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Abstract

Stereo photogrammetric algorithms lack the ability to resolve local surface texture as a
result of the need for smoothness of depth. Shape-from-shading methods give better
estimates of fine surface detail, but they suffer from problems with non-unique solutions,
especially when the boundary conditions are not known. The combined iterative
algorithm presented provides a more accurate and stable method for recovering a digital
elevation model from stereo aerial image pairs using shape-from-shading information and
stereo geometry. A monocular shape-from-shading algorithm is extended to make use of
stereo matching, using an aggressive warping process to adjust the height-and-gradient
solution at features where there is a relatively high stereo error between the two images.
This allows the accurate recovery of both local and global characteristics of the terrain.
The algorithm is shown working on synthetic epipolar-plane images of constant albedo
with a known reflectance function.
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1 Introduction

The ability to generate accurate digital elevation models (DEM) of a given land-

area from remote imagery is essential when on-site surveying is not practical. This

problem is especially applicable to the mapping of distant planets where all data comes

from orbiting satellite probes. For exploration purposes, it is just as important to detect

small surface features as it is to correctly determine the elevation of large ones. In

addition to locating ridges, valleys, impact craters and other major features, mapping

small changes in the surface gradient can tell a spacecraft if a local area is flat enough for

a landing or tell a rover if it the terrain is too rough to pass through. With that in mind,

the goal of this project is to develop a method for remote photogrammetry that gives the

highest possible accuracy detecting features of all sizes.

The best way to correctly determine the elevation of large features is by using

geometric methods such as binocular stereo. By knowing the camera geometry, and

correctly matching common regions in each photo, the absolute position of those regions

can be found. The matching problem is made more difficult when there are a number of

suitable matches or no exact matches for regions in the two images. As a result, binocular

stereo is less useful in areas without sufficient detail to reliably find local region matches.

Furthermore, there must be some smoothness assumption in order for the matching

process to work, and this limits the amount of detail that can be resolved with this

approach.

Complementarily, the shape-from-shading approach combines the brightness of

image pixels with known reflectance properties of the surface to estimate the surface

gradient. Shape from shading works well for smooth surfaces or small details, though the
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method often has problems due to multiple solutions, or relative inaccuracies

accumulated over distance. At best, shape from shading can give a detailed, relative

elevation map. By effectively combining the benefits of Shape-from-Shading with

binocular stereo, a detailed absolute elevation map could be recovered.
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2 Background

2.1 Geometric Stereo

Photogrammetry from stereo is based on small differences between two images of

the same subject, which are taken from slightly different positions. These differences

give clues to the relative depth of points in the scene. Surfaces closer to the camera

undergo greater lateral changes compared to surfaces that are farther away. These

differences however, are proportional to the relative distances of both height extremes to

the camera. This means that the farther the camera, the less difference, and orthographic

photos taken from an "infinite" distance would not yield any useful stereo data.

Left Image Right Image Left Image Right Image

di d2

b-

A A

'/B
/ \

Figure 2-1: The generic and orthonormal stereo problems

Similarly, small shallow features on a surface are very difficult to detect using stereo

images because the relative height difference is so tiny. Furthermore, because the stereo
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approach uses visual cues on the surface itself to match regions across the pair of images,

features recognizable in this way must have some minimum size, which can be distinctly

located on each image.

The most important step is to correctly find the mapping between points in the left

and right images, since they won't be in exactly the same position. There are a variety of

approaches to this open problem, including area-correlation [15], [17], edge-based, and

gray-level matching [11]. The type of detail in the scene can greatly affect the matching

process, since for example, a uniformly textured surface gives no stereo clues, and any

match within that area can be considered as good as the other possibilities. If the

cameras have parallel view vectors, then they create epipolar-plane images. That is, any

disparity between the left and right images is confined to the horizontal direction, so the

search space is reduced to the corresponding row in the other image. Most approaches

introduce some additional constraints that reduce the number of potential matches. The

most common constraint is smoothness, meaning it is assumed that the surface is

continuous nearly everywhere, the pixel disparity changes slowly, and that points close

together in the left image will also be close together in the right image. The smoothness

constraint makes it possible to correlate local regions instead of only single pixels,

thereby increasing the probability of a correct match. On the other hand, it also naturally

limits the amount of detail that can be resolved. Ordering is another common constraint.

This means that if A is left of B in one image, it can't be right of B in the other image.

This is logical if we are always looking at the same side of the surface.
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Once the matching is known, the surface features can be found relatively easily. In

this case, the depth difference h between two points in the scene (Figure 2-1b) can be

found by [2]

Ah = where Ax=dl-d2 (2-1)
b + Ax

The stereo approach works regardless of lighting conditions, as long as there is

some illumination on the surface. It also is not affected by variations in surface color

(albedo) that might confuse a shape-from-shading scheme. In fact, it makes use of

changes in surface appearance to match regions across the stereo pair. A perfectly

uniform looking surface would be difficult to analyze using stereo, for the same reason.

2.2 Shape-from-shading

The premise of many shape-from-shading methods revolves around the reflectance map,

a function that gives the brightness/reflectance of a particular surface based on the slope,

or gradient components, of the surface at any point. Unfortunately the solution cannot be

directly computed because the image is missing some information--specifically, the two

components of surface gradient are combined into one value: brightness. Instead, one

way to reconstruct the surface is to use Calculus of Variations and an iterative approach,

minimizing the difference in brightness between the image and the solution-in-progress.

The fundamental image irradiance equation in the minimization approach to

shape-from-shading is given by:

E(x, y) = R(p(x, y), q(x, y)) (2-2)
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Where E(x,y) indicates the brightness at a point (x,y) on the image, and R(p,q) is

the brightness value expected according to the reflectance map, for a surface z with

gradient values (p,q). The most common simulated reflectance map for matte (non-

glossy) surfaces is the Lambertian map which gives the brightness of a surface patch as

the cosine of the angle from the surface normal to the light source direction or

1+p p + q~q
R(p, q) = +q 2  +ps q (2-3)

F+p2 2 Vj+ P2 + 2

- PS
(where - q, is the direction to light source)

Starting with the image E, and reflectance map R, the goal of the algorithm is to find the

surface z, for which the image irradiance equation holds most accurately.

In other words, we wish to minimize the difference between the left and right

sides of the irradiance equation over the area of the image. This goal is summarized by

the minimization of the following error equation:

((E(x, y) - R(p,q)) 2 dxdy (2-4)

One of the strengths of Shape-from-Shading is its sensitivity to high-frequency

variations in the surface contours. It can effectively pick out gradient changes due to

small surface features. On the other hand, it is not necessarily as accurate regarding low-

frequency components of the solution. Often there can be large amounts of "drift" from

one end of the surface to another, and while local features may be represented, one side

could be much higher than another when in fact they should have the same elevation.
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The Shape-from-Shading approach in general is not without its own limitations,

including: multiple solutions, local minima, and non-convergence. It is possible that for

certain initial conditions, the algorithms will not reach the optimal solution, but instead

get stuck in a local minimum of the error function. Similarly, some inputs may not

converge at all, yielding an unstable output.

2.3 Horn's Height and Gradient Scheme

In the coupled height and gradient scheme [9] from which this work is derived,

the error equation is first introduced as:

JJ(E(x,y)- R(p,q))2 +,p((zx -- p) 2 +(z, -q) 2)dxdy (2-5)

where the additional term is a penalty for lack of integrability of the gradient. The

solution consists of p, q, and z values at every pixel. All three of these variables are

solved for iteratively.

The original problem is modified in two ways in order to make it better defined,

and to assist the algorithm in arriving at a correct solution. First, a variable departure-

from-smoothness penalty is added to the error equation. This has the effect of

encouraging smoothness and continuity of z at the expense of brightness error. A

coefficient in the error function below is used to vary the extent of this trade-off.

