
CRAM: Co-operative Routing and Memory for

Networks of Embedded Sensors

by

Noshirwan Kavas Petigara

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 24, 2002

© Noshirwan Kavas Petigara, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor
Department of Electrical Engineerik and Computer Science

May 24, 2002

Certified by........
Sanjay E. Sarma

Associate Professor
Thesis Supervisor

Accepted by............
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS NSTITU
OF TECHNOLOGY

BARKER JUL 31 2002 /
LIBRARIES

CRAM: Co-operative Routing and Memory for Networks of

Embedded Sensors

by

Noshirwan Kavas Petigara

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

This thesis presents CRAM, a framework that enables the computational and memory
requirements for an application to be equitably distributed among multiple embed-
ded sensor nodes connected on a local area network. CRAM uses a local reasoning
model to enable complex global behaviors to arise from simple component programs
that are replicated across multiple nodes in the network. By allowing nodes to work
co-operatively to route and process data, this framework precludes the need for a
centralized control or processing entity. This prevents bottlenecks that occur in cen-
tralized systems, allows CRAM to scale incrementally as nodes are added to the
network, and ensures robustness in the face of node failures. All inter-node com-
munication in CRAM takes place through coarse-grained or fine-grained event-based
routing. This thesis shows that by using a combination of coarse and fine-grained
event routing, CRAM's processing efficiency, for any application, is at most a small
constant factor less than the efficiency of a equivalent centralized application.

Thesis Supervisor: Sanjay E. Sarma
Title: Associate Professor

2

Acknowledgments

Credit for this thesis is shared by many people. I would like to thank:

My advisor, Sanjay Sarma for encouraging me to think in novel and non-traditional

ways, and for allowing me to explore ideas other would think crazy. He has imparted

much wisdom about both life and research, which I am sure will always remain with

me. His untiring enthusiasm always amazes me.

Daniel Engels for his constant, but well meaning prodding, and for his extremely

helpful suggestions and criticism.

Amit Goyal and Tanaz Petigara for helping me proofread this thesis. They helped

me extract meaning from a mess of words.

My labmates - Amit Goyal, Junius Ho, and Arundhati Singh for for trading sto-

ries, jokes, and generally making time in lab always an enjoyable experience.

All the people at the Auto-ID center. For discussions, for their help, and much

more. The little things really do add up.

Neira Hajro for her laughter and encouragement through all of my moods, both

good and bad.

And last, but not least my family : my parents, Kavas and Paula Petigara, and

my sister, Tanaz Petigara for always being there when I need them. Without their

caring and support I would not have been able to do this.

3

Contents

1 Introduction 8

1.1 Thesis Statem ent . 9

1.2 A pproach . 9

1.3 C ontributions . 11

1.4 C ontext . 11

1.5 Related W ork . 13

1.6 O utline . 16

2 Design Rationale for CRAM 17

2.1 The Case for Decentralized Processing 17

2.2 Distributed Processing . 19

2.2.1 Distributed and Parallel Processing in Conventional Networks 19

2.2.2 Distributed and Parallel Processing in Sensor Networks 21

2.3 A Model for Distributed Processing in Sensor Networks 22

2.3.1 Modeling a Distributed Application: Local Reasoning 22

2.3.2 Communicating Between Distributed Applications: Transfor-

mational Interactions (TI) . 24

2.4 Routing in a Distributed Sensor Network: Data-driven Communication 26

2.4.1 A Mechanism for Data-driven Communication: Event-based

routing . 27

2.5 Putting it all together: Developing an Efficient Event-Routing System 29

2.5.1 Characterizing Applications 30

2.5.2 Event-based Routing: Coarse-Grained 31

4

2.5.3 A Fine-grained Approach to Event-Based Routing 34

2.5.4 A Combined Approach . 36

3 The CRAM Design 38

3.1 O verview . 38

3.2 The CRAM Anatomy . 40

3.2.1 Local Cache . 41

3.2.2 Memory Client . 43

3.2.3 Memory Server . 44

3.2.4 Shared Memory . 45

3.3 The CRAM Physiology . 46

3.3.1 Networking Protocols . 46

3.3.2 Data Flow in a Coarse grained Application 46

3.3.3 Data flow in a Fine grained Application 48

3.3.4 N ode lists . 50

3.3.5 Hashing and Indexing . 50

3.3.6 Optimizations . 52

4 Building Applications with CRAM 55

4.1 Removing Environmental Noise from the Data: An Example of Coarse

Grain Event Routing . 55

4.2 Applications with Heterogeneous Sub-Components: Theft Detection . 57

4.3 Applications Can Built Upon Each Other: Inventory Control 58

4.4 Fine grained event routing: Detecting Duplicate Tags 59

5 Conclusions and Future Work 61

5.1 D iscussion . 61

5.2 Integrating CRAM into the Auto-ID Architecture 62

5.3 Future W ork . 63

5.4 C onclusion . 65

5

List of Figures

1-1 A High-Level View of the Auto-ID System 12

1-2 Related Work Grouped into Layers. Higher Layers Indicate Larger

Scale of Operation. 14

2-1 A Distributed Processing Model For Sensor Networks 23

2-2 Transformational Interactions . 25

2-3 Mechanisms in Publish-Subscribe . 28

2-4 Input-Output Correspondence in Coarse-Grained Routing 32

2-5 Efficiency of Coarse-grained Routing 33

2-6 Efficiency of Fine-grained Routing . 35

2-7 Efficiency of a Combined Approach 37

3-1 The CRAM Anatomy . 41

3-2 The Local Cache . 42

3-3 The Memory Client . 43

3-4 The Memory Server . 45

3-5 Registering of Coarse Event Filters 47

3-6 Data Flow of Coarse Events . 48

3-7 Data Flow For Fine-grained Events 49

6

List of Tables

4.1 Summary of Noise Reducing Filter Application 57

4.2 Summary of Theft Detecting Application 58

4.3 Summary of Noise Reducing Filter Application 59

4.4 Summary of Noise Reducing Filter Application 60

7

Chapter 1

Introduction

In recent years, the emergence of low-cost environmental sensors, in conjunction

with identification and location technologies such as Radio Frequency Identification

(RFID) tags, have enabled us to gather real-time digital representations of the phys-

ical world. At the same time, the cost of networking hardware has dropped so dra-

matically that network interfaces are being added to almost every device. This has

presented the opportunity to connect hundreds of digital sensors in our homes and

workplaces to provide a unified view of our surroundings.

While hardware advances are rapidly pushing these devices into our surroundings,

current software systems are unable to utilize their potential. The client-server model,

often used to control these systems, is ill-suited to large-scale deployment of these

devices and applications, leading to problems with scaling, maintenance, performance,

and programmability. However, the increasing computational power of these sensors

has offered the chance to rethink how they operate and are programmed.

In order to create robust, powerful applications for these sensors, I envision a

system that allows these devices to organize and co-ordinate their activities, and

configure their behavior based on the applications they are serving. Devices that

co-operate should be able to distribute responsibility for an application equitably

among participating nodes and seamlessly route data among these components. A

decentralized system along these lines would be able to scale incrementally as more

devices are added to the network. In addition, it would be more robust and would

8

require little human intervention for its continued operation.

1.1 Thesis Statement

In this thesis, I present CRAM - a framework that enables the computational and

memory requirements for an application to be equitably distributed among multiple

embedded sensor nodes connected on a local area network. CRAM allows for complex

global behaviors to arise from simple component programs that are replicated across

multiple nodes in the network. By allowing nodes to work co-operatively to route

and process data, this framework precludes the need for a centralized control or

processing entity. The decentralized nature of CRAM prevents bottlenecks that occur

in centralized systems, and is key to both its ability to adapt to the addition of nodes

and its resilience in the face of node failures.

1.2 Approach

CRAM is directed towards networks of a few hundred nodes, each of which controls

multiple RFID or environmental sensors. Every node reads hundreds of values from

its sensors during each snapshot, which can vary from once a second to once a minute.

The applications directed towards these networks are complex and often include tasks

such as detecting patterns across nodes, or processing the combined data of multiple

sensors into a different form. While none of the nodes have the resources to assume

the responsibility for an entire application, the sum total of the computing resources

of the nodes in the network far exceeds the amount needed by any single application.

In order to produce the desired result, CRAM automatically divides the computa-

tional and memory requirements among the participating nodes. Each node hosts a

small component that performs processing tasks on the local data read by the node,

in association with a small subset of the data from other nodes. By processing com-

binations of local and remote data, the entire system can be made to behave as a

single application, giving rise to globally relevant results.

9

In CRAM, each application is described using a local reasoning model, which views

an application from the standpoint of a single node. In this model, an application

is modeled as a component that resides on a single node. This component interacts

between data local to its sensors and data that is produced by some undetermined

remote nodes. Thus it is not important which nodes the data comes from, rather

that the data is not local to the node itself. To produce the desired global result,

this component is then replicated across all nodes participating in the application.

If necessary, an application can be composed of multiple heterogeneous components.

This model allows components to process and exchange data in parallel, leading to

an efficient utilization of computing resources.

CRAM provides the substrate to enable efficient inter-node communication in this

model. To receive remote data, a component creates an event filter to subscribe to

events. When a node produces these events, CRAM automatically routes the event

to its subscribers based on the active filters. In CRAM, event filters can be of two

types: coarse-grained and fine-grained. Coarse-grained filters are those which match

large groups of data, and generally remain active for a long time. Fine-grained filters

usually match only a single event and remain active for only a short period of time

when the event is likely to be produced. To support both these filters types, CRAM

maintains a distributed index of events; each node is responsible for storage and

retrieval of a small portion of the events produced by the system. This index can be

accessed from any node using a uniform addressing scheme.

The CRAM framework presents each node with a unified view of data on the

network such that data can be routed and addressed without knowing its source. By

providing both fine-grained and coarse-grained routing of events, this thesis argues

that CRAM can efficiently distribute processing and memory requirements across a

network of embedded sensors for a wide range of applications.

10

1.3 Contributions

" The local reasoning model, which enables complex global behaviors to arise

from simple component programs that are replicated across multiple nodes in

an embedded sensor network.

" The CRAM framework, which allows applications built using local reasoning to

efficiently communicate and co-operate by using a combination fine and coarse-

grained event-based routing.

