
Indexing XML with Relational Tables

by

Jeffrey H. Yu

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science at the

Massachusetts Institute of Technology

May 24, 2002

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis and

to grant others the right to do so

Author

Department of Electrical Engineering and Computer Science
May 17, 2002

Certified by
/

Kurt Fendt, Peter Donaldson
Thesis Supervisors

Accepted by

Chairman, Department Committee
Arthur Smith

on Graduate Theses

MASSACHUSETT INSTITUTE
OF TECHNOLOGY

JUL 3 12002 1 ARKER

LIBRARIES

Indexing XML with Relational Tables

by

Jeffrey H. Yu

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology

May 24, 2002

Abstract

XML content management is still in its infant stages as new ways of storing and
retrieving XML are constantly being developed. This paper explores an XML content
management solution that provides a query language richer than XPath. The purpose is
to provide the ability to query data from interrelated XML documents, which is a feature
unavailable in XPath. The solution utilizes a relational database to index XML
documents with simple XPath expressions and queries data with SQL statements that
map onto a subset of XQuery.

Thesis Committee:

Thesis Supervisor: Kurt Fendt, Research Associate, Comparative Media Studies
Thesis Supervisor: Peter Donaldson, Professor of Literature
Technical Supervisor: Christopher York, Technical Director, MetaMedia Project

Acknowledgments

I would like to specially thank Kurt Fendt for the opportunity he has given me. Your
willingness to work out the difficult conflicts with me and other research assistants made
everything run smoothly. I also thank Peter Donaldson for his supervision of my thesis.
My most heartfelt thank you goes to Christopher York for going above and beyond his
duty to provide technical advice, comments on my thesis, and most importantly, for
providing a healthy work environment and being my friend.

I would also like to thank the rest of the Metamedia group for their help and for an
enjoyable year.

Table of Contents
1 . In tro d u c tio n .. I

1 . 1 X M L .. I
1. 1. 1 XM L Database System s ... 2

1. 1. 1. 1 A d v an tag es ... 2
1. 1. 1.2 Disadvantages ... 3

1. 1.2 Data vs Documents ... 4
1. 1.2. 1 Data-centric Docum ents ... 4
1. 1.2.2 Docum ent-centric Documents .. 4

1.2 Project Background .. 5
1.2.1 Requirem ents .. 5

1. 2. 1. 1 Context Querying .. 6
1 .2 .1 .2 Jo in s .. 6
1.2 .1.3 G ro u p in g ... 6

2. XM L Languages ... 7
2 .1 X P a th ... 7
2 .2 X Q u ery .. 8

3 . R elated W o rk ... 9
3.1 Oracle XM L SQL Utility ... 9
3 .2 X R e l .. 10
3 .3 X IS S .. 1 1

4 . Im p lem en tation ... 12
4 .1 D e sig n .. 12
4.2 Relational Tables ... 13

4.2.1 Document Table ... 13
4.2.2 XPath Table .. 14
4 .2 .3 N o d e T ab le ... 15

4.3 Storing and Indexing Docum ents ... 16
4 .4 Q u ery in g .. 17

4.3.1 Simple Query ... 18
4.3.2 Context Query .. 19
4.3.3 Complex Query .. 20

5. Perform ance Analysis ... 23
5.1 Inserting Docum ents .. 23
5.2 Querying Docum ents ... 24
5.3 Reindexing Documents .. 24
5 .4 E v alu atio n .. 2 5

6 . C o n clu sion ... 2 6
6 .1 P ro s .. 2 6
6 .2 C o n s ... 2 7
6.3 Future Considerations .. 28

Appendix A - Nam espaces ... 29
Appendix B - SQL Queries .. 30

S im p le Q u ery ... 3 0
C o n tex t Q u ery .. 3 1
C om p lex Q u ery .. 32

R eferen ce s .. 3 4

Table of Figures

1. M apping a data-centric docum ent to a relational table.. 4
2. The doc table...14
3. The xpath table..15
4. The node table...16
5. Flow chart for inserting docum ents... 17
6. Nodes returned by a sim ple query... 19
7. Nodes returned by a context query... 20
8. Nodes returned by a com plex query... 22

Table of Tables

1. Time taken to insert and index documents... 23
2. Time taken for different queries... 24
3. Time taken to reindex documents... 25

1. Introduction

There are many programs available that allow users to store and query XML documents.

Unfortunately, most of these programs lack the ability to run complex queries as the

query syntax is limited to XPath. The programs that do provide this ability require steep

licensing fees. These are the problems with which the Metamedia group at MIT had

been faced. This paper describes a solution for storing and querying XML documents

with a richer query syntax while eliminating budget concerns by using open-source

software.

To help fully understand the problems and the motivation for creating this solution, the

following subsections will provide provide background information on XML and the

Metamedia group's project.

1.1 XML

XML (Extensible Markup Language) was introduced back in 1997 during the Internet

boom. XML was developed specifically for the Web by the W3C (World Wide Web

Consortium) in an effort to provide important features that are not available in HTML

(HyperText Markup Language) [1]. HTML is still the most commonly used format to

store and transmit data over the Web. Both HTML and XML are subsets of SGML

(Standard Generalized Markup Language), which has been in existence since 1986.

XML is described as being a "metalanguage," which means that it is a language used to

describe other languages. This provides the ability to create an unlimited number of

languages, each one specific to one's needs. This would not be possible with HTML as it

is limited to a set number of tags. The three main features that XML provides over

HTML are: extensibility, structure, and validation [2].

. Extensibility: XML allows users to specify their own tags and attributes.

