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Abstract

In this thesis, we investigate the possibility of cryptographic primitives over nonclas-
sical computational models. We replace the traditional finite field F" with the infinite
field Q of rational numbers, and we give all parties unbounded computational power.
We also give parties the ability to sample random real numbers. We determine that
secure signature schemes and secure encryption schemes do not exist. We then prove
more generally that it is impossible for two parties to agree upon a shared secret in this
model. This rules out many other cryptographic primitives, such as Diffie-Hellman
key exchange, oblivious transfer and interactive encryption.
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Chapter 1

Introduction

In the classical model of computation, parties represent data with bits and have a

small set of bit operations to work with. Usually some parties are restricted to a poly-

nomial number of operations in some security parameter. Cryptographic primitives,

such as signature schemes and encryptions schemes, are then constructed on top of

this computational model. But cryptography may be compatible with other models

as well. In this thesis we analyze the possibility of many different primitives over a

novel computational model. To motivate the study of cryptography over our model,

we show the existence of zero-knowledge identification protocols and authentication

protocols. However, despite this positive result, we then prove the impossibility of

secure signature schemes, secure public-key encryption schemes, and more generally,

secure secret-key exchange.

1.1 Motivation

The computational model we consider bares little resemblance to practical, real-life

models of computation. In particular, we give all parties unbounded computational

time and the ability to store irrational numbers in single, infinite-precision registers.

Despite this, we hope that by studying cryptography in this new model we will gain

insight for the classical model. We present a new algebraic framework for studying

classical cryptographic problems. For example, we frame the security of certain pro-
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tocols as specific field-theoretic properties. Perhaps this formulation can be adopted

in the classical setting.

1.2 Unbounded Computational Model

In our model all parties start with the two numbers zero and one. They are given

the standard set of field operations {+, -, *, /} to work with. Furthermore, they are

given unbounded computational time. That is to say, parties can perform any finite

number of operations but they must eventually halt. From these rules, we see that

parties can generate any rational number, i.e., any number in the field Q of rational

numbers. We define a party's state of knowledge as the field he can generate. We see

that the state of knowledge is the same for all parties and is exactly Q.

If this were all there were to our model, there would be no "secrets". Any party

can generate the same set of numbers as any other party. More formally, suppose

a party wishes to keep secret an element s of an enumerable field F. Suppose the

adversary has a set of generators for F. Finally, suppose that there exists a public

verification algorithm for s, i.e., a publicly computable function p : F -+ {0, 1} such

that p(x) = 1 if and only if x = s. Then an adversary can determine s as follows.

He simply enumerates elements f of F and computes p(f) for each one until p(f)

evaluates to 1. When this happens, f necessarily equals s and the adversary has

found the secret. Note that the adversary can enumerate F since F is enumerable

and the adversary has its generators. We will refer to this type of attack as an

enumeration attack.

In our model we mentioned the fact that all parties are restricted to the rational

numbers and furthermore, can generate any rational number. Hence, the fact that Q

is countable implies that there are no secrets. We prevent enumeration attacks with

some extensions to the model. We give all parties the ability to sample any finite

number of real numbers from a uniform distribution of real numbers. For technical

reasons1 we restrict sampling to the closed interval [0,1] of real numbers. To support

'There does not exist a uniform distribution over the entire field of real numbers.
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this, we equip all parties with registers which can store arbitrary real numbers to

infinite precision.

Now we see that enumeration attacks fail. Instead of just the rational numbers,

parties now generate fields of the form Q() for ' = (ri,... ,r1 ) a vector of real

numbers sampled at random. Even though fields of the form Q(r) are enumerable,

parties can now keep secrets since an adversary does not have the generators F. Even

if the adversary samples real numbers, he has zero probability of sampling anything

meaningful. Indeed, if he samples real numbers t (ti, . . . , t,,), there is zero chance

that Q(t) n Q(-) -# Q. Formally, Pr[, ,1,[Q(t) n Q(F) = Q] = 1. We do not make

additional modifications to the model.

1.3 One-way Functions

One of the most basic cryptographic primitives is the one-way function. Intuitively,

this is a function which is easy to compute, but hard to invert. It is believed that

one-way functions exist in the classical model of computation, but this has not been

proven. In our model we do not need to speculate. Over the rational numbers a party

can sample a random real number r and publish its square r2 . It is impossible to

deduce r to infinite precision from only r 2 and the rational field operations. Even if

one were to sample real numbers, there are only a countable number of real numbers

that would help, but we're sampling from an uncountable set. Formally,

Preol]n[Q(i r2 ) n Q(r) = Q] = 1.

Since there is zero probability of deducing r from Q(r 2), the function f(r) -> r2 is a

one-way function in this model.

The existence of many cryptographic primitives, such as signature schemes, en-

cryption schemes, and identification protocols, depends on the existence of one-way

functions. Rompel shows that one-way functions are necessary and sufficient for se-

cure signature schemes to exist in the standard computational model[6]. The proof
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relies on the bit-representation of numbers in the number field the parties work in.

In our model, bit-representations play no role. Parties are equipped with infinite-

precision registers with the ability to perform any field operation on arbitrary real

numbers in constant time. Thus we can not assume that secure-signature schemes

exist in our model because we cannot use the reductions from classical cryptography,

which depend heavily on the underlying model of computation.

So we ask which cryptographic primitives exist in our model. In a similar model of

computation [2] an elegant proof of knowledge was presented over the ruler-compass

constructible points and then extended to an authentication protocol. What, if any

other, primitives are possible in that model? What about our model? Although the

first of these questions remains unanswered, we shall see that in our model identi-

fication protocols exist but secure signatures schemes, secure public-key encryption

schemes, and more generally, secure secret-key exchange protocols do not. We con-

jecture the same to be true of the ruler-compass constructible points.

