
FAKE PHONG SHADING

by

Daniel Vlasic

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 17, 2002
~ og tZtyp F TECH

TTS INSTITUTE
NOLOGY

Copyright 2002 M.I.T. All Rights Reserved. r JUL 3 2002

LIBRARIES

6ARKtr -R

Author t

Department of Electrical Engineering and Computer Science
May 17, 2002

Approved by
Leonard McMillan
Thesis Supervisor

Accepted by L.
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

FAKE PHONG SHADING

by Daniel Vlasic

Submitted to the
Department of Electrical Engineering and Computer Science

May 17, 2002

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

And Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

In the real-time 3D graphics pipeline framework, rendering quality greatly
depends on illumination and shading models. The highest-quality shading
method in this framework is Phong shading. However, due to the computational
complexity of Phong shading, current graphics hardware implementations use a
simpler Gouraud shading. Today, programmable hardware shaders are becoming
available, and, although real-time Phong shading is still not possible, there is no
reason not to improve on Gouraud shading.

This thesis analyzes four different methods for approximating Phong shading:
quadratic shading, environment map, Blinn map, and quadratic Blinn map.
Quadratic shading uses quadratic interpolation of color. Environment and Blinn
maps use texture mapping. Finally, quadratic Blinn map combines both
approaches, and quadratically interpolates texture coordinates.

All four methods adequately render higher-resolution methods. However, only
Blinn map and quadratic Blinn map provide reasonable quality on coarser
meshes. Moreover, quadratic Blinn map is not implementable in current
hardware shaders. Therefore, Blinn map is the best presented Phong
approximation method. It renders in real-time, with near-Phong quality, and
easily integrates into the 3D graphics pipeline.

Thesis Supervisor: Leonard McMillan
Title: Associate Professor, MIT Department of EECS

2

TABLE OF CONTENTS

1 In tro du ction ...-.-------------------------7

2 Previous Work 11

3 Background 17

3.1 Conventions..17
3.2 Illumination.. 19

3.3 Texture Mapping.. 20

3.4 Parameterization ... 21

3.5 Forward Differencing .. 23
4 Shading Interpolation Methods... 25

4.1 Phong Shading .. 25
4.2 Linear Gouraud Shading ... 26
4.3 Quadratic Shading ... 27

5 Texturing Approaches...31
5.1 Environment Map ... 31

5.2 B linn M ap .. 33
5.3 Quadratic Interpolation of Texture Coordinates....................... 38

6 Results and Analysis...41
6.1 Comparison Methods .. 44

6.2 Quadratic Shading ... 47
6.3 Environment Map ... 53

6.4 B linn M ap 56

6.5 Quadratic Blinn Map... 62
6.6 Comparison... 64

7 Conclusions and Future Work...69
Bibliography 71

Appendix A: Quadratic Shading Hardware Implementation 72

Appendix B: Blinn Map Hardware Implementation.. 75

3

LIST OF FIGURES

Number
Figure 1.1 Standard graphics pipeline

Figure 3.1 Conventional vectors

Figure 3.2 Phong and Blinn domain

Figure 3.3 Texture mapping

Figure 3.4 Triangle parameterizations

Figure 4.1 Quadratic interpolation

Figure 4.2 Evaluated points for quadratic shading

Figure 4.3 Evaluated points for cubic shading

Figure 5.1 Environment mapping

Figure 5.2 Spherical mapping texture

Figure 5.3 Blinn map for diffuse and specular reflections

Figure 5.4 Blinn texture

Figure 5.5 Worst case Blinn axis

Figure 5.6 Blinn axis singularity

Figure 5.7 Blinn texture coordinates

4

Page
8

18

20

21

22

27

28

30

32

33

34

35

36

37

38

Figure 5.8 Quadratic Blinn mapping

Figure 6.1 Phong shaded teapot and triangle

Figure 6.2 Gouraud shaded teapot and triangle

Figure 6.3 Teapot rendered by quadratic shading

Figure 6.4 Triangle rendered by quadratic shading

Figure 6.5 Teapot rendered by subdivided Gouraud shading

Figure 6.6 Triangle rendered by subdivided Gouraud shading

Figure 6.7 Teapot rendered by environment map

Figure 6.8 Triangle rendered by environment map

Figure 6.9 Teapot rendered by Blinn map

Figure 6.10 Triangle rendered by Blinn map

Figure 6.11 Triangle edge in shading parameter plane

Figure 6.12 Simplified triangle edge in shading parameter plane

Figure 6.13 Teapot rendered by quadratic Blinn map

Figure 6.14 Triangle rendered by quadratic Blinn map

Figure 6.15 Dodecahedron rendering

Figure 6.16 Sphere rendering

5

39

42

43

47

48

50

51

53

54

56

57

58

60

62

63

66

67

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Leonard McMillan, for support and

opportunity to work on 'Fake Phong Shading' project. He provided me with

guidance and patience, as well as all the flexibility and freedom while tackling this

problem. I would also like to thank my labmates for keeping a great atmosphere

in the graphics lab, filled with hours of hardcore research and console game-

playing. Finally, I am most grateful to my family and Ana for always backing me

up, helping me get where I am now in life.

And, of course, I should not have forgotten the one person that holds this lab

together, the one who provides essential nutrition to all of us (but mostly me) -

our secretary, Bryt Bradley!

6

Chapter 1

INTRODUCTION

Real-time 3D graphics is the most researched and developed branch of computer

graphics. It is so commonplace that dedicated hardware has been developed to

support it on almost all of today's available computers. It wasn't always like this:

the early work on 3D rendering and hardware was done on high-end computers

and workstations.

Recently, 3D graphics has migrated to personal computers with dedicated

hardware. With the advent of video games industry, the hardware has been

pushed to render increasingly complex scenes at interactive rates (>30 frames per

second). In order to achieve this, modem graphics cards resort to lower-quality

rendering techniques that are approximations to the well established, and much

slower, high-quality methods. Hardware vendors have widely adopted a

standardized graphics pipeline for real-time rendering, but thanks to the flexibility

of the hardware, the most recent architectures enable programmers to implement

algorithms that improve rendering quality at very little or no reduction in

rendering speed.

7

Modeling
Transformations

Trivial
Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Rasterization

Display

Figure 1.1 Standard graphics pipeline

In the classic interactive graphics pipeline (Figure 1.1) 3D objects are represented

by triangular meshes. In addition to triangles approximating the object's

geometry, a triangular mesh contains material information as well as the surface

normals at triangle vertices. The rendering pipeline describes a number of

processing steps needed to generate the resulting image on the screen. First,

modeling transformations appropriately orient models, defined in their own model

space, in a common coordinate frame referred to as the world space. Next, those

objects that cannot possibly be seen are eliminated by trivial rejection. The

remaining objects are thereafter illuminated and each vertex is assigned a color.

After illumination, viewing transformation maps the points from world space into

camera's point of view - eye space. There, objects are clipped against the

boundaries of the final visible volume called vieningfrustum. At that point, the

computation transitions from three to two dimensions by projecting the viewing

frustum onto a plane called smen space. Finally, with rasterization, the objects are

scan-converted to pixels in a screen buffer, which in turn can be displayed.

8

The quality of the appearance of objects rendered using the pipeline greatly

depends on illumination and shading stages. My research focuses on those two

highly coupled phases. As my thesis I will implement and evaluate several

popular real-time shading methods for approximating high-quality 3D rendering,

all of which can make use of the power and flexibility of current graphics

hardware. In addition, I will introduce and evaluate a few new techniques. I will

analyze all of these methods assessing their quality and efficiency. Finally, I will

compare them both analytically and qualitatively to the standard high-quality

rendering methods.

The central claims of my thesis are that modem programmable graphics hardware

can be used to approximate significantly higher quality renderings than are

typically available through the classic pipeline approach. Moreover, this hardware

can be used to closely approximate the highest quality per-pixel illumination

algorithms, which previously have been used only in off-line (non-realtime)

rendering algorithms. I will explore two techniques for achieving higher quality

interactive renderings using existing programmable hardware. First, I will explore

the implementation of higher-order interpolants in the "pixel shader" phase of

rendering. Next, I will evaluate the use of modern texture mapping hardware to

improve the illumination approximations used.

The remainder of the thesis is organized as follows: In chapter 2, I discuss

previous work in the area of real-time rendering. In chapter 3, I explain the

background information on the topic. Chapter 4 describes different interpolation

methods for high-quality rendering approximation. Chapter 5 deals with

rendering by means of texture mapping. In chapter 6, I introduce quadratic

interpolation of texture coordinates for improving the rendering quality. Chapter

7 presents the results and provides analysis of all the mentioned methods. In

9

chapter 8, I discuss the results and possible future work, as well as conclude the

thesis.

10

Chapter 2

PREVIOUS WORK

In this chapter I discuss the work on real-time 3D rendering done during the last

few decades. This includes: illumination models, interpolation techniques, and

texture mapping.

Much of the early work on real-time lighting and shading was done in University

of Utah in the early seventies. Henry Gouraud created one of the first algorithms

for smoothly shading curved surfaces represented by triangular meshes [1]. He

proposed computing the approximate lighting at only a few points per triangle,

the triangle vertices, and then interpolating those colors across the surface of the

triangle. Although he considered various types of interpolation (quadratic, cubic),

the common Gouraud shading algorithm is synonymous to linear interpolation of

color. Accordingly, it can be expressed incrementally and implemented very

efficiently in hardware; every modern 3D graphics chip supports it.