1

. Structure: XML supports the specification of structures deep and complex enough to

represent object oriented hierarchies and database schemas.

. Validation: XML provides the ability for users to validate the structure of documents

upon retrieval.

The use of XML documents can be used in two ways. One is the simple exchange of

data of XML documents, much like how two users would exchange Excel spreadsheets.

The second is the management of XML data to create a database. The scope of this

paper is only concerned with the second use, and will therefore focus on that issue.

1.1.1 XML Database Systems

An XML database is defined to be a collection of XML documents and their parts,

maintained by a system having capabilities to manage and control the collection itself

and the information represented by that collection [3].

The application of traditional database technologies to XML has proved to be

problematic over the past years. The problem is that the data in XML documents often

have special characteristics that are not found in traditional databases [3]. For example,

an XML document can have a complex structure in which the data consists of both

natural languages and multimedia entities. Traditional databases typically do not

represent such documents, and thus it would be difficult to apply its concepts to XML

databases. The following sections will present the advantages and disadvantages of using

XML documents to store data.

1.1.1.1 Advantages

One of the greatest advantages of using XML documents to store data is that they are

self-describing in that the markup describes the structure and types names of the data

2

[4]. This basically means that external data, such as a filename, is not needed to describe

the data. All of the data needed from an XML document is stored in its content.

Another important advantage of XML is that it is written in Unicode, which makes it

portable across multiple platforms and languages. In addition, the contents of the XML

database (basically the XML documents) can be migrated to another XML database with

ease.

1.1.1.2 Disadvantages

XML documents, when stored as text files, need to be parsed before the data can be

accessed. The parsing of XML documents is costly and thus degrades performance.

This means that the data stored in the XML documents is not always ready to be

extracted, whereas the data stored in a relational database can be immediately extracted

with a simple SQL (Structured Query Language)1 query.

Another disadvantage is that XML is generally regarded as being verbose, which leads to

inefficient storage. Relational databases, on the other hand, are considered to be

extremely space efficient. This is not always the case as certain documents are better

represented by an XML document than by tables in a relational database. For example,

an XML document would represent every act, scene, and line of dialogue in

Shakespeare's Hamlet more easily than a relational database. Nevertheless, most

database applications do not require the representation of Shakespeare's Hamlet. As a

result, XML databases are only useful in special cases such as where one is building a

literature archive.

SQL (Structured Query Language): A standard query language used to retrieve data stored in
relational tables.

3

1.1.2 Data vs Documents

As explained earlier, using a XML database is only suitable in certain scenarios. These

scenarios can be easily differentiated once one understands the concepts of data-centric

and document-centric documents.

1.1.2.1 Data-centric Documents

Data-centric documents are those that use XML as a means of transporting data. For

example, a sales order containing data such as price, date, and item has a regular

structure that can be represented in an XML document, Excel spreadsheet, or a

traditional regular database all with ease. In other words, it is not critical that a sales

order be stored in a specific format for it to be understood. When storing data-centric

documents, it is necessary to utilize an XML-enabled database2 , such as a relational

database [4]. Relational databases are usually tuned for efficient data storage and

retrieval, and thus would be an ideal choice for storing data-centric documents. Figure 1

illustrates how the contents of a data-centric XML document can be directly mapped to a

table in a relational database.

<Person>
<N ame>John D oe</N ame'
<Address>Highland

Apartments</Address>
<Phone>555-5555</Phone>
<O ccupation>N one</O ccupation>

</Person>

XML Document Person Table

Figure 1: Mapping a data-centric document to a relational table

1.1.2.2 Document-centric Documents

Document-centric documents are characterized by irregular structure and mixed content,

2 XML-enabled database: a database that is not specifically designed to store XML documents, but can
recognize XML and has limited capabilities in storing and manipulating XML. The internal model is
not based on models such as relational and hierarchical models, not XML.

4

Name Address Phone Occupation

designed to be read by humans [4]. An example of a document-centric document is the

aforementioned Shakespeare play, "Hamlet." The contents of such a document-centric

document cannot be easily migrated to another format like data-centric documents are

able to as it is uncommon for two distinct formats to represent the same irregular

structure of a document-centric document. It is ideal to use XML-native databases3

when storing document-centric documents as they designed specifically to store XML

documents with the XML model intact. XML-native databases store XML documents as

documents while XML-enabled databases store the data in the documents. This allows

XML-native databases to run XML-specific tools on the documents directly. On the

other hand, XML-enabled databases need to reorganize the data before any XML-

specific tools can be used.

1.2 Project Background

The goals of the Metamedia group at MIT is to create an archive of myriad Humanities

disciplines, accessible through the Web. The archive is to be available to professors and

students in different universities so that they can browse through and share their thoughts

and opinions on the various topics. XML was chosen as the format to store the literature

documents because of its high extensibility. XML can have pointer tags so that

annotations can be made to reference specific sections of the literature documents. An

annotation can be something as simple as a reader comment or as complex as a movie

clip referring to a certain page or line number. The ability to create and view annotations

is the highlight feature of the project as it provides an online community for people to

share information.

1.2.1 Requirements

In order to achieve the goal of creating an archive that can be properly queried, a number

3 XML-native database: a database that is specifically designed to store XML documents; it has XML
specific tools for querying/searching and manipulating stored XML documents. The internal model is
based on XML.

5

of requirements must be satisfied. The following subsections will present and describe

these requirements.

1.2.1.1 Context Querying

Any database must have the ability to perform searches and return data based on the

search parameters. For example, a user must be able to find all of the documents written

by Shakespeare. Without this functionality, it would be impossible to implement a useful

archive.