Initially, the penalty for departure from smoothness should be high, because this will

cause the surface to be relatively continuous, avoiding some problems with getting

caught in local minima. If this term is left in however, the solution may not be able to

converge to the correct one, especially if there are sharp corners or boundaries in the

solution. So this term is gradually reduced until it reaches zero, having the effect of ever
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sharpening the solution as it approaches the final one. The new error function is shown

here:

JJ[(E(x, y)- R(p,q))2 + A(p' + p, +q +q2)+p((zx -p) 2 +(z, -q) 2 )]dxdy (2-6)

The other modification involves the local linearization of the reflectance map.

One of the main causes of incorrect solutions is when the algorithm gets stuck in a local

minimum. This happens more frequently when the surface is complex and the

reflectance map is not so close to linear in the gradient. Horn addresses this problem in

[9] by using a local linear approximation to the reflectance map, which gives

R(p,q)~ R (p0 ,q0 )+(p - po )RP(poq 0 )+(q -q0o)R(poq 0 )+.... (2-7)

and has been found to greatly increase the performance of the algorithm.

2.4 Related Combinatorial Methods

There have been various attempts to combine multiple visual cues (algorithms),

referred to generically as "shape-from-X" modules. Poggio, Gamble and Little [14] use

Markov random fields to couple the outputs of various algorithms (stereo, motion,

texture, color) with the discontinuities associated with each type of visual cue. Their goal

was primarily to improve the identification of surface discontinuities.

Piecewise interpolation in [3] is used to integrate sparse edge-based stereo data and a

connected segmentation diagram derived from a raw needle-map from shading in the

right image. They assume a coincident light-source and viewing direction, and use a

modified version of Pentland's [13] slant and tilt scheme for shading analysis.
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Fua and Leclerc [6] use a mesh integration framework and a weighted energy

function to formally combine information from stereo, shading, silhouettes, and hand-

entered features. The weights are pre-selected for different image types.

Cryer, Tsai and Shah [4] implement a biologically inspired [7] model, using FFT

filters to add the low frequency information from stereo and the high frequency

information from shading. Their scheme takes the final output from each process and

combines them into an improved depth map.

Dorrer and Zhou [5] start with a stereo-derived elevation model and an aerial image,

using the DEM to "de-shade" the image, or remove changes in surface appearance that

are not resultant from changes in slope, but rather the surface itself (albedo). This leads

to reduced noise in the input to their shape-from-shading algorithm. The DEM is also

used for the initial estimate.
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3 Integrated Binocular Shape from Shading

3.1 Coordinate systems

For the purposes of this problem, two types of 3D coordinate systems are defined.

The solution will be considered in terrain-centered coordinates, meaning that it will give

the surface elevation zs relative to a "sea level" reference plane' for any 2D coordinate

within the reconstructed region of that plane. Two pin-hole cameras are placed some

distance h above the x-axis, separated by a given baseline b. When considering image

projection, it is most convenient to use camera-centered coordinates, where the origin is

at the focal point of the camera, the x-y plane is parallel to the terrain reference plane,

and the positive z-axis extends in the camera view direction, always perpendicular to the

reference plane. In practice, the view vector may not always be exactly perpendicular,

but it can be assumed without loss of generality that the input images have been rectified.

Finally, there are 2-dimensional image coordinates that result from projecting the camera

coordinates onto the focal plane, using the camera location as the center of projection.

To avoid sign-reversal and scaling from camera to image coordinates, we use the

reference plane as the focal plane.

3.2 Extending the Monocular Shape from Shading Algorithm

Several modifications must be made to the height-and-gradient algorithm in order

to use multiple images for the input. In the monocular scheme, the camera can be placed

at any distance from the terrain, and the calculations are simplified if it is assumed that

the focal point is far enough away from the surface that the projection can be considered

"Below sea-level" never means underwater in this context.
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orthographic. This assumption cannot be made when using binocular stereo, because the

pixel disparity between the two images is the primary source of information. Since the

disparity scales inversely with respect to the camera-z, all information is lost at an infinite

distance. To simplify the problem somewhat, we ignore the case where the two cameras

are not pointing the same direction, even though that would provide some disparity when

viewed from infinity, since it is better considered in a shape-from-rotation approach.

b

h

f

Stereo coverage
reconstructed region

Figure 3-1: Camera Geometry

It must then be assumed that the cameras are close enough to the surface that the

images are projected perspectively. Shape-from-Shading requires that we use the

brightness of a terrain point, previously found from an essentially direct lookup in the

image:

E[x, y] = image irradiance at terrain coordinates (xy) (3-1)
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in order to calculate the gradient at that point. With non-orthographic images, E is no

longer a simple lookup. In perspective, the image coordinates of ground pixels are scaled

inversely with the distance z of the ground from the camera:

E(x,y) = E[xi, y] x,= f-- and yi=f -c (3-2)
zc zc

where f is the focal length between the focal point and the image plane. In order to

simplify the computation, f=h is used here, so that one unit in the image is the same as

one unit in the terrain at sea-level. Because surface elevation is not initially known at any

point, it is not possible to directly calculate which image pixel corresponds to some

ground coordinate, and thereby correctly find the brightness at the given ground point. In

order to get started, an approximation of the surface must be used to get the brightness

close to that ground point. The sea-level reference plane is chosen for the first-round

approximation. Because the terrain surface is continuous and the algorithm is iterative,

this approximation improves as refinement of the solution progresses.

In the orthographic case, it was sufficient to provide input images the exact

dimensions of the reconstructed region, since there was a direct mapping to the terrain.

When using perspective projection, the images must be slightly larger in order to

guarantee that a brightness value can be found for every terrain coordinate. For example,

if the terrain is above sea-level, then the pixels corresponding to the boundary would be

outside an image of exactly the same dimensions. For practicality, it is assumed that the

range of elevation can be known to fall within some finite bounds, and the required

minimum input size can be determined accordingly. In this implementation, the input

images are twice as large as the output region.
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After these modifications, recall that Horn's height and gradient scheme

minimized the following error function (before linearization of the reflectance map)

ff[(E(x, y) - R(p, q)) 2

+ A(p + p2 + q +q )+ U((zx -p) 2 +(z, -q) 2 )]dxdy

When using two images for the input, we minimize instead

JJ[(E (x, y) - R(p, q)) 2 + (E2 (x, y) - R(p, q)) 2

+A(p +p +q +q )+((z -p) 2 +(z -q) 2 )] dxdy

Incorporating the linear approximation of R into equation (4) results in the following

analogous iterative scheme (where A' "= ,2'+p ) and k = 10/3

D = A"(A"+R 2 + Rq2 )

A = KA'p5kl +,u + (El - R)R, +(E 2 -R)R,

B = KA'ql + pUZ + (El - R)Rq +(E 2 -R)Rq (3-5)

6Pkl = (2A"+R2 )A - RpRqB/D

&qkl = (A"+Rp2 )B - RPRqA/D

where only the equations for A and B have changed from Horn's original scheme, and the

new values for p, q, and z are still given by

(n+) (n) + gp("
Pkl PO 1 (3-6)

(n+1) (n)+ qn
ql"1  = q 0 "+Sk

(n+1) -(n)

Zk" =Z -- (px+s q) (3-7)
K

A minimum of the error function is achieved at the correct solution, unfortunately

it may never be reached by this method, which in practice, performs only as well or

worse than the monocular algorithm. There are two reasons for this; first of all, there is
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no explicit move to minimize the difference between E, and E2 for a given x and y. This

minimization is a variation of gray-level matching [Horn 1986] in the stereo,

correspondence problem. Specifically, we seek to also eliminate the stereo error

JJ(E, (x, y) - E2 (x, y)) 2 dxdy (3-8)

keeping in mind that E is also dependent upon z from equation (3-2).

It might not be possible to completely minimize (eq. 3-8) due to aliasing of the

images, but unless this is attempted, the poor terrain height estimate will cause pixels to

be incorrectly matched across the left and right image. That is the second major problem

with the simple binocular plan, as it introduces noise into the input. The iterative scheme

considers a brightness component from each image for a particular spot. If it gets one of

them from the wrong spot, some information is lost when components are added together.