The lighting model used by Gouraud expressed only the diffuse or Lambertian

reflectance, which depends on the orientation of the surface relative to the

incoming light. This simple lighting model cannot represent shiny and reflective

materials. Subsequently, Phong introduced a more elaborate phenomenological-

based lighting model [2]. He added a model for specularity - the reflection of the

light source on the material - to the lighting equation. According to this

improved model, in addition to the surface normal and incoming light, the

specular light intensity is also dependent on the viewer position. Phong

developed an analytic expression for heuristically modeling a range of surfaces

between the diffuse and mirror-like by adding a term that controls the spread of

11

the specular highlight, which is often referred to as the material's shininess. The

lighting equation in this form is known as Phong illumination. Phong also

improved Gouraud shading by pointing out that rather than interpolating the

color across a triangle, one should interpolate the surface normal and re-evaluate

the lighting equation at each pixel - an algorithm known as Phong shading.

Later in the seventies, Jim Blinn published a variant to Phong's lighting equation

[3]. His version was based on Torrence-Sparrow explorations of modeling real

light, which made it physically more correct than Phong's. Their theory states

that on the micro-level every material is composed of numerous mirroring facets

with some probabilistic distribution of orientation. Blinn's insight was to

measure how much the average surface normal deviates from the "ideal normal"

that would reflect all light towards the viewer. According to Snell's law of

reflection, this ideal normal is the bisector vector between light and viewer

direction, also called the half-vector. In view of that, Blinn modeled specular

highlights to be strongest when the normal and half-vector coincide, and to fall

off as they diverge. Up to this day, graphics hardware most frequently models

lighting by Blinn's variant of Phong's illumination equation.

In a standard graphics pipeline, the highest quality rendering is achieved by

rendering polygonal meshes using Blinn's illumination model in tandem with

Phong shading. However, even the latest commodity hardware does not apply

Phong shading at interactive frame rates: they still use Gouraud shading. As a

result, programmers (mostly game developers) have come up with, and are still

developing, various methods of approximating Phong shading. Those methods

fall in between Gouraud and Phong shading both in speed and in rendering

quality, and the programmers' challenge is to find the best trade-off between

quality and performance (at least until the hardware becomes strong enough for

Phong).

12

Some methods of improving linear shading were mentioned even by Gouraud -

higher order interpolation. Quadratic and cubic shading were considered and

implemented by several researchers [5]. Both of these higher-order methods can

express extremes and can be continuous across triangles, which makes them

suitable for shading curved surfaces. On the other hand, higher order shading is

more computationally intensive than linear Gouraud, both in the initialization and

per-pixel computation. Furthermore, since a quadratic can have only one local

extreme it cannot show more than one highlight per triangle.

A Phong approximation technique called "Fast Phong Shading" was introduced

by Bishop and Weimer [4] in mid-eighties. They approximate true Phong shading

by expanding the illumination equation using two-dimensional form of Taylor's

series - expanding to the second degree about the triangle centroid.

Conveniently, the resulting expression (a quadratic) can be evaluated using

forward differencing, which makes it suitable for hardware implementation.

Although fast Phong shading improves the speed over standard Phong shading, it

does not enforce continuity across triangle edges. Furthermore, the error of the

approximation grows with the triangle size since the Taylor series is expanded

about the centroid. In addition, to simplify the computation, Bishop and Weimer

assumed that both the eye and the light sources are infinitely far away from the

object. This makes fast Phong shading inappropriate for today's uses of real-time

3D graphics such as computer games and realistic walkthroughs and

visualizations.

For the last decade, real-time desktop 3D graphics on has been driven by the

progress of computer gaming industry. One of the most important advances

brought by computer games is real-time texture mapping. Texture mapping is a

very powerful tool developed for expressing material properties that lighting

models cannot simulate, for example high-frequency detail and patterns. The

13

efficiency and flexibility of texture-mapping hardware led programmers to

investigate using textures for lighting and shading as opposed to analytic models.

As it turns out, with appropriate textures and texture-mapping algorithms it is

possible to produce a reasonable approximation to Phong shading. Today there

are a number of such algorithms employed primarily in games. One of these is

"environment mapping" introduced by Blinn and Newel in [6] and intended for

simulating global reflection. Environment mapping essentially wraps an image of

the environment as seen from object's point of view around the object. The

environment is mapped onto object's surface by using vertex normals and/or

view vector to index into the texture. Presently there are several standard

techniques used for environment mapping, such as spherical, cubic, and bi-

quadratic mapping.

There are several other methods that fall in between Gouraud and Phong shading

that I will not discuss since they have not achieved a wide acceptance. They

include techniques such as interpolating angles and cosines of angles. Some

higher-level methods, such as bi-cubic patches and Bezier triangles, are not

implemented in hardware and fall out of the scope of this research.

The last 35 or so years have seen significant innovation in real-time 3D rendering,

from simple flat shading to complex texture mapping. Many of the classic

approaches, such as Gouraud shading, are well established and supported in

modern hardware; they have seen little change since they were first invented.

Textures have introduced lots of variations and improvements to the classic

algorithms, due to the flexibility of their use. What's more, with the emergence

of programmable components of the pipeline, we are given tools to implement

new and completely different rendering algorithms. In this research I plan to

evaluate and extend many of these techniques that can use the power of hardware

to better approximate Phong shading; methods I classify as "fake Phong

14

shading". In the next chapter I will introduce the background information

essential to understanding the remainder of the thesis where I describe and

analyze these methods.

15

16

Chapter 3

BACKGROUND

In this chapter I discuss the work on real-time 3D rendering done during the last

few decades. Much of the graphics pipeline can be expressed using simple linear

algebra, though it does contain some more complex techniques. In this chapter I

define the conventions used in the remainder of the thesis. Furthermore, I

explain some of the necessary graphic-specific techniques, namely: illumination

equations, texture mapping, triangle parameterizations, and forward differencing.

3.1 Conventions

Most of the calculations in this thesis rely on a set of normalized vectors defined

at the surface of each triangle. They describe the lighting environment of

triangles and are essential for illumination calculation. They are depicted in the

following figure:

17

^ H ^
L R

SV

Figure 3.1 Conventional vectors: N , the surface

normal; L, the unit vector from the surface point

to a light source; V , the unit vector from the

surface point to the viewer's eye; R , the unit

vector in the direction of the reflected light; H,
the half-vector between L and V

N, L, and V are given as the inputs to the illumination process. The reflected

ray, R, is computed according to Snell's law of reflection and geometric optics,

which states that the incident angle and the reflected angle are equal for

reflections. The reflected vector, R, can be computed as follows:

R=2(N-L)N-L (3.1)

An alternative interpretation of Snell's laws is based on H, a hypothetical normal

that would reflect the light towards the eye. It is computed in the following

manner:

A A

L+V
H = (3.2)

18

By definition, vectors L, N, and R lie in a common plane, and so do L, H, and V.

These two planes, however, do not necessarily coincide.

3.2 Illumination

Illumination models the intensity of light reflected from an object towards the

viewer. For a surface point on the object, the illumination computation requires

some surface properties (position, normal), some material properties (color,

reflectivity, shininess), the viewer's position, and a set of light sources.

Phong's illumination model computes the color of a surface point using the

following expression:

lights

Itotal,A ="ka OIaabient,A + I, [kdO (N -L) + k,(Y -R)shm"], 33)
i=1

where I is the light intensity at a particular wavelength denoted by X; 0 represents

the color of the object; k., kd, and k, are the reflectance coefficients for ambient,

diffuse, and specular light respectively; nshiny is a coefficient of shininess. The

other terms represent the vectors described in the previous section: N L L

represents Lambert's diffuse shading, V - R models specular reflectivity, and n

controls the spread of specular highlights.

Blinn's contribution to the illumination model differs only in the computation of

s A A A

specular reflection, where N -H is used in place of V -R:

19

itota, = kaOA bientA [kO(-L)s+ k,(-$)"n""'] (3.4)
i=1

When examining the domains of vectors defining specular highlights (V, R, N,

and H), it is generally accepted that Blinn's model is more physically plausible

than Phong's. In Blinn's model specular reflection is defined only on the

hemisphere above the surface of the object, as opposed to Phong's, where some

specular light can be reflected below the surface (Figure 3.2).

A N A A N
L R LH

V V

Figure 3.2 Phong (a) and Blinn (b) domain. In (a),
the dot product between V and R can be positive,
even though V points under the surface of the
object. In (b), both N and H point outwards from
the surface.

3.3 Texture Mapping

Texture mapping is a powerful technique for adding realism to computer-

generated scenes. Fundamentally, texture mapping maps an image, the texture,

onto a triangle. The algorithm takes as inputs the texture coordinates of triangle

vertices; it then interpolates the texture coordinates linearly in three-space. When

this interpolation is computed in 2-D image space, a perspective divide is required

to accomplish this interpolation, in order to model the foreshortening typical of

perspective.

20

(U21V 2) = (0(0

(x2, y 2,0.0 1(,0

(U0, v)=(0,1) (U1.V1) =010)

Figure 3.3 Texture mapping. The sign to the right

is mapped on the triangle to the left by specifying

texture coordinates of the three triangle vertices.

Texture mapping is flexible for two reasons: first, the texture coordinates at

triangle vertices can be obtained in many ways; and second, the texture values can

be used in many ways. Often, texture coordinates are pre-defined as part of the

model description, where they are used to put images onto the object like labels.