1.2.1.2 Joins

Joins are conditionals used in querying that links the attributes of different types of

documents to find exactly what the user needs. Joins are needed when different

documents cross reference each other and the user needs data from a document of one

type that is dependent on another document. Joins are necessary in the project because

the annotations are dependent on the literature documents and a user may choose to

search for annotations based on certain aspects of the literature documents that they

annotate.

1.2.1.3 Grouping

Grouping is a function used in querying that, like its name suggests, groups the queried

data based on a certain attribute. This is particularly useful when trying to group the

results of an aggregate function by a certain attribute. For example, if there were a

database of employee/salary information where each employee belongs to a department,

the user would be able to obtain the total salary for each department by using the

grouping function. Without the grouping feature, the user would only be able to obtain

either the total salary for every department combined or the individual salaries, which

would require the user to manually sum up the salaries for each department.

6

2. XML Languages

Two important XML languages that play a significant role in our solution will be

presented in this section.

2.1 XPath

XPath is a language, developed by the W3C, used for addressing different parts of an

XML document [5]. XPath is mainly used to transform documents into different forms,

such as HTML. However, in terms of XML databases, XPath can used to extract

different parts of a document that match the pattern in the XPath query. XPath uses a

path notation that works well with the tree structure of XML documents. Also, its syntax

allows the use of predicates which strengthens its ability to match a part of a document.

The following is an example that illustrates the XPath syntax:

//a/b[/c = 'x']

This XPath example will match nodes that are labeled 'b' that have an ancestor node

labeled 'a' and have a child node labeled 'c' whose value equals 'x'.

Unfortunately, XPath was never intended to be used as a querying language like SQL. It

was specifically designed to be used on only one document at a time by XSLT and

XPointer, an XML Transformation language and an XML pointer language [5]. As a

result, XPath's querying ability is limited; it does not offer joins and groupings. This is

unacceptable for an XML database system should be built on a model that supports

collections of inter-related documents [3]. Without joins, it becomes extremely difficult

to perform queries on documents that reference others. Without groupings, developers

will be forced to write inefficient code for reasons explained in section 1.2.1.3.

7

2.2 XQuery

XQuery is a query language that was developed and in the process of being finalized by

the W3C. At present, there does not exist a standard query language for XML. Many

proposals for an XML query language have been made, but they are designed to

accommodate for specific data sources and not all [6]. XQuery is supposed to be able to

applicable across all XML data sources.

XQuery's specification includes the essential features of joining and grouping, making

XQuery highly anticipated as XPath does not offer them. XQuery also provides the

ability to query data from multiple documents. Its syntax uses the same path expressions

in XPath, but it is much richer. XQuery's greatest improvements over XPath are the use

of variables and FLWR (for, let, where, and return) expressions. FLWR expressions

allow for iteration and the binding of variables to intermediate results. This translates to

the ability to join between documents. A simpler way to think about XQuery is that it

allows the use of multiple XPath queries where each query line can be assigned to a

variable and returned. The following is an example that illustrates the XQuery syntax:

for $a in document('foo.xml')//bar

for $b in document('foo2.xml')//bar

let $varl := $a/x[y = 'z']

let $var2 := $b/x[y = 'z']

where $varl = $var2

return $varl

This XQuery example goes through two documents, foo.xml and foo2.xml, to obtain two

nodes based on a path expression similar to XPath (section 2.1). It then returns the nodes

where the values in both documents are equal. This example illustrates the use of

variables to store intermediate results, the use of multiple path expressions, and the

joining between two documents.

8

3. Related Work

This section will describe some of the ideas and tools related to our solution that attempt

to solve the same issues.

3.1 Oracle XML SQL Utility

The Oracle XSU (XML SQL Utility) models XML document elements as a collection of

nested tables [7]. The purpose of representing XML documents in relational tables is to

use the features and advantages of relational databases. These advantages include the

requirements in section 1.2.1 as SQL provides all of these features: context querying,

joining, and grouping.

There are many programs other than the Oracle XSU that employ this "XML document

to relational tables" conversion process. Unfortunately, this scheme is only useful when

working with data-centric documents, which have fixed structures that can be easily

represented by relational tables. Document-centric documents, on the other hand, have

unfixed structures that are extremely inefficient to migrate to relational tables. Since the

Metamedia project focuses around document-centric documents, the Oracle XSU is not

sufficient.

9

3.2 XRel

XRel [8] is a path-based approach developed by Masatoshi Yoshikawa and Toshiyuki

Amagasa for storing and retrieving XML documents with indexes using relational

databases. The main idea is to decompose the documents into nodes and then store them

according to node type. Each node's path information, relative to the root, is also stored.

An algorithm for translating a subset of XPath expressions to SQL queries is also

provided.

Different nodes are stored in different tables: element, attribute, and text. There is also a

path table that contains the path expressions to every node so that its entries can be

referenced bye the different node tables. Every node entry has a reference to a document

and a path expression. A node entry also has a pair of start and end integers, which

correspond to regions, to denote the position of a node. XRel uses an the concept of a

region to preserve the precedence and ancestor/descendant relationship among nodes.

XRel essentially provides a full-fledged indexing scheme that provides the user access to

every node in a document. XRel's performance in evaluating XPath expressions is

impressive. In addition, it eliminates the need to parse an XML document to a DOM

before performing an XPath query. Unfortunately, its querying capabilities are limited to

a subset of XPath, which as explained earlier, is inadequate for our purposes. The

authors plan on extending XRel to provide better querying features in the future.