Part of this thesis is adapted from a conference paper [7] written by Marten van

Dijk and myself. The work in sections 2-5 is my individual work and the work in

section 6 and the appendix is joint work with Marten van Dijk. Section 2 covers

some standard techniques in modern algebra, focusing mainly on the theory of field

extensions. The theorems presented in this section are crucial to understanding the

impossibility proofs in the remaining sections. Section 3 presents an authentication

protocol in this model. Section 4 shows that secure encryption schemes do not exist

and section 5 shows the same for secure signature schemes. Finally, Section 6 shows

more generally that it is impossible to exchange a secret-key in this model.
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Chapter 2

Algebraic Preliminaries

The proof of knowledge over the ruler-compass constructible points [2] is based on the

idea that trisecting an arbitrary angle is impossible with only a ruler and a compass.

Although it is well-known that one cannot trisect an arbitrary angle, the proof is not

well-known. Proving that signature schemes and encryption schemes are not possible

over the rationals requires field-theoretic techniques similar to those which show angle

trisection is impossible[1]. We state and develop some of these techniques here. We

assume familiarity with the definition of a field. We shall restrict our attention to

infinite subfields of the real numbers.

A real number x is said to be algebraic over a field F if x is a root of a polynomial

p(t) with coefficients in F in the indeterminate t. If no such polynomial exists, x

is said to be transcendental over F. For example, /2 is algebraic over Q because

it satisfies the polynomial p(t) = t2 - 2. We can think of a transcendental element

over a field F as a "variable" over that field. For example, the symbol "y" and the

number 7r are transcendental over Q because they do not satisfy a polynomial p(t)

with rational coefficients [5]. A new field can be obtained by taking the set-theoretic

union of the elements of F with x, then closing up under all of the field operations

{+, -, *, /}. This new field, denoted F(x), is the minimal field containing F and x,

i.e., the intersection of all fields containing F and x.

The new field F(x) can be thought of as a vector space over F. A basis for this

vector space is a set of elements {VQ} such that every element of F(x) can be written

11



as a unique linear combination of the form fiv, 1 + ... + fnvan, where fi E F for all

i. The dimension of this vector space is defined as the number of elements in any

basis. If x is algebraic over F, then there exists a polynomial q(t) of minimal degree

such that q(x) = 0. It is a theorem of algebra [4] that, if x is algebraic over F and

q(t) denotes its minimal polynomial over F, then the set {1 X, , 9X, 3 ... , x(-1} forms

a basis for the extension field F(x) viewed as a vector space over F, where n is the

degree of q(t). Hence, the dimension of this vector space is equal to the degree of q(t).

Call this degree the degree of the field extension F(x)/F and denote it by [F(x) : F].

If x is transcendental over F, then there is no finite basis of F(x) over F. In this case

[F(x) : F] = oc. Furthermore, the elements of F(x) constitute the set of all elements

of the form p(x)/q(x), q(x) / 0, where p and q are polynomials with coefficients in F

in the indeterminate x.

More generally, any field extension K/F can be viewed as a vector space over

F. The degree [K : F] of this extension denotes the (possibly infinite) number of

elements in any basis of K/F. It is a well-known fact that if we have the field

inclusions F c L c K, then the degree [K : F] of the extension K/F is equal to

the product of the degrees [K : L] and [L : F]. We will use this fact frequently and

refer to it as the Tower Law. For example, since V2_ is irrational, it does not lie in Q.

It satisfies the polynomial p(t) = t 2 - 2. Clearly, p(t) is the polynomial of minimal

degree of v'2 over Q, as otherwise there would be a polynomial q(t) = q1t + q2, such

that q(v"2) = qix/-+q2 = 0, implying V/2 = -q 2/qi and therefore that v/_ is rational.

Hence, [Q(V'2) : Q] = 2. It is not hard to see that v is not in the field Q(v"-) (indeed,

/ q1 + q2 V/2 for any qi, q2 in Q). Since v/ satisfies the polynomial p(t) = t 2 - 3

over Q, it also satisfies this polynomial over Q(V2-), and since it is not contained

in Q(-\-), this polynomial has minimal degree. Hence, we have the field inclusions

Q c Q(v/2) c Q(v/', v/3), where [Q(v2) : Q] = 2 and [Q(\/F, v/) : Q(/)] = 2, so

by the Tower Law [Q(V'-, 03) : Q] = 4. A basis of Q(v/, V3) as a vector space over

Qis {1, V/-, \,F, -\}6.

Also note that if [K : F] = 1, then K = F. Indeed, [K : F] = 1 implies that there

is only one element in any basis of K over F. Consider the set {1}, where 1 is the
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identity element of F. Trivially, this is a linearly independent set, and since we know

the size of any basis is one, {1} also spans K over F, so {1} is a basis. Any element

of K can be written as f - 1, for f E F. This implies K = F.

Given a field extension F(x)/F, we can adjoin another element y to the field F(x),

obtaining the field F(x)(y). It is a standard fact that F(x)(y) = F(y)(x). We will

let F(x, y) = F(x)(y) = F(y)(x).

We now define the concept of the algebraic closure of a field. Consider an infinite

field F. Consider the set S of all polynomials p(t) with coefficients in F in the

indeterminate t. Suppose we take the minimal field containing F and adjoin all the

roots of all the polynomials of S. This new field will be called the algebraic closure

of F. For the countably infinite fields we shall be dealing with, it is known [5] that

the cardinality of the algebraic closure of F is also countable.

We will also need some specific results concerning the intermediate fields of a

field extension. A field L such that F C L c K is called an intermediate field of

the field extension K/F. If x is transcendental over K, it is clearly transcendental

over F since F c K. Conversely, if every element k E K is algebraic over F and if

x is transcendental over F, it is also transcendental over K. This follows from the

transitivity property of being algebraic, namely, if x is algebraic over K, and K is

algebraic over F, then x is algebraic over F [5].