However, texture coordinates can also be computed using vertex properties and

other information; a good example of this is the environment map, where vertex

normals are used to index into the texture to simulate global reflection. As for

the usage of texture values, they usually stand for the diffuse color of the object.

Other uses of texturing include bump mapping, where the texture values

represent variations of the surface normal. In this thesis texture values

correspond to illumination and are used for shading approximation.

3.4 Parameterization

Depending on the nature of computation, programmers pick different

parameterizations of space, i.e. represent the points in the world in terms of

21

different coordinate systems (origin + basis vectors). When working in screen

space, it is convenient to use the classic Cartesian x-y coordinate system, where

triangle vertices have coordinates (xoyo), (x,y,), (x2 y2),. Sometimes, however, it is

necessary to view the world relative to the triangle itself. In that case it is

common to use a barycentric parameterization. In barycentric coordinate system,

s-t, the origin is positioned at one of the vertices, and the vectors from the origin

to the other two vertices constitute the basis. Thus, coordinates of the triangle

vertices are always (0,0), (1,0), and (0,1), which can in some cases greatly simplify

the computation.

(x2,y2) t

y

(x,,y1)

(xO, yo) (0,0) (1,0) S

(0,0) X

(a) (b)

Figure 3.4 Triangle parameterizations. The
triangle can be defined by Cartesian coordinates (a),
with a global origin at (0,0) and orthogonal basis x
and y. They can also be expressed by barycentric
coordinates, where the origin is one of the triangle
vertices, and the basis vectors are the two edges
adjacent to that vertex.

Transitioning from one parameterization to the other is straightforward. The

relationship between (xy) and (s, /) is:

x ,- xo X2 - XO X0
-t {S, t E= [0,1] S + t s } (3.5)

Y _ Y1 - YO Y2 - YO yo_

22

3.5 Forward Differencing

In a 3D graphics pipeline the triangles are rendered in screen space one scanline

at a time. As a result, from one pixel to the next, only one coordinate increases

by 1. This property can be exploited to speed up the rendering process by

incrementally computing the new value based on the old one, thus reducing the

amount of computation needed per pixel. Such technique is called forward

differencing.

As an example, I will derive the forward differencing expression for the case of a

linear two-dimensional functionf:

f(x,y)= A-x+B-y+C (3.6)

As the renderer traverses a particular scanline, they coordinate remains constant,

and x always increases by one. Hence, the next value of f can be expressed by

only one addition to its current value:

f(x+1,y)= A-(x+1)+B.y+C= A-x+A+B- y+C=f(x,y)+A (3.7)

The same reasoning holds for an increase iny coordinate when transitioning from

one scanline to the next.

Forward differencing can be generalized to handle higher-order polynomials by

introducing additional state variables. In case of a two-dimensional quadratic

function, for example, forward differencing consists of four additions

accompanied by three multiplications.

f(x+l, y)= A.(x+1)2 +B.(x+1). y+C y2 +D.(x+1)+E. y+F

=A-x2 +2-A-x+A+B-x-y+B. y+C-y 2 +D-x+D+E-y+F (3.8)

= f (x, y)+2. A-x+A+B- y+D

23

The linear term of equation 3.8 can be computed in separate accumulators as

shown below:

f(x+1, y) = f(x, y)+ g(x, y) (3.9)

g(x, y)= 2. A -x + A + B -y + D (3.10)

g(x+1, y) = g(x, y)+ 2. A (3.11)

Since 2- A is constant across each triangle, the amount of computation for

forward differencing of a quadratic totals only two additions per pixel. Forward

differencing of higher-order functions requires more accumulators.

In this chapter I have presented the mathematical background necessary to

understand the illumination and shading stages of the classic graphics rendering

pipeline. I have also presented the key insights necessary for understanding the

use of texture mapping, barycentric parameterizations of triangles, and forward-

differencing interpolation methods. Throughout the reminder of this thesis, I

will develop new illumination and shading techniques based on these methods.

24

Chapter 4

SHADING INTERPOLATION METHODS

In this chapter, I describe Phong shading and its approximations that employ

different interpolation strategies to improve rendering quality. The most basic of

these is the widely used linear Gouraud shading. Additionally, I will show how to

quadratically shade triangles and achieve higher rendering quality with a

reasonable additional cost compared to Gouraud.

4.1 Phong Shading

Phong shading, as described in Chapter 2, was introduced by Phong as the

appropriate shading method to go along with his illumination model. Triangles

are shaded by linearly interpolating the surface normal, defined at each vertex,

and re-evaluating the illumination equation at each pixel. Qualitatively, images

generated using Phong shading are superior to those generated by other methods

in the standard rendering pipeline. However, Phong shading is computationally

demanding and it does not run in real-time even on modern hardware.

Phong shading is expensive not only because illumination has to be evaluated at

each pixel, but also because linearly interpolating the normal is not as simple as

linearly interpolating a scalar. Most commonly, the normal is interpolated by

linearly interpolating each of its scalar components and re-normalizing at each

pixel. Normalization includes a divide, a square root, and a few multiplications

and additions. To avoid re-normalizing the normal, some researchers have

considered quadratically interpolating its components. This approach works

25

reasonably well when objects are some distance away from the eye, but the quality

decreases as they come closer and re-normalization becomes necessary. Another

approach is to spherically interpolate the normals, i.e. map the triangle onto the

surface of a sphere and use the sphere normals as the triangle normals. Although

spherical interpolation works well, it still requires a significant amount of

computation per pixel comprising of multiplications, additions and trigonometric

functions.

4.2 Linear Gouraud Shading

One of the first and well-known approaches to speeding up shading while

keeping the surfaces smooth is Gouraud shading [1]. Gouraud applies the

illumination only at triangle vertices, and linearly interpolates the resulting colors

across the triangle. Linear interpolation, however, cannot express the light

intensity peaks, or highlights, at regions of high curvature. Gouraud shading has

a common artifact that it is easy to recognize the underlying triangular mesh,

particularly for low-resolution meshes. This results from the fact that the

derivative of the piece-wise linear color function is not continuous across the

triangle edges. These discontinuities are accentuated by the human visual system,

through a psychophysical Phenomenon know as Mach banding [11].

26

4.3 Quadratic Shading

S

(0.0)

Figure 4.1 Quadratic Interpolation. Quadratic

color interpolation can be defined over the surface

of a triangle to better approximate Phong shading.

(figure used by permission of [51)

An alternative to linear Gouraud shading is quadratic interpolation. A quadratic

can express shading maximums and minimums that appear within a triangle's

interior, and thus can approximate light distribution better than Gouraud shading.

In addition, quadratic shading can be constrained to enforce continuity across

triangle edges, thus masking the underlying mesh. The downside of this

approach is an increase in computation. Since a quadratic has more degrees of

freedom (six), we need more constraints to completely define it. Therefore,

illumination must be computed at six points, as opposed to three. Furthermore,

evaluating the quadratic terms during scan conversion introduces additional per-

pixel overhead compared to the linear Gouraud shading, as mentioned in section

3.5.

Although more complex than Gouraud, setting up a quadratic across a triangle is

straightforward. For every pixel with barycentric coordinates (s, t) within the

triangle, we can define the color value r(s, t) according to the following equation:

r(s,t) =CO +C, s+C 2 t+C 3 S2 +C 4 -s-t+C. -t 2 , (4.1)

27

where C0-C5 are constant coefficients per triangle. To solve for these coefficients,

we need six pre-computed color values. Three of the values are taken at triangle

vertices, which already have their positions and normals computed. To enforce

color continuity across triangles, the remaining three values must be located on

the triangle edges - one per edge. This way the three values per edge - two at the

vertices and one in between - completely define a quadratic (Ax2+Bx+C). Even

with abovementioned constraints, edge points can be located anywhere between

the vertices, and one could formulate picking them as an optimization problem.

However, for simplicity of computation, the edge points are preset at the

midpoints in-between the vertices, as illustrated in figure 4.2.

r4 = r(O, 1)

r. = r(O,) r3= r(, 1/2)

ro= r(0, 0) r, = r(/2, 0) r2 = r(1, 0)

Figure 4.2 Evaluated points for quadratic shading.
Six points at the vertices and on the edges are
picked for cross-triangle continuity.

Once we have the six color values, we can set up a linear system of six equations.

As described in [5], the system yields the solution:

28

CO ro
C1 -3-ro +4*r -r2
C 2 - 3.r - r4+4 -4r2

C 3 2.- r -4.- r, +2 -r2

C 4
4 -ri -4-r +4-r 3 -4.r,

C5 -_ 2 -ro +2-r 4 - 4. r

Finally, the following procedure can be used to quadratically shade a triangle:

1. Evaluate the illumination equation at the three vertices and three

midpoints. Surface normal at some midpoint is the bisector of two

neighboring vertex normals - it is computed by normalizing their sum.

