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Submitted to the Department of Electrical Engineering and Computer Science
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis is concerned with improving the performance of speaker recognition sys-
tems in three areas: speaker modeling, verification score computation, and feature
extraction in telephone quality speech.

We first seek to improve upon traditional modeling approaches for speaker recog-
nition, which are based on Gaussian Mixture Models (GMMs) trained globally over all
speech from a given speaker. We describe methods for performing speaker identifica-
tion which utilize domain dependent automatic speech recognition (ASR) to provide
a phonetic segmentation of the test utterance. When evaluated on YOHO, a stan-
dard speaker recognition corpus, several of these approaches were able outperform all
previously published results for the closed-set speaker identification task. On a more
difficult conversational speech task, we were able to use a combination of classifiers to
reduce identification error rates on single test utterances. Over multiple utterances,
the ASR dependent approaches performed significantly better than the ASR inde-
pendent methods. Using an approach we call speaker adaptive modeling for speaker
identification, we were able to reduce speaker identification error rates by 39% over
a baseline GMM approach when observing five test utterances per speaker.

In the area of score computation for speaker verification, we describe a novel
method of combining multiple verification metrics, which is based on confidence scor-
ing techniques for speech recognition. This approach was compared against a baseline
which used logarithmic likelihood ratios between target and background scores.

Finally, we describe a set of experiments using TIMIT and NTIMIT which com-
pare the speaker distinguishing capabilities of three different front end feature sets:
mel-frequency cepstral coefficients (MFCC), formant locations, and fundamental fre-
quency (Fo). Under matched training and testing conditions, the MFCC feature sets
had perfect identification accuracy on TIMIT, but significantly worse performance
on NTIMIT. By training and testing under mismatched conditions, we were able to
determine the reliability of extraction for individual features on telephone quality
speech. Of the alternative features used, we found that F0 had the highest speaker
distinguishability, and was also the most reliably extracted feature under mismatched
conditions.

Thesis Supervisor: Timothy J. Hazen
Title: Research Scientist
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Chapter 1

Introduction

The focus of this work is to investigate and improve upon currently used techniques for
modeling, scoring, and front-end signal processing in the field of automatic speaker
recognition. Speaker recognition is the task of determining a person's identity by
his/her voice. This task is also known as voice recognition, a term often confused with
speech recognition. Despite this confusion, these two terms refer to complementary
problems; while the goal of speech recognition is to determine what words are spoken
irrespective of the speaker, the goal of voice recognition is to determine the speaker's
identity irrespective of the words spoken.

In mainstream media and science fiction, automatic speaker recognition has beei
depicted as being as simple as reducing a person's spoken utterance into a character-
istic "voiceprint" which can later be used for identification. Despite this simplistic
portrayal, determining the unique underlying properties of an individual's voice has
proven difficult, and a high-performance speaker recognition system has yet to be
built.

1.1 Background

Speaker recognition is specified as one of two related tasks: identification and ver-
ification. Speaker identification is the task of identifying a speaker from a set of
previously enrolled speakers given an input speech utterance. Potential applications
for speaker identification include meeting transcription and indexing, and voice mail
summarization. A high level block diagram of a typical speaker identification system
is illustrated in Figure 1-1.

A closely related task to speaker identification is speaker verification, which takes
a purported identity as well as a speech utterance as inputs. Based on these inputs,
the system can either accept the speaker as matching the reference identity, or reject
the speaker as an imposter. Speaker verification is one of many biometric devices
that are being explored for use in security applications. A high level block diagram
of a typical speaker verification system is shown in Figure 1-2.

An additional task distinction is the notion of text dependence. Text dependent
systems assume prior knowledge of the linguistic content of the input utterance. This
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Figure 1-1: Block diagram of typical speaker identification system. The input ut-
terance is scored against enrolled speaker models, and the highest scoring speaker is
chosen.
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Figure 1-2: Block diagram of typical speaker verification system. A verification score
is computed from the input utterance and claimed identity. The verification decision
is then made by comparing the score against a predetermined verification threshold.
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knowledge is usually obtained by constraining the utterance to a fixed phrase (e.g.
digit string). Text independent systems, on the other hand, assume no knowledge of
what the speaker is saying, and typically exhibit poorer performance when compared
to their text dependent counterparts. In spite of this, text independent systems
are considered more useful, as they are more flexible and less dependent on user
cooperation.

1.2 Previous Work

There are two main sources of variation among speakers: idiolectal, or high-level,
characteristics, and physiological, or low-level, characteristics. Physiological vari-
ations arise due to factors such as differences in vocal tract length and shape, and
intrinsic differences in glottal movement during speech production. Although humans
use these acoustic level cues to some extent when performing speaker recognition, they
primarily rely on higher-level cues such as intonation, speaking rate, accent, dialect,
and word usage [6]. Doddington [7] and Andrews [1] have recently demonstrated
that idiolectal and stylistic differences between speakers can be useful for performing
speaker recognition in conversational speech. However, since the usefulness of speech
as a biometrically reliable measure is predicated on the difficulty of voluntarily chang-
ing factors of speech production, research has generally focused on approaches that
are based on low-level acoustic features.

Recent research in the field of speaker recognition can be roughly classified into
three areas:

* Feature selection. What is an optimal front-end feature set which provides the
greatest separability between speakers? In particular, what feature set remains
undistorted and easy to extract in a noisy channel or in otherwise adverse
conditions?

o Modeling. How should feature vectors from a particular speaker be used to
accurately train a general model for that speaker? This is a difficult issue for
text-independent tasks.

o Scoring and Classification. In performing speaker verification, what is an ap-
propriate way of using scores generated by speaker models to reliably determine
whether a speaker "closely" matches his/her purported identity?

With a few notable exceptions [17, 201, research in the field of feature extraction
and front end processing has been relatively limited. Instead, most current systems
use mel-scale cepstral features (MFCCs), and much of the recent research in speaker
recognition has focused on modeling and scoring issues.

The use of Gaussian Mixture Models (GMMs) for text-independent speaker mod-
eling was first proposed by Reynolds [24], and has since become one of the most
widely used and studied techniques for text-independent speaker recognition. This
approach models each speaker using a weighted sum of Gaussian density functions
which are trained globally on cepstral feature vectors extracted from all speech for

15



that speaker. Recent variations of this method have included the use of phonetically
structured GMMs [10], and the so-called "multi-grained" GMM approach investigated
by Chaudhari et al. [4]. These techniques are described more fully in Chapter 3.

An alternative approach to global speaker modeling is the use of class-based
speaker models. The benefit of using multiple models for each speaker is that the
acoustic variability of different phonetic events can be modeled separately. However,
this framework also requires a reliable method of assigning features from the test
utterance into classes. In [25], for example, Sarma used a segment based speech rec-
ognizer to model speakers using broad phonetic manner classes. Similar work was also
done by Petrovska-Delacretaz in [21]. In this work, the use of unsupervised speaker
class models was also studied, but results indicated that class-based models overall
had worse performance compared to global models due to insufficient training data
per class.

For speaker verification, a major obstacle is the determination of a suitable met-
ric for gauging the closeness of claimant speakers to the target speaker. The pre-
vailing approach for most systems is to score the input utterance against both the
target speaker model and a universal background model which is a combination of all
speaker models. The logarithmic likelihood ratio of these two scores is then used as a
verification score which is compared against a pre-determined threshold. An alterna-
tive approach to this problem has been presented by Thyes et al. [28], who used the
concept of "eigenvoices" for verification. In that work, principal components analy-
sis was used on feature vectors from a large set of training speakers to determine a
subspace of feature dimensions, or "eigenspace", which captured the most variability
between the speakers in the training data. Claimant utterances were projected into
the eigenspace and were verified or rejected based on their distance from the target
speaker vector, or "eigenvoice". The eigenvoices approach has been shown to perform
well in cases where there is a large amount of data to train the eigenspace, and has
the benefit that performance is good even for sparse enrollment data.

1.3 Goals and Motivation

Although the goal of text independent speaker recognition has led to an increased fo-
cus on global speaker modeling, it is well known that some phones have better speaker
distinguishing capabilities than others [9]. Global speaker modeling techniques like
the GMM approach are not able to take optimal advantage of the acoustic differences
of diverse phonetic events. Conversely, phone level speaker modeling techniques ex-
hibit poor performance due to insufficient training data at the phone level [21]. This
work strives to address both of these modeling issues by using automatic speech
recognition together with techniques borrowed from speaker adaptation.

A secondary goal of this thesis is to apply a new method of score combination to
the task of speaker verification. While many systems attempt to find a single optimal
verification metric, a fusion of metrics can potentially give better performance. We
explore possible benefits of this approach using confidence scoring techniques.

A final goal of this thesis is to investigate the use of alternative features to MFCCs
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for noise robustness issues. To this end, we explore the relative speaker distinguishing
capabilities of formant locations and fundamental frequency measures in mismatched
noise conditions.

1.4 Overview

The rest of the thesis is organized in the following manner. Chapter 2 describes the
system, signal processing tools, and corpora used for this work. A detailed descrip-
tion of baseline and ASR dependent approaches for speaker modeling is provided in
Chapter 3, and performance and analyses of these systems on closed set speaker iden-
tification tasks are presented in Chapter 4. Chapter 5 describes a novel framework
for performing speaker verification using confidence scoring methods. Chapter 6 dis-
cusses the speaker distinguishing capabilities of alternative features, such as formants
and fundamental frequency. Finally, Chapter 7 closes with concluding remarks and
provides some directions for future work.
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Chapter 2

Corpora and System Components

This chapter describes the corpora used for evaluation, and the system components
used for building, testing, and experimenting with various aspects of the speaker
recognition system.

2.1 Speaker Recognition Corpora

Over the course of this work, four corpora were used. The YOHO and MERCURY
data sets were used to evaluate the performance of modeling approaches for speaker
identification. An augmented version of MERCURY was also the primary corpus used
for testing verification scoring methods. Finally, for evaluating the identification
performance of different features, TIMIT and NTIMIT were used. The following
sections give a description of the corpora, and the information is also summarized in
Table 2-2.

