
Synchronizing Trees and Text in a Software Model Analyzer

by

Jesse Pavel

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002

@ Jesse Pavel, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Author............
7Department of Electrical Engineering and Computer Science

May 24, 2002

C ertified by
Daniel Jackson

Associate Professor
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

Synchronizing Trees and Text in a Software Model Analyzer

by

Jesse Pavel

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the work that I did in improving the debugging features and interface of
the Alloy software analysis tool. A significant part of writing a model in the Alloy language
is debugging it, and often one wants to know why a particular solution adheres to or violates
given constraints. To this end, the interface provides a view of an Abstract Syntax Tree that
shows the tool's internal representation of a model, and my enhancements aim to provide
aids to the user in finding interesting parts of this tree, and showing the corresponding
sections of the source text. Additionally, I provide a description of the architecture of the
graphic interface I implemented, and upon which these improvements were built.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor

3

4

Acknowledgments

I would like to thank Daniel Jackson for supervising my work, Manu Sridharan and Ilya

Shlyakhter for being patient with and helping out this most junior SDG developer, Jenny

Liao for being beside me throughout the year, and my parents, for always supporting me,

and for the lychees.

5

6

Contents

1 Introduction

2 Motivation

3 Solution

3.1 Navigation Enhancements

3.1.1 Tunneling in the AST

3.1.2 Bookmarking Nodes

3.1.3 Source Synchronization

3.2 Usability Improvements.....

3.2.1 Name Shortening.....

3.2.2 Quantified Variable Tree .

4 Scenario

4.1 Model Description

4.2 Example Model

4.3 Debugging

4.3.1 Corrected Model.....

5 The Alloy GUI

5.1 Components

5.1.1 Structure of AlloyGUI . .

5.2 Threading in the GUI

5.3 Design Patterns

6 Conclusion

11

13

15

. . . 15

. . . 15

. . . 16

. . . 17

. . . 17

. . . 17

. . . 18

19

. . . 19

. . . 19

. . . 21

. . . 23

25

. 25

. 29

. 30

. 31

7

33

8

List of Figures

2-1 Sample Alloy AST 13

3-1 Sample Boolean AST.............................. . 17

5-1 Object Model of GUI Module . 26

9

10

Chapter 1

Introduction

Alloy [1] is a language and tool that allows one to write a micromodel of a system and have

that model be algorithmically analyzed, to find flaws or unexpected behavior, or simply

to understand the system in a more rigorous manner. A model in Alloy is a declarative

description of part of a system comprising, at the lowest level, sets of atoms, the relations

among the sets, and the constraints placed on these. Given such a description, the user

asks the tool to check assertions that he feels should follow from the constraints-and if the

assertions do not hold, to generate a counterexample-or to generate an example instance

of the system.

The tool works by converting the model into an abstract syntax tree (AST), and then a

large boolean formula which is passed to a SAT-solver, the result of which is then translated

back into the form of a solution [3]. After a model is analyzed, the user can browse the

AST to see what clauses were generated, and how these contributed to the overall truth

value of the formula.

An instance of a solution is an assignment of values to the variables used in a description,

and can be either generated automatically by the tool when it runs a command, or given

explicitly by the user as a candidate to be analyzed. Sometimes a solution cannot be found,

and the user must scrutinize her model and the tool's output to determine the cause. Also,

the tool has a facility that allows the user to enter a candidate instance, to determine to

what degree it satisfies the constraints of the model. In both of these cases, it is likely that

the AST contains unsatisfied clauses which may be of interest to the user, and this work

focuses on helping the user find these clauses, and also the text to which they correspond.

11

There were two main challenges that I faced in this project: first, determining which

usability features would most aid users in navigating and debugging models-and imple-

menting them; and second, designing a stable and effective graphic user interface upon

which such features could be built, and which is modular enough to be easily amenable to

including addition features in the future. The construction of such a GUI was a significant

part of my work, and a chapter is included which details the architecture of the GUI pack-

age and presents a guide to the code, designed to help future maintainers understand and

modify it.