1.4 Context

This thesis is motivated by the challenges faced in the Auto-ID Center at the Mas-

sachusetts Institute of Technology. The Auto-ID Center is researching and developing

automated identification technologies and applications. The Center is creating the

infrastructure, recommending standards, and identifying automated identification ap-

plications for a networked physical world. The Auto-ID Center anticipates a world in

which all electronic devices are networked and every object, whether physical or elec-

tronic, is electronically tagged with information specific to that object. The center

visualizes the use of physical 'smart' tags that allow remote, contactless interrogation

of their contents, enabling all physical objects to act as nodes in the global Internet.

The realization of this vision will yield a wide range of benefits in diverse areas includ-

ing supply chain management and inventory control, product tracking and location

identification, and human-computer and human-object interfaces [221.

At the heart of the Auto-ID initiative is the Electronic Product Code (EPC)

[2]. The EPC consists of a 96-bit number' embedded in a tiny Radio-Frequency

Identification (RFID) memory chip or "smart tag" [21]. Each of these smart tags is

scanned by a wireless radio frequency tag reader. Once scanned, the identity code, or

EPC is then transmitted onto the Internet, where it is stored in the Physical Markup

Language (PML) [3], an XML based language for describing physical objects. The

'There is also a 64-bit version of the EPC [1].

11

EPC works in conjunction with a PML description and the Object Name Service

(ONS) [6] to locate and store information on every item.

= Database

= RFID Tag
Reader

o =RFID Tag

....

Warehouse 1

National
Database

Regional
Database

Datab
ase

0 0 0 0 0
0 00 0 0 o o

Warehouse 2

Datab
ase

0 0 0 4 0 i 0
no 0 0 0 0 0 0

Figure 1-1: A High-Level View of the Auto-ID System

Figure 1-1 shows a typical layout of the Auto-ID system. Multiple readers are

positioned throughout warehouses and supermarkets. The readers record the cur-

rent state of all tagged objects in real time. At this level, there might be multiple

applications running, e.g filtering, theft detection, and inventory control. Filtered in-

formation (perhaps containing only daily totals) is sent upwards to the next highest

level where it is aggregated with data coming from different warehouses. This process

continues until the data reaches the highest level in the system. Each level contains

information on the state of the data at a different time scale. In the warehouse, data

is recorded on a second by second basis. At the regional level, only daily changes

12

are recorded, while the highest level might contain weekly or monthly totals. The

lowest level of the system, or the edge of the network, is the most critical piece in this

system. It is at this layer that most of the processing occurs. First, raw and noisy

data is filtered. This data is then passed through multiple applications to perform

functions such as theft detection and re-shelving alerts.

One mechanism to perform processing at the edge of the network is to centralize

all the functionality onto a single 'edge' server. Each reader would send its data to this

server, which would then perform all necessary processing. However, this approach

is not feasible as it is unlikely that a single edge server would be powerful enough to

handle the large volume of events produced at this level. Additionally, this approach

does not scale well when new readers or applications are added to the system, and is

also a single point of failure for the system.

In order to solve this problem, this thesis proposes an approach where computa-

tional resources for each applications are divided among participating readers (nodes)

in the network; nodes co-operatively route and process data without the need for any

centralized control. This approach prevents the bottleneck presented by a centralized

approach, scales incrementally as new nodes are added, and is more robust in the

face of failures.

1.5 Related Work

This thesis lies at the intersection of many bodies of work. The systems related to

CRAM are grouped into 4 layers, as depicted in figure 1-2, according to the scale at

which they operate. This hierarchy is bounded at the top by layer 1 systems, which

work on an Internet-wide scale, and at the bottom by layer 4 systems, which operate

on a micro-scale. CRAM occupies at level 3, a niche that is below layers 1 and 2, but

above layer 4.

9 Layer 1: Comprises of Internet-wide systems for distributed computing and

co-operative routing.

13

Grid Computing Internet-Wide Co-operativeRoutingLae 1

Distributed Shared memory Content-Based Routing Layer 2
Systems Systems

CRAM Layer 3

Embedded Wreless Amorphous Computing Layer 4

Figure 1-2: Related Work Grouped into Layers. Higher Layers Indicate Larger Scale
of Operation.

The Grid Computing initiative aims to harness the computing resources of work-

stations and servers distributed across the Internet in order to provide a scalable,

robust, and powerful computing system that can be easily accessed [7, 8]. In this

respect, CRAM is very similar to these systems except for the scale at which it

operates. However, there is one crucial difference - most distributed computing

systems aim to take data that resides at one place and distribute it efficiently

across the network for processing. Nodes in a sensor network, however, are

the sources of data. Consequently, CRAM leverages the fact that the data is

already distributed to provide a mechanism such that data can be processed in

situ.

Chord [29], Tapestry [14] and Pastry [19] are systems that achieve decentralized

co-ordinated location and routing. CRAM shares many similarities with these

systems, especially to Chord in its use of Consistent Hashing [13]. However,

these systems are optimized for Internet-wide operation and consequently opt

for scalability at the expense of performance. Therefore, these systems are un-

14

suitable for real-time processing of data, In addition, these systems are usually

targeted towards peer-to-peer file systems and persistent file stores [4, 14].

o Layer 2: This layer includes two distinct system types - the first type targets

clusters of workstations or servers to provide a shared view of memory, while the

second type includes content-based routing systems. Both these types are placed

at this level as they are generally targeted towards clusters of workstations or

servers connected on a local area network.

For its distributed index, CRAM draws from distributed shared memory (DSM)

systems such as Linda [9, 10], to provide the ability for applications to access

data that reside on different nodes. However, the role of distributed shared

memory is very different from these systems. Most of these systems use DSM

as a programming abstraction such that the programmer cannot see the differ-

ence between local and remote memory access. However, CRAM differentiates

between these two types of memory - the aim of the distributed query capability

is not to mask these differences, but to provide a single addressing scheme for

all remote memory.

The other area in this layer is filled by content-based routing systems. While

content or event based routing is a major component of CRAM, its design goals

deviate significantly from previous work. Content-based routing systems such

as Elvin4 [23] use a single server, or group of servers, to perform publish and

subscribe operations. This runs contrary to the vision of a totally distributed

routing system. While previous work has been accomplished in the area of

totally distributed content-based routing, such as Scribe [20] and Bayeaux [32],

these are built upon systems from layer 1 and hence share the same differences

with CRAM.

o Layer 4: The lowest layer of related work comes from two areas. The first

area is wireless sensor networks [18, 5]. Systems such as SCADDS [5] have the

same goals as CRAM. However, in these systems, a node cannot communicate

with all nodes in the network, but only with a handful of nodes within radio

15

range. These systems use ideas such as directed diffusion [11], content-based

routing schemes developed to overcome these limitations. The second area at

this layer is characterized by the Amorphous Computing paradigm, which has

provided the inspiration that complex global behaviors can be developed from

local interactions of adjacent nodes. However, CRAM has a very different notion

of 'locality'. As CRAM operates on a wired network, any two pairs of nodes can

communicate. Hence each node can is assumed to be 'adjacent' to every other

node. CRAM uses this augmented definition of locality in its local reasoning

model.

CRAM is designed to operate in an environment that consists of multiple nodes,

each of which is delegated the responsibility for multiple sensors. Such systems are at

the core of the Auto-ID Center architecture; a single reader is responsible for reading

hundreds of RFID tags, and is also in control of multiple environmental sensors.

However each reader must be able to co-ordinate its activities with other readers

present in a warehouse.

1.6 Outline

The next chapter provides the design rationale for CRAM. This chapter, develops

the local reasoning model, and argues that a combination of coarse and fine grained

event routing leads to efficient inter-node data sharing and co-ordination. Chapter

3 details the design and implementation of CRAM. Chapter 4 provides examples of

how applications can be built on top of CRAM, and chapter 5 presents conclusions

and directions for future work.

16

Chapter 2

Design Rationale for CRAM

This chapter describes the design rationale for CRAM. The design of CRAM is pri-

marily influenced by the observation that centralized methods for data processing are

not viable for embedded sensor networks. Consequently, a case is made for decen-

tralized, distributed processing, in which nodes co-operate to process and route data.

Based on the properties of embedded sensor networks, the local reasoning model is

described. This is used to distribute processing tasks in these networks. In order to

facilitate inter-application communication, this chapter advocates the use of transfor-

mational interactions. The underlying routing substrate for these models is provided

by a data-driven mechanism, event-based communication. Lastly, this chapter argues

that a combination of fine-grained and coarse-grained event routing provides efficient

distribution of resources across all nodes in the network.

2.1 The Case for Decentralized Processing

The first embedded sensors had limited processing capabilities and highly restricted

connectivity options. They read data from the environment at a slow rate and passed

this data to a host computer via a serial or parallel interface. More recently, these

devices have been equipped with network interfaces. In this configuration, devices

read data from the environment and send it along the network to a central server for

processing. This model does work in limited settings. However, it is unsuitable for

17

wide-scale deployments for the following reasons:

1. Absolute processing power: There are numerous visions of a networked

physical world in which a single room might contain hundreds, or even thousands

of sensors [5, 22]. The Auto-ID Center, believes that a "standard" deployment

in a warehouse or supermarket will incorporate a few hundred RFID tag readers,

each of which read a few hundred tags per second. In these deployments, close

to a hundred thousand items of data are produced each second. At a minimum,

a single server would have to read this data, filter it to remove environmental

noise, and perform tasks such as theft detection and re-stocking alerts, among

many others. In many cases, commodity hardware will not suffice to handle

the large number of transaction and applications. This has prompted a search

for alternative approaches that will yield a higher absolute processing power, at

lower cost.

2. No incremental scaling: Approaches that involve a centralized server ap-

proach do not scale well. The addition of more nodes to the network increases

the load on the server, without a corresponding increase in processing capabil-

ity. Consequently, upgrading or replacing the server is the only solution when

the load increases beyond the processing capabilities of the server.

3. Single Point of failure: A single server represents a single point of failure.

Since all processing tasks are performed on the server, the failure of the server

will render the entire network useless. Alternatively, a backup server is needed,

which is economically unviable.

For these reasons, this thesis postulates that a centralized, single server approach

is not a viable solution for the control and processing of data from embedded sensor

networks. Instead, processing of data should be performed in a decentralized manner,

with each node performing part of the processing. Due to the large number of net-

worked nodes, the sum total of the processing power of all the nodes in the network

is sufficient to handle a large number of applications. Additionally, adding new nodes

18

to the networks will incrementally scale its processing power since the new node will

participate in processing data. Finally, a decentralized system will be able to tolerate

failure at multiple points, as each point only processes a small portion of the data.

2.2 Distributed Processing

In the previous section, it was argued that a decentralized, distributed approach to

data processing is a better alternative to centralized processing in sensor networks.