In the monocular case, a bad z estimate will distort the solution slightly, but no

information is lost, and the solution becomes un-warped as it progresses. The two-image

pixel mismatches are not as much of a problem initially, since iteration is started with a

relatively high , which has a smoothing effect on the solution anyway. But unless the

algorithm can get close to the solution and reduce the stereo error, it will not be possible

to later resolve any smaller details that might still be blurred out from incorrect

combination of the images.

3.3 Reducing the Stereo Error

An attempt must be made to aggressively reduce the stereo error before details

can be refined using shape-from-shading information. One possibility is to extend the

variational formulation to account for the change in image intensity with respect to z, and
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to include the stereo error in the functional to be minimized. A problem here is that the

brightness gradient can draw the disparity in the wrong direction or cause it to become

locked in a local false match [11]. This is most troublesome when the image varies

quickly in gradient and the correct match is more than a few pixels away. We look

instead for a method that can complement shape-from-shading and have the ability to

break it out of local minima if necessary.

Consideration of the error term shows that it can be high at some terrain point for

two reasons; first, because the z-value at that point is far enough from the correct value to

cause a mismatch in the projection. Another possibility is that the corresponding point in

one of the images is occluded, in which case there is not actually a match. This approach

will not deal explicitly with occlusion since the terrain will be generally continuous and

smooth enough to prevent this situation, which is more common in other scene types.

On the other hand, when the stereo error is low, it can mean that the z is correct so the

local match is good, or that the z might not be correct, but that the brightness of that

region is uniform enough that the error is still low. High stereo errors will mostly occur

when there is an edge running vertically through the image, for example, the top of a

ridge, peak, or crater, or the bottom of a ravine that is facing the light source on one side,

and facing away from it on the other. The stereo efforts should be focused on fixing

areas where the error is high, because that means first of all, that something is wrong

there, and second, that there are sufficient surface features to make a stereo analysis

useful.

3.4 Stereo-based Warping
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A simple method for further augmenting the height-and-gradient algorithm by

stereo is now presented. The main goal of this augmentation is to make use of available

stereo features, which provide sparse but absolute depth information, to guide the shape-

from-shading approach to the best solution. Assuming that the monocular shape-from-

shading was robust enough to find the correct relative solution, the second image could

be used to place that solution at the correct absolute altitude, thereby arriving at the

complete answer. Equation (8) could be easily modified to include the addition of a

constant, allowing the entire solution to be shifted up or down as necessary without

affecting the shape-from-shading progress at all. But we can do better than that, because

the stereo information could also be used to speed up the convergence process. It has

been empirically found that the height-and-gradient solution-in-progress can be locally

adjusted one way or another, without de-stabilizing the convergence. Additionally, the

use of local-z-averaging in the algorithm should allow these local adjustments to

propagate outward to the surrounding areas. In other words, stereo information can be

used to push the elevation of some feature's region toward its true height, while the

height-and-gradient process takes care of properly aligning the adjacent regions by filling

in the sparse stereo data with shading.

The stereo error is sampled every 10 pixels each direction on a square grid. Each

sample point is a potential location for z-adjustment. The sampling is done for one point

every other iteration of the height-and-gradient loop, left-right, top-bottom until all 100

points have been sampled, then the grid shifts right/down 1 pixel and repeats. This

continues until every point has been sampled, then it starts from the beginning. The

reason for the shift is to reduce the chance of repetitive errors.
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Figure 3-2: The shifting error-sample grid over the image

The warp process takes place in three steps:

" First, when a point (sxsy) is "sampled," the local stereo error (equation 9) is

calculated for the 9x9 pixel region surrounding that point. If the error is above a

threshold valuer, then we try to improve that error (step 2). Otherwise, skip to

the next sample.

" To find the best improvement for a region, test what z-shift (at intervals of

-0.5) minimizes the current local stereo error. That value is W, the best warp.

The convenience of this test is that we do not try to assign a uniform depth to

the entire region, but instead only check if the current shape should be raised or

lowered. Because shape-from-shading also affects the region, any

foreshortening problems in correlation are eventually worked out.

" Finally, additively adjust the local z values towards W using an error

distribution function. The adjustment value at any point (k,l) is given by

aWe-_((sxk) 2,(,,_12 (10)
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where and are constants that determine the magnitude and width of the

displacement, respectively.

5

3

2

20

20

-10 -10
-20 -20

Figure 3-3: An example warp with a=W=1 and P=100.

3.5 Considerations

When selecting values for the constants and , several factors must be taken into

consideration. Alpha controls the magnitude of the displacement, and should be large

enough to effectively move the solution, but not so large that it completely distorts it.

Alpha should start relatively large, and be reduced as the stereo error decreases. It should

generally be less than 1, so that it takes a few iterations for the region to ease into the

correct height. This also minimizes the harmful effects that one bad match can have.

Values greater than 1 tend to cause instability in the iteration. determines the radius of

the disturbance, and should be chosen carefully to work well with the height-and-gradient

process. It should be wide enough that the entire local region is adjusted, but not so

coarse that it extends into dissimilar regions. Furthermore, when is high, the shape-

from-shading recovers quickly from the warp since the solution tends toward smoothness.
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Later in the process when the departure-from-smoothness term is reduced, large warps

are not so rapidly diffused, so they can actually undo progress that has been made by the

shading algorithm. In other words, the width of the warp should decrease along with the

smoothness constraint so as not to hinder the convergence.

Another important consideration is the threshold value , which determines

whether the local stereo error is large enough to require some correction. The threshold

should ideally be chosen such that an error value greater than represents useful stereo

information, and anything less is noise or weak stereo information. It might seem like a

good idea to reduce this threshold as the solution is refined, in order to completely

minimize the stereo error. Counter-intuitively, it is actually better to increase , recalling

that the fine details are shape-from-shading's specialty. The stereo warp is given more

weight initially, as it helps speed convergence from the initial conditions to a rough

solution. It does this at the expense of potentially increasing the gradient error, and the

height-and-gradient process must catch up after each warp. The progressive decrease in

reduces the ability to "catch up" later in the resolution, and so disturbances at this stage

should be avoided if possible, even if the stereo error begins to increase somewhat. We

would rather have a map that shows the land forms correctly with the possibility of some

small error in absolute altitude, than a map that shows the altitudes exactly at sparse

stereo features and potentially misrepresents the appearance of the surrounding terrain.

As a result, shape-from-shading is weighted much more heavily near the end of the

process, which ensures that we don't accidentally add incorrectly formed "features"

through aberrant warping.
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4 Results

4.1 Synthetic Input Data

The algorithm is tested using synthetic image data, so that the exact solution is

known for comparison, and the camera geometry can be easily controlled. This allows

easy evaluation of the method on a variety of terrains, and avoids some potential

problems with real images that are beyond the scope of this work. The images are

designed to simulate the qualities that might be found in real images taken from an orbital

survey of a barren planet. The terrain surface itself should have constant albedo (no color

change independent of lighting conditions) and a Lambertian reflectance map producing

gray-scale images. The terrain will be smooth in some places and contain features or

surface texture in other places.

Figure 4-1: Contours of terrain #1234 and associated stereo image pair

In order to create interesting yet random terrain, we use the diamond-square

terrain fractal [12]. The randomness is controlled by specifying some seed to the number

generator, so that the same pseudo-random terrain is created every time a particular seed

is used. Figure 4-1 above is an example of a random fractal terrain. White background

in the contour diagram indicates that the elevation is above the sea-level reference. Gray

coloring would indicate a negative elevation. This terrain, for example, is entirely

positive, and slopes downward towards the bottom of the image. The images are "taken"

24



at a resolution of 1 unit/pixel, from cameras setup at height a height of 100 units, with a

100 unit baseline. The stereo pair shows only the center 1OOx100 pixels of each image,

but they are both actually 200x200 in size, in order to guarantee a brightness value can be

projected from each point in the reconstructed region (100x1OO units). The b/h ratio of

1.0 gives relatively strong stereo coverage, and in the optimal case of distinctly textured

images, we could expect this to yield stereo height accuracy of large features on the order

of 0.5-1.0 pixels or 0.5-1.0 units. The light source is toward the northwest [-.5 1 1]T at

an infinite distance.