Format

I first present to the reader the issues hindering usability in the original version of the tool,

and then show my solutions to some of these problems. To illustrate how a user would use

the tool to debug his work, I give an example model and scenario for debuggin a particular

problem. Finally, I include a description of the GUI architecture.

12

Chapter 2

Motivation

In earlier versions of the tool, the abstract syntax tree (AST) (of which an example is given

in figure 2-1) was presented with little adornment and no automated tools to find unsatisfied

clauses. A user had to manually click through the tree and examine a separate value tree,

which was itself embedded within the AST, to determine if a clause was false. The tree was

generated in full, and one was hindered in debugging by the many levels through which he

had to burrow, and by long, hard-to-read expression names.

|| F Formulas: I { { Ord[Statel . first . far = none[Object] Ord[State] . first . near = Fox + Goat + C

n | F formulafor function FindSolution; formulafor function FindSolution

9 [F BinaryFormula: { { Ord[State] . first . far = none[Object] Ord[Statel . first . near = Fox 4
9 F inlining of function invocationValidTransitions(); inlining of function invocation\

O ||| F BinaryFormula: (Ord[State . first . far = none[Object] Ord[State] . first . near =

0- [T iining of function invocationinitial(Ord[Statel . first); iining of function

O LogicOp: &&

9 | F QuantifiedFormula: all pre : State - Ord[State] . last I not pre : State - Ord[S'

E) Quantifier: all

4-- || Decls: pre : State - Ord[State] . last
O-Fj | inaryFormula: not pre : State - Ord[Statel . last II { Hunter in pre . near =>

0 LogicOp: &&

ci [ini nqig of fun ction ivocati onHunterSucceeds()inlining of function invocation-
-|i T all non-excluded global constraints; all non-excluded global constraints

Figure 2-1: Sample Alloy AST

The AST at the top level is grouped into two major sections: a section that corresponds

directly to the formula translation of the model, for which the tool had already had syn-

chronization capabilities, and a section that holds global constraints. Global constraints

arise from several syntantic features of the language; for example, marking a collection of

13

signatures with the disj keyword results in a constraint that the sets of atoms in those

signatures are mutually exclusive. For constraints such as that, it is unclear which, if any,

section of the model derives it. There are some clauses in the global constraints, how-

ever, which strongly indicate a location in the source, and while there may not be a direct

correspondence, it would be well for the tool to be able to synchronize those clauses.

14

Chapter 3

Solution

This chapter presents various enhancements that are aimed at mitigating some of the dif-

ficulties presented earlier. They deal primarily with navigating the abstract syntax tree

(AST), but also include some changes to the Alloy GUI.

3.1 Navigation Enhancements

3.1.1 Tunneling in the AST

The capability to have the tool automatically 'tunnel' to, that is, expand the AST to show,

interesting nodes alleviates much of the frustration at having to click through dozens of

branches to find the source of a false clause. The nodes in which we are interested we call

pivot nodes, and they are the ones upon whose values the truth value of the formula as a

depends. Pivot nodes are themselves atomic formulas that do not contain complex formulas

as children.

Determining whether a node is a pivot depends on the context in which it appears:

whether it is examined under a negation operator, if it is part of a conjuntion or disjunction,

and if it is part of a universally or existentially quantified formula. Below, we examine each

of these cases in more detail.

We are always in a boolean context when we examine a formula: whether we are trying

to determine why it is true, or why it is false. I present an algorithm for finding pivot nodes

of a formula, organized by the boolean context, and the logic operator of the formula.

Let F be the formula the pivot nodes of whose truth value we are searching for, and

15

let A and B be the subformulas that constitute F, under different operators. The function

pivots(F,b) returns the pivot nodes of F that cause it to have the value b.