However, current techniques for distributed computing are not tailored to embedded

sensor networks. This section first discusses general methods for distributed and

parallel processing. Next, based on observations, it is argued that these methods are

often not applicable for sensor networks. Based on these observations a simple model

for distributed processing in these networks is formulated.

2.2.1 Distributed and Parallel Processing in Conventional

Networks

Distributed computing projects such as SETIHome [24] have gained widespread

attention in recent years. The goal of these projects is to harness idle CPU cycles and

storage space of tens, hundreds, or thousands of systems networked across the Internet

to work together on a particularly processing-intensive problem. These projects draw

from parallel processing techniques, which employ multiple processors at the same

location, and have been used to build high performance computers for decades [15].

Both distributed and parallel computing have the same goal: to build high per-

formance computing systems by processing data in parallel, on multiple processors.

In general, the method to achieve this is to break the data into smaller components,

each of which is processed simultaneously on a separate processor. All processors

might execute the same task on their assigned dataset (Single Instruction, Multiple

Data - SIMD [15]), or each processor might execute a different task on its dataset

(Multiple Instruction, Multiple Data - MIMD [15]). Additionally, there are different

19

ways to divide the data into groups for each processor. Data may be broken up such

that there are are no mutual dependencies, in which case separate processors do not

have to communicate among each other. However, if the datasets are broken up such

that there are mutual dependencies, then the processors must be able to communicate

results to each other.

While there are many factors that affect the performance of distributed processing

applications, two that have interesting implications for sensor networks are discussed

below.

" Compute-to-data Ratio: When dividing data into components to distribute

across a network for computation, the first parameter examined is usually the

compute-to-data ratio. Data for distributed applications usually resides in a

single place, such as a database, and must be transferred to the different nodes

for processing. After the computation, the results are transferred back to the

source. If the latency and bandwidth of the network are high, relative to the

computing cycles needed to perform the operation, then the cost of the trans-

fer will dominate and the processing will be inefficient. Consequently, typical

applications for distributed processing involve datasets that require a lot of pro-

cessing per unit of data. This prevents large amounts of data from being sent

to a single node at any one time, and keeps the transfer overhead relatively low.

" Compute-to-communication ratio: The second parameter that must be ex-

amined is the compute-to-communication ratio. When distributing tasks across

the network, one needs to load balance these such that all processors are pro-

cessing tasks concurrently. This prevents processors from sitting idle, and thus

allows maximum utilization of computing cycles. To do this, an attempt is made

to divide a task into sequential blocks that can be executed independently of

each other. However, for many applications, it is very difficult to divide the

tasks and data into these blocks. In general, the size of the task increases as the

blocks are made more independent of each other. This creates a problem as a

task might be too large for a single processor. To counter this effect, tasks and

20

data are broken down such that they are coupled with other tasks. This creates

the need for processors to communicate with each other to exchange results

during a computation. As inter-node communication speed is generally slow,

distributed applications always try to minimize the compute-to-communication

ratio in order to keep this overhead low.

2.2.2 Distributed and Parallel Processing in Sensor Networks

While many of the same principles hold for distributed processing in sensor networks,

there are significant differences that are leveraged in this thesis.

Observation 1: The data is already distributed at the nodes: As the nodes

control sensors, the data is already readily available at the node itself. In

traditional distributed systems, there a cost is associated with transferring the

data to and from the processing nodes. However, with embedded networks, no

cost is associated with transferring the data to the node for processing as nodes

are the source of data. Therefore any processing performed at the source, no

matter how small, will be effective in utilizing computational resources

Observation 2: Spatial and temporal locality of data at nodes: The other ob-

servation of critical importance is that the data that resides at each node is

divided into loosely coupled partitions. As described in section 2.2.1 a signifi-

cant amount of work in distributed computing systems goes into dividing tasks

and data such that they are small, nearly sequential blocks that execute on

each node. If data in these sensor networks were randomly distributed, then

there would be far too many mutual dependencies between the groups, and

the communication overhead would be tremendously high. Fortunately, the

distribution is not random; it is divided into partitions that are spatially and

temporally grouped. The reason that these groupings occur is simple. A single

node controls multiple sensors, each of which are close to the node. As a result,

these sensors are spatially related. Similarly, each sensor is read serially, which

21

makes the data temporally related. This allows the inherent parallelism of these

datasets to be exploited in order to perform operations concurrently.

These observations have prompted the development of a simple model of dis-

tributed processing, tailored to embedded sensor networks, which is described in the

next section.

2.3 A Model for Distributed Processing in Sensor

Networks

2.3.1 Modeling a Distributed Application: Local Reasoning

Our model for distributed processing is based on the observations outlined in the

previous section. The key to this model is to conceptualize an application in terms

of interactions between local and remote data. Local data is that which the node has

gathered from its sensors. Remote data are those items available from some other

node. In this model, the task of the programmer is to think of applications in this

way. The burden of actually sharing the data needed for the interaction is placed on

the routing layer.

For example, a typical application for sensor networks is to detect the same con-

dition among a group of neighboring nodes (e.g. a sharp rise in temperature in an

area, signaling a failure in the cooling system). In this case, one would think of the

application as calculating the gradient from the local temperature sensor [the local

data], and then comparing it to gradients from surrounding nodes [the interaction

with remote data]. This application can then be replicated across all nodes in the

network. As is intuitive, the detection of a cooling system failure takes place in par-

allel across the network - each component performs the same computation, but on

different sets of local and remote data. Each node computes its local temperature

gradient. The routing layer handles the transfer of this gradient between the neigh-

boring nodes, which compare the remote to their own locally processed data. If any

node detects an anomalous gradient difference, it can signal a problem. Although, in

22

the case of this application, there is a single component that is replicated across all

nodes, it is possible for an application to have multiple heterogeneous components,

each of which is executed on the relevant nodes.

s6ej ali/siosues

000 0
e-a N rk d'

OPON VIOMIGN

C 03

2 . . 0

s s T a

:3 0

CO)
0Q .. 0~

While this example is very simple, it illustrates the core philosophy of the model:

* The data is already grouped and distributed at the processing nodes.

* Applications are thought of as interactions between local and remote data.

* These interactions are replicated on many nodes to allow for concurrent pro-

cessing of an application.

* The underlying routing layer handles data sharing between nodes.

23

This model is based on the assumption that each node has enough computing

power and memory to process data that is local. If each node did not have even this

capability, then it would be very difficult to apply this model, as another node might

have to share the responsibility for processing 'local' data. However, for the networks

in the Auto-ID system the nodes have sufficient processing power to process data read

from their sensors.

2.3.2 Communicating Between Distributed Applications: Trans-

formational Interactions (TI)

Local reasoning, presented in section 2.3, provides a model for inter-node co-operation

in order to distribute a single application across multiple nodes. However, this model

does not incorporate a notion of how multiple applications on the same network will

co-operate. Inter-application communication is crucial to these networks as they are

expected to perform multiple tasks.

In order to facilitate sharing of data between co-operating applications in em-

bedded sensor networks, a new model of data flow is presented: Transformational

Interactions. This model is driven by the expectation that the data needed by high

level applications in the network is a processed version of data needed by lower level

applications. TI is a bottom-up model of data flow, in which data is viewed as being

processed incrementally as it travels (logically or physically) from the outer fringes of

the network into its upper layers. Each application (or component) receives local or

remote data in a certain state. After processing this data, the component produces a

certain output, which is viewed as a transformation of the original state. Most often,

higher level applications do not need data in its raw form, but need data that has

undergone processing at a lower level. Transformational interactions incorporates

this characteristic of sensor networks directly into its model. TI fosters a system,

where smaller applications combine to produce bigger applications. Moreover, it pro-

motes efficient use of resources as intermediate results are available, even if they are

produced by different applications. Interestingly, TI inherently integrates both the

24

routing and processing of data packets: as packets are routed through the system,

they are incrementally processed.

Transform (T2-) Theft Alert Interactio

Theft Detector(A2) D 3

Raw Datei Transform (Tl-2)

D, Filter (A,)

Transform (T2-) Restock Alell RESTOCK

Inventory Control (A D4 P SHELFP!!

Figure 2-2: Transformational Interactions

To understand how transformational interactions would work in practice, an ex-

ample of a network of RFID tag readers in a supermarket is illustrated in figure 2-2.

Each reader (A1) produces some raw data (D1) consisting of the RFID tags that they

sense within their antenna fields. A filtering component resides on each reader, which

performs transformation T1 > 2 on D1 to produce data D2 that is free of environmental

noise. In addition, there are two other applications active on this network - inventory

control (A2) and theft detection (A3), which are distributed among the nodes. Both

of these applications cannot operate on raw data, but need filtered data. Rather than

have each application receive and filter data raw data independently, both applica-

tions build off of the filtering application. As their input, they receive the filtered data

D 2. A2 and A3 might apply further transformations to D2 to produce, for example,

re-stocking alerts D 4 and theft alerts D3. Again, other applications can use these

alerts to perform higher level tasks without needing to perform all the intermediate

processing.

The consequence of a transformation-based approach is that the next destination

for a set of data elements is based on the result of the transformation to it. As

25

is intuitive, this method combines both routing and processing. Modeling data flow

based on transformational interactions shifts the focus of programming an application

- the programmer does not need to think of how and from where he is going to receive

the data, but only needs to understand what state he needs the data in. This is a

powerful abstraction that facilitates efficient inter-application sharing.

2.4 Routing in a Distributed Sensor Network: Data-

driven Communication

The previous sections have developed a model for distributed data processing in sen-

sor networks. However, the underlying communication mechanisms needed to support

these models have not been defined. This section argues that data-driven communi-

cation is well suited to distributed processing in sensor networks. Specifically, the use

of event based routing for communication is advocated.

In a client-server environment, although the number of clients might be very large,

each client needs only to communicate with a small set of servers. Generally, even

if information is shared between clients, the server acts as a middleman between

the clients. As data is centralized at the servers, every client knows where it can

retrieve all the data necessary for processing. However, in a decentralized system,

the data needed for processing can reside on any node. As the number of nodes is

often extremely large, it is not feasible to know where each piece of data resides.

In order to overcome these problems, the local reasoning model and transformational

interactions implicitly include a data-driven approach to communication. Data-driven

communication is not based on the source or destination addresses of the nodes, but

on the actual content of the data. This allows nodes to access data that resides on

other nodes by simply specifying the content of data they need to receive.

While this argument is valid for all systems in which data is distributed across

many nodes, a data-driven approach is even more appropriate for sensor networks for

the following reasons:

26

" "Liveness" of data: The data from sensors in a network is dynamic, and has

different meanings for different applications in the network. For example, in a

warehouse, data from an exit reader is needed in real-time for theft detection.