Suppose x is transcendental over F, and K is an algebraic extension of F, then the

intermediate fields L of K/F are in bijective correspondence with the intermediate

fields of K(x)/F(x). The bijection sends an intermediate field L of K/F to the

intermediate field L(x) of K(x)/F(x). The inverse sends an intermediate field G of

K(x)/F(x) to G n K. The intuition behind this fact is that x, being transcendental

over F, plays no role in factoring the minimal polynomials of elements of K over

F. Since the intermediate fields of K(x)/F(x) are determined by these polynomials,

the intermediate fields of K(x)/F(x) are exactly those of K/F with the additional

element x adjoined. This result also holds if K is a transcendental extension of F

and x is transcendental over K[5].

The final theorem that we will need, due to Liiroth [5], states that if x is transcen-
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dental over a field F, then the intermediate fields L of the field extension F(x)/F all

have the form F(u), where u has the form p(x)/q(x), where p and q are polynomials

with coefficients in F and q # 0.

14



Chapter 3

An Identification Protocol

We present a zero-knowledge identification protocol, similar to that for ruler-compass

constructible points[2], which is an extension of the Fiat-Shamir protocol [3]. Infor-

mally, an identification protocol is a 2-party protocol by which party A can convince

party B of his identity with high probability, and any party C trying to impersonate

A to B can do so with only low probability. We say an identification protocol is

complete if A succesfully convinces B of his identity with high probability, and we

say that the protocol is sound if any other party C successfully impersonates A to B

with only low probability. The fact that the protocol is zero-knowledge means that

after A's interaction with B, B does not learn much information, i.e., he gains "zero-

knowledge." This prevents B from impersonating A later on after his interaction with

A.

Our protocol is shown in Figure 3-1. Suppose Alice wishes to identify herself to

Bob. She samples a random real number r and publishes p = r 2. Because finding the

exact square root of r 2 over Q with only the operations {+, -, *, /} is impossible,

Alice knows she is the only one who knows r. Note, even if Alice cannot decide

if r is rational in this computational model, she can be assured with overwhelming

probability that only she knows r. Here's the protocol:

1. Alice samples a real number s. She gives Bob t = s2

2. Bob flips a coin and tells Alice the result.
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Alice

s ERIIO',]

Alice's Secret Key: r E R [0,1]

Alice's Public Key: p = r2 Bob

t- s 2

b

u rb S

bE R{O,}

2 bU =pt

Figure 3-1: A Zero-knowledge Identification Protocol

3. * If Bob said "heads", then Alice gives Bob s, and Bob checks that s2

e If Bob said "tails", then Alice gives Bob u = rs, and Bob checks that

U2 = pt.

We sketch a proof of the three properties of a zero-knowledge identification pro-

tocol: completeness, soundness, and zero-knowledge. For completeness, note that if

Alice and Bob follow the protocol, then Bob always accepts Alice's proof of iden-

tity. For soundness, note that anyone impersonating Alice cannot respond to both of

Bob's challenges because he cannot know both s and rs, as otherwise he could com-

pute (rs)/s = r, contradicting the fact that it is not possible to compute r given only

Q and r 2 in our model of computation. Hence, with each iteration of the above pro-

tocol an impersonator can succeed with probability at most 1/2. After k iterations,

the probability that Bob will be fooled by the impersonator is at most 2 -.

To show the protocol is zero-knowledge, we construct a simulator to produce

transcripts of Bob's view in the protocol. Bob's views are of the form (t, "heads", s)

or (t, "tails", u). The first can be simulated by choosing s at random and setting t to

be s2. The second can be simulated by choosing u at random and taking t to be u 2 /p,

if U2/p is less than one. Otherwise, repeat (choose u again) until U2 /p is less than

one. This process is expected to terminate in a finite number of iterations. Even if
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Bob is to use a nonuniform distribution, his view can be simulated by probing and

resetting him[2]. If k rounds are executed in series, the expected number of trials

of the simulator is 2k. If k flips are sent in parallel, then the expected number of

trials is 2 k; this is not a problem since there are no complexity assumptions in our

computational model.

This protocol can be extended to a zero-knowledge authentication protocol as was

similarly done for the ruler-compass identification protocol[2].
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Chapter 4

The Impossibility of Secure

Public-Key Encryption

We now address the possibility of secure encryption schemes in this model. We would

like an encrypter to be able to encrypt an arbitrary real number of his choice even

after the public and secret keys have been generated. We will show that in any such

scheme the state of knowledge (see Chapter 1) of the adversary is the same as that of

the encrypter. It will follow that the adversary will be able to recover the encrypter's

plaintext.

We first consider a special scenario. Suppose Alice starts with the field Q. She

then samples a random real number SK to be her secret key. She now has the field

Q(SK). Suppose she then performs some finite number of field operations in the

field Q(SK) to compute her public key PK, another element of Q(SK). She then

publishes PK.

Without loss of generality, we have Q(PK) ; Q(SK). This assumes that no

real numbers are sampled during public-key generation. We will see later on, when

we discuss schemes with multiple secret keys SK1 , ... , SK,,, that we can append

whatever randomness is used in key generation to the secret key itself.

We first consider the case when the degree [Q(SK) : Q(PK)] is finite. We would

like Bob to be able to encrypt an arbitrary real number m using Alice's public key

PK, generating a ciphertext c. Given the ciphertext c and PK, we do not want an
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adversary to be able to decrypt c to obtain the original message m. However, we do

want Alice to be able to use her secret key SK, together with c, to decrypt c and

recover the original message m. Collecting this information, we have the following

tower of fields:

Q(PK, c) C Q(PK, m) C Q(SK, c).

Indeed, the inclusion Q(PK, c) C Q(PK, m) holds because, given PK and m,

the encrypter can compute c with only field operations, and hence c E Q(PK, m).

The inclusion Q(PK, m) C Q(SK, c) holds because, given SK and c, the legitimate

decrypter Alice can recover m with only field operations.

Let's now inspect the degrees of these field extensions. Set n = [Q(SK) : Q(PK)].

