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Abstract

Research in computational protein design has produced a number of algorithms that
are empirically effective for selecting amino acid sequences that fold to desired protein
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Chapter 1

Introduction

Proteins are functional molecular units in biological organisms [2, 5]. They man-

ufacture other proteins, regulate and replicate DNA, transport objects within and

between cells, selectively catalyze biochemical reactions, convert various forms of en-

ergy, and perform other complicated tasks. They are the focus of much research in

biology.

Proteins are composed of amino acid residues, of which there are twenty different

kinds. All amino acids contain a backbone component and a variable "side chain".

The backbone component is the same in every amino acid. At the simplest level, a

protein is just a strand of connected amino acids and can be uniquely identified by

the sequence of the side-chain identities.

However, proteins are never linear in nature. Instead, the strand packs into a three

dimensional structure that is energetically more stable in a process called protein

folding. Both the backbone and side-chain groups have conformational flexibility.

Folded structures can combine with other structures to form larger complexes. For a

fixed environment, the folded structure is entirely a function of the sequence of amino

acid side chains in the original strand [1]. A change in the original sequence often
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CHAPTER 1. INTRODUCTION

results in a structural and/or functional change. Depending on the mutation, the

change may be insignificant or drastic.

The "protein folding problem," predicting what structure a given sequence will

fold to, is computationally difficult because of the sheer number of possible three

dimensional structures. The reverse problem, the "protein design problem," is also

computationally hard. This is the problem of selecting amino acid sequences that

fold to desired proteins. This thesis explores and extends the research that has been

done on the protein design problem.

The protein design problem is both theoretically interesting and biologically ap-

plicable. Reengineering proteins can potentially allow researchers to alter the binding

properties, and thus, the functionality, of gene regulators, antibodies, cell receptors

and inhibitors. Consequently, protein design has the potential to aid the discovery of

new therapeutics as well.

1.1 Thesis Structure

This chapter will cover background on the computational protein design problem,

discuss issues related to specificity design and state the motivation for this thesis.

Chapter 2 discusses the design and implementation of the software. Chapter 3

discusses testing and validation.

1.2 Problem Introduction

1.2.1 Protein Design Difficulties

The goal in protein design is to select an amino acid identity and side-chain conforma-

tion at each position of the protein. This specifies both the sequence and the structure

10



1.2. PROBLEM INTRODUCTION

of the design. The protein design problem is difficult for a number of reasons:

" Many possible sequences - algorithms tend to scale poorly, as the search

space of amino acid combinations scales exponentially.

" Many possible folds - the fold of a protein is determined by the backbone

conformation. The number of possible three dimensional folds for a given se-

quence is infinite. The calculation must identify a sequence that favors one

desired fold over all others.

" Many possible side-chain conformations - amino acids contain flexible

side chains that can pack into many different conformations. We must account

for these conformations when attempting to calculate energies, but again, this

increases the combinatorial size of the problem.

* Energy functions - our calculation of the energies of structures is approximate.

* Folding kinetics not well understood - our understanding of the biophysics

behind the process by which a protein folds is imperfect.

" Objective function - it is not entirely clear what we want to optimize, quan-

titatively. For naturally occuring proteins, evolution optimizes a very complex

function (one that includes stability, biological function, lack of biological harm-

fulness, etc).

1.2.2 A Framework for Computational Protein Design

To make computational protein design tractable, it is common to simplify the problem

in a number of ways. If we use a fixed backbone fold and select amino acids and side-

chain conformations to optimize the energy of this single target structure, we no

longer have to worry about issues of alternate folds, folding kinetics or complicated

11



CHAPTER 1. INTRODUCTION

objective functions. This simplified problem is more computationally manageable

and has produced successful designs in recent years.

Figure 1-1: Zinc finger design. Left: wild-type (PDB code: 1ZAA). Ball
at core. Right: redesigned protein.

depicts Zn 2+

A now-classic example of this approach involves the redesign of a small zinc

finger.[7] This is a protein that does not fold in the absence of zinc. Dahiyat &

Mayo selected and packed a new sequence of amino acids onto to the original protein

backbone. The newly designed protein had a structure very similar to that of the

original target, as determined by NMR spectroscopy, even in the absence of zinc.

The "side-chain packing" problem emerges as a special case of protein design.

In addition to assuming a fixed backbone fold, we also assume a fixed amino acid

sequence. The problem that remains is determining the side-chain conformations-

a subproblem of the protein design problem that corresponds to protein side-chain

structure prediction.

1.2.3 Modeling Assumptions

Some additional assumptions we typically make:

12
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Water molecules removed - in nature, proteins exist in some environment that

affects their folding. Most often that environment is mostly water. Because

modeling hundreds or thousands of small water molecules in highly variable

positions is computationally expensive, we cannot include them explicitly in

the model.

Rotamers - the torsion angles between atoms in the amino acid side chains can be

used to specify side-chain geometry. These are allowed to have any value. Since

searching an infinite continuum of torsion angles is computationally infeasible,

we restrict the torsion angles to a small number of discrete values, resulting

in a finite number of side-chain conformations at any position. Each of these

conformations is called a "rotamer." In nature, torsion angles are found to be

biased towards a small number of finite angles [35]. These are the angles we

choose for our "rotamer library."

Linear and pairwise energy functions - Many search algorithms heavily exploit

the ability to decompose an energy function describing the protein in a lin-

ear and pairwise manner. Define Ek(a1,... , an) as the energy of the sequence

a1,... , an on backbone k. We would like to decompose it in this way:

Ek(a,, . . . , an) = Ek +h &k()-+ E k(jrjs) (1.1)

where &k is the energy between backbone atoms and fixed residues that are not

being designed, Ek(ir) is the interaction energy between a selected rotamer ri

at position i with the backbone atoms and fixed residues, and ek(ir, js) is the

interaction energy between two selected rotamers at distinct positions i and j.

All these assumptions and approximations serve to make the problem more tractable

computationally.

13
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1.2.4 Energy Function

We must choose a representation of the potential energy of a particular state, given

all of the selected amino acids and side chain positions. Energy functions that accu-

rately model the physical system typically include contributions from van der Waals

interactions, electrostatic forces, torsion angles, bond lengths and bond angles. This

becomes further complicated when corrections need to be made for various modeling

assumptions. In particular, in order to accurately describe electrostatics in a polar

solvent without modeling each water molecule, approximate solvation energy terms

must be introduced. Also, some energy terms cannot be easily decomposed in a linear

or pairwise manner and doing so would itself be an approximation [14].

The Keating Lab and others are developing effective energy functions that correct

for the modeling assumptions. However, research in this area is not within the scope

of this thesis.

1.2.5 Objective Function

What exactly do we want to optimize and how do we want to quantify it? If we assume

that a single target state is being designed for, then we want to select the amino acids

that maximize the probability of occupying the target state. A 2-D representation of

the rough energy surface that characterizes protein fold space is shown in Figure 1-2.

The most physically justifiable objective function to maximize is Pko, the proba-

bility of occupying the desired state ko given the selected sequence. This probability

can be computed from the energy function via the Boltzman relation:

e-BEko
max Po, Pk = (1.2)

Zk eiEk

14
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- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - --iE

E kI

E ko

Possible folded states

Figure 1-2: Example energy landscape for a given amino acid sequence

where the summation occurs over the set of all possible states. This summation

is dominated by two major components:

* A small number of low energy states - the exponential exaggerates energy dif-

ferences to the extent that the terms corresponding to low energy states are

much larger than those corresponding to high energy states.

* A large number of high energy (unfolded) states - since there are many more

high energy states, the sum of these states contributes to the summation as

well.