However, for a higher level application, this data is needed at a lower resolution

only as a record for inventory control. This is very different from data such as file

transfers and web pages in a client-server environment. In these environments,

the data has only one meaning and is needed at only one point (the client or

the server). Data driven communication can capture these liveness properties,

by only routing specific instances of data as needed.

" Importance of aggregation: In a distributed sensor network, relevant data

is often spread across multiple nodes. More importantly, data from individual

sources is often not important unless aggregated from spatially or temporally

related sources. For example, to filter out environmental noise from reader data,

we need to process historical data from a single reader, as well as data from

nearby readers. Data-driven communication can encapsulate these aggregations

as data is routed according to its contents, rather than its source node.

2.4.1 A Mechanism for Data-driven Communication: Event-

based routing

Data-driven communication is often referred to as content-based routing. Content-

based routing defines a broad approach to data-driven communication, where data

packets are routed based on the information they contain. In his thesis, Sheldon

defines content-based routing and uses it for Internet-wide information discovery and

retrieval [25]. More recently, an instantiation of content-based routing, known as

publish-subscribe has been used in a number of academic and commercial systems.

Systems such as Elvin4 [23], Gryphon [17] and XMLBlaster [30] use publish-subscribe

to allow users or application to specify which portions of a data stream they would

like to receive. Snoeren et al used a publish-subscribe mechanism in overlay networks

to provide intelligent content pruning for reliable data distribution [27].

27

Figure 2-3: Mechanisms in Publish-Subscribe

Broadly, publish-subscribe systems work as follows:

" A client or application submits a query to routers [subscribe]

" Other clients or servers send data packets along to the nearest router [publish]

" The router then applies the query to all incoming packets to determine which

packets to send to the subscriber.

Publish-subscribe systems are interesting in the context of sensor networks as

they are a good match for the data-driven communication in sensor networks. In

the systems listed above, publish-subscribe is used mainly as a mechanism to prune

data streams. However, we envision publish-subscribe as a mechanism to identify and

route events based on their current state. Consequently, the term event-based routing

is used from here on to refer to these systems. In a sensor network, every atomic

data element that is produced in the network is referred to as an event. For example,

a reading from a sensor is an event. Additionally, processed data produced by an

application also consists of events1 .

An event-based routing system would integrate with the local reasoning model as

follows:

'The grammar and semantics of these events are described in section 3.1

28

Node 2

Network

Step 1: Node 1
Subscribe(

Node 2

Network

Step 2: Node 1
Publish

Node 2

Network

Step 3:
Receive Node 1

Event

1. An application would be defined as a series of components that implement

local-remote interactions as described in the local reasoning model.

2. For each interaction, the component sends out a subscription request for the

desired events from remote nodes. As an example, a subscription might contain

a request for temperature events greater than 400 C. In this case, the component

would only receive events that satisfied that criteria.

3. Each component receives events and processes them in conjunction with local

events, which produces new events.

4. If these new events match any current subscriptions, they are sent to the sub-

scribing components.

2.5 Putting it all together: Developing an Efficient

Event-Routing System

In the previous sections, we described a model for distributed processing in embedded

networks. This model was based on a data-driven communication model based on

event-routing. Still, there are a many open questions still remain on how these models

can be translated into a practical design.

The characteristic that data is already grouped and distributed to the nodes has

important implications on how data is shared between nodes. As the data is already

partitioned into groups, each application will view these groups as being coupled dif-

ferently. Therefore, some applications will require very little inter-node sharing, while

some will require a much higher level of sharing. Using conventional methods of dis-

tributed computing, data is partitioned differently for each application. However, the

local reasoning model requires that each node only processes data local to itself, and

thus data cannot be reorganized. In order to allow local reasoning to work efficiently

across multiple application types, the underlying event-routing mechanism must be

able to support all types of applications. To do this, this section first parameterizes

29

applications based on the sharing characteristics of their components. Next, it is

argued that to allow efficient division of computational resources, two distinct types

of event subscriptions are necessary: coarse-grained and fine-grained. Lastly, this

section shows how efficient distribution of resources is possible if both methods are

provided to applications.

2.5.1 Characterizing Applications

Section 2.3, outlined a model for distributed processing in sensor networks. In this

model, network wide operations are thought of as interactions between data local to

the node, and data that reside elsewhere on the network. As data is in fixed groupings,

the number of these interactions necessary varies greatly depending on the application.

In order to provide underlying routing mechanisms that can support wide ranges

of data sharing, it is necessary to first parameterize, classify and understand these

interactions. In this section, parameters are defined to characterize these interaction.

Applications are classified based on the proportion of nodes that each node has to

co-operate with.

To examine the parameters, a simple model of the network is utilized. The network

consists of grid of m nodes. Each node controls one sensor, which produces events at

the rate of one event per second. Although simple, this model captures the important

properties of these networks.

There are two variables that define how applications share data.

" Scope (n) - This variable describes the total number of nodes that are involved

in an application. For example, in an application where the purpose of the

application was to detect footsteps anywhere in a room, then the scope would

be equal to the total number of nodes in the room.

" Degree of coupling (c) - This variable describes how many remote components

each component needs to interact with. For example, in an application where

a footstep is detected at a node if all 6 neighboring nodes detect a change in

pressure, then the degree of coupling, c = 6. However, if the purpose of an

30

application was to detect duplicate RFID tags from any two readers in the

room, then each component would be coupled with all the components in the

room and c = n for that application.

Based on the these variables, the sharing ratio, d for each application, d = c/n, can

be calculated.

" Example of an application with small d: Take an example of a room with

100 nodes (sensors) uniformly distributed across the floor. In order to detect a

footstep anywhere in the room, we saw that n = 100, c = 6. For this application,

d = 6/100. This application is distributed by having code on each sensor that

receives data from its 6 neighbors and checks to see if all have registered a

change. Consequently, if there is a footstep anywhere on the floor, it will be

detected. In applications with a d that is small, each component will only have

to share data with a small proportion of the components in the network.

* Example of an application with large d: Take a similar arrangement of a

room with 100 sensors. In this case, the application needs to detect duplicate

RFID tags from any two nodes in the room. Consequently, n = 100 and c = 100.

In this case, d = 100/100. In applications with d close to 1, each component

needs to share data with a large proportion of components in the network.

2.5.2 Event-based Routing: Coarse-Grained

A traditional publish-subscribe system can be classified as coarse-grained. Compo-

nents subscribe to a class of data, wait for the data to be routed to them, and then

process all of it. Coarse-grained subscriptions usually remain active for a long time,

and are most often sent at the start of execution. This method of data driven commu-

nication works efficiently for applications that have a low sharing ratio. As this ratio

rises i.e. when a component needs to share data with more components, coarse-grain

event routing becomes more inefficient.

To understand this effect, we examine a simple application in this section. The

network is comprised of a grid of m nodes, and the scope of the application is all

31

the nodes in this network. Each node controls one sensor, which produces one event

per second. Each event is a random number and the purpose of the application is to

detect duplicate events. The application is modeled using the local reasoning model:

each node hosts a component that compares its local event to remote events to detect

duplicates. We vary the degree of coupling to examine its effect on the computational

efficiency of the network. The computational efficiency is calculated by comparing

the total number of comparisons performed by all the nodes to the total number of

comparisons that would be performed in an equivalent centralized application. As

the centralized application will give the best possible performance, this shows how

efficiently CRAM is able to divide computation across the network.

If this application was performed in a centralized manner, each node would route

its events to a central server. In the centralized case, it is intuitive that the number

of comparisons performed is m, as that is the total number of events generated per

second (one comparison for each event received 2).

* 0 0

Figure 2-4: Input-Output Correspondence in Coarse-Grained Routing

For the decentralized system, when the degree of coupling is 1, each component

receives events from only one other component. In an an application with homoge-

neous components, as each component receives events from one other component, it

2This can be implemented using a hash table

32

will be required to its send events to one remote component. It then follows intu-

itively , that the computation is 100% efficient. For each event, only one comparison is

made because each component sends its events to only one component. Consequently,

the total number of comparisons performed in the network is m. The decentralized

system is as efficient as the centralized system in this case.

However, when the degree of coupling increases, the efficiency of the decentralized

system decreases. In the case when the degree of coupling is 2, each component will

receive events from two other components. As explained in the previous example, with

homogeneous components, as each component receives events from two components,

it will also send events to two different components. Thus each event is propagated

twice into the network, and so for each event, two comparisons are performed.

1 I I I I I

0.9 -

0.8 - -

0.7 -

0.6 - -

C

0.5 -
w.

0.4 -

0.3 -

0.2 -

0 .1 ' 1 1 1 1 1 '
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sharing Ratio (d)

Figure 2-5: Efficiency of Coarse-grained Routing

The correspondence between the number of inputs and outputs from each compo-

nent is depicted in figure 2-4. Due to this correspondence, the efficiency of coarse-grain

routing mechanisms decrease linearly as the coupling of the components rises. Con-

33

sequently, the generalized efficiency of a coarse-grained routing can be given by the

equation r = O("!) = O(1). This relationship can be seen in figure 2-5. As is obvious,

this method is not efficient for applications that have large degrees of coupling. If an

application had coupling between all of its components, then each component would

be performing the same amount of processing as a single centralized version of the

application.

2.5.3 A Fine-grained Approach to Event-Based Routing

The inefficiencies of coarse-grained event-based routing for certain applications prompted

a look into how sharing is achieved across multiple nodes. The ideology behind coarse-

grained routing is to have all the necessary events routed to you, and then perform

all the computation on the node itself. However, when degree of coupling is large,

every component needs to process every other component's events. Thus each event

is processed many times in the network. It would seem then that for applications

with a large degree of coupling, a more viable approach would be for the component

to send its events out into the network, and have the 'network' do the computation

only once for each event.

In event based routing, the computation that has to be performed is a comparison

- events need to be matched to filters. Consequently, a viable implementation of this

'network' computation is a distributed index in which each node has the responsibility

for matching e/n events, where e is the total number of events generated in the

system. In this method, nodes would dynamically send subscription queries into

the network as needed. If there is a matching data item when the subscription

is sent out, it would be dispatched to the subscriber, otherwise the query would

be discarded. Event routing of this type is named fine-grained routing due to the

types of event subscriptions are dispatched. This dynamic nature of querying for

events allows components to dynamically generate subscriptions based on the local

data that they receive. For example, in the application to detect duplicate events

explained in the previous section, a component would read local events, and dispatch

fine-grained subscriptions that match each of these events to the network. If there is

34

a matching event (i.e a duplicate event), the network would respond with that event.