Then [Q(SK, c) : Q(PK, c)] is at most n, since adjoining c to both fields can only

reduce the degree of the minimal polynomial of SK over Q(PK). We show that

Q(SK, c) = Q(SK, m). We know Q(SK, c) D Q(SK, m) from the tower of fields

above. Furthermore, given SK anyone can recompute PK since Q(PK) C Q(SK),

and given PK and m anyone can recompute c. Therefore, Q(SK, m) D Q(SK, c). We

deduce that [Q(SK, c) : Q(PK, m)] = [Q(SK, m) : Q(PK, m)]. Since m is a general

real number, [Q(SK, m) : Q(PK, m)] also equals n. Applying the Tower Law, we

have that

[Q(PK, m) : Q(PK, c)][Q(SK, c) : Q(PKim)] = [Q(SK, c) : Q(PK, c)].

Since [Q(SK, c) : Q(PK, c)] is at most n, and since [Q(SK, c) : Q(PK, M)] is exactly

n, we see that [Q(PK, m) : Q(PK, c)] must equal 1. Hence, Q(PK, m) = Q(PK, c).

Therefore the message in lies in the adversary's field once the adversary has heard c.

Since the adversary has unbounded computational time, and since his field Q(PK, c)

is countable, he can enumerate each of the elements of his field and run the public

encryption algorithm on each of them until he finds the unique message m which

encrypts to c.

Hence, we see that in the above scenario public-key encryption schemes are not

secure. So we modify the scenario in a couple of ways. Suppose instead of using a sin-
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gle secret key SK and a single public key PK, Alice uses n secret keys SK1 , ... , SKn,

and m public keys PK1 , ..., PKm. If each SKj is algebraic over Q(PK 1 , ..., PKm),

[Q(SK 1, ..., SKn) : Q(PK 1 , ..., PKm)] is still be finite. Replacing SK with SK 1, ..., SKn

and PK with PK, ..., PKm in the above argument, we conclude that even in this

case secure encryption is not possible. Note that since all parties are restricted to a

finite number of operations, there can be at most a finite number of public and secret

keys generated.

For now, we will continue to assume that the degree of the legitimate decrypter's

field over the adversary's field is finite. For convenience, we will assume that there

is one secret key SK and one public key PK. From the results in the previous

paragraph, the following arguments easily generalize to the case of multiple public-

secret keys in so long as each secret key is algebraic over the field Q(PK1, ...PKm),

where m is the number of public keys. Whereas before we restricted the encrypter

to field operations when encrypting messages, we now allow the encrypter to sample

real numbers as he encrypts and we allow the adversary to sample real number as

well.

We first show that giving the adversary the power to sample real numbers will

not help him. The encrypter will have the field Q(PK, m, rl, ..., rm) where ri is a

sampled real number. Note that the number of real numbers sampled is necessarily

finite. Now, the adversary has the field Q(PK, c) C Q(PK, m, ri, ...rm). For the

adversary to gain anything by sampling real numbers he must be able to generate,

via sampling and field operations, an element of Q(PK, m, r1 , r 2, ... , rm) \ Q(PK, c).

Suppose he draws m random reals si, ..., sm. He now has the field Q(PK, c, si, ... , sm).

Every element of his field has the form p(PK, c, si, ..., sm)/q(PK, c, si, ... , sm), for p

and q polynomials with rational coefficients in the indeterminates PK, c, si, ... sm.

To generate an element y in Q(PK, m, r1 , ... , rm) \ Q(PK, c), we must have some

expression p(PK, c, si, ..., sm)/q(PK, c, si, .. sm) = y. We know that p/q is not in

Q(PK, c) since y is assumed not to lie in Q(PK, c). Note that not all of the coefficients

of the si in the expression p/q can be zero and not all of the si in p can cancel with

those in q; for example, we cannot have the cancellation (S1 + s2)/(2(sl+ S2 )) = 1/2,
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for then p/q would actually be an element of Q(PK, c). But then we have found a

nontrivial relation among the si over the field Q(PK, c). If the si are random real

numbers, this occurs with probability zero since the field Q(PK, c) has measure zero

in the real numbers. Hence, sampling does not help the adversary.

We now allow the encrypter to probabilistically encrypt; that is to say, we give

him the ability to sample real numbers. We still necessarily have the tower of fields

Q(PK, c) C Q(PK, m) C Q(SK, c), where, if the encryption scheme is to be secure,

then each of the above inclusions must be a proper inclusion. However, the encrypter's

field is no longer Q(PK, m), but rather Q(PK, m, ri, ...rm), where each ri is a sampled

real number. However, the argument given above still implies that the inclusions in

this tower cannot be proper. That is to say, Q(PK, c) = Q(PK, m). Hence, even

if the adversary is not able to recover the original field Q(PK, m, r1 , ... rm) of the

encrypter, he can still recover Q(PK, m) and hence recover m.

We now consider the case where [Q(SK) : Q(PK)] is infinite. This case could

arise if, for instance, Alice samples real numbers r, s to be her secret key and sets her

public key to be rs. Then clearly Q(rs) C Q(r, s), but now [Q(r, s) : Q(rs)] = 00.

We still want the inclusions in the tower of fields

Q(PK, c) c Q(PKi m) c Q(SK, c),

to be proper.

We want both to be able to encrypt an arbitrary real number m and to have a

ciphertext c decrypt to a unique message m. Hence, the number of distinct ciphertexts

is at least as large as the number of distinct messages. These observations imply that

the number of possible ciphertexts is uncountably infinite. Since any element y which

is algebraic over Q(SK) is in the algebraic closure of Q(SK), and since the algebraic

closure of Q(SK) is countable, there is zero probability that the ciphertext c will be

algebraic over Q(SK). Hence, c is transcendental over Q(SK) with probability 1.