Formula Syntax Result of pivots(F,t)

F = -,A pivots (A, f)
F= A A B pivots (A, t) U pivots (B, t)

F=AVB if eval(A) = t, then U if eval(B) = t, then
pivots(A, t) pivots(B, t)

Formula Syntax Result of pivots(F,f)

F = ,_A pivots (A, t)

F=AAB if eval(A) = f, then U if eval(B) = f, then

I pivots(A, f) :apivots(B, f)
F = A V B pivots (A, f) U pivots (B, f)

By this algorithm, the pivot nodes can be intuitively thought of as the ones which are

responsible for the truth value of the formula; by toggling the value of all the pivot nodes,

the value of the formula will be toggled. Changing any of the nodes outside the set of pivot

nodes will not have any effect on the value of the formula.

The universal and existential quantifiers can be regarded as sugared forms of conjunc-

tions and disjunctions, respectively. A quantified formula of the form 'Vx: S I F' can be

desugared into a conjunction formula 'F(xo) A F(xi) ... A F(Xn)', and likewise the formula

'3x: S F' desugars into 'F(xo) V F(xi) ... V F(x,)'; and then the resultant formulas can

be analyzed as above.

In figure 3-1 we give an example AST with values, and one can see how the pivot nodes

E and C propagate their values up the tree.

To activate tunneling in the interface, the user can pop up a contextual menu from

any AST node and choose to tunnel to pivot nodes, the starting context of the operation

determined by the truth value of the top-level node in the search.

3.1.2 Bookmarking Nodes

If there are many nodes throughout the AST between which the user wants to jump, he used

to have to tediously open and close branches, or scroll through a large tree: bookmarking

saves time by letting him save nodes to a list; then, by selecting a node from the list, the

tree expands and scrolls as necessary to display it.

16

F

A f

A f Qf

EV t

t f

C ®D

f t f

Figure 3-1: Sample Boolean AST

3.1.3 Source Synchronization

Many of the global constraints now synchronize, thanks to Manu Sridharan, to sections of

the source which seem reasonable in context, such as the signature definition for a clause

that reports that a static (singleton) signature contains multiple atoms.

3.2 Usability Improvements

3.2.1 Name Shortening

Previously, the AST would display all signature expressions, variable names, and skolem

constants using fully qualified names; for instance, if one had a model in the puzzles/hunter

module which contained the signatures State and Object, they would be displayed as

puzzles/hunter/State and puzzles/hunter/Object. Having many names with identical

prefixes made the tree hard to read, and made expression lines longer than necessary. Our

name shortening procedures first sort through all of the names in a solution, finding those

that can be shortened without creating name collisions, and then when the AST is displayed,

expressions are parsed to replace qualified names with their shortened equivalents.

17

3.2.2 Quantified Variable Tree

For AST nodes whose value depends upon one or more quantified variables, the tool gen-

erates a tree that shows the truth value of the node for each setting of variables. Formerly,

all of these trees were generated before the AST was displayed, and were embedded in the

AST at the level of the node whose value they represented. It was hard to distinguish at

first glance these quantified variable trees for other, normal child nodes, and it took time

to generate all the trees even if most were never viewed. We changed the presentation so

that the variable trees appeared in a separate pane from the AST, and were generated and

cached only when a user viewed the corresponding node.

18

Chapter 4

Scenario

Here I present an example model, albeit one with a small bug that prevents the desired

solution from being found, and the steps that a user might take using the debugging features

to find the section of the model that needs to be fixed.

4.1 Model Description

The model is designed to generate a solution to the puzzle:

A hunter is one one shore of a river, and has with him a fox, a goat, and cabbages.

He has a boat that fits one object besides the hunter himself. In the presense of

the hunter nobody eats anything, but if left without the hunter, the fox will eat

the goat, and the goat will eat the cabbages. How can the hunter get all three

possessions across the river safely?

The solution to this model will be a sequence of states that represent the hunter's trips

across the river. We specify constraints on how the hunter can carry things on the boat, and

what things he cannot leave on the shore together unattended; the solver will then figure

out a sequence of states (trips) that will lead to him having transferred all of his belongings

to the other side safely.