Consequently, the work of matching events is distributed among all the nodes in the

network.

For an application whose components have a large degree of coupling with all other

components in the network, the total number of comparisons performed is m as one

comparison is made per event. Thus for applications with high coupling, fine-grained

event routing is as efficient as the centralized case.

1

0.9

0.8

0.7

t 0.6

C

~0.5

0.4

0.3

0.2

0.1
0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sharing Ratio (d)

Figure 2-6: Efficiency of Fine-grained Routing

However, for applications with low coupling, fine-grained routing is found to be

very inefficient. The total number of groups of coupled components can be given

by ". When a fine-grained query is sent out, that query is matched to all other
C

events in the network, even if the coupling is very small. The number of matching

comparisons is m. However, if a component sends out a fine-grained query, it will

get responses that pertain components that it is not coupled with. This is because

with fine-grained routing, the component loses the ability to selectively interact with

35

-
1

-

a set number of other components. More comparisons need to be done to discard

the irrelevant replies. Thus for any reply to a fine-grained query, a component will

have to perform (1 - 1) extra comparisons to discard irrelevant replies as there are
nC

c groups that these replies can be sorted into.

Consequently, as the coupling increases, the efficiency of fine-grained routing also

increase. This increase in efficiency can be given by the equation r; = O(l) = O(d).

The relationship is show in Figure 2-6.

2.5.4 A Combined Approach

This chapter formulated an argument for a decentralized, distributed approach for

computing in wireless sensor networks. Based on observations, a model was devel-

oped for distributed computing in these networks that leveraged their unique char-

acteristics. Lastly, it was argued that the sharing of data between nodes could be

accomplished using coarse and fine grained event routing.

As shown in section 2.5.2, coarse-grained event routing is efficient when the sharing

ratio is low, while fine-grained event routing is efficient when the sharing ratio is

high. In order to allow applications with widely differing sharing ratios to co-exist

efficiently, the routing layer is allowed to perform either of these methods, depending

on the application. Applications with low degree of coupling will use coarse-grained

event routing, while applications with high degree of coupling will use fine-grained

event routing.

Figure 2-7 shows the result of this approach - it is ensured that for any application

the efficiency of processing is at most a small constant factor worse than the efficiency

of an equivalent centralized application.

36

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sharing Ratio (d)

Figure 2-7: Efficiency of a Combined Approach

37

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

U.]
0

Chapter 3

The CRAM Design

The previous chapter, investigated how to distribute computing across a network

of embedded sensors. It also proposes a model for distributed computing in sensor

networks based on local reasoning about a global application. It was argued that

with a combination of coarse and fine grained event routing, it was possible to always

ensure efficient distribution of computation between co-operating nodes. This chapter

describes the structures used to implement the CRAM architecture, and explains how

these structures operate.

3.1 Overview

As described in chapter 2, any item of data that enters the system is classified as an

event. Each event can be specified by 4 parameters:

1. Data state: This describes the current state that the data is in, i.e. the result

of the last transformation. For example, an item of data might have a state of

"filtered" after environmental noise is removed, or "theft" if it is notification of

a theft.

2. Sensor type: This describes the type of sensor that the data came from. For

example, this might be "RFID" or "temperature" if the data is from a RFID

38

tag or a temperature reading respectively. This classification is necessary as a

single node might control a number of different sensors.

3. Node ID: This describes the node that the data originated from. This is

necessary as different nodes contain the same types of sensors. For example,

every node in a network might be equipped with a RF antenna, a temperature

sensor, and a pressure sensor.

4. Data Value: This is the actual value of the data. In the case of an RFID tag,

it will be an EPC, while in the case of an environmental sensor, it might be a

temperature or humidity reading.

Using any combination of these values, an application can specify the events that

it wants to receive. As is intuitive, filters that under specify the state, sensor type,

and reader ID parameters are coarse-grained, as they will match classes of data.

As these refer to groups of data, these filters are usually decided upon when the

application is programmed. On the other hand, filters that specify individual events

are fine-grained. These filters are most often generated on-the-fly based on local

events. Although it is conceivable to modify or add new coarse-grain filters during

execution, these events will be rare. Consequently, notifications to add or modify

these filters can safely be broadcast to all nodes, as these notifications will most often

only happen once. Nodes receiving these broadcasts can then appropriately add or

modify the coarse-grained filters. Thus, coarse-grained event filters are replicated on

every node. As data enters a node, it is matched against the event filters and is

redirected to its subscribers.

However, fine-grain filters change very rapidly, possibly on the order of many times

a second. This prevents the constant broadcast of these filters as every node would

be saturated with these requests even if they did not produce that event. Therefore,

an efficient mechanism should be constructed to handle fine-grained event filters. In

order to implement an efficient event-filtering mechanism, CRAM uses a distributed

index of events, which is indexed by the event's data value. This index is distributed

across all the nodes in the network, each of which stores a small portion of the events.

39

Each node in the network has the same view of this index. When nodes produce

an event, a hash of this event is calculated to determine which node is given the

responsibility for storing and propagating this event. The event is then sent to this

node, which stores it for a short period of time, after which it discards the event.

When a node needs to receive an event via a fine-grained event filter, it calculates

a hash of the event. In this way, a node needing to receive a fine-grained event

can determine which remote node is responsible for the event. This allows efficient

queries for fine-grained events as only the node responsible for the event needs to be

contacted.

The implementation of CRAM is detailed in two parts. The anatomy of CRAM

describes the structure and connections between each of modules in the system. The

physiology details the mechanisms that CRAM uses to operate and describes how

data flows through the system.

3.2 The CRAM Anatomy

An overview of CRAM can be seen in figure 3-1. CRAM is divided into four parts:

" Local cache: This structure temporarily stores the data items (events) that

are harnessed from the sensors local to the node. It also stores any events that

are produced during the execution of an application.

" Memory client: The job of the memory client is to broker remote events to

the application. All events, regardless of the subscriptions type, are received

through the memory client. Additionally, both coarse and fine grained event

filters dispatched by the application go through the memory client.

" Memory server: The memory server oversees the administration of the dis-

tributed index. Requests for data that are in the index are handled through the

memory server. Additionally, any event produced locally by the node has to be

entered into the index. The memory server handles this transfer.

40

Network

Memory Server Shared Memory

Local Cache Memory Client

CRAM

Application Component

Figure 3-1: The CRAM Anatomy

9 Shared Memory: This structure holds the portion of the distributed index

that is assigned to the node.

These four sections are examined in detail below.

3.2.1 Local Cache

The main function of the local cache is to hold all events produced by the node. This

includes events read from the sensors as well as events produced by the application.

As the local cache reads events from the sensors, it is responsible for interfacing

with the reader hardware. Moreover, data from the sensors are not tagged i.e. it

contains only the data value. The local cache must tag these items with the node

ID, sensor type, and data state. The local cache does not tag data received from

41

applications, as it is assumed that the application has already tagged the data.

To Memory Server

ocal Cache

Circular Events for applications
Buffer

Application produced
Tagger Events

Hardware Interface

Data From Sensors

Figure 3-2: The Local Cache

The local cache is implemented as a circular buffer. As events enter the local

cache, they are placed in this buffer. As soon as events appear in the buffer, the

application components running on the node have access to them. Applications are

responsible for keeping track of the last event read. In addition, applications are

not allowed to directly modify events in this buffer, as these events still need to be

indexed.

The last function of the the local cache is to interface with the memory server.

This allows events produced by sensors or applications to be indexed in the distributed

index. Although events from applications could go directly to the memory server, this

design specifies that they must only go through the local cache. This ensures that

applications residing on the same node can receive and send events among themselves

without having to go out on the network.

42

3.2.2 Memory Client

The other module of CRAM that interacts with the application is the memory client.

The memory client interacts with the application in two ways:

1. It is responsible for passing all events that the node receives to the components

that have requested them

2. It processes event filters from the applications and sends them to the correct

nodes. These can be either coarse grain or fine grain filters.

All events that are directed to a node are received directly by the memory client.

As there are many application components operating on a single node, each event

is tagged with the component that has subscribed to the event. The memory client

passes the event only to the subscriber component to prevent overloading the other

components operating on the node.

N. .*C.'.*.'. . . .<........
* C C C :::: S :

A

To Remote Node

Application Event Filters

k

Events for applications

To application

Figure 3-3: The Memory Client

When a component wants to add or modify an event filter, it sends the filter to

the memory client. The job of the memory client is to send this filter along to the

43

Memory Client

Node
List

Hash Function

I

correct nodes in the network. In the case of coarse grain filters, the memory client

simply sends it to all of the nodes. However, in the case of a fine grained filter, the

node needs to figure out the specific node. To achieve this, the node uses the hash

calculator along with a node list to determine which node to send the fine grained

filter to.

3.2.3 Memory Server

The memory server has three functions:

1. Handle storing events in the distributed index.

2. Accept filters from subscribing nodes, and distribute local events to these nodes

when appropriate.

3. Distribute coarse-grained locally produced events to the nodes that subscribe

to them.

The memory server manages the portion of the distributed index that is hosted on

a node. As requests to store or retrieve events come to the node, the memory server

receives these requests, and passes them to the shared memory module.

The memory server also handles events that are locally generated. It receives local

events from the local cache and sends them along to the node responsible for storing

the event. Similar to the memory client, the memory server uses a hash function and

a node list to find the node responsible for an event. In addition to inserting events

into the event index, the memory server is also responsible for distributing events

from the local cache to nodes that have registered for events. For each event that the

memory server receives from the local cache, the memory server compares that event

with the event filters it has stored, and then distributes the events to the required

nodes.

44

To Distributed Inde From Distributed Index

Memory Server

Node To Shared Memory
List

Hash Event

Function Filter List

Events from Local Cache

Figure 3-4: The Memory Server

3.2.4 Shared Memory

The shared memory module is the portion of CRAM on which the events are actually

stored. The shared memory is implemented as a hash table, where each element in

the table is indexed by the data value. This allows events to be quickly retrieved

using their data value, which is required for fine grained event filtering. Each event is

stored only for a short period of time, after which it is flushed from the memory. If a

node does not register a fine-grained filter for an event, that event should not remain

in the index. A thread in the shared memory loops through the events discarding

them after a specified period of time. This time period is calculated based on the

latency of the network and the characteristics of the sensors in the network. This

time period has to be enough for the sensor to get a stable reading and transfer that

event across the network. In most cases, this period will range from 1-10 seconds.