Since c is transcendental over Q(SK), and hence over Q(PK), the intermediate

fields of Q(SK, c)/Q(PK, c) are of the form L(c), where L is an intermediate field

of Q(SK)/Q(PK). By Liroth's theorem, all intermediate fields of Q(SK)/Q(PK)
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have the form Q(u), where u has the form p(SK)/q(SK), for p and q are polynomials

with coefficients in Q in the indeterminate SK and q # 0. For the inclusions in the

above tower of fields to be proper, Q(PK, m) must be of the form Q(u, c). But u has

the form p(SK)/q(SK) with u Q(PK, c), and such a u is impossible to generate

with only PK and m, which are each algebraically independent of SK. Even if he

were to sample real numbers, he has zero probability of generating an element u of

the form p(SK)/q(SK). Therefore the field Q(PK, m) cannot contain an element of

the form p(SK)/q(SK), and therefore Q(PK, m) is forced to equal Q(PK, c).
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Chapter 5

The Impossibility of Secure

Signature Schemes

We now shift our attention to the possibility of secure signature schemes in this

model. We will show the strongest possible result, that even one-time signature

schemes cannot exist.

We first need to define exactly what we mean by a signature scheme. We would

like the signer to be able to sign an arbitrary real number m that is not fixed at the

time of key generation. If we were to remove this constraint and instead allow the

signer to specify a finite sequence of messages M 1 , ..., MN which he would like to be

able to sign with a given keypair, secure signature schemes would in fact be possible.

A secure signature scheme can be built on the fact that finding a square root of an

arbitary real number r is impossible in the field Q(r). Let Alice be the signer, Bob

the verifier. Here's the protocol:

1. Initialization: Alice decides upon a finite sequence of messages (mi, ... , MN)

she would like to be able to sign with the public-secret keypair she is about

to create. She then samples N real numbers ri, r2, ... ,rN. The ordered set

(ri,... ,rN) forms Alice's secret key. Alice publishes the two ordered sets

(r ,... ,r') and (mi,... ,imN)-

2. Signing: To sign the message mi for 1 < i < N), Alice sends the pair (mi, ri).
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3. Verifying: Bob verifies the pair (mi, s) by computing i from mi and checking

that s2 = r .

It is easy to verify the security of the above signature scheme. Also, since all parties

are given unbounded computational time, N can be chosen to be arbitrarily large,

but finite.

We can improve this signature scheme by reducing the number of real numbers

sampled to exactly one. This more efficient protocol is based on the fact that finding

an nth root of an arbitrary real number r is impossible in the field Q(r). Here's the

protocol:

1. Initialization: Alice decides upon a finite sequence of messages (Mi1 ,... , mN)

that she would like to sign with the key pair she is about to generate. She

then computes the first N + 1 primes (p1,... ,pN+1) and she lets P = lI 1 Pi.

She samples a real number r which is her secret key. She then publishes the

sequence (ml,... , mN) together with the number rp as her public key.

2. Signing: To sign the message mi, Alice sends the pair (mi, rp/Pi).

3. Verifying: Bob verifies the pair (mi, s) by computing the first N + 1 primes

(Pi,... PN+1) and the integer P, computing i from Alice's public key, and

finally verifying that sPi - r'.

This signature scheme prevents a gcd-attack as follows. If two messages mi and mj

have been signed by Alice, the public learns gcd(rp/Pi, rP/Pi) = rp/(Pi-Pi). If someone

wants to forge the signature of a new message Mk (i = k, j = k), he will have to

compute rP/Pk from his knowledge of rP/(Pi-P9). But this is not possible since P/(pi -pj)

is divisible by Pk, whereas P/pk is not. This analysis can be extended to show that if

any M < N messages have been signed, it is not possible to forge a future message.

Even if all N messages have been signed, the public will only learn rP/(Pi-- PN) = rPN+1I

and hence cannot recover the secret key r since it is impossible to take pN+1-st roots

in this model.
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The above two signature schemes suffer because the message space is fixed to a

finite subset of the real numbers at the time of key generation. We now show that,

if we remove this constraint and instead allow Alice the ability to sign arbitrary real

numbers after the time of key generation, then even one-time schemes are not secure.

Suppose Alice starts with the field Q. She then samples a random real number

SK that will be her secret key. She is left with the field Q(SK). Suppose she then

performs some finite number of field operations in the field Q(SK) to compute her

public key PK, another element of Q(SK). She then publishes PK. Without loss of

generality, we again assume that Q(PK) ; Q(SK).

We consider the case where the degree [Q(SK) : Q(PK)] is finite. Let m be the

message to be signed, u(m) its signature. For the moment, suppose that U-(m) can be

generated from Q(SK, m) with field operations alone. We would like the inclusions

in the following tower of fields to be proper:

Q(PK, m) C Q(PK, m, -(m)) c Q(SK, m)

The leftmost field is known by an adversary trying to forge the signature o(m).

The rightmost field is known by the legitimate signer Alice. The field in between is

known by all after m has been signed. If the inclusion Q(PK, m) C Q(PK, m, U(m))

were not proper, the adversary could run the public verification algorithm on each

element of his field to determine if it is in fact a valid signature for m. Since his

field is enumerable, he will find -(m) in finite time. We also want the inclusion

Q(PK, m, -(m)) C Q(SK, m) to be proper. Otherwise, after viewing one signature

-(m), anyone could enumerate through the field Q(PK, m, -(m)) to discover Alice's

secret key SK.

Since m is a general real, m is transcendental over Q(SK), and hence over Q(PK).

Therefore, the intermediate fields of Q(SK, m)/Q(PK, m) all have the form L(m),

where L is an intermediate field of Q(SK)/Q(PK). See Figure 5.1. After one message

m has been signed, the public learns the field Q(PK, m, a-(m)) = L(m) for some L. By

enumerating elements of L(m), the public also enumerates elements of L, so without

loss of generality, we can say the public learns the field L.
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Q(PK)

Q(PK,m)

Li

L2 Q(SK)

L3

L1(m)

L2(m) Q(SK,m)

L3(m)

Figure 5-1: Intermediate fields of Q(SK)/Q(PK) are in bijective correspondence
with intermediate fields of Q(SK, m)/Q(SK, m).