4.2 Example Model
1. /*

Model by Jesse Pavel <jpavelDmit.edu>

19

module hunter

open std/ord

10. // The hunter and all his possessions will be represented as Objects.

sig Object {}

// The static keyword specifies that each subsignature will

// have only one member, and disj forces each of these

// to be disjoint from the others. Thus, we create four

// unique objects here.

static disj sig Hunter extends Object {}
static disj sig Fox extends Object {}
static disj sig Goat extends Object {}

20. static disj sig Cabbages extends Object {}

// Each state represents one trip by the hunter across the river,

// and the near and far relations contain the objects held on each

// side of the river, respectively.
sig State {

near: set Object,

far: set Object
}

30. // In the initial state, all objects are on the near side.
fun Initial (s: State) {

s.far none[Object]
s.near = Fox + Goat + Cabbages + Hunter

}

// TransferSomethingo) constrains the movement of objects from a
// pre-state (from, to) to its post-state (from', to').

fun TransferSomething (from, to, from', to': set Object) {
// There are three ways in which the Hunter can do things.

40.
// The hunter can take exactly one object with him across the river.
(one item: from - Hunter I

(to' = to + Hunter + item) &&
(from' = from - Hunter - item))

II
// Or he can just wait where he is.
(to' = to && from' = from)

}

50. // For each pair of subsequent states, the hunter can move

// something only from the side he is currently on.

fun MoveSomething (s, s': State) {
Hunter in s.near => {

TransferSomething (s.near, s.far, s'.near, s'.far)
}
else {

TransferSomething (s.far, s.near, s'.far, s'.near)
}

}
60.

// This function represents the constraints posed

// by the problem itself, that the hunter cannot leave

// the fox and goat by themselves, or the goat and cabbages.
fun NothingGetsEaten (objs: set Object) {

(Hunter !in objs) => {
((Fox + Goat) !in objs) &&

((Goat + Cabbages) !in objs)
} else {}

}
70.

// We must constrain our simulation so that objects do

20

// not spontaneously duplicate or disappear from the world.
fun OneOfEverything (s: State) {

all o: Object I
(o in (s.near + s.far)) &&
(o in s.near => o !in s.far)

}

80. // Here we tie things together:
// The initial conditions must hold, and then for all
// pairs of subsequent states, the hunter can move something,
// making sure that nothing gets eaten on either shore, and
// that nothing violates a law of existence.
fun ValidTransitions C) {

Initial (Ord[State].first) &&

all pre: State - Ord[State].last I let post = OrdNext(pre) I
MoveSomething (pre, post) &&

90. NothingGetsEaten (post.near) && NothingGetsEaten (post.far) &&
OneOfEverything (post)
)

}

// The puzzle is solved if the hunter can move everything to the
// far side of the river.
fun HunterSucceeds () {

Ord[State].last.far = (Goat + Cabbages + Fox + Hunter)
}

100.
// Let us check how we can do this.
fun FindSolution C) {

ValidTransitions C) && HunterSucceeds)
I

// It turned out to take 8 trips across the river.
generate: run FindSolution for 8 but 4 Object

4.3 Debugging

Running this model through Alloy will yeild no solutions, and the user finds that changing

the scope does not have an effect; he concludes it is not a greater number of trips that are

required, but some change in how we define the system's behavior. Acting on the notion

that the flaw in his system will manifest itself at a small scope, he decides to use the instance

editor to input a few trips across the river manually, and then he'll check to see if those

trips-which he feels should be correct-lead to false clauses.

He inputs this sample instance, where G = goat, H = hunter, C = cabbages, and F = fox.

21

State # Near Side Far Side
1 GHFC
2 CF HG
3 FCH G
4 F HCG
5 F HCG
6 F HCG
7 F HCG
8 F HCG

He knows that this is not a satisfying solution, because not all of the objects are on

the far side in the last state, and thus the HunterSucceeds function will be false, but he is

primarily interested in finding if any of the transitions he has given are flagged as invalid.

The user's plan at this point is to enter the instance, which will yield him an AST that

has false clauses, and then use the tunneling feature to find the general portions of the

model which are unsatisfied; then, using the quantified variable value tree, he will focus in

on those portions which are false for the first few transitions that he feels should not cause

problems.