45

3.3 The CRAM Physiology

While the previous section described the structures and modules that CRAM is com-

posed of, this section concentrates on mechanisms and data flow.

3.3.1 Networking Protocols

Prior to an examination of CRAM's mechanisms, the network protocols used in

CRAM must be briefly discussed. When designing the system, many options were

evaluated. At the high end, protocols such as SOAP [28] and XML RPC [31] are

possible options. At the low end, there are simple datagrams, while in the middle

are various TCP based protocols. However, it was decided to implement all networks

communication using simple UDP datagrams. In the CRAM framework, efficiency of

communication is of paramount importance. In this arena, UDP protocols have the

least overhead. This was especially important as a typical node makes many connec-

tions, each of which only transfers a small amount of data. Additionally CRAM uses

multicast to send events to multiple recipients. These, coupled with the fact that all

communication occurs on a local area network make datagrams a prime choice. For

some functions, such as registering coarse grain filters, the use of SOAP or XML RPC

was under consideration as these are protocols that make for easier implementation

and maintenance. However, in the interest of simplicity, only datagrams are used in

CRAM.

3.3.2 Data Flow in a Coarse grained Application

Registering filters

Decisions about which filters to use are made when the programmer develops the

application. Consequently, the filters are hard coded in to the application at compile

time. When an application starts executing, it joins the coarse-grain filter multicast

group (this group is currently designated as 224.100.0.1). It sends a list of all its

filters to this group. These filters are then received by the memory server of each

46

Memory Shared
Server Memory

Lcahe Memory Client

RAM

Application Component

Node N3

Node N1

Node N2

Memory Shared
Server Memory

Cache Memory Client

Application Component

Figure 3-5: Registering of Coarse Event Filters

node and stored in the filter list. This process is shown in figure 3-5. In this network,

node N3 sends its filters to the other nodes in the network, N1 and N2.

Sending and Receiving events

The flow of an event from its source to the nodes that subscribes to it is presented in

figure 3-6. In this example, node N3 has already registered for the event as described

above. A sensor connected to NI generates the event. The event flows from the sensor

into the local cache of N1. Here, it is tagged by the event tagger. Once it is tagged,

it is compared to the currently active event filters. As N3 has registered to receive

this event, the event is sent to the memory client of N3. The memory client on N3

receives the event and passes it along to the application that registered the event

47

Memory Shared
Server Memory

Cache Memory Client

RAM

Application Component

Node N3

Node N1

Node N2

Memory Shared
Server Memory

Cache Memory Client 4

Application Component

Figure 3-6: Data Flow of Coarse Events

filter. At the same time that the event is matched against the filters, the event also

passes through the hash function. The output of the hash function, in conjunction

with the node list, is used to determine which node is responsible for hosting the

event for the distributed event index. Once the responsible node is determined, the

event is sent to the memory server of that node, which in turn stores the event in the

shared memory.

3.3.3 Data flow in a Fine grained Application

The data flow for fine-grained routing is depicted in figure 3-7. As both registering

and receiving of events take place over very short time scales, they are presented

together in one figure, rather than dividing them as in the previous section.

48

Memory Shared
Server Memory

Lcah EMemory Client

Application Component

Memory Shared
Server Memory

Lca Memory Client

,RAM#-

Application Component
I

Ev ent
Event Filter

Memory Mhared oeN

Cacher Memory Client

GRAM

Application Component

Memory Shared Memory Shared
Server Memory Server Memory

Node N3
Local LocalMemory Client Cc Memory Client

AMGRAM

Application Component Node N1 Application Component

Figure 3-7: Data Flow For Fine-grained Events

In the current scenario, node N1 has produced an event. There are no filters

registered, so the event is only entered into the distributed index. As shown in the

figure 3-6, the node responsible for this event is N2, and the event is stored in the

shared memory at that node.

The component on node N3 is using fine-grained event routing to receive that

event. In this case, the application sends the event filter to the memory client. The

memory client computes the hash of this filter, and along with the node list identifies

the node which would host this event if it occurred. The memory client sends the

request for the event to the memory server on that node. The memory server checks

the shared memory. If the memory contains the event, it returns it to the memory

client on the node that originated the request, otherwise it sends back a null event.

49

The memory client returns the result to the application.

3.3.4 Node lists

As described, CRAM makes use of node lists, which contain the addresses of all nodes

in the network. CRAM is intended for use on networks of at most a few hundred

nodes connected on a local area network. Additionally, the rate of nodes joining

or leaving the network is very low. Consequently, it is practical for nodes to keep

complete lists of all other nodes in the network.

When a node joins a network, it joins a set multicast [currently 224.100.0.2] group.

By joining and querying the group, the node makes its presence known and receives

information on all currently active hosts in the network. Each node arranges its list

(including itself) in ascending order. Consequently, all nodes in the network will have

a synchronized view of all the hosts in the network.

If any node detects that another node is not responding for a prolonged period,

it sends a message to the multicast group saying that a particular node has left the

network. On hearing this, nodes delete the missing node from their list.

Although there are more efficient methods to construct a node list, this design

was chosen for its simplicity. If it is necessary for the system to support a very high

number of node arrivals and departures, or network partitions, these methods can

be employed for the node list. Along with updating node lists, the distributed index

has to be updated to account for nodes that leave the network. This is described in

section 3.3.5

3.3.5 Hashing and Indexing

This chapter has described how CRAM uses a distributed index to provide support

for fine-grained event routing. To ensure a robust, efficient index, this distributed

index had to be constructed according to the following constraints:

* The index had to be uniformly addressable from any device in the network.

50

" The index had to addressable such that it was easy for different applications to

request the specific data required by them.

" The arrival or departure of devices would not greatly affect the index

" The memory requirements for the index had to distributed equitably among all

nodes.

In order to fulfill these constraints, consistent hashing [16] was used. Consistent

hashing is a technique to hash objects across multiple nodes. Consistent hashing was

first used for the creation of distributed caches for the web [13]. Recently it has been

used in peer-to-peer routing protocols such as Chord[29] and distributed file systems

such as CFS [4].

Consistent hashing has two important properties that make it attractive for use

in our index. In a network with K keys, and N nodes, with high probability:

1. Each node is responsible for at most (1 + e)K/N keys, where e can be proven

to have a bound of O(logN) [16].

2. When a node joins or leaves the network, responsibility for O(K/N) keys change

hands, only to or from the joining or leaving nodes [16].

Although these properties hold only under the use of a k-universal hash function,

Stoica et al show that the SHA-1 hash function can be used as a good approximation

[29].

Consequently, in CRAM, the SHA-1 hash function is used for all hash computa-

tions. In conjunction with uniform synchronized node lists, CRAM is able to easily

identify which node is responsible for a fine-grained event.

Node Departures and Joins

When a node joins or leaves the network, it is necessary to shift the indexed elements

to account for the change in configuration. In the target applications for CRAM,

node joins and departures will be relatively infrequent. Node joins will occur when

51

new nodes are added to the network to support new sensors. Node departures will

generally occur due to failure of the node hardware. In addition to this, consistent

hashing dictates that the number of keys that have to be shifted will be small. Con-

sequently, the current design of CRAM does not optimize this mechanism. If a node

joins, each element in the index is rehashed and transferred as necessary. If a node

failure is detected, the elements are rehashed similarly to a node join. However, no at-

tempt is made to recover the lost items as fine-grained events are transient in nature.

This could lead to some short term (on the order of a few seconds) anomalies in the

behavior of the system, but this will be rectified as new events enter the index. This

mechanism is intentionally simple due to the uses envisioned for CRAM. However, if

the operating parameters become stricter, this mechanism can easily be replaced by

more efficient and robust algorithms, such as those presented in the Chord system

[29].

3.3.6 Optimizations

The design laid out in this section is a fully implementable version of CRAM. However,

this chapter would not be complete without a discussion of possible optimizations and

other issues.

Provisions for Transient Hosts

Although the CRAM system is intended to run on fixed hosts on a local area network,

it is possible that the operating environments for the system will include a number of

transient or mobile hosts. For example, in a warehouse or supermarket, managers or

supervisors might carry handheld computers or personal digital assistants (PDAs).

For example, a supervisor might want to be informed of theft in progress or a need

to restock shelves. In this case, these events can be routed directly to their handheld

computer. As these hosts are transient, and generally do not produce events of

their own, they are not expected to participate in the routing and storing of events.

However, these devices can be given the ability to receive events by implementing a

52

subset of CRAM. In most cases, by implementing the memory client, these devices

will be able to receive both coarse and fine grained events.

Provisions for Heterogeneous Network Nodes

In the current design of CRAM, it is assumed that all nodes have roughly equivalent

processing power and memory available. Therefore, each node is responsible for

storing and routing approximately the same number of events. This assumption is

based on the fact that the nodes in the Auto-ID center are RFID tag readers, which

for a single local network will be equivalent. However, in other scenarios, the nodes

might be more heterogeneous and require responsibility for events in proportion to

their resources. There are a number of solutions to allow for this - One simple method

is to modify the structure of the node list. When registering with other nodes, a node

entering the system also sends along an integer denoting the value of its resources

relative to some fixed baseline. For example if the baseline system is 100 MHz with 8

MB RAM, a 200 MHz node with 16MB of RAM would have a resource value of 2, as

it has double the processing power and memory. Other nodes would list the address

of this node twice in their node lists so as to give this node twice the chance of being

picked as a node that has a resource value of 1 (and therefore is listed only once).

Source Quenching

Some event-based routing systems such as Elvin4 [23] implement quenching mecha-

nisms so that only events that are needed are sent into the network. These systems

require such a mechanism as all events go through an intermediary server. There-

fore, even events that are not needed by any node are sent to the server. Although

CRAM does not rely on a central server to relay events, each event is entered into

the distributed index in order to support fine-grained event filters. As fine-grained

event filters are dynamically generated, usually based on the current data that a node

receives, it is impossible to predetermine exactly which events are going to be needed.

However, it is still possible to reduce the number of events sent across the network

by a sizeable amount. In order to to this, it is possible to require each application to

53

register 'partial' fine-grained event filters on the start of their execution. For example,

imagine a network of RFID readers, which produce two types of events - raw RFID

tag values, and noise-filtered RFID tag values. There is another application in the

network that needs to use fine-grained event routing to specify individual RFID tag

values. However, it only needs to examine noise filtered tag values. This application

can then register a partial filter which corresponds to noise-filtered tag values. Con-

sequently, no raw tag value events will be entered into the index, only noise-filtered

events. This mechanism can greatly reduce the number of events in the system if

necessary.