Ideally, we should generate the images at some higher resolution, and then use a

block averaging technique to reduce them. This would create the cleanest quality input

for testing. However, since we are generating the images again each session, we use only

single-value samples to create the images, in order to keep the computational time

manageable. As a result, there is a small amount of noise in the images, but that helps to

simulate the conditions of real images, which should be the eventual goal in such an

investigation.

4.2 Quantitative Measures of Correctness

In order to gauge the state of the solution at any stage during iteration, we use

various quantitative measures. The first is brightness error in p and q (equation 2-3). This

value becomes low very fast. A better indicator is the brightness error in gradient

JJ(E(x, y) - R(z , z, ))2 dxdy (4-1)

which better captures the state of the z solution from the shape-from-shading perspective.

A third error measure is the stereo error (equation 3-8) shows the discrepancy remaining
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between the images in the current solution heights. These three indicators are the values

this scheme works to minimize, but it is also instructive to measure how close this

intended minimization is bringing us to the ground truth solution data. Recalling that we

are looking for a combination of correct elevation data and correct shape resolution two

additional error measures are introduced. First is the straightforward average squared

elevation error

. (Z Z~ dxdy where z' is the ground truth data (4-2)
10000

and second is the error in brightness from gradient using an alternate light source

(reflectance map) to shade both the current and ground truth solutions.

J (E2 (x, y) - R 2 (zx, z, )) 2 dx dy (4-3)

The last error measure seems to be the most difficult to reduce, the algorithm is only

indirectly minimizing this sum. These two error measures should not be used to affect

the solution in any way, since they would not be available unless it was already known.

4.3 Performance of Binocular shading alone

a) b)

Figure 4-2: Shape-from-shading without adequate reduction of the stereo error

The effects of high stereo error are shown in Figure 4-2. By image (a), it is evident early

in the iteration that the stereo is incorrectly matched. Notice the misalignment of point
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features is somewhat hidden by the smoothing effect. The alignment cannot be corrected,

so when the smoothing term is later reduced (4-2b), the duplication is clearly visible.

Figure 4-3: Convergence to an incorrect solution

4.4 Augmented Binocular Shading

Figure 4-4 shows the progress of a solution using the augmented scheme in a shaded and

contour view. Discernable points in the images become aligned early in the scheme, as a

result of the coarse z-adjustments between shape-from-shading iterations. At some

stages, the gradient may be quite wrong, but this is quickly corrected as the iterations

continue. The large dents visible in the early frames are caused by the warping process,

specifically when the stereo error is initially large ( and are then also large). After the

stereo error is reduced, the height-and-gradient takes care of filling in the details of the

surface. The result is quite close to the ground truth height data. The average elevation

error for this input converges to just below 1 unit/pixel, or right in the best possible range,
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considering the resolution of the stereo data. For comparison, a disparity map generated

by Zitnick and Kanade's algorithm [17] is shown for the left image in figure 4-5. At the

same time, dents in the surface as small as 1-2 units can be seen reconstructed in the

DEM in figure 4-6, which was not possible with stereo alone. Without optimization, the

execution time on a 1.4GHz AMD Athlon machine running Windows XP is

approximately 25 minutes for 10,000 iterations of the algorithm.

~~bj

Figure 4-4: Improved convergence by active minimization of stereo error

Figure 4-5: Disparity map generated by a stereo-only matching algorithm [17]
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Figure 4-9: Convergence of various error measures

It is interesting to notice that all 4 intensity error measures eventually converge to

approximately the same non-zero value. This is a good indication of the level of noise in

the input images. If the regularizing constraints are reduced any further, the solution

begins to become unstable and diverges from the correct answer.
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Figure 4-10: Divergent Solution
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5 Conclusions

This combined method successfully integrates the height-and-gradient method and

shape-from-stereo, using an aggressive warping process to adjust the shape-from-shading

solution at features where there is a relatively high stereo error between the two images.

The images are not highly textured, so dependable stereo data is sparse. However,

because shape-from-shading works in these areas between features, the resulting

elevation map is as accurate as if there were dense texture, and as precise in resolving

small features as the height-and-gradient method but with faster convergence. In further

investigation, this method could be extended to use other types of stereo matching,

different schemes for warping, or become more tightly integrated with the height and

gradient scheme.
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7 Appendix A: Java Source Code

This section presents the java (jdkl.4.0) source code which implements the combined
stereo shape-from-shading algorithm. The compiled applet is also available for viewing
in a web browser here:

http://framework2.lcs.mit.edu/thesis/HGApplet.html

or permanently:

http://thesis.attackpoint.org

Class Overview:
HG- the main UI component that performs the iteration and displays the result
Terrain- a test terrain that uses a mathematical function z(x,y) for the surface
FractalTerrain- an extension of Terrain that uses a fractal surface instead
Camera- generates the various images of the terrain

-------------------------------------------------------------------
/*

* HG. java
*
* Created on April 11, 2002, 4:53 PM

*/
import java.awt.*;
import java. awt. image. *;
import java.util.*;

*
* @author kwalker
* @version
*/

public class HG extends Canvas implements Runnable {

double SPACING=l;
int M=100;
int N=100;
double E0=1;
long seed=1234;

double[] []
double[][]
double[][]
double[][1
double[][]
double[][]
double[] [1
double[] []
double[] []
//double[]
double[] [

z=new double[101] [101],z2=new double[101] [101];

p=new double[100][100],p2=new double[100][100];
q=new double[1001[100],q2=new double[100][100];

e=new double[200][200];
el=new double[200][200];

e2=new double[200][200];
tempf=new double[100] [100];
tempz=new double[101] [101];

err=new double[101] [101];

[] elb=new double[200][200];
e2b=new double[200][200];
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double[][] contours;
double[][] se=new double[101][101];

Terrain terrain;
Thread thread;
String msg="";
Vector msgs=new Vector();
BufferedImage bi=new BufferedImage(1000,300,BufferedImage.TYPEINTRGB);
BufferedImage progress=new

BufferedImage(530, 1500,BufferedImage.TYPEINTRGB);
boolean biinit=false;

* Creates new HG *
public HG() {

super();
thread=new Thread(this);
thread.start();
this.setSize(1000,1800);
progress.getGraphics().fillRect(0,0,600,2000);
bi.getGraphics).fillRect(0,0,1000,350);

}

int pc=0;
double err2=0;

public void paint(Graphics g2){
//System.out.println("painting");
Graphics g=bi.getGraphics();
g.fillRect(0,210,1000,90);
g.setColor(Color.black);

g.setFont(new Font("Courier",Font.PLAIN,11));
try {
g.drawString(msgs.elementAt(0).toString(),10,290);
g.drawString(msgs.elementAt(1).toString(),10,280);
g.drawString(msgs.elementAt(2).toString(),10,270);
g.drawString(msgs.elementAt(3).toString(),10,260);
g.drawString(msgs.elementAt(4).toString(),10,250);
g.drawString(msgs.elementAt(5).toString(),10,240);
} catch (Exception e) { I

float hmin=0,hmax=(float)0.01;
for (int x=0;x<l00;x++){

for (int y=0;y<100;y++){
float mval=(float) (z[x] [y]);
if (mval < hmin) hmin=mval;
if (mval > hmax) hmax=mval;

}

err2=0;
for (int x=0;x<100;x++){

for (int y=O;y<100;y++){
if (pc<2) {

float elxy=(float)el[x+50][y+50];
g.setColor(new Color(elxy,elxy,elxy));
g.drawRect(x,y,1,1);
float e2xy=(float)e2[x+50][y+50];
g.setColor(new Color(e2xy,e2xy,e2xy));
g.drawRect(x+110,y,1,1);