The adversary can now try to forge the signature of a future message. The adver-

sary proceeds as follows. He samples an arbitrary real number m' and he forms the

field L(m'), which he can enumerate. He enumerates elements of L(m') until he finds

u(m'), which he can verify using the public verification algorithm. We now consider

his chances of finding u(m'), i.e., the probability that u(m') lies in L(m').

In the case when [Q(SK) : Q(PK)] is finite, there are only a finite number of

intermediate fields of Q(SK)/Q(PK). Let N be the number of such intermediate

fields. As aforementioned, we are assuming the signer does not know the messages

he will sign a priori, and therefore, we can think of m as a random real number

which was handed to the signer by the public. Since m is a random real, and since

a-(m) E L(m), the probability that the signature -(m') of a future random real m'

will lie in L(m') is strictly positive. For instance, if the signatures of real numbers

were uniformly distributed amongst the N intermediate fields Li of Q(SK)/Q(PK),

the probability that u(m') lies in any particular field Li(m') is exactly 1/N. In the

general case, since a-(m) E L(m), we know the probability that signatures of real
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numbers or(r) lie in L(r) is nonzero.

Say that for a randomly sampled real r, the probability that c-(r) E L(r) is p > 0.

Then after obtaining the signature for a random future message m', the adversary will

halt having computed -(m') with probability p. Since this probability is nonnegligible,

even one-time signature schemes are not possible in this model.

We now allow parties to sample real numbers. Intuitively, sampling real numbers

cannot help the adversary since only a countable subset of the real numbers helps,

and he is drawing from an uncountable set; see Section 3.2 for more detail. Now, if

the signer is allowed to sample real numbers, the tower of fields changes to

Q(PK, m) C Q(PK, m, -(m)) c Q(SK, m, r).

For the signature scheme to be secure, each of the above inclusions must be a

proper inclusion. We may not have the inclusion Q(PK, m, u(m)) c Q(SK, m), so

the argument given above does not apply. Note, however, if there exists a message

m whose signature u-(m) does not lie in the field Q(SK, m), then it is necessar-

ily transcendental over Q(PK, m). This assertion follows from Liroth's theorem

(Chapter 2) since all intermediate fields of Q(SK, m, r)/Q(SK, m) are of the form

Q(SK, in, p(r)/q(r)), where p and q are polynomials in r, and hence transcendental

over Q(SK, m). But then there can be no public verification algorithm involving

PK, M, and a-(m) over Q since a-(m) does not satisfy any algebraic relation over

Q(PK, in).

Finally, we consider the case where [Q(SK) : Q(PK)] is infinite. The analysis in

this case is similar to that given in the previous case where we allowed the signer to

use randomness. As always, we want the inclusions in the following tower of fields to

be proper:

Q(PK, m) C Q(PK, m, -(m)) C Q(SK, m)

Since SK is transcendental over Q(SK), LUiroth's theorem tells us that the only in-

termediate fields of Q(SK)/Q(PK) are transcendental extensions of Q(PK). There-

fore, all intermediate fields of Q(SK, m)/Q(PK, m) are transcendental extensions of
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Q(PK, m). If the signature scheme is to be secure, o(m) cannot be in Q(PK, m).

Then Q(PK, m, a-(m)) would necessarily be a transcendental extension of Q(PK, m),

and hence, -(m) would be transcendental over Q(PK, m). As we argued previously,

in this case, there can be no public verification algorithm of (-(m) over Q(PK, m)

because u-(m) does not satisfy any algebraic relation over Q(PK, m).
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Chapter 6

The Impossibility of Secret-Key

Exchange

We now generalize the impossibility of public-key encryption in this model to the

impossibility of establishing a shared secret-key. The impossibility of secret-key ex-

change will immediately rule out public-key encryption, interactive encryption, Diffie-

Hellman key exchange, and oblivious transfer. We will consider an arbitrary two-party

protocol and show that no such protocol establishes a shared secret-key. Note that it

is possible that a three-party protocol can be used to establish a shared-secret, but

we do not consider that here.

A protocol between Alice and Bob consists of a sequence of steps. Let FA be

the field generated by Alice and let FR be the field generated by Bob. Due to the

transmission a transmitted element is revealed to the public. Let Fp be the field

generated by the public information. There are two types of steps, Alice (Bob)

selects a random element thereby extending her (his) associated field or Alice (Bob)

transmits an element from her (his) field to Bob (Alice).

Step 1 A transcendental element x over Q(FA, FB) is selected by Alice:

( FA, FB, Fp) -F+ ( s s(X), FB, F),

or a transcendental element x over Q(FA, FB) is selected by Bob:
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(FA, FB, Fp) -+ (FA, FB(x), Fp).

Step 2 Alice selects an element x in FA and transmits it to Bob:

(FA, FB, Fp) -+ (FA, FB(x), FP(x)),

or Bob selects an element x in FB and transmits it to Alice:

(FA, FB, Fp) -+ (FA(x), FB, Fp(x)).

To show the impossibility of secret-key exchange over the rational numbers we

need to prove

FAnFB = F (6.1)

holds after each step of the protocol. In other words all shared information between

Alice and Bob is in fact public information. We prove that (6.1) is invariant under

steps 1 and 2. In the remainder we assume w.l.o.g. that Bob selects x in both steps.

Steps 1 and 2 are invariant under:

Invariant 1 FA, FB, and Fp are fields such that Fp c FAnFB. Furthermore

FA = Q(A) and FB = Q(B) for finite sets of real numbers A and B.

Proof From the invariant we infer that Fp C FA n FB C FA n FB(x) and secondly

FP(x) g (FA n FB)(x) c FA(x) n FB(x) = FA(x) n FB for x E FB.