54

Chapter 4

Building Applications with CRAM

This chapter describes how applications are constructed on top of CRAM. Four ap-

plications are detailed in order to give a sense of the broad range of applications that

can be constructed on top of CRAM. Although there are many possible implementa-

tions for these applications, the solutions presented are constructed to illustrate the

important characteristics and properties of CRAM. The setting for these applications

is a supermarket. The supermarket is modeled as a grid of nodes, each of which has

an antenna to read RFID tags. Among the tasks that the system has to perform are:

1. Sending alerts to restock inventory when the inventory is depleted.

2. Sending theft alerts when a theft is detected.

3. Detecting duplicate(counterfeit) tags

4.1 Removing Environmental Noise from the Data:

An Example of Coarse Grain Event Routing

The stream of tag IDs read by the RFID readers often contain artifacts due to envi-

ronmental noise. Before this data is used by any application, the noise needs to be

removed. This section details an application, built using CRAM, that can perform

this cleanup.

55

Due to interference, an RFID reader might not be able to read all the tag in its

vicinity. Consequently, a tag might not show up during a snapshot even if it is in the

field of the reader. This gives the illusion that the tag is not in the field of the reader.

As a result of this interference, it appears that a tag is repeatedly leaving (when

interference starts) and entering the field of the reader(when interference stops). Since

it is not desirable for these anomalies to propagate to applications trying to use this

data, they need to be filtered.

The only sure method to detect if a tag has really moved from the field of a reader

(as opposed to being obscured by interference), is to check if the tag reappears in

the field of a nearby reader. For example, if a tagged product is removed from a

shelf, it will show in the field of other readers as a customer walks down the aisles

of the supermarket. This property is used to decide if a tag is obscured, or if it

has really moved. The application is modeled as an interaction between a node and

its neighboring nodes. To receive data from its neighboring nodes, each components

sends a filters to the memory client that match all raw RFID data from neighboring

nodes. One filter is sent out for each reader that the component needs to couple

with. As these are coarse-grained filters, the memory client broadcasts this filter to

all active nodes in the network. The memory servers receive these filters and start

matching local events to this filter. If events are matched, they are sent directly to

the subscribing component.

The component first generates a list of tags that have disappeared in the current

snapshot. It compares this list to the remote data (the tags that are present in the

current snapshot of its neighbors). If there is a match, then the tag has really left the

field of the reader, otherwise it is probably obscured. This application is replicated

on all the nodes in the network. Each node registers to receive all the raw data from

its neighboring nodes, which is a coarse-grained filter. As nodes produce these events,

they are routed to the correct nodes. The node can then decide whether they are

obscured or whether they have left the field of the reader.

Table 4.1 gives a summary of this application. It is important to note that this

application uses coarse-grain filtering. Each component is coupled with its neighbor-

56

Component Name Noise Reducing Filter
Located At All nodes

Coupled With Neighboring nodes
Event Filters [raw, RFID, x, *]
[state, sensor, nodelD, datavalue] Where x is all neighboring nodes
Events Produced [Filtered, RFID, readerlD, EPC]

Table 4.1: Summary of Noise Reducing Filter Application

ing components. For example, if each node is coupled with four neighbors, and the

scope of this application is 100 nodes, then d = 0.04. As this is a small coupling-

to-scope ratio, coarse-grain routing was chosen for this application. The efficiency of

this application can be determined from figure 2-7 in section 2.5.4. As we can see,

although this application does not have the same efficiency as a centralized version

of this application, the efficiency is still extremely good.

4.2 Applications with Heterogeneous Sub-Components:

Theft Detection

The noise-reduction application presented above is an example of an application with

homogeneous components: the application is modeled as a single local-remote appli-

cation, and this component is replicated across multiple nodes. However, applications

can consist of heterogeneous components spread across different nodes. This section

presents a theft detection application built with heterogeneous components.

The theft-detection applications works by comparing all products that go through

the exits with all those which have been paid for. Products that leave the supermarket

are detected by RFID tag readers at the exits, while products that have been paid

for are detected by a reader at checkout. The application consists of two different

components. The first component resides on the readers at the checkout lines. It

produces events when products have been paid for, but does not subscribe to any

events. The second component resides on the exit readers. Its interaction is with

events produced by the exit readers. These components register coarse grain filters to

57

receive all 'sold' events from the cash register and keeps a list of them. If any product

enters its field that is not on its sold list, it sends out a theft event. As tags pass

though its field that have already been paid for, the components send out 'exited'

events, which are subscribed to by all exit readers. On receiving these events, the

exit components can remove the products from their list.

Component Name Purchase Checker Exit Checker
Located At All cash registers All exits
Coupled With None Exits and registers
Event Filters none [sold, *, *,

[state, sensor, nodeID, datavalue] , I
Events Produced [sold, RFID, readerlD, EPC] -[theft, RFID, readerID, EPC]

11__ 1__ -[theft,RFID,readerID,EPC]

Table 4.2: Summary of Theft Detecting Application

4.3 Applications Can Built Upon Each Other: In-

ventory Control

An important feature of CRAM is that applications can build on top of events created

by totally different applications. Although most applications in a RFID environment

will often implicitly build on events from a noise-reduction application such as pre-

sented in Section 4.1, another example is detailed here as it shows how multiple

applications can use intermediate event results in different ways. This section shows

how an inventory application can build on the events generated by the theft detection

application. In a RFID tag enabled supermarket, tag readers can detect when the

shelf needs to be restocked. However, products can be moved around by customers, or

remain their shopping cart. Consequently, inventory records should only be depleted

when a product actually leaves the building. In order to achieve this, an inventory

control application would subscribe to 'exited' events from the exit readers, signaling

that a product has left the building. On receiving these events, the inventory com-

ponent can deduct appropriately from the inventory record. This method of building

'Another strategy would be to subscribe to 'sold' events from cash register components. However,
in this case 'exited' events are subscribed to in order reduce the occurrence of sold inventory being
returned

58

upon events from different applications is a core feature of transformational routing.

It saves the developer from having to develop identically functional components for

application. More importantly, it greatly reduces the amount of traffic sent around

the network, as events used to compute intermediate results are not replicated - the

intermediate results are used directly.

Component Name Inventory Control
Located At Inventory Databases
Coupled With None
Event Filters [exit, RFID, *, *]
[state, sensor, nodelD, datavalue]
Events Produced none

Table 4.3: Summary of Noise Reducing Filter Application

4.4 Fine grained event routing: Detecting Dupli-

cate Tags

In the Auto-ID system, each product is tagged with an RFID tag that contains a

96-bit Electronic Product Code (EPC). Since the EPC on every item is unique, no

two tags interrogated by a reader should return the same EPC value. The detection

of duplicate EPCs signals a reader error or possible counterfeit tags.

The purpose of this application is to ensure that if duplicate EPCs are detected

by the system, they are recognized as such and an error is signaled. To perform this

task, a reader must check if any duplicates exist in the locally read tags. Additionally,

it must compare its local data to the data from all the other readers to ensure that

no duplicates exist. For this application, every component will need to be coupled

with all the nodes in the system. This is because a locally generated EPC event

needs to be compared with all others EPC events in the network. Consequently, this

application is a prime candidate for fine-grained event routing.

Each component operates as follows. First, it reads all locally generated EPC

events and ensures that no duplicates exist in this set. Next, it sends out a fine-grained

59

event filter that matches the EPC that has just been read. When the fine-grained

filter is sent out to the application, it goes first to the memory client. The memory

client calculates the hash of this filter to compute the node responsible for this event.

It then sends this query directly to that node. If the node does not have a match

for the event in its shared memory, then no reader in the network has detected a tag

with the that EPC. This is because if any reader had generated that EPC, it would

have been hashed and stored on same node that the filter went to. If there is a match

in the shared memory, this event is returned, which indicates that a duplicate tag

has been detected. However, there is one caveat. It is possible that the radio fields

of neighboring readers overlap. In this case, two readers might detect the same EPC

value. However, this is not a duplicate EPC because both readers are actually reading

the same tag. To account for this, if a match is returned, the component checks the

event to determine which reader it has come from. If the reader is a neighboring one,

then this match is discarded. Once a component is sure that there is a duplicate

EPC, it generates a 'duplicate' event to signal this occurrence.

Component Name Duplicate Detector
Located At All nodes
Coupled With All nodes
Event Filters [*, *, *, x]
[state, sensor, nodelD, datavalue] Where x is the locally generated EPC
Events Produced [Duplicate, RFID, readerlD, EPC]

Table 4.4: Summary of Noise Reducing Filter Application

Table 4.4 gives a summary of this application. As the filters sent out by this

application refer to a specific EPC value, which is dynamically generated from local

events, this application uses fine-grained routing. In order to to function correctly,

each component needs to be coupled with every other node.Consequently, d = for

this application. As this is the highest possible coupling-to-scope ratio, fine-grained

routing was chosen for this application. The efficiency of this application can be

determined from figure 2-7 in section 2.5.4. As we can see, by using fine-grained

routing in this situation, this application achieves a 100% efficiency compared to a

centralized version of this application.

60

Chapter 5

Conclusions and Future Work

5.1 Discussion

In this thesis I have presented a framework for decentralized, distributed processing

in embedded sensor networks. This framework is built on a model of reasoning locally

about a global application. Components that build from local-remote interactions are

then replicated across multiple nodes. The resulting combination of components give

rise to globally relevant results.

The CRAM design was prompted by a need for an incrementally scalable system

that could process data from networked embedded sensors without the need for cen-

tralized resources. CRAM fills an increasingly important area in embedded systems.

Many systems for controlling embedded sensors are either centralized. Others, which

promote a distributed approach to control, are directed towards the extreme low end

of the spectrum of embedded systems - sensors with extremely limited processing

power and connectivity [12]. CRAM bridges the gap between these approaches by

targeting a range of systems that are increasing deployed in industrial and home

automation systems. In these systems, a node connected on a local area network

controls a small number of sensors. However, the entire network may be composed

of hundreds of these nodes. CRAM leverages the flexibility offered by this increased

processing power and connectivity to provide a platform upon which sophisticated

global applications can be constructed. As applications are built with local reasoning,

61

the programmer needs only to have a vague understanding of how the entire network

operates. The system appears to the programmer simply as a single node interacting

with a cloud of remote nodes. As embedded networks grow in size and complexity,

this is increasingly important as it is impossible to understand every device in the

network.

While designing CRAM, the notion of a sensor underwent a considerable transfor-

mation. At the onset, the notion of a sensor consisted only of environmental sensors

such as temperature and humidity, or identification sensors such as RFID devices.