2.1.1 YOHO

YOHO is a speaker recognition corpus distributed by the Linguistic Data Consor-
tium [3]. As a standard evaluation corpus, many speaker recognition papers publish
performance results on YOHO, making it useful for comparing the performance of
different systems. The corpus consists of speech recorded from 106 male speakers
and 32 females and attempts to simulate a verification scenario taking place in an
office environment. Each utterance is a fixed-length combination-lock type phrase

(e.g. "twenty-four, thirty-five, eighty-two"). During enrollment, each speaker was
prompted with the same set of 96 digit phrases divided into four sessions of 24 ut-
terances each. For verification, each speaker had ten sessions of four utterances each.
Unlike enrollment, the verification utterances were not constrained to be the same
across all speakers. The speech was recorded at a sampling rate of 8 kHz using
a high-quality telephone handset, but was not actually passed through a telephone
channel.
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2.1.2 MERCURY

The MERCURY corpus is a speaker-labelled subset of data collected from the MER-
CURY air travel information system [26]. MERCURY differs from YOHO in a number
of ways. The type of speech is spontaneous, rather than read, and the 2300 word vo-
cabulary includes city names, dates, and function words in addition to digits. Because
MERCURY is a telephone-based system, the data in the corpus also has additional ad-
verse conditions such as variable handsets and telephone channels, variable length
utterances and out of vocabulary words. An example of a MERCURY user interaction
is shown in Table 2-1.

For the closed set identification task, a set of 38 speakers was used. The training
and test sets consisted of approximately 50 and 100 utterances per speaker, respec-
tively. In addition, a development set was created from remaining data left over after
training and test sets had been formed. The development set contained between 15
and 200 utterances per speaker.

For the verification task, an additional set of utterances taken from 80 imposter
speakers was also created. The test set and development set were then augmented
with these utterances by placing data from half of the new speakers in the test set,
and the rest in the development set.

2.1.3 TIMIT & NTIMIT

TIMIT is a continuous speech corpus developed as a joint effort between the Mas-
sachusetts Institute of Technology, Stanford Research Institute, and Texas Instru-
ments. The speech data in TIMIT was recorded using a high quality microphone in
a quiet recording booth. Although the full corpus consists of sentences read by 630
different speakers, the evaluations performed in this thesis used only a 168 speaker
subset of the corpus. Each speaker read a set of ten sentences: two standard (SA) sen-
tences, five phonemically rich (SI) sentences, and three unique (SX) sentences. The
SA sentences were the same across all speakers, and the SX sentences were unique
to each speaker. The SI sentences were drawn from a pool of constructed phrases,
and were therefore neither the same across all speakers nor unique to any particular
speaker. For the speaker identification task, training was done on each speaker's eight
non-SA utterances, and evaluation was performed using the two SA utterances.

NTIMIT is a speech corpus derived from TIMIT, and was developed in order to
examine telephone channel effects on speech recognition performance for high quality
data. NTIMIT data was obtained by playing TIMIT recordings out of a speaker into
a telephone handset. The data was then passed through a land-line telephone channel
and recorded. The training and test set partitioning was identical to that for TIMIT.
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Mercury: Welcome to MERCURY, the MIT air travel planning system. I can help
plan your air travel itinerary. Please tell me your user name. If you do not have a
user name, please say new user.

User: New user.
MERCURY: Welcome. You have successfully logged onto MERCURY as a new user.

How may I help you?

User: I would like to fly from Boston to London

MERCURY: Flights from Boston to London. What date will you be travelling?

User: Next Friday in the evening
MERCURY: Okay. flights from Boston to London departing between 5:00 pm and

midnight on June 25.. Can you provide a departure or arrival time? The earliest
nonstop flight from Boston to London departing between 5:00 pm and midnight
on June 25 leaves at 5:30 p.m. and arrives at 4:55 a.m. on British Airways. You
arrive one day later.

User: Is there a United flight?
MERCURY: Okay. United flights from Boston to London departing between 5:00
pm and midnight on June 25. One moment please... I have a nonstop United flight

leaving at 6:40 p.m. and arriving at 6:25 a.m.?

User: Book that flight
MERCURY: United flight 998 has been added to your itinerary. You depart Boston
at 6:40 pm and arrive in London Heathrow at 6:25 am. You arrive one day later.
Shall I price your itinerary?

User: Yes.
MERCURY: The price for your itinerary is $2065.40. Is there anything else I can
do for you?

User: No thank you. Good bye.
MERCURY: Thanks for using MERCURY. Have a nice day!

Table 2-1: Example of a conversation with MERCURY.
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Property YOHO MERCURY TIMIT/NTIMIT
Number of 138 38 168
speakers

Male,Female 106M,32F 18M, 20F 112M, 56F
Type of Read Spontaneous Read
speech

Lexical Digit strings Conversational Short
content queries sentences

Environment Quiet office Variable Recording booth
Microphone Telephone Variable Noise cancelling/

handset handset Telephone handset
Channel 8 kHz 8 kHz 16 kHz/8 kHz

Variable telephone
channel

Training Data 96 utterances < 50 utterances 8 sentences

Table 2-2: Summary of corpus properties

2.2 The SUMMIT Speech Recognition System

In this section, we give a brief overview of the components of the SUMMIT speech recog-

nition system. The speaker recognition system built for this thesis used the existing
infrastructure of SUMMIT. In addition, the ASR dependent modeling approaches

described in the following chapter used word and phone hypotheses generated by
SUMMIT. For a more detailed description of the system, see [13].

2.2.1 Segment-based Recognition

Unlike many modern frame-based speech recognition systems, SUMMIT uses variable-

length segments as the underlying temporal units for an input waveforms. Frame-

based recognizers compute feature vectors (e.g., MFCC's) at regularly spaced time
intervals (frames), and then use those frame-level feature vectors to model acoustic

events. Although SUMMIT initially computes features at regular time intervals, it then

hypothesizes acoustic landmarks at instants where large acoustic differences in the
frame-level feature vectors indicate that a boundary or transition may occur. These

landmarks then specify a network of possible segmentations for the utterance, each
one associated with a different feature vector sequence.

2.2.2 Mathematical Framework

In performing continuous speech recognition, the ultimate goal of any system is to
determine the most likely word sequence, i* = {w1, w2 ,. .. , WM}, which may have
been produced by a sequence of input feature vectors, A = { 1 , 2,... , aN}. This can
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be expressed as
* = arg max P (jA), (2.1)

With a segment-based recognizer, there are multiple segmentation hypotheses, s, each
one associated with a different sequence of acoustic feature vectors, A,. Additionally,
most words or word sequences, W', have multiple realizations as sequences of subword
units, U'. To reduce computation, SUMMIT implicitly assumes that there exists an op-
timal segmentation, s*, and subword unit sequence, i* , for any given word sequence.
Equation 2.1 therefore becomes

{W*, i*, s*} = argrmaxP(, U, s, JA) (2.2)

Applying Bayes' rule, Equation 2.2 becomes

{*, i*, s*} = arg rnaxP(Ajz, i, s)P(slI, W)P(UIW)P(W) (2.3)

In Equation 2.3, the estimation of the right-hand components is partitioned as follows

" P(A , 'd, s) - Acoustic model. This component represents the likelihood of
observing a set of acoustic features given a particular class. In practice, SUM-
MIT assumes that the acoustic features of each landmark are dependent only
on the subword unit at that landmark. Thus, this likelihood is calculated as
P(A|J, i, s) = ] 1 P(d Ili), where l4 is the ith landmark. If li occurs within a
segment, then P(dilli) = P(dijui), and if li occurs at a boundary between two
segments, then P(dilli) = P('Iluiuii).

" P(s|'i, U') - Duration model. This component represents the likelihood of observ-
ing a particular segmentation given a particular word and subword sequence.
In the implementation of SUMMIT used in this work, duration models are not
incorporated, so this value is constant.

" P(U'jw) - Lexical/Pronunciation model. This component represents the like-
lihood of a particular subword sequence for a given word sequence. SUMMIT
uses a base set of pronunciations for each word in the vocabulary [31]. Phono-
logical rules are then applied to these baseforms in order to generate alternate
pronunciations that account for common phenomena observed in continuous
speech [16].

" P() - Language model. This component represents the a priori probability
of observing a particular word sequence. SUMMIT uses a smoothed n-gram
language model which associates a probability with every n-word sequence.
These probabilities are trained on a large corpus of domain-dependent sentences.

2.2.3 Finite State Transducers

In order to find the optimal word sequence for Equation 2.3, SUMMIT models the
search space using a weighted finite-state transducer (FST), R, which is specified as
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the composition of four smaller FSTs

R = (S o A) o (C o P o L o G) (2.4)

where:

" (S o A) represents a segment graph which maps acoustic features to phonetic
boundary labels with some associated probability score;

" C represents a mapping from context-dependent boundary labels to context-
independent phone labels;

* P is a transducer which applies phonological rules to map alternate phone re-
alizations to phoneme sequences;

" L represents the phonemic lexicon which maps phoneme sequences to words in
the recognizer vocabulary; and

* G represents the language model which maps words to word sequences with an
associated probability.

The composition of these four FSTs, therefore, takes acoustic feature vectors as input,
and maps them to word sequences with some output probability. The best path
search through R is performed using a forward Viterbi beam search [23], followed by
a backward A* beam search [30]. The final result of the search is an N-best list of
the most probable word sequences corresponding to the input waveform.

2.3 Signal Processing Tools

For the non-cepstral features examined in Chapter 6, such as fundamental frequency
(Fo) and formant locations, values were computed offline using tools from the En-
tropic Signal Processing System (ESPS). ESPS is a suite of speech signal processing
tools available for UNIX. Measurements for FO and voicing decisions were obtained
using the get-f0 command, and formant locations were obtained using the f ormant
command. More detail about the actual algorithms used in each of these tools is
given in Chapter 6.
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Chapter 3

Modeling Approaches for
Identification

In this chapter, we describe various modeling approaches used for speaker recogni-
tion. In particular, several modeling techniques are illustrated for the task of closed-
set speaker identification. We distinguish here between traditional text independent
approaches which we classify as ASR independent, and ASR dependent approaches
which make use of automatic speech recognition during speaker identification. The
first section discusses the general theory of Gaussian mixture models (GMM), upon
which each the modeling techniques are based. We then describe two ASR indepen-
dent approaches followed by two ASR dependent approaches. The final section details
a two stage implementation strategy which allows combination of multiple classifiers.