//float EIbxy=(f1oat)elb[x+50 [y+501;
/g.setCol or(new Color(elbxy,eIbxyelbxv))
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.drawRect- (x,V y110, , )

float e2bxy=(float)e2b[x+50][y+50];

g.setColor(new Color(e2bxy,e2bxy,e2bxy));

g.drawRect(x+440,y+110,1,1);

float cv=(float)contours[x][y];

g.setColor(new Color(cv,cv,cv));
g.drawRect(x+660,y+110,1,1);

}

float rval=(float)R(p[x][y],q[x][y]);

g.setColor(new Color(rval,rval,rval));

g.drawRect(x+220,y,1,1);

float gval=(float)R(Zx(x,y),Zy(x,y));

g.setColor(new Color(gval,gval,gval));

g.drawRect(x+330,y,1,1);

float gvalb=(float)terrain.R2(Zx(x,y),Zy(x,y));

g.setColor(new Color(gvalb,gvalb,gvalb));

g.drawRect(x+330,y+110,1,1);

float zval=l;

if (Math.abs(z[x][y])%1<.25) {

zval=(float) 0;

I
else if (z[x][y]<O) zval=(float).75;

g.setColor(new Color(zval,zval,zval));

g.drawRect(x+440,y,1,1);

// normalized height map

try {

float mval=(float) (z[x][y]);

mval= (mval-hmin) / (hmax-hmin);

g.setColor(new Color(mval,mval,mval));

g.drawRect(x+550,y,1,1);
} catch (Exception e) {

//g.setColor(Color.black);
//g.drawString(e.getMessageo+" ",550,200);

}

float ev=(float) (err[x][y]/1.);

if (ev>0){
g.setColor(new Color(l,(float)(l-(ev%1.0)),(float)(1-

(ev%l.0)))
} else {

g.setColor(new Color((float)(l-(-ev)%l.0),(float)(l-(-

ev)%1.0) ,l));

g.drawRect(x+550,y+110,1,1);

// stereo disparity map

float dval=l-(float)disparity[x][y]/(float)DEPTHRANGE;

g.setColor(new Color(dval,dval,dval));

g.drawRect(x+770,y+0,1,1);

float sev=((float)se[x][y]*20);
if (sev>O){

if (sev>1) sev=1;

g.setColor(new Color(1,1-(float)sqr(sev),l-

(float)sqr(sev)));
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} else {
if (sev<-l) sev=-l;
g.setColor(new Color(l-(float)sqr(sev),l-

(float)sqr(sev),1));

}
//g.setColor(new Color(sev,sev,sev));

g.drawRect(x+660,y,1,1);
err2+=Math.pow(gvalb-(float)e2b[x+

50][y+50],2);
}

}

g.setColor(Color.red);
g.drawString(err2+" ",330,220);

g2.drawImage(bi,0,0,null);
g2.drawImage (progress, 0,350,null);

}

// special access methods to maintain boundary conditions

// gradients

double getp(int x, int y){

if (x<0) x=0;
else if (x>M-1) x=M-1;

if (y<O) y=O;
else if (y>N-1) y=N-1;

return p[x] [y];
}

double get-q(int x, int y){

if (x<0) x=O;
else if (x>M-1) x=M-1;

if (y<O) y=O;
else if (y>N-1) y=N-1;

return q [x] [y];
}

double Px(int k, int 1){

return (1/(2*SPACING))*(get_p(k,1)-get_p(k-1,1)+get-p(k,1-1)-get-p(k-
1,1-1));

I

double Qy(int k, int 1){
return (1/(2*SPACING))*(get-q(k,1)-get_q(k,1-1)+get_q(k-1,1)-get_q(k-

1,1-1));
}
// reflectance map function

double R(double p, double q) {

return terrain.R(p,q);

}

double delta=0.01;
double Rp(double p,double q){

return ( R(p+delta,q) - R(p-delta,q) )/ (2*delta);

}
double Rq(double p,double q){

return ( R(p,q+delta) - R(p,q-delta) )/ (2*delta);

I
double Zx(int k, int 1){

return (1/(2*SPACING))*(z[k+l][l]-z[k]I[1]+z[k+l][l+1]-z[k][l+1]);
}
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double Zy(int k, int 1){
return (1/(2*SPACING))*(z[kl[l+1]-z[k][l]+z[k+l][l+1]-z[k+1][l);

}

double getz(int x, int y){

int pm=O,qm=O,xa=O,ya=O;
if (x<O) { x=O; pm=-l; }

else if (x>M) { x=M; pm= 1; xa=-l; }

if (y<O) { y=O; qm=-l; }
else if (y>N) { y=N; qm= 1; ya=-l; }

if (pm==O && qm==O) return z[xl[yl;

else return z[x][y] + (pm * SPACING / 2 * (getp(x+xa,y) +

get-p(x+xa,y-1)))
+ (qn * SPACING / 2 * (get-q(x,y+ya) + getq(x-l,y+ya)));

}

// local average functions

double Zbar(int k,int 1){
return (.2*(getz(k-1,1)+getz(k+1,1)+get_z(k,1-1)+getz(k,l+1))
+.05*(getIz(k-1,1-1)+get-z(k+1,1-1)+get-z(k-1,1+1)+get-z(k+1,1+1)));

double Pbar(int k,int 1){
return (.2*(get-p(k-1,1)+get_p(k+1,1)+getp(k,1-1)+get-p(k,l+1))
+.05*(get_p(k-1,1-1)+get-p(k+1,1-1)+get-p(k-1,1+1)+get_p(k+1,1+1)));

double Qbar(int k,int 1){
return (.2*(get-q(k-1,1)+getq(k+1,1)+getq(k,1-1)+get-q(k,1+1))

+.05*(get_q(k-1,1-1)+get_q(k+1,1-1)+get_g(k-1,1+1)+get_q(k+1,1+1)));
I

double sqr(double x){
return x*x;

I

// get e for a point in the terrain, adjusting for perspective projection

double get_e_prsp(int xa, int ya){

Point3D camerarel=new Point3D(0,50,camera-z);

Point3D ray = new Point3D(xa-camerarel.x,ya-camerarel.y,camera-rel.z-
Zbar(xa,ya));

double zscale=camerarel.z/ray.z;

ray.x*=zscale;
ray.y*=zscale;

//check e array bounds

int xb=(int) (ray.x+camerarel.x+M/2);

int yb=(int) (ray.y+camera-rel.y+N/2);

if (xb<O) xb=O;
else if (xb>M*2-1) xb=M*2-1;

if (yb<O) yb=O;
else if (yb>N*2-1) yb=N*2-1;

return e [xb] [yb];
}

double get-el-prsp(int xa, int ya){

Point3D camerarel=new Point3D(0,50,camera-z);
Point3D ray = new Point3D(xa-camera_rel.x,ya-camera-rel.y,camerarel.z-

Zbar(xa,ya));
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double zscale=camerarel.z/ray.z;
ray.x*=zscale;
ray.y*=zscale;

//check e array bounds

int xb=(int) (ray.x+camerarel.x+M/2);
int yb=(int) (ray.y+camerarel.y+N/2);

if (xb<O) xb=0;

else if (xb>M*2-1) xb=M*2-1;
if (yb<0) yb=0;

else if (yb>N*2-1) yb=N*2-1;

return el [xb] [yb];

}

double gete2_prsp(int xa, int ya){
Point3D camerarel=new Point3D(100,50,camera z);

Point3D ray = new Point3D(xa-camerarel.x,ya-camera rel.y,camerarel.z-
Zbar(xa,ya));

double zscale=camerarel.z/ray.z;
ray.x*=zscale;
ray.y*=zscale;

//check e array bounds
int xb=(int) (ray.x+camerarel.x+M/2);

int yb=(int) (ray.y+camera rel.y+N/2);

if (xb<0) xb=0;
else if (xb>M*2-1) xb=M*2-1;

if (yb<O) yb=0;
else if (yb>N*2-1) yb=N*2-1;

return e2 [xb] [yb];
}

double getel_prsp(int xa, int ya, double dz){
Point3D camerarel=new Point3D(0,50,camera-z);