After editing the instance, he sees an AST with many false clauses, which are marked

in red; however, after selecting "Tunnel to False Leaf Nodes" he sees that only two leaf

nodes are false, one of which corresponding to the HunterSucceeds function on line 98,

as he had expected, and the other corresponding to the ValidTransitions function, on

lines 85-90. When he selects that node in the AST, the quantified variable value tree is

displayed with the values for the pre variable, which spans over all eight states. He clicks

on the BinaryFormula (which highlights lines 89-91) node, and notices that it is false for

the transition from state 2 to state 3, one which he thought should be fine. He descends

through the AST tree, the quantified variable value tree maintaining its modality so that he

can easily keep an eye on the suspect state, opening only those branches which have a false

value for state 2. This takes him to the MoveSomething and then the TransferSomething

functions, but that is the smallest level of granularity of the source that he can glean from

the AST at this point.

So, he realizes that there is something wrong with the TransferSomething function,

but here he has to solve it by examining his instance and his function definition. He sees

that the unique characteristic of the transition between states 2 and 3 is that the hunter

moves without taking anything with him, and in his model he has made allowances only

for the hunter carrying one item (lines 42-44) or to stay where he is (line 47), but not for

22

moving by himself. So the user changes the TransferSomething function to allow for this

situation.

4.3.1 Corrected Model

fun TransferSomething (from, to, from', to': set Object) {
// There are three ways in which the Hunter can do things.

// The hunter can take exactly one object with him across the river.
(one item: from - Hunter I

(to' = to + Hunter + item) &&
(from' = from - Hunter - item))

IIl
// Or he can make the trip by himself.

((to' = to + Hunter) &&

(from' = from - Hunter))

II
// Or he can just wait where he is.

(to' = to && from' = from)

}

Now he compiles the model and executes the generate command again, but now he is

yielded a solution.

State # Near Side Far Side
1 GHFC
2 CF HG
3 FCH G
4 F HCG
5 FHG C
6 G HCF
7 GH CF
8 HCFG

23

24

Chapter 5

The Alloy GUI

This chapter presents an architectural overview of the Alloy tool's graphic user interface,

along with information and tips that would be useful to someone who wanted to modify the

code.

5.1 Components

The alloy.gui module comprises a number of class, some of which are closely tied to the

GUI, while others exist relatively independently. In figure 5-1 is shown a selection of the

classes I wrote expressly for the GUI, as well as some of the more user-visible classes written

by other developers; this class structure is the result of significant refactoring, after we saw

how difficult it was to deal with the large AlloyGUI class that resulted from feature accretion

during the development cycle. The Interfaces section following each class description lists

the interfaces the class provides through which others can listen for appropriate events.

AlloyGUI

This class is the basis for the Alloy tool's interface: it contains the main method, and

is responsible for constructing the layout of the GUI, connecting user interface elements to

handlers exported by the various components, and listening to events that those compo-

nents send which could affect the state of the GUI, or which must be dispatched to other

components.

Interfaces:

25

FontSelector

AlloySolver

-- AlloyGUI

InstanceEditor

LocableTextArea

LocDisplayer

GUITree

ASTTree SolutionTree

SwingASTVisitor ASTHandler ListSelector

7z

bD

Legend

A - B A - B

A uses (depends on) B A implements/extends B

ProgressInterface

SwingASTVisitor

This class was written by Ilya Shlyakhter to traverse the formula generated by the

solver; it operates as a visitor, and builds a Swing representation of each node, gluing them

together into what the user sees as the AST. This class uses the name shortening code in

SolutionData to pare down long names before displaying the tree.

ListSelector

The ListSelector is a convenience class used by the AlloyGUIASTHandler to display

the various lists of nodes constructed, and to monitor user interaction with the list.

Interfaces:

ListSelectionListener

FontSelector

I was surprised that Swing doesn't provide a prefabricated font selection dialog, which

is the essence of this class. Additionally, it uses a preview callback interface to allow the

user to preview font changes in the trees and text before making a decision.