In general however, we cannot prove that FA n FB = Fp is invariant under step

2. For example, take FA = Q(v/6, v/15i), FB = Q(v/, v/5), Fp = Q, and x = v/2 E

FB. Clearly, FA(x) = Q(v'2, V35, V5) implying that FA(x) n FB = Q(V/2, v/5) while

Fp(x) = Q(v'Z).
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Thus in order to prove that (6.1) is invariant under steps 1 and 2 we introduce a

stronger invariant.

Lemma 1 Let G C F be fields such that [G(v) : G] = [F(v) : F]. Then either v is

transcendental over F or there exists a basis X {1, v, v2,..IV n-1 } of F(v) over F

which is also a basis of G(v) over G.

Proof The basis X of F(v) over F is linearly independent over G C F. Since

[G(v) : G] = [F(v) : F] and X does not depend on F, X is a basis of G(v) over G.1

Now we are ready to formulate the stronger invariant:

Invariant 2 There exist real numbers a, 1 < i < n, such that

FB = Fp(ai, a2 ,... , an)

and

Q(FA, FB) = FA(al,a2, ... , an)

with

[FA(al, . . . , ai+1) : FA(al, . . . , at)] = [Fp(a1, . .. , ai+1) : Fp(ai, . .. , as)]

for all 0 < i < n - 1.

See Figure 6.1. Initially, FA = FB = Fp = Q and invariant 2 holds for n = 0. The

next lemmas will be used to prove that invariant 2 implies (6.1).

Lemma 2 Let G C F and let v be transcendental over F. Then F n G(v) = G.

Proof Let x C G(v). Then there exist polynomials f(.) and g(.) with coefficients

in G C F and g(v) # 0 such that x = f(v)/g(v). If x is also in F then either v is

algebraic over F or f(v)/g(v) does not depend on v, that is x E G.m
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F_B(bl,..., bm) = FA(al,..., an)

a(n- 1) b(m-1)

dl
a2 b2

al bl

m) F FP(a, ... an)
b(m- 1) a(n- 1)

FB

b2 a2
F d 2

Figure 6-1: The degree between any two dashed lines is the same no matter where
you are on the square. The figure shows dl = d2.

We define the vector space

G[X] = x = I: X - Y: x7 E G .

If X is a basis of G(v) over G then G(v) = G[X]

Lemma 3 Let G C F and let X be a finite linearly independent set over

1 E X. Then F nG[X]=G.

Proof Let x E G[X]. Then there exist coefficients xy C G C F such that x =

Z-YEx xy - -y. If x is also in F then x = xi E G since X is linearly independent over

F..

Theorem 1 Invariant 2 implies FA n FB = Fp.

Proof Let F = FA(al,... , aj) and Gi = Fp(ai,... , aj). By lemma 1, invariant 2

implies either aj+ 1 is transcendental over F or there exists a basis X of F(ai+1) over
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F. which is also a basis of Gi(ai+1) over Gi. According to lemmas 2 and 3 respectively,

F n Gj(aj+1) = Gi. Since FA C F, FA n Gi(ai+1) C Gi, that is

FA n Gj+1 = FA n Gi(ai+1) c FA n G.

Hence,

Fp c FAn FB = FAnGn C... c FAnGo = FAnF = F.i

The next invariant is like invariant 2 where the A's and a's are interchanged with the

B's and b's. Because of the symmetry, theorem 1 also holds for this invariant.

Invariant 3 There exist real numbers bi, 1 < i < m, such that

FA = Fp(b1, b2, ... , bn)

and

Q(FA, FB) = FB(b, b2 , ... , bm)

with

[FB(b, , bi+ ) : FB(bi, . .. , bi)] = [Fp(b, . . . , : Fp(bi, ... , bi)]

for all 0 <i m - 1.

The next lemmas are used to show that invariants 2 and 3 are equivalent. The proof

of the Parallelogram lemma is left to the appendix.

Lemma 4 Consider the tower of fields G C H C F and suppose that [F(v) : F] =

[G(v) : G]. Then [F(v) : F] = [H(v) : H] = [G(v) : G].

Proof According to lemma 1 either v is transcendental over F or there exists a

basis X of F(v) over F which is also a basis of G(v) over G. If v is transcendental over

F then it is also transcendental over its subfields G and H in which case [F(v) : F] =
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[H(v) : H] = [G(v) : G] = oc. If X is a basis over F then it is linearly independent

over H, hence [H(v) : H] > [F(v) : F]. If Y is a basis over H then it is linearly

independent over G, hence [G(v) : G] > [H(v) : H]. Since [F(v) : F] = [G(v) : G],

equalities hold everywhere..

Parallelogram Lemma Let G be a field. If [G(u, v) : G(u)] = [G(v) : G] then also

[G(v,u) : G(v)] = [G(u) : G].

Theorem 2 Invariants 2 and 3 are equivalent.

Proof Suppose that invariant 2 holds. By invariant 1 there exist real numbers bi,

1< i m, such that FA = Fp(bi, b2 , .. . , bm). Let

Hij = Fp(ai, . . . , aj)(bi, . . . , b),

F = FA(a,.... , aj), and Gi = Fp(ai,... ,ai). Notice that Ha,, = FB(bl,... ,bj),

Hoj = Fp(bi,... , bj), and Hn,m = Q(FA, FB). Clearly, Gi C Hij C Hi,j(bj+ 1) c Fi.

By using invariant 2 and twice applying lemma 4 we obtain

= [Hi, (bj+1, ai+1) : Hi (bj+1)]

= [Hi,j(ai+1) : Hij] = [Gi(ai+1) : Gj].

By the Parallelogram lemma we conclude [Hi, (bj+ 1 , ai+1) : Hi, (ai+1)] = [Hiy (bj+1)

Hij], that is

[Hi+1,j+1 : Hj+1,] = [Hi,j+1 : Hijj

Repeating this process gives

[Hn,j+l : Hnj] = [Ho,j+ 1 : Hoj],

which is equivalent to invariant 3..