10

3.3 XISS

XISS (XML Indexing and Storage System) [9] is an XML indexing system that utilizes a

numbering scheme for elements. The purpose of XISS is to provide a means for

efficiently evaluating regular path expressions by decomposing them into several simple

path expressions and then joining them. The developers of XISS provide the path join

algorithms necessary for the join process.

Given an optimized decomposition of a path expression, the author's claim performance

figures up to an order of magnitude greater than other methods. Unfortunately, XISS's

query performance is substantially affected by the way in which the path expressions are

decomposed, and the author's have yet to find an optimal decomposition procedure.

Even with an optimal decomposition method, XISS only provides an interface to

evaluate regular path expressions, which, like XRel, is inadequate for our purposes.

11

4. Implementation

Section 2 highlighted the two XML languages, XPath and XQuery. It is clear that XPath

does not provide a query syntax rich enough for our purposes. While XQuery does

provide a richer query language, its unavailability suggests a need for a solution that

offers the same features. The solution that will be presented from hereon utilizes both

XPath and XQuery to provide a way of querying XML data with a syntax that can be

mapped directly to a subset of XQuery.

4.1 Design

The solution utilizes relational tables to store and index XML documents. The idea is to

run preset XPath queries on XML documents before they are stored in the database, and

then store the results as a way to index the documents. This process can be considered to

be caching, however, this is not the case as will be shown later. The indexes are then

used by SQL queries to retrieve the necessary data. The advantage of using SQL is that

it provides the previously absent features of joins and groupings. With these features, it

is possible to create SQL queries where each sub-query maps onto a line in an XQuery

query, which will also be shown in a later subsection.

Indexing XML with relational tables is an idea that was conceived as different methods

of caching XPath queries were being brainstormed. After much analysis, it became

apparent that an XPath query simply returns a substring of an XML document, which can

be represented by an offset and length. This property is extremely useful for it allows for

efficient XPath query caching. Instead of storing the entire substring returned by an

XPath query, which may require large amounts of data space, only the offset and length

(both integers) need to be stored. The idea of using an offset and length is similar to

XRel's (see Section 3.5) use of regions for they are also used to determine

ancestor/descendant relationships, as will be shown later. The following subsections will

12

describe the implementation details of the Metamedia group's program that takes

advantage of this property to create a system that can store and query XML with a rich

syntax.

4.2 Relational Tables

As explained earlier, our solution utilizes a relational database to store the XML

documents and index data. In order to achieve the highest level of efficiency from a

relational database, it is essential that the tables are designed to store data that is not

redundant. For example, in this case an XPath query result is stored as an offset and its

respective length, as opposed to the entire query result. Our solution only requires three

tables: a document table, an XPath table, and a node table.

4.2.1 Document Table

The document table is self-explanatory for each row represents a document where one

column contains a document's contents and another contains a unique docid (Document

ID) that is assigned to each one. An additional unique identifier column is used for

future consideration. The idea is to use a document's absolute path in the file system,

before it is stored in the database, for future reference when a different database is used

and the documents need to be migrated.

The docid's serve as the table's private key 4 for each one is unique throughout the entire

table. As such, the document id can be referenced by foreign keys' in other tables. The

following figure illustrates the document table.

4 Private key: A column in a relational table that uniquely identifies a record/row.
5 Foreign key: A column in a relational table that references a private key, but is not required to be

unique. Records/rows that have foreign keys are meant to complement the record/row that is
identified by the referenced private key.

13

Figure 2: The doc table

4.2.2 XPath Table

The XPath table contains a list of preset XPath queries that are run against every

document that is stored in the database to create the index. The preset XPath queries are

determined by compiling a definitive list of all the XPath queries that are needed to

retrieve the necessary data for a given project. Compiling such a list is possible as a

given project uses a set number of XML document types as well as a set number of

XPath queries. The XPath queries are then broken down into simpler ones that can later

be combined with SQL to perform the original complex queries. The reason for breaking

down the XPath queries is because many of them use the same simpler parts. Thus, by

using simpler XPath queries, it provides for higher flexibility in constructing a wider

range of more complex XPath queries while storing a smaller number of simple queries.

For example, take the following two XPath queries:

//Person//Name

//Item//Name

The first XPath matches the "Name" nodes whose ancestor node is "Person" while the

second XPath also matches the "Name" nodes, but only those whose ancestor node is

"Item." The two XPath's can be broken down into three parts: //Person, //Item, and

//Name (//Name is used twice). These three parts can be put into the XPath table and

SQL can be used to concatenate the individual XPath's to create the original XPath

14

Docid URI value

1 /usr/local/file 1. xml <Root>

2 /usr/local/file2.xml <Root>

3 /usr/local/file3.xml <Root> ...

4 /usr/local/file4.xml <Root> ...

queries. Section 4.3 will provide a number of examples that will help illustrate this.

Much like the docid in the document table, the XPath table has an xpathid (XPath ID)

column that serves as the table's private key. In addition to the xpathid colunm and the

XPath string column, there is a namespace column. A given XPath query must be

complemented with a set of namespaces so that the query can match nodes based on their

local names and relevant namespaces [5]. A node in an XML document is identified not

only by its local name, but also a namespace. Refer to Appendix A for information on

namespaces. The figure below illustrates the XPath table.

Figure 3: The XPath table

4.2.3 Node Table

The node table represents the heart of our solution for it contains the entire index data for

all the documents. The following figure illustrates the node table.

15

xpathid path namespace

1 //a:name a=http://www.w3...

2 //a:address a=http://w ww/w3

//b:book/title b=http://ww w...