Point3D ray = new Point3D(xa-camera_rel.x,ya-camera-rel.y,camera-rel.z-
Zbar(xa,ya)-dz);

double zscale=camera-rel.z/ray.z;
ray.x*=zscale;
ray.y*=zscale;
//check e array bounds
int xb=(int) (ray.x+camerarel.x+M/2);

int yb=(int) (ray.y+camera rel.y+N/2);

if (xb<0) xb=O;
else if (xb>M*2-1) xb=M*2-1;
if (yb<0) yb=0;
else if (yb>N*2-1) yb=N*2-1;

return el [xb] [yb];
}

double gete2_prsp(int xa, int ya, double dz){
Point3D camerarel=new Point3D(100,50,cameraz);

Point3D ray = new Point3D(xa-camera_rel.x,ya-camera-rel.y,camerarel.z-
Zbar(xa,ya)-dz);

double zscale=camera_rel.z/ray.z;

ray.x*=zscale;
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ray.y*=zscale;
//check e array bounds

int xb=(int) (ray.x+camerarel.x+M/2);
int yb=(int) (ray.y+camerarel.y+N/2);
if (xb<0) xb=0;
else if (xb>M*2-1) xb=M*2-1;

if (yb<0) yb=0;
else if (yb>N*2-1) yb=N*2-1;

return e2[xb][yb];

}

public double getStereoError(int x, int y, int d, double dz){

double err=0;
for (int i=x-d;i<=x+d;i++){

for (int j=y-d;j<=y+d;j++){
err+=Math.abs(get-el-prsp(x,y,dz)-gete2_prsp(x,y,dz));

}
}
return err;

}

public double getBestWarp(int x, int y){

double range=10.0;
double step=0.2;

int d=5;
double minErr=getStereoError(x,y,d,0.0);

double bestWarp=0.0;
for (double warp=-range;warp<=range;warp+=step){

double err=getStereoError(x,y,d,warp);

//System.out.println("p:"+warp+" e:"+err);

if (err<minErr){

minErr=err;
bestWarp=warp;

}
}
return bestWarp;

}

// "constants"
public double mu=.l;

public double lambda=1;

public double lrbal=0.5;

void iterate() {

double K=10.0/3.0;
int di=50,pi=2,pic=0;
double azx=0,azy=0,ap=0,aq=0;

for(int i=0;i<=10000;i++){

//may need to recalculate if 1 or m change

double klp=K*lambda/sqr(SPACING);
double lpp=klp+mu;

double bright-e=0,grade=0,stereoe=0,abse=0,alt-e=0,inte=0;

double max-se=0;
int msex=0,mse-y=0;
int msex2=0,mse-y2=0;

for(int x=0;x<M;x++){
for(int y=0;y<N;y++){
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double pO=p[x][y];
double qO=q[x][y];

double pb=Pbar(x,y);

double qb=Qbar(x,y);
double rp=Rp(pb,qb);
double rq=Rq(pb,qb);

,,double EnR=zzex [yI --.R (pb, qb);
double EmR=get-ejprsp(x,y)--R(pb,qb);

double EmR=(l-

lrbal) *get_elprsp(x,y)+lrbal*get-e2_prsp(x,y) -R(pb,qb);
.,double EnR=(l-

lrbal)*Math.absget~ei rsp(xy))+irbal*Mat.abs(gete2_rsp(x,y))-R(pb,qb)
double Ediff=get-el-prsp(x,y)-get-e2_prsp(x,y);
se[x][y]=Ediff;
stereoe+=sqr(Ediff);

if (i%pi==O)
double f;

if ((f=getStereoError(x,y,2,0.))>max-se) {

max-se=f;
mse-x=x;
mse-y=y;

}

double D=lpp*(lpp+sqr(rp)+sqr(rq));
double A=klp*(pb-pO) + mu*(Zx(x,y)-p) + EmR*rp;

double B=klp*(qb-qO) + mu*(Zy(x,y)-qO) + EmR*rq;
double dp=((lpp+sqr(rq))*A - rp*rq*B) / D;

double dq=((lpp+sqr(rp))*B - rp*rq*A) / D;

p2[x][y] = p0 + dp;

q2[x][y] = qO + dq;

,"brighte+=sqr((e[x [y] --R(p [x] [y],qxI y])) /EO);

grad _e+= sqr((eIx[y-.R(Zx(x,y),Zy(x,y)))/EO)
brighte+=sqr(EmR/EO);
!' grade+=sqr( (get_e_prsp(x,y)-R(Zx (x,y),Zy(xy)))EO);

grade+=sqr(((1-

lrbal) *getelprsp(x,y)+lrbal*get-e2_prsp(x,y)-R(Zx(x,y) ,Zy(x,y)) )/EO);

} //y
} //x

tempf=p; p=p2; p2=tempf;

tempf=q; q=q2; q2=tempf;

//warp z into stereo alignment?

double warp=O;

int px=Q,py=0;
if (i%pi==0) {

pic++;
px=pic%10*10 + (pic/100)%10;
py=(pic/10)%10*10 + (pic/100)%10;

double ste=getStereoError(px,py,4,0.);
/if (ste>L/Lambda)

if (ste>.5/stereo-e)
warp=getBestWarp(px,py) * stereo_e / 40.0;

/warp=getBestWarp (rx, ry)/4.0;
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System. out .println( "Warp: (I"+px+", "+py+" ) "+warp+" [error was

"+ste+" 1");

}
for(int x=0;x<=M;x++){

for(int y=0;y<=N;y++){
// warp locally
double warpval=O.;

if (warp!=O) {
warpval = warp* Math.exp(-(sqr(px-x)+sqr(py-y)) /

(30*stereoe * lambda));
}
z2[x][y] = warpval + Zbar(x,y) - sqr(SPACING)/K *

(Px(x,y)+Qy(x,y));

//calculate error from correct answer

err[x][y] = z2[x][y] + terrain.getSurfaceHeight(x-50,y-50);
abse+= sqr(err[x][y]);

}
}

abs-e/=10000.0;
alte=err2;
tempz=z; z=z2; z2=tempz;

if (i%di==0) {

for(int x=0;x<M;x++){
for(int y=0;y<N;y++){

int_e+= sqr(Zx(x,y)-p[x][y])+sqr(Zy(x,y)-q[x][y]);

}
}

System.out.println(msg="i: "+i+" Br.e: "+bright-e+" Gr.e:

"+grade+" St.e: "+stereoe+" int.e: "+inte+" Abs.e: "+abse+" Alt.e:

"+alte+" lrbal: "+lrbal+" lambda: "+lambda+" mu: "+mu+" ;\r");

msgs.insertElementAt(msg,0);

if (grad-e<lambda*5) {
lambda=lambda*.666;
//mu=mu*.666;

}

// take progress shots at 0,100,400,900,1600,2500...

if (Math.sqrt((double)i/100.)%1==Q && i%100==0){

'nt. yoff=(int)Mat-h.sqrt((double)i)*10;
pc++;
Graphics g=progress.getGraphicso;

int yoff=(pc-l)*102;
g.drawImage(bi.getSubimage(330,0,430,100),0,yoff,null);
g.setColor(Color.green);
g.setFont(new Font("Arial",Font.PLAIN,9));

g.drawString("i:"+i,113,yoff+10);
g.setColor(Color.black);
g.setFont(new Font("Courier",Font.PLAIN,11));

g.drawString("i:"+i,432,yoff+12);
g.drawString("br.e:"+brighte,432,yoff+24);
g.drawString("gr.e:"+grad-e,432,yoff+36);
g.drawString("st.e:"+stereoe,432,yoff+48);
g.drawString( "lambda:"+lambda,432,yoff+60);
g.drawString ("mu: "+mu,432,yoff+72);

i
repaint();

