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Abstract

We define the dynamic programming problem of optimally maintaining multiple ma-
chines by defining the behavior of each machine, the effects and limits of the repairs
we can make, and the rewards incurred by both machine behavior and repairs. We
show that the optimal solution, the maintenance policy that maximizes total expected
reward, is difficult to find. We discuss some general suboptimal control methods, then
examine two related dynamic programming problems for which optimal solutions ex-
ist: the multiarmed bandit problem and the single machine maintenance problem.
Motivated by the optimal solutions to these related problems, we propose a sub-
optimal solution for the multiple machine maintenance problem that is index-based,
evaluate its performance, suggest methods for improving its performance, and discuss
possible further work on this problem.
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Chapter 1

Introduction

The multiple machine maintenance problem is a type of resource allocation problem

in which multiple machines share a maintenance resource. We assume that each

machine is independent of all other machines, other than their reliance on a common

maintenance resource. Any system that has multiple independent devices, a subset

of which we select at each stage in order to achieve some goal, may be modeled as a

multiple machine maintenance problem. This model may be applied to many practical

situations, such as a server choosing which customers to service or a communication

channel allocating its bandwidth.

Much literature exists on various types of resource allocation problems. The ver-

sion of resource allocation that we will focus on in this thesis is most closely related

to the multiarmed bandit problem, which has an elegant optimal solution based on

index functions. The optimality of this index-based policy was first proved by John

Gittins [6] [7]. Many alternate proofs were later developed which gave further in-

sight into the multiarmed bandit problem, [9] [10] [11]. By relaxing some of the

constraints of the multiarmed bandit problem, we define a new resource allocation

problem whose optimal solution has not been found and combine different suboptimal

control methods to achieve an elegant, versatile suboptimal solution.

In the second chapter, we formally define the multiple machine maintenance prob-

lem in terms of its state evolution, reward structure, and control space, explain why

its optimal solution is difficult to find, and discuss some common suboptimal control

11



approaches requiring value function approximations.

In the third chapter, we discuss two problems similar to multiple machine main-

tenance, the multiarmed bandit problem and single machine maintenance, whose

optimal solutions will help guide the suboptimal solution we will later develop.

In the fourth chapter, we derive a suboptimal policy, based on a separable value

function approximation, that has the same form as the multiarmed bandit problem's

optimal policy. We also define three specific separable value function approxima-

tions: the upper approximation, the lower approximation, and the modified upper

approximation.

In the fifth chapter, we evaluate each separable value function approximation in

terms of its ability to approximate the optimal value function and the proximity to

optimal of its corresponding suboptimal policy. To illustrate the relative merits of

these approximations, we use a simple two-machine maintenance problem.

In the sixth chapter, we discuss ways to improve upon the suboptimal policy's

performance, namely by finding a rollout policy or correcting the separable value

function approximation. We describe variations of multiple machine maintenance to

which this suboptimal policy may also be applied. Finally we discuss possible future

work suggested by the results of this thesis.
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Chapter 2

Problem Formulation: Multiple

Machine Maintenance

We define the multiple machine maintenance problem in terms of its state evolution,

control space, and reward structure. We explain why finding an optimal solution to

the multiple machine maintenance problem is difficult in most cases. We then dis-

cuss a common suboptimal control approach, one-step lookahead, and some common

methods for implementing one-step lookahead.

2.1 State Evolution

In this problem, we want to optimally maintain n machines. The performance of the

ith machine at time k may be described by its state, xi {1,. .. , mi}. A higher state

number indicates worse performance. For example, state 1 corresponds to perfect

performance, while state mi corresponds to the machine being irreparable. Each

machine's state evolves, independently of all other machines, according to a Markov

chain with probabilities pij of transitioning from state i to state j. This Markov

chain models a machine's tendency to drift towards worse states when in the absence

of maintenance. For example, we may model a machine that may only transition

to states which are no better performance-wise than the current state, i.e. pij > 0

only if j ;> i, when no maintenance is applied. If we decide to maintain a machine,

13



3 .Mi Do not maintain

2 3 Mi Maintain

Figure 2-1: Example Markov chain for machine i

then its state evolves according to a different Markov chain, with probabilities qjj

of transitioning from state i to state j. This Markov chain models the machine's

performance improvement when maintenance is applied. For example, we may model

a machine that automatically returns to state 1 when it is maintained (Figure 2-1).