4 //b:book/author b=http://www...

docid xpathid position length

1 2 25 42

1 3 156 31

2 1 52 10

3 3 154 32

Figure 4: The Node table

Each record/row represents a result from a given XPath query and document on which

the query was run. The XPath table is consisted of the following columns: docid,

xpathid, position, and length. Docid and xpathid are both foreign keys for they refer to

private keys in doc and xpath tables, respectively. A given docid and xpathid does not

denote a unique record for a number of results can be returned when running an XPath

query on a document. Position and length represent one of the substrings of the XML

document that is returned by the XPath query. For example, a row in the node table that

has the values 1, 2, 3, and 4 (docid, xpathid, position, and length) translates to the

following: the substring with offset 3 and length 4 in the document with docid equal to 1

is a result, or one of the results, from running the XPath query with xpathid equal to 2.

The results of the XPath queries stored in the XPath table are cached in the node table.

However, as explained in section 4.1.2, the cached information is not directly used, but

rather they are combined to obtain results for more complex queries. For this reason, the

cached information acts like an index and not a simple cache look up.

4.3 Storing and Indexing Documents

Storing and indexing documents is the first step that needs to be taken before any query

16

can be made. A document is first added by inserting it into the document table. When a

document is added, a unique docid is assigned to that document by the database.

Afterwards, the program scans through the XPath table and runs every single XPath

query on the document that was just stored. Every result returned is inserted into the

node table as a record, making sure that the proper docid and xpathid values are used.

The following flow diagram illustrates the steps involved in storing and indexing a

document.

XML 2) Parse 4) Run XPath atreus
docunrmnt into DOM queries on X

Document M NoDM 0

1) Insert docunmt 3) Get all XPath's 5) Store XPath results
nto doc table fromXPath table into Node table

Doc table XPath table Node table

Figure 5: Flow chart for inserting documents

4.4 Querying

Querying is the most complex portion of the program. All of the basic components

stored in the relational tables need to be manipulated to retrieve specific data. It was

already established that XPath is insufficient as a querying language. To remedy this,

our solution is to mimic the features of XQuery by using SQL and our indexing scheme.

XQuery provides the many features unavailable in XPath (see Section 3.3), such as joins

and groupings. Furthermore, much of XQuery's syntax is carried over from XPath,

which makes it possible to utilize the indexing scheme (uses XPath) in our solution. This

section will provide a number of examples to illustrate how an XQuery query is

17

translated to a SQL query that uses our indexing scheme.

4.3.1 Simple Query

This section will use a simple query as an example to help understand the basics of how

to construct a query using our indexing scheme. Consider the following XQuery query:

for $a in document(' foo.xml')//Person

return $a

This XQuery simply returns all of the nodes in the XML document, foo.xml, that are

labeled "Person." The following pseudo-SQL query (refer to Appendix B for the

complete SQL translations) is a translation from the XQuery above that checks all

documents in the database, instead of just foo.xml:

SELECT get(node) FROM nodeTable WHERE path(node) = '//Person'

This query, as well all of the other queries, uses two custom functions get and path. The

get function returns the substring for a given document, identified by a node. The path

function returns the XPath query string that was used to return the substring that is

identified by a node. This is possible for a given substring can only be obtained by one

XPath query, or an identical one. Refer to Appendix B for more detailed information on

the get and path functions.

The SQL query in this example simply returns all of the substrings from all documents

that are results from the XPath query that equals "//Person." The following figure circles

the nodes in an example XML document that would be returned by the above query.

18

<Docu
erson>

<Namer>John Doe</Narie>
<Address>Canbridge</Address>

Pers on->
ersonl>

<Nanr>Jane Doe</Nam>
<Address>Boston</Address>

</Person>
<Itemn

<Nmrt>Waliet<INanr>
<Color>Black</Color>

</Item>
</Docunrnt>

Figure 6: Nodes returned by simple query

4.3.2 Context Query

The following is an XQuery example is more complex than the previous one for it makes

use of predicates:

for $a in document('foo.xml')//Person [./Name = 'Cornelius']

return $a

This query returns all nodes labeled "Person" where a child node named "Name" equals

"Cornelius." The equivalent pseudo-SQL query (refer to Appendix B for the complete

SQL translations) is as follows:

SELECT get(nodeTable.node) FROM nodeTable,
(SELECT node FROM nodeTable WHERE path(node) = '/Name' AND get(node)=

'Corenelius') AS Name
WHERE path(nodeTable.node)= 'I/Person' AND contains(nodeTable.node, Name.node)

The addition of the predicate translates to a much more complex SQL query that involves

a subquery. The outer select clause remains similar to the previous example in that it

returns the results from an XPath in which the query equals "//Person." However, there

is an additional condition that uses the custom function contains. The purpose of this

function is to verify that a given XPath result is within the result of another XPath query.

In context to the example above, the contains function ensures that the node returned by

19

the XPath query, //Name, that is equal to Cornelius is a child node of the //Person node

that is returned. Refer to Appendix B for more detailed information on the contains

function.

The subquery, labeled "Name," is simple when viewed separately. It returns nodes (or

substrings from a technical point of view) that are returned by the XPath query that

equals "//Name" and whose value equals "Cornelius." The results of this subquery are

used by the outer select clause to complete the query. Figure 7 illustrates a document

and the nodes that would be returned by this query.

erson>
<Name>Coneus</Nanrr>
<Address>Cmbridge</Address>

erson>
<Peirso

<Narre>Jane Doe</Narnr>
<Address>Boston</Address>

</Person>
<Itenm

<Name>Wallet</Nam>
<Color>Black</Color>

</Iterm
</Docurrmt>

Figure 7: Nodes returned by context query

Note how the XPath query is decomposed into two different parts and then later joined

by the where clause. Although not as complex, this decomposition/join process is similar

to that of XISS (see Section.3.6).