However, this notion has expanded considerably to include a wide variety of devices.

For example, one does not usually think of a video camera as a sensor in the conven-

tional sense of the word. However, one can imagine using CRAM to service security

and monitoring applications in which multiple cameras are used over a wide area. A

processor connected to each camera would be perform local image processing tasks,

but would able to harness data from multiple sources (cameras and other sensors) to

augment its results.

5.2 Integrating CRAM into the Auto-ID Architec-

ture

As explained in section 1.4, the Auto-ID architecture is hierarchical. At the lowest

layer, are the RFID readers that read products tagged with EPCs. In the current

incarnation of the system, the readers do not perform any processing1 . On reading

a tag, the readers send this unprocessed data to the leaf-level savant. The savant is

a server, whose responsibility it is to control all the readers in a given area, process

this data, and send it along to the next highest level. For example, a leaf-level savant

controls all the readers in a warehouse and processes all the data from these readers.

It is responsible for all low-level applications such as theft detection and restocking

alerts. It also sends aggregate data (e.g daily totals) to the a regional savant. CRAM

'Most readers perform some form of tag anti-collision [26]. However, as this is usually tightly
integrated with the reader hardware it is considered part of the tag interrogation process

62

was motivated by problems anticipated with having a single leaf-level savant perform

the processing for hundreds of readers.

The CRAM is designed to replace the need for a leaf-level savant. Instead of having

a single savant process the data, the processing will be performed co-operating readers.

This is possible as the current readers have ample computing power to process the

individual data that they generate. Although the leaf-level savant is designed to

operate very differently from CRAM, it is possible to modify and scale down the

savant design to produce a distributed savant based on the CRAM architecture. This

is important as CRAM will not be have to built from the ground up. First the

savant incorporates a task manager to allow tasks to be remotely dispatched to it.

This mechanism can be modified to support the downloading of components onto

the reader. The savant also incorporates a primitive coarse-grain routing mechanism,

which can be adapted to perform the coarse-grain routing described in this thesis.

Additionally, the savant caches all events that are sent to it in a circular buffer. This

cache can be modified into the local cache described in CRAM. The fine-grained event

routing mechanism will have to be developed from scratch, as no equivalent exists

in the leaf-level savant. However, this is not anticipated to be a very hard task as

many implementations of indexes based on consistent hashing are already in existence

[29, 4]. Additionally, a CRAM compliant version of the savant would have to integrate

directly with the reader hardware. The current focus of the savant architecture is

based on handling a high number of transactions per second. In a distributed savant,

however, the focus would need to be on memory and communication efficiency as

each mini savant would be replicated on each reader.

5.3 Future Work

While this thesis has designed and developed a framework, there is scope for further

research:

* Formal Modeling: Although CRAM provides mechanisms for performing

both coarse and fine-grained event routing, a formal analysis how often each

63

of these will be used has not been performed. As the communication mech-

anism is dependent on the application, this would involve analyzing multiple

applications to understand what fraction of applications are loosely coupled and

what fraction are tightly coupled.

* Simulations: While an understanding of how CRAM performs for single appli-

cations has been achieved , more work is required to examine how CRAM scales

as multiple applications are added to the system. This would probably be best

performed by simulating multiple applications on top of the CRAM system. An

examination in this area would probably also lead to many optimizations of the

system.

" Getting components to their destinations: This thesis, has not discussed

how components are loaded onto each node. It was simply stated that com-

ponents would be replicated across many nodes. Although it is possible to

manually load components onto nodes, this is not practical as the number of

nodes gets increases. One solution to this problem would be to enable compo-

nents be able to move across the network. For example, once an application is

written, it is loaded onto the network from any point. From there it can travel

to the nodes on which it is supposed to operate.

" Unified Filter Model: In the current incarnation of CRAM, the burden of

deciding to use coarse or fine grained filtering is placed on the programmer. An

interesting direction for future research would involve a unified model for filters.

Thus, the programmer would not need to differentiate between different types

of filters. When the application is compiled, the coupling of the application

could be examined, based upon which filters would be instantiated into coarse

or fine-grained as needed.

64

5.4 Conclusion

This thesis has argued for the necessity of a decentralized approach to processing in

sensor networks. CRAM was designed to fulfill this requirement. The local reasoning

model was developed to support distributed computing in sensor networks. In this

model, components residing on multiple nodes process parts of the application in

parallel while sharing data using event-based communication. It is shows that by

using a combination of coarse-grained and fine-grained routing, CRAM can achieve

a computational efficiency that is just a small constant factor less than a centralized

system, while still providing the benefits of a decentralized system. This thesis details

the design of CRAM and describes how complex applications can be built on top of

this architecture.

65

Bibliography

[1] BROCK, D. L. The compact electronic product code - a 64-bit representation of

the electronic product code. Tech. Rep. MIT-AUTOID-WH-008, MIT Auto-ID

Center, November 2001.

[2] BROCK, D. L. The electronic product code (epc)- a naming scheme for physi-

cal objects. Tech. Rep. MIT-AUTOID-WH-002, MIT Auto-ID Center, January

2001.

[3] BROCK, D. L., MILNE, T. P., KANG, Y. Y., AND LEWIS, B. The physical

markup language. Tech. Rep. MIT-AUTOID-WH-005, MIT Auto-ID Center,

June 2001.

[4] DABEK, F., KAASHHOEK, M., KARGER, D., MORRIS, R., AND STOICA,

I. Wide-area cooperative storage with cfs. In Proceedings of the 18th ACM

Symposium on Operating Systems Principles (SOSP '01) (2001).

[5] ESTRIN, D., GOVINDAN, R., AND HEIDEMANN, J. Embedding the internet:

introduction. Communications of the ACM 43, 5 (2000), 38-41.

[6] FOLEY, J. T. An infrastructure for electromechanical appliances on the intrnet.

Master's thesis, Massachusetts Institute of Technology, 1999.

[7] FOSTER, I., AND KESSELMAN, C. The globus project: A status report, 1998.

[8] FOSTER, I. T. The anatomy of the grid: Enabling scalable virtual organizations.

In European Conference on Parallel Processing (2001), pp. 1-4.

66

[9] GELERNTER, D. Generative communication in linda. In ACM Transactions on

Programming Languages and Systems (January 1985).

[10] GELERNTER, D., CARRIERO, N., CHANDRAN, S., AND CHANG, S. Paral-

lel programming in linda. In International Conference on Parallel Processing

(August 1985), pp. 255-263.

[11] INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. Directed diffusion: a

scalable and robust communication paradigm for sensor networks. In Proceedings

of the sixth annual international conference on Mobile computing and networking

(2000), ACM Press, pp. 56-67.

[12] KAHN, J. M., KATZ, R. H., AND PISTER, K. S. J. Next century challenges:

mobile networking for smart dust. In Proceedings of the fifth annual A CM/IEEE

international conference on Mobile computing and networking (1999), ACM

Press, pp. 271-278.

[13] KARGER, D. R., LEHMAN, E., LEIGHTON, F. T., PANIGRAHY, R., LEVINE,

M. S., AND LEWIN, D. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web. In ACM Sym-

posium on Theory of Computing (May 1997), pp. 654-663.

[14] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUM-

MADI, R., RHEA, S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND

ZHAO, B. Oceanstore: An architecture for global-scale persistent storage. In

Proceedings of ACM ASPLOS (November 2000), ACM.

[15] LEOPOLD, C. Parallel and Distributed Computing: A Survey of Models,

Paradigms and Approaches. John Wiley and Sons Inc., 2001.

[16] LEWIN, D. M. Consistent hashing and random trees : algorithms for caching

in distributed networks. Master's thesis, Massachusetts Institute of Technology,

1998.

67

[17] OPYRCHAL, L., ASTLEY, M., AUERBACH, J., BANAVAR, G., STROM, R.,

AND STURMAN, D. Exploiting ip multicast in content-based publish-subscribe

systems. In IFIP/ACM International Conference on Distributed systems plat-

forms (2000), Springer-Verlag New York, Inc., pp. 185-207.

[18] POTTIE, G. J., AND KAISER, W. J. Wireless integrated network sensors.

Communications of the ACM 43, 5 (2000), 51-58.

[19] ROWSTRON, A. I. T., AND DRUSCHEL, P. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In Middleware

(2001), pp. 329-350.

[20] ROWSTRON, A. I. T., KERMARREC, A.-M., CASTRO, M., AND DRUSCHEL,

P. SCRIBE: The design of a large-scale event notification infrastructure. In

Networked Group Communication (2001), pp. 30-43.

[21] SARMA, S. Towards the 5 cent tag. Tech. Rep. MIT-AUTOID-WH-006, MIT

Auto-ID Center, November 2001.

[22] SARMA, S., BROCK, D. L., AND ASHTON, K. The networked physical world -

proposals for engineering the next generation of computing, commerce and auto-

matic identification. Tech. Rep. MIT-AUTOID-WH-001, MIT Auto-ID Center,

October 2000.

[23] SEGALL, B., ARNOLD, D., BOOT, J., HENDERSON, M., AND PHELPS, T.

Content based routing with elvin4. In Proceedings of A UUG2K (June 2000).

[24] The seach for extra terrestrial intelligence at home (setidhome).

http://setiathome.ssl.berkeley.edu/.

[25] SHELDON, M. A. Content routing : a scalable architecture for network-based

information discovery. PhD thesis, Massachusetts Institute of Technology, 1995.

[26] Siu, K.-Y., LAW, C., AND LEE, K. Efficient memoryless protocol for tag

identification. Tech. Rep. MIT-AUTOID-TR-004, MIT Auto-ID Center, August

2000.

68

[27] SNOEREN, A. C., CONLEY, K., AND GIFFORD, D. K. Mesh-based content

routing using xml. In Proceedings of the 18th symposium on Proceedings of

the 18th ACM symposium on operating systems principles (2001), ACM Press,

pp. 160-173.

[28] Simple object access protocol (soap). http://www.w3c.org/soap.

[29] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M., AND BALAKRISH-

NAN, H. Chord: A scalable peer-to-peer lookup service for internet applications,

2001.

[30] Xmlblaster. http://www.xmlblaster.org.

[31] Xml remote procedure call (xml-rpc). http://www.w3c.org/xmlrpc.

[32] ZHUANG, S., ZHAO, B., JOSEPH, A., KATz, R., AND KUBIATOWICZ, J.

Bayeux: An architecture for scalable and fault-tolerant widearea data dissemi-

nation, 2001.

69