We may only maintain one machine at a time, so we want to find a policy that, given

the current state of all machines, chooses a specific machine to maintain or chooses

to do nothing.

2.2 Reward Structure

A specific policy is successful if it balances the benefits of having machines perform

well with the costs of maintaining these machines. To measure a policy's success, we

introduce a value function, J(XI,.. . x'), that represents the total expected reward

14



of policy 7 when machine i starts at state £2, for i E {1,..., n}. We may express

this value function in terms of akgi(x'), the reward for machine i being at state x

at stage k, and akri(Xi), the cost of repairing machine i at state X at stage k, where

a E (0, 1) is a discount factor that weighs present costs more heavily than future costs

and both g'(x') and rz(xZ) are uniformly bounded. If we find the maximum value of

the value function for every set of initial states {x1 ,..., x"}, known as the optimal

value function, then we have the policy that maximizes the total expected reward,

known as the optimal policy.

2.3 Optimal Policy

Finding the optimal value function is difficult because the state space is too large in

most cases. According to dynamic programming theory, we find the optimal value

function:

J* (Xi . .,x=) = maxJ'(x, ... , xr) (2.1)
7r

by solving the following system of equations known as Bellman's equation:

n ni

J*(x, . .,lxn) =+ c max[j H p J* (y, . . ),
i=1 y i=1

no maintenance
n

max {ri (xi) + 1: qxjy Yj H preg J*(yi, ..., 4)}] (2.2)

maintain j

Generally, Bellman's equation is solved either analytically or computationally. In

the case of multiple machine maintenance, an analytic solution to equation (2.2) is not

readily apparent and in most cases the state space, which has m 1 m2 ... m elements,

is too large to allow a computational solution. Because finding the exact optimal

solution is difficult, we want to find a suboptimal policy that yields a value function

15



that is close to optimal.

2.4 One-step Lookahead Policy

To develop a suboptimal policy, we discuss a common suboptimal control approach,

a one-step lookahead policy [2], whose implementation requires an approximation of

the optimal value function. We then discuss some general optimal value function

approximation methods.

To understand the motivation for a one-step lookahead policy, we first notice

that any policy that maximizes the right-hand side of Bellman's equation is optimal.

Maximizing the right-hand side of Bellman's equation requires already knowing the

optimal value function, J*(x), for all x. To avoid finding the optimal value function

exactly, which in the multiple machine maintenance problem is very difficult, we

replace it with an approximation. Any policy that maximizes the approximated

right-hand side of Bellman's equation is a one-step lookahead policy.

2.5 Value Function Approximation Techniques

The performance of a one-step lookahead policy depends on the value function ap-

proximation used. A popular approximation maps state-dependent features of the

problem, y(x), into a value function approximation, i(y(x), r), where r is a vector of

tunable weights and j is a parametric function [5]. The selection of features, weights,

and a parametric function depends on the particular problem.

To guide our selection for the multiple machine maintenance problem, we discuss

another popular approach: to use the optimal value function of a simpler, solvable

problem as a value function approximation. Many times a simpler problem may

be constructed by changing the constraints of the problem. For a problem with

many interdependent subsystems, like multiple machine maintenance, we would like

to change the problem parameters in such a way as to decouple the subsystems. If

this decoupling is achieved by using a subset (or superset) of the control constraint,

16



then we not only have an approximation to the optimal value function but a lower (or

upper) bound to the optimal value function [8]. To help develop a one-step lookahead

policy for multiple machine maintenance, we discuss two simpler problems that have

computable optimal solutions: the multiarmed bandit problem and single machine

maintenance.
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Chapter 3

Related Problems

To apply value function approximation methods to the multiple machine maintenance

problem, we examine two related problems for which optimal solutions are attainable:

the multiarmed bandit problem and the single machine maintenance problem. The

multiarmed bandit problem may be viewed as a multiple machine maintenance prob-

lem whose machines do not deteriorate, thereby allowing an elegant optimal solution.

The single machine maintenance problem, by only having one machine, reduces the

number of states to mi, thereby allowing a computable optimal solution.

3.1 Multiarmed Bandit

The multiple machine maintenance problem may be viewed as a variation of the

multiarmed bandit problem [4], which also has n projects that we may only service

one at a time and also has a cost structure that rewards for maintaining projects

at better states. But unlike our machines, a reward, R2 (x), is accrued only when

project i is serviced and the state of project i evolves stochastically only if project i

is serviced, otherwise its state stays the same.