2. Compute the coefficients CO-C 5 using equation 4.2.

3. For each pixel, evaluate the quadratic equation r(s, 1), equation 4.1, to get

the output color. Knowing the barycentric coordinates (s, i) for each pixel is

simple: both coordinates should be linearly interpolated across the triangle

(with the perspective divide), exactly the way texture mapping does it. Their

values at triangle vertices are (uO, vo) = (0,0), (u , v1) = (1,0), and

(u2 , v 2) = (0,l). These facts can be derived directly from equation 3.5,

yielding:

YO -Y2 X2 -X 0 X 0 ' Y2 -X2 'YO
- y

y - yo xo -i x i X1yo0- xo
(4.3)

t (x-x'(~y -(1x)(-o

The described algorithm can be generalized to perform higher order shading. A

cubically shaded triangle, for example, requires ten lighting evaluations It is

equivalent to illuminating nine smaller Gouraud shaded triangles with more

expensive per-pixel computation (Figure 4.3). In view of that, it is not clear

whether the rendering quality of one larger cubically shaded triangle is noticeably

29

better than that of nine smaller linearly shaded triangles. Higher dimensional

shading introduces even more complexity and one should rather subdivide the

triangle and use simpler color interpolation on several smaller triangles.

r6= r(O, 1)

r7= r(0, Y3) rs = r(, 13)

r =r(0,) - r4 = r(3,1/3)

ro=r(0,0) ri = r(,0) r2 = r(-Y3,0) r3= r(1,0)

Figure 4.3 Evaluated points for cubic shading.
Ten points are necessary to define a cubic over the
surface of a triangle. Nine of them have to be on
the edges to enforce continuity; the last one is

usually picked in the triangle center.

In this chapter I have concentrated on shading methods that use different

interpolation techniques. I described Phong shading, the high-quality shading

method, which interpolates the surface normal and illuminates at each pixel, but

does not run at interactive rates. I have also described Gouraud shading, the

method commonly used by current realtime 3D graphics hardware, which

illuminates at triangle vertices and linearly interpolates the color. Finally, I have

presented quadratic shading, which illuminates at six points per triangle and

quadratically interpolates the color. Quadratic shading has higher quality than the

linear, plus it can be implemented in hardware. In the next chapter I will

introduce shading methods that utilize texture mapping, after which I will

proceed to analysis.

30

Chapter 5

TEXTURING APPROACHES

Texture mapping, as described in section 3.3, is a very flexible and powerful

rendering tool. Since efficient texturing is now commonly available in hardware,

texturing approaches have been developed to implement a myriad visual effects,

including shading. There are many ways in which textures can be used for

simulating Phong shading. These various methods differ in the way texture

coordinates are computed the triangle vertices, as well as which textures are used.

Since Gouraud shading works reasonably well for diffuse reflection, texture

mapping is most useful for emulating specular highlights. In the implementations

described in this thesis, all texturing approaches use Gouraud shading for diffuse

reflection, and textures only for specularities.

Texturing methods described in this chapter include environment mapping, a

very common technique today, my own method called 'Blinn mapping', and an

extension to it called 'quadratic Blinn mapping'.

5.1 Environment Map

Environment mapping is a commonly used texture mapping technique for

rendering highly reflective and specular materials. Conceptually, environment

mapping wraps an image of the environment around the object. Therefore,

simulating specular highlights is equivalent to rendering an environment

composed of extended light sources. Modem 3D graphics API's (Direct3D,

OpenGL) offer several variations of environment mapping: spherical, bi-

31

quadratic, longitude, and cube mapping [8, 9]. However, implementations vary

from one library to another. For example, in DirectX documentation [9]

spherical map texture coordinates are described as view-independent, while in

OpenGL [8] they are view-dependent. In order to be physically valid, reflectance

mapping has to be view-dependent. This stems from the fact that intensity of

specular reflection is computed using the view vector (Section 3.2). For this

reason, I will not consider view-independent approximations. Of the view-

dependent implementations, I will focus my discussion on spherical mapping,

because it is easier to analyze. The analysis, however, applies to the other view-

dependent environment mapping methods as well.

N

V W

environment
map

Figure 5.1 Environment mapping. In all types of

environment mapping, the environment is assumed

to be at infinity and is accessed by the reflected

view vector W.

All view-dependent environment mappings cast the reflected view vector, W (not

to be confused with reflected light, R, from section 3.1), into the environment.

Note that the light direction plays no role in texture coordinate computation.

Spherical mapping computes texture coordinates (u, v) as follows:

m= W +W +(W +1) 2 (5.1)

32

U 1 WX
2 2 m

V 1 +1 Wy
2 2 m

(5.2)

(5.3)

The texture used for spherical mapping is depicted in Figure 5.2; specular

highlights can be drawn at correct locations in the environment. The details of

creating the texture are not relevant for this discussion.

(0,1)

1/2

1/(242)

(0,0)

(1,1)

Front half
of sphere

Back half
of sphere

(1,0)

Figure 5.2 Spherical mapping texture. Both the

front and the back of the environment sphere are

mapped onto the rectangular texture

As will be discussed in the next chapter, environment mapping cannot simulate

point lights, nor can it correctly approximate Phong shading with Blinn's

illumination model.

5.2 Blinn Map

Another texturing method for shading is described as "Phong map" in [7]. It

uses the projection of light vector onto the plane orthogonal to the vertex normal

to index into the texture. Clearly, this is only valid for diffuse reflection, since it

33

permits no view dependence, but it can easily be extended to support specularity.

With slight modifications, I propose projecting vertex normal onto the plane

defined by light direction for diffuse lighting. I extend this method to support

specular reflections by projecting the normal onto the plane defined by the half-

vector, H. The two texture values are combined for the final result. I call this

method "Blinn map" since it is based on Blinn's illumination equation (Figure

5.3).

A A

L ^ H ^
N A A N

LV

(a) (b)

Figure 5.3 Blinn map for diffuse (a) and specular
(b) reflections. In (a), the surface normal is
projected onto the plane defined by the light vector
for diffuse shading. In (b), the plane is defined by
the half-vector for specular shading.

Blinn map, in contrast to environment maps, incorporates light direction into the

computation of texture coordinates, thus enabling it to simulate accurate point

and directional lights.

The appropriate textures for simulating Phong shading with Blinn maps are

essentially lookup tables of dot products that approximate diffuse and specular

terms of the illumination equation (3.4). For diffuse shading, the texture is simply

an array of dot products that approximate N .L. For specular highlights, the dot

products are raised to the power of nshiny in order to approximate (N 'H)

34

The exact computation takes into account the fact that Blinn mapping projects

vectors onto planes to get texture coordinates. Therefore, the diffuse texture

value at point p(xy) in the texture plane is the value of the dot product of two

unit-vectors v-vN, as shown in Figure 5.4. The vector v, is kept constant at (0,0,1)

- it defines a shading parameter plane that is perpendicular to it; vp represents the

light direction, L, for diffuse, and the half-vector, H , for specular texture. The

other vector, vN, also originates from the center of the texture with its projection

onto the shading parameter plane being (xy). It represents the vertex normal N

for both diffuse and specular texture. The specular texture uses the same dot

product, but exponentiates it to the power of nh.

L for diffuse - VP
H for specular VN---

N for diffuse

and specular

(1, 1)

Figure 5.4 Blinn texture.

diffuse(x, y)= (0,0,1)-(x, y, l-x 2 _y2 l-_ - 2

specular(x, y) = (1-x2 - 2 2

(5.4)

(5.5)

Another dilemma when shading with Blinn maps is how to compute texture

coordinates from the projected vectors. Basically, the texture coordinates are

35

(-I, -T)

'[I

computed by projecting the normal, vN, onto the shading parameter plane and

assigning a two-dimensional coordinate. Obviously, the resulting coordinates

depend on the orientation of the coordinate system in the shading parameter

plane. Unfortunately, the choice of basis axes for that coordinate system directly

affects the rendering quality; thus, some care has to be taken in choosing it.

(a) (b)

Figure 5.5 Worst case Blinn axis. If one of the

basis axis always aligns to the projected vector, the

output of Blinn mapping (b) is comparable to

Gouraud shading (a).

In a general 3D scene, shading parameter planes differ at each vertex, and every

set of texture coordinates is computed in a unique coordinate system. If the

bases for those coordinate systems are assigned independently of each other, the

rendering quality can significantly vary. In the worst case, one of the axes is

aligned with the projected vector, resulting in v-coordinate always being zero.

Hence the whole image is rendered from only one line in the texture, and the

output is comparable to that of Gouraud shading (Figure 5.5). In practice, scenes

look best if one of the basis axis is chosen as some global vector (global axis), or

more precisely the re-normalized projection of some global vector onto the

shading parameter plane. The other axis can be obtained by computing the cross

product of the plane normal with the first global axis. This way the axes are

correlated from triangle to triangle and edge transitions blend well. Still,

36

rendering quality drops off around points where the global axis aligns with

shading parameter plane normal - this results in a singularity, as the global axis

projects to a point, and the basis vectors have no length (Figure 5.6). Therefore,

a good choice for the global axis is the up vector of the camera coordinate system

- this way anomalies will be shifted away from the view.

(a) (b)

Figure 5.6 Blinn axis singularity. Anomalies
appear around the point where global axis is
aligned with the shading parameter plane normal
(a). They can be concealed by shifting the axis
away from the view vector (b).

In summary, Blinn map computes diffuse and specular texture coordinates,

(uD,vD) and (usvs) respectively, as shown in Figure 5.5 and the subsequent

equations. Here, U^ is the re-normalized projection of the camera's up vector

onto the shading parameter plane, and v is a vector perpendicular to it.

37

L N H N

(a) (b)

Figure 5.7 Blinn texture coordinates. After

projecting the specified vectors onto the shading
parameter plane, a set of coordinates is assigned
according to the u-v coordinate system.