3.1 Gaussian Mixture Models

3.1.1 Background

The most widespread paradigm for statistical acoustic modeling in both speech recog-
nition and speaker recognition involves the use of class-conditional Gaussian mixture
models. With this approach, the probability density function for a feature vector, Z,
is a weighted sum, or mixture, of K class-conditional Gaussian distributions. For a
given class, c, the probability of observing Z is given by

K

p('1c) = W tc,k/(Z; Pc,k, Ec,k) (.1)
k=1

For speech recognition, the class c is usually taken to be a lexical, phonetic, or sub-
phonetic unit. For speaker recognition, each class is usually taken to represent a
different speaker. In Equation 3.1, We,k, Ac,k, Ec,k are the mixture weight, mean,
and covariance matrix, respectively, for the i-th component, which has a Gaussian

25



distribution given by

; e - (3.2)
V (27)nJE|

Although E can, in principle, represent a full covariance matrix, in practice, most
implementations use diagonal covariance matrices to reduce computation.

In order to determine the parameters for the class conditional densities, a semi-
supervised training approach is used. Assignment of training vectors to classes is done
with prior knowledge of the correct classes, but the training of the class models them-
selves is performed in an unsupervised fashion. Given a set of training vectors which
are known to be in the class, an initial set of means is estimated using the K-means
clustering [23]. The mixture weights, means, and covariances are then iteratively
trained using the well-known expectation-maximization (EM) algorithm [5].

3.1.2 Training

Our baseline system was based closely upon Reynolds' GMM approach [24]. The
class conditional probability densities for the observed feature vectors was the same
as in Equation 3.1, with each class, C, representing a different speaker, Si.

K

P ziSi) = sjW(5; lsjk, -si,k), K <64 (3.3)
k=1

For training, enrollment data was separated into speech and non-speech using a
time aligned forced transcription produced by SUMMIT. The feature vectors from
the speech segments, 5, were derived from 14-dimension mean normalized MFCC
vectors. For each input waveform, 98-dimension vectors were created at 10 millisecond
intervals by concatenating averages of MFCCs from six different segments surrounding
the current frame. These additional segment level measurements, which are illustrated
in Figure 3-1, were used to capture dynamic information surrounding the current
frame. Principal components analysis was then used to reduce the dimensionality of
these feature vectors to 50 dimensions [13].

Current frame start

Current frame window

Input waveform

II I I I I I tr s
Surrounding segment windows

4 i i i i i i > t (m s)
-35 -15 -5 0 5 15 35

Figure 3-1: Segment windows for computing frame level feature vectors.
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3.1.3 Identification

During recognition, we make use of a speaker FST, which constrains the possible
state transitions for each input waveform, and also maps a sequence of input frame-
level feature vectors to output speaker labels. An example speaker FST is illustrated
in Figure 3-2. In Figure 3-2, the input labels "Si" and "-" refer to speaker and
silence models, respectively. The input-output mapping in the speaker FST enforces
the constraint that each utterance will only produce input feature vectors that are
classified as either speech or non-speech (-), and that all speech samples from a single
utterance will be produced by the same speaker. By using this FST together with
speaker acoustic models in place of R in Equation 2.4, we are able to use SUMMIT to
perform speaker identification by generating a speaker N-best list.

Si: E

2

Si: Speaker
S2: -:

-: E- :EF

S2: Speaker2 -:F

S3:s -:

S3 :Speaker :

4

Figure 3-2: Finite-state transducer mapping input frame feature vectors to output
speaker labels

3.2 Alternative Modeling Approaches

3.2.1 Phonetically Structured GMMs

A recent variant of the traditional GMM approach is the so-called "phonetically-
structured" GMM method which has been proposed by Faltlhauser, et al. [10]. During
training, forced transcription of the enrollment data is used to separate frame-level
features into broad phonetic manner classes. These classes are shown in Table 3-
1. For each speaker, eight separate GMMs are then trained, one for each phonetic
class. After training, these smaller GMMs are then combined into a single larger
model using a globally determined weighting. We can contrast this approach with
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the baseline by observing the structure of the speaker models

8 K

p(iFjS) = La [ wsi,k,cj/(; #SkC, Es 2 ,kC,) (3.4)
j=1 k=1

In Equation 3.4, Cj is the phone class, and aj and Kj are the weight and number
of mixtures for Cj, respectively. The motivation for constructing the global speaker
GMM in this fashion is that, this method is less sensitive to phonetic biases present
in the enrollment data of individual speakers. During identification, all speech frames
from the test utterance are scored against the combined model, as illustrated in
Figure 3-3.

Class Example Phone Label
diphthong [cLY]
vowel [m]
closure [g01
nasal [n]
burst [kh]
strong fricative [s]
weak fricative [f]
liquid [1]

Table 3-1: Phone classes used for phonetically structured GMMs and phonetic classing
approaches.

3.2.2 Phonetic Classing

The following two approaches, which we term ASR-dependent, require a speech recog-
nition engine, such as SUMMIT, to generate a hypothesized phonetic segmentation of
the test utterance. The generation of this hypothesis is described in Section 3.3.

The use of separate phonetic manner classes for speaker modeling was studied
previously by Sarma [25]. This technique is similar to the use of phonetically struc-
tured GMMs in that training is identical. Phonetic class GMMs are trained for each
speaker, but instead of being combined into a single speaker model, the individual
classes are retained. Each speaker is then represented by a set of class models, instead
of a global model as in Equation 3.4.

p(iiSk, c1 ) = Zni ws2,k,clAf(Z; As,k,c1 , ES1 ,k,cj) if ' E C1;

p(ZS) = (3.5)

1p( |Si, c8 ) = Z( 1 WS2,k,c8 Af(z; /
7Sj,k,c8 , Esik,c8 ) if Z E C8 .
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Phone Class GMMs

c,: wfric .... c.: vowel

Phonetically
Structured

GMM

"f "1ihi f Iitc I" Speech Frames

Figure 3-3: Phonetically Structured GMM scoring framework

During identification, each test vector is assigned to a phonetic class using the
phonetic segmentation hypothesis provided by the speech recognizer. The appropri-
ate phone class model is then used to score the vector. This scoring procedure is
illustrated in Figure 3-4.

Since test vectors are scored directly against the class-level GMMs, this approach
is similar to the "multigrained" method proposed by Chaudhari et al. [4]. However,
by using the phone class assignment provided by the speech recognizer, this approach
eliminates the need to score against every model in the speaker's library, as is required
by the multigrained method.
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Phone Class GMMs

c: wfric

-44

f11  "ih" I "f" "tcI"

Speech Frames
aligned to phonetic hypothesis

Figure 3-4: Phonetic Class scoring framework
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3.2.3 Speaker Adaptive Scoring

The previous two approaches attempt to improve upon the baseline GMM approach
by using broad phonetic class models which are more refined than the global GMMs.
At a further level of granularity, models can be built for specific phonetic events.
Unfortunately, the enrollment data sets for each speaker in typical speaker ID tasks
are usually not large enough to build robust speaker dependent phonetic-level models.
To compensate for this problem, we can draw upon techniques used in the field of
speaker adaptation. This allows us to build models that learn the characteristics of
a phone for a given speaker when sufficient training data is available, and rely more
on general speaker independent models in instances of sparse training data.

In this approach, speaker dependent segment-based speech recognizers are trained
for each speaker. That is, rather than training class level speaker models, a separate
phone level speaker model is trained for each phonetic model in the speaker indepen-
dent speech recognizer. During identification, the hypothesized phonetic segmenta-
tion produced by the speaker independent speech recognizer is used to generate the
best path speaker dependent score, which is then interpolated with the recognizer's
speaker independent score. This method approximates the MAP strategy for speaker
adaptation [12]. Mathematically, if the word recognition hypothesis assigns each test
vector Z to a phone j, then the likelihood score for z given speaker Si is given by

p(ZSjS) = Ayp(Z|Mj,) + (1 - Aij)p(SzAMj) (3.6)

where Mij, Mj are the speaker dependent and speaker independent models for phone
j, and A j is an interpolation factor given by

n',j if n,3 > 1;-
'= 0 if ni, = 0, 1.

In Equation 3.7, nij is the number of training tokens of phone j for speaker i, and
r is an empirically determined tuning parameter that is the same across all speakers
and phones. For instances when ni, is equal to 0 or 1, the corresponding speaker
dependent Gaussian, Mi,, cannot be trained, and the score is computed using only
the speaker independent Gaussian.

3.3 Two Stage Scoring

In order to make use of speech recognition output during speaker identification, we
utilize a two-stage method to calculate speaker scores. This framework is illustrated
in Figure 3-5. In the first stage, the test utterance is passed in parallel through a
speech recognition module and a GMM speaker ID module, which is implemented
using the baseline approach. The speech recognition module produces a time-aligned
phonetic hypothesis, while the GMM speaker ID module produces an N-best list
of hypothesized speakers. These results are then passed to the next stage, where
a second classifier rescores each speaker in the N-best list using one of the refined
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techniques described above.
This two-stage scoring method is useful in a number of ways. First, by using

the GMM speaker ID module for fast-match, we reduce post-recognition latency by
limiting the search space of speakers presented to the second stage. Identification
performance is not significantly affected since the probability of N-best exclusion of
the target speaker by the GMM module can be made arbitrarily low by increasing N.
Furthermore, there is little increase in pre-identification latency for the ASR depen-
dent approaches since the GMM scoring proceeds in parallel with word recognition.
Another advantage of this framework is that scores from multiple classifiers can be
used and combined in the second stage.

Test uttera

1st stage

2nd stage[

nce

ASR GMM SID

"f" "ih" "f" "tcl" "t" 1. speaker1
2. speaker2

Refined
Speaker

Models Classifiers

Rescored 1. speaker1
2. speaker2

N-best list :

Figure 3-5: Two stage scoring framework allowing simultaneous speech recognition
and speaker identification
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Chapter 4

Identification Experiments for
Modeling

In this chapter, closed set speaker identification results are described for YOHO and
MERCURY. We omit evaluation on TIMIT in this chapter because we were able to
attain 100% identification accuracy on TIMIT using the baseline GMM approach.
Instead, we reserve investigation of TIMIT and NTIMIT for Chapter 6, where we
discuss benefits of different front-end features under adverse channel conditions.