The non-linearity of the objective function in (1.2) can present problems. We can

try to make it appear more linear by optimizing the negative log:

min(- log P0 )/, (- log Pk)/f = Eko + logE e-#Ek (1.3)

Unfortunately this objective function is still non-linear, which presents problems
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for some search algorithms. Even worse, it requires an enumeration through all pos-

sible states. Saven reviews a number of metrics [36] that simplify this function:

1. min Ek = the potential energy of the desired state. Advantages: easy to com-

pute and results in a linear and pairwise objective function. Justification: se-

quences with low E, often have high energies on other backbones. However, this

sacrifices the ability to design against undesired states and does not take into

account energy differences between different sequences in the unfolded state.

2. max A0 ,1 = Ek, - Eo= energy gap between minimum energy fold (ko) and "sec-

ond best" energy fold (ki). Justification: Ek e-lEk in (1.3) will be dominated

by the lowest energy Ek aside from ko, which is Eki. This reduces the entire

expression to the minimization of Ek - Ek, alternatively the maximization of

Ek1 - Eo. However, E, is still difficult to find because k, is difficult to find

and it still ignores the unfolded states.

3. maxA = (Ek)kEU - Eo= difference between the energy of the target fold (Eko)

and the mean energy of all unfolded states ((Ek)). Justification: expand the

sum in I log Ek e-Ek in (1.3) as described in [36, p. 3122]. The largest term is

(Ek)kU. Difficulty: U is large and hard to define. Variations: average over a

small number of user-specified unfolded states or a single representative state.

Justification: the user may know which unfolded states are of design interest.

4. min AG = AH - TAS = free energy of folding, which includes both potential

energy and entropy (S). Justification: this is equivalent to the original objec-

tive function, max Pko. Difficulty: entropy term makes function non-linear and

cumbersome to calculate. Also, since this is ultimately a difference in free ener-

gies between the target and unfolded state, it requires a model for the unfolded

state.

16
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Decisions: most researchers have chosen to optimize for folding stability, specifically

the appoximation of A, where only a crude approximation of a single, representa-

tive unfolded state is used to model (Ek)kEU. Developing algorithms that explicitly

account for more undesired states will require exploration of some of these alternate

quantifications of max Pko.

1.2.6 Search Algorithms

Some choices we must make in the design of the algorithm:

" Speed/runtime - we want our algorithms to run in a reasonable amount of

time.

* Optimality - is our algorithm guaranteed to find the optimal solution(s)? What

guarantees can we prove about the output of the algorithm?

" Theoretical basis - how sound is the algorithm theoretically? Can we prove

anything about its output, its worst case run time, its average runtime or any

invariants? Or is the algorithm supported by purely empirical results and test-

ing?

* Physical basis - how sound is the algorithm physically? Is it optimizing phys-

ically or chemically meaningful values (energies, probabilities, etc) or, again, is

it supported only empirically?

The above factors may vary for different design problems, thus, for side-chain

packing purposes, we chose to implement a variety of algorithms described in litera-

ture and make all of them available.

17
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Randomized Algorithms

Monte Carlo is a stochastic algorithm that randomly initializes points in the search

space and then repeatedly tests small random modifications to improve the objective

function [19, 27]. The Monte Carlo main loop consists of two basic steps: 1) random

walk and 2) decision to accept or reject. The decision criteria is as follows: if the

random walk results in an energetically favorable change, accept it. Otherwise, accept

the move with a certain probability. The probability is a function of the energy

difference and a temperature factor. The Simulated Annealing approach is similar,

but adds a gradual decay to the temperature factor [38]. This allows the algorithm

to make higher risk moves early in the cycle and conservative ones towards the end.

The Monte Carlo algorithm does not guarantee optimality of its results, but longer

runs of Monte Carlo will increase the likelihood that low energy solutions will be

found (optimal or close to optimal). Various tricks, such as the quench technique,

can improve the energy of the final side-chain pack configuration [40].

Genetic Algorithms perform a similar search, but run on populations of configura-

tions, instead of single configurations [8]. Configurations also replicate and compete

with each other in a processes intended to mimic Darwinian natural selection. The

best configurations at any given time during the search will occasionally swap seg-

ments in a meiosis-like fashion in order to gather favorable subsets of rotamers into

the same configuration.

Genetic Algorithms, though straightforward to implement, have not been included

in our software as a side-chain packing algorithm. Comparisons have shown that,

for the side-chain packing problem, the optimality of results generated by Genetic

Algorithms do not differ significantly from those generated by Monte Carlo [40].

18



1.2. PROBLEM INTRODUCTION

Dead End Elimination

Dead end elimination algorithms act to prune poor rotamers from the search space.

They do so by examining a particular rotamer at a position on the backbone and

determining whether any other rotamers at that position are always more favorable,

regardless of the configuration of the remainder of the protein [9].

E(i,) - E(i,) + 1 min [E(ir, jt) - E(is, j)] > 0 (1.4)

Equation 1.4 describes the elimination criterion for the first order singles DEE

method [13]. If an i, and i, exist that satisfy this equation, we say i, has been

eliminated by is by the DEE criterion and remove i, from the search space.

There are many variations of DEE algorithms, from the original Desmet formu-

lation to more rigorous criteria. In particular, we have implemented: zeroth order

singles [9], first order singles [13], singles with conformational splitting [34, 29], "magic

bullet" pairs [15], and first order pairs [23] with coefficient of extrema speedups [15].

All of these implementations provide a guarantee: no rotamer in the global mini-

mum energy conformation (GMEC) will ever be eliminated. DEE is not guaranteed

to significantly reduce the search space, and it is not guaranteed to terminate quickly,

but DEE will never eliminate the GMEC. Hence, it provide a means for an exact

search for small problems.

DEE is effective at reducing the size of the search space by many orders of mag-

nitude, but often does not reduce it to a single solution. For this reason, it is often

paired with a branch and bound algorithm to complete the rest of the search.

19
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Branch and Bound

A* is a branch and bound search algorithm that attempts to descend through a

search tree in an intelligent search order [25]. It relies on effective ways to estimate

the optimal energy with a lower bound. The closer this estimator is to the optimal

energy, the less steps the A* algorithm takes to complete. However, highly accurate

estimator functions are slow and increase the amount of time spent on each step of

the A* algorithm.

A* is one of the few algorithms that is guaranteed to find the GMEC. However,

it is not guaranteed to terminate in a reasonable amount of time. Its runtime can

scale exponentially for larger problems. Even worse, its memory consumption can

also scale exponentially. For this reason, A* is generally only used on smaller, more

tractable problems.

Self-Consistent Mean Field

These methods are based on constructing a probability matrix as a function of en-

ergies, and an energy matrix as a function of probabilities as shown in equation 1.6

[21, 26, 22].

P'(ir) = eEi, /kT (1.5)

E'(ir) = E(ir) + E E P(js)E(Zr, js) (1.6)
j s

These two conditions can be iteratively run to convergence to compute final energies.

This formulation assumes a pairwise independence of probabilities that is not realistic.

As a results, SCMF methods are not guaranteed to find optimal solutions. Runtime

is extremely fast, however, scaling effectively linearly, even for large problems.

20
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Semidefinite/Linear Programming

Very recently, the protein design problem has been formulated as an integer program

[10] and as a semidefinite program [4]. These programs are general theoretical models

for optimization problems and various algorithms exist for solving or approximating

such programs.

1.3 Past Work

Though significant successes have been achieved in designing protein stability (e.g.