UD U (N - (N L)L) (5.6)
VD =(Lx)(N -(N LL)

us =Ua-(N-(N-H)H)(57
A A A5.7)

vs =H xu)-N -N -H H)

5.3 Quadratic Interpolation of Texture Coordinates

All of the previously mentioned texturing approaches compute texture

coordinates at triangle vertices, and let the texturing hardware take care of

interpolation and rendering. Nearly all existing graphics hardware is designed to

linearly interpolate texture coordinates (with the perspective divide) across the

triangles. However, a better texture mapping, resulting in a closer Phong shading

approximation, can be achieved by quadratically interpolating the texture

coordinates. The setup for this computation follows from the quadratic shading

in section 4.3 - evaluate texture coordinates at the six points around the triangle

and use the quadratic to interpolate them for the remaining pixels.

38

(U2, v 2)

(uO, vO) (,,v,)

(u4, v 4)

(us,vs) (3
(U 0

(uo, vo) 2, V2)

(a) (b)

Figure 5.8 Quadratic Blinn mapping. Regular

Blinn map (a) evaluates texture coordinates at three

points and linearly interpolates them. Quadratic

Blinn map (b) evaluates the coordinates at six

points and quadratically interpolates them.

In this thesis, quadratic texture coordinate interpolation is combined with the

Blinn map to improve rendering quality; hence, it is referred to as "quadratic

Blinn map".

In this chapter I have presented three methods that utilize texture mapping to

approximate Phong shading: environment mapping, Blinn mapping, and

quadratic Blinn mapping. In the remainder of the thesis I will analyze all the

methods introduced in this and the previous chapter.

39

40

Chapter 6

RESULTS AND ANALYSIS

This chapter presents the results, i.e. rendered scenes, of the described Phong

shading approximation techniques: quadratic interpolation, environment map,

Blinn map, and quadratic Blinn map (Gouraud shading has already been analyzed

and evaluated by various researchers). The outputs are compared to the output

of Phong shading with Blinn's illumination model and linear interpolation of

normals (see section 4.2), which is considered the standard in this thesis. As

mentioned in Chapter 5, the texturing approaches use textures only for specular

highlights, thus only the specular components of the outputs will be compared.

Furthermore, the proposed approximation methods are examined analytically to

assess their accuracy compared to Phong shading. Finally, their efficiency is

considered. Since the implementation is done in Java without hardware

acceleration, relative speeds rather than absolute performance should be

considered.

All the analysis is done on two models shown in Figure 6.1, as rendered by Phong

shading. First is the Utah teapot model with 3750 facets and a white directional

light, a representative of higher-resolution meshes. The second model is a single

blue triangle with a white point light in front of it, designed to examine rendering

of low-resolution meshes and point lights. For comparison, Figure 6.2 shows the

meshes rendered by Gouraud shading, the way current hardware would render

them.

41

Figure 6.1 Phong shaded teapot (a) and triangle
(b), followed by corresponding renderings with
only specular reflection in (c) and (d). These
images are the reference for the analysis of fake
Phong shading methods.

42

(a) (b)

(C) (d)

(a) (b)

(C) (d)

(e) (f)

Figure 6.2 Gouraud shaded teapot (a) and triangle
(b), followed by corresponding renderings with
only specular reflection in (c) and (d), as well as the
scanline illumination curves in (e) and (f). Gouraud
shading is how current hardware renders triangular
meshes.

43

6.1 Comparison Methods

The evaluated algorithms (Phong shading approximations) are compared to the

standard (Phong shading) using these few comparison methods:

1. Color Correctness

The evaluated output image is compared to the standard Phong

output image on pixel-by-pixel basis. The resulting metric indicates

how close the colors of the two images are. Specifically, color

correctness is a number in the range [0, 1], representing one minus

the normalized average color difference. The closer this number is to

1, the more alike are the compared images. The exact formula for

color correctness is:

j(|Rj - r|l+|IGi - gl|+|IBi - bi|}
c =l- i1 3-.255- N (6.1)

Here c is the color correctness; N is the number of non-background

pixels in the images; R,, G, and B, are red, green, and blue

components of a non-background pixel i in the standard image; r,, g,

and b are the corresponding color components in the evaluated

image.

Color correctness values for all Phong approximation methods

against Phong shading are shown in Table 6.1. Because of the

formula used for computing them (Equation 6.1), the numbers are

relatively densely distributed, thus even small differences are

significant. Furthermore, color correctness represents average color

deviation between two images, revealing nothing about characteristic

44

features such as highlights. Those aspects are better exposed by the

next comparison method - the scanline similarity.

In addition to Table 6.1, color correctness is shown as a difference

image presented with each fake Phong shading method. Such images

represent the color difference between the renderings of Phong

shading and a particular approximation method. Furthermore,

difference images are are gamma-enhanced, since colors are usually

very close. The formula for computing a pixel of the difference

image is:

[r,g,b]= 255{ R- rij - r0, B1 ' ' , (6.2)
255 255

where r, g, and b are the output color components of pixel i; R,, G,,

and B, are the corresponding color components in the standard

image; finally, r, g, and b, are the colors of the same pixel in the

evaluated image.

2. Scanline Similarity

This method computes illumination values across the same scanline

in both evaluated and standard output image, resulting in two graphs.

For simplicity, the scanline is located approximately halfway down the

image and includes the most interesting highlights. Subsequently, the

resulting graphs can be visually analyzed comparing values, peak

locations and intensities, as well as the smoothness of the curves.

The illumination value of a pixel falls between 0 and 1, and is

computed as follows:

45

R(x, y) + G(x, y) + B(x, y) (6.3)I(x, y)= 3*23)
3*255

where R, G, and B are color components of a pixel whose

coordinates are x andy.

3. Analytic Analysis

This method applies primarily to texturing approaches. It analytically

computes whether colors at vertices are exact, i.e. whether texture

coordinate computation and texture generation are consistent with

the illumination equation. This method also indicates how much the

interpolated values deviate from the standard.

4. Efficiency Evaluation

Due to the nature of my implementation, efficiency and speed cannot

be objectively assessed. Therefore, for each approach I will evaluate

the complexity of necessary initialization and per-pixel computation,

and then relatively rank all approaches. In addition, I will mention

any implications to using hardware for real-time implementations of

the analyzed fake Phong shading methods.

Table 6.1 Color correctness values for Phong shading approximations.
Gouraud shading with subdivision shades a mesh where each triangle is
subdivided into four smaller triangles, such that evaluation points are the same
as in quadratic shading (see Figure 4.2).

46

6.2 Quadratic Shading

Figure 6.3 Teapot rendered by quadratic shading.

The full rendering is shown in (a), and the specular

component along with the analyzed scanline in (b).

The difference image is in (c), and the scanline

illumination curves are in (d). The lower curve

belongs to Phong shading.

47

Gouraud Gouraud Quadatc Envowent Blinn Quadratic
Model Ghad with Shadic Me Bap Blinn

Shad subdivision Shading Map Map Map

Teapot 0.9870 0.9939 0.9949 0.9872 0.9886 0.9888

Triangle 0.7644 0.8970 0.9058 0.5589 0.8205 0.9311

(a) (b)

(c) (d)

(C) (d)

Figure 6.4 Triangle rendered by quadratic shading.
The full rendering is shown in (a), and the specular
component along with the analyzed scanline in (b).
The difference image is in (c), and the scanline
illumination curves are in (d). The lower curve
belongs to Phong shading.

From the rendered image and the scanline illumination graph of the teapot

(Figure 6.3), it is obvious that quadratic interpolation handles relatively fine

meshes rather well. The illumination curve is smooth and closely follows peeks

of Phong shading. The triangle model (Figure 6.4), however, reveals the

weakness of quadratic shading - rendering quality drops severely on low level

meshes. The illumination curve shows a peek, but its intensity is not nearly as

high as it should be. This, of course, is due to the fact that samples for quadratic

shading are taken from the vertices and edge midpoints, letting the quadratic

equation approximate shading at all other points. Therefore, only the original six

48

(a) I (b)

points will have correct shading values. The colors of remaining pixels come very

close to Phong shading provided that view and light directions do not change

much across the surface of the triangles - but those are the same cases where

linear shading performs well.

Comparing figures 6.2, 6.3, and 6.4, it is obvious that the quality of quadratic

shading is higher than that of Gouraud shading. This comes as no surprise, since

quadratic shading evaluates the illumination equation at more points per triangle.

Therefore, quadratic shading should actually be compared to Gouraud shading of

a subdivided mesh, where each quadratically shaded triangle corresponds to four

linearly shaded subtriangles, as illustrated in Figure 4.2. Teapot and triangle

renderings using subdivided Gouraud shading are presented in figures 6.5 and

6.6. Those two figures, as well as the color correctness values from Table 6.1,

indicate that quadratic shading is more accurate than even subdivided Gouraud

shading. This is not obvious from renderings of high-resolution meshes, but is

clearly visible on coarser meshes.

49

Figure 6.5 Teapot rendered by subdivided
Gouraud shading. The full rendering is shown in
(a), and the specular component along with the
analyzed scanline in (b). The difference image is in
(c), and the scanline illumination curves are in (d).
The lower curve belongs to Phong shading.

50

(a) (b)

(C) (d)

(a) _(b)

(C) (d)

Figure 6.6 Triangle rendered by subdivided
Gouraud shading. The full rendering is shown in
(a), and the specular component along with the
analyzed scanline in (b). The difference image is in
(c), and the scanline illumination curves are in (d).
The lower curve belongs to Phong shading.