Notice that the above proof holds for all real numbers bi, 1 < i < m, such that

FA = Fp(bi, b2 , ... , bi). We may reformulate both invariants accordingly.
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Now we are ready to prove the correctness of both invariants under steps 1 and

2. Consider step 1. Bob selects a transcendental element x over Q(FA, FR).

an+1 = X-

Notice that

[(FA, FB) (X) : Q(FA, FB)] = [Q(FB) (X) : Q(FB -

Hence, invariant 2 holds again:

FB(x) = Fp (ai, . . . , a.+,)

and

Q(FA, FB(X)) = Q(FA, FB)(x) = FA(al,.. , an+1)

together with the corresponding degree requirements.

Consider step 2. Bob selects an element x E FB which he transmits to Al-

ice. Invariant 3 holds prior to this step: FA = Fp(bi,... , bn) and Q(FA, FR) =

FB (b, ... , bm) with

[FB(b, .... , bi+ 1) : FB(b,... , bi)] = [Fp(b,... ,bi+ 1) : Fp(bi, ... , bi)]

for 0 <i m - 1. Notice that Fp C FP(x) C FR. By repeatedly applying lemma 4

we obtain

[FB (b,... , bi+1 ) : FB (b, ... , bi)] = [Fp (x)(bi,... , bi+1 ) : Fp(x)(b,, bi)]

for 0 K i < m-1. Since FA(x) = Fp (x)(bi, . . . , bm) and Q(FA(x), FB) = Q(FA,FB) =

FB(b, ... , bn), invariant 3 holds again. By theorem 2 both invariants hold again after

each step.

Theorem 3 Invariants 2 and 3 are invariant under steps 1 and 2.
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The proof of the invariants being invariant under step 1 only requires the condition

(6.2), which is satisfied for step 1 because x is transcendental over Q(FA, FR). This

completes the proof.
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Chapter 7

Conclusion

In summary, we have shown that although identification protocols and one-way func-

tions exist in this model, secure signature schemes, secure encryption schemes, and

secret-key exchange schemes do not. If we replace the operations {+, -, *, /} with

the operations {+, -, *, /, xY}, where xz denotes the operation of raising an arbitrary

number x to an arbitrary power y, we are able to recover many cryptographic prim-

itives, such as Diffie-Hellman Key Exchange, secure signature schemes, and secure

encryption schemes. This is because the discrete logarithm problem, i.e., finding x

given g and gx, remains intractable. Therefore, we can use the ElGamal signature

and public-key encryption schemes without much modification in our computational

model. Of course we still allow all parties the ability to sample real numbers. What is

it about the operation x" that allows much of public-key cryptography to be possible?

We would like to determine a set of necessary and sufficient conditions for a set of

operations to admit certain cryptographic primitives.
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Appendix A

Proof of Parallelogram Lemma

Parallelogram Lemma Let G be a field. If [G(u, v) : G(u)] = [G(v) : G] then also

[G(v,u): G(v)] = [G(u): G].

Proof If [G(u, v) : G(u)] = [G(v) : G] < oo then the proof follows from

[G(u, v) : G(u)][G(u) : G] = [G(u, v) : G] = [G(v, u) : G(v)][G(v) : G].

If [G(u, v) : G(u)] = [G(v) : G] = oo then v is transcendental over G(u). We distin-

guish two cases. Firstly, if u is transcendental over G(v) then it is also transcendental

over G, hence, [G(v, u) : G(v)] = [G(u) : G] = oc.

Secondly, suppose that u is algebraic over G(v). We will show that u is algebraic

over G and that a basis of G(u) over G is also linearly independent over G(v), which

implies [G(u) : G] < [G(v, u) : G(v)]. A basis X = {1, u, u2 *** n-1 of G(v, u) over

G(v) exists and is also linearly independent over G and part of G(u), which implies

[G(u) : G] > [G(v, u) : G(v)] and equality must hold.

We are in the case that v is transcendental over G(u) and u is algebraic over

G(v). Then there exists a finite and strictly positive number of non-zero coefficients

'i c G(v) such that 0 = E' ui -'u. Each coefficient 'i is in G(v) and can be expressed

as ui = fi(v)/g (v), where fi(.) and gi(.) are polynomials with coefficients in G. Define

hi(v) = fi(v) H]j gj (v). Then E> hi(v) -u' = 0. Polynomial hi(.) has coefficients in
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G, therefore hi(v) = E vi for finitely many non-zero coefficients hij c G. We

obtain

The inner sums are in G(u). Since v is transcendental over G(u), these inner sums

are equal to 0. If a is transcendental over G then all coefficients hij = 0. This

implies that hi(v) = 0. All f3 (v) , 0, therefore gi(v) = 0, hence, u3 = 0. However,

there is a strictly positive number of non-zero coefficients uj. Concluding, u is not

transcendental over G, i.e., it is algebraic.

Since u is algebraic over G there exists a finite basis X of G(u) over G with G(u) =

G[X]. We want to show that X is linearly independent over G(v). Suppose that

Y-YE zy -x 7 = 0 for some xy E G(v). For the coefficients xI, there exist polynomials

fY(.) and g.(.) with coefficients in G with g,.,(v) # 0 such that x^ = fY(V)/gy(V).
Define h-(v) = f-, (v) fJ7J g,(v). Then EIEx h-(v) - -= 0. Polynomial h.(.) has

coefficients in G, therefore h,.(v) = E> h,, -v' for finitely many non-zero coefficients

hy,j e G. We obtain

0= h .-y} .v.
j yezX

The inner sums are in G[X] = G(u). Since v is transcendental over G(u), these inner

sums are equal to 0. Set X is linearly independent over G, hence, all coefficients

hy,j = 0. This implies that h. (v) = 0. All f,(v) # 0, therefore g. (v) = 0, hence,

XY = 0.
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