Mayo [7]), a number of design problems point to the need for an approach that ac-

counts for specificity. Sharma et al. designed a peptide to preferentially heterodimer-

ize with a target protein [37]. It was important in this design process to explicitly

disfavor competing states such as the peptide homodimer. In another project, De-

Grado et al. designed a peptide receptor for calcineurin [11, 28]. This work also

required a way to disfavor competing undesired states. More generally, the need for

negative design becomes apparent whenever one is considering competing states that

have high structural similarity to the target state.

Research in the area of specificity design has mostly progressed using simplified

lattice models of proteins [20]. Approaches to pursuing specificity in the all-atom

context that is relevant to the design of real proteins are comparatively unexplored.

1.4 Problem Specification

1.4.1 Problem Statement

We will develop algorithms for the computational design of proteins that output a set

of selected amino acids chosen to optimize for a number of desired folds and against

21
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a number of undesired folds. The algorithms take as input the backbone structures

of each desired and undesired fold. By including bound protein-protein complexes

as folds, one can use such algorithms to redesign a particular protein for desired

interactions and against undesired interactions. Some notes about our new problem

formulation and how it relates to the stability problem:

" The list of undesired folds must be finite and small. Our algorithms will not

search the infinite continuum of unfolded states for each amino acid sequence.

This assumes that the user can characterize all of the "particularly important"

undesired folds.

" This differs from the folding stability objective function in that multiple desired

and undesired states are explicitly described. Since most stability algorithms

design for only a desired state, the binding specificity problem can be seen as a

generalization of the folding stability problem.

" The search space of the new objective function differs from the old one. Folding

stability algorithms often search the space of rotamer possibilities (see section

1.2.3). However, rotamers have no universal meaning among different backbone

conformations. Thus, binding specificity algorithms search the space of amino

acid possibilities at each position.

" Side-chain placement is a subproblem of the binding specificity problem. During

the search, the algorithms will compare energies of selected amino acid sequences

on given backbones. This energy greatly depends on the packing of the side

chains of each amino acid. The energy of the sequence will be the energy of the

best side-chain packing of that sequence. Fortunately, the side-chain placement

problem is a special case of the the well-researched folding stability problem.

Thus, established algorithms we have used for optimizing folding stability can

22
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be used to solve the subproblem of side-chain placement within our specificity

algorithms.

1.4.2 Exploring Objective Functions

Ultimately, the choice of objective function will depend on what the user wants to

optimize. The choice of objective function also affects the choice of search algorithm.

This section will explore a few suggested mathematical representations of objective

functions.

First, define "state" as a way to arrange a given number of residues with a fixed

stoichiometry. Define U as the set of all undesired states and D as the set of all

desired states. Ek is the energy of state k and is computed as described in section

1.2.4. What follows are some suggestions for linear and pairwise objective functions:

1. Maximize the energy gap between the probability weighted average of the de-

sired states and the average of the undesired states. This is a parallel of function

3 in section 1.2.5 (A). We can quantify it in the following way:

maxf, f = 1 ckEk - >3 ckEk (1.7)
kcU kcD

where EkCUUD Ck = 1. The most sensible coefficients to assign are the Boltzman

probabilities :
e--Ek

ck = Pk - (

Unfortunately, the Pk are not constant with respect to Ek, so our objective

function is no longer linear. Instead we can choose arbitrary constants {ck},

but it is not clear how to choose these values in a meaningful, non-empirical

way.
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2. Maximize the probability of occupying desired states. This parallels function

4 in section 1.2.5 (Pfld). For example: if a heterodimeric binding between

proteins A and B is desirable, but homodimeric bindings are undesirable, then

the desired state can be specified as AB and the undesired states as AA and

BB. This can be captured in the equilibrium equation

AA+BB V AB+ AB

To maximize the probability of occupying the right half side of the equilibrium,

we maximize PAB where

e-
2 EAB

AB e-EAA-EBB ± e- 2
EAB e 2

EAB-EAA-EBB + 1

To maximize PAB, we need to drive the exponent towards -oo. This gives us

the following function:

max f, f = EAA + EBB - 2 EAB

Or more generally:

max f, f = ckEk - Z ckEk (1.9)
kEU kED

Where the {Ck} correspond to the weights in the balanced equation. This ob-

jective function is equivalent to maximizing the difference in stabilities of the

two competing states under the assumption that they are equal in energy when

unfolded (a commonly made assumption). It becomes more difficult to quan-

tify, however, when all of the desired binding properties of a protein cannot be

captured in a single equilibrium equation. For example, if the input included

an undesired unfolded state UA + UB, we might have multiple equilibrium equa-
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tions:

AA+ BB AB+ AB

UA +UB # AB

This would give us multiple functions to maximize:

f1 = EAA + EBB - 2 EAB

f2 = EuA + EUB - EAB

Which roughly corresponds to:

fi : optimize for specificity

f2 : optimize for stability

As before, any method for unifying these criteria into a single objective function

seems arbitrary:

maxf, f =Alf,+ A2f 2 +...+ Anfn (1.10)

1.4.3 Adapting Search Algorithms

We must choose at least one algorithm for selecting sequences for specificity design.

This section details the considerations made in determining which of the algorithms

used in stability design (see section 1.2.6) to adapt to the specificity problem.

Randomized Algorithms

Monte Carlo and genetic algorithms are a natural choice and can be adapted easily

to the new problem. Irbick et al. have explored a Monte Carlo approach to the
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specificity problem using a lattice model [20]. These algorithms can optimize almost

any objective function that can be stated mathematically, and therefore don't require

a linearization of Pko. However, these functions give us no guarantees on the opti-

mality of the output. This may be one of the most promising leads, however, as the

larger search space size of the specificity problem may make most other algorithms

impractical.

Self Consistent Mean Field

The literature on applying self-consistent mean field (SCMF) algorithms to the bind-

ing specificity problem is very recent and deals with adapting these statistical me-

chanics algorithms. Harbury proposes an SCMF approach to optimize a sequence

for a single desired state and against a number of undesired states [18]. Saven also

explores a self-consistent approach using a lattice model [42]. As before, the SCMF

formulation should provide a quick solution, but suffers from the assumption that

the probabilities are pairwise independent and thus provides no guarantees on the

optimality of the output. Empirical testing would be necessary to determine its use-

fulness.

Dead End Elimination

DEE is an algorithm that works surprisingly well in the stability problem, but in

designing for specificity, there are reasons to think it may not work well at the amino

acid level. Using DEE at this level would require the elimination of all conformations

of an amino acid on all given backbones as opposed to single rotamers on a single

backbone. The latter problem is more tightly constrained and leads to a significant

number of eliminated rotamers. The specificity problem has fewer constraints and

may lead to fewer eliminations. However, since DEE is an empirically-justified algo-
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rithm, the only way to know is to test its performance. The challenge: we need to

determine a pairwise formulation of the energy functions.

Branch and Bound

Since this algorithm doesn't scale very well, it is uncertain how it will handle the

larger search space for the specificity problem. Its success, as before, will depend on

whether we can write good energy estimators. Also, branching at the amino acid,

rather than rotamer, level complicates the search.

Semidefinite/Linear Programming

Modeling the problem this way is challenging. Some questions to consider: can we

linearize the energy function? Will we attempt to find an approximation algorithm

[12] or attempt to find an exact solution in a theoretically unbounded amount of time

[10]? Is an approximation algorithm even possible [4]? Since we haven't dealt with

this algorithm before, we will not initially implement it for sequence selection.

Algorithm choices

Only the Monte Carlo algorithm will be implemented at first. Future search algo-

rithms can be added later.

1.5 Summary

Algorithms for effective in silico protein design have undergone most of their develop-

ment in recent years. A number of empirically effective algorithms exist for identifying

amino acid sequences that fold to desired states.
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With respect to the folding stability problem, designing proteins for binding speci-

ficity is comparatively uncharted. There are a number of design problems that can

most effectively be addressed with a specificity design approach. This thesis aims to

implement software that can address these.