4.1 Experimental Conditions

4.1.1 Speech Recognition

For both corpora we used domain dependent implementations of the MIT SUMMIT
speech recognizer [13]. On the YOHO data set, the vocabulary and language model
were limited to allow only the set of possible numerical combination lock phrases.
Figure 4-1 illustrates the domain dependent finite-state acceptor (FSA) used to model
the constrained vocabulary allowed in YOHO.

On the MERCURY data set, a recent version of SUMMIT currently deployed for
the MERCURY domain was used [26]. This recognizer was considerably more com-
plex than the one used for YOHO, and included a 2300 word vocabulary suited for
conversational queries regarding airline travel.

4.1.2 Modeling Parameters

For each of the modeling approaches that we used, performance was dependent on
the choice of parameters specified in the Chapter 3. The relevant parameters for each
approach were

* Baseline - Number of mixture components, K, from Equation 3.3.

" Phonetically Structured - Number of mixture components per class, Kj, and
phone class weights, aj, from Equation 3.4.
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Figure 4-1: Finite state network illustrating constrained grammar for YOHO
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" Phonetic Classing - Number of mixture components per class, Kj, from Equa-
tion 3.5.

" Speaker Adaptive - Interpolation parameter, T, from Equation 3.7.

In addition to the model parameters for individual classifiers, weights for combining
classifier scores must also be specified.

Determination of Mixture Numbers and Phone Class Weights

We first examined the effect of varying the total number of mixture components used
in the global speaker modeling approaches. Initially, our choice of K = 64 for the
baseline system was motivated by Reynolds' use of 64-mixture GMMs in [24]. We
also used K = 64 x 8 = 512 in order to perform a fair comparison of this method
against the Phonetically Structured approach with K, = 64. These results are shown
in Table 4-1.

Error Rate (%)
Method YOHO MERCURY

Baseline GMM (K=64) 0.83 22.43
Baseline GMM (K=512) 0.80 22.43

Table 4-1: Comparison of identification error rates for baseline approach with different
numbers of mixtures on YOHO and MERCURY data sets

For the Phonetically Structured approach, we also performed similar experiments
using Kj = 8, and K, = 64. These values corresponded to total mixture counts of
Ktot = 64 and Kit, = 512, respectively. In addition to varying the number of mixture
components, we also used two methods for determining mixture weights

" Unweighted: a, = 1/(# of classes)

" Weighted: a3 = Nj/Ntot
where Nj and Nt,, are the number of training tokens for phone class Cj and the
total number of training tokens across all speakers, respectively.

From the results in Table 4-1 and Table 4-2, we noted that weighting the phone
class GMMs by their prior distributions in the training data resulted in worse per-
formance than the unweighted GMMs. This was likely due to the fact that weight-
ing with priors introduces bias against mixture components from underrepresented
phone classes, which negated the main benefits of using the phonetically structured
approach. The results also demonstrated that the phonetically structured models
outperformed the baseline models when the total number of mixtures was large. The
disadvantage of simply increasing K, is that the size of the global speaker model is
increased, therefore requiring more computation to score each test utterance during
identification.
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Error Rate (%)
Method Kj YOHO MERCURY

Weighted 8 0.83 24.17
Unweighted 8 0.74 23.95
Weighted 64 0.33 22.43

Unweighted 64 0.31 21.32

Table 4-2: Comparison of identification error rates for Phonetically Structured ap-
proach when varying mixture counts and class weights

For the phonetic classing approach, incorporation of automatic speech recognition
reduces the need to "budget" the total number of mixtures among the individual
phone class models. During identification, every frame of the test utterance is scored
only against the phone class that it is assigned to. Therefore, computational complex-
ity is a function of the number of mixtures per class rather than the total number of
mixtures across all the class models for a particular speaker. For the phone classing
approach, we set K = 64.

Determination of Interpolation Parameters for Speaker Adaptive Scoring

For the speaker adaptive approach, we used linear interpolation to combine the
speaker dependent and speaker independent scores at the phone level as described in
Equations 3.6 and 3.7. In this approach, the interpolation factor for speaker i and
phone j was specified by a global parameter, r, and the number of training tokens
from speaker i for phone j, nij. In order to empirically determine an optimal value
for T, we performed identification experiments on the MERCURY development set.
We observed that identification accuracy generally improved as T was decreased from
100 down to 5. For values between 1 and 5, identification accuracy was not signifi-
cantly affected. We used these results to set -r 5 for speaker adaptive scoring on
MERCURY and YOHO.

In performing experiments to tune for r, an interesting result that we noted was
that setting r = 0 yielded high identification error rates on the development set. As
described in Section 3.2.3, this T value corresponded to using only speaker depen-
dent scores for phones with more than one training token, and speaker independent
scores otherwise. This result confirmed our earlier suspicion that completely speaker
dependent phone-level models would perform poorly due to an insufficient number of
training examples for each phone.

Determination of Classifier Combination Weights

A primary benefit of the two-stage scoring framework described in Section 3.3 is the
ability to combine scores from multiple classifiers, which can can often mitigate errors
made by a single classifier. After an initial speaker N-best list is produced by the
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Output from
1 st stageL

2nd stage

Combination

|"f" "ih" "f" 2.seker2

Classifier A Classifier B Refined Models

1. speaker, : XA,1 1. speaker 1 : XB, 1
2. speaker 2: XA,2 2. speaker 3 : XB, 3 Rescored
3. speaker3 : XA,3 3. speaker 2 : XB, 2 N-best lists

+

1.speaker,: aXA,1 a)XB,1
3. speaker 3 : aXA, 3 + (l-a)XB,3
2. speaker 2 : aXA,2+ (- a)XB,2 Combined N-best list

Figure 4-2: Combination of scores from multiple classifiers

GMM classifier in the first stage, a different classifier can be used in the second stage
to produce a rescored N-best list using more refined speaker models. If the initial
N-best list is passed to multiple classifiers, each one produces its own rescored N-best
list. These rescored lists can then be combined and resorted to produce a final N-best
list. This process is illustrated in Figure 4-2.

Although it is possible to use any number of classifiers, we only investigated pair-
wise groupings using linear combination

Total score for Si = aXA,Si + (1 - a)xB,S (4.1)

In Equation 4.1, XA,SI and XB,SI are scores for speaker Si from classifiers A and B,
respectively. The combination weights were optimized by varying a between 0 and 1

on the MERCURY development set.

4.2 Comparison of Methods on Single Utterances

In order to investigate the advantages of each of the modeling approaches, we first
computed results for the closed set identification task on individual utterances. These
results are shown in Table 4-3. When comparing the performance of the different
classifiers, we observed that error rates on the YOHO corpus were uniformly low. In

particular, we noted that our best results on the YOHO corpus were better than the
0.36% identification error rate obtained by a system developed at Rutgers [3], which
is the best reported result that we are aware of for this task. However, with the
exception of systems involving the GMM baseline, each of the classifiers produced
between 14 and 22 total errors out of 5520 test utterances, making the differences
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between these approaches statistically insignificant.
On the MERCURY data set, the comparative performance of each system was more

evident. Both the phonetically structured GMM system and the phonetic classing
system had slight improvements over the baseline, while the speaker adaptive sys-
tem has a higher error rate than any of the other approaches. Across all systems,
we observed that error rates were significantly higher on the MERCURY task than
on YOHO, clearly illustrating the increased difficulties associated with spontaneous
speech, noise, and variable channel conditions. These factors also led to a higher word
error rate for speech recognition on the MERCURY data, which partially explains why
the recognition aided systems did not yield improvements over the baseline GMM
method as observed with YOHO. However, we saw that by combining the outputs of
multiple classifiers, lower overall error rates were achieved on both corpora.

Parameters Error Rate (%)
Method K K. r o YOHO MERCURY

Baseline GMM 64 0.83 22.4
Phonetically Structured GMM (PS) 64 0.31 21.3

Phone Classing (PC) 64 0.40 21.6
Speaker Adaptive (SA) 5 0.31 27.8

Multiple Classifiers (GMM+SA) 64 5 0.45 0.53 19.0
Multiple Classifiers (PS+SA) 64 5 0.33 0.25 18.3
Multiple Classifiers (PC+SA) 64 5 0.30 0.25 18.5

Table 4-3: Comparison of identification
MERCURY data sets

error rates for each approach on YOHO and
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4.3 Comparison of Methods on Multiple Utter-
ances

Because of the non-uniformity of test utterance lengths on the MERCURY corpus, we
performed additional experiments using multiple utterances for speaker identification
on MERCURY. Multiple utterance trials were performed by combining the N-best
list scores from single utterance trials for a particular speaker. For each M-wise
grouping of N-best lists, each list was first normalized by the score of its lowest
scoring speaker. The scores for each speaker were then added together over all M
lists to create a cumulative N-best list which was then resorted. This method, which
is illustrated in Figure 4-3, is equivalent to using cumulative speaker identification
scores over several utterances.

Identification error rates over 1, 3, and 5 utterances are shown in Table 4-4. For
all methods, scoring over multiple utterances resulted in significant reductions in
error rates. We observed that the speaker adaptive approach attained the lowest
error rates among the individual classifiers as the number of test utterances was
increased (Figure 4-4). Moreover, as the number of utterances was increased past
3, the performance of the combined classifiers exhibited no significant gains over the
speaker adaptive approach. When compared to the next best individual classifier,
the speaker adaptive approach yielded relative error rate reductions of 28%, 39%,
and 53% on 3, 5, and 10 utterances respectively.