To more clearly show how the two problems are related, we consider a special case

of the multiple machine maintenance problem where the state of any machine stays

the same in the absence of maintenance, instead of drifting towards worse states.

This special case models a problem where machines may be upgraded one at a time

19



and at a cost r'(x'). We show how this non-deteriorating version of the multiple ma-

chine maintenance problem is actually a multiarmed bandit problem by reformulating

Bellman's equation:

J * (X 1 ... , X ) = g (x ) + amax[ J*(', . .. ,x n"),

no upgrades applied

max {ri (xi) + 1: qx,jy J*(x', . . . , Y1 yi, 7 Xj+1, . .n),z

upgrade j

(3.1)

We first notice that if the optimal decision at state x is to upgrade none of the

machines, then the optimal decision at the next stage is also to upgrade none of the

machines because the state remains the same. We may therefore find the optimal

value function in closed form for any state x at which it is optimal to no longer

upgrade any machines. Let S be the set of all states at which it is optimal to no

longer upgrade any machines. We have the following Bellman's equation for any

state x E S, which we then solve for J*(x):

= Zgi(i)+aJ*(x l...,xn)
i=1

1-a

(3.2)

(3.3)

Substituting equation (3.3) into Bellman's equation (3.1), we have:

_'" g (X i)= ma[ max{ g(xi) - ard(xi)

Yjj (3.4)

Let H*(x) = J*(x) - K2Ni). Notice that H*(x) is also a valid optimal value

function for this problem. We substitute " (X + H* (x) for J* (x) in Bellman's

equation (3.4):

20
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+ H*(x) = max[ g= x, max {ZgY(x 2 ) - ar3 (x 3)
1 - 1 a =11 .. , n

En _:,j gi(Xzi) + gj(yj)
+a 1: qxjyj (

yJ C

+H*(xi, ... ,xi-1, yi, xj+1, ... ,x n))}] (3.5)

Subtracting n gI(xi) from both sides of equation (3.5), we have:

H* (x ,.. n) max[O, maxIa(EY qjg'(yi) - gi( - r ( )

yi

max[O, max {Ri(xi)

jz.

where Ri(xi) = I (Zyj qxj y gi(yi) - gi(Xi)) - ars (Xi).

From equation (3.7), we see we may interpret the non-deteriorating machine prob-

lem as a multiarmed bandit problem with reward R2(xz) when machine i is serviced,

transition probabilities qij when machine i is serviced, and a reward-free option to

retire from servicing all machines. Therefore, we may think of the multiple machine

maintenance problem as a multiarmed bandit problem with less state evolution con-

straints.

Our problem's resemblance to the multiarmed bandit problem is useful because

the multiarmed bandit problem has a simple optimal policy based on index functions.

An index function, Iy(xz), is defined for project i and measures the profitability of

servicing project i given its current state x'. An index-based policy either selects the

project with the highest current index or does not service any project if all the indices

are currently below a predetermined threshold M:

service project i if -y'(x 2 ) = max -y'y(x) > M
j=1,...,n

21



service no projects if max -yi(xi) < M

Index-based policies have many advantages. Because a project's index depends only

on its current state, and not the current states of any other projects, index functions

are typically easily computed. Because the numerical values for each project's index

function are found in advance, a relatively small amount of work is required to execute

an index-based policy, namely selecting the largest value from n + 1 values (n indices

and 1 threshold). Because a project's index does not depend on any other project,

an index-based policy is executable even when the number and types of projects are

changing. However, finding an index function that is both computable and optimal

is not always possible.

3.2 Single Machine Maintenance

To motivate a computable, suboptimal index function for the multiple machine main-

tenance problem, we find the optimal solution for the single machine maintenance

problem and redefine the corresponding optimal policy as an index-based policy.