}
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} //for i

}

public void dumpZ(int interval){

System.out.println(" ---- Begin Z dump------")
for(int y=N;y>=0;y-=interval){

for(int x=0;x<=M;x+=interval){

System.out.print(z[x] [y]+" " );
}
System.out.println();

}
System.out.println("----End Z dump------")

}

int cameraz=100;
int camerab=100;

void init() {

int screenw=400; //SCREENW;
int screenh=200; //SCREENH;

//terrain = new Terrain();
terrain new FractalTerrain (8,0.55, seed);
contours = terrain.getSurfaceContours(;

System.out.println(0);

Camera cameral = new Camera(camera-b/2,0,camera-z,terrain);
el=cameral.getPerspectiveView2();

System.out.println(1);

Camera camera2 = new Camera(-camera-b/2,0,camera-z,terrain);
e2=camera2.getPerspectiveView2();

System.out.println(2);

terrain.useR2=true;
,/elb=cameral.getPerspec tiveView2();

try {
Camera camera3 = new Camera(0,0,30000,terrain);
e2b=camera3.getPerspectiveView();

} catch (Exception e) { System.out.println(e); }

terrain.useR2=false;

repaint();

}

public void run() {
this.init();
//this.stereomatch();
this.iterate();

dumpZ(1);

public void stop() {
thread.stop();

}
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double[][][] SnTable;
boolean[][][] SnOK;

public void SnReset(){
SnOK=new boolean[100][100][DEPTHRANGE];

}

public double S_n(int x, int y, int d){

double s=0;
try {

if (SnOK[x][y][d]) return SnTable[x][y][d];

} catch (Exception e) {
return 0.0;

}

for (int xp=x-LS_BOUND;xp<=x+LSBOUND;xp++){
for (int yp=y-LSBOUND;yp<=y+LSBOUND;yp++) {

for (int dp=d-LS_BOUND; dp<=d+LSBOUND;dp++) {
try {

s+=L_n[xp] [yp] [dp];
} catch (Exception e) {}

}
}

}
SnTable[x] [y] [d]=s;
SnOK[x] [y] [d]=true;
return s;

}

double[][][] LO, L-n, L-nl;

int LSBOUND=l; //3x3 (+/- 1)

//int LSBOUND=2; //5x5 (+/- 2)

int[][] disparity = new int[100] [1001;
int DEPTHRANGE = 30;

public void stereomatch({
L_0 = new double[100][100][DEPTHRANGE];
L_n = new double[100][100][DEPTHRANGE];
L_nl = new double [100][100][DEPTHRANGE];
SnTable =new double[100][100][DEPTHRANGE];

// do initial match values

for (int x=0;x<100;x++){
for (int y=0;y<100;y++){

for (int d=0;d<DEPTHRANGE;d++){

// using squared differences between images

L-n[x] [y] [d] = L_0[x] [y] [d] =
1- Math.pow(el[x+50][y+50]-e2[x+50+(d-

DEPTHRANGE/2)] [y+50] ,2.0);
}

}

// iterate
for (int i=0;i<20;i++){

S_nReset();
System.out.println("sm i:"+i);
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for (int x=o;x<100;x++){
for (int y=O;y<100;y++){

int dval=O;
double maxd=O;

for (int d=O;d<DEPTHRANGE;d++){

double SumSn=-S-n(x,y,d);
for (int di=O;di<DEPTH_RANGE;di++){

SumSn+=S-n(x,y,di);
SumSn+=S-n(x+di-DEPTHRANGE/2,y,di);

}
double a=2.0;
double Rn=Math.pow( S-n(x,y,d) / SumSn a);

double dv= Lnl[x] [y] [d] = L_0 [x] [y] [d] * R-n;
if (dv>maxd){

maxd=dv;
dval=d;

}

}
disparity [xl [y]=dval;

}
}

// dump Ln+1 into L-n (actually swap them)
double [] [] [] temp = L-n;
L_n=L_nl;
L_nl=temp;

repaint();

}
}

}
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/*
* Camera.java

* Created on April 11, 2002, 4:05 PM

*/

* @author kwalker
* @version
*/

public class Camera {

Point3D position;
Terrain terrain;
double image[][];
static int IMAGESIZE=200;
static double PIXELSIZE=1;
static double ACCURACY=0.5;

/** Creates new Camera */
public Camera(double _x,double _y, double _z, Terrain _terrain) {

position = new Point3D(_x,_y,_z);
terrain=_terrain;

}
// "Rel" functions convert terrain info into camera coordinates;
double getSurfaceHeightRel (double _x, double _y)

{
_x+=position.x;
_y+=position.y;
return position.z-terrain.getSurfaceHeight(_,_y);

}

double getSurfaceColorRel(double _x, double _y)

{
_x+=position.x;
_y+=position .y;
return terrain.getSurfaceColor(_x,_y);

}

double[][] getPerspectiveView()

{

image=new double [IMAGESIZE][IMAGESIZE];

int sx=-IMAGESIZE/2-(int)Math.round(position.x/PIXEL_SIZE);
int sy=-IMAGESIZE/2;
int ex= IMAGESIZE/2-(int)Math.round(position.x/PIXELSIZE);
int ey= IMAGESIZE/2;

for (int y=sy; y<ey; y++){

int ty=(int) (y*PIXELSIZE);
for (int x=sx; x<ex; x++){

int tx=(int) (x*PIXEL_SIZE);

Point3D ray,rayu;
ray = new Point3D(tx,ty,position.z);
ray-u = new Point3D(tx,ty,position.z);

// 'normalize' to make the z component 1;
rayu.x /= ray:u.z;
rayu.y /= rayu.z;
rayu.z /= rayu.z;
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double height = getSurfaceHeightRel(ray.x,ray.y);

while (Math.abs(ray.z-height)>ACCURACY){
// scale ray to have z=height
ray.x = rayu.x * height;
ray.y = ray_u.y * height;
ray.z = ray_u.z * height;
height = getSurfaceHeightRel(ray.x,ray.y);

}

double color = getSurfaceColorRel(ray.x,ray.y);
try {

image[x+IMAGESIZE/2+(int)Math.round(position.x*PIXELSIZE)][y+IMAGESIZE/2]=co
lor;

} catch (Exception e) {
e.printStackTrace();

System.out.println(x+IMAGESIZE/2+(int)Math.round(position.x*PIXELSIZE)+","+y+
IMAGESIZE/2);

throw new RuntimeException);

}
}

}

return image;

}

double[][] getPerspectiveView2()

{

image=new double [IMAGESIZE][IMAGESIZE];

int sx=-IMAGESIZE/2-(int)Math.round(position.x/PIXEL_SIZE);
int sy=-IMAGESIZE/2;
int ex= IMAGESIZE/2-(int)Math.round(position.x/PIXEL_SIZE);
int ey= IMAGESIZE/2;

for (int y=sy; y<ey; y++){
int ty=(int)(y*PIXELSIZE);
for (int x=sx; x<ex; x++){

int tx=(int) (x*PIXEL_SIZE);

Point3D ray,rayu;
ray = new Point3D(tx,ty,position.z);
rayu = new Point3D(tx,ty,position.z);

// 'normalize' to make the z component 1;
rayu.x /= ray-u.z;
rayu.y /= ray-u.z;
rayu.z = ray-u.z;
double height = getSurfaceHeightRel(ray.x,ray.y);
double step=Math.abs(position.z)/2.0;
double probe=position.z;
//trace rays
int i=0;

while (Math.abs(ray.z-height)>ACCURACY){
//System.out.println("ray.z="+ray.z+" probe="+probe+"

height="+height+" step="+step);
if (++i>l00) throw new RuntimeException);

if (ray.z<height){
probe+=step;
step/=2.0;
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} else {
probe-=step;
step/=2.0;

}
ray.x = ray_u.x * probe;
ray.y = rayu.y * probe;
ray.z = ray_u.z * probe;
height = getSurfaceHeightRel(ray.x,ray.y);