Single Utterance
N-best lists

Multiple Utterance
N-best lists

1. speaker, : x, 1. speaker, : x, 1.speaker, :x, 1. speaker, : x1
2. speaker 2 : x 2 2. speaker 2 : X2  2. speaker 2 : x 2 2. speaker 3 : x 3
3. speaker3 : x3  3. speaker 3 : x3  3. speaker 3 : x 3  3. speaker 2 : x2

Utt 1 Utt 2 Utt 1+M I Utt 2+M
~~~~- -----------------------------------

1. speaker,: x, 1. speaker, : E x,2. speaker3 : x3  2. speakers : Z x33. speaker 2 : EX2  3. speaker2 : E x2

Utts: 1...(1+M) Utts: 2...(2+M)

Figure 4-3: Cumulative scoring over M utterances from a particular speaker
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Error Rate (%)
Method 1 Utt 3 Utt 5 Utt

Baseline (GMM) 22.4 14.3 13.1
PS 21.3 15.6 14.3
PC 21.6 14.9 13.8
SA 27.8 10.3 7.4

GMM+SA 19.0 9.7 7.5
PS+SA 18.3 11.2 8.0

Table 4-4: Identification error rates over 1, 3, and 5 utterances on MERCURY corpus

30 ----

e GMM
E3 PC

SA
2s-- GMM+SA

~2 0 ----- - --

C

L 1 5 - . . .. . .- .- . .. .-. . . . . . . .. . . ...-. ..-. .-. .-. .- - -. .-.-.-

0
0 2 4 6 8 10 12

Number of Utterances

Figure 4-4: Comparison of identification error rates over multiple utterances on MER-
CURY corpus
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Chapter 5

Confidence Scoring Techniques for

Speaker Verification

In this chapter, we describe the task of speaker verification and review some currently
used techniques. We then outline a novel method for performing speaker verification
using confidence scoring techniques and present the results of experiments conducted
using this technique.

5.1 Background

For the remainder of this chapter, we will use the notation X, to indicate that utter-
ance X was produced by speaker Sj. In speaker verification, the inputs to the system
are an utterance, Xj, and a claimed speaker identity, Si. If Si is in the set of enrolled
speakers, 8, the goal of the system is to determine whether or not Sj = Si. Phrased
as a detection task, the goal is to confirm whether or not X) was produced by Si.

Both of these formulations of the verification task differ from the closed-set iden-
tification task in two important ways. First, a system performing verification has the
advantage of being provided with an appropriate target speaker model to compare
against. Second, the verification system has the added difficulty of computing a score
for a potentially unenrolled speaker, if Sj is not in S.

5.1.1 Rank-based verification

Rank-based verification is a natural first approach to performing verification if a
speaker identification system is already available. Given an input utterance, X, the
system simply performs speaker identification to produce an N-best list of most likely
candidates. The speaker is then accepted as Si if Si appears on the N-best list,
and rejected otherwise. The verification threshold can be modified by increasing
or decreasing N. This approach was used by Sarma for evaluation of verification
performance. However, performance of purely rank-based verification systems are
generally not scalable to large speaker sets [6].

41



5.1.2 Codebook based verification

Codebook based methods for verification essentially segment the feature space into re-
gions for each speaker. One of the first operational speaker verification systems, which
was used for building access control at Texas Instruments in the 1980s, used this type
of approach with dynamic time warping to build speaker reference templates. Veri-
fication decisions were based upon cumulative Euclidean distance measures between
input frame features and speaker reference frame features.

Another example of this verification paradigm is the eigenvoices approach de-
scribed in Chapter 1. More recently, researchers have investigated the use of support
vector machines (SVM) for verification [11, 14, 18]. This technique essentially trans-
forms the input feature space into a higher dimensional kernel space where speaker
regions are divided by separating hyperplanes [21. Verification scores are then com-
puted as the distance from the nearest hyperplane for the target speaker.

5.1.3 Statistical verification

The predominant approach to speaker verification is based on statistical detection
theory. Given an input utterance, X, and a claimed speaker identity, Si, the verifi-
cation decision can be made by comparing two probabilities:

" P(Si X) - the likelihood that the speaker is Si given X.

" P(SYiX) - the likelihood that the speaker is not Si given X.

The decision rule based on these likelihoods then becomes

Decision = Accept if P(SiIX) > P(SilX); (5.1)
Reject otherwise

Using Bayes' rule, the comparison in Equation 5.1 can be rewritten as

P(X|SI)P(S ) ? P(X|Si)P(SZ)
P(X) P(X)

P(Xlsi) ? P(Si)(53
P(X|Si) P(Si)

In practice, the left-hand side of Equation 5.3 is computed as a logarithmic likeli-
hood ratio, and the ratio of prior probabilities on the right-hand side is set at some
threshold, 0. Equation 5.3 then becomes

log P (XISi) - log P(X i) > 0 (5.4)

The logarithmic likelihood ratio in Equation 5.4 measures how much better the tar-
get model scores on the claimant utterance in comparison to an imposter model.
Using the same types of modeling approaches described in previous chapters, there
are a number of well-defined methods for estimating P(XISi). However, estimation of
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P(X Si) is not as well-defined. Since S must essentially model the class of all speakers
that are not Si, the approaches for dealing with this problem are necessarily depen-
dent on the application scenario and the level of security desired. In situations with
many enrolled users and only moderate security requirements, such as telephone voice
mail, the class of potential imposters for a particular speaker is likely to draw from
the general population of speakers, with widely varying voice characteristics. This
type of "casual" imposter scenario requires a model for Si which captures the voice
characteristics of the general speaker population, and is more concerned with compu-
tational efficiency and speaker model sizes. In contrast, for high-security applications
with limited numbers of enrolled speakers, imposters are likely to be individuals with
voice characteristics that are similar to those of the claimed identity. Such "dedi-
cated" imposter scenarios require more specific models for S and are more concerned
with security than convenience or computational complexity. The following sections
describe different approaches for modeling Si.

Universal Background Models

The use of universal background models (UBM) relies on the assumption that all of the
speakers in 8 represent an accurate sample of the general population of speakers. The
universal background model is constructed by training a speaker independent speaker
model on existing training data. The advantage of the universal background model
approach for estimating P(XlSi) is that the model is not speaker specific. That is,
the model for 3, is the same for all speakers, making score computation very efficient.
Since there is no need to store a separate background model for each speaker, it is also
space efficient. The disadvantage is that the system will be particularily vulnerable
to falsely accepting dedicated imposters, whose voice characteristics may be similar
to Si. This is because the logarithmic likelihood ratio in Equation 5.4 will be high,
since the UBM model does not discriminatively model speakers that are close to Si.

Cohort Background Models

A cohort of a speaker, Si, is defined as a speaker whose voice characteristics are
similar to Si. In [24], the distance measure used to determine similarity between two
speakers, Si and Si, is a divergence related metric,

d(Si, Sj) = log P(XIS + log P(XIS) (5.5)
P (Xi|ISi ) P (Xg|i S

In Equation 5.5, Xi and Xj are training utterances for speakers Si and Sj, respectively.

The use of cohort-set models has been proposed as a way of ameliorating the
difficulties experienced with the UBM in dealing with non-casual imposters. In this
approach, P(XS2 ) is estimated using the models for the speakers in the cohort set
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for Si, C(Sj). Mathematically, this is expressed as

P(y) = O-li1 exp T E1g P (Xt ISk) (5.6)

There are a number of disadvantages to using C(Si) as the basis for Si in Equa-
tion 5.6. First, in order to determine the cohort sets for each speaker, additional
development data is required. Second, a separate background model set is required
for each speaker, which implies more computation. Finally, cohort-based background
models are vulnerable to accepting imposters with very dissimilar voice characteris-
tics to Si. This is because utterances from dissimilar speakers score poorly on models
for both Si and C(S), which can lead to a high overall logarithmic likelihood ratio.

Speaker Specific Background Models

A solution to the vulnerability problems faced by the previous two background mod-
eling approaches is to use B speakers to create a "balanced" background speaker set,
'B(Sj), for each speaker, Si. This technique was illustrated by Reynolds [24], who used
the distance metric in Equation 5.5 to select B/2 dissimilar (far) speakers and B/2
similar (near) speakers to model S for each Si. Using the distance metric described
in Equation 5.5, the far background speakers, 9f(Si), were chosen using the following
algorithm.

1. Set T(Sj) equal to the N farthest speakers from Si, where N > B.

2. Initialize by moving the farthest speaker from T(Si) into 3f(Si).

3. Move Sf from IT(Si) into 'Bf(Si), where Sf is given by

Sf = arg max I E d(Sb, Sf)d(Si, Sf)
SfEJ(SSi) I SbEf (Si)

4. Repeat Step 3 until IBf(Si)= B/2.

Similarily, the near background speakers, 3 c(Si), were chosen using the following
following algorithm.

1. Set C(Si) equal to the N nearest speakers from Si, where N > B.

2. Initialize by moving the nearest speaker from C(Si) into 'Be(Sj).

3. Move S, from C(Si) into 'Be(Si), where S, is given by

Sbcd(S, Sc'S, = arg max1E d(SbSc)
se tsi ) |Be( Si~l S| EAd(Si, Sc)
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4. Repeat Step 3 until J'Bc(Si)I = B/2.

The rationale for choosing background speakers in this manner is to choose far
speakers and near speakers which are maximally spread, in order to provide maximum
coverage of their respective sets, and prevent selection of "duplicate" background
speakers. The advantage of this type of background modeling is that both casual and
dedicated imposters are sufficiently modeled by the far and near speakers in B(Si),
respectively.

5.2 Evaluation Metrics

The standard method for evaluating the performance of a detection or verification
system is the receiver operating characteristic (ROC) curve of the system. As dis-
cussed in Section 5.1, verification systems usually return a verification score, which is
then compared to some pre-defined threshold in order to decide whether to accept or
reject. At different thresholds, or operating points, the system will exhibit different
relative levels in the types of classification errors that are made. With lower thresh-
olds, the system is more likely to correctly accept or detect true speakers, but is also
more likely to falsely accept imposters. Conversely, with higher thresholds, the sys-
tem is more likely to correctly reject imposters, but is also more likely to incorrectly
reject true speakers. The ROC curve of a system plots the tradeoff between the rate
of detection and the rate of false acceptance as the verification threshold is varied.
The rate of detection, is given by

P(detection) = P(Sj accepted as Si|Sj = Si)

Similarily, the rate of false acceptance, or false alarm, is given by

P(false alarm) = P(Sj accepted as SiJSj f Si)

An example ROC curve is shown in Figure 5-1.
An alternative method of presenting the operating characteristic of a system is

the detection error tradeoff (DET) curve, which is the standard method used by the
National Institute of Standards and Technology for presenting performance results
of speaker detection systems [19]. The DET curve plots detection error (miss) prob-
ability against false alarm probability using logarithmic axes. This type of plot is
preferred over the ROC curve in situations where systems have similar performances,
or when high accuracies make it difficult to observe operating points on the curve.
In [19], Martin et al. enumerate three reasons for this preference. First, the log-
arithmic transform of the ROC curve better distinguishes asymptotic performance
characteristics of different systems as error rates go to zero. Second, for the DET
curve, error rates are plotted on both axes, in contrast to the ROC curve, which plots
error rate on one axis, and detection rate on the other. Finally, plotting the DET