In terms of computation costs, quadratic shading as described in this thesis

requires a setup overhead of several multiplications and additions in order to

compute the quadratic coefficients. However, the quadratic equation has to be

recomputed at each pixel - forward differencing cannot be applied because the

barycentric coordinates (s, /) do not increase by 1 when screen coordinates (xy)

do. Thus, quadratic shading performs significantly slower than Gouraud shading

- in my Java implementation it is two times slower. Nevertheless, with current

hardware vertex (v.1.1) and pixel (v.1.4) shaders it is possible to implement a real-

time quadratic shader supporting one light source. At only a small cost to frame-

51

rate, the improved quality of hardware-implemented quadratic shading makes it

more attractive for 3D applications that currently use linear shading.

To sum up, quadratic shading, though more complicated than Gouraud, runs

faster than Phong shading and can be implemented in hardware. It handles

higher-resolution meshes well, improving rendering quality over linear shading

and better masking the triangle boundaries. With lower-resolution meshes,

however, rendering quality of quadratic shading becomes inadequate, leaving

Gouraud shading more convenient in such cases.

52

6.3 Environment Map

Figure 6.7 Teapot rendered by enviroment map.

The full rendering is shown in (a), and the specular

component along with the analyzed scanline in (b).

The difference image is in (c), and the scanline

illumination curves are in (d). The lower curve

belongs to Phong shading.

53

(a) (b)

(C) (d)

,%N

(a) I(b)

(c) (d) ______

Figure 6.8 Triangle rendered by environment map.

The full rendering is shown in (a), and the specular

component along with the analyzed scanline in (b).
The difference image is in (c), and the scanline
illumination curves are in (d). The lower curve

belongs to Phong shading.

The teapot rendering reveals that environment mapping does well with fine

meshes - illumination curve is smooth and peeks are comparable to those of

Phong shading. However, some color distortions are visible near the edges of the

handle and the spout: those are due to sampling artifacts of the sphere map and

can be alleviated using other environment mapping techniques [8]. The triangle

rendering, which contains a point light, is a poor approximation of Phong

shading: the specular highlight does not even exist, and the illumination graph

shows no peeks. Analytic analysis in the next paragraph shows why.

54

As mentioned in section 5.1, environment mapping cannot accurately simulate

point lights and shading with Blinn's illumination model. These restrictions

emerge from the fact that texture fetches are based solely on the reflected view

vector W. Without going into details of how the actual textures are computed, it

is obvious that each unique reflected view vector W always maps to the same

point on the texture. If we assign that texture value to be (W -L)n Y (equivalent

to (V -N)"ls'"n), we can simulate directional lights. However, this technique

cannot be applied to point lights, since the same W vector no longer

corresponds to only one light direction. Same argument holds for every view-

dependent environment mapping technique. In addition to point lights,

environment mapping cannot accurately compute Blinn's specular term N -H,

since at the time of the texture fetch, only W is known. On the other hand,

Blinn's specular highlights can be simulated by increasing the spread of Phong's

highlight. In addition, more than one highlight can be painted on the same

environment map, making one texture sufficient for rendering with arbitrary

number of light sources.

In terms of speed, real-time environment mapping is supported by modem

hardware, and needs no adjustments to be used for shading. The only

complication is creating the appropriate texture - it is not straightforward for any

of the standard techniques.

In summary, if color distortions are ignored, specular highlights using

environment mapping are reasonable, and visually acceptable approximations.

However, I would not suggest using environment mapping for approximating

Phong shading. Although it is conveniently implemented in hardware, it lacks

support for point lights, and cannot accurately apply Blinn's illumination model.

A better method is Blinn map, discussed in the next section.

55

6.4 Blinn Map

Figure 6.9 Teapot rendered by Blinn map. The

full rendering is shown in (a), and the specular
component along with the analyzed scanline in (b).
The difference image is in (c), and the scanline

illumination curves are in (d). The lower curve

belongs to Phong shading.

56

(a) (b)

(C) (d)

(a) __ _ _ _ _ _ _ _ _J(b) _ _ _ _ _ _ _ _ _

(C) (d)

Figure 6.10 Triangle rendered by Blinn map. The

full rendering is shown in (a), and the specular

component along with the analyzed scanline in (b).

The difference image is in (c), and the scanline

illumination curves are in (d). The lower curve

belongs to Phong shading.

Blinn map renderings of fine meshes closely approximate Phong shading, as is

visible from the teapot in Figure 6.9. In addition, unlike previous two methods, it

adequately renders lower-resolution meshes. Both scanline illumination curves

are smooth and have peeks at appropriate locations and of appropriate intensities.

The rendering quality does, however, drop for coarser meshes, though not nearly

as much as in quadratic shading. This results in highlight on the triangle being a

bit bigger and at a slightly different location than the one rendered by Phong

shading in Figure 6.1.

57

By construction, color values at triangle vertices in Blinn map are exactly the

same as in Phong shading (see section 5.2). However, those are only three of

potentially many pixels in a triangle. To assess how accurately colored the

remaining pixels are, I will analyze how one triangle edge is shaded. In particular,

I will analyze how close the linear texture coordinate interpolation comes to the

projection of the actual edge onto the shading parameter plane (Figure 6.11). I

will concentrate only on rendering specular highlights. The same analysis can

then be applied for any line within the triangle, thus holding for the whole

surface.

H

linear interpolation of texture projection of triangle edge onto
coordinates shading parameter plane

Figure 6.11 Triangle edge in shading parameter
plane. Along a triangle edge, the surface normal is
tracing some path around the half-vector. The
projection of that path onto shading parameter
plane traces the Blinn texture coordinates needed
for replicating exact Phong shading.

As we follow a triangle edge, the angle between N and H changes, and N

traces out a path No -4 N1 on the surface of the hemisphere aligned to H. The

projection of that path onto the shading parameter plane defines a set of texture

coordinates that have to be traced to correctly shade the edge. To find out how

58

close a line comes to approximating the projected path, it is necessary to de6ne

the path. This includes considering how N, L, and V change along the triangle

edge. Linear approach to interpolating normals in Phong shading requires re-

normalization at each pixel. Similarly, the view vector and the point light

direction also require re-normalization. In the resulting expressions, a linear term

is divided by the square root of a sum of squares. This model is too complicated

to work with. Therefore, I will simplify the analysis by assuming that all three

vectors interpolate spherically along the triangle edge. Spherical interpolation

from one orientation to another follows the shortest, or geodesic, path on the

surface of the sphere. If that is the case, H, as the angle bisector between L and

V , also interpolates spherically.

At this point, both N and H are tracing out arcs on the surface of a sphere, but

we need to get the projection of N onto the plane defined by H. As explained

in [10], spherically interpolating two vectors is equivalent to fixing one of them,

and spherically interpolating the other along a different arc. Such arcs project

into quadratic curves on the shading parameter plane; hence, the projected path

can be described by a quadratic equation (Figure 6.12).

59

H

linear interpolation of texture quadratic curve
coordinates projection of the NO-N arc

Figure 6.12 Simplified triangle edge in shading
parameter plane. If all conventional vectors are
assumed to interpolate spherically, the path traced
out by the normal around the half-vector is
geodesic. The path also projects onto shading
parameter plane as a quadratic.

Linear interpolation of texture coordinates can approximate the quadratic path

only to some extent. The approximation is better when N and H are close to

each other and do not vary significantly across the triangle edge; the error grows

as the two vectors deviate from each other. Furthermore, the error reflects

shading under the assumption that all vectors interpolate spherically, which is not

generally true. However, if the surface normal does not deviate a lot, linear

interpolation of N is very close to spherical. Also, if the distance to a point light

is larger than the triangle size, L interpolates nearly spherically. Similarly, if the

eye is appropriately far away, interpolation of V is almost spherical. In the end,

this only means that, as N and H gradually deviate, the actual quality of Blinn

mapping (without spherical interpolation assumption) drops faster than it would

drop were all vectors spherically interpolated.

60

The bottom line is that rendering quality of Blinn map is proportional to the

amount of change of the normal, view, and light directions across the triangle.

Therefore, the quality drops when the eye or a point light get closer to the

surface, as well as when surface normal deviates a lot. This explains why the

triangle rendering in Figure 6.10 differs so much from the Phong shaded one in

Figure 6.1. Nevertheless, in most cases Blinn map renders images that are very

comparable to ones generated by Phong shading.

I will now consider the performance of Blinn mapping. Since texture mapping is

implemented in hardware, the only computation necessary for the Blinn map is

generating texture coordinates at triangle vertices. As section 5.2 explains, this

amounts to only a few dot products, multiplications, and subtractions per vertex.

Those calculations are easily implemented in the programmable vertex shader

(v.1.1), resulting in the real-time performance.

In a nutshell, Blinn map is a suitable method for simulating Phong shading. It

renders both fine and coarse meshes reasonably well. Furthermore, it can easily

be implemented in hardware and run in real-time. The only major disadvantage

of Blinn mapping, besides reduced quality on coarser meshes, is that it requires

one texture per material per light source. Nonetheless, today's hardware supports

several textures per rendering pass, and a number of passes per frame. Rendering

quality of the Blinn map can be further improved using the next method -

quadratic Blinn map.

61

6.5 Quadratic Blinn Map

Figure 6.13 Teapot rendered by quadratic Blinn

map. The full rendering is shown in (a), and the

specular component along with the analyzed

scanline in (b). The difference image is in (c), and

the scanline illumination curves are in (d). The

lower curve belongs to Phong shading.