The purpose of this thesis is to develop a computational toolkit for biologists who

wish to reengineer the binding behavior of proteins or protein interfaces.



Chapter 2

Software Design

This chapter details the design and implementation of the protein design software.

The documentation is current as of version 1.0.1.

2.1 Design

2.1.1 Formalized Program Specification

This program will provide a user with a number of algorithms to search the amino

acid solution space for certain protein design problems. The user will be allowed

to specify several parameters of the search without recompiling the program. These

parameters include, but are not limited to:

1. different protein energy data sets.

2. algorithm(s) to use for amino-acid sequence selection and any associated op-

tions.

3. algorithm(s) to use for side-chain packing (rotamer selection) and any associated

options.
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4. a user definable objective function to maximize during the search.

The guarantees and limitations of the program will correspond to the guarantees

and limitations of the various algorithms used (expected runtimes, guarantees on con-

vergence or global minimum energy, etc). All required energy data will be provided

by the user. Program output will include a human and machine readable represen-

tation of the solutions found. The program will run non-interactively (stdin is not

touched) and make use of parallel computing hardware.

Input files: control file

All user parameters are read through the control file. The control file is read line by

line. Valid end of line markers are CR (0x13), LF (OxlO) and '#' (hash). Blank lines

are ignored. Any contiguous string of whitespace (space, tab) is treated as a single

space.

The control file must contain several blocks that may be placed in any order.

These blocks are: options, objective-function, spec-sequence, dee-sequence,

and one or more backbone blocks. See Appendix A.1.1 for an example control file.

Input files: energy files

For each backbone there must be a corrseponding energy file. The file is binary and

contains an 8-byte Intel-endian double for each rotamer at each position, followed by

a double for each pair of rotamers. The order of entries is as follows. Self energies:
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Where the number of positions is p and the number of rotamers at any given position

i is ni. This is immediately followed by pairwise interaction energies as follows:

E ((I1, 1), (2, 1)), E ((1,1 1),7 (2, 2)), ... ., E ((1,7 1), (2 , n2)), ... , E((1, 1), (p, nP))

. I E ((1,7 2), (2, 1)), E ((1,1 2), (2, 2)), . .., E ((1,1 2), (2, n2)), .... , E(( 1, 2), (p, np)),

. E ((I1, ni) , (2, 1)), E ((I1, ni) , (2,7 2)), . .. ,E((1, ni), (2, n2)), ..., E ((I, ni1), (p, np)) ,

. E ((2, 1), (3, 1)), E ((2, 1),1 (3, 2)), 1. .., E ((2, 1), (3, n3)), ... , E((2, 1),7 (p, np)) ,
. E((p - 1, np_ 1), (p, np))

Output files

The program produces several similar output files. The main output file (specified

by the main-out-file command in the options block of the control file) contains the

rank ordered list of top scoring solutions. Each line contains the score followed by the

amino acids selected at each design site. The first line is the highest scoring solution

found and the nth line is the nth highest scoring solution.

The program produces a backbone output file for each defined backbone (specified

by the output command in the backbone block). Each line contains the energy, amino

acid and rotamer choices for the sequence in the corresponding line of the main output

file. An example main output file is provided in Appendix A.2.1.

2.1.2 Program Control Flow

The program control flow is depicted in Figure 2-1. The search algorithm generates

an amino acid sequence that ultimately results in a score; the algorithm uses the

score in informing its next sequence choice. This score is generated by a user-defined

objective function that depends on the energies of the amino acid sequence on each

desired and undesired backbone state. Determining these energies requires the use of
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user specifiable side-chain packing algorithms.

-H, Search Algorithm

aa se4 uence

Side Chain
Packing Engine

structures
& energies

Objective Function

sequenc e score

Figure 2-1: Program flow chart

2.1.3 Parallelization

The protein design problem is broken into two separate subproblems: the amino acid

sequence search and the side-chain packing problem (see section 1.4.1). Similarly,

the software can be thought of as divided into two major pieces: the sequence search

32 CHAPTER 2.
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engine and the side-chain packing engine.

slave 1 receiving job

scp job

slave 2 sending job results
master tscp results

sIav e 3 in compute

Figure 2-2: Parallel job distribution

Since the sequence optimization algorithms call side-chain packing functions, the

speed of sequence optimization is directly dependent on the speed of side-chain pack-

ing. Thus, the most straightforward way to exploit a parallel computing environment

is to run multiple side-chain packing engines. The division of labor is depicted in

Figure 2-2. For N nodes in a computing cluster, there will be one node dedicated to

amino acid search algorithms and N - 1 nodes acting as side-chain packing engines.

The master node sends a full sequence string for a given backbone to a free slave node.

The slave node then computes the optimal side-chain conformations and returns the

lowest energy and associated structure.

Inter-node communication occurs only between the master node and its slave

nodes. During sequence selection, communication is slave node initiated. The hand-

shake is as follows:

1. (master) Waits for any slave requests

2. (slave) Initiates data exchange (DXCHG) request. If slave has recently com-

pleted a side-chain packing job, the DXCHG packet indicates that data is about
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to follow.

3. (slave) If results are available, send it.

4. (master) If data was received, it is saved on the master.

5. (master) If a new job is available, send job to slave, otherwise, send a WAIT

command. If the search algorithm is complete, send a SHUTDOWN command.

6. (slave) If job received, compute the side-chain pack. If WAIT received, pause

briefly and repeat from top. If SHUTDOWN received, exit program.

2.1.4 Data Objects and Relationships

Figure 2-3 contains a UML representation of the relationships between objects that

the program needs to track. Boxes indicate a set of objects, lines represent relations

between members of two sets. The punctuation markings indicate the multiplicty of

the relation, where '?' indicates "at most one" (0 or 1), '!' indicates "exactly one"

(1), '+' indicates "at least one" (1 or more), and the absence of punctuation indicates

any multiplicity (0 or more). Thus, we see that every amino acid is related to at most

one seq-position, and that every seq-position is related to at least one amino acid.

And since every position is related to exactly one seq-postion, we can also infer that

every position must be associated with at least one amino acid (through seq-position)

and that each of those amino acids has exactly one aa-name. Furthermore, since this

is a description of software design, we can also infer that the program contains a bug

if we ever find that a position is associated with no amino acids during runtime.

Some relations have names (ie, posixlate relates the sets seq-position and position),

but most do not. Some names are directional. For example, every pair is related to

exactly two rotamers, one called i,r and the other j,s. The name "i,r" is directional

in that it refers to the rotamer, not the pair, in the relation.
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res I

uneliminated - unflaqed

_single rotamer A j pair

eliminated -- flagged

Esingle global conformation # _Epir_

Figure 2-3: Program object model: state data
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Lines with solid triangles have a special meaning. They indicate a partition rela-

tionship. The figure indicates that uneliminated and eliminated are subsets of single

and completely partition it. This means that all elements of single are either elements

of uneliminated or eliminated, but not both. This also means that single is the same

set-or another name for-rotamer. Notice that the following assertion can be made

from this model: a position is required to be associated with at least one rotamer,

some of which may be eliminated, but at least one of which must be uneliminated. If

there is ever any position that has no uneliminated rotamers during runtime, there is

a bug in the program.

2.1.5 Code Modules and Structure

The module dependency diagram (MDD) details the overall structure of the code

and can be seen in Figure 2-4. Its purpose is to describe the intended relationships

of the modules and submodules of code. These relationships are part of the module

specifications. To change dependencies in this diagram is to change the overall design

and the specifications of the functions in the affected modules.