By limiting the number of machines to 1, we significantly reduce the size of the

state space to mi; therefore the optimal value function may be found computationally

using Bellman's equation:

JP(z) gz(xz) + a max{ p ,ig Jp*(y') ,-r(x 2 ) + E qsiyiJ*(y 2)} (3.8)
yi=1 yi=1

do not maintain maintain

The optimal policy maintains the machine if and only if

mi mi

Zpxy J/(yZ) < -ri(') + Y S qiiJ(y')
yi=1 yi=1

This optimal policy is equivalent to an index-based policy with the following index

22



function:

y1(x) =-r(x) + (qxiyi - pxiei)J*(yz) (3.9)
yi=l

and a threshold M = 0. Although defining an index function is not necessary for

single machine maintenance problems, we do so in order to apply this index function

to the multiple machine problem.
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Chapter 4

Index-based One-step Lookahead

Policy

4.1 Suboptimal Index-based Policy

We find a one-step lookahead policy using the following separable value function

approximation:

n

J*(x ... x) Ji(I) (4.1)

where J'(x') represents the approximate amount of reward-to-go contributed by ma-

chine i to the total reward-to-go. We may think of J'(x'), for i = 1,. . . , n, as state-

dependent features that we linearly combine in order to approximate the optimal

value function. Before we discuss how to find these features, we will characterize

the one-step lookahead policy that results from using this separable value function

approximation.

We substitute the separable value function approximation (4.1) into the right-hand

side of Bellman's equation (2.2):

25



~ g(x) + amax[Ejjp J1(y),
y i=1 1=1

no maintenance

max {-r'(Xi) + 5qxjy
j=1,...,n

ni
pxiyi J (y)} (4.2)

~z~1,i~j

maintain j

We simplify the right-hand side of equation (4.2) using EZiL P = 1:

J*( , . . . , x")
n n mi

~ g(;Z) + a max[E E px.i(yi)
i1 i=1 yi=1

max {-ri(Xi) + E qxj yj Ji(yi) +
y =1 Z~lZ J

We remove the constant En _ Ei7 p J (y ) from within the first maximization

of equation (4.3):

~ (g(x2) + a 5pxiJ(y2)) + amax[O,
i=1 y i=1

max {-ri(xi) + (qjyj - pxjyj)Ji(y)}1]
j=1,...,

(4.4)

Recalling the index function, y() =-r(x) + Zi 1 (qii - Pii)J'(y) (3.9),

from the single machine maintenance problem, we substitute -iy(z) into equation

(4.4):

~ 5(gi(xi) + a pxiyi J'(y'))
i=1 yi=1

+a max[O, max {y' (xI)}]
j=l,---,n

(4.5)

26
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According to approximation (4.5) of Bellman's equation, the one-step lookahead

policy is an index-based policy with index function -yi(Xi) (3.9) and threshold M = 0.

As described earlier, an index-based policy has many advantages. The only drawback

is this index-based policy is suboptimal, meaning the index function -Y(xi) approx-

imates the profitability of maintaining machine i. The performance of this approxi-

mate index function depends on how well the separable value function approximation

mimics the shape of the optimal value function. The magnitude of the approximation

error does not matter because if J (x) is the optimal value function, then P (x) + c,

where c is a constant, yields the same optimal policy.

4.2 Separable Value Function Approximation

To find the function J2 (x2 ), we examine problems similar to the multiple machine

maintenance problem whose optimal value functions are genuinely separable, and thus

computable, and use their separable optimal value functions as approximations to the

original optimal value function. To find a genuinely separable problem, we decouple

the machines' reliance on a shared maintenance resource by changing the control

space. We consider three different control space: at each stage an unlimited number of

machines may be maintained, at stage k only machine i satisfying i = (k mod n) may

be maintained, and at stage k an unlimited number of machines may be maintained

if (k mod n) = 0, otherwise no machines may be maintained.

4.2.1 Upper Approximation

Consider a version of the multiple machine maintenance problem that does not limit

the number of machines that can be maintained at each stage. The maintenance

needs of one machine no longer interfere with the maintenance needs of the other

machines, meaning we may consider each machine as a single machine maintenance

problem. As discussed earlier, the single machine maintenance problem may be solved

computationally because the state space of each machine is relatively small.

Let J per(4), for i = 1,..., n, be the optimal value function for machine i if it were

27



the only machine. Then the separable value function approximation, E' Jpper (',,

is the optimal value function when up to n machines may be maintained at each

stage.