62

(a) (b)

(C) (d)

(a) (b)

(C) (d)

Figure 6.14 Triangle rendered by quadratic Blinn

map. The full rendering is shown in (a), and the

specular component along with the analyzed

scanline in (b). The difference image is in (c), and

the scanline illumination curves are in (d). The

lower curve belongs to Phong shading.

Quadratic Blinn map (Figures 6.13 and 6.14) renders both fine and coarse models

with higher quality than Blinn map alone. This is especially visible on the triangle

rendering: the highlight is now more comparable to that in Figure 6.1, both in

terms of size and location. The triangle also reveals that even quadratic

interpolation of texture coordinates suffers from reduced quality on coarser

meshes.

Analytically, quadratic Blinn map is exact at the six points evaluated in the

initialization of quadratic interpolation (Section 5.3). For the remaining points,

we can apply the same analytic analysis as with Blinn map - comparing the

63

quadratic coordinate interpolation with the projection of a triangle edge onto the

shading parameter plane. If N were interpolated spherically, the light were

directional, and the eye point at the infinity, the edge would project to an exact

quadratic - in this case quadratic Blinn map would render all pixels identical to

Phong shading. However, since normal interpolation is linear, point lights exist,

and the eye is never at infinity, quadratic Blinn map does deviate from Phong

shading: its quality drops as the eye and a point light get closer to the triangle.

Nevertheless, a quadratic equation approximates the actual edge projection better

than a linear equation. Therefore, quadratic Blinn map renders with higher

quality than ordinary Blinn map.

Computationally, quadratic Blinn map is the most complex and the slowest of the

discussed methods: it requires a texture fetch in addition to computations needed

for quadratic interpolation. Furthermore, there is no way of implementing it with

today's pixel shader language (v.1.4), which supports only linear texture map

access.

In summary, quadratic Blinn mapping produces highest quality outputs among

the analyzed Phong shading approximations. However, it is not currently

implementable in hardware and cannot run at interactive frame rates, and for that

reason, not suitable for integration into today's realtime 3D pipeline.

6.6 Comparison

In this chapter I have analyzed rendering quality and performance of the four

Phong approximation methods presented in this thesis. In this section, I will

compare and rank them according to both criteria, in order to find the overall

winner.

64

The following is the ranking of the methods by rendering quality, from highest to

lowest:

Quadratic Blinn Map > Blinn Map > Quadratic Shading > Environment Map

As first, quadratic Blinn map renders scenes comparable to Phong shading in all

cases. Blinn map comes in second, with slight decrease in quality for coarser

triangular meshes. With quadratic shading, however, rendering quality of coarser

meshes is significantly below both Phong shading and Blinn map. Finally,

environment mapping is in the last place, since it cannot simulate point lights, and

the shading is inaccurate even at triangle vertices.

The ranking by performance, from fastest to slowest, is as follows:

Environment Map > Blinn Map > Quadratic Shading > Quadratic Blinn Map

Environment map is first, since it is already supported in hardware. Blinn map

requires comparable amount of computation, but is listed second because it needs

to be implemented in the vertex shader. Quadratic shading can also run in

realtime, but in addition to the setup computation in vertex shader, it saturates

the resources of the pixel shader. Lastly, quadratic Blinn map requires the most

computation and cannot currently be implemented in hardware, though a trivial

modification would allow it.

Considering both rankings, it is quite obvious that Blinn map is the overall

winner. Its high rendering quality and easy hardware implementation make it

very suitable for approximating Phong shading.

To conclude, I present more models rendered by all methods described in

chapters 4 and 5. The models are deliberately coarsely tesselated approximations

to a sphere. They include a dodecahedron with 30 triangles, and a sphere with

65

40, both having a point light source. The renderings demonstrate some of the

qualities and shortcomings of fake Phong shading methods discussed in this

chapter.

(a)

(C)

(b)

(d)

(e) (f)

Figure 6.15 Dodecahedron rendering. The mesh
has 30 triangles and a point light. It is rendered by
(a) Gouraud shading, (b) quadratic shading, (c)
environment map, (d) Blinn map, (e) quadratic
Blinn map, and (f) Phong shading.

66

(a) (b)

(C) (d)

(e) (f)

Figure 6.16 Sphere rendering. The model with 40
triangles and a point light is rendered by: (a)
Gouraud shading, (b) quadratic shading, (c)
environment map, (d) Blinn map, (e) quadratic
Blinn map, and (f) Phong shading.

67

68

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this thesis, I have presented and analyzed four methods for approximating

Phong shading. The first of them, quadratic shading, samples the color at only

six points per triangle, and uses quadratic interpolation to shade the rest of the

triangle. Next two, environment map and Blinn map, use texture mapping to

simulate specular highlights. Finally, quadratic Blinn map combines both

approaches to further improve rendering quality: it quadratically interpolates

texture coordinates to index the specular texture.

As the results in Chapter 6 show, most methods render higher-resolution meshes

adequately - the exception being environment mapping, which cannot simulate

point lights. With coarser polygonal meshes, however, only Blinn map and

quadratic Blinn map still render with a reasonable accuracy, quadratic Blinn map

being better. Nevertheless, of the two, only Blinn map can be implemented in

hardware and run in realtime; therefore, it is the best presented method for

approximating Phong shading.

I consider Blinn mapping ideal for more realistic rendering of specular highlights

in computer games, where most models are represented by medium- and low-

resolution meshes. The other methods are not as attractive, at least not today,

either because of serious quality limitations, such as no point lights with

environment mapping, or because they are complicated or impossible to

implement in hardware shaders, as is the case with quadratic shading and

quadratic Blinn map respectively.

69

We are currently at an early stage of programmable hardware shaders. In the

future, it is apparent that programmable hardware will be much more modular,

powerful, and flexible. This might enable real-time implementation of the

quadratic Blinn mapping as early as the next generation of graphics chips.

Further down the road, even realtime Phong shading becomes possible.

Nevertheless, true Phong shading requires considerable computation, and will

always run slower than the presented approximations. Therefore, one might still

choose one of the fake Phong methods in its place, in order to increase the

frame-rate at an acceptable cost to quality.

The longterm goal and solution for the 3D pipeline is real-time true Phong

shading. It is the highest-quality rendering technique that fits into the pipeline

framework. However, the approximation methods presented in this thesis can

still be useful until then, for rendering on non-top-of-the-line hardware, and for

saving cycles in cases where Phong approximation is acceptable. Due to its

simplicity and robustness, Gouraud shading has lingered unchanged since the

beginnings of 3D pipeline - time has come to improve it, and the presented

methods may serve as a transition to long-awaited realtime Phong shading.

70

BIBLIOGRAPHY

[1] Gouraud, Henri. Continuous Shading of Curved Surfaces. IEEE Transactions on
Computers C-20(6) June 1971, p. 623-29.

[2] Bui-Tuong, Phong. Illuminationfor Computer Generated Pictures.
Communications of the ACM 18(6) June 1975, p. 311-317.

[3] Blinn, James F. Models of Lght Reflectionfor Computer Synthesized Pictures.
Computer Graphics (SIGGRAPH 77 Proceedings) 11(2) July 1977, p. 192-
198.

[4] Bishop, Gary and David M. Weimer. Fast Phong Shading. Proceedings of
SIGGRAPH 86, 20(4), pp. 102-106 (August 1986, Dallas, Texas). Edited by
David C. Evans and Russell J. Athay.

[5] Hardt, Stephen and Seth Teller. High-Fidelity Radiosioy Rendering at Interactive
Rates. Proceedings of 7" Eurographics Rendering Workshop, pp. 71-80 (June
1996).

[6] Blinn, J. F. and Newell, M. E. Texture and reflection in computer generated images.
Communications of the ACM Vol. 19, No. 10, pp. 542-547 (October 1976).

[7] http://reespace.virgin.net/hugo.ehas/graphics/x-polyp2.htm.

[8] http://home.san.rr.com/thereindels/Mapping/Mapping.html.

[9] http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dx8_vb/directx-vb/Graphics/ProgrammersGuide/AdvancedTopics/En
vMap/SphericalMap.asp.

[10] Abbas, Ali Mohamed, Laszlo Szirmay-Kalos, Tamas Horvath. Hardware
Implementation of Phong Shading using Spherical Interpolation. Periodica
Polytechnica, Vol 44., Nos 3-4 (2000).

[11] Kaufman, Lloyd. Sight andMind. Oxford University Press, New York, 1974.