curve is advantageous because the slope of the curve indicates whether or not the
underlying distribution of scores for the two classes fit a normal distribution.
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Figure 5-1: Sample ROC curve for a speaker verification system. As the operating
point moves to the right and the threshold is increased, the rate of detection ap-
proaches 1, as does the rate of false acceptance. As the operating point moves to the
left, the false acceptance rate and the detection rate both go to 0.
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As an example, speaker verification results for the four different modeling ap-
proaches from Chapter 3 are shown for the YOHO data in Figure 5-2 and Figure 5-3.
For these results, a simple rank-based verification metric was used. While both fig-
ures show the same data, the DET plot in Figure 5-3 better distinguishes performance
along the asymptotic regions of the curves, where the error probabilities go to zero.
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Figure 5-2: Closeup of upper left hand corner of ROC curves on YOHO for verification
systems based on the four modeling methods from the previous chapter.
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5.3 Confidence Scoring Approach

The approaches described in the previous section use various individual metrics to
produce a verification score. This section describes a method for combining multiple
metrics, which has the potential to reduce verification error. The approach we use is
similar to a technique used for confidence scoring [15].

First, speaker specific background model sets, B(Sj), are determined for each
speaker, Si, as described in Section 5.1.3. For a given utterance and target speaker,
Si, log probability scores are computed for Si as well as for each of the speakers in
'B(Si). From this sorted background speaker list (B-list), a verification feature vector
is extracted for speaker Si. These verification features, which are described in the
next section, are then combined using a trained linear discriminant vector to produce
a final verification score.

5.3.1 B-list Features for Verification

From the B-list for a particular speaker, Si, it is possible to extract several features
that can be used for verification. As mentioned earlier, some verification systems
use metrics such as rank, speaker score, background model score, and cohort model
score. In general, there are a variety of methods for choosing a relevant feature set.
For example, in [153, a greedy algorithm was used to find the most important set of
confidence features to extract from a word and utterance level N-best lists. Since the
space of features considered for our approach was relatively small, we used each of
the features described below:

1. Utterance Length: This is the number of speech observations or input feature
vectors, {xt} from the utterance, X.

2. Target Rank: This is the position of the target speaker, Si in the B-list.

3. Total Target Score: This is the total log probability score of the target
speaker for the utterance

T

TlogP(X|Sli) = E logP(xt|Si)
t=1

4. Average Target Score: This is the log probability score for the target speaker,
normalized by the number of observations

T

log P(XISi) = T log P(xt|Si)
t=1
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5. Total Background Score: This is the total log probability score of the back-
ground speaker model for the utterance

-T
T log P(XSj ) = T log exp ( lo P(xt|Sb) }

I SbE'B(Si) ( t=1)

6. Average Background Score (Arithmetic): This is the average background
speaker log probability score taken as an arithmetic average over the background
speakers.

T

log P(X~y|) = log B exp T log P(Xt|Sb)
SbE'(Si) t=1 ) }

7. Average Background Score (Geometric): This is the average background
speaker log probability score taken as an geometric average over the background
speakers.

log~ ~ PT;S) log P(xt|Sb)
Sb'3(Si) t=1

8. Total "Top M" Score: This is the total log probability score of the speaker
model specified by the top M speakers on the B-list for the utterance X,.

9. Average "Top M" Score (Arithmetic): This is the average log probability
score of the top M speakers computed as an arithmetic average over the top M
speakers for the utterance X,.

10. Average "Top M" Score (Geometric): This is the average cohort speaker
log probability score taken as a geometric average over the top M speakers.

11. Difference from Best: This is the difference of the log probability scores for
the top-scoring speaker on the B-list and Si.

max log P(XJ|Sb) - log P(Xj|Si)
SbC'S(Si),

5.3.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a commonly used technique for performing
dimensionality reduction for data classification. Though LDA can be used for prob-
lems with an arbitrary number of classes, L, we use only the two class subproblem,
with L = 2. Given two sets of K-dimensional data vectors, A = { 1 , . .. , dK 11 and
B = {bi,..., bK2}, the goal of LDA is to find the optimal projection vector, , which
transforms the vectors from A and B into a lower dimensional subspace while maxi-
mizing the separability between the two classes.
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To perform speaker verification based on a set of verification features, rather than
any single metric, two class LDA is used to combine the verification features. In this
case, the two classes are the true speakers and the imposters, and the data vectors
are the 11 verification features described in the previous section. Since standard veri-
fication decision tasks require a numerical verification score, each verification feature
vector, f must be projected down to a one dimensional verification score. The pro-
jection vector, , is therefore a (1 x 11) dimensional weighting vector, where the ith
dimension of fp corresponds to the weight of the ith verification feature.

N

Verification Score = P Tf= Zp ifi (5.7)

To train , a data set containing correctly labelled examples of verification feature
vectors from both classes is required. Training of ' is performed in two stages. First,
j is initialized using Fisher LDA [8]. Next, an iterative hill-climbing algorithm is
used to modify the components of ' to optimize a particular objective function [22].
Because the number of imposter trials is, in general, much greater than the number
of true speaker trials, the algorithm was set to minimize the rate of false acceptances.
In principle, however, this minimization can be performed on other criteria, such as
false rejection rate, equal error rate, or overall classification error.

Once jhas been trained, testing is performed as follows. Given an input utterance
and a. target speaker identity, Si, a B-list of speakers is generated using the scores of
the speakers in B(Si) U Si. The verification feature vector is then extracted from the
B-list, and the verification score is computed using the trained projection vector.

5.4 Experimental Conditions

5.4.1 Corpus Creation

To evaluate the technique described in the previous section, we used an extended
version of the MERCURY corpus. Although the training portion of the MERCURY
corpus contained enrollment data for 38 speakers, an essential component of speaker
verification evaluation is observing how well the system is able to reject imposter trials
presented by unseen speakers. To this end, utterances from 80 imposter speakers (50
male, 30 female) not in the training set were identified from MERCURY call logs.
These "supplementary" utterances were partitioned by speaker label into two sets,
each containing 40 imposter speakers (25 male, 15 female). This partitioning was
done in order to ensure that the imposters in the test set were unseen during the
training of the LDA projection vector on the development set. The two imposter sets
were then used to augment the MERCURY development and test sets with imposter
trials.

For the development data, 1145 supplementary utterances were exhaustively tested
against each of the 38 enrolled speakers to give a total of 43,510 imposter trials. Sim-
ilarly, for the test data, 1136 supplementary utterances were used to generate 43,168
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imposter trials. None of the enrolled speakers were used as imposters. The utterances
in the existing development and test sets were used to generate 3,071 and 3,157 true
speaker trials, respectively. The properties of the augmented MERCURY corpus are
summarized in Table 5-1.

MERCURY (Original corpus) MERCURY (Augmented corpus)
Property True Speakers True Speakers Imposters Imposters

Development Test Development Test
Number of 18M 18M 25M 25M
Speakers 20F 20F 15F 15F

Number of 3157 3071 1145 1136
Utterances
Number of 3157 3071 43510 43168

Trials

Table 5-1: Summary of augmented MERCURY corpus properties. For
imposter sets, each speaker is present in only one of the two sets.

the augmented

5.4.2 Training and Testing

First, speaker models were trained using the same methods described in Chapter 3.
For the experiments in this chapter, we used only the baseline GMM speaker modeling
approach. GMM speaker models were trained for each of the 38 enrolled speakers
in the training portion of the MERCURY corpus as described in Chapter 2. Speaker
specific background sets were then determined for each speaker using the method
described in Section 5.1.3, with B = 10 and N = 10.

Baseline Approach

For the baseline approach, we computed verification scores based on the background
speaker model approach proposed by Reynolds in [24]. For each trial utterance, Xj,
using speaker Si as the target speaker, the verification score was computed using the
average score of B(Si) as an estimate of P(Xj|S ). Mathematically, this is expressed
as

Verification Score = log P(X ISi) - log { P(Xj Sb)

Sb E'B (SO)

(5.8)

Confidence Scoring Approach

In order to combine multiple verification features for the confidence scoring approach,
the LDA projection vector, 'i, was trained on verification features extracted from
development data for the true speakers and imposters. As described in Section 5.3.2,
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p was first initialized using Fisher LDA. Subsequently, several optimization criteria
were used to iteratively train the final LDA projection vector using a hill climbing
algorithm. The three criteria examined were:

" Low false alarm rate (LFA): Using this criterion, the LDA algorithm attempts
to minimize the detection error rate in the region where the false alarm rate is
between 0.0 and 0.1.

" Equal error rate (EER): Using this criterion, the LDA algorithm attempts to
minimize the point where false alarm rate equals miss rate.

" Low detection error rate (LDE): Using this criterion, the LDA algorithm at-
tempts to minimize the false alarm rate in the region where the detection error

rate is between 0.0 and 0.1.

Once the LDA projection vector was trained, testing was performed by extracting ver-

ification features for each imposter and true speaker trial in the augmented MERCURY

test set. Verification scores were then computed using Equation 5.7

5.5 Results

The components of the projection vector, , trained using LDA are shown in Table 5- 2.
These components are equivalent to weighting coefficients used for the correspond-
ing components of the verification feature vector. The second column of Table 5-2
illustrates that the baseline verification approach is a special case of the general LDA
approach, as it is a linear combination of two verification features: the average target
score, and the average background score.

Using the initial Fisher LDA projection vector to compute the verification scores
resulted in the DET curve shown in Figure 5-4. In comparison to the set of operating
points generated by the baseline approach, scoring using the Fisher LDA projection
vector yielded substantially higher detection error rates for each operating point on
the curve.

When trained on the development data to optimize for LFA, EER, and LDE,
the projection vectors resulted in verification scores which produced the operating

characteristics shown in Figure 5-5. Although the optimized Fisher LDA projection
vectors showed substantial improvement over the system using the initialized vector,
performance for all three systems was similar to the baseline method.

Figures 5-6, 5-7, and 5-8 show closeups of the DET curves from Figure 5-5 in
the regions of interest for the three optimization criteria. Of the three LDA-based
systems tested, the system using the LFA optimized projection vector had the best
performance in all three regions of interest. This is likely due to the high number of
imposter trials in comparison to true speaker trials in the testing data.