This approximation to the original optimal value function is named the upper

approximation because it is a upper bound to the original optimal value function. To

show this relation, let A be the set of all policies that maintain at most one machine

at each stage and let B be the set of all policies that maintain at most n machines at

each stage. Because A is a subset of B, we know that the optimal policy over the set

A is either the same as or worse than the optimal policy over the set B, meaning the

optimal value function over the set A is no greater than the optimal value function

over the set B:

max J'(xi, . . n ,) < max J'(xi . . n ,z) (4.6)
7rEA rrCB

n

J*(x,. ,x) < Jipper(Xi) (4.7)

The performance of this approximation generally worsens the more machines we

have. The approximation assumes the machines are not vying for the same mainte-

nance resource, so the higher the number of machines that do share the resource, the

less accurate the approximation.

4.2.2 Lower Approximation

Consider a version of the multiple machine maintenance problem that not only limits

the number of maintenances to one per stage, but may consider maintaining machine

i only every n stages. The system cycles through all machines one at a time, so that at

each stage it only has two options, maintain or do not maintain the current machine

under consideration. The maintenance needs of one machine no longer interfere with

the maintenance needs of the other machines, meaning we may find the optimal

solution for each machine individually. These individual optimal solutions may be
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found computationally because the state space of each machine is relatively small.

Let Jo.e,(x') for i = 1,... , n be the optimal value function for machine i if the

option to maintain is only available every n stages and the next possible mainte-

nance period is i - 1 stages away. Then the separable value function approximation,

Si1 Jower(X), is the optimal value function for a system that is currently consider-

ing machine 1 for maintenance, will consider machine 2 for maintenance at the next

stage, and will continue considering the machines in numerical order until it considers

machine n for maintenance, at which point it repeats the process by cycling back to

consider machine 1 again. Notice that the assignment of numbers to each machine is

significant in this approximation. Both the machine order and the current location

within the order will affect the value function approximation.

This approximation to the original optimal value function is named the lower

approximation because it is a lower bound to the original optimal value function. To

show this relation, let A be the set of all policies that maintain at most one machine

at each stage and let C be the set of all policies that consider only one machine for

maintenance at each stage, cycle through the machines numerically, and are currently

considering machine 1.

Because A is a superset of C, we know that the optimal policy over the set A

is either the same as or better than the optimal policy over the set C, meaning the

optimal value function over the set A is no less than the optimal value function over

the set C:

max J'(xi, . . .,X") > max J'(xi . . n ,x) (4.8)
7rcA -7rC

J*(xi. ,x) ZJtower(XZ) (4.9)

The performance of this approximation generally worsens the more machines we

have. Some machines may need significantly more maintenance than others, so the

higher the number of machines, the longer the wait between maintenance opportuni-

ties for high maintenance machines, and the less accurate the approximation.
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4.2.3 Modified Upper Approximation

Consider a version of the multiple machine maintenance problem that allows the

system to maintain up to n machines in one stage, but only every n stages. No

maintenance is allowed during the intervening stages. Like the approximations above,

the maintenance needs of one machine do not interfere with the maintenance needs

of the other machines, meaning we may easily find the optimal solution for each

machine.

Let Jdi(W) for i 1, .. n , be the optimal value function for machine i if the option

to maintain is only available every n stages and the next possible maintenance period

is d c {, ... , n - 1} stages away, where d is the same value for all machines. Different

values of d yield different value function approximations.

This approximation to the original optimal value function is named the modified

upper approximation because both the upper and the modified upper approximations

derive from a version of the multiple machine maintenance problem that allow up to

n maintenances in one stage. The modified upper approximation attempts to improve

upon the upper approximation by limiting the number of stages at which maintenance

is allowed, which better mimics the amount of maintenance resource available.

This approximation is also similar to the lower approximation because both ap-

proximations derive from a version of the multiple machine maintenance problem that

maintains a particular machine at most once every n stages. The modified upper ap-

proximation attempts to improve upon the lower approximation by using the same

number of stages, d, until the next maintenance stage for all machines, which better

represents the relative rewards contributed by each machine.
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Chapter 5

Separable Value Function

Approximation: Two-machine

Example

We discuss some qualitative aspects of the performances of the different separable

approximations. To demonstrate these aspects, we consider a simple two-machine

example with a repair cost of 12 from any state for either machine and nonincreasing

reward functions, gi(xz), in x' (Figure 5-1).

Without maintenance, each machine is equally likely to transition to any state

that is no worse than its current state. Maintenance brings each machine back to

state 1 automatically. We use two machines because the results are easily graphed.

This example has an optimal value function that is nonincreasing in both x' and x2

(Figure 5-2).