4.3.3 Complex Query

The previous two XQuery examples were simple enough to be represented by XPath.

Consider the following XQuery example, which beyond the capabilities of XPath:

The following is an XQuery example that cannot be represented by a simple XPath

20

query:

for $People in document('foo.xml')//Person[./City = 'Boston']

let $Name := $People//Name

let $Age:= $People//Age

let $Occupation:= $People//Occupation

return $Name, $Age, $Occupation

This XQuery returns the names, ages, and occupations for people who live in the city of

Boston. It is not possible for an XPath query to return multiple individual entries as its

syntax only allows the matching of one type of node, given by the path expression. This

can be accomplished in SQL by using the join functionality. In an XQuery that returns

multiple tuples based upon a for statement, such as this example, SQL joins must be

performed across all subqueries. In this example's case, the subqueries representing the

for statement and three let statements must be joined with one another. The following is

a pseudo-SQL query and the complete SQL query can be found in Appendix B.

SELECT get(Name.node), get(Age.node), get(Occupation.node) FROM
(SELECT nodeTable.node FROM nodeTable,

(SELECT node FROM nodeTable WHERE path(node) = '//City' AND
get(node) = 'Boston')

AS City
WHERE path(node)= '//Person' AND contains(nodeTable.node, City.node))
AS Person
JOIN

(SELECT node FROM nodeTable WHERE path(node) = '//Name')
AS Name ON contains(Person.node, Name.node)
JOIN

(SELECT node FROM nodeTable WHERE path(node)= '//Age')
AS Age ON contains(Person.node, Age.node)
JOIN

(SELECT node FROM nodeTable WHERE path(node) = '//Occupation')
AS Occupation ON contains(Person.node, Occupation.node)

Although this select query is long, there is a fair amount of repetition as the last three

subqueries are almost identical except for the XPath query that they are resolving. The

first subquery represents the for statement in the XQuery in which it is obtaining the

people that reside in Boston. The other three subqueries are simply retrieving all of the

21

names, ages, and occupations without any conditionals. The join statements ensure that

the names, ages, and occupations returned are for their respective people. This is

achieved by the contains conditional that checks whether or not the nodes returned by the

subqueries belong to a certain person (see section 4.3.2). Without the join, there is no

way of knowing if a given name, age, occupation combination is valid.

Figure 8 illustrates the nodes that would be returned from the previous two SQL

statements.

<Downmnt>
<Person>

<Nant>John Doe</Nanr>
<City>Camtdge</City>
<Age>25</Age>
<Occupation>Janitor</Occupaticn>

</Person>
<Person>

<Nanr>Comelius</Nanr>
<City>New York</City>
<Age>35</Age>
<Occupation>Investnrnt Banker</Occupaion>

</Person>
<Person>

a>Jane Doe</Nanm>
<City>Boston</City>

e>19</Age>
I .U on>Studenkl/Oc Amio>

</Person>
</Docunrnt>

Figure 8: Nodes returned by complex query

22

5. Performance Analysis

In order to gauge the suitability and practicality of our indexing scheme, this section will

will provide performance analyses, with respect to time, in three different categories:

inserting, querying, and reindexing documents.

5.1 Inserting Documents

Before any data can be queried, the solution requires that a document first be inserted

into the database and then be indexed. Refer to section 4.2 for the exact steps involved in

this process. The table below shows the time required to insert documents of different

sizes, independent of the size of an existing index. A total of four XPath queries were

run on each document for indexing.

Number of Documents Total Size of Document(s) Time taken to insert

document(s)

1 990 bytes 0.557 seconds

1 154,752 bytes 2.221 seconds

1 1,055,349 bytes 6.082 seconds

102 102, 413 bytes 10.051 seconds

174 178,176 bytes 16.721 seconds

Table 1: Time taken to insert and index documents

Table 1 shows numbers that are far from impressive. However, note that the inserting

process only needs to be run once per document. In order to increase the performance in

inserting documents, a solution would be to merge as many related documents into one.

Table 1 shows how it actually takes less time to insert and index one large document than

many documents that are cumulatively smaller.

23

5.2 Querying Documents

The performance of querying documents is the most important for it is the process that is

most frequently run. Examples similar to those in section 4.3 were used to show the

querying performance at different levels of complexity. All queries were run over a

node table with 891 records and a doc table with 178 records. These records represent

the data that is currently being used in one of the Metamedia projects.

The first query run is a simple one similar to that in section 4.3.1 with no subqueries.

The second query is more complex (section 4.3.2 - context query) with three levels of

subqueries. The last query is the most complex (section 4.3.3 - complex query), which

involves three separate processes: inserting, querying, and deleting. The insertion has

one subquery level and the actual query also has one subquery level.

Type of Query Time Taken

Simple 0.016 seconds

Context 0.15 seconds

Complex 0.374 seconds

Table 2: Time taken for different queries

All of the numbers shown in table 2 are completely within acceptable levels. Even with

the most complex query having three separate processes, it only took 0.374 seconds.

5.3 Reindexing Documents

Reindexing is a process that should not need to be run for as long as the developers are

24

careful about compiling the initial set of XPath's. Nevertheless, it is a process that must

be supported and analyzed for it will most likely be used at some point. The following

table shows the time it takes to reindex the same 178 documents in section 5.2.