}

double color = getSurfaceColorRel(ray.x,ray.y);
try {

image[x+IMAGESIZE/2+(int)Math.round(position.x*PIXELSIZE)][y+IMAGESIZE/2]=co
lor;

} catch (Exception e) {
e.printStackTrace();

System.out.println(x+IMAGESIZE/2+(int)Math.round(position.x*PIXELSIZE)+, "+y+
IMAGESIZE/2);

throw new RuntimeException();

}
}

}

return image;

}

double[][] getOrthogonalView()

{
image=new double [IMAGESIZE][IMAGESIZE];
int sx=-IMAGESIZE/2;
int sy=-IMAGESIZE/2;
int ex= IMAGESIZE/2;
int ey= IMAGESIZE/2;

for (int y=sy; y<ey; y++){
int ty=(int) (y*PIXELSIZE);
for (int x=sx; x<ex; x++){

int tx=(int) (x*PIXEL_SIZE);
image[x+IMAGE_SIZE/2][IMAGESIZE-(y+IMAGESIZE/2)] =

getSurfaceColorRel(tx,ty);

i
}
return image;

}

}
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/*
* terrain.java
*

* Created on April 11, 2002, 2:53 PM
*/

import java. awt. geom. Point2D. Double;

*

* @author kwalker
* @version
*/

public class Terrain {

//Point3D lightSource;
public boolean useR2=false;

/** Creates new terrain */
public Terrain() {
}

public double getSurfaceHeight(double x, double y){
//the terrain function
//double z= 3*

Math. cos (Math. sqrt (Math.pow(x/3, 2) +Math.pow(y/3, 2) ))+x/2;
//double z= 3* Math.cos(Math.sqrt(Math.pow(x/3,2)+Math.pow(y/3,2))) +

5 * Math.cos(x/15)*Math.sin(y/15);;
double z= 3*

Math.cos(Math.sqrt(Math.pow(x/3,2)+Math.pow(y/3,2)) )+50*Math.sqrt(Math.pow(x/10
0,2)+Math.pow(y/100,2));

//double z= 1 * Math.cos(x)*Math.sin(y);
return z;

I

public Point2D getSurfaceGradient(double x,double y){
double d=0.01;
return new Point2D((getSurfaceHeight(x-d,y)-

getSurfaceHeight(x+d,y))/d/2,
(getSurfaceHeight(x,y-d)-getSurfaceHeight(x,y+d))/d/2)

I

public double getSurfaceColor(double x, double y) {
return getSurfaceAlbedo(x,y) * getSurfaceReflectance(x,y);

}

public double getSurfaceAlbedo(double x, double y) {
return 1.0; //constant for now

}

// reflectance map function
public double R(double p, double q) {

double qs=l;
double ps=.5;
double num= 1 + ps*p + qs*q;
if (num <= 0) return 0;

double denom=Math.sqrt(l+p*p+q*q)*Math.sqrt(l+ps*ps+qs*qs);

return num/denom;
}

// alternate reflectance map function
public double R2(double p, double q) {

double qs=.5;
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double ps=-l;
double num= 1 + ps*p + qs*q;
if (num <= 0) return 0;

double denom=Math.sqrt(l+p*p+q*q)*Math.sqrt(l+ps*ps+qs*qs);

return num/denom;

}

public double getSurfaceReflectance(double x, double y)

{
Point2D gradient = getSurfaceGradient(x,y);

if (useR2) return R2(gradient.x,gradient.y);
else return R(gradient.x,gradient.y);

}

public double[][] getSurfaceContours(){
double[][] img=new double[100][100];
for (int x=0;x<100;x++){

for (int y=0;y<l00;y++){
double zval=l;
double z=getSurfaceHeight(x-50,y-50);
if (Math.abs(z)%1<.25) {

zval=0;

}
else if (z>O) zval=.75;
img[x] [y]=zval;

}
}
return img;

}

}
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/*
* FractalTerrain. java
*

* Created on April 30, 2002, 2:41 PM
*/

import java.util.*;

*

* @author kwalker
* @version

public class FractalTerrain extends Terrain {
private double[][] terrain;
private double roughness, min, max;
private int divisions;
private Random rng;

public FractalTerrain (int lod, double roughness, long seed) {
this.roughness = roughness;
this.divisions = 1 << lod;
terrain = new double[divisions + 1][divisions + 1];
rng = new Random(seed);

terrain[0] [0] = rnd ();
terrain[O][divisions] = rnd (;
terrain[divisions][divisions] = rnd ;
terrain[divisions][0] = rnd ;

double rough = roughness ;
for (int i = 0; i < lod; ++ i) {

int q = 1 << i, r = 1 << (lod - i), s = r >> 1;
for (int j = 0; j < divisions; j += r)

for (int k = 0; k < divisions; k += r)
diamond (j, k, r, rough);

if (s > 0)
for (int j = 0; j <= divisions; j += s)

for (int k = (j + s) % r; k <= divisions; k += r)
square (j - s, k - s, r, rough);

rough *= roughness * .65;
}

min = max = terrain[0][0];
for (int i = 0; i <= divisions; ++ i)

for (int j = 0; j <= divisions; ++ j)
if (terrain[i][j] < min) min = terrain[i][j];
else if (terrain[i][j] > max) max = terrain[i][j];

}

private void diamond (int x, int y, int side, double scale) {
if (side > 1) {

int half = side / 2;
double avg = (terrain[x][y] + terrain[x + side][y] +

terrain[x + side][y + side] + terrain[x][y + side]) * 0.25;
terrain[x + half][y + half] = avg + rnd () * scale;

}

private void square (int x, int y, int side, double scale) {
int half = side / 2;
double avg = 0.0, sum = 0.0;
if (x >= 0)
{ avg += terrain[x][y + half]; sum += 1.0; }
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I

if (y >= 0)
{ avg += terrain[x + half] [y]; sum += 1.0; }
if (x + side <= divisions)
{ avg += terrain[x + side][y + half]; sum += 1.0; }
if (y + side <= divisions)
{ avg += terrain[x + half][y + side]; sum += 1.0; }
terrain[x + half][y + half] = avg / sum + rnd () * scale;

private double rnd () {
return 2. * rng.nextDouble () - 1.0;

}

public double getAltitude (double i, double j) {
try {
int xl=(int)Math.floor(i * divisions);
int x2=(int)Math.ceil(i * divisions);
int yl=(int)Math.floor(j * divisions);
int y2=(int)Math.ceil(j * divisions);
double xld=(i*divisions)-xl;
double x2d=x2-(i*divisions);
double yld=(j*divisions)-yl;
double y2d=y2-(j*divisions);
double dll=Math.pow(xld*xld+yld*yld,.5);
double d12=Math.pow(xld*xld+y2d*y2d,.5);
double d2l=Math.pow(x2d*x2d+yld*yld,.5);
double d22=Math.pow(x2d*x2d+y2d*y2d,.5);

double alt= ((l-dll)*terrain[xl][yl]+
(1-dl2)*terrain[xl][y2]+

(1-d21)*terrain[x2][y1]+
(1-d22)*terrain[x2][y2])/(4-d11-d12-d21-d22);

//double alt = terrain[(int) (i * divisions)] [(int) (j * divisions)];
return (alt - min) / (max - min);
I catch (ArrayIndexOutOfBoundsException e) {

return 0.0;
}

}

/*
public double getAlt(double i,double j){

return getAltitude((i+128)/256.0, (j+128)/256.0) * 10.0 - 5;
}
*/

public double getSurfaceHeight(double i,double j){
return getAltitude((i+128)/256.0, (j+128)/256.0) * 40.0 - 20;

}
public Point2D getSurfaceGradient(double x,double y){

try {
double d=0.5;

return new Point2D((getSurfaceHeight(x-d,y)-
getSurfaceHeight(x+d,y))/d/2,

(getSurfaceHeight(x,y-d)-getSurfaceHeight(x,y+d))/d/2)
} catch (Exception e) {

e.printStackTrace();
throw new RuntimeException();

}
}

}
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