Interfaces:

PreviewCallback

InstanceEditor

The instance editor, also written by Ilya, provides a dialog by which the user can man-

ually set which tuples are contained in each relation. I modified it so that a map between

each widgets and the boolean variable it represents is stored, so that we can load an instance

(through the SolutionData interface) and update the checkboxes correctly.

LocDisplayer

27

This class acts along with the LocatableTextArea to highlight regions of the text which

correspond to a node in the AST.

LocatableTextArea

This class is a standard text area supplemented with facilities to highlight regions of

characters-when combined with the LocDisplayer class-and also a few miscellaneous

functions, such as undo'ing and redo'ing text operations.

Interfaces:

TextChangedListener FileChangedListener

AlloySolver

The AlloySolver presents a simple interface for the rest of the GUI package that

allows it to access the features of AlloyRunner without worrying about threading issues.

AlloySolver presents a set of callback interfaces through which interested parties can listen

for events related to compilation and generating solutions. Additionally, this class prevents

events which should not overlap, such as building and solving, from doing so. This class

exports a menu of Commands that the AlloyGUI class can place where it will, and from which

the user can select the command he wishes to execute.

Interfaces:

BuildFinishedListener SolveFinishedListener

GUITree

This class encapsulates certain functionality that is common to both ASTTree and

SolutionTree, such as changing the font and clearing its nodes.

AST Tree

The ASTTree is responsible for displaying both the AST itself and the quantified variable

value tree, both of which are exported as separate widgets, for AlloyGUI to arrange as it

wishes. This class also provides a popup menu through which the user can tunnel to false

clauses and bookmark AST nodes.

28

Interfaces:

ASTSelectionListener

SolutionTree

The Alloy Tool presents a solution to a model as a tree that shows which atoms populate

the signatures, and the tuples of atoms that constitute relations. Because the expansion

of the tree is potentially unbounded, we must generate children nodes lazily, as the user

clicks through the tree. SolutionTree exports a widget that AlloyGUI can arrange in the

interface.

5.1.1 Structure of AlloyGUI

Though each section of AlloyGUI is relatively independent, the class is still large, and it

may be helpful to have an overview of the function that each section performs.

" Start-up and Utility functions (~150 lines)

A few hundred lines of code are spent on simple routines that perform tasks such as

listing and setting Java's look-and-feel, parsing the command line, and saving and

loading user preferences.

" AlloyGUI constructor (~200 lines)

The constructor is responsible for instantiating the various components and setting

them up in a Swing frame; if one wishes to change the layout of the GUI, it is here

that modifications should be made.

" Menu bar constructor (~200 lines)

This function creates all of the menu components and links them to the Actions that

define their behavior. The methods for creating the Action objects are described

below.

* GUI State (~100 lines)

These are methods which allow the state of the GUI, that is, the enabled state of

menu items, whether a solve command is in progress, and messages displayed, to be

saved and restored, in event of a crash.

29

" Actions for Menu Items (~500 lines)

This set of methods define the Action objects to be used when selecting menu items.

Each method returns a closure to be run as the result of a menu selection, and in

addition wraps this closure in error-handling code that causes the tool to write a

dump file in the event of an error.

" Methods for Handling Commands (~100 lines)

When a model is compiled, the GUI populates a menu with the commands defined

therein, and this code interacts with the AlloyRunner to handle the interface between

the GUI menu and the underlying Command objects.

" Build and Solve Listeners (~100 lines)

The GUI registers callbacks with AlloySolver to be run when an appropriate event

is finished; these callback functions take care to set the state of GUI components

depending on the outcome of a build or solve attempt.

" GUI Message Listener (~100 lines)

This inner class listens for error messages emitted by the compiler, displays them in

a pane of the main frame, and correlates error messages with the source text when

selected.

5.2 Threading in the GUI

Multi-threading is responsible for some of the more subtle errors we have encountered, and

I have tried to localize the use of threads, and make their interaction as simple as possible.

AlloySolver uses separate threads when compiling models and executing commands; when

finished, it fires BuildFinishedEvents and SolveFinishedEvents, respecively, in the

Swing event thread so that the callback listeners do not have to worry about thread

safety when modifying the GUI.