Arrows denote a dependency of the implementation of one module on the specifi-

cations (not implementations) of another-a spec change to a function in one module

may require implementation changes in all modules that point to it. Note that every

module within the side-chain packing package is dependent on the specifications of

the data module in the backbone package.

To add new side-chain packing algorithms to the program, one creates a new

function and adds it to an existing module (e.g. dee-pairs) or creates a new module,

if appropriate. This new function may use the data module functions (if it uses

functions from any other existing module, it represents a significant program design

change). The scp-ctl module must then be modified to incorporate the new function:

36



M9L ibries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER

MISSING PAGE(S),

The Archival copy of this thesis is missing
pages 37-40. This is the most complete version
available.



2.2. ALGORITHM DETAILS

side-chain packing engine.

1. Random initialization. If C is the specified number of cycles, Generate C ran-

domly initialized sequences and enqueue for scoring. Create a temperature array

of size C and seed with initial temperatures.

2. Wait for result. Wait for a sequence to finish scoring.

3. Decision. If the returned score is higher than the previous score for this cycle,

or if this is the first score computed for this cycle, accept the new sequence.

Otherwise, accept the new sequence with probability P = exp -AE/kT.

4. Random walk. At a random position, a residue is replaced with a new, randomly

chosen amino acid. Unless the number of steps for this cycle have completed,

enqueue the new sequence for scoring. Anneal temperature by a small amount.

5. Repeat from step 2. This loop repeats until the job queue empties.

2.2.2 DEE Pseudocode

DEE is a pruning algorithm for side-chain packing. There are many variants described

in the literature, with widely varying runtimes. This section will not describe every

variant of the DEE algorithm, but will illustrate the most commonly used form we

call "first order singles." It is first described in [13].

Let i and j be positions on the backbone, r and u be rotamers at these positions

respectively, and t be a rotamer on i that attempts to eliminate r. The first order

singles algorithms is as follows.

for all positions i

for all uneliminated rotamers r on i

for all uneliminated rotamers t on i where r != t
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X = E(i,r) - E(it)

for all positions j where j != i

D = +inf

for all uneliminated rotamers u on j

d = E((i,r),(j,u)) - E((i,t),(j,u))

D = min(d, D)

end-for u

X = X + D

end-for j

if X > Ecut, eliminate rotamer r on i

end-for t

end-for r

end-for i

User-specifiable options include: the variant of DEE being executed, whether to

repeat the algorithm to convergence, and the number of splits (for conformational

splitting only).

2.2.3 A* Pseudocode

A* is a branch and bound algorithm that is described in [25]. Partial solutions, that

is, solutions with some fixed rotamers and some undefined, are stored in a heap along

with two quantities: g and h. g is the energy of all fixed elements in the partial

solution. h is an estimate of the energy of the undefined elements. There is one

requirement for h: it must never overestimate the energy of the undefined elements.

That is, the energy of any possible combination of unassigned rotamers must be

greater than or equal to h. The estimated total energy of a partial solution is then

f =g+h.
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A* operates by extracting the partial solution with minimum f from the heap.

It then selects one of the undefined positions and expands it by placing each allowed

rotamer successively in that position. Each of the new partial solutions generated

this way has exactly one more fixed rotamer than before, and the entire set of new

partial solutions with estimated energies is inserted back into the heap. This cycle

then repeats until a complete solution (a solution with no undefined rotamers) is

extracted. The algorithm is illustrated below:

insert a node with no fixed rotamers into heap

while no complete solutions have been found

node = extract min node from heap

i = the first undefined position in node

for all valid rotamers r on i

create newnode where

newnode.fixedrots = union of node.fixedrots and (i,r)

newnode.g = node.g + E(i,r) + sum E((i,r), node.fixedrots)

newnode.h = energy estimate of remaining undefined positions

insert newnode into heap

end-for r

end-while

Since the energy estimator implementation can have a problem-dependent effect

on runtime, we allow the user to specify one of two energy estimator functions: the

Leach & Lemon estimator [25] or the Mayo estimator [16].

The order in which positions are expanded has also been shown to have an effect

on runtime. The user may specify one of two ordering heuristics: Leach & Lemon

ordering [25] or Mayo ordering [16].
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2.3 Implementation Methodology

After the software was designed, implementation proceeded from bottom to top. Each

step of the way, modules were tested to ensure they met their specifications. Debug-

ging of C pointer problems was accomplished with the dmalloc debugging library

(dmalloc .com). Higher level or "holistic" tests of the software are outlined in the

next chapter.

2.4 Current Status

The software continues to be maintained at the Keating Lab in the MIT Biology

department.
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Validation

The remainder of this document aims to validate the software and establish whether

it achieves its intended purpose. This chapter details a number of tests we have

constructed and what we can determine from the results of those tests.

Though empirical testing of software cannot prove its correctness, we can gain a

greater confidence in its functionality and, in particular, its biological utility from the

results.

3.1 Background: Coiled Coils

All of the following tests involve modeling coiled coil proteins. The coiled coil is

the simplest and probably most common protein-protein interaction motif [30, 3].

Because a considerable amount is known about coiled coils [6], they provide an ideal

case for testing computational models against established biochemical properties.

A coiled coil consists of a number of a-helices supercoiled around one another

giving a superhelical bundle. Coiled coils have been shown to exist as dimers, trimers,

tetramers and pentamers. The amino acid sequence can be easily mapped to the
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coiled coil's three dimensional helical fold: every seven residues maps to two turns of

the helix. Because of this pattern, researchers often label each residue based on its

position in the heptad with a letter a through g (see Figure 3-1).

U f

NC

NC

Sb'

Figure 3-1: A typical coiled-coil dimer. Left: lengthwise view. Right: axial view.

Each cylinder corresponds to one a-helix. The superhelical twist is omitted for clarity.
Graphic taken from [39].

It has been well established that the a and d positions greatly influence how coiled

coils interact with each other. In particular, the residues at these positions have been

shown to influence the oligomerization state (the number of a-helices in the bundle),

helix orientation (parallel vs. antiparallel) and homo- vs. heterooligomerization [17,

31, 33].

Coiled coils present a particular need for specificity design. Because most coiled

coils bear a structural resemblance to each other, designing for a desired interaction

may inadvertently make a competing interaction more favorable. For example, when

designing to stabilize a coiled coil dimer, the undesired trimeric form may be stabi-

lized as well. Ultimately, we would like to test our program's ability to address this

problem.
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3.2 Test Case 1: Side-Chain Packing

Our first aim was to validate the side-chain packing engine. All of the code used in

our side-chain packing engine was ported from a previous program we had written to

design proteins for stability. Since the old software has already been tested, we need

to verify that the new software produces the same structures and energies when run

under the same conditions.

If we construct a test case that involves a fixed amino acid sequence (no sequence

selection), protein design is reduced to the side-chain packing problem. Since there

are no amino acids to select, the only task remaining to either program is finding the

side-chain conformations that minimize energy.

3.2.1 Inputs

The specificity design program and the old stability design program were both run

with the same backbone data, the same amino acid sequence, and the same packing

algorithms. The only variable was the program itself.

Backbone data

We chose to repack residues at the interface of a heterodimeric coiled coil complex of

interest to our lab (Fos-Jun, Protein Data Bank code: 1A02), pictured in Figure 3-2.

The following a and d residues were repacked. Fos: 23, 26, 27, 29, 30, 33, 34, 36, 37,

40, 41, 43, 44, 47, 48, 50, 51. Jun: 21, 24, 25, 27, 28, 31, 32, 34, 35, 38, 39, 41, 42,

45, 46, 48, 49.
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Figure 3-2: Fos-Jun heterodimer (1A02). The a-helix backbones (ribbons) form a

supercoiled bundle. Side chains (sticks) are shown for the residues being repacked or
redesigned in Test Cases 1 and 2.