Because the number of machines is so small, all the separable approximations

perform reasonably well. Their index-based policies achieve total rewards with less

than 5% error from the optimal total reward. Some approximations perform better

than others because they better mimic the shape of the optimal value function.
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Upper Approximation Error, Jpper (x)-J
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Figure 5-3: Upper Approximation Error, Jupper(X) - J*(X)

5.1 Upper Approximation

The upper approximation, by assuming that no limit on maintenance exists, worsens

the more both machines require maintenance. At states where one machine does not

require maintenance, the upper approximation error is approximately constant with

respect to the other machine's state. As the machine deteriorates, thus increasing its

maintenance need, the upper approximation error increases and becomes non-constant

with respect to the other machine's state (Figure 5-3).

Although ideally we would like an error as close to constant as possible, the upper

approximation error is relatively symmetric with respect to the machines, meaning

most index-based policy errors are confined to states near the border between different

optimal decisions, resulting in a total reward with approximately .6% error from the

optimal total reward (Figure 5-4).
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Optimal Reward - Index Policy Reward, J(x)-Jindex(x): upper
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Figure 5-4: Difference between Optimal Reward and Reward of Index-based Policy
using the Upper Approximation
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Lower Approximation Error, J(x)-Jiowerx)
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Figure 5-5: Lower Approximation Error, J* (X) - Jtoee,(X)

5.2 Lower Approximation

The lower approximation, by assuming one of the machines may not be maintained

at the current stage, worsens as the machine under consideration improves and the

machine not under consideration deteriorates. At states at which the machine un-

der consideration is faring worse, the lower approximation error is constant. As the

machine under consideration improves and the other machine worsens, the approxi-

mation error increases (Figure 5-5).

Although this approximation error is constant for about half the states, the asym-

metry of the approximation error underestimates the relative reward from states at

which the optimal control would be to maintain the machine not under considera-

tion, meaning the index-based policy errs at about half the states, resulting in a total

reward with approximately 4.4% error from the optimal total reward (Figure 5-6).

35



Optimal Reward - Index Policy Reward, J(x)-Jd (x): lower

73 -

72 .

71

70-

69 -

68,

10--- --

8 7 8

6 56

4 3

2 2

State of Machine 2, x2 State of Machine 1, x

Figure 5-6: Difference between Optimal Reward and Reward of Index-based Policy
using the Lower Approximation
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Modified Upper Approximation Error, J (x) Jde(X)
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Figure 5-7: Modified Upper Approximation Error with d 0

5.3 Modified Upper Approximation with d = 0

The modified upper approximation, by limiting the amount of maintenance avail-

able over multiple stages as opposed to within a stage, attempts to correct for the

asymmetry of the lower approximation error while improving the shape of the upper

approximation error. Consider the case where we may maintain both machines at the

current stage, i.e. d = 0. The modified upper approximation error worsens at states

at which the optimal control is to maintain one machine now and to maintain the

other machine at the next stage (Figure 5-7).

Although this approximation error is more symmetric than the lower approxima-

tion error, it does not have the constant sections that the upper approximation error

does, resulting in a total reward with approximately 2.2% error from the optimal

total reward (Figure 5-8).
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Optimal Reward - Index Policy Reward, J (x)-Jindex(x): modified upper, d=O
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Figure 5-8: Difference between Optimal Reward and Reward of Index-based Policy
using the Modified Upper Approximation with d = 0
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Modified Upper Approximation Error, J (x)-J d= I(X
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Figure 5-9: Modified Upper Approximation Error with d = 1

5.4 Modified Upper Approximation, d =1

Consider the case where we may maintain both machines at the next stage but not

at the current stage. This case may be viewed as being the opposite of the upper

approximation. Instead of approximating the optimal value function well at states

at which only one machine needs maintenance, this modified upper approximation

approximates the optimal value function well at states at which multiple machines are

vying for the maintenance resource. At states at which one machine is not faring well,

the modified upper approximation error is approximately constant with respect to

the other machine's state. As the machine improves, thus decreasing its maintenance

need, the modified upper approximation error decreases and becomes non-constant

with respect to the other machine's state (Figure 5-9).

This approximation error is also more symmetric than the lower approximation.