71

APPENDIX A

Quadratic Shading Hardware Implementation

Vertex Shader:

//
//
//
//,
//
//-
//I
//-
//I
//-
//-
//-
//I
//-
/I-
//-
/ /

cO-c3
c4-c7
c8
c9
cdo
c13
c14
c15
vO
v1
v2
v3, v
v4
v5, v
v6
v7, v
v8

10

11

vs. 1. 1

// this vertex
m4x4 oPos, vO, c4
mov oDO, v2

world transform matrix
world/view/projection matrix
diffuse color
specular color
specular power
light direction
eye point
0.5, 2, 3, 4
vertex position
vertex normal
vertex barycentric coordinates s,t,-,-
vO normal and position
v1 normal
v2 normal and position
v3 normal
v4 normal and position
v5 normal

// version instruction

// transform vertex by world/view/projection
// load s,t,-,- into the color register

// compute transformed positions
m4x3 rO, v9, co // transform pO by world matrix
m4x3 r2, v10, cO // transform p2 by world matrix
m4x3 r4, v11, co // transform p4 by world matrix
add rl, rO, r2 // compute pl (*2)
add r3, r2, r4 // compute p3 (*2)
add r5, r4, rO // compute p5 (*2)
mov r10, c14 // save eye point
mov r8.w, c10.w // set POWER

// compute rO = color
m3x3 r6, v3, cO
dp3 r8.x, r6, -c13
sub r7, c14, rO
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mad r7, r7, r7.w, -c13
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mul r7, r7, r7.w
dp3 r8.y, r6, r7
lit r9, r8
mul rO, r9.y, c8
mad rO, r9.z, c9, rO

for vertex 0
// transform normal by world matrix
// perform lighting N dot L
// compute V vector (eye - vertex)
// compute the length of V
// take the reciprocal square root
// normalize V and compute H vector
// compute the length of H
// take the reciprocal square root
// normalize H, r7 now contains the
// perform lighting N dot H

// calculate final diffuse color
// add the specular color

// compute rl = color for midpoint 0

72

(V + L)

half-vector

9

m3x3 r6, v4, cO
dp3 r8.x, r6, -c13
mad r7, -ri, c15.r, riO
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mad r7, r7, r7.w, -c13
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mul r7, r7, r7.w
dp3 r8.y, r6, r7
lit r9, r8
mul rl, r9.y, c8
mad rl, r9.z, c9, ri

// compute r2 = color for
m3x3 r6, v5, cO
dp3 r8.x, r6, -c13
sub r7, c14, r2
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mad r7, r7, r7.w, -c13
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mul r7, r7, r7.w
dp3 r8.y, r6, r7
lit r9, r8
mul r2, r9.y, c8
mad r2, r9.z, c9, r2

// compute r3 = color for
m3x3 r6, v6, cO
dp3 r8.x, r6, -c13
mad r7, -r3, c15.r, rlO
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mad r7, r7, r7.w, -c13
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mul r7, r7, r7.w
dp3 r8.y, r6, r7
lit r9, r8
mul r3, r9.y, c8
mad r3, r9.z, c9, r3

// compute r4 = color for
m3x3 r6, v7, cO
dp3 r8.x, r6, -c13
sub r7, c14, r4
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mad r7, r7, r7.w, -c13
dp3 r7.w, r7, r7
rsq r7.w, r7.w
mul r7, r7, r7.w
dp3 r8.y, r6, r7
lit r9, r8
mul r4, r9.y, c8
mad r4, r9.z, c9, r4

// compute r5 = color for
m3x3 r6, v8, cO
dp3 r8.x, r6, -c13
mad r7, -r5, c15.r, rlO
dp3 r7.w, r7, r7

//-
//
//-
//
//-
//-
//-
//-
//-
//

transform normal by world matrix
perform lighting N dot L
compute V vector (eye - vertex)
compute the length of V
take the reciprocal square root
normalize V and compute H vector
compute the length of H
take the reciprocal square root
normalize H

perform lighting N dot H

// calculate final diffuse color
// add the specular color

vertex 1
// transform normal by world matrix
// perform lighting N dot L
// compute V vector (eye - vertex)
// compute the length of V
// take the reciprocal square root
// normalize V and compute H vector
// compute the length of H
// take the reciprocal square root
// normalize H
// perform lighting N dot H

// calculate final diffuse color
// add the specular color

midpoint 1
// transform normal by world matrix
// perform lighting N dot L
// compute V vector (eye - vertex)
// compute the length of V
// take the reciprocal square root
// normalize V and compute H vector
// compute the length of H
// take the reciprocal square root
// normalize H
// perform lighting N dot H

// calculate final diffuse color
// add the specular color

vertex 2
// transform normal by world matrix
// perform lighting N dot L
// compute V vector (eye - vertex)
// compute the length of V
// take the reciprocal square root
// normalize V and compute H vector
// compute the length of H
// take the reciprocal square root
// normalize H
// perform lighting N dot H

// calculate final diffuse color
// add the specular color

midpoint 2
// transform normal by world matrix
// perform lighting N dot L
// compute V vector (eye - vertex)
// compute the length of V

73

(V + L)

(V + L)

(V + L

(V + L)

rsq
mad
dp3
rsq
mul
dp3
lit
Mul
mad

r7.w, r7.w
r7, r7, r7.w, -c13
r7.w, r7, r7
r7.w, r7.w
r7, r7, r7.w
r8.y, r6, r7
r9, r8
r5, r9.y, c8
r5, r9.z, c9, r5

// set texture coordinates
// i.e. quadratic = TO + T1
mul r6, r5, c15.w
mul r7, rl, c15.w
// TO
mov oTO, rO
// T1

mad r8,-rO, c15.z, -r2
mad oTl, rl, c15.w, r8
// T2

mad r8, -rO, c15.z, -r4
mad oT2, r5, c15.w, r8
// T3

mad r8, rO, c15.y, -r7
mad oT3, r2, c15.y, r8
// T4

mad r8, rO, c15.w, -r6
mad r8, -rl, c15.w, r8
mad oT4, r3, c15.w, r8
// T5

mad r8, rO, c15.y, -r6
mad oT5, r4, c15.y, r8

Pixel shader:

ps.1.4
def cO, 0, 0, 0, 1

//
//-
//
//-
//,
//

take the reciprocal square root
normalize V and compute H vector (V + L)
compute the length of H
take the reciprocal square root
normalize H
perform lighting N dot H

// calculate final diffuse color
// add the specular color

to be quadratic coefficients
*s + T2*t + T3*s*s + T4*s*t + T5*t*t

// define a constant

// load quadratic coefficients: tO + tl*s + t2*t + t3*s*s + t4*s*t + t5*t*t
texcrd rO.rgb, tO
texcrd rl.rgb, tl
texcrd r2.rgb, t2
texcrd r3.rgb, t3
texcrd r4.rgb, t4
texcrd r5.rgb, t5

mul rl.a, vO.r,
mul r2.a, vO.r,
mul r3.a, vO.g,

mad rO.rgb,
mad rQ.rgb,
mad rO.rgb,
mad rO.rgb,
mad rO.rgb,
+ mov rO.a,

vO. r
vO. g
vO. g

rl, vO.r,
r2, vO.g,
r3, rl.a,
r4, r2.a,
r5, r3.a,
cO.a

rO
rO
rO
rO
rO

//
//-
//-

//-
//-
//-
//-
//-
//

rl.a = s*s
r2.a = s*t
r3.a = t*t

rO = tl*s + tO
rO += t2*t
rO += t3*s*s
rO += t4*s*t
rO += t5*t*t
set alpha to 1

74

APPENDIX B

Blinn Map Hardware Implementation

Vertex Shader:

c0-c3
c4-c7
c8
c9
cdo
c1l, c12
vO, v1

world transform matrix
view projection matrix
light direction
eye point
up vector, 0.5 as c10.w: (0, 1, 0, 0.5)
diffuse and specular color
vertex position and normal

// version instruction

m4x4 oPos, vO, c4
m4x4 rO, vO, cC
m3x3 rl, vi, cO

// compute diffuse col
dp3 r2, rl, -c8
mul oDO, r2, cdl

// compute half-vector
sub r2, c9, rO
dp3 r2.w, r2, r2
rsq r2.w, r2.w
mad r2, r2, r2.w, -c8
dp3 r2.w, r2, r2
rsq r2.w, r2.w
mul r2, r2, r2.w

// find projection of
dp3 r3.w, ri, r2
mad r3, r2, -r3.w, ri

//
//
//

transform vertex by world/view/projection
transform vertices by world matrix
transform normal by world matrix

or (use Gouraud shading)

//-
//
//-
//I
//
//-
//

compute V vector (eye - vertex position)
compute the length of V
take the reciprocal square root
normalize V and compute H vector (V + L)
compute the length of H
take the reciprocal square root
normalize H: r2 now contains the half-vector

N onto plane defined by H
// compute N.H
// compute (N-(N.H)*H)

// compute u, projection
dp3 r4.w, c1O, r2
mad r4, r2, -r4.w, c1O

of (0, 1, 0)
// compute
// compute

onto plane defined by H
U.H
(U-(U.H)*H)

// compute v, i.e. Hxu
mul r5.x, r2.y, r4.z
mad r5.x, -r2.z, r4.y, r5.x
mul r5.y, r2.z, r4.x
mad r5.y, -r2.x, r4.z, r5.y
mul r5.z, r2.x, r4.y
mad r5.z, -r2.y, r4.x, r5.z
mov r5.w, c10.w

// compute texture
dp3 r6.x, r4, r3
dp3 r6.y, r5, r3
mov r6.z, c10.y
mov r6.w, c10.y
mad oTO, r6, c10.w,

coordinate
//

c10.w //

mov oT1, c12

s
compute u.(N-(N.H)*H)
compute (Hxu).(N-(N.H)*H)
z and w component are irrelevant
so they're set to 1
(u,v) = 0.5 + 0.5*(u,v)

// save specular color in oT1

75

//-
//I
//-
//-
//I
//-
//

vs. 1. 1

Pixel Shader:

// version instruction

def cO, 0, 0, 0, 1

texld rO, tO
texcrd rl.rgb, ti
+ mov rl.a, cO.a
mad rO, rO, rl, vO

// this constant is needed only for alpha

// read the color from texture
// load specular color to rl
// set its alpha to 1
//add specular color to the diffuse

76

ps.1.4