Type of Reindex Time Taken

Using every XPath in database (5) 10.623 seconds

One extra XPath 2.825 seconds

Table 3: Time taken to reindex documents

Much like inserting,

argument applies, for

reindexing documents is not a fast process. However, the same

reindexing is process even less common than inserting.

5.4 Evaluation

Although it would have been ideal to have better performance figures for inserting and

reindexing documents, the figures illustrate how the solution's query performance is well

within practical boundaries. The purpose of indexing the documents with preset XPath's

was to increase querying performance. Thus, it would be fair to say that it was expected

to find poor numbers when inserting and reindexing documents for the idea was to take

an initial performance hit to speed up querying.

25

6. Conclusion

Given the project requirements, budget constraints, and limitations in XML technology,

the solution described in this thesis would be considered a success. It is currently being

used by the Metamedia group as its XML storage and retrieval archive system. This

section will review the pros and cons of the program and then explore its future.

6.1 Pros

The first and foremost advantage of this solution is that it provides critical features that

were unavailable in the other programs used. The most important feature being the

ability to perform joins in queries. Although it is a simple feature, joining allows for the

creation of complex queries. As shown in section 4.3.3, it would be impossible to issue

the same query without joins.

The second most beneficial advantage is the high querying speed that it provides over the

conventional XML querying method of DOM parsing and XPath querying. The

performance increase can be greatly attributed to the fact that the XML documents no

longer need to be parsed into a DOM when queried. Instead, the DOM parsing takes

place when the documents are inserted into the database.

Yet another advantage is the flexibility of the indexing scheme. By breaking down

XPath queries to simpler ones and caching the results of those, it is possible to construct

a much wider range of queries.

Lastly, there is the advantage of not modifying the XML documents when they are stored

in the database. They are stored in their original form as text in the database. The

advantage in this is that should the Metamedia group decide to upgrade to a different

26

database, the XML documents can be easily migrated over.

6.2 Cons

The majority of the shortcomings in this solution comes from the actual indexing

process. All documents that are added to the database need to be parsed into a DOM so

that the XPath queries stored in the database can be run on them. When a large number

of documents are inserted, this indexing process can take a while, as shown in Section 5.

This fault, however, is not as bad as one may initially think for the indexing process is

run infrequently. Due to this shortcoming, it is essential that those who are responsible

for populating the XPath table be especially wary when compiling the list of preset

XPath queries. Otherwise, it may be necessary to reindex the entire database should an

unforeseen XPath query be added to the XPath table. Such a situation is undesirable as

there may be a large number of documents in the database that need to be reindexed.

Section 4.3 had a number of examples that showed how to convert an XQuery query to a

SQL query. This conversion process is quite complicated and it must be done for every

individual query. Although this weakness does not affect the performance of the

program, it slows down the process of adding new queries. Similarly to the previous

shortcoming, the addition of new queries is done infrequently, and thus the severity is not

very high.

In addition, it is not possible to create queries that determine the level of ancestry

between nodes as the contains function only determines whether or not a given node is a

parent node of another. For example, the following two XPath's would return different

nodes:

//a[./b]

//a[.1/b]

27

The first XPath would return the nodes labeled "a" that have an immediate child labeled

"b." The second, however, will return all the "a" nodes that have a descendant node

labeled "b" at any level. The contains function would not be able to differentiate the two

cases. For this reason, it is only possible to represent a subset of the XQuery syntax with

our indexing scheme.

6.3 Future Considerations

Based on the performance analysis, the most obvious shortcomings would be the slow

processes of inserting and reindexing. However, it is difficult to gauge the impact those

performance figures have on a given project for it is uncertain as to how often the

documents will be inserted or reindexed. Nonetheless, it would be beneficial to figure

out a way to speed up these processes.

A shortcoming not as obvious as the slow inserting and reindexing is the process of

converting XQuery's to SQL queries. Currently, this process is not automated as it is

done by the developers. Depending on the complexity of the XQuery, the conversion

process may take a long time. Furthermore, there is no guarantee that the translated SQL

query returns the exact same results as the XQuery simply because the conversion is

being done by humans. The developers of this indexing scheme is currently

implementing a feature that would allow other developers to generate the complex SQL

queries from a pseudo language that directly maps into XQuery's syntax.

In conclusion, the solution on which this thesis is based was largely developed for the

purpose of providing the features of the unreleased XQuery language. Once XQuery is

released and is integrated with other databases, this solution may be discarded unless

additional features are added.

28

Appendix A - Namespaces

An XML namespace is a collection of names, identified by a URI (Universal resource

identifier) reference, which are used in XML documents to specify the type of an element

or attribute. The purpose of a namespace is to prevent "collisions" between elements or

attributes that have the same local name, but are from different markup vocabularies. A

namespace allows the document constructs to have universal names, whose scope extends

beyond the document in which they are contained.

Elements or attributes that utilize a namespace appear as qualified names, which are

composed of a namespace prefix, a local name, and a colon in between that separates

them. The prefix selects a namespace as it is mapped to a URI reference. The

combination of a namespace prefix with a local name provides an identifier for an

element or attribute that is universally unique.

Consider the following XML document:

<root xmlns:a=http://www.a.coin xmlns:b=http://www.b.conm>

<a:person>John</a:person>

<b:person>Jane</b:person>

</root>

Two namespace prefixes, "a" and "b", are used. There are two "person" elements, but

they are not the same as different namespace prefixes are used. In the situation that a

software module looks through XML documents and needs to extract the "person"

elements that refer to the URI, htt://www.a.com, the namespace prefix "a" must be used.