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Verification Baseline Fisher Hill Climb Hill Climb Hill Climb
Feature Method LDA (LFA) (EER) (LDE)

rank 0.0 0.1544 -0.5856 -0.1606 -0.5606
numobs 0.0 -0.0163 -0.0213 -0.0213 -0.0213
tot-tgt 0.0 0.0099 0.0099 0.0099 0.0099
avg-tgt 1.0 0.3840 0.5390 0.4240 0.0389
tot-back 0.0 -0.0322 -0.0322 -0.0322 -0.0322
avg-back -1.0 -12.8324 -12.8324 -12.8324 -12.8324
geo-back 0.0 0.0070 0.0069 0.0069 0.0069

tot-topM (M = 5) 0.0 0.0163 0.0163 0.0163 0.0163
avg-topM (M = 5) 0.0 12.5032 12.5032 12.5032 12.5032
geo-topM (M = 5) 0.0 -0.0010 -0.0010 -0.0010 -0.0010

diff-top 0.0 0.0099 0.0099 0.0099 0.0099

Table 5-2: Weighting coefficients of each verification feature for the baseline method
and three linear discriminant analysis results. The Fisher LDA vector is the initialized
projection vector used for the hill climbing methods. The three hill climbing LDA
variations were optimized on low false alarm rate (LFA), equal error rate (EER) and
low detection error rate (LDE).
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Overall, we observed no noticeable difference in performance between the opti-
mized LDA-based systems and the baseline system. Although we noted that the
baseline system is a special case of the LDA approach, the optimized training pro-
cedures resulted in projection vectors which were very different from the baseline
projection vector, but very similar to the initial Fisher LDA vector. Since the hill-
climbing algorithm was able to significantly improve upon the performance of the
Fisher LDA system, this suggested that the performance of the baseline could be
improved upon by initializing the training algorithm with the baseline vector weights
from Table 5-2.

In order to test this hypothesis, we performed an additional experiment where
an LDA projection vector was trained using the initial baseline vector and the LFA
optimization criterion. Figure 5-9 illustrates the comparative performance of the
baseline system and the LFA optimized system initialized with the baseline projection
vector. Performance for both systems was very similar, indicating that the baseline
vector may be a local optimum for the optimization criteria used in the training
algorithm.
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Chapter 6

Alternative Features for Speaker
Recognition in Telephone Quality
Speech

In this chapter, we describe some alternative acoustic features to Mel-frequency cep-
stral coefficients (MFCCs) that can be used for speaker identification. Our goal in this
chapter is to investigate features that are more robust to additive and convolutional
noise than traditional MFCCs. First, we give an overview of the speaker distinguish-
ing properties of MFCCs, formant frequencies, and fundamental frequency. Next, we
describe the tools and algorithms used for feature extraction. Finally, we give the
results of some feature set experiments comparing results on TIMIT and NTIMIT.

6.1 Background

The approaches used for speaker modeling used in the thesis until this point have
relied on the same set of template-based spectral front-end features. Specifically,
the features used are MFCCs, computed at frame level landmarks. Unfortunately,
MFCCs typically exhibit severe degradations in identification accuracy in noisy and
bandlimited environments. In this section, we briefly describe the motivation for using
MFCCs and background information regarding formant locations and fundamental
frequencies.

6.1.1 Mel-frequency Cepstral Coefficients

Many modern speech recognition systems use cepstral coefficients in some form as
their front-end features [23]. In general, the cepstrum is a non-linear transformation
of the frequency domain representation of waveform. Cepstral features are computed
by taking the inverse Fourier transform of the logarithm of the short-time Fourier
transform of a time domain waveform.

The Mel frequency scale is a non-linear frequency domain scaling which applies a
filter bank to the input signal. The center frequencies increase linearly below 1 kHz
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and logarithmically thereafter. This scaling is motivated by perceptual studies of
human auditory processing. The scaled bank of filters implementing this process is
shown in Figure 6-1. The non-linear Mel-scale spectral coefficients obtained after
filtering are then converted into the cepstral domain by taking the inverse Fourier
transform of the logarithm of the spectral coefficients.

1

1000 2000 3000 4000
Frequency (Hz)

5000 6000

Figure 6-1: Bank of filters illustrating the Mel frequency scale.

A major advantage of using cepstral features is the ability to perform blind channel
equalization using cepstral mean subtraction. This technique allows a system to
efficiently deconvolve time-invariant channel effects from the signal. The disadvantage
of cepstral features is that reliable feature extraction is dependent on absolute spectral
magnitudes, which are easily distorted by additive noise.

6.1.2 Formant Frequencies

In this section, we are primarily concerned with the use of formants for voiced phones,
such as vowels and semivowels. During vowel production, the overall received speech
signal, p,(t), can be represented as the output of a periodic glottal source, s(t), passed
through a cascade of filters, T(f), R(f).

Pr(f) = S(f)T(f)R(f)

In Equation 6.1, Pr(f) is the spectrum of the received speech signal. The terms
on the right hand side: S(f), T(f), and R(f) are the glottal source spectrum, the
vocal tract transfer function, and the radiation characteristic, respectively. Typical
representations of these spectra are shown in Figure 6-2. Of the transfer functions
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Figure 6-2: Representative spectra for transfer functions in Equation 6.1.

shown in the figure, formant frequencies are directly related to the vocal tract transfer
function, T(f).

In the acoustic theory of speech production, the vocal tract is modeled as a con-
catenation of tubes of varying widths and lengths. The size and shape of these tubes
are dependent on speaker physiology and the vocal tract configuration used to produce
a particular sound. When producing a vowel, the acoustic tube model for the vocal
tract has characteristic resonant frequencies at the poles of the vocal tract transfer
function. These resonant frequencies, or pole locations, are known as formant fre-
quencies. Although there are an infinite number of formant frequencies in general,
for the study of speech, we are usually only concerned with the first four formants
(F1 , F2 ,F3 ,F4), which lie in the range of 0-5 kHz.

While the positions of formants in relation to each other is usually consistent for
specific vowels across speakers, absolute formant locations can vary widely across
different speakers. These differences in formant measurements are potential speaker
specific cues which can be used for performing speaker recognition. One motivation
for using formants over spectral template-based features such as MFCCs is that for-
mant locations are indicative of relative maxima in the speech. Therefore, in the
absence of frequency modulation or frequency specific channel attenuation, estima-
tion of formant locations may be more robust to additive and convolutional noise
than MFCC measurements.
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6.1.3 Fundamental Frequency

For voiced sounds, the fundamental frequency of the speech signal, is related directly
to s(t), the glottal source signal, in Equation 6.1. The glottal source spectrum can
be represented as the product of a frequency domain impulse train, X(f), and glottal
source characteristic, G(f).

S(f) = G(f)X(f) = G(f) E Jf - kFO) (6.2)
k=-oo

In Equation 6.2, FO is the spacing between impulses in the frequency domain rep-
resentation of X(f), and is indicative of the rate of vibration for the vocal folds.
The physiological basis for inter-speaker differences in FO measurements is mainly
attributed to variation in vocal cord length, which directly affects the rate at which
the vocal folds can vibrate. However, FO measurements also exhibit a wide degree of
variation within speakers, as voice pitch can be easily altered by tensing and slack-
ening the vocal folds. In conversational speech, FO varies throughout an utterance,
depending on the type of phone being produced and the prosodic constraints of the
utterance.

The motivations for using FO as a feature for speaker recognition are twofold.
First, as with formant locations, FO is not dependent on absolute spectral values.
Instead, it can be recovered from a received speech signal by measuring the minimum
interval between peaks in the frequency domain. As such, the signal characteristics
which are required to calculate FO are more robust to noise than for MFCCs. The
second reason for including FO as a front-end feature is that FO trajectories could be
used to model the degree and rate of pitch variation in a speaker's voice, which is an
important higher-level cue that humans use for speaker recognition [6].

6.2 Feature Set Experiments

6.2.1 Feature Extraction Algorithms

In order to extract formant and FO data from the input waveform, these features
were computed off-line using the Entropic Signal Processing Suite (ESPS). The two
relevant commands used were f ormant and getf 0. In ESPS, the f ormant command
computes formant locations at a specified frame interval. For each frame, linear pre-
dictive coding (LPC) coefficients are used to estimate the spectrum of the windowed
signal using an all-pole model. The pole locations produced by the all-pole model
are used as initial formant estimates. Final formant values are then produced by
imposing frequency continuity constraints using a dynamic programming algorithm
over a sequence of frames.

The pitch tracking algorithm used by get-f0 is described in [27]. The algorithm
uses cross-correlation over the analysis window of the current frame to estimate the
frequency of voicing. As with the formant tracking algorithm, the FO estimate is
then modified to fit surrounding values using a dynamic programming step. For each
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frame, the output of the get-f0 command is a final estimate of F for that frame,
and a secondary value which indicates the probability of voicing for that frame. The
probability of voicing returned is either 0 or 1.

6.2.2 Performance of MFCC Feature Set

In this section, we describe results of experiments we performed in order to determine
speaker identification performance using the standard MFCC feature set in matched
and mismatched training and testing conditions. Speaker models were trained using
the baseline GMM speaker modeling approach from Chapter 3. First, closed set
identification experiments were performed using matched conditions, with TIMIT
speaker models trained on TIMIT training data, and NTIMIT speaker models trained
on NTIMIT training data. Next, the same experiment was performed with NTIMIT
speaker models trained on TIMIT training data, and vice versa. The results of these
identification experiments are shown in Table 6-1.

On the TIMIT data, 100% identification accuracy was obtained using models
trained in matched conditions, while on the NTIMIT data, only 53.7% identifica-
tion accuracy was obtained. These results indicate that MFCC features have high
speaker distinguishing capability in clean speech, but that these features can not be
reliably extracted in noisy and bandlimited speech. The accuracy rates for the same
experiments in mismatched condition underscore this observation. For speaker mod-
els trained on TIMIT data, testing on the NTIMIT corpus resulted in an accuracy
rate of 0.6%. This experiment illustrated that MFCC features extracted for the noisy
speech data were severely distorted from the features extracted from the clean version
of the same data.

Identification Accuracy (%)
Corpus TIMIT (Test) NTIMIT (Test)

TIMIT (Train) 100.0 1.2
NTIMIT (Train) 0.6 53.7

Chance 0.6 0.6

Table 6-1: Identification accuracy of MFCC features on TIMIT and NTIMIT. The
first row indicates performance using models trained on TIMIT data. The second
row indicates performance using models trained on NTIMIT data. The third row
indicates expected performance of a random classifier.

6.2.3 Performance of Formant and Pitch Feature Sets

In this section, we describe results of experiments we performed in order to deter-
mine speaker identification performance using formant locations and F as front end
features.
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Training

For these experiments, ESPS was used to compute formant and pitch estimates at one
