power Up False

Mode (0,2)
Mode (1,0)
State (0,2)
State (1,2)
State (2,2)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #2:Nickel

STATE #1:CoinInserted in #2:Nickel

STATE #2:Total in #2:Five

79

x%*x%x* Total State 41 **¥*x*x

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,2) STATE #1:CoinInserted in #2:Nickel

State (2,3) STATE #2:Total in #3:Ten

wkkkk Total State 42 *kxkk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,2) STATE #1:CoinInserted in #2:Nickel

State (2,4) STATE #2:Total in #4:FaultDetected

skxkk Total State 43 *k¥kx*

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,2) STATE #0:CoinStatus in #2:Nickel

State (1,4) STATE #1:CoinInserted in #4:FaultDetected

State (2,4) STATE #2:Total in #4:FaultDetected

sdkkkk Total State 44 *kxxkxk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,1) STATE #2:Total in #1:Zero

*xx*k*k Total State 45 **kxxk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,2) STATE #2:Total in #2:Five

*kxkk Total State 46 **kx*xk

Power Up False

Mode (0,2) MODE #0:Soda Machine in #2:InternalFaultDetected
Mode (1,0) MODE #1:Soda Machine Supervisor in #0:Soda Controls
State (0,3) STATE #0:CoinStatus in #3:Dime

State (1,1) STATE #1:CoinInserted in #1:None

State (2,3) STATE #2:Total in #3:Ten

80

*kxxx Total State 47 F*k*x

Power Up False

Mode
Mode

(0,2)
(1,m

State (0,3)
State (1,1)
State (2,4)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:Coinlnserted in #1:None

STATE #2:Total in #4:FaultDetected

*xkxk Total State 48 *x*xx

Power Up False

Mode
Mode

0,2)
(1,0)

State (0,3)
State (1,3)
State (2,1)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinInserted in #3:Dime

STATE #2:Total in #1:Zero

*x*xx* Total State 49 **xxxx

Power
Mode
Mode
State
State
State

Up False

0,2)
(1,0)
(0,3)
(1,3
(2,3)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinInserted in #3:Dime

STATE #2:Total in #3:Ten

*kx*xk Total State 50 #H*k*xk

Power Up False

Mode
Mode
State
State
State

0,2)
(1,0)
(0,3)
(1,3)
(2,4)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinInserted in #3:Dime

STATE #2:Total in #4:FaultDetected

*xxkk Total State 51 #kkxx

Power
Mode
Mode
State
State
State

Up False

(0,2)
(1,0
0,3)
(1,4)
(2,4)

MODE #0:Soda Machine in #2:InternalFaultDetected
MODE #1:Soda Machine Supervisor in #0:Soda Controls
STATE #0:CoinStatus in #3:Dime

STATE #1:CoinIlnserted in #4:FaultDetected

STATE #2:Total in #4:FaultDetected

81

82

Bibliography

[1] Etienne Gagnon. SableCC, An Object-Oriented Compiler Framework. Master’s

thesis, McGill University, Montreal, Department of Computer Science, March
1998.

[2] Nancy Leveson. Intent specifications: An approach to building human-centered

specifications. In IEEE Transactions on Software Engineering, January 2000.

[3] Natasha Anita Neogi. Hazard Elimination Using Backwards Reachability Tech-
niques in Discrete and Hybrid Models. PhD thesis, MIT, Department of Aeronau-

tics and Astronautics, December 1988.
[4] Safeware Engineering Corporation. SpecTRM User Manual, 2001.

[5] Safeware Engineering Corporation. Spec TRM XML Schema Documentation, 2001.

83