Amino acid sequence

Both programs performed side-chain packing only-the amino acid sequence was fixed

to the wild type sequence. Since there is only one amino acid sequence in the search

space, a search algorithm for sequence selection need not be specified.

Packing algorithms

In each series of tests, we used the same side-chain packing algorithms. Only deter-

ministic algorithms (A* with DEE, SCMF) were tested, so identical results can be

expected from both programs.
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3.2.2 Expected Results

Both programs should produce identical structures and energies when the same pack-

ing algorithm is used.

3.2.3 Actual Results

For each side-chain packing algorithm tested, both programs produced the same struc-

tures and energies. The resulting energies are listed below. Note that the DEE/A*

solution is guaranteed to be the optimal solution.

Search Algorithm

DEE and A*

SCMF, init flat

SCMF, init zero

energy (kcal/mol)

new program old program

-53.2102 -53.2102

+56.2674 +56.2674

-52.4571 -52.4571

This verifies the DEE/A* and SCMF components of the new side-chain packing

engine.

3.3 Test Case 2: Stability Design and Search Al-

gorithm

Our next aim was to validate the ability of the new software to design proteins for

stability. Since the side-chain packing engine was validated by the previous test case,

this is effectively a test of the new software's search algorithm for sequence selection.

Since most interesting problems in specificity design involve an extremely large

search space, our primary sequence selection algorithm is Monte Carlo, a randomized
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algorithm that has no guarantees on the optimality of its solutions. We want to es-

tablish that Monte Carlo can minimally find a set of good (close to optimal) solutions

on a small problem.

Since the old design software is only used to address the stability design problem

a comparitively smaller search problem, it is equipped with slower, but exact, search

algorithms such as the A* algorithm. Though this algorithm does not scale well, it is

guaranteed to provide the optimal solutions for small problems. This output can be

used to measure the effectiveness of our Monte Carlo sequence selection algorithm.

The test case we construct must be small enough for the old design program to

fully explore so it can provide a list of the most optimal sequences in the search space

(using the A* algorithm). Comparing the results to our Monte Carlo selection output

should validate the effectiveness of the search algorithm and, equivalently, the ability

of the new software to design proteins for stability.

3.3.1 Inputs

Backbone data

The same Fos-Jun interface will be used as in the previous test case. The same

residues will be repacked, and in addition, the following residues will be redesigned:

Fos: 40, 41, 43, 44. Jun: 38, 39, 41, 42. These positions comprise the a, d, e and g

positions of one heptad on each side of the Fos-Jun interface.

Amino acid search space

Because the search space must be small enough for A* to search, amino acids with a

large number of side-chain conformations (e.g. LYS, ARG, GLU, GLN) were excluded.

The exception is at Fos positoins 41 and 43, where the wild type sequence includes

GLU and GLN residues. The search alphabet was restricted to the following:
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Design

position allowed amino acids

Fos 40 (LEU) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS MET ASP

Fos 41 (GLN) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS MET ASP

GLU GLN

Fos 43 (GLU) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS MET ASP

GLU GLN

Fos 44 (ILE) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS MET ASP

Jun 38 (LEU) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS

Jun 39 (ALA) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS

Jun 41 (THR) THR VAL LEU ILE PHE TRP ASN ALA SER TYR HIS CYS

Jun 42 (ALA) ALA VAL LEU ILE PHE TRP ASN THR SER TYR HIS CYS

The wild type residues for Fos-Jun are listed in the left column. For sequence

selection, the new program ran Monte Carlo for 8 cycles at 800 steps each with linear

temperature annealing from 250K to 150K. These parameters were chosen through

experimentation: final scores seemed to converge around 400 steps of Monte Carlo.

Other details are not covered here.

Side-chain packing

This search space (10"4 packed structures) is small enough for the old program to

completely search with the DEE and A* algorithms. The new program also used

DEE and A* for side-chain packing.

3.3.2 Expected Results

Monte Carlo has a high probabilty of finding an optimal or close to optimal solution

for small problems. If the program cannot effectively solve a problem this simple, it
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will be hard to apply to more complicated problems. Successful stability design is a

necessary (but not sufficient) function before the software can be used for specificity

design.

3.3.3 Actual Results

The twelve most optimal solutions (as determined by the old program's A* algorithm)

are listed below:

Energy (kcal/mol)

-47.62725

-47.59601

-47.46449

-47.45449

-47.43629

-47.39257

-47.31653

-47.27693

-47.27542

-47.26645

-47.24457

-47.21290

Fos 40, 41, 43, 44

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

ALA

ALA

ALA

ALA

MET

MET

MET

ALA

MET

LEU

ALA

AT A

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

IE 1

Jun 38, 39, 41, 42

LEU TRP

LEU PHE

LEU LEU

LEU HIS

LEU PHE

LEU HIS

LEU LEU

LEU TYR

LEU TRP

LEU TRP

LEU TRP

LEU PHE

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

ILE

TT

LEU

LEU

LEU

LEU

VAL

VAL

VAL

LEU

VAL

LEU

LEU

L ETT
11L.U

The top six solutions found by the Monte Carlo search algorithm are listed below:
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3.3. TEST CASE 2: STABILITY DESIGN AND SEARCH ALGORITHM

Energy (kcal/mol)

-47.62725

-47.24457

-47.21290

-47.08372

-46.69713

-46.66999

Fos 40, 41, 43, 44

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

ALA

ALA

ALA

TRP

TRP

TRP

ILE

ILE

ILE

ILE

ILE

ILE

Jun 38, 39, 41, 42

LEU

LEU

LEU

LEU

LEU

LEU

TRP

TRP

PHE

TRP

TRP

PHE

LEU

ILE

ILE

LEU

ILE

LEU

LEU

LEU

LEU

TRP

TRP

TRP

3.3.4 Analysis

The Monte Carlo algorithm achieved its primary objective: it successfully found the

global minimum (the same sequence and energy as solved by the A* algorithm).

C

as
C

*Ir - E ko

Possible folded states

Figure 3-3: Energy contour of the amino acid search space

The search was not as successful in finding the ensemble of sequences that were

close-to-optimal. The search algorithm did not find the second best or third best

solution, or any solution up to the tenth best. Indeed, in the top twelve solutions,

Monte Carlo only found solutions 1, 11 and 12. This is not of great concern, however,
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as it was not designed for finding close-to-optimal solutions. Monte Carlo spends

most of its search time in local minima and mostly moves from one minimum to the

next in the hopes that it eventually finds the global minimum (see Figure 3-3). The

algorithm spends less time in regions of the search space where the energy contour is

more "sloped," and more time in the energy wells. If the global minimum resides in a

"steep" enough well, the algorithm may easily skip over a number of close-to-optimal

solutions. For the purposes of our test case, the software has succeeded in finding the

optimal sequence in solving a protein stability design problem.

3.4 Test Case 3: Specificity Design

The motivation of this thesis was to be able to design proteins with specificity for

one fold over others. The final aim was to test whether the software meets this

objective. Since no other available software addresses the same problem, we cannot

simply compare our results to those of another program. Instead, we construct a test

scenario that is biologically well understood and compare our results to the results of

previous experiments.

This kind of test requires both the proper functioning of the program as well as

accurate modeling of the energy functions and various parameters that are provided

as input to the program. Thus, it serves as a holistic test of our entire computational

protein design platform.