ASTTree uses a separate thread when it builds a Swing representation of the abstract

syntax tree, before it realizes any of the components. Upon completion, it displays

the AST in one of its managed components.

30

Thus, outside of these two classes, we need not worry about threading issues, simplifying

our reasoning about control flow.

5.3 Design Patterns

Throughout the GUI, we make consistent use of a number of patterns that create a com-

prehensible design logic, and which let us change parts of the system more easily, so long

as the replacement conforms to the same pattern.

SwingWorker

We use the SwingWorker pattern given by SunTM, in which a construct method is run

in a separate thread, and is intended to perform time-intensive calculations which do not

have GUI interactions, and which returns an object to the finished method, which the

SwingWorker runs safely in the Swing event thread.

Action

It is useful to be able to separate a program's response to an event from the GUI widget

that generated the event, and we use Java's Action pattern to effect this. Rather than

having a module attach a handler to the activation of a particular widget, it can just export

an Action closure which the AlloyGUI can associate with any widget, a menu item, toolbar,

or button, as it sees fit; additionally, the same Action object can be attached to multiple

widgets, and can control certain aspects of their appearance and enabled/disabled state,

allowing the layout component to delegate that responsibility to whichever other component

defines the behavior. We started using this pattern after our old method, having a large

if-else block to deal with all menu events, became too unwieldy and centralized to manage

easily.

Observer

This basic pattern is used extensively, both for GUI events, such as the user opening a

branch of the solution tree, and for non-GUI events, for example to signal the completion of

a compile. By using Observers, we were able to significantly reduce coupling between parts

of our system: as an example, rather than having the AlloySolver call all the routines

31

which must be executed when a solve is finished, it just notifies all of its registered listeners,

and they can take appropriate action. Thus, if a new module that depends on solve events

is added to the system, it can just attach an observer for the event, instead of having to

change AlloySolver to accomodate it.

ContextListener

Certain widgets, such as the AST display or the list of bookmarked nodes, may contain

items upon which other components want to act, and rather than having each of these wid-

gets subsume all the necessarily functionality, they provide an interface by which interested

parties can register menu items that the user can activate through a context menu. For in-

stance, the ASTTree doesn't know anything about tunneling, but it allows the ASTHandler

to register a popup menu on the AST from which one can select various tunneling or

bookmarking options. This pattern allows a developer to add such functionality without

disturbing the class that manages the widget itself.

32

Chapter 6

Conclusion

My work on the Alloy tool involved the development of features that alleviate some of the

problems that users face when debugging models; such features include searching through

the AST to find interesting false nodes, bookmarking tree nodes, and shortening long names.

To illustrate these enhancements, I showed how someone might use the debugging aids to

find a flaw in a sample model.

Much of my work consisted of writing a user interface for the tool, and so I presented

an architectural overview of the GUI, in its end result after many iterations, accretions,

revisions, and refactorings, in a way that I hope will be helpful to developers who maintain

or enhance the code.

Finally, during my work on Alloy, I learned a lot about language design and implemen-

tation, software modelling, and program architecture; and found that working on the tool

debugged, as it were, many of the misconceived programming faults I had not yet winnowed

out of my software design practices.

33

34

Bibliography

[1] Jackson, D. (2001). Micromodels of Software: Modelling &4 Analysis with Alloy

Cambridge, MA: MIT LCS. http://sdg.lcs.mit.edu/alloy/book.pdf

[2] Jackson, D., Schechter, I., & Shlyakhter, I. (2000)

Alcoa: the Alloy Constraint Analyzer

Proc. International Conference on Software Engineering, Limerick, Ireland, June 2000

[3] Jackson, D. (2000) Automating First-Order Relational Logic

Proc. ACM SIGSOFT Conf. Foundations of Software Engineering. San Diego, Novem-

ber 2000.

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. (1999)

Refactoring: Improving the Design of Existing Code

Addison-Wesley Pub Co., 1st Ed.

35