Otherwise, the software module would not be able to differentiate the different "Person"

elements and would extract both John and Jane.

29

Appendix B - SQL Queries

The examples in section 4.3 used pseudo-SQL queries, which are simpler than the true

expanded SQL queries, to help the reader understand the concept of the querying

technique. This appendix will provide the equivalent expanded SQL queries to provide a

better understanding of the implementation details.

Simple Query

Pseudo-SQL

SELECT get(node) FROM nodeTable WHERE path(node) = '//Person'

Expanded SQL

SELECT get(docid, position, length) FROM node WHERE path(docid, position, length)=
'//Person'

The two versions differ in only two ways. Firstly, every reference to a node is replaced

with a docid, position, and length. The reason for this is because a node is represented

by those three variables (see section 4.3.2). Secondly, the reference to nodeTable is

replaced with node because node is the true name of the table in the relational database.

The purpose of referring to nodeTable was to eliminate any confusion between the actual

table and the nodes.

In addition, the get and path functions take in 3 arguments, instead of just one. The get

function takes in three integers as arguments: docid, position, and length. It simply

returns the substring for a given document, identified by the docid, by using the position

argument as the offset and the length argument to specify the length of the substring.

30

The path function also takes in the same three arguments as get. The path function

returns the XPath query string that was used to return the substring that is identified by

the three arguments. This is possible for a given substring can only be obtained by one

XPath query, or an identical one.

Context Query

Pseudo-SQL

SELECT get(nodeTable.node) FROM nodeTable,
(SELECT node FROM nodeTable WHERE path(node) = '//Name' AND get(node)=

'Corenelius') AS Name
WHERE path(nodeTable.node) = 'I/Person' AND contains(nodeTable.node, Name.node)

Expanded SQL

SELECT get(node.docid, node.position, node.length) FROM node,
(SELECT docid, position, length FROM node WHERE path(docid, position, length)=

'I/Name' AND get(docid, position, length) = 'Corenelius') AS Name
WHERE path(node.docid, node.position, node.length) = '//Person' AND contains(node.docid,

node.position, node.length, Name.docid, Name.position, Name.length)

The same changes from the simple query example are here as well, except for the

difference in the contains function. The contains function takes in six arguments (instead

of two): a pair of docid's, positions, and lengths. The function checks to make sure that

the docid's are the same. It then checks to see if the first substring contains the second

substring with their respective position and length arguments.

31

Complex Query

Pseudo-SQL

SELECT get(Name.node), get(Age.node), get(Occupation.node) FROM
(SELECT nodeTable.node FROM nodeTable,

(SELECT node FROM nodeTable WHERE path(node) = '//City' AND
get(node) = 'Boston')

AS City
WHERE path(node)= '//Person' AND contains(nodeTable.node, City.node))
AS Person
JOIN

(SELECT node FROM nodeTable WHERE path(node)= '//Name')
AS Name ON contains(Person.node, Name.node)
JOIN

(SELECT node FROM nodeTable WHERE path(node)= '//Age')
AS Age ON contains(Person.node, Age.node)
JOIN

(SELECT node FROM nodeTable WHERE path(node) = '//Occupation')
AS Occupation ON contains (Person. node, Occupation.node)

Expanded SQL

SELECT get(Name.docid, Name.position, Name.length), get(Age.docid, Age.position,
Age.length), get(Occupation.docid, Occupation.position, Occupation.length) FROM

(SELECT node.docid, node.position, node.length FROM node,
(SELECT docid, position, length FROM node WHERE path(docid, position,

length) = 'I/City' AND get(docid, position, length) = 'Boston')
AS City

WHERE path(node.docid, node.position, node.length) = '//Person' AND
contains(node.docid, node.position, node.length, City.docid, City.position, City.length))

AS Person
JOIN

(SELECT docid, position, length FROM node WHERE path(docid, position, length)=
'//Name')

AS Name ON contains(Person.docid, Person.position, Person.length, Name.docid,
Name.position, Name.length)

JOIN

(SELECT docid, position, length FROM node WHERE path(docid, position, length)=
'//Age')

AS Age ON contains(Person.docid, Person.position, Person.length, Age.docid,
Age.position, Age.length)

JOIN

(SELECT docid, position, length FROM node WHERE path(docid, position, length)=
'//Occupation')

AS Occupation ON contains(Person.docid, Person.position, Person.length,

32

Occupation.docid, Occupation.position, Occupation.length)

33

References

[1] Bosak, Jon, XML, Java, and the Future of the Web. Sun Microsystems, 1997

[2] Flynn, Peter, The XML FAQ. http://ww w.ucc.ie/xnl/, 2002

[3] Salminen, Airi, Requirements for XML Document Database Systems. Doc Eng,

2001.

[4] Obasanjo, Dare, An Exploration of XML in Database Management Systems. 2001

[5] W3C, XML Path Language (XPath). http://www. w3 .org/TR/xpath

[6] W3C, XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/, 2002

[7] Naude, Frank, Oracle Internet Filesystem (iFS) FAQ.

http://www.orafaq.con/faqifs.htm, 2000

[8] Yoshikawa, Masatoshi and Amagasa, Toshiyuki, XRel: A Path-Based Approach to

Storage and Retrieval of XML Documents Using Relational Databases, ACM

Transactions on Internet Technology, Vol. 1, No. 1, August 2001, Pages 110-141

[9] Li, Quanzhong and Moon, Bongki, Indexing and Querying XML Data for Regular

Path Expressions. The VLDB Journal, 2001

34