3.4.1 Test Problems

We applied the program to the following two problems: 1) design a coiled coil that

forms a dimer and not a trimer, 2) design a coiled coil that forms a trimer and not

a dimer. In addition, we would like to test whether our specificity design approach
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3.4. TEST CASE 3: SPECIFICITY DESIGN

offers better results than a stability design approach, so we also ran the following two

control tests: 3) design a stable coiled coil dimer, 4) design a stable coiled coil trimer.

3.4.2 Expected Results

We will compare our computational results to known rules about coiled coil dimers

and trimers. In particular, Harbury [17] has shown that the placement of beta-

branched residues (e.g. ILE, VAL) at d positions in coiled coils highly disfavors the

formation of dimers. Also, the placement of a destabilizing ASN at the centermost

a position disfavors the formation of trimers. We hope to recapture these patterns

in the program output. In particular, the following results would be consistent with

what is known experimentally:

1. Design for dimer, against trimer: ASN at the center a position (the only position

it is considered at), and no ILE or VAL at d positions.

2. Design for trimer, against dimer: no ASN at the center a position, and ILE or

VAL at d positions.

3. Design for dimer stability: no ASN at the center a position, and no ILE or VAL

at d positions.

4. Design for trimer stability: no ASN at the center a position.

3.4.3 Inputs

Backbone data

The X-ray structures of the GCN4 dimer (PDB code: 2ZTA) and that of its trimeric

variant (PDB code: 1GCM) were used as dimer and trimer backbones (see Figure

3-4). Five a and four d positions were redesigned on each helix of the homodimer
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and homotrimer: 2, 5, 9, 12, 16, 19, 23, 26, 30. In addition, eight e and g positions

were repacked to allow for flexibility near the design sites: 6, 8, 13, 15, 20, 22, 27,

29. Without such flexibility, the original crystal structure conformation (encoded in

the PDB input files) may strongly bias the design outcome towards the wild type

sequence.

I

I
I
I

I

Figure 3-4: GCN4-pl homodimer (2ZTA, left) and GCN4-pII homotrimer (1GCM,
right). Side chains are shown for the a and d positions being redesigned.

Objective function and energy function

In the first two tests, amino acids were selected to maximize the energy difference

between the dimer and trimer states. In the two control tests, amino acids were

selected to maximize the energy difference between the desired (dimer or trimer)

state and the unfolded state. The energy function included the following terms: van

der Waals, torsion, electrostatics and solvation. The unfolded state was modeled as
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a hypothetical coiled coil with no interactions between side chains or between side

chains and non-local backbone atoms.

Amino acid search space

To mimic Harbury's experiments, the search alphabet was restricted to the following:

A Monte Carlo search was run for 5 cycles at 400 steps each with linear temper-

ature annealing of 250K down to 150K. Again, these parameters were chosen after

some experimentation, the details of which are not discussed here.

3.4.4 Actual Results

Ed, Et, and E, refer to the energies of the dimer, trimer, and unfolded states re-

spectively (as reported by the side-chain packing engine). Energy differences are in

kcal/mol.

Design position allowed amino acids

2 LEU VAL ILE MET

5 LEU VAL ILE

9 LEU VAL ILE

12 LEU VAL ILE

16 LEU VAL ILE ASN

19 LEU VAL ILE

23 LEU VAL ILE

26 LEU VAL ILE

30 LEU VAL ILE
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The following are the top ten results when designing for a dimer and against a

trimer (higher scores are better):

-'E + 'Et

-13.12702

-13.23110

-13.38548

-13.55549

-14.12365

-14.22759

-14.32961

-14.37963

-14.43371

-14.43433

a

LEU

MET

VAL

d

LEU

LEU

LEU

a

VAL

VAL

d

LEU

LEU

a d a

ASN LEU VAL

ASN LEU VAL

VAL LEU ASN LEU VAL LEU

ILE LEU VAL LEU ASN LEU VAL LEU

LEU LEU ILE LEU ASN LEU VAL LEU

MET LEU

LEU LEU

VAL LEU

MET LEU

LEU LEU

ILE LEU ASN

VAL LEU

ILE LEU

VAL LEU

VAL LEU

ASN

ASN

ASN

ASN

LEU

LEU

LEU

LEU

LEU

VAL

LEU

VAL

LEU

LEU

LEU

VAL

LEU

VAL

LEU

d a

LEU VAL

LEU VAL GCN4-pl

VAL

VAL

VAL

VAL

VAL

VAL

VAL

VAL

For trimer, against dimer:

-- Et + !Ed

118.89571

118.72865

118.52003

118.35151

117.46184

117.29916

117.08927

116.91988

116.78832

116.62127

a d a d a d a d

ILE ILE LEU ILE

VAL ILE LEU ILE

ILE ILE

ILE ILE

LEU ILE LEU ILE ILE

MET ILE LEU ILE ILE

ILE ILE ILE ILE ILE

VAL

LEU

MET

ILE

VAL

ILE

ILE

ILE

ILE

ILE

ILE ILE

ILE ILE

ILE ILE

LEU ILE

LEU ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

LEU

LEU

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

a

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE GCN4-pII

ILE

ILE
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The following are the top ten results of the control test, designing for dimer

stability. }Et - !Ed was also computed for comparison to the previous tests and is

listed in the leftmost column.

-'Ed + Et

-16.59162

-16.51736

-15.61222

-18.07370

-15.52070

-15.58839

-18.51434

-18.93166

-17.84983

-16.69654

-- !Ed + -1Eu2 2

32.42005

32.12317

31.85642

31.59020

31.57688

31.53760

31.43499

31.42932

31.29698

31.22043

a

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

MET

d

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

a

ILE

ILE

VAL

ILE

VAL

ILE

ILE

ILE

ILE

ILE

d

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

a

LEU

ILE

LEU

LEU

ILE

VAL

LEU

LEU

ILE

LEU

d

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

a

VAL

VAL

VAL

LEU

VAL

VAL

VAL

VAL

LEU

VAL

d a

LEU VAL

LEU VAL

LEU VAL

LEU VAL

LEU VAL

LEU VAL

LEU LEU

LEU ILE

LEU VAL

LEU VAL

Control test for trimer stability:

-'Et + -!Ed

109.80618

105.72143

116.41265

112.32781

109.38733

105.30258

56.79563

95.93941

92.24740

63.40212

-!Et + !Eu

55.36762

55.34926

55.19022

55.17186

54.95601

54.93766

54.78326

54.76091

54.74228

54.60587

a

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

d

ILE

ILE

ILE

ILE

ILE

ILE

ILE

LEU

LEU

ILE

a

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

d

ILE

ILE

ILE

ILE

ILE

ILE

LEU

ILE

ILE

LEU

a

ILE

LEU

ILE

LEU

ILE

LEU

ILE

ILE

LEU

ILE

d

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

a

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

d a

LEU ILE

LEU ILE

ILE ILE

ILE ILE

LEU LEU

LEU LEU

LEU ILE

LEU ILE

LEU ILE

ILE ILE
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3.4.5 Analysis

The results capture many of the known rules about coiled coil dimers and trimers. In

particular:

" ILE and VAL in d positions favor trimers experimentally. This effect is captured

in our specificity results: ILE or VAL appear at d in all trimer solutions when

we select for specificity and in very few of the dimer solutions (dimer solutions

7 and 9 contain VAL in the last d position).

" ASN at the center a position favors dimers experimentally. This effect is cap-

tured in our specificity results: ASN appears in all dimer solutions when we

select for specificity and in none of the trimer solutions.

Moreover, the results of the control tests suggest that the specificity design ap-

proach was necessary to recover these properties. Specifically:

" LEU occurs at d positions frequently (8 of the top 10 solutions) when designing

trimers for stability alone.