It improves upon the shape of the upper approximation error by having its constant
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Optimal Reward - Index Policy Reward, J (x)-Jindex(x): modified upper, d=1
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Figure 5-10: Difference between Optimal Reward and Reward of Index-based Policy
using the Modified Upper Approximation with d = 1

sections, where it performs better, at states at which it is more difficult to determine

the optimal control, namely those states at which multiple machines are vying for

maintenance, resulting in a total reward with approximately .06% error from the

optimal total reward (Figure 5-10).

In general, the modified upper approximation with d ~, where n is the number

of machines, performs better than the other approximations.
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Chapter 6

Extensions and Variations

The suboptimal index-based policy is amenable to both performance improvement

and to different variations of the multiple machine maintenance problem. We may

improve upon the performance of the suboptimal index-based policy by using im-

proved optimal value function approximations. We discuss a popular improvement

method, finding a rollout policy, and a problem-specific method, correcting the sep-

arable value function approximation for a specific type of approximation. We then

discuss variations of the multiple machine maintenance control space that also yield

a suboptimal index-based solution.

6.1 Rollout Policy

To improve upon the performance of the suboptimal index-based policy, we introduce

a rollout policy [3]. A rollout policy is a one-step lookahead policy that uses the value

function of a base policy as its value function approximation. In the case of multiple

machine maintenance, we may use the index-based policy as a base policy and find

the resulting rollout policy. More specifically, 7r is a rollout policy based on the

index-based policy, 7, if 7, maximizes the following:
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g(x) + a max[Y J ,.
i=1 Y i=1

no maintenance
n

max {r3'(x3) + qxjy p'jy x, j7,(yi, ... ,yn)

maintain j

A rollout policy always performs better than its corresponding base policy, and in

most cases the improvement in performance from the base policy to rollout policy is

significant. For example, consider the two-machine example of Chapter 4. The rollout

policy based on the lower approximation yields a total reward with approximately

.03% error from the optimal total reward (Figure 6-1) and the rollout policies based

on the other 3 approximations, the upper approximation and the two modified upper

approximations, are optimal.

A rollout policy is a powerful suboptimal control approach, but may be difficult

to implement. Theoretically, we may find another rollout policy based on the original

rollout policy, and repeat this process either an arbitrary number of iterations or until

we find the optimal policy. Each iteration requires us to find the value function of

the base policy -F, J'(x). Finding J'(x), though simpler than finding the optimal

value function, J*(x), may be computationally intensive owing to the large state

space, mIM2 ... mn In those cases where finding J'(x) is too difficult, we may opt

to approximate it by Monte Carlo simulation.

6.2 Separable Value Function Error

Another method for improving performance is to improve the separable value function

approximation by approximating the difference between the separable value function

and the optimal value function. We may approximate this difference using neurody-

namic programming methods [5].

We first choose a parametric function that approximates the shape of the dif-
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ference. This shape, and thus the specific function chosen, depends on the type of

separable approximation used. For example, the upper approximation tends to be

worse the more machines there are at worse states, meaning the difference between the

upper separable approximation and the optimal value function may be approximated

as the minimum of affine functions:

Jpper(XZi) - J*(x,...,x) ~ min[aixi + bi] (6.1)
2=1

where aj, bi, for i = 1, 2..., n, are tunable weights. The modified upper approxima-

tion with nonzero d, on the other hand, tends to worsen as a machine's state number

increases only if that machine is currently at the worse state, meaning the difference

between the modified upper separable approximation with nonzero d and the optimal

value function may be approximated as the maximum of affine functions:

J i(i) - J*(XI, ... , xn) max[aixi + bi] (6.2)

where d is nonzero and a., bi, for i = 1, 2,... ,n, are tunable weights. Once we have

chosen a parametric function, we may use nonlinear programming methods [1] to find

suitable weights for a specific multiple machine maintenance problem.

6.3 Control Space Variations

When the control space is expanded, a separable value function approximation still

results in an index-based one-step lookahead policy. We consider two variations of

the multiple machine maintenance problem that have more control options and derive

their suboptimal index-based policies.
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6.3.1 Maintain Multiple Machines per Stage

Consider a version of the multiple machine maintenance problem that can maintain

up to k - {0 ... , n - 1} machines at each stage. We have the following Bellman's

equation for this problem:

n

E Zg 2 (X) + a max[- E rz(x') + E 11 qxii fi pxy J*(y)]
icS y iES igS

maintain all machines in the set s

where Uk is the set of all subsets of {1,.. ., n} with k or less elements. We substitute

the separable value function approximation (4.1) into the right-hand side of Bellman's

equation (6.3):

n

~ 5g (x ) + a max[- E r(x2) + H qi
SUk Es y iES

H
izS

n

PxiYi S J(y')
l=1

maintain all machines in the set s

We simplify the right-hand side of equation (6.4) using E" = 1 and rear-

range terms:

J*(x)
n

r* i g i)
i=(1

+a max[- E ri(x) +
SEUk icS

sMi
E
iES yi=1

qiy J Ji(yi) +

n mi

E(g (xi) + a E piyiJi(y))
i=1 y zi=l

+a max[E(-r i(Xi) ±+ (qxiy - PY i(i)
iES yI=1

n Mi

= (g (xi) + a 5 p Y J (y")) + a m[ax (x)]
SiUk c,

tE:

45

J* (x) (6.3)

(6.4)

S PxytJi(yi)
z~S yi~l

(6.5)

(6.6)

(6.7)

J* (X)

= Y=1



where we have used the same index function as for the original problem,

7y (xI) = -r(XI) + E (qxiyi - pxiyi)J 2(y2 ) (3.9).
yi= 1

From approximation (6.7) of Bellman's equation, we have the following one-step

lookahead policy. If more than k machines currently have a positive index, then

maintain the k machines that have the k highest indices. If less than or equal to

k machines currently have a positive index, then maintain all machines that have a

positive index.

6.3.2 Choose a Level of Maintenance

Consider a version of the multiple machine maintenance problem that chooses not only

at most one machine to maintain at each stage but also the level of maintenance. We

have the following Bellman's equation for this problem:

J*(x) = Sg(x)+amax[ E PJ(y) ,
i=14 y i=1

maintain no machines
max max {-ri(xj,u) + 5 qjyj(u) HpxiyJ*(y)}] (6.8)

j uEUi(Xi)

maintain machine j with a level of maintenance u

where ri(xi, u) is the cost of providing a level of maintenance u to machine j when it

is at state xi and qij (u) is the probability a machine transitions from state i to state j
when we choose a level of maintenance u. We substitute the separable value function

approximation (4.1) into the right-hand side of Bellman's equation (6.8):

J*(x) g(xZ) + a max[ lpxiy E J(y') ,
i=1Y 1 = =1

maintain no machines
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n

max max {-ri(xi, u) + Eqxjyj(u) li J(yI)}j uEUj(Xj) Y
(6.9)

maintain machine j with a level of maintenance u

We simplify the right-hand side of equation (6.9) using ZIi. px = 1 and rear-

range terms:

n 
n

J*() E g (xzi) + a max[ E pxy Ji(y),
i=1 i=1 yi

max max {-ri(W, U) +Z
U E Ui (xi) yj

qxj yi (u) Ji(y3 ) + E PXY Ji(yi)}]

(6.10)
n5(g(xj) + o!pxiyiJ(yz)) +amax[0,

max max {-ri(xi, u) + E(qxjyj (u) - pxjyj) J (yi)} (6.11)
i uEUj(xj) yJ

n

= (g'(x') + vepxiyiJ(y)) + c max[0,
izzl

max max {y(xI, u)}] (6.12)
j uCUi(xi)

where we have used the same index function as the original problem, except that the

maintenance cost and transition probabilities both depend on the control u,

1y (Xi, u) = --ri (i, U) + E (qx3 y3 (U) - PX Yj ) J (yj)
yj

From approximation (6.12) of Bellman's equation, we have an index-based one-

step lookahead policy that uses the following index function:

max {-Ys(X",U)}aE Uthy)ehlM

and a threshold M= 0.
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6.4 Future Work

The extensions and variations discussed above suggest a wealth of possible future

work on multiple machine maintenance. The separable value function approxima-

tions developed here are by no means exhaustive, and the parameters of a specific

multiple machine maintenance problem may suggest a more problem-specific separa-

ble approximation.

Rollout policies usually perform significantly better than their base policies, which

makes overcoming the difficulties of finding the value function for an index-based pol-

icy a worthwhile endeavor. Approximation methods could be developed that exploit

the index-based structure of the base policy.

The control space variations described in this chapter deserve further attention.

One may not only apply the same separable value functions approximations defined

in Chapter 4, suitably modified, to these variations but also develop separable ap-

proximations specific to a particular variation.
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