millisecond intervals. Frame level feature vectors were then formed by averaging these
estimates over ten millisecond frames, then concatenating them with the averages
from the preceding and following frames. Concatenation of features from surrounding
frames was done in order to model formant and pitch trajectories. Since the formant
and pitch estimates were valid only during voiced phones, the probability of voicing
produced by get.f O was used to determine which frames to keep or discard during
training and testing. GMM speaker models were trained using TIMIT training data,
and tested on both TIMIT and NTIMIT test sets.

Formant Feature Set Experiments

We first evaluated speaker identification performance in mismatched conditions us-
ing two sets of formant frequencies as front-end features. The first set included all
four formants, and the second set included only F and F2 . The results from this
experiment are summarized in Table 6-2. Although accuracy rates were high for the
four formant set when tested on TIMIT, performance was considerably lower when
tested on NTIMIT. Surprisingly, on NTIMIT, the feature set using only the first two
formants resulted in higher identification accuracy than when using all four formants.
This outcome indicated that F3 and F4 were less reliably extracted from the NTIMIT
data than F and F2, which can be explained by the bandwidth limitation imposed on
the NTIMIT data. As discussed in Chapter 2, NTIMIT utterances are produced by
passing TIMIT utterances throu a telephone line, which imposes a cutoff frequency
at 4 kHz. This lower cutoff frequency eliminates many resonant peaks corresponding
to F4 and can severely attenuate high frequency instances of F3 . A comparison of
speech segments from the two corpora illustrating the effect of the cutoff frequency
is shown in Figure 6-3

Identification Accuracy (%)
Feature Set TIMIT NTIMIT
F1,F2,F3,F4 64.6 4.8

F1,F2 24.7 9.9

Table 6-2: Identification accuracy using feature vectors derived from formant sets
using GMM speaker models trained on TIMIT data

As a followup to the previous experiment, we also performed identification experi-
ments using each individual formant as separate feature set. These results, which are
summarized in Figure 6-4 and Table 6-3, show that the degradation in identification
accuracy when going from TIMIT to NTIMIT is more severe for those systems using
F3 and F4 input features. This fact supports the idea that extraction of the higher
frequency formants is less robust in band-limited and noisy channel conditions.
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Figure 6-3: Spectrogram comparison of identical speech segments taken from TIMIT
and NTIMIT. The NTIMIT utterance has added noise and is bandlimited to 4 kHz.
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When training and testing on TIMIT, we noted that the F3 and F4 feature sets
resulted in signficantly higher accuracy rates when compared to F and F2. This out-
come is not surprising because F3 and F4 typically exhibit less intraspeaker variability
than the first two formants, which tend to be more dependent on the type of phone
being produced. As a consequence, F3 and F4 are generally more reliable speaker
specific features for speaker recognition than F and F2 .

Identification Accuracy (%) Average Rank of Correct Speaker
Formant TIMIT NTIMIT TIMIT NTIMIT

F1  10.7 9.0 9.5 11.7
F 2  9.2 4.8 10.2 13.4
F3  18.8 6.0 6.5 14.0
F4  26.8 3.0 4.9 15.0

Table 6-3: Identification accuracy and rank error metric of individual formants using
GMM speaker models trained on TIMIT data
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Figure 6-4: Identification accuracy of individual formants using GMM speaker models
trained on TIMIT data.
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Pitch Feature Set Experiments

In the final set of experiments we performed, we used input feature vectors composed
of only FO measurements. These results are shown in Table 6-4. We observed that
the FO based feature set produced lower accuracy rates than the full formant set when
tested on the TIMIT data. However, in contrast to the formant set, the FO based
feature set also exhibited a much smaller performance degradation when tested on
NTIMIT under the mismatched condition. This result indicates that estimation of
FO may be more robust to noise and band-limited channel conditions.

Identification Accuracy (%)
Feature Set TIMIT NTIMIT

Fo 45.5 39.1

Table 6-4: Identification accuracy using FO derived feature vector using GMM speaker
models trained on TIMIT data
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Chapter 7

Conclusion

7.1 Summary

The work in this thesis has explored three areas for improvement in the field of
speaker recognition: speaker modeling, score computation for verification, and front
end feature extraction.

In the area of modeling, we compared two baseline text-independent global speaker
modeling approaches against two ASR-dependent approaches which make use of
speech recognition during identification. The ASR.-dependent methods included a
novel speaker adaptive approach for scoring with phone-level speaker models. We
evaluated the performance of each method on a closed set speaker identification task
for two characteristically different corpora, YOHO and MERCURY.

By comparing results on these data sets, we observed that there are a number
of factors which can severely degrade identification accuracy. Although the channel
bandwidth was the same for each corpus, the MERCURY data also consisted of variable
channel and background noise conditions. These acoustic conditions partially explain
the large differences in error rates achieved by the various modeling approaches on
the two corpora. Aside from differences at the acoustic level, the lexical properties
of the two data sets also contributed to the performance gap. While the utterances
from the YOHO corpus consisted of read speech from a small set of possible words,
the MERCURY utterances consisted of spontaneous speech from a medium-size vocab-
ulary. These lexical differences led to higher word error rates for speech recognition
on MERCURY when compared to YOHO, which in turn contributed to higher iden-
tification error rates for the ASR dependent approaches, which rely on an accurate
phonetic hypothesis for the utterance.

When comparing the different approaches on single utterance experiments, we
observed little difference in performance between the baseline systems and the more
refined ASR-dependent approaches. However, we demonstrated that classifier com-
bination was effective for reducing identification error rates on single utterances. On
the YOHO corpus, we used this technique to achieve a lower error rate than the best
reported result for the closed set identification task.

Additional experiments on MERCURY showed that the speaker adaptive approach
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significantly outperformed the other individual methods when tested using multiple
utterances. From this set of experiments, we concluded that phone-level speaker
models are better able to capture speaker specific characteristics than global models,
but are also more susceptible to identification error when there is only a small amount
of test data upon which to base a decision. This result indicates that speaker adaptive
scoring has the potential to outperform traditional ASR independent approaches, and
is most effectively utilized when performing identification on longer test utterances,
or sessions comprised of several utterances.

In the area of speaker verification, we introduced a new technique for computing
verification scores which incorporated multiple verification features from the list of
scores for a target speaker's background speaker set. Using global GMM speaker
models, this approach was compared to the baseline logarithmic likelihood ratio ver-
ification score, and exhibited no significant improvement in verification performance.
One possible reason for this result is that the baseline scoring technique may produce
a near optimal combination of the investigated verification features. Another, more
likely reason for the lack of improvement, is that linear discriminant analysis is not a
powerful enough technique for feature combination. Further work is necessary to de-
termine whether or not the combination of multiple verification features can actually
improve verification performance.

Finally, in the area of front end feature selection, we used the TIMIT and NTIMIT
data sets to compare the reliability of feature extraction for MFCCs, formants, and
fundamental frequency in bandlimited, telephone quality speech. When trained and
tested on clean, wideband speech, the system using the MFCC feature set obtained
100% identification accuracy. Of individual alternative features, F, F3, and F4 ex-
hibited the greatest speaker distinguishing capability, with accuracy rates of 45.5%,
18.8%, and 26.8%, respectively. Under mismatched conditions, where training was
performed on TIMIT and testing was done on NTIMIT, the system using the MFCC
feature set showed the greatest performance degradation, achieving 0.6% identifica-
tion accuracy. Under the same training and testing conditions, accuracy rates for
the systems using F3 and F4 as features degraded to 6.0% and 3.0%, respectively.
The performance of the F0 based classifier, on the other hand, degraded only slightly,
resulting in an accuracy rate of 39.1% on NTIMIT.

In Chapter 6, we hypothesized that the large performance degradation of the
F3 and F4-based systems was primarily due to the proximity of F3 and F4 to the
4 kHz cutoff frequency present in the NTIMIT data. This band-limited condition
prevented these formants from being reliably estimated because the higher frequency
components, including the resonant peaks corresponding to these formant locations,
were attenuated by the low-pass channel filter. The speech signal characteristics
required to estimate F0 , on the other hand, were not as adversely affected by the
differences between TIMIT and NTIMIT. These alternative feature set experiments
demonstrated that F has some degree of speaker distinguishing capability, and can
be more reliably extracted amidst additive noise and channel variation than MFCC
features, which are currently used in the majority of speaker recognition systems.
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7.2 Future Work

In Chapter 5, linear classification techniques were used to combine different sources of
information derived from background speaker score lists. Although these techniques
showed no significant improvement over the conventional baseline system, which uses
a logarithmic likelihood ratio as the verification score, we believe that combination
of verification features has the potential to improve overall verification performance
given a better feature set and better classification techniques. Some possible non-
linear classifiers include multi-layer perceptrons and support vector machines. In
addition, we plan to compare the verification performance of systems using model-
ing approaches other than the baseline GMM method, which was the basis for the
experiments in Chapter 5.

Due to time constraints, we were unable to fully investigate novel ways of modeling
the feature sets discussed in Chapter 6. Because formant locations, especially F and
F2 , are dependent on vowel type, identification accuracy could be improved by using
one of the non-global ASR-dependent modeling techniques described in Chapter 3. In
particular, with the limited amount of training data present in TIMIT and NTIMIT,
the speaker adaptive approach might be an ideal way to model the speaker variability
of formant positions for specific vowels.

Besides formants and fundamental frequency, we would also like to perform ex-
periments which test the identification performance of additional features such as
duration. One possible way of doing this would be to integrate speaker-dependent
duration models into the speaker adaptive scoring framework.

Finally, in addition to performing experiments to determine the viability of using
different noise robust features, a number of implementation details for the current
feature set also need to be addressed. Since formant tracking and pitch tracking are
both performed off-line, a reliable way of integrating these algorithms into the real-
time system is desirable. Though robust on-line formant tracking is still a difficult
research problem, an accurate on-line pitch tracking algorithm has been developed
which can be integrated into SUMMIT [29]. In the future, we would like to incorporate
this pitch tracker into the current speaker recognition system.
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