" ASN is not selected at the center a position when designing dimers for stability

alone.

It can be noted that, for the purpose of designing for dimers and against trimers

(and vice versa), the specificity approach produced better scores by 3.5 and 9 kcal/mol,

respectively.

In addition to producing solutions that agree with experimentally established

rules, the program actually found the original GCN4-pl and GCN4-pII sequences

within its top ten solutions. Since it is already known that GCN4-pl forms dimers

in the laboratory (and similarly, GCN4-pII forms trimers) [17], we know that, in
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this case, the program has produced output that contains experimentally validated

solutions.

These results demonstrate the ability of the software to reproduce experimentally

derived patterns about coiled coil oligomerization, as well as the necessity of using

the specificty design approach to do so.

3.5 Conclusion

Computational protein design has been the focus of much recent research for several

reasons: it is theoretically interesting, it is biologically applicable and it is medically

relevant. Recent advances in protein design algorithms and the capabilities provided

by advances in hardware have made the design problem more tractable.

Researchers have been particularly successful at optimizing proteins for fold sta-

bility. However, approaches to designing proteins for binding specificity have not been

as well explored. The need for software that can address this problem has become

increasingly apparent.

The product of this thesis research is a software package that fills the need for a

specificity design tool. It adapts the randomized Monte Carlo algorithm for sequence

selection and employs a number of well established algorithms for side-chain packing.

Testing of this software has shown the ability to capture known patterns about

coiled coil oligomerization and has demonstrated the utility of the specificity design

approach. Because it allows us to address problems that are poorly handled in a

stability design approach, we believe this software offers new possibilities for protein

design research.
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Appendix A

File examples

The following sections are examples of the files described in Chapter 2.

A.1 Example input files

A.1.1 control file

# test control file for specificity design

###### program options ######

begin-options

# stdout-prefix must have absolute path name in a slave

# node-reachable place (ie, /beowulf/...)

stdout-prefix /beowulf/scratch/dpark/out.node

num-solutions 25
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main-out-file out-main

aa-input aajinput

end-options

###### backbone definitions ######

#begin-backbone example-things

# rotsubset rot-subset

# sc-dee-prune

# sc-pack bnb-astar leachpos leachh*

# sc-pack rand-scmf init-flat

# sc-pack randmc 10 1E5 4000 250 # cycles, steps, T_h, T_1

#end-backbone

begin-backbone dimer

rot-input2 dimer/rot-input2

rot-input3 dimer/rot-input3

rotstates dimer/rot-states.self

energies dimer/energies.bin

# rot-subset dimer/rot-subset

pos-xlate dimer/pos-xlate

output out-dimer

# sc-dee-prune

sc-pack bnb-astar leach-pos leach-h*

end-backbone
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begin-backbone trimer

rotjinput2 trimer/rot-input2

rotjinput3 trimer/rot-input3

rotstates trimer/rot-states.self

energies trimer/energies.bin

# rotsubset trimer/rotsubset

posxlate trimer/pos-xlate

output out-trimer

sc-dee-prune

sc-pack bnbastar leach-pos leachh*

end-backbone

###### objective function definition ######

begin-objective-function # some "arbitrary" math function here

# xO = prod xl x2 x3 .....

# xO = wsum 0.25 xl 0.25 x2 0.25 x3 0.25 x4 -1 x5

# xO = exp xl

# xl = exp dl

# x2 = exp d2

# x3 = wsum 1 xl 1 x2

# f = div x3 Q

f = wsum 2 trimer -3 dimer
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end-objective-function

###### specificity control schedule ######

begin-spec-sequence

specmc 10 1000 2000 250

#spec-enum

end-spec-sequence

###### dee control schedule ######

begin-dee-sequence

dee-singles-zeroth

dee-singles-mb

dee-singles-mb

repeat

once

once

## heavy singles,

begin-loop LOOP-1

light pairs

1e15 # LOOP-1 begin

dee-singles-first repeat

dee-singles-split-sl repeat tryall

begin-alternate LOOP-1

dee-singles-split-s2 once

dee-singles-splits2 once

fixedbylooger

fixedbymayo
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deesingles-split-s2 repeat fixedbylooger

end-alternate

dee-pairsmb repeat

end-loop # LOOP-1 end

## heavier singles, heavy pairs

begin-loop LOOP-2 1e16 # LOOP-2 begin

begin-alternate LOOP-2

dee-pairs-first once

dee-pairs-mb repeat

end-alternate

dee-singlesfirst repeat

dee-singles-split_sl repeat tryall

begin-alternate LOOP-2

dee-singles-split-s2 once

deesingles-split-s2 once

deesingles-split-s2 repeat

end-alternate

fixedbylooger

fixedbymayo

fixedbylooger

end-loop # LOOP-2 end
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end-dee-sequence

A.1.2 aa-input file

The aa-input file parallels the rot-input file. Each design site is represented as a line

containing a list of allowable amino acids in the search space.

ALA

ALA

ALA

ALA

ALA

ALA

ALA

ALA

ALA

VAL

VAL

VAL

VAL

VAL

VAL

VAL

VAL

VAL

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

ILE

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

LEU

A.1.3 pos-xlate file

Since backbones may have an unequal number of repacking positions, this file (one

for each backbone) describes the relationship between design sites and repacking po-

sitions. Each line of the file represents a repacking position for a particular backbone.

The number indicates which design site maps to that position. In this example, each

design site maps to two repacking sites on the backbone. This allows one to design

a homodimer by mapping the same amino acid onto corresponding positions of the

backbone.

1

2
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3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

A.2 Example output

A.2.1 out-main file

This is an example of the main output file described in Chapter 2.

261.00655 LEU ALA VAL ALA VAL ALA ILE LEU VAL

258.37538 LEU ALA VAL LEU VAL LEU ILE ALA ILE

257.39442 ILE ALA VAL LEU VAL ALA VAL ALA ILE

256.92510 LEU ALA ILE ALA ILE LEU ILE ALA VAL

253.00857 ILE ALA ILE LEU VAL ALA VAL ALA ILE
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252.92679 ILE ALA ILE LEU ILE ALA VAL ALA ILE

252.78859 ILE ALA ILE ALA ILE ALA VAL ALA ILE

249.49349 ILE LEU ILE LEU ILE LEU ILE LEU ILE

249.34565 ILE LEU ILE ALA ILE LEU VAL ALA ILE

249.22933 LEU LEU VAL LEU VAL LEU ILE ALA ILE

248.55404 LEU ALA VAL ALA LEU ALA VAL LEU VAL

244.25409 LEU ALA LEU ALA ILE LEU ILE ALA VAL

244.25409 LEU ALA LEU ALA ILE LEU ILE ALA VAL

244.25409 LEU ALA LEU ALA ILE LEU ILE ALA VAL

244.11819 LEU ALA VAL ALA LEU ALA ILE LEU VAL

243.85756 LEU ALA ILE ALA LEU ALA ILE ALA VAL

241.98496 ILE ALA VAL LEU LEU ALA VAL ALA ILE

241.98496 ILE ALA VAL LEU LEU ALA VAL ALA ILE

241.94467 ALA ALA ILE ALA ILE LEU ILE ALA VAL

241.94467 ALA ALA ILE ALA ILE LEU ILE ALA VAL

240.85163 VAL ALA ILE ALA ILE LEU ILE ALA VAL

240.13572 LEU ALA ILE ALA LEU ALA ILE ALA ILE

239.06802 ILE LEU VAL LEU ILE ALA VAL ALA LEU

239.06802 ILE LEU VAL LEU ILE ALA VAL ALA LEU

238.30167 ALA ALA ILE ALA ILE LEU VAL ALA ILE
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